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Generating Functional Analysis for Iterative CDMA
Multiuser Detectors

Kazushi Mimura,Member, IEEE,and Masato Okada

Abstract—We investigate the detection dynamics of a soft
parallel interference canceller (soft-PIC), which includes a hard-
PIC as a special case, for code-division multiple-access (CDMA)
multiuser detection, applied to a randomly spread, fully syn-
chronous base-band uncoded CDMA channel model with ad-
ditive white Gaussian noise under perfect power control in
the large-system limit. We analyze the detection dynamics of
some iterative detectors, namely soft-PIC, the Onsager-reaction-
cancelling parallel interference canceller (ORC-PIC) and the
belief-propagation-based detector (BP-based detector),by the
generating functional analysis (GFA). The GFA allows us to study
the asymptotic behavior of the dynamics in the infinitely large
system without assuming the independence of messages. We study
the detection dynamics and the stationary estimates of an iterative
algorithm.

We also show the decoupling principle in iterative multiuser
detection algorithms in the large-system limit. For a generic
iterative multiuser detection algorithm with binary input , it is
shown that the multiuser channel is equivalent to a bank of
independent single-user additive non-Gaussian channels,whose
signal-to-noise ratio degrades due to both the multiple-access
interference and the Onsager reaction, at each stage of the
algorithm. If an algorithm cancels the Onsager reaction, the
equivalent single-user channels coincide with an additivewhite
Gaussian noise channel. We also discuss ORC-PIC and the BP-
based detector.

Index Terms—generating functional analysis, Code-Division
Multiple-Access, iterative algorithms, detection dynamics

I. I NTRODUCTION

DETECTION DYNAMICS of generic iterativecode-
division multiple-access (CDMA) multiuser detectors,

which utilize soft-decision in the large system limit, is pre-
sented in this paper. The CDMA is a digital modulation system
that employs spreading codes to enable access to a mobile
communication system by multiple users [54], [55]. The
statistical-mechanical approach has been applied to evaluate
the performance of various wireless communication systems
[51]. This kind of systems is widely used in communications
and signal processing, such as the code-division multiple-
access, the multiple-input multiple-output channels [39], [20],
and compressed sensing [5], [47], [14], [15].

Various types of multiuser detectors utilizing soft-decision
have been proposed so far [55], [54], [13], [25]. Tanaka
has first evaluated the properties of the maximum a pos-
teriori detector and the marginal-posterior-mode detector by
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the statistical-mechanical analysis, which is called thereplica
analysis(or the replica method) [49], [51], [43]. The replica
analysis has widely been applied to analyze communication
systems [20], [21], [40] and other information theoretic prob-
lems. It can treat the properties of detection results, but cannot
directly treat the detection dynamics of detectors. Since the
optimal marginal-posterior-mode detector itself is knownto be
NP-hard [55], it is important to construct suboptimal methods.
Iterative algorithms are generally useful as such methods from
the viewpoint of computational cost. Various kinds of iterative
detection algorithms have been developed to date [41], [13],
[25], [3], [45], [53], [23]. The analysis of iterative multiuser
detection algorithms is therefore expected to play an important
role in developments and improvements of detectors.

Recently, the state evolution to evaluate the dynamics of
the approximate belief propagation has been proposed by
Bayati and Montanari [2]. The detection dynamics of iter-
ative algorithms which are characterized by a dense graph
has attracted a great deal of attention from theoretical and
practical viewpoints up to now [25], [52], [2]. Kabashima has
proposed the belief-propagation-based detector and analyzed
its performance [25]. Tanaka and Okada have analyzed the
detection dynamics [52] of thesoft parallel interference can-
celler (soft-PIC) proposed by Divsalar et al [13] by means
of a dynamical theory for the Hopfield model [44]. Bayati
and Montanari have analyzed the reconstruction dynamics
of approximate belief propagation algorithm for compressed
sensing [2]. These existing studies [25], [52], [2] have suc-
ceeded in analyzing of various kinds of iterative algorithms
including belief-propagation-based methods.

However, these analyses, such as density evolution [46],
[52] and state evolution [2], are justified only for the casesthat
the correlation between present estimates and their past values
can be neglected. In other words, these can only be applied to
the case where there is not a retarded self-interaction, which
is caused by iterations and this is often called the Onsager
reaction, and their predictions systematically deviate from
computer simulation results in general.

We have already applied thegenerating functional analysis
(GFA) [11] to the hard-PIC, i.e., Varanasi and Aazhang’s
conventional PIC [32], [33] so far. This analysis can however
treat the hard-decision only [32], [33]. The GFA, which uses
the saddle-point method [8], [29], allows us to study the
asymptotic behavior of the dynamics in the infinitely large
system [11], [6], [7]. Since it is not based on the S/N analysis,
it does not therefore need the Gaussian assumption of the
noise part. In the S/N analysis, the signal part, that contains
the user’s information being estimated, is separated from
the remaining noise part; besides the noise part is generally
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assumed to follow a given distribution such as the Gaussian
distribution.

In this paper, we investigate the detection dynamics of some
iterative algorithms for CDMA multiuser detection, applied
to a randomly spread, fully synchronous base-band uncoded
CDMA channel model with additive white Gaussian noise un-
der perfect power control. We here treat soft-PIC, theOnsager-
reaction-cancelling parallel interference canceller (ORC-PIC)
, which is an analogue of soft-PIC, and thebelief-propagation-
based detector (BP-based detector). These models have
the retarded self-interaction. To confirm the validity of our
analysis, we have performed computer simulations under some
typical system loads and channel noise conditions.

This paper is organized as follows. The next section ex-
plains the system model. Sections III and IV introduce some
multiuser detection algorithms and the generating functional
analysis, respectively. Sections V – VII present analyses of
soft-PIC, ORC-PIC, and the BP-based detector. Section VIII
explains the stationary states of iterative algorithms andtheir
stability. In section IX, we discuss the decoupling principle
[20], [21] in iterative detectors. The final section is devoted to
a summary.

II. SYSTEM MODEL AND NOTATIONS

Let us focus on the basic fully synchronousK-user base-
band direct-sequence / binary phase-shift-keying CDMA chan-
nel model with perfect power control as

yµ :=
1√
N

K
∑

k=1

sµkbk + σ0n
µ, (1)

where yµ is the received signal at chip intervalµ ∈
{1, · · · , N}, and wherebk ∈ {−1, 1} and sµk ∈ {−1, 1} are
the binary phase-shift-keying-modulated information bitand
the spreading code of userk ∈ {1, · · · ,K} at chip interval
µ, respectively. The Gaussian random variableσ0nµ, where
nµ ∼ N (0, 1), represents channel noise whose variance is
σ2
0 . The spreading codes are independently generated from the

identical symmetric distributionP (sµk = 1) = P (sµk = −1) =
1/2. The factor1/

√
N is introduced in order to normalize the

power per symbol to 1. The signal-to-noise ratio is obtained
asEb/N0 = 1/(2σ2

0) by using these normalizations. The ratio
β := K/N is called system load.

In this paper, the lettersk, k′ denote indices in{1, · · · ,K}
and the lettersµ, µ′ denote indices in{1, · · · , N}. The(k, k′)
element of the matrixW , whose index is a pair of the
user numbers, is indicated asWkk′ . The elements of vectors
y = (y1, · · · , yN) and b = (b1, · · · , bK), whose indices are
the chip interval index or the user number, are indicated as
yµ and bk, respectively. Thes-th element of vectorx =
(x(−1), x(0), · · · , x(t))⊤, whose index is the stage number, is
indicated by(x)(s), e.g.,(x)(1) = x(1) (Note that(x)(1) does
not meanx(−1)). Here,X⊤ denotes the transpose ofX. The

(s, s′) element of the matrix

X =











X(−1,−1) X(−1,0) · · · X(−1,t)

X(0,−1) X(0,0) · · · X(0,t)

...
...

...
X(t,−1) X(t,0) · · · X(t,t)











,

whose index(s, s′) is a pair of the stage numbers, is indicated
as (X)(s,s

′), e.g., (X)(1,1) = X(1,1) (Note that (X)(1,1)

does not meanX(−1,−1)). The notations are summarized in
Appendix A.

III. D ETECTION ALGORITHMS

We discuss the detection dynamics of the following three
kinds of iterative detection algorithms in this paper.

A. Soft-PIC

The soft parallel interference canceller has been proposedby
Divsalar et al [13]. Kaiser and Hagenauer have also proposed
a similar algorithm [27].

Definition 1: (Soft-PIC) The updating rule for tentative
decisionb̃(t)k ∈ R of bit signalbk at staget is

b̃
(t)
k = f

(

hk −
K
∑

k′=1, 6=k
Wkk′ b̃

(t−1)
k′

)

, (2)

wheref : R → R, which is called a transfer function, that is
arbitrary andhk is the output of the matched filter for userk:

hk :=
1√
N

N
∑

µ=1

sµky
µ, (3)

andWkk′ is thekk′-element of sample correlation matrixW
of the spreading code:

Wkk′ :=
1

N

N
∑

µ=1

sµks
µ
k′ . (4)

The initial condition of iteration is̃b(−1)
k = 0. When the

transfer function choosesf(x) = tanh(x/σ2), this iterative
detection algorithm is called soft-PIC. Here,σ2 is a control
parameter representing the detector’s estimate of channelnoise
variance. �

Müller and Huber have improved Soft-PIC and have numer-
ically evaluated its performance [38].

B. ORC-PIC

In soft-PIC, matched filter output has a very complex cor-
relation between all estimates. The correlation due to iterative
calculation worsens performance of detection. The ORC-PIC
is an analogue of soft-PIC, which has a term to cancel such
correlation. The updating rule is modified to

b̃
(t)
k = f

(

hk −
∑

k′ 6=k
Wkk′ b̃

(t−1)
k′

−Γ̂
(t,t−1)
k b̃

(t−1)
k − · · · − Γ̂

(t,−1)
k b̃

(−1)
k

)

, (5)
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with b̃(−1)
k = 0. If we properly choose coefficients{Γ̂(s,s′)

k } of
the term−Γ̂

(t,t−1)
k b̃

(t−1)
k − · · · − Γ̂

(t,−1)
k b̃

(−1)
k , the correlation

can be cancelled. Tanaka and Okada derived the preceding
parameter{Γ̂(s,s′)

k } by applying density evolution [52] based
on the statistical neurodynamics [44].

Definition 2: The ORC-PIC is defined by updating rule (5)
with

(Γ̂k b̃k)
(t) = βG(t,t−1)[b̃

(t−1)
k − (Γ̂kb̃k)

(t−1)], (6)

and (Γ̂kb̃k)
(−1) = (Γ̂k b̃k)

(0) = 0. Here, b̃(t)k = (b̃
(−1)
k , · · · ,

b̃
(t)
k )⊤, Γ̂k is a(t+1)×(t+1) matrix whose(s, s′) element is

Γ̂
(s,s′)
k , andG(t,t−1) denotes the average single-user response

function. �

Detail of the parameterG(t,t−1) is introduced later (in Section
V-B). Note thatG(t,t−1) does not depend on the user indexk.

C. BP-based Detector

Assuming that information bitsb are independently gen-
erated from the symmetric distribution, the posterior dis-
tribution from received signalsy is given as p(b|y) =
p(y|b)/∑b∈{±1}K p(y|b), where

p(y|b) =
N
∏

µ=1

1√
2πσ

exp

[

− 1

2σ2

(

yµ− 1√
N

K
∑

k=1

sµkbk

)2]

,

(7)

andσ2 is a control parameter when true noise level parameter
σ2
0 is not known. The marginal-posterior-mode detector [51]

is represented by

b̃k = argmax
bk∈{−1,1}





∑

b\bk∈{−1,1}K−1

p(b|y)



 . (8)

The BP-based detector is an iterative algorithm that employs
the belief propagation to approximately calculate the posterior
marginal included in (8).

Definition 3: (BP-based detector) The BP-based detector
[25] is given by the following iterative equations:

b̃(t+1) = tanh(R(t)h−U (t) +A(t)b̃(t)), (9)

U (t) = A(t)Wb̃(t) +A(t)β(1 −Q(t))U (t−1), (10)

where

R(t) = A(t) +A(t)β(1−Q(t))R(t−1), (11)

A(t) =
1

σ2 + β(1 −Q(t))
, (12)

Q(t) =
1

K

K
∑

k=1

(b̃
(t)
k )2, (13)

with initinal conditions:R(−1) = A(−1) and b̃(−1)
k = 0. Func-

tion tanh is applied componentwise. From posterior average
b̃
(t)
k , the tentative decision at thetth update is evaluated as
b̂
(t)
k = sgn(b̃(t)k ), where function sgn(x) denotes the sign

function taking1 for x ≥ 0 and−1 for x < 0. �

This BP-based detector can be rewritten as

b̃
(t+1)
k = tanh

(

R(t)hk +A(t)b̃
(t)
k

−
t

∑

s=−1

J (t,s)
K
∑

k′=1

Wkk′ b̃
(s)
k

)

, (14)

where

J (t,s)=



















0, s = −1

A(s)
t
∏

s′=s+1

A(s′)β[1− q(s
′)], 0 ≤ s ≤ t− 1

A(t), s = t.
(15)

IV. GENERATING FUNCTIONAL ANALYSIS

In this section, we briefly summarize methods on GFA
[11]. Some books that introduces GFA are available, e.g., the
analyses of minority games [7] and spin glasses [18], [12].

First of all, let us compare GFA with the replica analysis
[49], [51], [43], [30]. Both have been developed in the litera-
ture of statistical mechanics [17], [28] and have been applied
to the analysis of problems in the field of information theory
so far.

A. Replica Analysis Versus Generating Functional Analysis

In the replica analysis, the goal is to understand macroscopic
static properties in the large-system limit, i.e., the number of
interacting bodies becomes large. One evaluate thefree energy
that is proportinal to a logarithm of the partition function. The
partition function is a logarithm of a Gibbs distribution. In the
static computation based on the replica analysis, the average
over disorder generates a coupling between distinctreplicas.

In GFA, the goal is, on the other hand, to understand
macroscopicdynamicproperties in the large-system limit. One
evaluates not the free energy but thegenerating functionalthat
is a kind of the characteristic function of the path probability.
The generating functional is not a static object but contains
dynamical information. In the dynamical computation, we
do not have to introduce replicas. The effect of disorder is
to generate a coupling between distincttimes. Under some
assumptions concerning stationary states, one can obtain static
properties from GFA. We can, therefore, avoid the replica
trick and obtain macroscopic static properties by GFA if the
dynamics reaches a stationary state. From this point of view,
GFA can be regarded as one of alternative methods for the
replica analysis.

In the next two subsections, we briefly introduce both the
replica analysis and GFA, and discuss the difference between
them in more detail.

B. Outline of Replica Analysis

Suppose that we want to infer theMarginal-Posterior-Mode
(MPM) performance of a system. Let vectorsx = (xk) ∈ XK

be the states of the model, whereX denotes a set of values
of each element. Letp(x;w) = [Z(β;w)]−1e−βH(x;w) be
a posterior distribution in the Bayesian framework, where
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w denote parameters in it andβ denotes a non-negative
parameter that is called theinverse temperatureand commonly
corresponds to a noise amplitude, i.e., a largerβ gives a
smaller noise. (Note thatβ denotes the system load except
in Section IV.) A distribution of this form is called theGibbs
distribution. The function is referred to as a cost function or
the Hamiltonian. The normalization constant of the posterior
distribution

Z(β;w) =
∑

x∈XK

e−βH(x;w) (16)

is called thepartition function.
The Gibbs distribution is derived by extremization

(maximization) of the entropyS(β;w) := − ∑

x∈XK

p(x;w) ln p(x;w) under an average costU(β;w) :=
∑

x∈XK H(x)p(x;w) and a parameterw are fixed. When we
fix the parameterβ instead of the average cost, this relationship
can be rewritten as follows. Namely, for a fixedβ and a
fixedw, a functionalF̃ [q(x;w)] =

∑

x∈X k H(x;w)q(x;w)
+β−1

∑

x∈X k q(x;w) ln q(x;w) with respect to q(x;w)
takes an extremum (minimum) value atq(x;w) = p(x;w).
The extremum (minimum) value of the functional is
F̃ [p(x;w)] = −β−1Z(β;w) =: F (β;w). This value is an
important potential, called the(Helmholtz) free energy. From
the free energy one can evaluate various quantities such as an
average cost and the entropy for a fixedβ, e.g.,

U(β;w) =
∂[βF (β;w)]

∂β
,

S(β;w) = β2 ∂F (β;w)

∂β
.

by taking derivatives with respect toβ. Since the free energy
F (β;w) is often proportional toK, the free energy density
fK(β;w) := F (β;w)/K, that is the free energy per an
interacting body, is defined.

For a given realizationw it is, however, hard to calcu-
late the free energy density, since the result must depend
on detail of the realization. We therefore assume that the
limit limK→∞ fK(β;w) =: F̃ exists and it is equal to its
averagelimK→∞K−1

E[F (β;w)] for almost all realizations,
where theEX denotes the expectation with respect to random
variablesX . Using the identitylnx = limn→0

∂xn

∂n , we have

F̃ = lim
K→∞

(

lim
n→0

∂Ew[Z(β;w)n]

∂n

)

. (17)

The idea of the replica analysis is to calculateEw[Z(β;w)n]
as if n were in integer. Then-th moment is

Z(β;w)n =
∑

x1,··· ,xn∈XK

exp

[

−β
n
∑

a=1

H(xa;w)

]

, (18)

wherea is a replica index. We shall refer to copiesx1, · · · ,xn
as replicas. It should be noted that the replicas are no longer
statistically independent since the replicas have a common
parameterw. The average over the parameterw generates
a coupling between distinct replicas.

In the replica analysis, one therefore has to assume (i) the
self-averaging property applies, (ii) the “replica trick”is valid,

and (iii) replica symmetry (or same kind of symmetries) holds,
to keep tractability. The replica analysis, however, stilldoes
not have a rigorous justification.

C. Outline of Generating Functional Analysis

The generating functional analysis, or thepath integral
methods, have been applied to the model which is described
using realizations of random variables by de Dominicis [11]. In
GFA, one can analyze the asymptotic behavior of the dynamics
in the infinitely large system using the generating functional
that can be regarded as a kind of the characteristic functionin
statistics.

We here consider the following model. Let vectorsx(s) =

(x
(s)
k ) ∈ R

K be the states of the model at stages and let the
initial state bex(−1). Let the updating rule be

x(s+1) = F(x(s);w) (19)

for s ∈ {−1, 0, · · · , t − 1}, whereF : R → R denotes a
function andw again denotes parameters in it.

If we know the probability of seeing a particular state
at a given stageps(x(s)), we can evaluate the property of
the system by using it. In GFA we consider the probability
of observing a particular sequence or path of states, i.e.,
p(x(−1),x(0), · · · ,x(t)) up to some finite timet instead of
ps(x

(s)). The probabilityp(x(−1),x(0), · · · ,x(t)) is referred
to as thepath probability. The way to do this is to introduce
a generating functional which is defined as

Z[ψ] =

〈

exp

[

−i

t
∑

s=−1

K
∑

k=1

ψ
(s)
k x

(s)
k

]〉

, (20)

where the bracket〈·〉 denotes the average over the path
probability p(x(−1),x(0), · · · ,x(t)) and we have introduced
the dummy variablesψ(s) = (ψ

(s)
k ) ∈ R

K . Note that the
generating functional differs from the partition functionin
the previous subsection. Taking derivatives with respect to the
dummy variables allow us to examine some averages, e.g.,

〈x(s)k 〉 = i lim
ψ→0

∂Z[ψ]

∂ψ
(s)
k

, (21)

〈x(s)k x
(s′)
k′ 〉 = − lim

ψ→0

∂2Z[ψ]

∂ψ
(s)
k ∂ψ

(s′)
k

. (22)

Since one does not have to average a ratio or a logarithm in
this context, one can compute correlations by entirely avoiding
the replica trick. In the replica analysis, macroscopic quantities
are obtained from derivatives with respect to the “scalar”
parameterβ. In GFA, averages are given from derivatives
with respect to not a scalar parameter but some elements of
the dummy variables (vectors) with same dimension as the
original vectorsx(−1),x(0), · · · ,x(t).

For a given realizationw it is, again, hard to calculate the
generating functional since the result must depend on detail
of the realization. We, therefore, assume that the generating
functional is concentrated to its average over the parameter
Ew(Z[ψ]) in the large system limit. The effect of the pa-
rameterw is to generate a coupling between distinct times.
Averaging over the random variables, we will move to a



JOURNAL OF IEEE XXX XXX, VOL. XX, NO. XX, AUGUST 2010 5

saddle-point problem in the limitK → ∞. It should be noted
that the normalization relationZ[0] = 1 plays an important
role in the elimination of spurious solutions to the saddle-point
equations. (We see detail of this point in Section V-B.)

The terms in the averaged generating functional can be split
into three related parts. The first one is a signal part. The
second one is a static noise part due to the random variables
within the model. The last one is retarded self-interactiondue
to the influence of the state at the previous stage, which may
be able to affect the present state. The GFA allows us to treat
the last part.

V. GENERATING FUNCTIONAL ANALYSIS FOR SOFT-PIC

A. Averaged Generating Functional

The goal of multiuser detection is to simultaneously infer in-
formation bitsb1, · · · , bK after base-band signalsy1, · · · , yN
are received.

If the transfer function takesf(x) = sgn(x), this updating
rule coincides with thehard-PIC [54]. Note that the hard-PIC,
which means the Varanasi and Aazhang’s conventional PIC,
is also obtained by taking the limitσ → 0 in soft-PIC.

We assume the matched filter stage, i.e.,b̃k(0) = f(hk), for
initialization. This initialization is easily treated by formally
assumingp(b̃(−1)

k ) = δ(b̃
(−1)
k ) for all k, whereδ denotes the

Dirac delta function. The widely used measure to determine
the performance of a demodulator is thebit error rate (BER).
The BERP (t)

b of hard decisionŝb(t)k = sgn(b̃(t)k ) at the tth

stage of soft PIC is given byP (t)
b = (1 − m

(t)
h )/2, where

m
(t)
h = 1

K

∑K
k=1 bkb̃

(t)
k is the overlap between information

vectorb(t) = (b1, · · · , bK)⊤ and tentative hard-decision vector
(b̃

(t)
1 , · · · , b̃(t)K )⊤. Without loss of generality, we can assume

that the true information bits are all 1, i.e.,bk = 1 for all k,
because the spreading codes are symmetric.

Let us analyze the detection dynamics in the large system
limit whereK,N → ∞, while the system loadβ is kept finite.
We introduce inverse temperatureγ for generating functional
analysis. The stochastic updating rule for tentative decision
b̃
(t)
k ∈ R of bit signalbk at staget is given by

p(b̃
(s+1)
k |b̃(s)) = γ√

2π
e−

γ2

2 {b̃(s+1)
k

−f(u(s)
k

)}2

, (23)

with

u
(t)
k := hk −

K
∑

k′=1, 6=k
Wkk′ b̃

(t)
k′ + θ

(t)
k , (24)

which is a summation over all messages from other tentative
decisions. Note that this updating rule coincides withb̃

(s+1)
k =

f(u
(s)
k )+N (0, γ−2). In the limit whereγ → ∞, this stochastic

updating rule is equivalent to the deterministic rule (2). Term
θ
(t)
k is a stage-dependent external message that is introduced

to define a response function. The inverse temperature and the
external message are respectively set toγ → ∞ andθ(t)k = 0
at the end of analysis.

The stochastic updating rule for tentative decision vector
b̃(t) = (b̃

(t)
k ) ∈ R

K at staget is given by using (23),
i.e., p(b̃(s+1)|b̃(s)) =

∏K
k=1 p(b̃

(s+1)
k |b̃(s)). The dynamics is

a Markov chain, since the present tentative decision depends

only on the past decisions. A path probability (density)
p(b̃(−1), · · · , b̃(t)) is therefore simply given by the individual
transition probabilityp(b̃(s+1)|b̃(s)) of the chain:

p(b̃(−1), · · · , b̃(t)) = p(b̃(−1))

t−1
∏

s=−1

p(b̃(s+1)|b̃(s)). (25)

The initial state probability becomesp(b̃(−1)) =
∏K
k=1 δ(b̃

(−1)
k ). Therefore, we can calculate an expectation

with respect to arbitrary functionG = G(b̃(−1), · · · , b̃(t)) of
tentative decisions as

〈G〉 :=
∫

R(t+2)K

( t
∏

s=−1

db̃(s)
)

p(b̃(−1), · · · , b̃(t))G. (26)

To analyze the detection dynamics of the system, we define
a generating functional asZ[ψ] := 〈exp[−i

∑t
s=−1 b̃

(s) ·
ψ(s)]〉, where b̃(s) = (b̃

(s)
1 , · · · , b̃(s)K )⊤ andψ(s) = (ψ

(s)
1 ,

· · · , ψ(s)
K )⊤. The basic idea underlying generating functional

formalism is very simple [11], [6], [7]. If the generating
functionalZ[ψ] can be evaluated as a functional with respect
to dummy functionsψ(s), one can obtain all averages of in-
terest by differentiation fromZ[ψ]. The generating functional
includes the random variables{sµk} and{nµ}.

We here assume that the generating functional is self-
averaging, namely, in the large system limit, the generating
functional is concentrated to its average over random variables
{sµk} and{nµ} and the typical behavior of the system only de-
pends on the statistical properties of the random variables. We
therefore evaluate the averaged generating functional defined
as follows.

Definition 4: (Average Generating functional) The average
generating functional̄Z[ψ] is defined by

Z̄[ψ] :=

〈

exp

[

−i

t
∑

s=−1

b̃(s) · ψ(s)

]〉

, (27)

where [· · · ] := Es1,··· ,sK ,n[· · · ] denotes the average over
spreading codess1, · · · , sK and the noisen. �

From the averaged generating functional, we can obtain

lim
ψ→0

∂Z̄[ψ]

∂ψ
(s)
k

= −i〈b̃(s)k 〉, (28)

lim
ψ→0

∂2Z̄[ψ]

∂ψ
(s)
k ∂ψ

(s′)
k′

= −〈b̃(s)k b̃
(s′)
k′ 〉, (29)

lim
ψ→0

∂2Z̄[ψ]

∂ψ
(s)
k ∂θ

(s′)
k′

= −i
∂〈b̃(s)k 〉
∂θ

(s′)
k′

. (30)

Calculating the average over spreading codess1, · · · , sK and
the noisen, we have the following result.

Lemma 1:The averaged generating functional is simplified
to

Z̄[ψ] =

∫

dηdη̂dkdk̂dqdq̂dQdQ̂dLdL̂

× exp

[

K(Φ + Ψ+ Ω) +O(lnK)

]

, (31)
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in which functionsΦ, Ψ, andΩ are given by

Φ := i

t−1
∑

s=−1

{η̂(s)η(s) + k̂(s)k(s)}

+i

t−1
∑

s=−1

t−1
∑

s′=−1

{q̂(s,s′)q(s,s′)

+Q̂(s,s′)Q(s,s′) + L̂(s,s′)L(s,s′)}, (32)

Ψ :=
1

K

K
∑

k=1

ln

{∫

Rt+2

( t
∏

s=−1

db̃(s)
)

p[b̃(−1)]

∫

dudû

× exp

[ t−1
∑

s=−1

{ln γ√
2π

− γ2

2
[b̃(s+1) − f(u(s))]2}

−i

t−1
∑

s=−1

t−1
∑

s′=−1

{q̂(s,s′)b̃(s)b̃(s′)

+Q̂(s,s′)û(s)û(s
′) + L̂(s,s′)b̃(s)û(s

′)}

+i

t−1
∑

s=−1

û(s){u(s) − b̃(s) − θ
(s)
k − k̂(s)}

−i
t−1
∑

s=−1

b̃(s)η̂(s) − i
t

∑

s=−1

b̃(s)ψ
(s)
k

]}

, (33)

Ω :=
1

K
ln

∫

dvdv̂dwdŵ

× exp

[

i

N
∑

µ=1

t−1
∑

s=−1

{v̂(s)µ v(s)µ + ŵ(s)
µ w(s)

µ − βv(s)µ w(s)
µ }

−1

2

N
∑

µ=1

t−1
∑

s=−1

t−1
∑

s′=−1

{βσ2
0v

(s)
µ v(s

′)
µ + v̂(s)µ Q(s,s′)v̂(s

′)
µ }

−1

2

N
∑

µ=1

t−1
∑

s=−1

t−1
∑

s′=−1

{v̂(s)µ [k(s) − L(s′,s)]ŵ(s′)
µ

+ŵ(s)
µ [k(s

′) − L(s,s′)]v̂(s
′)

µ }

−1

2

N
∑

µ=1

t−1
∑

s=−1

t−1
∑

s′=−1

{ŵ(s)
µ

×[1− η(s) − η(s
′) + q(s,s

′)]ŵ(s′)
µ }

]

. (34)

�

Details on the derivation and definitions of the notations are
given in Appendix B.

B. Saddle-Point Equations and Meaning of Macroscopic Pa-
rameters

One can deduce the meaning of macroscopic parameters by
differentiating the averaged generating functionalZ̄[ψ] of (31)
with respect to the external messagesθ

(s)
k and dummy func-

tionsψ(s)
k . The averaged generating functionalZ̄[ψ] is domi-

nated by a saddle-point forK → ∞. We can thus simplify the
saddle-point problem in Lemma 1 in the large system limit.
Using the shorthand{d} := dηdη̂dkdk̂dqdq̂dQdQ̂dLdL̂

and the normalization identitȳZ[0] = 〈1〉 = 1, we now find
derivatives of the averaged generating functional:

lim
ψ→0

∂Z̄[ψ]

∂ψ
(s)
k

= lim
ψ→0

∫

{d}eK(Φ+Ψ+Ω)∂(KΨ)

∂ψ
(s)
k

= −i〈b̃(s)〉k, (35)

lim
ψ→0

∂2Z̄[ψ]

∂ψ
(s)
k ∂ψ

(s′)
k′

= lim
ψ→0

∫

{d}eK(Φ+Ψ+Ω)

×
(

∂2(KΨ)

∂ψ
(s)
k ∂ψ

(s′)
k′

+
∂(KΨ)

∂ψ
(s)
k

· ∂(KΨ)

∂ψ
(s′)
k′

)

= δk,k′ [−〈b̃(s)b̃(s′)〉k + 〈b̃(s)〉k〈b̃(s
′)〉k′ ]

−〈b̃(s)〉k〈b̃(s
′)〉k′

= −δk,k′〈b̃(s)b̃(s
′)〉k − (1− δk,k′ )〈b̃(s)〉k〈b̃(s

′)〉k′
(36)

lim
ψ→0

∂2Z̄[ψ]

∂ψ
(s)
k ∂θ

(s′)
k′

= lim
ψ→0

∫

{d}eK(Φ+Ψ+Ω)

×
(

∂2(KΨ)

∂ψ
(s)
k ∂θ

(s′)
k′

+
∂(KΨ)

∂ψ
(s)
k

· ∂(KΨ)

∂θ
(s′)
k′

)

= −δk,k′〈b̃(s)û(s
′)〉k − (1− δk,k′ )〈b̃(s)〉k〈û(s

′)〉k′
(37)

lim
ψ→0

∂Z̄[ψ]

∂θ
(s)
k

= −i〈û(s)〉k
(a)
= 0, (38)

lim
ψ→0

∂2Z̄[ψ]

∂θ
(s)
k ∂θ

(s′)
k′

= −δk,k′〈û(s)û(s
′)〉k

(b)
= 0, (39)

where〈 〉k denotes the average as

〈f({b̃, u, û})〉k :=
∫

Rt+2

( t
∏

s=−1

db̃(s)
)∫

dudûwk({b̃, u, û})f({b̃, u, û})

∫

Rt+2

( t
∏

s=−1

db̃(s)
)∫

dudûwk({b̃, u, û})
(40)
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with

wk({b̃, u, û})

:= δ[b̃(−1)] exp

[ t−1
∑

s=−1

{ln γ√
2π

− γ2

2
[b̃(s+1) − f(u(s))]2}

−i

t−1
∑

s=0

t−1
∑

s′=0

{q̂(s,s′)b̃(s)b̃(s′) + Q̂(s,s′)û(s)û(s
′)

+L̂(s,s′)b̃(s)û(s
′)}

+i

t−1
∑

s=0

û(s){u(s) − b̃(s) − θ
(s)
k − k̂(s)}

−i

t−1
∑

s=0

b̃(s)η̂(s)
]∣

∣

∣

∣

saddle

, (41)

which is referred to as asingle-user measure. Here, evaluation
f |saddle denotes an evaluation of functionf at the dominating
saddle-point. To derive the=(a) in (38) and=(b) in (39), we
use identities

lim
ψ→0

∂Z̄[ψ]

∂θ
(s)
k

=
∂Z̄[0]

∂θ
(s)
k

= 0, (42)

lim
ψ→0

∂2Z̄[ψ]

∂θ
(s)
k ∂θ

(s′)
k′

=
∂2Z̄[0]

∂θ
(s)
k ∂θ

(s′)
k′

= 0, (43)

respectively. These are obtained from̄Z[0] = 1. Substituting
(28) – (30) and (38) – (39) into (35) – (37), the spurious so-
lutions, that depend on〈û(s)〉k or 〈û(s)û(s′)〉k, are eliminated
and we then have

〈b̃(s)k 〉 = 〈b̃(s)〉k, (44)

〈b̃(s)k b̃
(s′)
k′ 〉 = δk,k′ 〈b̃(s)b̃(s

′)〉k
+(1− δk,k′ )〈b̃(s)〉k〈b̃(s

′)〉k′ , (45)

∂〈b̃(s)k 〉
∂θ

(s′)
k′

= −iδk,k′〈b̃(s)û(s
′)〉k. (46)

In the large system limitK → ∞, integral (31) will
be evaluated by the dominating saddle-point of exponent
Φ + Ψ + Ω. We can now derive the saddle-point equations
by differentiation with respect to integral variablesη(s), η̂(s),
k(s), k̂(s), q(s,s

′), q̂(s,s
′), Q(s,s′), Q̂(s,s′), L(s,s′), and L̂(s,s′).

These equations will involve the average overlapm(s) (which
measures the bit error rate), the average single-user correlation
C(s,s′) and the average single-user response functionG(s,s′):

m(s) := lim
K→∞

1

K

K
∑

k=1

〈b̃(s)k 〉, (47)

C(s,s′) := lim
K→∞

1

K

K
∑

k=1

〈b̃(s)k b̃
(s′)
k 〉, (48)

G(s,s′) := lim
K→∞

1

K

K
∑

k=1

∂〈b̃(s)k 〉
∂θ

(s′)
k

. (49)

Using the identities (35) – (39) and (44) – (46), the straight-
forward differentiation ofΦ+Ψ+Ω with respect toη(s), η̂(s),

k(s), k̂(s), q(s,s
′), q̂(s,s

′), Q(s,s′), Q̂(s,s′), L(s,s′), and L̂(s,s′)

leads us to the following saddle-point equations:

η̂(s) = i
∂Ω

∂η(s)

∣

∣

∣

∣

saddle

, (50)

η(s) = lim
K→∞

1

K

K
∑

k=1

〈b̃(s)〉k, (51)

k̂(s) = i
∂Ω

∂k(s)

∣

∣

∣

∣

saddle

, (52)

k(s) =
1

K

K
∑

k=1

〈û(s)〉k = 0, (53)

q̂(s,s
′) = i

∂Ω

∂q(s,s′)

∣

∣

∣

∣

saddle

, (54)

q(s,s
′) = lim

K→∞

1

K

K
∑

k=1

〈b̃(s)b̃(s′)〉k, (55)

Q̂(s,s′) = i
∂Ω

∂Q(s,s′)

∣

∣

∣

∣

saddle

, (56)

Q(s,s′) =
1

K

K
∑

k=1

〈û(s)û(s′)〉k = 0, (57)

L̂(s,s′) = i
∂Ω

∂L(s,s′)

∣

∣

∣

∣

saddle

, (58)

L(s,s′) = lim
K→∞

1

K

K
∑

k=1

〈b̃(s)û(s′)〉k, (59)

for all s and s′, respectively. Comparing them with (47) –
(49), the following relationships are obtained:

η(s) = m(s), (60)

q(s,s
′) = C(s,s′), (61)

L(s,s′) = iG(s,s′). (62)

Therefore, we hereafter make use of{m(s), C(s,s′), iG(s,s′)}
instead of{η(s), q(s,s′), L(s,s′)}. It should be noted that causal-
ity

∂〈b̃(s)〉
∂θ(s′)

= 0, (63)

should hold fors ≤ s′, thereforeL(s,s′) = G(s,s′) = 0 for
s ≤ s′. In the next subsection, we calculate the remaining
derivatives in the above saddle-point equations.

C. Derivation of Saddle-Point Equations

The integral inΩ with respect tov̂ andŵ is calculated as

Ω =
1

β

∫

dv̂

(2π)(t+1)/2

dŵ

(2π)(t+1)/2

×eiŵ⊤(β−1
1)v̂− 1

2 v̂
⊤Qv̂− 1

2 v̂
⊤B⊤ŵ− 1

2 ŵ
⊤Bv̂− 1

2 ŵ
⊤D̂ŵ

=
1

β

∫

dv̂

(2π)(t+1)/2

×e− 1
2 v̂

⊤Qv̂|D̂|−1/2e−
1
2 v̂

⊤(β−1
1−B)⊤D̂−1(β−1

1−B)v̂

= − 1

2β
{ln |D̂|

+ ln |Q+ (β−1
1−B)⊤D̂−1(β−1

1−B)|}, (64)
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whereB andD̂ are matrices whose elements are defined by

B(s,s′) := −ik(s
′) −G(s,s′), (65)

D̂(s,s′) :=
σ2
0

β
+ 1−m(s) −m(s′) + C(s,s′), (66)

respectively. The1 denotes an identity matrix.
The saddle-point equations includingΩ are evaluated as

follows. We find

η̂(s) =i
∂Ω

∂m(s)

∣

∣

∣

∣

saddle,k=0,Q=O

=i
∂

∂m(s)

(

− 1

2β
{ln |D̂|

+ ln |(β−1
1+G)⊤D̂−1(β−1

1+G)|}
)

=i
∂

∂m(s)

(

− 1

β
ln |β−1

1+G|
)

=0, (67)

and find

q̂(s,s
′) = 0, (68)

in the same way. Similarly, thêL(s,s′) becomes

L̂(s,s′) =
∂Ω

∂G(s,s′)

∣

∣

∣

∣

saddle,k=0,Q=O

=
∂

∂G(s,s′)

(

− 1

β
ln |U |

)

=− 1

β
· 1

|U |
∂|U |

∂G(s,s′)

(a)
= − 1

β
· 1

|U |
∂

∂G(s,s′)

t−1
∑

τ=−1

U (s,τ)Ũ (s,τ)

=− 1

β

Ũ (s,s′)

|U | , (69)

where we putU := β−1
1 + G, whose (s, s′) element is

U (s,s′) := β−1δs,s′ +G
(s,s′), andŨ (s,s′) denotes a cofactor of

the (s, s′) element ofU . We here use the cofactor expansion
at =(a). We therefore have

L̂ =− 1

β
(U⊤)−1

=− (1+ βG⊤)−1. (70)

SinceQ = O, Ω can be expanded with respect toQ asln |A+
Q| = tr lnA+ trA−1Q. The Q̂(s,s′) can be evaluated as

Q̂(s,s′) =i lim
Q→O

∂Ω

∂Q(s,s′)

∣

∣

∣

∣

saddle,k=0

=− i

2β
lim
Q→O

∂

∂Q(s,s′)
trMQ

=− i

2β
M (s′,s), (71)

where we put

M := (β−1
1+G)−1D̂(β−1

1+G⊤)−1, (72)

D(s,s′) := βD̂(s,s′) (73)

= σ2
0 + β[1 −m(s) −m(s′) + C(s,s′)]. (74)

We then haveQ̂ = −i 1
2βM

⊤ = −i 12 (1 + βG)−1D(1 +

βG⊤)−1. Finally, we turn tok(s):

k̂(s) =i lim
k→0

∂Ω

∂k(s,s′)

∣

∣

∣

∣

saddle,Q=O

=− i

β
lim
k→0

∂

∂k(s)
ln |1− βB⊤|

(a)
= − i

β
lim
k→0

1

|1− βB⊤|
∂

∂k(s)






























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · · δ−1,s′ + iβk(−1) + βG(s′,−1) · · ·
...

· · · δs,s′ + βG(s′,s) · · ·
...

· · · δt−1,s′ + iβk(t−1) + βG(s′,t−1) · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ iβk(s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

· · · δ−1,s′ + iβk(−1) + βG(s′,−1) · · ·
...

· · · 1 · · ·
...

· · · δt−1,s′ + iβk(t−1) + βG(s′,t−1) · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣































=|Λ[s]|, (75)

whereΛ[s] denotes a(s+ 2)× (s+ 2) matrix whose(s′, s′′)
element is given by

Λ
(s′,s′′)
[s] =

{

δs′,s′′ + βG(s′′,s′), for s′ 6= s
1, for s′ = s

. (76)

TheΛ[s] is a matrix whose elements in a row that represents
values of stages, i.e., the(s+2)th row, in1+βG are replaced
to 1. Since |1 − βB⊤| containsk(s) only in a single row,
|1 − βB⊤| is expanded with respect to the row at=(a) in
(75).

Example 1:ParameterΛ[2] has the following form:

Λ[2] =









1 βG(0,−1) βG(1,−1) βG(2,−1)

0 1 βG(1,0) βG(2,0)

0 0 1 βG(2,1)

1 1 1 1









, (77)

when t = 2. �

D. Bit Error Rate

One can obtain the polynomial expressions of soft-bits
b̃
(s)
k , which are averaged over the path probability (25), by

GFA. Therefore, we can also evaluate the averaged value of
analytic functions with respect to the soft-bits. Then-th order
differentiation of the averaged generating functional, which
has the forms of (27) and (31), with respect toψ(s)

k gives

lim
ψ→0

(

∂

∂ψ
(s)
k

)n

Z̄[ψ]
(a)
=(−i)n〈(b̃(s)k )n〉

(b)
=(−i)n〈(b̃(s)k )n〉k, (78)

where=(a) and =(b) are derived by differentiation of (27)
and (31), repsectively. For arbitrary functionF (x) that can be
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expanded aroundx = 0, we thus have the identity:

〈F (b̃(s)k )〉 = 〈F (b̃(s)k )〉k. (79)

The Hamming distance between single letters is defined by

d(x, x̂) :=

{

0, if x = x̂
1, if x 6= x̂

. (80)

The Hamming distance betweenK-bit sequencesb and
b̂ is measured by the averaged single-letter distortion as
d(x, x̂) := K−1

∑K
k=1 d(bk, b̂k). The hard-decision estimates

can be represented bŷb(t)k = sgn(b̃(t)k ) If we therefore choose
F (x) such as a function which approaches sgn(x), e.g.,
lima→∞ tanh(ax), the bit error rateP (t)

b can then be evaluated
as

P
(t)
b :=〈d(b, b̂(t))〉 (81)

=
1

2

(

1− 1

K

K
∑

k=1

〈 sgn(b̃(t)k )〉k
)

, (82)

whered(b, b̂) = (1− bb̂)/2 for b, b̂ ∈ {−1, 1}.

E. Effective Single-User Problem and Analytical Result

We here summarize our calculation. Some macroscopic
parameters are found to vanish in the saddle-point:k(s) =
Q(s,s′) = 0. The remaining macroscopic parameters can
all be expressed in terms of three observables: the average
overlapm(s), the average single-user correlationC(s,s′), and
the average single-user response functionG(s,s′), which are
defined by (47) – (49). The averaged generating functional
Z̄[ψ] is dominated by a saddle-point forK → ∞. We can
thus simplify the saddle-point problem of Lemma 1 in the
large system limit.

We derive a single-user saddle-point problem. Note that
we remained the user indexk to deduce the meaning of
macroscopic parameters with respect to external messages
{θ(s)k } and dummy functions{ψ(s)

k }. We set these parameters
as

ψ
(s)
k → 0, (83)

θ
(s)
k → 0. (84)

Consequently, the single-user measure (41) becomes user
independent. We then arrive at the following proposition.

Proposition 1: Settingγ → ∞ andθ(s) = 0, the dynamics
of soft-PIC can be obtained as the following equations in the
large system limit, i.e.,K → ∞.

m(s) = 〈〈b̃(s)〉〉, (85)

C(s,s′) = 〈〈b̃(s)b̃(s′)〉〉, (86)

G(s,s′) = 〈〈b̃(s)(R−1v)(s
′)〉〉, (87)

with the causality:G(s,s′) = 0 for s ≤ s′. The bit error rate
of hard decisions{ sgn[b̃(s)k ]} at thetth stage of soft-PIC (2)
is obtained by

P
(s)
b =

1

2
(1− 〈〈 sgn(b̃(s))〉〉). (88)

The effective path measure is given by

〈〈g(b̃,v)〉〉

:=

∫

Dv
∫

Rt+2

( t−1
∏

s=−1

db̃(s)
)

g(b̃,v) δ[b̃(−1)]

×
t−1
∏

s=−1

δ[b̃(s+1) − f(k̂(s) + v(s) + (Γb̃)(s))], (89)

where

Dv := dv|2πR|−1/2e−
1
2v·R

−1v, (90)

R = (1+ βG⊤)−1D(1+ βG)−1, (91)

Γ = (1+ βG)−1βG, (92)

k̂(s) = |Λ[s]|. (93)

with

D(s,s′) :=σ2
0 + β[1−m(s) −m(s′) + C(s,s′)], (94)

Λ
(s′,s′′)
[s] =

{

δs′,s′′ + βG(s′′,s′), for s′ 6= s
1, for s′ = s.

(95)

The terms(R−1v)(s) and (Γb̃)(s) denote thesth element of
the vectorR−1v andΓb̃, respectively. �

Details of derivation is available in Appendix C. Equations
(85)-(95) entirely describe the dynamics of the system. Term
(Γb̃)(s) in (89) is called theOnsager reaction term.

F. Numerical Analysis and Experiments

To validate the results obtained here, we performed numer-
ical experiments in anN = 8, 000 system. The system of
N = 8, 000 is too large for a practical system, but we are
now concerned with the verification of the analytical result
derived under the large system limit.

Figure 1(a) plots the first few stages of the detection
dynamics of the hard-PIC (f(x) = sgn(x)) and soft-PIC
(f(x) = tanh(x/σ2) with σ = σ0) predicted by GFA and
density evolution [52] forEb/N0 = 8 [dB]. The detailed
derivation of the density evolution analysis is available in the
reference [52]. The system load isβ = 0.5 < βc, whereβc is
the critical system load defined as the minimum system load at
which the dynamics fail to converge to the replica-symmetric
solution of the marginal-posterior-mode detector. The critical
load βc of soft-PIC forEb/N0 = 8 [dB] is about0.6. The
predictions of density evolution systematically deviate from
computer simulation results at transients.

Figure 1(b) plots the first few stages of the detection
dynamics of the hard-PIC and soft-PIC forEb/N0 = 8 [dB],
predicted by GFA and density evolution with the system load
of β = 0.7 > βc. Oscillation of the detection dynamics was
observed, whenβ > βc. The density evolution results have
residual deviations in Fig. 1 due to the lack of the Onsager
reaction term and the assumption that the summation over all
messages follows a Gaussian distribution. In particular, the
deviation between the density evolution predictions and the
simulation results becomes large whenβ > βc. In contrast,
GFA exhibits good consistency with the simulation results.
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Fig. 1. First few stages of detection dynamics of the hard-PIC (upper)
and soft-PIC withf(x) = tanh(x/σ2) with σ = σ0 (lower) predicted by
GFA (solid lines) and density evolution (dashed lines). Computer simulations
(triangles and squares) were evaluated withN = 8, 000 for Eb/N0 = 8
[dB]. The system loads were (a)β = 0.5 < βc and (b)β = 0.7 > βc,
respectively.

G. Derivation of Existing Results by Generating Functional
Analysis

If we put Γb̃ = 0, viz., if we neglect the Onsager reaction
term, the GFA recovers the density evolution framework based
on the statistical neurodynamics [52].

The multiple integral including (89) can be partially per-
formed, when we putΓb̃ = 0. Namely,m(s), G(s′), andP (s)

b

only depend onv(s−1) amongv; and C(s,s′) only depends
on v(s−1) and v(s

′−1). We here separatev into two sub-
vectors:v = (v1,v2)

⊤. The correlation matrixR can then
be represented as

R =

(

R11 R12

R21 R22

)

. (96)

For example, v1 and R11 are chosen asv1 =
(v(s−1), v(s

′−1))⊤ and

R11 =

(

R(s−1,s−1) R(s−1,s′−1)

R(s′−1,s−1) R(s′−1,s′−1)

)

, (97)

to calculate (86). For arbitrary functionf(v1), the following
identity holds:
∫

Dvf(v1) =
1

√

|2πR11|

∫

dv1e
− 1

2v1·R
−1
11 v1f(v1). (98)

Since it turns out that the response function becomes zero
except forG(s,s−1), the k̂(s) has a simple form.

We then obtain the following result. The bit error ratePb(t)
of hard decisionŝbk(t) = sgn[uk(t − 1)] at the tth stage is
given by

Pb(t) = Q
(

k̂(s−1)

√
R(s−1,s′−1)

)

, (99)

whereQ(z) :=
∫∞
z Dx denotes the error function and we here

put Dz := dz(2π)−1/2e−z
2/2 to simplify the notation. The

m(s) are to be evaluated with the following set of recursive
equations:

k̂(s) =1− βG(s,s−1)k̂(s−1), (100)

R(s,s′) =D(s,s′) + β2G(s,s−1)G(s′,s′−1)R(s−1,s′−1)

+

s−1
∑

λ=−1

D(λ,s′)
s
∏

τ=λ+1

(−βG(τ,τ−1))

+

s′−1
∑

λ=−1

D(λ,s)
s′
∏

τ=λ+1

(−βG(τ,τ−1)), (101)

D(s,s′) =σ2
0 + β(1 −m(s) −m(s′) + C(s,s′)), (102)

m(s+1) =

∫

R

Dzf(k̂(s−1) + z
√

R(s−1,s−1)), (103)

G(s,s−1) =
1√

R(s−1,s−1)

∫

R

Dzzf(k̂(s−1) + z
√

R(s−1,s−1)),

(104)

C(s,s′) =

∫

R3

DzDuDv

× f(k̂(s−1) + z
√

R(s−1,s′−1)

+ u
√

R(s−1,s−1) −R(s−1,s′−1))

× f(k̂(s
′−1) + z

√

R(s−1,s′−1)

+ u
√

R(s′−1,s′−1) −R(s−1,s′−1)). (105)

The initialization condition isR(−1,−1) = D(−1,−1) = σ2
0+β,

k̂(−1) = 1 andm(−1) = G(−1,−1) = C(−1,−1) = 0,
This result is identical to that of density evolution [52]. In

the derivation by means of density evolution, it is assumed
that the local fielduk(t) follows the Gaussian distribution
with meanBt and covarianceCt,τ . Furthermore, the Onsager
reaction term is ignored. The GFA, on the other hand, can
treat the Onsager reaction term correctly.

VI. GENERATING FUNCTIONAL ANALYSIS FOR ORC-PIC

This section discusses the dynamics of ORC-PIC.
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Proposition 2: The dynamics of ORC-PIC is given by the
following average over the effective path measure:

〈〈g(b̃,v)〉〉

:=

∫

Dv
∫

Rt+2

( t−1
∏

s=−1

db̃(s)
)

g(b̃,v) δ[b̃(−1)]

×
t−1
∏

s=−1

δ[b̃(s+1) − f(k̂(s) + v(s) + (Γb̃)(s) − (Γ̂b̃)(s))].

(106)

All other parameters are identical to those in Proposition 1. �
For ORC-PIC, the summation over all messages, which is

the argument off(· · · ) in (5) becomes

u
(t)
k =

K
∑

k=1

Wkk′ (bk′ − b̃
(t)
k′ ) + b̃

(t)
k

−
s

∑

s′=−1

Γ̂
(s,s′)
k b̃

(s′)
k +

σ0√
N

N
∑

µ=1

sµkn
µ + θ

(t)
k , (107)

with external messages{θ(t)k }. The averaged generating func-
tional Z̄[ψ] is represented as

Z̄[ψ] =Es1,··· ,sK,n

[∫

R(t+1)K

du

× p[b̃(−1)]

( t−1
∏

s=−1

γ√
2π
e−

γ2

2 {b̃(s+1)
k

−f(u(s)
k

)}2

)

× exp

[

−i

t
∑

s=−1

b̃(s) ·ψ(s)

]

×
t−1
∏

s=0

K
∏

k=1

δ

(

u
(s)
k −

K
∑

k=1

Wkk′ (bk′ − b̃
(s)
k′ )− b̃

(s)
k

+
s

∑

s′=−1

Γ̂
(s,s′)
k b̃

(s′)
k − σ0√

N

N
∑

µ=1

sµkn
µ − θ

(s)
k

)]

.

(108)

The difference between (27) and (108) is only in the fourth
term

∑s
s′=−1 Γ̂

(s,s′)
k b̃

(s′)
k in δ(· · · ) in (108). One can straight-

forwardly show Proposition 2 in the same manner as the
derivation of Proposition 1. The difference in the analytical
results only appears in (89) of Proposition 1.

We will now consider how to choose matrix̂Γ = (Γ̂(s,s′))
in the Onsager reaction canceling term to cancel the Onsager
reaction term.

Proposition 3: When the Onsager reaction term(Γ̂b̂)(t) is
chosen as

(Γ̂b̂)(t) =

t−1
∑

s=0

(−1)t−s−1βt−s
(t−1
∏

τ=s

G(τ+1,τ)

)

b̃(s), (109)

for t > 0 and (Γ̂b̂)(−1) = (Γ̂b̂)(0) = 0, then the Onsager
reaction termΓb̂ is canceled, viz.,Γb̂ − Γ̂b̂ = O, and the
response functions becomeG(t,t′) = 0 except fort = t′ + 1.
�

Details of derivation is available in Appendix D. Note that
(6) is a recursive formula of (109). One can confirm the ORC-
PIC algorithm can correctly cancel the Onsager reaction term
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Fig. 2. First few stages of detection dynamics of the hard-ORC-PIC (upper)
and soft-ORC-PIC withf(x) = tanh(x/σ2) with σ = σ0 (lower) predicted
by GFA (solid lines). In this case, the density evolution result is identical to the
GFA result. Computer simulations (triangles and squares) were evaluated with
N = 8, 000 for Eb/N0 = 8 [dB]. The system loads were (a)β = 0.5 < βc
and (b)β = 0.7 > βc, respectively.

by GFA. The density evolution results completely agree with
the GFA results [52]. The density evolution curves of Fig. 1
are equivalent to the performance of ORC-PIC.

To validate the results obtained here, we performed nu-
merical experiments in anN = 8, 000 system. Figure
2(a) plots the first few stages of the detection dynamics
of the hard-ORC-PIC (f(x) = sgn(x)) and soft-ORC-PIC
(f(x) = tanh(x/σ2) with σ = σ0) predicted by GFA [52] for
Eb/N0 = 8 [dB]. Figure 2(b) plots the first few stages of the
detection dynamics of the hard-ORC-PIC and soft-ORC-PIC
for Eb/N0 = 8 [dB], predicted by GFA and density evolution
with the system load ofβ = 0.7 > βc. Oscillation of the
detection dynamics was observed, whenβ > βc.

VII. G ENERATING FUNCTIONAL ANALYSIS FOR

BP-BASED DETECTOR

We next apply this scheme to the BP-based detector. One
can obtain the following result in the same manner as soft-PIC.

Proposition 4: The dynamics of the BP-based detector rep-
resented by (14) is described by equations (85)-(89) and the
following equations:R = (1− βB)−1D(1− βB⊤)−1, Γ =
diag(A(−1), · · · , A(t−1)) −[

∑t−1
s=−1 Js+1 ⊗∆

s+1(U⊤)−1]⊤

and k̂(s) = |Λ[s]| whereB, U , andD are matrices having
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matrix elements

B(s,s′) = −
s

∑

τ=−1

J (s,τ)G(τ,s′), (110)

U (s,s′) = δs,s′ + β

s
∑

τ=−1

J (s,τ)G(τ,s′), (111)

D(s,s′) = σ2
0R

(s)R(s′) + β

[

R(s)R(s′)

−R(s)
s′
∑

τ ′=−1

J (s′,τ ′)m(τ ′) −R(s′)
s

∑

τ=−1

J (s,τ)m(τ)

+

s
∑

τ=−1

s′
∑

τ ′=−1

J (s,τ)J (s′,τ ′)C(τ,τ ′)

]

, (112)

and

Λ(s′,s′′)
s =











δs′,s′′ + β

s′
∑

τ ′=−1

J (s′,τ ′)G(τ ′,s′), s′ 6= s

R(s′), s′ = s.

,

(113)

and matrixJs denotes

Js :=





















J (s−1,−1) · · · J (s−1,−1)

...
...

J (t−1,t−s−1) · · · J (t−1,t−s−1)

0 · · · 0
...

...
0 · · · 0





















. (114)

Here,∆ = (δs+1,s′) denotes a(t+1)× (t+1) matrix whose
(s, s′) element is given byδs+1,s′ , and the operator⊗ denotes
the Hadamard productA ⊗ B = (aijbij) for A = (aij) and
B = (bij). �

For the BP-based detector, the summation over all messages,
which is the argument oftanh(· · · ) of (14) becomes

u
(t)
k = R(t)hk +A(t)b̃

(t)
k −

t
∑

s=−1

J (t,s)
K
∑

k′=1

Wkk′ b̃
(s)
k . (115)

The averaged generating functionalZ̄[ψ] is represented as

Z̄[ψ] =Es1,··· ,sK ,n

[∫

R(t+1)K

du

× p[b̃(−1)]

( t−1
∏

s=−1

γ√
2π
e−

γ2

2 {b̃(s+1)
k

−f(u(s)
k

)}2

)

× exp

[

−i

t
∑

s=−1

b̃(s) · ψ(s)

]

×
t−1
∏

s=0

K
∏

k=1

δ

(

u
(s)
k − R(t)hk −A(t)b̃

(t)
k

+

t
∑

s=−1

J (t,s)
K
∑

k′=1

Wkk′ b̃
(s)
k

)]

. (116)

 0.0001

 0.001

 0.01

 0.1

 0  1  2  3  4

bi
t e

rr
or

 r
at

e 
P

b

stage t

simulation (BP-based detector)
GFA (BP-based detector)

Fig. 3. First few stages of detection dynamics of the BP-based detector
predicted by GFA (solid lines). Computer simulations (triangles and squares)
were evaluated withN = 8, 000 for Eb/N0 = 8 [dB]. The control parameter
and the system load were set asσ = σ0 andβ = 0.5.

Details on the derivation are given in Appendix E. For the
first few time-steps, we confirmed explicit expressions for the
solutions to our dynamic equations as

m(t) =

∫

Dz tanh(
√

R(t,t)z + k̂(t)), (117)

q(t,t) =

∫

Dz tanh2(
√

R(t,t)z + k̂(t)), (118)

k̂(t+1) =
1

σ2 + β[1− q(t,t)]
, (119)

R(t+1,t+1) =
β[1 − 2m(t) + q(t,t)]) + σ2

0

(σ2 + β[1 − q(t,t)])2
, (120)

where the BER of hard decisions at thetth stage isP tb =

H(k̂(t)/
√
R(t,t)) with H(x) =

∫∞
x Dz. In the BP-based de-

tector, the Onsager reaction term vanished. These are identical
to the results from density evolution [25]. Figure 3 plots the
first few stages of the detection dynamics of the BP-based
detector predicted by GFA [52] forEb/N0 = 8 [dB]. The
control parameter correct was set asσ = σ0.

On the other hand, Kabashima analyzed the stability of the
density evolution results and obtained an unstable condition for
the fixed point solution [25]. This unstable condition coincided
with the Almeida-Thouless (AT) instability condition [1] of
replica analysis obtained by Tanaka [51]. The AT instability
is the local instability of the RS saddle-point solution in the
replica analysis. In GFA, it is known that the AT instability
condition is derived by a condition that the response function
diverges [48]. When the AT instability condition is satisfied,
the relaxation times of GFA dynamic equations are expected to
extend to infinity. In the system addressed here, this condition
must be equivalent to the AT instability condition. In Section
VIII-C, we will discuss the stability analysis that corresponds
to the AT instability.

VIII. S TATIONARY ESTIMATES

This section explains how we approximately extract the
stationary estimate, which is a stationary state of the iterative
algorithm, under some assumptions. To simplify the problem,
we restrict ourselves to the soft-PIC algorithm. We follow the
method of Ref. [7].
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A. Analysis of Stationary Estimates

We recognize that the representation of the effective path
measure given by (89) is fully equivalent to the measure
corresponding to a single-user process of the form:

b̃(t+1) = f(k̂(t) + v(t) + θ(t) + (Γb̃)(t)). (121)

Variable v = (v(t)) can be regarded as a random variable
that obeys Normal distributionN (0,R), e.g.,〈v(t)〉v = 0 and
〈v(t)v(t′)〉v = R(t,t′), from (91), where〈· · · 〉v denotes the
average over random variablev. We here put

φ(t+1) := k̂(t) + v(t) + θ(t) + (Γb̃)(t), (122)

then the single-user process can be rewritten asb̃(t) = f(φ(t)).
We therefore have the following form.

φ(t+1) = k̂(t) + v(t) + θ(t) +

t
∑

t′=−1

Γ(t,t′)f(φ(t
′)), (123)

The relationship of (123) is referred as asingle-user process.
Using (123), the overlap (85), the correlation funciton (87), the
response function (87), and the bit error rate (88) are obtained
as

m(t) = 〈f(φ(t))〉v, (124)

C(t,t′) = 〈f(φ(t))f(φ(t′))〉v, (125)

G(t,t′) = 〈f(φ(t))(R−1v)(t
′)〉v, (126)

P
(t)
b =

1

2
(1 − 〈 sgn(f(φ(t)))〉v). (127)

We make the following assumptions to evaluate the station-
ary estimates.

Assumption 1:(Time-translation invariance: TTI) The dy-
namics reaches a time-translation invariant estimate:

lim
t→∞

m(t) = m, (128)

lim
t→∞

C(t+τ,τ) = C(τ), (129)

lim
t→∞

G(t+τ,τ) = G(τ). (130)

If this property holds, the dynamics reaches stationary esti-
mates. �

Assumption 2:(Finite integrated response: FIR) Theinte-
grated response

χ := lim
t→∞

∑

t′≤t
G(t,t′) (131)

is a finite non-negative number, i.e.,χ <∞. �

The integrated response is also called as asusceptibility.
Assumption 3:(Weak long-term memory: WLTM)

lim
t→∞

G(t,t′) = 0 (132)

for any finite t′ [9], [10]. �

Since the response function represents the memory which
means what happened to the system, the weakness of the long-
term memory implies that the system responds to its past in
an averaged way. The details of what takes place during finite
stages tend to be washed away.

We assume that the stationary estimate is unique and
Assumptions 1 – 3 hold. Note that violation of WLTM

immediately impliesχ = ∞. Under Assumption 1, the
matricesC = (C(s,s′) andG = (G(s,s′)) can be regarded
as symmetric Toeplitz matrices, since we consider that the
size of square matricesC, G, andD are sufficiently large,
viz., t + 2 is sufficiently large. The matrixD = (D(s,s′))
whose element is given by (94) is also regarded as a symmetric
Toeplitz matrix fromD(s′,s) = σ2

0 + β[1 − m(s′) − m(s) +
C(s′,s)] = σ2

0 + β[1 −m(s′) −m(s) + C(s,s′)] = D(s,s′) and
limt→∞D(t+τ,t) = σ2

0 + β[1 − 2m + C(τ)] =: D(τ), where
we again use Assumption 1. Therefore, we hereafter make the
following assumption.

Assumption 4:The matrices{C,G,D} and their powers
are Toeplitz matirices. All pairs of matrices commute. �

In this subsection, we derive the following proposition under
some assumptions.

Proposition 5: Let Assumptions 1 – 4 hold, then soft-PIC
converges to an unique stationary estimate whose BER is given
by

Pb =
1

2

(

1−
∫

R

Dz sgn(g(z))

)

, (133)

whereg(z) is to be determined by equations that describe the
stationary estimate:

m =

∫

R

Dzg(z), (134)

c =

∫

R

Dzg(z)2, (135)

χ =
1√
F

∫

R

Dzzg(z), (136)

g(z) = f(E+ z
√
F+ Gg(z) + θ̄), (137)

E =
1

1 + βχ
, (138)

F =
σ2
0 + β(1− 2m+ c)

(1 + βχ)2
, (139)

G =
βχ

1 + βχ
. (140)

�

This result is identical to that from the statistical-mechanical
analysis [50], which is called the naive mean-field theory [4].
If we put f(x) = tanh(x/σ2), θ̄ = 0 andG = 0, the BER of
Proposition 5 can then be rewritten as

Pb = Q
(

Ẽ
√

F̃

)

, (141)

with

m =

∫

R

Dz tanh(Ẽ+ z
√

F̃), (142)

c =

∫

R

Dz tanh2(Ẽ+ z
√

F̃), (143)

Ẽ =
1

σ2 + β(1− c)
, (144)

F̃ =
σ2
0 + β(1− 2m+ c)

[σ2 + β(1− c)]2
, (145)
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where the identity,

χ =
1− c

σ2
, (146)

holds in this parameter settings. This result recovers thatof
the marginal-posterior-mode detectors [51]. It may mean that
the relationshipG = 0, which corresponds to the case where
the self-coupling term vanishes, is required to achieve the
individually optimal performance.

B. Derivation of Proposition 5

Since the covariance matrixR of (91) becomes

R =

( ∞
∑

m=0

(−βG⊤)m
)

D

( ∞
∑

n=0

(−βG)n
)

(147)

=D(1+ βG⊤ + βG+ β2G⊤G)−1, (148)

by using Assumption 4, we then haveR⊤ = R. Similarly, the
reaction matrixΓ is represented as

Γ =(1+ βG)−1βG (149)

=−
∞
∑

n=1

(−β)nGn. (150)

SinceG is a lower triangular Toeplitz matrix, theΓ is also
a lower triangular Toeplitz matrix, i.e.,Γ(s,s′) := Γ(s−s′) for
s > s′ andΓ(s,s′) = 0 for s ≤ s′.

Under Assumption 3, it can be considered that the system
responds to its past in an averaged way. We therefore consider
the average ofφ(t) instead oflimt→∞ φ(t+1), which gives

φ̄ :=
1

t+ 2

t
∑

t′=−1

φ(t
′+1) (151)

=
¯̂
k + v̄ + θ̄ +

1

t+ 2

t
∑

t′=−1

t′
∑

s=−1

Γ(t′,s)f(φ(s)), (152)

where we put¯̂k := 1
t+2

∑t
t′=−1 k̂

(s), v̄ := 1
t+2

∑t
t′=−1 v

(s)

and θ̄ := 1
t+2

∑t
t′=−1 θ

(s). Under Assumptions 1 and 2,
∑∞

t′=−1(G
(t,t′))n is written by

lim
t→∞

t
∑

t′=−1

(G(t,t′))n (153)

= lim
t→∞

t
∑

t′=−1

( t
∑

t1=−1

· · ·
t

∑

tn−1=−1

G(t,t1)G(t,t1)×

· · · ×G(tn−2,tn−1)G(tn−1,t
′)

)

(154)

=χ lim
t→∞

t
∑

t1=−1

· · ·
t

∑

tn−1=−1

G(t,t1)G(t,t1)×

· · · ×G(tn−2,tn−1) (155)

=χn. (156)

Therefore, the last term on the right-hand side of (152) in the
t→ ∞ limit is evaluated as

lim
t→∞

1

t+ 2

t
∑

t′=−1

t′
∑

s=−1

Γ(t′,s)f(φ(s)) (157)

=f̄

∞
∑

n=1

(−β)n
(

lim
t→∞

t
∑

s=−1

(G(t,s))n
)

(158)

=
βχ

1 + βχ
f̄ , (159)

where

f̄ :=
1

t+ 2

t
∑

t′=−1

f(φ(s)). (160)

Taking thet → ∞ limit and using (159), the average single-
user process̄φ of (152) becomes

φ̄ =
¯̂
k + v̄ + θ̄ +

βχ

1 + βχ
f̄ . (161)

First, we evaluate¯̂k, which corresponds to the signal part.
If seriesk̂(−1), k̂(0), · · · converges, then¯̂k = k̂(∞). Since¯̂k is
obtained as¯̂k = 1−βk̂(∞)

∑∞
t′=−1G

(t′) = 1−βχ
¯̂
k, we then

have

¯̂
k =

1

1 + βχ
=: E. (162)

Next, we consider the variance of Gaussian random variable
v̄. The average of̄v is obviously〈v̄〉v = limt→∞

1
t+2

∑t
t′=−1

〈v(t′)〉v = 0. Using the definition of the persistent correlation
c := limt→∞ C(t), the variance of̄v is given by

〈v̄2〉v = lim
τ→∞

1

(τ + 2)2

τ
∑

t=−1

τ
∑

t′=−1

((1+ βG⊤)−1D(1+ βG)−1)(t,t
′) (163)

=
∞
∑

s=0

∞
∑

s′=0

((1+ βG⊤)−1)(s)((1+ βG⊤)−1)(s
′)

× lim
τ→∞

1

(τ + 2)2

τ
∑

t=s−1

τ
∑

t′=s′−1

D(t−s−t′+s′) (164)

=
σ2
0 + β(1 − 2m+ c)

(1 + βχ)2
, (165)

=:F, (166)

where we here write((1 + βG⊤)−1)(t+τ,t) as ((1 +
βG⊤)−1)(τ), since(1+βG⊤)−1 is a Toeplitz matrix. Namely,
v̄ obeys a Gaussian distribution with mean zero and variance
F: v̄ ∼ N (0,F). The Gaussian random variablēv can be
represented as̄v =

√
Fz by using standard Gaussian random

variablez ∼ N (0, 1).
Limit f(φ(t)) ast→ ∞ converges by using Assumptions 1,

2 and 3. We therefore havēφ = limt→∞
1
t+2

∑t
t′=−1 φ

(t′) =

φ(∞) and f̄ = limt→∞
1
t+2

∑t
t′=−1 f(φ

(t′)) = f(φ(∞)).
These relationships givēf = f(φ̄). Applying function f to
both sides of (161) and lettingg(z) := f̄ , we obtain

g(z) = f(E+ z
√
F+ θ̄ + Gg(z)), (167)
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where G := βχ/(1 + βχ). The persistent overlapm :=
limt→∞m(t), which is identical to that of (128), then becomes

m = lim
t→∞

〈f(φ(t))〉v (168)

=〈f̄〉v̄ =

∫

R

Dzg(z). (169)

We then have the persistent correlationc:

c = lim
τ→∞

lim
t→∞

〈f(φ(t+τ))f(φ(t))〉v (170)

=〈f̄2〉v̄ =

∫

R

Dzg(z)2, (171)

in a similar way. Since we assume Assumption 2, the inte-
grated responseχ of (131) is a finite non-negative number
and is then given by

χ = lim
t→∞

t
∑

t′=−1

∂〈f(φ(t))〉v
∂θ(t′)

(172)

=〈∂f̄
∂θ̄

〉v̄ =

∫

R

Dz
∂g(z)

∂θ̄
=

1√
F

∫

R

Dzzg(z). (173)

For arbitrary functionF (x) that can be expanded aroundx =

0, the bit error ratePb := limt→∞ P
(t)
b can be evaluated as

lim
t→∞

〈F (f(φ(t)))〉v = 〈F (f̄)〉v̄ =

∫

R

DzF (g(z)). (174)

Therefore, the bit error ratePb can be evaluated as (133).
Setting θ(s) = 0, i.e., θ̄ = 0, we have then arrived at

Proposition 5.

C. Stability Analysis for Stationary Estimates

If Assumption 3 (WLTM) is violated, the dynamics do
not achieve the stationary estimate. For example, oscillatory
behavior in the dynamics corresponds to this situation. In this
subsection, we investigate where Assumption 3 is violated and
obtain the following proposition.

Proposition 6: The condition where WLTM is violated is
given by

β

(1 + βχ)2

∫

R

Dz

(

∂g(z)

∂θ̄

)2

> 1, (175)

whereg(z) and all parameters are identical to the set of (134)
– (140). �

If we putf(x) = tanh(x/σ2) andθ̄ = 0 andG = 0, condition
(175) can be simplified as

β

[σ2 + β(1 − c)]2

∫

R

Dz[1− tanh2(Ẽ + z
√

F̃)]2 > 1, (176)

whereẼ, F̃, andc are the same as (144), (145), and (146), re-
spectively. Equation (176) coincides with the AT instability [1]
of the marginal-posterior-mode detector [51]. This condition
(176) is also identical to the microscopic instability, which is
derived by the belief update of the BP-based detector [25].

In the rest of this subsection, we derive Proposition 6. Let
us separate the response functionG(t,t′) and the Onsager

reaction termΓ(t,t′) explicitly into TTI parts and further small
contributions:

G(t,t′) =G̃(t−t′) + Ĝ(t,t′), (177)

Γ(t,t′) =Γ̃(t−t′) + Γ̂(t,t′), (178)

with limt→∞G(t+τ,t) = G̃(τ), and limt→∞ Γ(t+τ,t) = Γ̃(τ),
whereG̃(t−t′) and Γ̃(t−t′) denote TTI parts that are referred
to as persistent parts. The Ĝ(t,t′) and Γ̂(t,t′) denote small
contribution terms that are referred to asnon-persistent parts.
If weak long-term memory holds, then̂G(t,t′) and Γ̂(t,t′)

vanish for t → ∞. We here assume that some small long-
term memory, but such that the limitŝG(t′) := limt→∞ Ĝ(t,t′)

and Γ̂(t′) := limt→∞ Γ̂(t,t′) exist and also bothχ̂ :=
limt→∞

∑t
t′=−1 Ĝ(t

′), γ̂ := limt→∞
∑t

t′=−1 Γ̂(t
′), χ̃ :=

limt→∞
∑t
t′=−1 G̃(t

′) and γ̃ := limt→∞
∑t

t′=−1 Γ̃(t
′) exist.

When Assumption 3 holds, the identitieslimt→∞ Ĝ(t,t′) = 0
and limt→∞ Γ̂(t,t′) = 0 hold.

We expand (92) for small̂G, and find

Γ =
∞
∑

n=1

(−β)n
n
∑

m=0

(

n
m

)

G̃n−mĜm (179)

=(1+ βG̃)−1βG̃

+
∞
∑

n=1

n−1
∑

m=0

(−βG̃)m(βĜ)(−βG̃)n−1−m +O(G̃2),

(180)

where the(t, t′) elements of the(t+2)×(t+2) matricesG̃, Ĝ,
Γ̃, and Γ̂ are G̃(t,t′), Ĝ(t,t′), Γ̃(t,t′), and Γ̂(t,t′), respectively.
From (180), the persistent and the non-parsistent parts ofΓ is
given by Γ̃ = (1+ βG̃)−1βG̃ and Γ̂. Then,γ̂ becomes

γ̂ =β lim
t→∞

t
∑

t′=−1

t
∑

s=−1

∞
∑

n=0

(n+ 1)(−βG̃(t,s))nĜ(s,t′) (181)

=
βχ̂

(1 + βχ̃)2
. (182)

We next substitute (177) into (123) and take the average with
respect to iterative stepst, i.e., 1

t+2

∑t
t′=−1, to both-sides of

the substituted equation, which gives

φ̄ =
¯̂
k + v̄ + θ̄ +

βχ̃

1 + βχ̃
+

1

t+ 2

t
∑

t′=−1

t
∑

s=−1

Γ(t′,s)f(φ(s)).

(183)

As limt→∞ G̃(t,t′), since we assume Assumption 2 (finite
integrated response), we find

Ĝ(t) = lim
t→∞

G(t,t′) (184)

= lim
t→∞

∂〈f(φ(t))〉v
∂θ(t′)

(185)

= lim
t→∞

〈(

∂f̄

∂θ̄

)2
1

t+ 2

t
∑

s=−1

Γ̂(s)

〉

v̄

. (186)

Substituting this equation into the definition ofχ̂, the follow-
ing identity is found:

χ̂ = γ̂

〈(

∂f̄

∂θ̄

)2〉

v̄

. (187)
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Although χ̂ = γ̂ = 0 always solves this equation, one finds
another solution when(γ̂/χ̂)〈(∂f̄/∂θ̄)2〉v̄ = 1 holds, which
is equivalent to the AT line [1]. Sincêχ = 0 is required to
hold Assumption 2 and (187) represents an evaluation ofχ̂,
the evaluated value should not be greater thanχ̂, i.e., χ̂ <
γ̂〈(∂f̄/∂θ̄)2〉v̄, to diverge stationary estimates. We therefore
have an instability condition of Assumption 2 as

β

(1 + βχ̃)2

〈(

∂f̄

∂θ̄

)2〉

v̄

> 1, (188)

by substituting (182). Usingχ = χ̃ + χ̂ ≈ χ̃ and (137), we
have then arrived at Proposition 6.

IX. D ECOUPLINGPRINCIPLE

With the statistical-mechanical approach [51], [20], [21],
a complexmany-user problemsuch as an inference problem
where many users’ transmitted signals in the CDMA system is
reduced to an equivalentsingle-user problem. This approach
brings a significant interpretation in the communication theory.
This is known as thedecoupling principlefound by Guo and
Verdú [20]. It claims that the vector channel concatenatedwith
optimal detection is equivalent to a bank of independent single-
user additive white Gaussian noise channels, whose signal-to-
noise ratio degrades due to the multiple-access interference, in
the large-system limit under a certain randomness assumption
of the channel.

The decoupling principle has recently attracted a great deal
of attention and has been investigated in detail [24], [42].
Especially, by applying density evolution, Ikehara and Tanaka
have found that the decoupling principle holds not only at
equilibrium but also at each stage of the BP-based detector
[24]. Their analysis was however based on an assumption
of independence of messages. The GFA allows us to study
algorithms without assuming the independence of messages
[6], [7], [32], [33], [34]. In this section, we investigate the
decoupling principle via detection dynamics using GFA by
considering an arbitrary fading model.

A. Generic Detection Algorithm

In this section, we focus on a generic system model and a
generic iterative multiuser detection algorithm.

We now consider aK-inputN -output vector channel, which
can be regarded as a fully-synchronousK-user CDMA system
with spreading factorN or a multiple-input multiple-output
(MIMO) system. Letb = (b1, · · · , bK)⊤ ∈ R

K denote the
input vector, andy = (y1, · · · , yN )⊤ ∈ R

N denote the output
vector of the channel. The outputy is given by a linear
transform as

y = Sb+ n, (189)

where S = (a1s1, · · · , aKsK) denotes anN × K chan-
nel state matrix, which includes the received amplitudeak.
sk = 1√

N
(s1k, · · · , sNk)⊤ denote the channel parameters for

the spreading code sequence of userk, and n is a vector
consisting of i.i.d. zero-mean Gaussian random variables with
varianceσ2

0 . We use control parameterσ2 as the estimate
of the channel noise variance instead of true noise variance.

Each elementsµk ∈ {−1, 1} is an i.i.d. random variable
with equal probability. Also, letpb(b) =

∏K
k=1 pb(bk) denote

the joint prior distribution of inputb ∈ {−1, 1}K. Input
distributionpb(b) is arbitrary. The fading model is represented
by arbitrary probability distributionpa(a) =

∏K
k=1 pa(ak).

The distributionpa(a) is assumed to have finite moments.
Especially it has the second-order momentγ. We analyze the
system in the large-system limit whereK,N → ∞, while the
ratio β = K/N is kept finite.

Definition 5: (Generic iterative algorithm) The updating
rule for tentative decisioñb(t)k ∈ R of bit signalbk at staget
is

b̃
(t+1)
k = f(u

(t)
k ), (190)

with

u
(t)
k = R(t)hk −

t
∑

s=−1

J (t,s)
K
∑

k=1

Wkk′ b̃k′(s)

−
t

∑

s=−1

Γ̂
(t,s)
k b̃

(s)
k + θ

(t)
k , (191)

whereh = (h1, · · · , hK)⊤, W = (Wkk′ ), R(t), J (t,s), A(s),
Γ̂
(t,s)
k , andθ(t) are parameters. Transfer functionf : R → R

is arbitrary and applied componentwise. �

The u(t)k is a summation of messages from tentative de-
cisions. Theθ(t)k is again introduced to define a response
function. Lethk be an output of the matched filter for userk,
i.e., hk = sk · y, and letW be aK ×K correlation matrix
which is defined byW = S̃⊤S̃ with S̃ = (s1, · · · , sK).
For initialization, we usẽb(−1)

k = 0. This generic algorithm
includes various types of iterative multiuser detectors asin the
following examples.

Example 2: If we set the transfer functionf and the pa-
rameters as

f(x) = tanh(x), (192)

R(s) =σ−2, (193)

J (s,s′) =σ−2δs,s′ , (194)

A(s) =θ
(s)
k = Γ̂

(s,s′)
k = 0, (195)

the algorithm of (190) is identical to soft-PIC [27]:b̃(t+1)
k =

tanh[ 1
σ2 (hk −

∑K
k′=1Wkk′ b̃

(t)
k )]. �

Example 3:All parameters except̂Γ(s,s′)
k use those of soft-

PIC. If the Γ̂
(s,s′)
k are chosen to cancel the Onsager reaction,

then algorithm (190) gives ORC-PIC [52]. �

Example 4:We next consider the following parameters and
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function:

f(x) = tanh(x), (196)

A(t) ={σ2 + β[1−Q(t)]}−1, (197)

R(t) =A(t) +A(t)β[1 −Q(t)]R(t−1), (198)

θ
(s)
k =0, (199)

Γ̂
(s,s′)
k =− δs,s′A

(s), (200)

J (t,s) =I(0 ≤ s < t)A(s)
t
∏

s′=s+1

A(s′)β[1 − q(s
′)]

+ I(s = t)A(t), (201)

with Q(t) = K−1
∑K
k=1[b̃

(t)
k ]2. Here,I(P) denotes an indica-

tor function, which takes value 1 ifP is true, or 0 otherwise.
We assume thatQ(t) can be regarded as a constant with
respect tob̃ by using the central limit theorem. Then (190)
is equivalent to the BP-based detector [25]. �

As previously mentioned, the iterative detection algorithm
(190) includes various types of iterative algorithms. It should
be noted that in all these detectors,b̃

(t)
k gives an approximate

value for the posterior-mean at thetth stage [52], [25]. We
obtain the analytical result, which involves the following
measure:

〈g(b̂k,vk)〉∗k
=

∫

Dvk
∫

Rt+2

( t−1
∏

s=−1

db̂
(s)
k

)

g(b̂k,vk)

× δ
[

b̃
(−1)
k

]

t−1
∏

s=−1

δ
[

b̂
(s+1)
k − f(u

(s)
k )

]

, (202)

with

u
(s)
k = akk̂

(s)bk + v
(s)
k +

s
∑

s′=−1

[Γ(s,s′) − Γ̂
(s,s′)
k ]b̃

(s′)
k , (203)

where g(b̂k,vk) denotes an arbitrary function of̃bk =

(b̂
(−1)
k , · · · , b̃(t)k )⊤ andvk = (v

(−1)
k , · · · , v(t)k )⊤. The parame-

ters are as follows:

R = (1− βB)−1D(1− βB⊤)−1, (204)

Γ = −[

t−1
∑

s=−1

Js+1 ⊗∆
s+1(U⊤)−1]⊤ (205)

k̂(s) = |Λs|, (206)

whereB, U , andD are matrices with elements

B(s,s′) =−
s

∑

τ=−1

J (s,τ)G(τ,s′), (207)

U (s,s′) =δs,s′ + β

s
∑

τ=−1

J (s,τ)G(τ,s′) (208)

D(s,s′) =σ2
0R

(s)R(s′) + β[R(s)R(s′)

−R(s)
s′
∑

τ ′=−1

J (s′,τ ′)m(τ ′)

−R(s′)
s

∑

τ=−1

J (s,τ)m(τ)

+

s
∑

τ=−1

s′
∑

τ ′=−1

J (s,τ)J (s′,τ ′)C(τ,τ ′)], (209)

Λ(s′,s′′)
s =I(s′ 6= s)

(

δs′,s′′ + β

s′
∑

τ ′=−1

J (s′,τ ′)G(τ ′,s′)

)

+ I(s′ = s)R(s′). (210)

with Dv = |2πR|−1/2dv exp[− 1
2v ·R−1v]. All these param-

eters mentioned above are obtained from the following three
kinds of quantities:

m(s) = lim
K→∞

1

K

K
∑

k=1

〈akbkb̃(s)k 〉∗k

=〈akbkb̃(s)k 〉∗k,bk,ak , (211)

C(s,s′) = lim
K→∞

1

K

K
∑

k=1

〈b̃(s)k b̃
(s′)
k 〉∗k

=〈b̃(s)k b̃
(s′)
k 〉∗k,bk,ak , (212)

G(s,s′) =I(s ≤ s′) lim
K→∞

1

K

K
∑

k=1

〈b̃(s)k (R−1vk)
(s′)〉∗k

=I(s ≤ s′)〈b̃(s)k (R−1vk)
(s′)〉∗k,bk,ak , (213)

whereG(s,s′) = 0 for s < s′ due to causality. Here,∆ =
(δs+1,s′) is a (t+1)× (t+1) matrix. Operator〈 · 〉U denotes
the expectation with respect to random variableU and operator
⊗ denotes the Hadamard product, i.e.,A ⊗ B = (aijbij)
for A = (aij) andB = (bij). Terms(R−1v)(s) denote the
sth element of the vectorR−1v. Term

∑s
s′=−1 Γ

(s,s′)b̃(s
′) in

(203) represents the retarded self-interaction, which is called
the Onsager reaction.

B. Decoupling Principle

From the average of (202) we find the effective single-user
process:̃b(s+1)

k = f(u
(s)
k ) and b̃(−1)

k = 0. Variablevk can be
regarded as the(t + 1)-dimensional Gaussian variable with
mean vector0 and covariance matrixR. Using (203), the
effective single-user iterative process can be written in the
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Fig. 4. Schematic of decoupling principle. (a) Vector channel followed by
multiuser detection and estimates at staget. (b) Equivalent scalar channels
followed by single-user detectors and estimates at staget.
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Fig. 5. Vector channnel and equivalent single-user channels. (a) Vector
channel, multiuser detection, and tentative decision. (b)Equivalent single-
user non-Gaussian channel, single-user detection, and tentative decision. (c)
Equivalent single-user Gaussian channel, single-user detection, and tentative
decision.

following simple form.

u
(s)
k =akk̂

(s)bk + v
(s)
k

+

s
∑

s′=−1

[Γ(s,s′) − Γ̂
(s,s′)
k ]f(u

(s′−1)
k ), (214)

with v
(s)
k ∼ N (0, R(s−1,s−1)), where b̃(s)k = f(u

(s−1)
k ),

b̃
(−1)
k = f(u

(−2)
k ) = 0. Introducing the average over

vk as 〈 · 〉vk =
∫

Dvk · and using (214), thenm(s),
C(s,s′), andG(s,s′) are obtained asm(s) = 〈bk b̃(s)k 〉v,bk,ak ,

C(s,s′) = 〈b̃(s)k b̃
(s′)
k 〉v,bk,ak , and G(s,s′) = I(s ≤

s′)〈b̃(s)k (R−1vk)
(s′)〉vk,bk,ak , respectively. The macroscopic

parameters contain the effects of all users as averages; there-
fore, these can be represented by each user’s distribution.
Hence, (214) holds for any userk. All the parameters in (214)
can only be represented by each user’s distribution.

This result (214) means that each user experiences an equiv-
alent single-user additive noise channel whose signal-to-noise
ratio degrades due to both the multiple-access interference and
the Onsager reaction, at each stage of the algorithm. This
property is called the decoupling principle [20]. The additive
channel noise generally becomes non-Gaussian due to the
existence of the Onsager reaction

∑t−1
t′=−1 Γ

(t−1,t′)f(u
(t′−1)
k ).

Figure 4 has a schematic of the decoupling principle.
Figure 5 shows the results of the analysis. Approximate

posterior-mean estimator (PME)̃b(t)k = f(u
(t−1)
k ) is used as

the single-user detector. It should be noted that (214) implies
that equivalent channel noise becomes Gaussian if the Onsager
reaction is cancelled. However, for soft-PIC, the Onsager
reaction is not cancelled (Fig. 5 (b)). If the Onsager reaction
does not vanish, the noise distribution is not centered at zero.
Therefore, soft-PIC must be suboptimal.

Under the assumption of the large-system limit, the perfor-
mance of algorithm (190) at staget can be evaluated by using
the equivalent scalar channel determined from three types of
macroscopic parameters(m,C,G), wherem, C, andG are
a (t+1)-dimensional vector(m(−1), · · · ,m(t−1))⊤, a(t+1)×
(t+1) matrix (C(s,s′)) and a(t+1)×(t+1) matrix (G(s,s′)),
respectively. The bit error rateP (t)

b of hard decisions sgn[b̃(t)k ]

at thetth stage is given byP (t)
b = 1

2 (1−〈bk sgn[b̃(t)k ]〉v,bk,ak).
We next consider the case where we set the parameters

in (190) to those of ORC-PIC. The reaction term in the
effective single-user process is determined by two matrices
Γ and Γ̂k. It is considered that the parameterΓ represents a
retarded self-interaction caused by iterative calculation. The
parameterΓ̂k, on the other hand, is arbitrary; therefore we
can choosêΓk that cancel the Onsager reaction. Using the
inductive method, we can show that the Onsager reaction
is entirely cancelled at each staget, when the parameter
Γ̂(s,s′) is set to(Γ̂b̃)(t) = βG(t,t−1)[b̃(t−1) − (Γ̂b̃)(t−1)] and
(Γ̂b̃)(−1) = (Γ̂b̃)(0) = 0. This parameter̂Γ coincides with the
parameter derived by density evolution [52]. Density evolution
cannot treat the Onsager reaction, however density evolution
can be applied to derive an algorithm that can correctly cancel
the Onsager reaction.

In the case where we set the parameters in (190) to
those of the BP-based detector, we confirmed the Onsager
reaction is cancelled at least at stage 8 through straightforward
calculations. In this case,Γ becomesdiag(A(−1), 0, · · · , 0).
Therefore, for both ORC-PIC and the BP-based detector (at
least at stage 8), the equivalent single-user channels are given
as an additive white Gaussian noise channel (Fig. 5 (c)).

X. CONCLUSION

We evaluated the detection dynamics of soft-PIC, ORC-
PIC and the BP-based detector by applying GFA in the
large-system limit. We also showed that GFA could treat the
dynamics of belief propagation.
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From the practical point of view, iterative algorithms are
generally utilized as suboptimal methods. It is important to
understand the detection dynamics in detail to improve detec-
tors. We confirmed that the results from the density evolution
analysis could be obtained from those of the GFA analysis by
omitting the Onsager reaction term. The GFA could correctly
treat the Onsager reaction, which is a retarded self-interaction
due to iterations, and gives density evolution a basic theory.

We also studied the decoupling principle in iterative mul-
tiuser detection algorithms using GFA. and found that the
decoupling principle holds. The reconstruction algorithmof
compressed sensing could also be analyzed by GFA [37].

APPENDIX A
NOTATIONS

We here summarize notations, which are used in this paper,
in Table I. It should be noted that notations to describe the
GFA result don’t contain the user numberk, since a many-
user problem is reduced to an equivalent single-user problem
in GFA. In Table I ’BP’ denotes BP-based detector.

APPENDIX B
DERIVATION OF LEMMA 1

Evaluating the averaged generating functional straightfor-
wardly, one can obtain Lemma 1. Substituting (1) and (3) into
(24), the summation over all messages becomes

u
(t)
k =

K
∑

k′=1

Wkk′ (bk′ − b̃
(t)
k′ ) + b̃

(t)
k +

σ0√
N

N
∑

µ=1

sµkn
µ + θ

(t)
k .

(215)

TABLE I
SUMMARY OF NOTATIONS

the first
variable or top-left description

element

(notations for models)
K ∈ N

+ – the number of users
N ∈ N

+ – spreading code length
k, k′ ∈ {1, · · · , K} – user number
µ, µ′ ∈ {1, · · · , N} – chip interval index
t ∈ N

+ – stage
s, s′, t′ ∈ {−1, 0, · · · , t} – stage
sk = (sµ

k
) ∈ {±1}N s1

k
spreading code of userk

b = (bk) ∈ {±1}K b1 information bits

b̃(t) = (b̃
(t)
k

) ∈ R
K b̃

(t)
1 tentative soft decisions

b̂(t) = (b̂
(t)
k

) ∈ {±1}K b̂
(t)
1 tentative hard decisions

y = (yµ) ∈ RN y1 received signals
n = (nµ) ∈ R

N n1 noise vector
σ0 ∈ R

+ – true noise variance
σ ∈ R+ – control parameter
W = (Wkk′ ) ∈ RK×K W11 correlation matrix

ψ(t) = (ψ
(t)
k

) ∈ RK ψ
(t)
1 dummy functions

θ(t) = (θ
(t)
k

) ∈ R
K θ

(t)
1 external message

h = (hk) ∈ R
K h1 matched filter outputs

f : R → R – transfer function

Γ̂k = (Γ̂
(s,s′)
k

) ∈ R(t+1)×(t+1) Γ̂
(−1,−1)
k

parameter for ORC-PIC
R(t) ∈ R

+ – parameter for BP
A(t) ∈ R

+ – parameter for BP
Q(t) ∈ R+ – parameter for BP
J(t,s) ∈ R+ – parameter for BP
γ ∈ R+ – inverse temperature
S = (aksk) ∈ R

N×K a1s11 channel state matrix
ak ∈ R

+ – received amplitude

P
(t)
b

∈ R
+ – bit error rate

(notations for GFA)
b̃ = (b̃(t)) ∈ R

t+1 b̃(−1) tentative soft decisions
b̂ = (b̂(t)) ∈ {±1}t+1 b̂(−1) tentative hard decisions
ψ = (ψ(t)) ∈ Rt+1 ψ(−1) dummy functions
θ = (θ(t)) ∈ Rt+1 θ(−1) external message
η = (η(s)) ∈ R

t+1 η(−1) macroscopic parameter
η̂ = (η̂(s)) ∈ R

t+1 η̂(−1) macroscopic parameter
k = (k(s)) ∈ Rt+1 k(−1) macroscopic parameter
k̂ = (k̂(s)) ∈ Rt+1 k̂(−1) macroscopic parameter
q = (q(s,s

′)) ∈ R
(t+1)×(t+1) q(−1,−1) macroscopic parameter

q̂ = (q̂(s,s
′)) ∈ R

(t+1)×(t+1) q̂(−1,−1) macroscopic parameter
Q = (Q(s,s′)) ∈ R

(t+1)×(t+1) Q(−1,−1) macroscopic parameter
Q̂ = (Q̂(s,s′)) ∈ R(t+1)×(t+1) Q̂(−1,−1) macroscopic parameter
L = (L(s,s′)) ∈ R(t+1)×(t+1) L(−1,−1) macroscopic parameter
L̂ = (L̂(s,s′)) ∈ R(t+1)×(t+1) L̂(−1,−1) macroscopic parameter
m = (m(s)) ∈ Rt+1 m(−1) overlap
C = (C(s,s′)) ∈ R(t+1)×(t+1) C(−1,−1) correlation function
G = (G(s,s′)) ∈ R

(t+1)×(t+1) G(−1,−1) response function
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The average generating functionalZ̄[ψ] is represented using
u(s) = (u

(s)
1 , · · · , u(s)K )⊤ whose elements are defined by

(215). Using Dirac’s delta functionδ, we first introduce the
definition ofu(−1), · · · ,u(t−1) into Z[ψ], which is written in
terms of them, as

Z̄[ψ] =Es1,··· ,sK,n

[∫

R(t+1)K

du

× p[b̃(−1)]

( t−1
∏

s=−1

γ√
2π
e−

γ2

2 {b̃(s+1)
k

−f(u(s)
k

)}2

)

× exp

[

−i
t

∑

s=−1

b̃(s) ·ψ(s)

]

×
t−1
∏

s=−1

K
∏

k=1

δ

(

u
(s)
k −

K
∑

k′=1

Wkk′ (bk′ − b̃
(s)
k′ )− b̃

(s)
k

− σ0√
N

N
∑

µ=1

sµkn
µ − θ

(s)
k

)]

, (216)

where du:=
∏t−1
s=−1

∏K
k=1

du
(s)
k√
2π

. The arguments of Dirac’s

delta functionsδ(·) represent the definition of{u(t)k }. The
term of δ is rewritten by applying the Fourier integral form of
Dirac’s delta functionδ(x) =

∫

R
dx̂eix̂x as δ(u(s)k − [· · · ]) =

∫

R
dû

(s)
k exp{iû(s)k (u

(s)
k − [· · · ])}. We then have

Z̄[ψ] =
∑

b̃(−1),··· ,b̃(t)
p[b̃(−1)]

∫

R2(t+1)K

dudû

× exp

[

i

t−1
∑

s=−1

K
∑

k=1

û
(s)
k {u(s)k − b̃

(s)
k − θ

(s)
k }

−i

t
∑

s=−1

K
∑

k=1

b̃
(s)
k ψ

(s)
k

+
t

∑

s=−1

K
∑

k=1

{ln γ√
2π

− γ2

2
[b̃

(t+1)
k − f(u

(s)
k )]2}

]

×Es1,··· ,sK,n

{

exp

[

−i
√

βσ0

N
∑

µ=1

t−1
∑

s=−1

(

1√
K

K
∑

k=1

sµk û
(s)
k

)

nµ

−iβ

N
∑

µ=1

t−1
∑

s=−1

(

1√
K

K
∑

k=1

sµk û
(s)
k

)

×
(

1√
K

K
∑

k′=1

sµk′{bk′ − b̃
(s)
k′ }

)]}

, (217)

where dû:=
∏t−1
s=−1

∏K
k=1

dû
(s)
k√
2π

. Without loss of generality,
we can set tobk = 1 (∀k).

To take the average ofs1, · · · , sK , we introduce variables

v
(s)
µ andw(s)

µ which are defined as:

v
(s)
k :=

1√
K

K
∑

k=1

sµk û
(s)
k , (218)

w
(s)
k :=

1√
K

K
∑

k=1

sµk{1− b̃
(s)
k }. (219)

It should be noted that the averaged generating functionalZ̄[ψ]
of (217) includess1, · · · , sK only in terms of these variables
v
(s)
µ andw(s)

µ . Due to this, random variabless1, · · · , sK are
isolated and are able to be averaged. Introducingv

(s)
µ andw(s)

µ

into termEs1,··· ,sK,n{· · · } in (217), one obtains

∫

R2tN

dvdwEs1,··· ,sK,n

{

exp

[

−i
√

βσ0

N
∑

µ=1

t−1
∑

s=−1

v(s)µ nµ − iβ

N
∑

µ=1

t−1
∑

s=−1

v(s)µ w(s)
µ

]}

×δ
(

v
(s)
k − 1√

K

K
∑

k=1

sµk û
(s)
k

)

×δ
(

w
(s)
k − 1√

K

K
∑

k=1

sµk{1− b̃
(s)
k }

)

=

∫

R4tN

dvdv̂dwdŵ

× exp

[

i
N
∑

µ=1

t−1
∑

s=−1

{v̂(s)µ v(s)µ + ŵ(s)
µ w(s)

µ − βv(s)µ w(s)
µ }

]

×En

{

exp

[

−i
√

βσ0

N
∑

µ=1

t−1
∑

s=−1

v(s)µ nµ
]}

×Es1,··· ,sK

{

exp

[

−i
1√
K

N
∑

µ=1

t−1
∑

s=−1

{v̂(s)µ
K
∑

k=1

sµk û
(s)
k

+ŵ(s)
µ

K
∑

k=1

sµk (1− b̃
(s)
k )}

]}

. (220)

We here again used the Fourier integral form of Dirac’s delta.
The termEn{· · · } in (220) becomes

En

{

exp

[

−i
√

βσ0

N
∑

µ=1

t−1
∑

s=−1

v(s)µ nµ
]}

=

N
∏

µ=1

exp

[

−1

2
βσ2

0

t−1
∑

s=−1

t−1
∑

s′=−1

v(s)µ v(s
′)

µ

]

. (221)
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Sincet is finite, termEs1,··· ,sK{· · · } in (220) is given by

Es1,··· ,sK

{

exp

[

−i
1√
K

N
∑

µ=1

t−1
∑

s=−1

{v̂(s)µ
K
∑

k=1

sµk û
(s)
k

+ŵ(s)
µ

K
∑

k=1

sµk(1 − b̃
(s)
k )}

]}

=
N
∏

µ=1

K
∏

k=1

cos

[

− 1√
K

t−1
∑

s=−1

{v̂(s)µ û
(s)
k + ŵ(s)

µ (1− b̃
(s)
k )}

]

=

N
∏

µ=1

K
∏

k=1

exp

[

−1

2

(

1√
K

t−1
∑

s=−1

{v̂(s)µ û
(s)
k

+ŵ(s)
µ (1− b̃

(s)
k )}

)2

+O(K−2)

]

=

N
∏

µ=1

exp

[

−1

2

t−1
∑

s=−1

t−1
∑

s′=−1

{

v̂(s)µ

(

1

K

K
∑

k=1

û
(s)
k û

(s′)
k

)

v̂(s
′)

µ

+v̂(s)µ

(

1

K

K
∑

k=1

û
(s)
k − 1

K

K
∑

k=1

b̃
(s′)
k û

(s)
k

)

ŵ(s′)
µ

+ŵ(s)
µ

(

1

K

K
∑

k=1

û
(s′)
k − 1

K

K
∑

k=1

b̃
(s)
k û

(s′)
k

)

v̂(s
′)

µ

+ŵ(s)
µ

(

1− 1

K

K
∑

k=1

b̃
(s)
k − 1

K

K
∑

k=1

b̃
(s′)
k

+
1

K

K
∑

k=1

b̃
(s)
k b̃

(s′)
k

)

v̂(s
′)

µ

}

+O(K−1)

]

. (222)

We next separate the relevant one-stage and two-stage values
which are appeared in (222):

η(s) :=
1√
K

K
∑

k=1

b̃
(s)
k , (223)

k(s) :=
1√
K

K
∑

k=1

û
(s)
k , (224)

q(s,s
′) :=

1√
K

K
∑

k=1

b̃
(s)
k b̃

(s′)
k , (225)

Q(s,s′) :=
1√
K

K
∑

k=1

û
(s)
k û

(s′)
k , (226)

L(s,s′) :=
1√
K

K
∑

k=1

b̃
(s)
k û

(s′)
k . (227)

Equation (222) is only written in terms of these variables
η(s), k(s), q(s,s

′), Q(s,s′) and L(s,s′). We hereafter call
these variablesmacroscopic parameters, which describe the
nature of the system and are also often called theorder
parameters. Similar to the way to derive (220), one can
introducem(s), k(s), q(s,s

′), Q(s,s′) and L(s,s′) into (222).
The term of δ in (222) is again rewritten by applying the
Fourier integral form of Dirac’s delta such asδ(η(s) −[· · · ])
=

∫

R
dη̂(s) exp{iη̂(s)(η(s) −[· · · ])}, δ(k(s) −[· · · ]) =

∫

R

dk̂(s) exp{ik̂(s)(k(s) −[· · · ])}, δ(q(s,s
′) −[· · · ]) =

∫

R
dq̂(s,s

′)

exp{iq̂(s,s′)(q(s,s′) −[· · · ])}, δ(Q(s,s′) −[· · · ]) =
∫

R
dQ̂(s,s′)

exp{iQ̂(s,s′)(Q(s,s′) −[· · · ])} and δ(L(s,s′) −[· · · ]) =
∫

R

dL̂(s,s′) exp{iL̂(s,s′)(L(s,s′) −[· · · ])}. We here introduce
the notationsdu :=

∏t−1
s=−1

du(s)
√
2π

dû :=
∏t−1
s=−1

dû(s)
√
2π

,

dη :=
∏t−1
s=−1 dη

(s), dη̂ :=
∏t−1
s=−1 dη̂

(s),
dk :=

∏t−1
s=−1 dk

(s), dk̂ :=
∏t−1
s=−1 dk̂

(s), dq :=
∏t−1
s=−1

∏t−1
s′=−1 dq

(s,s′), dq̂ :=
∏t−1
s=−1

∏t−1
s′=−1 dq̂

(s,s′),
dQ :=

∏t−1
s=−1

∏t−1
s′=−1 dQ

(s,s′), dQ̂ :=
∏t−1
s=−1

∏t−1
s′=−1 dQ̂

(s,s′), dL :=
∏t−1
s=−1

∏t−1
s′=−1 dL

(s,s′)

dL̂ :=
∏t−1
s=−1

∏t−1
s′=−1 dL̂

(s,s′). dv :=
∏N
µ=1

∏t−1
s=−1

dv(s)µ√
2π

,

dv̂ :=
∏N
µ=1

∏t−1
s=−1

dv̂(s)µ√
2π

, dw :=
∏N
µ=1

∏t−1
s=−1

dw(s)
µ√
2π

, and

dŵ :=
∏N
µ=1

∏t−1
s=−1

dŵ(s)
µ√
2π

. Since the initial probability,

which is given asp[b̂(−1)] :=
∏K
k=1 δ(b̃

(−1)
k ), is factorizable,

the averaged generating functional̄Z[ψ] factorizes into
single-user contributions, i.e., with respect to user index k.
We have then arrived at Lemma 1.

APPENDIX C
DERIVATION OF PROPOSITION1

Taking the limit of (83) and (84) for allk and s, the
single-user measure (40) becomes user independent. It can be,
therefore, represented without the user indexk. Equation (40)
becomes

lim
{ψ(s)

k
→0}

lim
{θ(s)

k
→0}

〈f(b̃,u, û)〉k

=

∫

dudû

∫

Rt+2

( t
∏

s=−1

db̃(s)
)

w∗(b̃,u, û)f(b̃,u, û)

∫

dudû

∫

Rt+2

( t
∏

s=−1

db̃(s)
)

w∗(b̃,u, û)

(228)

=: 〈f(b̃,u, û)〉∗, (229)

where

w∗(b̃,u, û)

:= δ[b̃(−1)] exp

[ t−1
∑

s=−1

{ln γ√
2π

− γ2

2
[b̃(s+1) − f(u(s))]2}

− i
t−1
∑

s=0

t−1
∑

s′=0

{Q̂(s,s′)û(s)û(s
′) + L̂(s,s′)b̃(s)û(s

′)}

+ i

t−1
∑

s=0

û(s){u(s) − b̃(s) − k̂(s)}
]∣

∣

∣

∣

saddle

. (230)

We consider two kind of functions asf(b̃,u, û). First, we
treat an arbitrary functionf(b̃) that does not includeu and
û. In this case, one can, therefore, perform the integral with
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respect tou and û. The numerator of (228) becomes

∫

dudû

∫

Rt+2

( t
∏

s=−1

db̃(s)
)

w∗(b̃,u, û)f(b̃)

=

∫

dudû

∫

Rt+2

( t
∏

s=−1

db̃(s)
)

δ[b̃(−1)]

×
( t−1

∏

s=−1

γ√
2π

e−
γ2

2 [b̃(s+1)−f(u(s))]

)

× e−
1
2 û

⊤(1+βG)−1D(1+βG)−1û

× eib̃
⊤(1+βG⊤)−1û+iû·(u−b̃−k̂)f(b̃)

=

∫

dudû

∫

Rt+2

( t
∏

s=−1

db̃(s)
)

δ[b̃(−1)]

×
( t−1

∏

s=−1

γ√
2π

e−
γ2

2 [b̃(s+1)−f(u(s))]

)

× e−
1
2 û

⊤Rû+iû·(u−k̂−Γb̃)f(b̃), (231)

whereR := (1 + βG)−1D(1 + βG)−1 and Γ := (1 +
βG)−1βG. We use variable transformationsv = u− k̂−Γb̃

andw = û, which gives

∫ ( t−1
∏

s=−1

∂(u(s), û(s))

∂(v(s), w(s))

dv(s)dw(s)

2π

)

eiv·w− 1
2w·Rw

×
∫

Rt+2

( t
∏

s=−1

db̃(s)
)

f(b̃)δ[b̃(−1)]

×
( t−1

∏

s=−1

γ√
2π

e−
γ2

2 [b̃(s+1)−f(k̂(s)+v(s)+(Γb̃)(s))]2
)

=

∫ ( t−1
∏

s=−1

dv(s)√
2π

)

√

|R−1|e− 1
2v·Rv

×
∫

Rt+2

( t
∏

s=−1

db̃(s)
)

f(b̃)δ[b̃(−1)]

×
( t−1

∏

s=−1

γ√
2π

e−
γ2

2 [b̃(s+1)−f(k̂(s)+v(s)+(Γb̃)(s))]2
)

. (232)

Taking the limitγ → ∞, the numerator of (40), finally, arrives
at
∫

Dv
∫

Rt+2

( t−1
∏

s=−1

db̃(s)
)

f(b̃) δ[b̃(−1)]

×
t−1
∏

s=−1

γ√
2π

e−
γ2

2 (b̃(s+1)−f(k̂(s)+v(s)+(Γb̃)(s)))2 =: 〈〈f(b̃)〉〉,

(233)

whereDv := dv|2πR|−1/2e−
1
2v·R

−1v. Since〈〈1〉〉 = 1, the
effective path measure (40) in the limitγ → ∞ is given by

lim
γ→∞

〈f(b̃)〉∗ =
〈〈f(b̃)〉〉
〈〈1〉〉

= 〈〈f(b̃)〉〉. (234)

Equation (85) can be obtained from (234), (51) and (60).
Equation (86) is given by (234), (55) and (61).

Next, we consider a functioñb(s)û that corresponds to (59).
In a similar way to have (233), one obtain

∫

dudû

∫

Rt+2

( t
∏

s=−1

db̃(s)
)

w∗(b̃,u, û)b̃
(s)û

=

∫ ( t−1
∏

s=−1

∂(u(s), û(s))

∂(v(s), w(s))

dv(s)dw(s)

2π

)

weiv·w− 1
2w·Rw

×
∫

Rt+2

( t
∏

s=−1

db̃(s)
)

b̃(s)δ[b̃(−1)]

×
( t−1

∏

s=−1

γ√
2π

e−
γ2

2 [b̃(s+1)−f(k̂(s)+v(s)+(Γb̃)(s))]2
)

=

∫

Dv
∫

Rt+2

( t−1
∏

s=−1

db̃(s)
)

ib̃(s)R−1vδ[b̃(−1)]

×
t−1
∏

s=−1

γ√
2π

e−
γ2

2 (b̃(s+1)−f(k̂(s)+v(s)+(Γb̃)(s)))2

= 〈〈ib̃(s)R−1v〉〉, (235)

by using the notation of (233). We therefore have
∫

dudû

∫

Rt+2

( t
∏

s=−1

db̃(s)
)

w∗(b̃,u, û)b̃
(s)û(s

′)

= 〈〈ib̃(s)(R−1v)(s
′)〉〉. (236)

Equation (87) can be obtained from (236), (234), (59) and
(62). We have then arrived at Proposition 1.

APPENDIX D
DERIVATION OF PROPOSITION3

The inductive method is applied.
(i) The case oft = −1. This is an initial stage, therefore the

Onsager reaction term does not exist. To cancel the Onsager
reaction term, the matrix̂Γb̂ is simply chosen as(Γ̂b̂)(−1) = 0.
This is automatically held by the initializaitoñb(−1) = 0. The
matrixG is G = 0 because of causality.

(ii) The case oft = 0. In this case,G is a 1 × 1 zero
matrix O and Γ becomesΓ = (1 + βG)−1βG = O. The
Onsager reaction term is thereforeΓb̂ = O. To cancel the
Onsager reaction term, we only have to choose matrixΓ̂ as
(Γ̂b̂)(−1) = 0. Matrix G is

G =

(

0 0
G(0,−1) 0

)

. (237)

until here.
(iii) The case of staget = 1. SinceG ∈ R

2×2 is a nilpotent
matrix, i.e., G2 = O, then the Onsager reaction termΓb̂
becomes

Γb̂ = [(1+ βG)−1βG]b̂

= βGb̂

=

(

0 0
βG(0,−1) 0

)(

0

b̃(0)

)

=

(

0
0

)

. (238)
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To cancel the Onsager reaction term, one needs(Γ̂b̂)(0) =
0. If (Γ̂b̂)(0) is chosen as this, the average〈〈b̃(1)〉〉 =

∫

Dv
sgn[k̂(0)+v(0)+θ(0)] only includesθ(0) and does not depend
on θ(−1). Therefore,G(1,−1) = ∂〈〈b̃(1)〉〉/∂θ(−1) = 0 holds.
The matrixG is

G =





0 0 0

G(0,−1) 0 0

0 G(1,0) 0



 (239)

until here.
(iv) The case of staget = 2. SinceG ∈ R

3×3 is a nilpotent
matrix, i.e.,G3 = O, then the ORCTΓb̂ is

Γb̂ = [(1+ βG)−1βG]b̂

= [βG− (βG)2]b̂

=





0 0 0
βG(0,−1) 0 0

−β2G(1,0)G(0,−1) βG(1,0) 0









0

b̃(0)

b̃(1)





=





0
0

βG(1,0)b̃(0)



 . (240)

Therefore, ifΓ̂b̂ is chosen as

(Γ̂b̂)(1) = βG(1,0)b̃(0), (241)

then it cancels the Onsager reaction term. When we choose
(Γ̂b̂)(1) as this, the average〈〈b̃(2)〉〉 =

∫

Dv sgn[k̂(1) + v(1)+
θ(1)] only includesθ(1) and does not depend onθ(−1) and
θ(0). Therefore,G(2,s) = ∂〈〈b̃(2)〉〉/∂θ(−1) = 0 holds fors ∈
{−1, 0}. The matrixG is

G =









0 0 0 0

G(0,−1) 0 0 0

0 G(1,0) 0 0
0 0 G(2,1) 0









(242)

until here.
(v) The case of staget = 3. SinceG ∈ R

4×4 is a nilpotent
matrix, i.e.,G4 = O, then the ORCTΓb̂ is

Γb̂ = [(1+ βG)−1βG]b̂

= [βG− (βG)2 + (βG)3]b̂

=









0
0

βG(1,0)b̃(0)

βG(2,1)b̃(1) − β2G(2,1)G(1,0)b̃(0)









.

(243)

Therefore, ifΓ̂b̂ is chosen as

(Γ̂b̂)(2) = βG(2,1)b̃(1) − β2G(2,1)G(1,0)b̃(0), (244)

then it cancels the Onsager reaction term. When we choose
(Γ̂b̂)(2) as this, the average〈〈b̃(3)〉〉 =

∫

Dv sgn[k̂(2) +
v(2) + θ(2)] only includes θ(1) and does not depend on
θ(−1), · · · , θ(1). Therefore,G(3,s) = ∂〈〈b̃(3)〉〉/∂θ(−1) = 0

holds fors ∈ {−1, 0, 1}. The matrixG is

G =













0 0 0 0 0

G(0,−1) 0 0 0 0

0 G(1,0) 0 0 0
0 0 G(2,1) 0 0

0 0 0 G(3,2) 0













(245)

until here. Note that it is expected that

(Γ̂b̂)(t) = βG(t,t−1)[b̃(t−1) − (Γ̂b̂)(t−1)]

= −
t−1
∑

s=0

(−β)t−s
(t−1
∏

τ=s

G(τ+1,τ)

)

b̃(s) (246)

will holds for any t ≥ 1 in an analogy with (244).
(vi) Staget ≥ 3
We here assume that the Theorem holds for stage

t ∈ {−1, 0, 1, · · · , t}. Namely, we assume that
(Γ̂b̂)(−1), · · · , (Γ̂b̂)(t) are given by

(Γ̂b̂)(−1) = 0

(Γ̂b̂)(0) = 0

(Γ̂b̂)(1) = βG(1,0)b̃(0)

...

(Γ̂b̂)(t) = −
t−1
∑

s=0

(−β)t−s
(t−1
∏

τ=s

G(τ+1,τ)

)

b̃(s), (247)

andG has the following form:

G =















0 0
G(0,−1) 0

G(1,0) 0
. . .

. ..
0 G(t+1,t) 0















. (248)

SinceG ∈ R
(t+3)×(t+3) is a nilpotent matrix, i.e.,Gt+3 = O,

then Onsager reaction termΓb̂ ∈ R
t+3 can be calculated as

Γb̂ = [(1+ βG)−1βG]b̂

= [βG− (βG)2 + · · ·+ (−1)t+1(βG)t+2]b̂

=



































0
0

βG(1,0)b̃(0)

βG(2,1)b̃(1) − β2G(2,1)G(1,0)b̃(0)

...

−
t−1
∑

s=0

(−β)t−s
(t−1
∏

τ=s

G(τ+1,τ)

)

b̃(s)

−
t

∑

s=0

(−β)t+1−s
( t
∏

τ=s

G(τ+1,τ)

)

b̃(s)



































.

(249)

If Γ̂b̂ is chosen as

(Γ̂b̂)(t+1) = −
t

∑

s=0

(−β)t+1−s
( t
∏

τ=s

G(τ+1,τ)

)

b̃(s), (250)

the Onsager reaction term is cancelled. When we choose
(Γ̂b̂)(t+1) as this, the average〈〈b̃(t+2)〉〉 =

∫

Dv sgn[k̂(t+1)+
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v(t+1) + θ(t+1)] only includesθ(t+1) and does not depend on
θ(−1), · · · , θ(t). Therefore,G(t+2,s) = ∂〈〈b̃(3)〉〉/∂θ(−1) = 0
holds fors ∈ {−1, 0, 1, · · · , t}.

If the claim holds for stages ∈ {−1, 0, 1, · · · , t}, it holds
for staget+ 1. This proves Proposition 3.

APPENDIX E
DERIVATION OF PROPOSITION4

One can evaluate the BP-based detector in the same manner
as soft-PIC. The summation over all messages, which is the
argument oftanh(· · · ) of (14) becomes

u
(t)
k =R(t)

K
∑

k′=1

Wkk′bk′ +A(t)b̃
(t)
k

−
t

∑

s=−1

J (t,s)
K
∑

k′=1

Wkk′ b̃
(s)
k +R(s) σ0√

N

N
∑

µ=1

sµkn
µ

+ θ
(s)
k (251)

Substituting (1) and (3) into (24), the averaged generating
functionalZ̄[ψ] is represented as

Z̄[ψ] =Es1,··· ,sK,n

[∫

R(t+1)K

du

× p[b̃(−1)]

( t−1
∏

s=−1

γ√
2π
e−

γ2

2 {b̃(s+1)
k

−f(u(s)
k

)}2

)

× exp

[

−i
t

∑

s=−1

b̃(s) ·ψ(s)

]

×
t−1
∏

s=0

K
∏

k=1

δ

(

u
(s)
k −R(t)

K
∑

k′=1

Wkk′bk′ −A(t)b̃
(t)
k

+

t
∑

s=−1

J (t,s)
K
∑

k′=1

Wkk′ b̃
(s)
k −R(s) σ0√

N

N
∑

µ=1

sµkn
µ

− θ
(s)
k

)]

, (252)

wheredu:=
∏t−1
s=0

∏K
k=1

du
(s)
k√
2π

. Without loss of generality we
can putbk = 1 (∀k). We apply the Fourier integral form of

Dirac’s delta function, which gives

Z̄[ψ] =
∑

b̂(0),··· ,b̂(t)
p[b̂(0)]

∫

R2(t+1)K

dudû

× exp

[

i

t−1
∑

s=0

K
∑

k=1

û
(s)
k {u(s)k −A(s)b̃

(s)
k − θ

(s)
k }

+

t
∑

s=0

K
∑

k=1

{ln γ√
2π

− γ2

2
[b̃

(t+1)
k − f(u

(s)
k )]2}

]

× Es1,··· ,sK,n

{

exp

[

− i
√

βσ0

N
∑

µ=1

t−1
∑

s=0

R(s)

(

1√
K

K
∑

k=1

sµk û
(s)
k

)

nµ

− iβ

N
∑

µ=1

t−1
∑

s=0

(

1√
K

K
∑

k=1

sµk û
(s)
k

)

×
(

1√
K

K
∑

k′=1

sµk′

{

R(s) −
s

∑

s′=−1

J (s,s′)b̃
(s′)
k

})]}

,

(253)

where dû:=
∏t−1
s=−1

∏K
k=1

dû
(s)
k√
2π

. To take the average of
s1, · · · , sK , we introduce the following variables:

v
(s)
k :=

1√
K

K
∑

k=1

sµk û
(s)
k , (254)

w
(s)
k :=

1√
K

K
∑

k=1

sµk

{

R(s) −
s

∑

s′=−1

J (s,s′)b̃
(s′)
k

}

. (255)

It should be noted that the averaged generating functionalZ̄[ψ]
of (27) only includess1, · · · , sK in terms of these variables
v
(s)
µ andw(s)

µ . Due to this, the random variabless1, · · · , sK
are isolated and their average is able to be taken. Introducing
v
(s)
µ and w(s)

µ into the termEs1,··· ,sK,n{· · · } in (27), one
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obtains

∫

R2tN

dvdwEs1,··· ,sK,n

{

exp

[

−i
√

βσ0

N
∑

µ=1

t−1
∑

s=−1

R(s)v(s)µ nµ − iβ

N
∑

µ=1

t−1
∑

s=−1

v(s)µ w(s)
µ

]}

× δ

(

v
(s)
k − 1√

K

K
∑

k=1

sµk û
(s)
k

)

× δ

(

w
(s)
k − 1√

K

K
∑

k=1

sµk

{

R(s) −
s

∑

s′=−1

J (s,s′)b̃
(s′)
k

})

=

∫

R4tN

dvdv̂dwdŵ

× exp

[

i

N
∑

µ=1

t−1
∑

s=−1

{v̂(s)µ v(s)µ + ŵ(s)
µ w(s)

µ − βv(s)µ w(s)
µ }

]

× En

{

exp

[

−i
√

βσ0

N
∑

µ=1

t−1
∑

s=−1

R(s)v(s)µ nµ
]}

× Es1,··· ,sK

{

exp

[

−i
1√
K

N
∑

µ=1

t−1
∑

s=−1

(

v̂(s)µ

K
∑

k=1

sµk û
(s)
k

+ ŵ(s)
µ

K
∑

k=1

sµk(R
(s) −

s
∑

s′=−1

J (s,s′)b̃
(s)
k )

)]}

, (256)

wheredv :=
∏N
µ=1

∏t−1
s=−1

dv(s)µ√
2π

, dv̂ :=
∏N
µ=1

∏t−1
s=−1

dv̂(s)µ√
2π

,

dw :=
∏N
µ=1

∏t−1
s=−1

dw(s)
µ√
2π

and dŵ :=
∏N
µ=1

∏t−1
s=−1

dŵ(s)
µ√
2π

.
We here again use the Fourier integral form of Dirac’s delta.
TermEn{· · · } in (256) is given by

En

{

exp

[

−i
√

βσ0

N
∑

µ=1

t−1
∑

s=0

R(s)v(s)µ nµ
]}

=

N
∏

µ=1

exp

[

−1

2
βσ2

0

t−1
∑

s=0

t−1
∑

s′=0

R(s)R(s′)v(s)µ v(s
′)

µ

]

. (257)

TermEs1,··· ,sK{· · · } in (256) becomes

Es1,··· ,sK

{

exp

[

−i
1√
K

N
∑

µ=1

t−1
∑

s=0
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v̂(s)µ
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sµk û
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k

+ ŵ(s)
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s
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k )
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∏
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(

1√
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∑
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s
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k )
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=

N
∏

µ=1

exp
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û
(s)
k

]

−
s′
∑

τ ′=−1

J (s′,τ ′)

[

1

K

K
∑

k=1

b̃
(s′)
k û
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(259)

for finite t. The relevant one-stage and two-stage values, which
are equal to those of soft-PIC’s analysis, appeared in (259)
are separated by introducing (223) – (227). The term ofδ in
(222) is again rewritten by applying the Fourier integral form
of Dirac’s delta function as well as the case of soft-PIC’s
analysis.

Since the initial probability, which is given asp[b̂(−1)] :=
∏K
k=1 δ(b̃

(−1)
k ), is factorized, the averaged generating func-

tional Z̄[ψ] factorizes into single-user contributions. The
averaged generating functional is therefore simplified to
Z̄[ψ] =

∫

dηdη̂dkdk̂dqdq̂dQdQ̂dLdL̂ exp[K(Φ+Ψ+Ω)+
O(lnK)], in which functionsΦ, Ψ, Ω are given by

Φ :=i

t−1
∑

s=−1

{η̂(s)η(s) + k̂(s)k(s)}

+ i

t−1
∑

s=−1

t−1
∑

s′=−1

{q̂(s,s′)q(s,s′)

+ Q̂(s,s′)Q(s,s′) + L̂(s,s′)L(s,s′)}, (260)
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Ψ :=
1

K

K
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k=1
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dudû

× exp
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, (261)

Ω :=
1

K
ln

∫

dvdv̂dwdŵ

× exp
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µ w(s)

µ − βv(s)µ w(s)
µ }

− 1

2

N
∑

µ=1

t−1
∑

s=−1

t−1
∑

s′=−1

{

βσ2
0R

(s)R(s′)v(s)µ v(s
′)

µ

+ v̂(s)µ Q(s,s′)v̂(s
′)

µ

+ v̂(s)µ

(

R(s′)k(s) −
s′
∑

τ ′=−1

J (s′,τ ′)L(s′,s)

)
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ŵ(s′)
µ

}]

. (262)

One can deduce the meaning of macroscopic parameters by
differentiation of the averaged generating functionalZ̄[ψ] with
respect toθ(s)k andψ(s)

k . The averaged generating functional
Z̄[ψ] is dominated by a saddle-point forK → ∞.

Applying the same way as the derivation of soft-PIC, we
again obtain (44) – (46), with the average (40)〈 〉k which has

the single-user measure

wk({b̃, u, û})

:= δ[b̃(−1)] exp

[ t−1
∑

s=−1

{ln γ√
2π

− γ2

2
[b̃(s+1) − f(u(s))]2}

−i

t−1
∑

s=0

t−1
∑

s′=0

{q̂(s,s′)b̃(s)b̃(s′) + Q̂(s,s′)û(s)û(s
′)

+L̂(s,s′)b̃(s)û(s
′)}

+i

t−1
∑

s=0

û(s){u(s) −A(s)b̃(s) − θ
(s)
k − k̂(s)}

−i
t−1
∑

s=0

b̃(s)η̂(s)
]∣

∣

∣

∣

saddle

, (263)

instead of the single-use measure (40) for soft-PIC.

The integral in the averaged generating functionalZ̄[ψ] will
be evaluated by the dominating saddle-point of the exponent
Φ + Ψ + Ω in the large system limitK → ∞. Using
the identities (35) – (35) and (44) – (46) with (263), the
differentiation ofΦ + Ψ + Ω with respect toη(s), η̂(s), k(s),
k̂(s), q(s,s

′), q̂(s,s
′), Q(s,s′), Q̂(s,s′), L(s,s′), and L̂(s,s′) leads

us to the following saddle-point equations (50) – (59) with
(263), respectively. Comparing these saddle-point equations
with (47) – (49), we again find the following relationships:
η(s) = m(s), q(s,s

′) = C(s,s′), andL(s,s′) = iG(s,s′).

The integral inΩ with respect tov̂ and ŵ is given by
Ω = − 1

2β {ln |D̂|+ ln |Q+(β−1
1− B̂)⊤D̂−1(β−1

1− B̂)|},

where matricesB̂ andD̂ whose(s, s′) elements are given by

B̂(s,s′) :=− iR(s)k(s) −
s

∑

τ=−1

J (s,τ)G(τ,s), (264)

D̂(s,s′) :=
σ2
0

β
R(s)R(s′) +R(s)R(s′)

−R(s)
s′
∑

τ ′=−1

J (s′,τ ′)m(τ ′)

−R(s′)
s

∑

τ=−1

J (s,τ)m(τ)

+
s

∑

τ=−1

s′
∑

τ ′=−1

J (s,τ)J (s′,τ ′)C(τ,τ ′), (265)

respectively.

The saddle-point equations includingΩ are evaluated as
follows. One findsη̂(s) = 0 and q̂(s) = 0. We put

Û := β−1
1+ B̂, (266)

for light notations. Noting that̂U includesG via B̂ and using
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the cofactor expansion of|Û |, we find

L̂(s,s′) =
∂Ω

∂G(s,s′)

=− 1

β

∂

∂G(s,s′)
ln |U |

=− 1

β|U |
∂

∂G(s,s′)

t−1
∑

s=−1

U (s,s′)Ũ (s,s′)

=− 1

β|U |

t−1
∑

s=−1

J (s,s′)Ũ (s,s′), (267)

where ˜̂
U (s,s′) denotes a cofactor of the(s, s′) element of the

matrix Û , which does not includeG(s,s′). The(t+1)×(t+1)
matrix L̂ = (L̂(s,s′)) then becomes

L̂ =− 1

β|Û |

[













J (−1,−1) ˜̂U (−1,−1) · · · J (−1,−1) ˜̂U (−1,t−1)

J (0,0) ˜̂U (0,−1) · · · J (0,0) ˜̂U (0,t−1)

...
...

J (t−1,t−1) ˜̂U (t−1,−1) · · · J (t−1,t−1) ˜̂U (t−1,t−1)













+ · · ·+










J (t−1,t−1) ˜̂U (t−1,−1) · · · J (t−1,t−1) ˜̂U (t−1,t−1)

0 · · · 0
...

...
0 · · · 0











]

=− 1

β|Û |

[











J (−1,−1) · · · J (−1,−1)

J (0,0) · · · J (0,0)

...
...

J (t−1,t−1) · · · J (t−1,t−1)











⊗∆adjÛ⊤

+ · · ·

+











J (t−1,t−1) · · · J (t−1,t−1)

0 · · · 0
...

...
0 · · · 0











⊗∆
tadjÛ⊤

]

=− J0 ⊗ (U⊤)−1 − J1 ⊗∆(U⊤)−1

− · · · − Jt ⊗∆
t(U⊤)−1, (268)

whereU := βÛ and adjA denotes an adjoint matrix ofA.
The definition ofJs is given by (114).

Due to Q = O, Ω can be expanded asln |A +
Q| = Tr lnA + trA−1Q. The Q̂(s,s′) is obtained as
Q̂(s,s′) = − i

2βM
(s′,s), and we then havêQ = −i 1

2βM
⊤ =

−i 12 (1 + βG)−1D(1 + βG⊤)−1, whereM := (β−1
1 +

G)−1D̂(β−1
1 + G⊤)−1 and D(s,s′) := βD̂. Noting that

|1−βB̂⊤| only containsk(s) in a single row,k(s) is obtained
ask̂(s) = |Λ[s]|, whereB := B̂|k=0 = −∑s

τ=−1 J
(s,τ)G(τ,s)

and the definition ofΛ[s] is given by (113).
Some macroscopic parameters are found to vanish in the

saddle-point:k(s) = Q(s,s′) = 0. In the case of the BP-
base detector, the remaining macroscopic parameters can all
be expressed in terms of three observables, i.e., the average

overlapm(s), the average single-user correlationC(s,s′), and
the average single-user response functionG(s,s′), which are
defined by (47) – (49). The averaged generating functional
Z̄[ψ] is dominated by a saddle-point in the large system limit.
We then arrive at Proposition 4.
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