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Abstract—We investigate the detection dynamics of a soft
parallel interference canceller (soft-PIC), which includes a hard-
PIC as a special case, for code-division multiple-access D&A)
multiuser detection, applied to a randomly spread, fully sy-
chronous base-band uncoded CDMA channel model with ad-
ditive white Gaussian noise under perfect power control in
the large-system limit. We analyze the detection dynamicsfo
some iterative detectors, namely soft-PIC, the Onsager-aetion-
cancelling parallel interference canceller (ORC-PIC) andthe
belief-propagation-based detector (BP-based detector)py the
generating functional analysis (GFA). The GFA allows us to taidy
the asymptotic behavior of the dynamics in the infinitely laige
system without assuming the independence of messages. \Wadst
the detection dynamics and the stationary estimates of anetative
algorithm.

We also show the decoupling principle in iterative multiuse
detection algorithms in the large-system limit. For a genec
iterative multiuser detection algorithm with binary input , it is
shown that the multiuser channel is equivalent to a bank of
independent single-user additive non-Gaussian channelsyhose
signal-to-noise ratio degrades due to both the multiple-azess
interference and the Onsager reaction, at each stage of the
algorithm. If an algorithm cancels the Onsager reaction, tle
equivalent single-user channels coincide with an additivevhite

the statistical-mechanical analysis, which is calledréqica
analysis(or the replica methodl [49], [51], [43]. The replica
analysis has widely been applied to analyze communication
systems|[[20],[[21],[T40] and other information theoretiolpr
lems. It can treat the properties of detection results, Bohot
directly treat the detection dynamics of detectors. Sire t
optimal marginal-posterior-mode detector itself is kndeie
NP-hard[[55], it is important to construct suboptimal metb.o
Iterative algorithms are generally useful as such methians f
the viewpoint of computational cost. Various kinds of itera
detection algorithms have been developed to date [41], [13]
[25], [3], [45], [53], [23]. The analysis of iterative multser
detection algorithms is therefore expected to play an ingmbr
role in developments and improvements of detectors.
Recently, the state evolution to evaluate the dynamics of
the approximate belief propagation has been proposed by
Bayati and Montanaril|2]. The detection dynamics of iter-
ative algorithms which are characterized by a dense graph
has attracted a great deal of attention from theoretical and
practical viewpoints up to now [25], [52],][2]. Kabashimasha

Gaussian noise channel. We also discuss ORC-PIC and the BP-proposed the belief-propagation-based detector and zstaly

based detector.

Index Terms—generating functional analysis, Code-Division
Multiple-Access, iterative algorithms, detection dynamés

I. INTRODUCTION
ETECTION DYNAMICS of generic iterativecode-

its performance[[25]. Tanaka and Okada have analyzed the
detection dynamics [52] of thsoft parallel interference can-
celler (soft-PIC) proposed by Divsalar et al [13] by means
of a dynamical theory for the Hopfield modél [44]. Bayati
and Montanari have analyzed the reconstruction dynamics
of approximate belief propagation algorithm for compresse

which utilize soft-decision in the large system limit, isepr

ceeded in analyzing of various kinds of iterative algorithm

sented in this paper. The CDMA is a digital modulation systetficluding belief-propagation-based methods. _

that employs spreading codes to enable access to a mobilElowever, these analyses, such as density evoluion [46],
communication system by multiple users |[54]. 1[55]. Th&2] and stqte evolution [2], arejustlfled only for the_ cated
statistical-mechanical approach has been applied to atenlfhe correlation between present estimates and their pbma_/a
the performance of various wireless communication systeif@n be neglected. In other words, these can only be applied to
[51]. This kind of systems is widely used in communication§!® case where there is not a retarded self-interactiorghwhi
and signal processing, such as the code-division multiplé-caused by iterations and this is often called the Onsager

access, the multiple-input multiple-output channgls [$20],
and compressed sensing [5], [47],[14],][15].

reaction, and their predictions systematically deviatemfr
computer simulation results in general.

Various types of multiuser detectors utilizing soft-dems ~ We have already applied thgenerating functional analysis
have been proposed so fdr [55], [54], [13]. ][25]. Tanak&>FA) [11] to the hard-PIC, i.e., Varanasi and Aazhang's
has first evaluated the properties of the maximum a pdi@nventional PICI[32],[[33] so far. This analysis can howeve

teriori detector and the marginal-posterior-mode detebto
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treat the hard-decision only [32], [33]. The GFA, which uses
the saddle-point method [8]_[29], allows us to study the
asymptotic behavior of the dynamics in the infinitely large
system([11],[[6],[[¥]. Since it is not based on the S/N analysi

it does not therefore need the Gaussian assumption of the
noise part. In the S/N analysis, the signal part, that costai
the user’s information being estimated, is separated from
the remaining noise part; besides the noise part is geperall
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assumed to follow a given distribution such as the Gaussién s’) element of the matrix
distribution.

x(1-1) x(=10) ... x(11
In this paper, we investigate the detection dynamics of some x0-1)  x00 ... x00
iterative algorithms for CDMA multiuser detection, applie X = )
to a randomly spread, fully synchronous base-band uncoded : : :
CDMA channel model with additive white Gaussian noise un- xt-n  x®o ... x®Y

der perfect power control. We here treat soft-PIC,@mesager-
reaction-cancelling parallel interference canceller (OFPIC)
, Which is an analogue of soft-PIC, and thelief-propagation- does not meark (—-1). The notations are summarized in
based detector (BP-based detectaor)These models haveA endixA

the retarded self-interaction. To confirm the validity ofrou P '
analysis, we have performed computer simulations undeesom
typical system loads and channel noise conditions.

This paper is Organized as follows. The next section ex_We diSCUSS the detection dynamiCS Of the fO||0Wing thl’ee
plains the system model. Sectidng 11l dnd IV introduce sonkédnds of iterative detection algorithms in this paper.
multiuser detection algorithms and the generating fumetio
analysis, respectively. Sectiond V[=VII present analydes 8, Soft-PIC
soft-PIC, ORC-PIC, and the BP-based detector. Se€fiod VIl
explains the stationary states of iterative algorithms #odr
stability. In sectio IX, we discuss the decoupling prireip
[20], [21] in iterative detectors. The final section is dedto

whose indexs, ') is a pair of the stage numbers, is indicated
s (X)), eg., (X)BD = xOD (Note that (X))

IIl. DETECTIONALGORITHMS

The soft parallel interference canceller has been propoged
Divsalar et al[[13]. Kaiser and Hagenauer have also proposed
a similar algorithm[[2]7].

Definition 1: (Soft-PIC) The updating rule for tentative

asummary. decisionB,(f) € R of bit signalb,, at staget is
~ K ~
Bt = f(hk -y Wkk,b,(f,l)), 2)
Il. SYSTEM MODEL AND NOTATIONS k'=1,#k

where f : R — R, which is called a transfer function, that is
Let us focus on the basic fully synchronotSuser base- arbitrary andhy, is the output of the matched filter for user
band direct-sequence / binary phase-shift-keying CDMAneha

N
i 1
nel model with perfect power control as hy, = = Z sty (3)
K
Z sty + oon* 1) and Wy, is the kk’-element of sample correlation mati¥%
—~ k 0 of the spreading code:
N
. : . - 1 o
where y* is the received signal at chip interval e Wi = + Z S (4)
{1,---,N}, and whereb;, € {—1,1} ands} € {—1,1} are p=1
the binary phase-shift-keying-modulated information doitd P - . L s (=1)
the spreading code of usére {1,--- , K} at chip interval The initial condition of iteration ish, ~~ = 0. When the

transfer function chooseg(z) = tanh(z/c?), this iterative
detection algorithm is called soft-PIC. Herg? is a control
rameter representing the detector’s estimate of chaiom

iance. 0
Muller and Huber have improved Soft-PIC and have numer-
|%ally evaluated its performance [38].

1, respectively. The Gaussian random variabje*, where
n“ ~ N(0,1), represents channel noise whose variance
o2. The spreading codes are mdependently generated fromég
identical symmetric distributio (s}, = 1) = P(s} = —

1/2. The factorl /v/N is mtroduced in order to normallze the,
power per symbol to 1. The signal-to-noise ratio is obtain
asE,/No = 1/(202) by using these normalizations. The ratio

B := K/N is called system load. B. ORC-PIC
In this paper, the letterk, ¥’ denote indices i{1,--- , K} In soft-PIC, matched filter output has a very complex cor-
and the letterg:, 1’ denote indices i{1,---, N}. The(k, k') relation between all estimates. The correlation due taiitez

element of the matrixW, whose index is a pair of the calculation worsens performance of detection. The ORC-PIC
user numbers, is indicated &E... The elements of vectorsis an analogue of soft-PIC, which has a term to cancel such

y= (y1,---,yn) andb = (by,--- ,bx), whose indices are correlation. The updating rule is modified to
the chip interval index or the user number, are indicated as @) y
y* and by, respectively. Thes-th element of vectorr = by, (hk - Z Wi by "

(21, 2@ ... 2®)T whose index is the stage number, is et
indicated by(x)®, e.g.,(z)™) = 2 (Note that(x)(") does A At-D- o
not meanz(~Y). Here, X " denotes the transpose &f. The Lk e A
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with 5;‘1) = 0. If we properly choose coefficien{sf“,(f’s/)} of This BP-based detector can be rewritten as
the term—{"*~Dp=1 .. p=DED Hihe correlation
can be cancelled. Tanaka and Okada derived the preceding

BEJH) = tanh (R(t)hk + A(t)l;/(:)
parameter{ff’s,)} by applying density evolutiori [52] based

t K
on theT ;t_atistical neurodynam_i(:s [4_4]. _ — Z Jts) Z Wkk,{,g)), (14)
Definition 2: The ORC-PIC is defined by updating rulé (5) s——1 =1
with where
(f‘ki)k)(t) = BG(t’t_l)[i)l(fil) — (f‘ki)k)(t_l)], (6) 0, s=—1
t
and (f‘ki)k)(fl) _ (f\ki)k)(o) —0. Here,f)g) _ (l;;c_l)’ o J(ts) A H A(S')ﬂ[l _ q(s’)]’ 0<s<t—1
lN),(f))T, Iy isa(t+1)x (t+1) matrix whose(s, s') element is A s'=s+1 .y
f,(f’s ) andG®*=1 denotes the average single-user response ’ ek (15)
function. O

Detail of the parametaf(**—1) is introduced later (in Section

. IV. GENERATING FUNCTIONAL ANALYSIS
B). Note thatG(:*~1 does not depend on the user index

In this section, we briefly summarize methods on GFA
[11]. Some books that introduces GFA are available, e.g., th
C. BP-based Detector analyses of minority gamesl|[7] and spin glasses [18], [12].

Assuming that information bité are independently gen- First of all, let us compare GFA with the repl_ica anglysis
erated from the symmetric distribution, the posterior di49: [51], [43], [30]. Both have been developed in the liter

tribution from received signalg is given asp(bly) = Ure of statistical mechanics [17]. [28] and have been agpli
p(ylb)/ Spe iy p(ylb), where to the analysis of problems in the field of information theory
e )
so far.
N 1 | XK 2
— Iz
plylb) = 1_[1 /oo exXp {_ﬁ <yu_ /N Z Skbk) ]’ A. Replica Analysis Versus Generating Functional Analysis
1= k=1
! 7) In the replica analysis, the goal is to understand macrascop

static properties in the large-system limit, i.e., the number of

ando? is a control parameter when true noise level parameiggeracting bodies becomes large. One evaluatéréieeenergy
og is not known. The marginal-posterior-mode detector [Sthat is proportinal to a logarithm of the partition functiofhe
is represented by partition function is a logarithm of a Gibbs distributiom. the
static computation based on the replica analysis, the geera
over disorder generates a coupling between distelicas

In GFA, the goal is, on the other hand, to understand
macroscopiadynamicproperties in the large-system limit. One
The BP-based detector is an iterative algorithm that ensplogvaluates not the free energy but tenerating functionathat

the belief propagation to approximately calculate the grimt is a kind of the characteristic function of the path protiabil

by = argmax Z p(bly) | - )
br€{=11} \ p\ppef—1,1}K-1

marginal included in[{8). The generating functional is not a static object but corstain
Definition 3: (BP-based detector) The BP-based detectdynamical information. In the dynamical computation, we
[25] is given by the following iterative equations: do not have to introduce replicas. The effect of disorder is
- . to generate a coupling between distirithes Under some
b *Y = tanh(RWh — U™ + AWpD), (9) assumptions concerning stationary states, one can olin s

U® = AOwWp® +A(t)ﬂ(1 _Q(t))U(t*U, (10) properties from GFA. We can, therefore, avoid the replica

trick and obtain macroscopic static properties by GFA if the

where dynamics reaches a stationary state. From this point of,view
GFA can be regarded as one of alternative methods for the

) — A® ®B(1 — OMYRE-D
RY = AT + AVB(1 - Q)R ’ (11) replica analysis.
A — ;’ (12) In the next two subsections, we briefly introduce both the
o? +B(1 - QW) replica analysis and GFA, and discuss the difference betwee
K . .
1 ~ them in more detail.
0= =32 13
Q K kZI( k ) ’ ( )

B. Outline of Replica Analysis
with initinal conditions:R-1 = A~ andb{ " = 0. Func- Suppose that we want to infer tidarginal-Posterior-Mode
tion tanh is applied componentwise. From posterior averag#1PM) performance of a system. Let vectars= (z1) € XK
bg), the tentative decision at thé" update is evaluated asbe the states of the model, wheie denotes a set of values
Ekt) = sgn(f);:)), where function sgfiz) denotes the sign of each element. Lep(x; w) = [Z(5;w)] te PH@w) pe
function takingl for z > 0 and—1 for = < 0. 0 a posterior distribution in the Bayesian framework, where
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w denote parameters in it and denotes a non-negativeand (iii) replica symmetry (or same kind of symmetries) Isold
parameter that is called thweverse temperaturand commonly to keep tractability. The replica analysis, however, stitles
corresponds to a noise amplitude, i.e., a largegives a not have a rigorous justification.

smaller noise. (Note thaf denotes the system load except

in_ S(_actiqm.) A distributi_on of this form is called th@ib_bs C. Outline of Generating Functional Analysis

distribution The function is referred to as a cost function or

the Hamiltonian The normalization constant of the posterior ) o )
P methods have been applied to the model which is described

The generating functional analysis, or tipath integral

distribution using realizations of random variables by de Dominicis [11]
Z(Bw) = Z e AH(@w) (16) GFA, one can analyze the asymptotic behavior of the dynamics
weX K in the infinitely large system using the generating fundalon
that can be regarded as a kind of the characteristic funation

is called thepartition function

The Gibbs distributi is derived b tremizati . .
© Ibbs - dISIIBUEoN 1S - derive y exremizatio We here consider the following model. Let vectars) =

maximization) of the entropyS(g; = - K s
Z(j(w.w)lnp(w.)w) under an pgvérﬂa{;) Cow(ﬁ,%)we’f: (z\”)) € RE be the states of the model at stagand let the

e vxc H(z)p(z; w) and a parametap are fixed. When we initial state bex(—1). Let the updating rule be

fix the parametef instead of the average cost, this relationship p(s+1) ]:(m(s); w) (19)
can be rewritten as follows. Namely, for a fixetl and a

fixed w, a functionalF[q(z; w)] = Y, ve H (a; w)q(a; w) for s € {-1,0,--- it 1}, where F : R - R denotes a
87 q(@; w) Ing(a; w) with respect to g(z;w) function andw again denotes parameters in it.

r§tatistics.

takes an extremum (minimum) value @fz; w) = p(z; w). If we know the probability of seeing a particular state
The extremum (minimum) value of the functional it @ given stage.(z(*)), we can evaluate the property of
Flp(z;w)] = —B~1Z(8;w) =: F(B;w). This value is an the system by using it. In GFA we consider the probability
important potential, called theHelmholtz) free energyFrom  Of (()Pls)eerg)g a pa(rtt)|cular sequence or path of states, i.e.,
the free energy one can evaluate various quantities such age®' > 7~ z'”) up to some finite t'”zd instead of
average cost and the entropy for a fixede.g., ps(2"*)). The probabilityp(z~1, 2", ., (")) is referred
to as thepath probability The way to do this is to introduce
U(Bw) = O[BF (5; w)] a generating functional which is defined as
Y aﬂ Y
t K
F . . S S
S(giw) = g 2] 2= (e[ 2 S ula?]). @
ﬁ s=—1k=1
by taking derivatives with respect & Since the free energy where the bracket:) denotes the average over the path
F(B;w) is often proportional to[_(, the free energy density probability p(z(—1, 2 ... 7m(t)2 and we have introduced
[k (B;w) = F(B;w)/K, that is the free energy per any,e dummy variablegp(*) — wks)) c RE. Note that the

interacting body, is defined. generating functional differs from the partition functiom
For a given realizationw it is, however, hard to calcu- the previous subsection. Taking derivatives with respethe

late the free energy density, since the result must depefignmy variables allow us to examine some averages, e.g.,
on detail of the realization. We therefore assume that the

limit limg o0 fx(B;w) =: F exists and it is equal to its <x§j)> — i lim 32[’#]’ (21)
averagdimg o, K ~'E[F(B3; w)] for aimost all realizations, %—0 8w,(j)
where theEx denotes the expectation with respect to random () () . BRALT
variablesX . Using the identityin = = lim,,_,o 92, we have (v wp ) = — 1}’1210 A (22)
Oy 0y,
F— lim (lim OEw[Z(8; w) ]) (17) Since one does not have to average a ratio or a logarithm in
K—00 \ n—0 on this context, one can compute correlations by entirelydiagi

The idea of the replica analysis is to calculfig[Z(8;w)"] the replicatrick. In the replica analysis, macroscopiatiiias

as if n were in integer. Thei-th moment is are obtained from derivatives with respect to the “scalar”
N parameters. In GFA, averages are given from derivatives
with respect to not a scalar parameter but some elements of
Z(B;w)" = - H(z% 18 ) . . i
(B;w) Z eXp[ ﬁz (@ ’w)]’ (18) the dummy variables (vectors) with same dimension as the
@l et o=t igi (=1)_ £(0) (®)
original vectorsz!~1) (0 ... 1),
wherea is a replica index. We shall refer to copies, - - - , 2™ For a given realizationw it is, again, hard to calculate the

asreplicas It should be noted that the replicas are no longegenerating functional since the result must depend on Idetai
statistically independent since the replicas have a commeithe realization. We, therefore, assume that the gemerati
parameterw. The average over the parameter generates functional is concentrated to its average over the paramete
a coupling between distinct replicas. Ew(Z[¢]) in the large system limit. The effect of the pa-
In the replica analysis, one therefore has to assume (i) ttaneterw is to generate a coupling between distinct times.
self-averaging property applies, (ii) the “replica triak"valid, Averaging over the random variables, we will move to a
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saddle-point problem in the limk — oo. It should be noted only on the past decisions. A path probability (density)
that the normalization relatio®[0] = 1 plays an important p(b(-1),... b)) is therefore simply given by the individual
role in the elimination of spurious solutions to the sadattént transition probabilityp(b(s+1) |b(#)) of the chain:

equations. (We see detail of this point in Secfidn V-B.) i1

_ The terms in the averaged ge_neratmg _funct|(_)nal can be split (B(_l), B = p(g(—l)) H p(i)(s-ﬁ-l)'i)(s)). (25)
into three related parts. The first one is a signal part. The
second one is a static noise part due to the random variables _
within the model. The last one is retarded self-interaciae The initial state probability becomesp(b(-V) =

to the influence of the state at the previous stage, which mpfj-_, 6(13,(;1)). Therefore, we can calculate an expectation

s=—1

be able to affect the present state. The GFA allows us to tredth respect to arbitrary functiog = g(i;(*l), b ®)) of

the last part. tentative decisions as

V. GENERATING FUNCTIONAL ANALYSIS FOR SOFT-PIC (G) := / ( H db(s)> ®Y,. bG.  (26)
R(t+2)K

A. Averaged Generating Functional
The goal of multiuser detection is to simultaneously inferi  To analyze the detection dynamics of the system, we define

formation bitsby, - - - , by after base-band signalg,--- ,yx @ generating functional a§[z/:] = <exp[—izi}1 b(s) .
are received. _ _ ~ p©))), whereb(®) = @, - g}(S>)T and ) = (Y,
If the transfer function takeg(z) = sgn(x), this updating ... ¢(S)) The basic idea underlylng generating functional

rule coincides with théaard-PIC[54]. Note that the hard-PIC, formahsm is very simple[[11],16],[[7]. If the generating

which means the Varanasi and Aazhang's conventional Pignctional Z[+) can be evaluated as a functional with respect

is also obtained by taking the limit — 0 in soft-PIC. to dummy functionss(*), one can obtain all averages of in-
We assume the matched filter stage, be(0) = f(hx), for  terest by differentiation fronZ[+]. The generating functional

initialization. This initialization is easily treated byrmally jncludes the random variablgs!'} and {n*}.

assumingp(bgc_l)) = 5(51(6_1)) for all k, whered denotes the  \we here assume that the generating functional is self-

Dirac delta function. The widely used measure to determir&@eraging' namely, in the large system limit, the genegatin

the performance of a demodulator is thie error rate (BER)  functional is concentrated to its average over random bkesa

The BER P, of hard decisions;” = sgn(b{") at the " {s!'} and{n*} and the typical behavior of the system only de-

stage of soft PIC is given b;P(t) (1- (t))/2 where pends on the statistical properties of the random variaklles

Zk 1 bkb(t) is the overlap between informationtherefore evaluate the averaged generating functionahetbfi

vectorb tg( (by,---,bg) " and tentative hard-decision vectoras follows.

(bgt), RAS >) Wlthout loss of generality, we can assume Definition 4: (Average Generating functional) The average

that the true information bits are all 1, i.éy, — 1 for all k, generating functionak[4] is defined by

because the spreading codes are symmetric. 7
Let us analyze the detection dynamics in the large system A <exp {—i Z Bb(s) ,1/,(3)} >7 (27)

limit where K, N — oo, while the system load is kept finite.

We introduce inverse temperatuyefor generating functional

s=—1

analysis. The stochastic updating rule for tentative decis where [---] = Eq, .. o, .n[ ] denotes the average over
b(t) € R of bit signalb;, at stagel is given by spreading codes,, - - - , s and the noiser. O
y From the averaged generating functional, we can obtain
BTy = o= (B =)y
m lim = (b)), (28)
. 0 (3) k
with Y20 9oy
622 ~ s ~ S/
uy = - Z Wi by + 6, (24) lim —= [’l/)(]s_’) = —(B8"), (29)
k'=1,#k Y20 007 Oy
which is a summation over all messages from other tentative . 82 Z[np) .3<51(€s)>

decisions. Note that this updating rule coincides Wi ") = (30)

) - _ _ 50 950000 99
J(u”)+N(0,772). In the limit wherey — oo, this stochastic
updatmg rule |s equivalent to the deterministic rile (2 Calculating the average over spreading cosies- - , sx and
6" is a stage-dependent external message that is introduli#®inoisen, we have the following result.
to define a response function. The inverse temperature &nd th

external message are respectively set to co and 9](:) -0 Lemma 1:The averaged generating functional is simplified
at the end of analysis. to
The stochastic updating rule for tentative decision vector -

b = (") € RE at staget is given by using [[23), ¥l = / dndndkdkdgdgdQdQdLdL

ie., p(btD (B = [T, p(B" ™ |6(*)). The dynamics is

a Markov chain, since the present tentative decision depend X €Xp [K(q) +V+Q)+0(nkK)), (31)
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in which functions®, ¥, and{} are given by and the normalization identit¢/[0] = (1) = 1, we now find
derivatives of the averaged generating functional:

& i Z{" MO OO

s=—1
t—1 t—1
+i Z Z {g==D g5
s=—1s'=—1 —
+OENQEN 4 e L)) (32) i 241¥1
h—0 81/}(5)
K O(K¥)
1 . =1 {d} K(o+v+Q) I\ * )
Ui=—>"1 b ) p[p— ”/dd 1m/ g
L (i) o
= —i(b)x, (35)
x exp[ 5 oL - T - ) i
s=—1 V2 Pp—0 81/)(8)31/)(5/)

- Z Z {q(s,s')g(s)i)(s/) hm /{d}e (P+T+Q)

s=—1sg'=—1
0.6') (5 (s 65)i(s 92(KW IKT) O(KT
OGO 4 FeFEO ()Y X( (S() ()S/) ( (S)) o( <S/>))
t—1 B awk 62/114 awk awk’
+0Y Al ul — & — ) — k)y — S = (BB (B ()]
s=—1 7(s 7(s
O .
SPILLTERD SEAV N = e BB — (1= 8y B (B e
s=—1 s=—1 (36)
A
1 im ————
Q=2 / dvdddwda $=0 9y 9p's")
_ hm /{d}e (P+T+Q)
X exp{ Z Z {vlf)v o) 4 w ﬂv }
p=1s=—1 X( (92(K\I/) 8(K\If) 8(K\Il))
N () 5(s") [OIRPYIED)
1 oY, 00, 0y, 00,
z {Bovs) )_,_A(S)QSS) } )’ - (o
2 ;;1521 S/_z;l = =0k (B ) — (1= 1) (B)i (@)
1 N t—1 t-1 (37)
_Z (8)1.(8) _ 1,(5",8)77,(s") 7 u
32 2 2 AT - L tim 220 _ o, @, (38)
p=1ls=—1g'=—1 p—0 891(:)
() — Leal) 021y, b
N t-1 t-1 Im ———— = —0p <ﬂ(s)ﬁ(s )>k =0, (39)
1 S(5) ¥=0 99 965" |
52 2 > g
p=1ls=—1g'=—1
x[1 = — ) 4 gl (34)
(I
Details on the derivation and definitions of the notations awhere( ), denotes the average as
given in Appendi{B.
B. Saddle-Point Equations and Meaning of Macroscopic Pa-
rameters
One can deduce the meaning of macroscopic parameters Qy Ju,i))
differentiating the averaged generating functiogép] of (31) :
with respect to the external messa@é@ and dummy func- ( H b(s)) du@wk({é,u,a})f({i),u,ﬂ})
tions 1/;,25). The averaged generating functiori&hp] is domi- RIH2 \s=11 (40)
nated by a saddle-point fdf — oco. We can thus simplify the _ _
saddle-point problem in Lemnid 1 in the large system limit. / +2( H db(5>> /Qudawk({b,u,ﬁ})

s=—1

Using the shorthandd} := dndndkdkdgdgdQdQdLdL
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with k(s), I/{\;(S), q(svsl)’ q(s,sl)’ Q(s,s/)’ Q(S-,S,)' L(S-,S,)’ andi(sgs,)
- leads us to the following saddle-point equations:
we({b.u, ) 0
) [Z L T ) 7= 50 >
eXp — — —[b'* u'® n saddle
s=—1 2 1 K
(s) — il B(s)
t—1 t—1 n lim Z(b Vi (51)
S5 SRR 4 QL)) Koo K~
s=0 s'=0 7.(s) . 00
A N ’ k =1 5 (52)
+ L<s,5 ORE >} E® | e
K
9 o) _ (o ) — LN o, —
—|—1Zu {ul® — k6N k) = K;w Yo =0, (53)
/ o0
LiSTE@pe) g =1 —— : (54)
1Zb 7 } addle #1) 99 | uqane
s=0 sau e K
’ 1 ~ ~r 1
which is referred to as single-user measuréiere, evaluation ¢ = Jim D BBy, (55)
flsaadle denotes an evaluation of functighat the dominating TR S
saddle-point. To derive the(® in (38) and=" in [@9), we O = o0 (56)
use identities 8@ 55 | addle
oZ[y]  0Z[0] , K ,
_ o020 _ 42 (s5) — L N0 560y, —
Jm, o = g~ (42) Q = ;w )y =0, (57)
0*Z A o
im [”b]/ = [ ]/ =0, (43) L) = 879, : (58)
¥=0 96 ogs) 06 oel) OLS) | qare
K
respectively. These are obtained frdff0] = 1. Substituting L&) — 1im 1 Z<l~7(5)ﬁ(5/)>k7 (59)
(28) - [30) and[(38) —[(39) intd_(B5) QB?), the spurious so- K—oo K

Iut|ons that depend otii(*)) or (a*)a(*)),, are eliminated

/ i i 7 _
and we then have for all s and s’, respectively. Comparing them with_(47)

(49), the following relationships are obtained:

By = (B9, (44) D = (o) (60)
GIRET) = G OB, gr) = o), (©1)
(1 = 6 ) BN e (BN, (45) L&) = G<”> (62)
() . - () (&) Therefore, we hereafter make use {oh(*), C(s5") iG(5:5)}
20 =107 (0 . (46) instead of((*), ¢, L(=*)1. It should be noted that causal-
M ity
In the large system limitk — oo, integral [31) will (b)) 0 63)
be evaluated by the dominating saddle-point of exponent 90"

d + ¥ + Q. We can now derive the saddle-point equationssiqould hold fors < s thereforeL(*) — G(=5) — 0 for
b%’ )d|tf((er)ent2atl/c))n vznth/)resp()eeg o, Lnte?raI(va/r;abIe@A,(ﬁ(f;, s < . In the next s(Jbsection we calculate the remaining
ks,ks,qs’s,qs’s,QS’S,QS’S,LS’S,andLS’S. d—_ X ! R i

. - . erivatives in the above saddle-point equations.
These equations will involve the average oventai) (which P q
measures the bit error rate), the average single-useratore o _ _
C=") and the average single-user response fundfion): C. Derivation of Saddle-Point Equations

X The integral in) with respect tov andw is calculated as

s . 1 7 s) ~
) — éflm?z@’(c ), @n o _ da
k=1 ﬁ 27r (t+1)/2 27T)(t+1)/2
K ___ 1 16T BT w—2wT Bo—L1wT D
o5 . 1 () (o ~ i (6 l)vf—v Qv—30 B w—5w Bo—zw Dw
Ol o= é@mﬁg@i)bé IO e/
oD A
GG5) .~ lim iz <bk/>_ (49) e~ 3® Qv|D| 1/26—%'{;T(,8’11—B)TD’1(,8’11—B)13
K—oo K — 89/(;)

1 R
= ——{In|D
Using the identities[{35) £(39) and (44) =146), the straight 25{ 1Dl A
forward differentiation off + ¥ + Q) with respect tay(*), /(*), +In|Q+ (B'1-B)'D (3 '1-B)|}, (64)
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where B and D are matrices whose elements are defined bye then haveQ = ~iggMT = —iz3(1 + BG)'D(1 +

B = k) — gl (65)
2
D) = % +1-m® —mE) =) (66)

respectively. Tha denotes an identity matrix.

The saddle-point equations includifg are evaluated as

follows. We find
(o) -3 9
om(s)

ﬁ
saddle,k=0,Q=0
. 0 1 -~

+hn|(F1+@) "D Y(B 1+ G)|}>

—3 9 1 —1

=0, (67)
and find
§ =0, (68)
in the same way. Similarly, thé (=) becomes
E(S’S/) _ aQ i
IG(=5") saddle,k=0,Q=0
0 1
~geem (~5Y)
__1 1 9ul
B U 0G ="
t—1
@ 1 1 0 (5,7)F7(5,7)
@ _ - - Y Usm(sT
5 A 2,
106
=-= (69)
B |U|
where we putU := 7'1 + G, whose(s,s’) element is
U5 .= =15, o +G), andU**) denotes a cofactor of

the (s, s') element ofU. We here use the cofactor expansion Az =

at =(@), We therefore have

- 1
L=—_= UT —1
ﬁ( )
- 1+8GT) (70)
SinceQ = O, Q2 can be expanded with respect@asin | A+
Q|=trln A +tr A=*Q. The Q(**") can be evaluated as

o)
(5:5) i lim ——
Q IQI_IPO Q=) saddle,k=0
i 0
= lim M
25 an Q5" a0 FMQ

R V s)
- wM (71)

where we put
M:=p"1+@) DB '1+GNH7Y, (72
D) 51}(575’) (73)
=02+ 81 —m® —mE) 4 0], (74)

BGT)~L. Finally, we turn tok(*):
o0
0 9k saddle, Q=0

o .
ﬂlllm ETO) Injl1-8B"|
@ 1y L 0
B kao |1 — BT 0k(s)

6_1,¢ +1BECY + G

k) = hm

55,5’ + BG(S/7S)

i1 +1BkED 4 fGL"E-1)
6 1.4 +ipECY 4 GEHD

+iBk®) | ... 1

Si—1,0 +iBkETD 4+ BGE Y
=[Aql, (75)

whereA [, denotes &s +2) x (s + 2) matrix whose(s’, s”)
element |s given by

(3' 3”) 55/75// + ﬁG(S”"S,), fOI' S/ # S
A { 1, fors’ =5 ° (76)

The Ay is a matrix whose elements in a row that represents
values of stage, i.e., the(s+2)th row, in1+ 3G are replaced

to 1. Since|1 — BBT| containsk(®) only in a single row,

|1 — BBT| is expanded with respect to the row at® in

@).

Example 1:Parameter\ 5 has the following form:

1 ﬁG(O"_l) BG (1,-1) BG (2,-1)
0 1 BGL0) G 2.0)
0 0 1 ﬂG(Q’l) ) (77)
1 1 1 1
whent = 2. O

D. Bit Error Rate

One can obtain the polynomial expressions of soft-bits
b(s), which are averaged over the path probabilliyl (25), by
GFA. Therefore, we can also evaluate the averaged value of
analytic functions with respect to the soft-bits. Theh order
differentiation of the averaged generating functional,iclth
has the forms of[(27) and(B1), with respectmfj) gives

Jim, ( ajs>) 21 @ (=i)(6))
R (U OTRN )

where =(* and =(*) are derived by differentiation of (27)
and [31), repsectively. For arbitrary functid#{x) that can be
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expanded around = 0, we thus have the identity: The effective path measure is given by
(FGE)) = (FBS)). (79) {g(b,v))
t—1
The Hamming distance between single letters is defined by = /Dv/ ( H dB(S))g(E, v) 5[5(71)]
. A Rt+2
d(z, %) ;_{ > ﬁ“’”;“’” . (80) o A )
» HETT x [ ot = £(E® + 0 + (Tb))),  (89)
The Hamming distance betweeR-bit sequencesb and s=—1
b is measured by the averaged single-letter distortion @%q,
dz,2) := K 1Zk 1 (bk,bk) The hard-decision estimates N
can be represented by’ = sgn(b\") If we therefore choose Dv := dv|2rR| /e 2 R, (90)
F(z) such as a function which approaches &gn e.g., R=(1+8G")'D1+pG)", (91)
lim,—, o tanh(az), the bit error ratePb(t) can then be evaluated r=(1+ ﬁG)”BG, (92)
as .
) = Ay (93)
() A
P :={d(b,b® ,
(.60 6 .
1 1 =(t) , , ,
=1-% kZ(sgn(bk Ve ), (82) D) =02 4 B[l —m® — m0) £ o], (94)
=1 "o
R R R "5y | Oy +BGES) ] fors' #£s (95)
whered(b,b) = (1 — bb)/2 for b,b € {—1,1}. I 7 1, for s’ = s.
. . _ The terms(R~'v)(*) and (T'b)(*) denote thest" element of
E. Effective Single-User Problem and Analytical Result  he vectorR—'v and T'b, respectively. 0
We here summarize our calculation. Some macroscopicDetails of derivation is available in AppendiX C. Equations
parameters are found to vanish in the saddle-pdifit: = (89)-(93) entirely describe the dynamics of the systemmTer
Q) = 0. The remaining macroscopic parameters cai'b)*) in (89) is called theDnsager reaction term

all be expressed in terms of three observables: the average
overlapm(*), the average single-user correlati6ti**"), and
the average single-user response functigffv <), which are
defined by [(4l7) —[{49). The averaged generatmg functionalTo validate the results obtained here, we performed numer-
Z[p] is dominated by a saddle-point fdt — oco. We can ical experiments in anV = 8,000 system. The system of
thus simplify the saddle-point problem of Lemrh 1 in théV = 8,000 is too large for a practical system, but we are
large system limit. now concerned with the verification of the analytical result
We derive a single-user saddle-point problem. Note th@érived under the large system limit.
we remained the user indek to deduce the meaning of Figure[1(a) plots the first few stages of the detection
macroscopic parameters with respect to external messadggamics of the hard-PICf(x) = sgn(x)) and soft-PIC
{6'*)} and dummy functiong\*}. We set these parameterdf(z) = tanh(x/0”) with o = gy) predicted by GFA and

F. Numerical Analysis and Experiments

as density evolution [[52] forE, /Ny = 8 [dB]. The detailed
IR derivation of the density evolution analysis is availalrighe
Uy, (83) referencel[52]. The system load/fis= 0.5 < 3., wherej, is

9,(65 — 0. (84) the critical system load defined as the minimum system load at

. which the dynamics fail to converge to the replica-symngetri
Consequently, the single-user measurel (41) becomes usglution of the marginal-posterior-mode detector. Théiozi
independent. We then arrive at the following proposition. |oad 3. of soft-PIC for E;,/N, = 8 [dB] is about0.6. The
Proposition 1: Settingy — oo and#(*) = 0, the dynamics predictions of density evolution systematically deviatent
of soft-PIC can be obtained as the following equations in th@mputer simulation results at transients.
large system limit, i.e. K" — oo. Figure [1(b) plots the first few stages of the detection
dynamics of the hard-PIC and soft-PIC ff} /N, = 8 [dB],

m® = () (85) : : e
, N predicted by and density evolution with the system loa
’, dicted by GFA and d t lut th th tem load
c) = (b)), (86) of 8 = 0.7 > B.. Oscillation of the detection dynamics was
G = (B9 (R )Y, (87) observed, wher8 > S.. The density evolution results have

. ) , ) residual deviations in Fid.]1 due to the lack of the Onsager
with the causality:G(**) = 0 for s < s’. The bit error rate yeaction term and the assumption that the summation over all
of hard decisiong sgn[by”']} at thet™ stage of soft-PIC[[2) messages follows a Gaussian distribution. In particulze, t
is obtained by deviation between the density evolution predictions arel th

s 1 “(s) simulation results becomes large whgn> .. In contrast,
Py = 5 (1= (sgn(b™))). (88)  GFA exhibits good consistency with the simulation results.
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s}mulati(;n (harleIC) A

0.1€3 1 Since it turns out that the response function becomes zero
< GFA (hard-PIC) —/ s,5—1) 2 (s) .
DE (hard-PIC) - <) - except forG(* , the k'®) has a simple form.
. S'm“'ég'g: (:fo: g:g) Dg We then obtain the following result. The bit error ratg(t)
s DE (soft-PIC) - <O - of hard decisiondy(t) = sgnfux(t — 1)] at thetth stage is
S ooy \ given by
g A — of Y 99
o t — —_— |,
b( ) ( R(s—l,s’—l)) ( )
0.001 | D 1
T whereQ(z) := [ Dz denotes the error function and we here
0 1 2 3 4 put Dz := dz(27r) 1/2¢=%*/2 o simplify the notation. The
stage t m(®) are to be evaluated with the following set of recursive
(a) equations:
026 ™ Gimulation (hard-PIC) A\ ' ' ' ] k) =1 — BG(S’Sil)]Af(Sil), (100)
0.24 } GFA (hard-PIC) —/— ]
DE (hard-PIC) -} -
0.22 1 simulation (soft-PIC) 1 (5.5) (5.8 ( > ) o )
a GFA ( ft-PIC)% s,s _ s,s 2 s,s—1 s',s'—1 s—1,8"—1
% 0271 DE (Zgﬁ-PIC) -- @ 1 R D 1+ G G R
;:; + Z DA H (—BGmT=1)
3 A=—1 T=A+1
s'—1 s’
+ > DO T (=pat), oy
A=—1 T=A+1
4
stage t
(b) D) =62 4 B(1 —m) —m) 4 o)), (102)

Fig. 1. First few stages of detection dynamics of the ha@-Ripper)
and soft-PIC withf(z) = tanh(z/0?) with o = oo (lower) predicted by

GFA (solid lines) and density evolution (dashed lines). @atar simulations s+1 ~s—1 [ r(s—1.5—
(triangles and squares) were evaluated wkh= 8,000 for E;,/Ng = 8 m( ) :/ sz(k( ) + 2V RG—L 1))a (103)
[dB]. The system loads were (&§ = 0.5 < 8. and (b)3 = 0.7 > B, R
respectively.

Glss—1) — Dzzf k=Y 4 2/ Ris=1s=1),

‘/R(s 1,s—1)

G. Derivation of Existing Results by Generating Functional (104)
Analysis

If we put b = 0, viz., if we neglect the Onsager reaction
term, the GFA recovers the density evolution framework base C(** ) —/ DzDuDv
on the statistical neurodynamics [52]. R?

The multiple integral includingL(89) can be part|ally per- x (k™Y 4 2/ Rls=1s'=1)
formed, when we puE'b = 0. Namely,m(®), G ), and P, (s) + /RO LD — R 19 1)
only depend orw(*~1) amongw; and C(**' only depends

on v=1) and v(*'~1). We here separate into two sub- x f(k® D 4 2¢/R(s—1s'=1)
vectors:v = (vy,v2)". The correlation matrixR can then +u\/R(S,,175,,1) “RG-Ls-D). (105)
be represented as
R+ R The initialization condition is(~1:=1) = D(-1.=1) = 624 3,
ne (g e ): I

This result is identical to that of density evolutian [52h |
the derivation by means of density evolution, it is assumed
that the local fieldu,(t) follows the Gaussian distribution

R(s—1s=1)  p(s—1,5'-1) with meanB; and covarianc€’; .. Furthermore, the Onsager
Ry, = ( R(s'=1s=1)  R(s'=1,5'1) ) (97)  reaction term is ignored. The GFA, on the other hand, can
treat the Onsager reaction term correctly.

For example, v; and R;; are chosen aswv;, =
(,U(sfl)’v(s 71))T and

to calculate[(86). For arbitrary functiofi(v;), the following
identity holds:

- VI. GENERATING FUNCTIONAL ANALYSIS FORORC-PIC
Dvf(vi) = 7/(31’016_21}1 Rirvi f(py). (98)
/ (1) V2T Ry4 | (1) This section discusses the dynamics of ORC-PIC.
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e . . o imulation (hard-ORC-PIC) A\
Proposmon 2: The dynamics of ORC-PIC is given by the ) simu Z“g/: (hZ:d-ORC-PIC) S
following average over the effective path measure: simulation (soft-ORC-PIC) [
- GFA (soft-ORC-PIC) ——
(9(b,v)) g
-1 ) } € oo
::/Dv/ (H db(s))g(b,v) S~ g
RH2 N7 1
t—1 N
Bt _ p((s) o (9 5 _ (1)
X Sgla[b F(E® + 0 4 (Tb) (Tb))]. 0.001 a
(106) 0 1 2 3 4
All other parameters are identical to those in Proposliion 1 saoet
For ORC-PIC, the summation over all messages, which is @
the argument off (- - -) in (8) becomes 026 [ ORCPIO) A
K 0.24 | GFA (hard-ORC-PIC) —~/
ug) = Z Wik (b — bg/)) + bg) 022 | SImUIzI,S: Eigﬁg?gg:g %D
k=1 a
), 00 (1) :
- piss)pls) 1 20 N gy 9 (107
;1 k k \/N —~ k k ( ) 2
s'= p= =
with external messagqﬁ,(f)}. The averaged generating func-
tional Z[v] is represented as

Z[] =Esq,.... sye.m [/R du

1K stage t

11 (b)

b ) [ e i)

or Fig. 2. First few stages of detection dynamics of the hard=adRC (upper)

and soft-ORC-PIC withf (z) = tanh(z/0?) with o = o (lower) predicted

s=—1
t

B by GFA (solid lines). In this case, the density evolutiorutess identical to the
X exp {—i Z b . ¢(5)} GFA result. Computer simulations (triangles and squarespwevaluated with
- N = 8,000 for E,/No = 8 [dB]. The system loads were (@ = 0.5 < 8¢
s=-1 and (b)3 = 0.7 > 3., respectively.
t—-1 K K
< [T11 5(u§j> " Wi (b — b)) — B

s=0 k=1 k=1

s o N by GFA. The density evolution results completely agree with
+ Z F,(f’s )bgf ' Z shint — 91(98))]- the GFA results[[52]. The density evolution curves of Fif. 1
s'=—1 VN p=1 are equivalent to the performance of ORC-PIC.
(108)  To validate the results obtained here, we performed nu-
The difference betweed (R7) and (108) is only in the fourthierical experiments in anV = 8,000 system. Figure
term Zif:_lf;(f’s/)i’és/) in 5(---) in (08). One can straight-(a) plots the first few stages of the detection dynamics
forwardly show Propositiofi]l2 in the same manner as tift the hard-ORCz-PI(;j((x) = sgn(z)) and soft-ORC-PIC
derivation of Propositiofil1. The difference in the analgtic (/ (¢) = tanh(z/0”) with o = o9) predicted by GFAI[S2] for
results only appears ifi(89) of Proposition 1. Ey/Ny = 8 [dB]. Figure[2(b) plots the first few stages of the
We will now consider how to choose matrfx = (I'(5:5") detection dynamics of the hard-ORC-PIC and soft-ORC-PIC
in the Onsager reaction canceling term to cancel the Onsafffr£+/No = 8 [dB], predicted by GFA and density evolution
reaction term. with the system load off = 0.7 > .. Oscillation of the
Proposition 3: When the Onsager reaction terffib)® is detection dynamics was observed, wheo- fc.
chosen as

t—1 t—1 VII. GENERATING FUNCTIONAL ANALYSIS FOR
(Tp)) = "(—1)f—=~1pis (H G(T“’T))IS(S), (109) BP-BASED DETECTOR

5=0 We next apply this scheme to the BP-based detector. One
for t > 0 and Qf‘i))(fl) — (f‘i))(o) = 0, then the Onsager can obtain the following result in the same manner as s@it-PI
reaction termI'b is canceled, viz.I'b — I'b = O, and the

response functions becond&**) = 0 except fort = ¢’ + 1. Proposition 4: The dynamics of the BP-based detector rep-
O resented by[{14) is described by equatidng (B5)-(89) and the

Details of derivation is available in AppendiX D. Note thafollowing equations:R = (1 —tlle)le(l -pBT), T =
() is a recursive formula of {I09). One can confirm the ORGlag(A~1), - At=1) —[3* Jop @A (UT)HT

s=—1

PIC algorithm can correctly cancel the Onsager reactiom teand &) = |A[g| where B, U, and D are matrices having
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matrix elements

B(S,S,) [ Z J(S,T)G(T,S,)’

T=—1

(110)

U =6, +8 Y JEDGT, (111)

T=—1
D) — 2RO RE) 4 3 [ RO R

— ROY ) REDS 67 ()

T/=-—1 T=—1
+>> J<S,T>J<s/,a>c<f,f/>} (112)
T=—17/=-1
and
A(S, ) 55,75// + ﬂ Z J(S/-,TI)G(T,,SI), s 7& s
S T/=—1 !
R, s’ =s.
(113)
and matrixJ, denotes
J(s—1,—-1) J(s—1,—-1)
B J(t—l,;f—s—l) J(t—l,;f—s—l)
Js = 0 0 (114)
0 e 0

Here,A = (ds4+1,) denotes &t + 1) x (¢t + 1) matrix whose
(s,s') element is given by, s+, and the operatop denotes
the Hadamard product ® B = (a;;b;;) for A = (a;;) and
B = (b;j). O

12

0.1 " simulation (BP-baséd detéctor) ‘A
GFA (BP-based detector) —/—
£ 0.01
Q
s
S
2 o001
o
0.0001
0 1 2 3 4

stage t

Fig. 3.  First few stages of detection dynamics of the BP-thadetector
predicted by GFA (solid lines). Computer simulations (tgkes and squares)
were evaluated witth' = 8, 000 for E}, /No = 8 [dB]. The control parameter
and the system load were set@s= og and8 = 0.5.

Details on the derivation are given in Appendik E. For the
first few time-steps, we confirmed explicit expressions Far t
solutions to our dynamic equations as

m® = / Dztanh(VREOz 4 A®),  (117)

¢t = /Dz tanh?(V Rtz + k1), (118)

. 1

k(t+1) - - 119
0% + [l — D)’ (H9)

RFLEHD) _ BlL = 2m® + ¢(-9]) + 03, (120)

(o2 + A1 — g )2

where the BER of hard decisions at thé stage isP} =
H(k® /VRED) with H(z) = [ Dz. In the BP-based de-
tector, the Onsager reaction term vanished. These ardddent
to the results from density evolution [25]. Figlirk 3 plots th
first few stages of the detection dynamics of the BP-based
detector predicted by GFA[52] foF;, /Ny = 8 [dB]. The
control parameter correct was setas- oy.

For the BP-based detector, the summation over all message$)n the other hand, Kabashima analyzed the stability of the

which is the argument ofanh(- - -) of (I4) becomes

t K
i = ROby+ AR — 37 700 3 Wb, (115)

s=—1 k=1

The averaged generating functioriakp] is represented as

Z["nb] :E317”'73K,'n {/ du
R+ K

~ t—1 2 (s . s
x p[b(l)]< 11 %e%{bi*”mi))}?)

S=—

¢
X exp [—i Z b . ¢(S)]

s=—1
t—1 K
<[I11] 5<u,<j> — R®hy, — AW
s=0k=1
t K
YLD Wkk,6,§>)]. (116)
s=—1 k=1

density evolution results and obtained an unstable camditr
the fixed point solutior [25]. This unstable condition caodtexl
with the Almeida-Thouless (AT) instability conditionl[1]fo
replica analysis obtained by Tanakal[51]. The AT instapilit
is the local instability of the RS saddle-point solution iret
replica analysis. In GFA, it is known that the AT instability
condition is derived by a condition that the response famcti
diverges[[48]. When the AT instability condition is satisfije
the relaxation times of GFA dynamic equations are expected t
extend to infinity. In the system addressed here, this cimmdit
must be equivalent to the AT instability condition. In Seati
[VITI-C] we will discuss the stability analysis that correspls
to the AT instability.

VIIl. STATIONARY ESTIMATES

This section explains how we approximately extract the
stationary estimate, which is a stationary state of thextites
algorithm, under some assumptions. To simplify the problem
we restrict ourselves to the soft-PIC algorithm. We folldwe t
method of Ref.[[7].
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A. Analysis of Stationary Estimates immediately impliesy = oo. Under Assumptior]1, the

We recognize that the representation of the effective pdfiatricesC’ = (Ct**) and G = (G**)) can be regarded
measure given by[(89) is fully equivalent to the measufS Symmetric Toeplitz matrices, since we consider that the

corresponding to a single-user process of the form: size of square matrice€’, G, and D are sufficiently large,
. O - viz., t + 2 is sufficiently large. The matrixD = (D(*))
b = f(EY + 0™ + 6% + (T'b)™). (121)  whose element is given by (94) is also regarded as a symmetric

i i s's) .2 _ sy _ s
Variable v = (v() can be regarded as a random variablEQ€Pitz matrix fromDE") = of + 1 — m) —m() +

that obeys Normal distribution' (0, R), e.g.,(v(),, = 0 and (?(S ] = ‘;3 t)ﬂ[l _Qm(s ) =m® 4 O] = D(j’s ) and
(o)), = RGO, from (@), where(---), denotes the limg o DA™ = of + B[1 — 2m + C(7)] =: D7), where
average over random variabie We here put we again use Assm_Jmptld)__rll 1. Therefore, we hereafter make the
A ~ following assumption.
U = kW 0 400 4 (TB)®, (122)  Assumption 4:The matrices{C, G, D} and their powers

are Toeplitz matirices. All pairs of matrices commute. [

In this subsection, we derive the following proposition and
some assumptions.

Proposition 5: Let Assumption§]1 £]4 hold, then soft-PIC
converges to an unique stationary estimate whose BER ia give

then the single-user process can be rewrittebi’as= f(¢(*).
We therefore have the following form.

t
SETD — 0 4 () L g(0) | Z I\(t7t’)f(¢(t’))’ (123)

tr=—1

b
The relationship of[{123) is referred assimgle-user process Y
Using [123), the overlap (85), the correlation funcition)(8fe Ll
response functioh (87), and the bit error rate (88) are nbthi Py = 2 ! R Dzsgn(g(z)) ). (133)
as
, , whereg(z) is to be determined by equations that describe the
m® = (f(¢1))w, (124)  stationary estimate:
C = (f(@D) (8", (125)
Gt — <f(¢(t))(R—I,U)(t/)>v7 (126) m= /RDZQ(Z)v (134)
1
B = S (1= {sgn(£(6)))).). (127) c= / Dzg(2)?, (135)
We make the following assumptions to evaluate the station- Y= 1 Dazg(2), (136)
ary estimates. VE Jr
As_sumptlon 1:(T|r_ne-translat|9n invariance: T_TI) The dy- 9(z) = f(E—i—zx/F—i- Gy(z) + ), (137)
namics reaches a time-translation invariant estimate: 1
Jim m® = m, (128) E= T (138)
—00 9 _
lim C(tJrT,T) _ O(T)’ (129) F— oy + B(l 2m + C)’ (139)
= (+By)?
lim G = @), (130) By
t—00 G= . . (140)
If this property holds, the dynamics reaches stationary est +5x
mates. O O
Assumption 2:(Finite integrated response: FIR) Th@e-  This result is identical to that from the statistical-merical
grated response analysis[[50], which is called the naive mean-field theoty [4
-
1 Gtt) 137) [fwe put f(z) = tanh(xz/0*), # = 0 andG = 0, the BER of
X tif?o; (131) Propositior b can then be rewritten as
is a finite non-negative number, i.g;,< co. O E
The integrated response is also called asisceptibility B=9Q ﬁ ) (141)
Assumption 3:(Weak long-term memory: WLTM)
lim G = 0 (1) "™
t—o00 N —
for any finite¢' [9], [10]. O m= /R Dz tanh(E + 2V/F), (142)
Since the response function represents the memory which - _
means what happened to the system, the weakness of the long- c= / Dz tanh?(E + 2 V/F), (143)
term memory implies that the system responds to its past in ~ R 1
an averaged way. The details of what takes place during finite E=——7+-—, (144)
o2+ B(L—¢)
stages tend to be washed away. )
We assume that the stationary estimate is unique and = +A(1 - 2m+c)’ (145)

Assumptions[J1 {13 hold. Note that violation of WLTM [0 + B(1 —¢)]?
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where the identity,

1—c

o2’

X = (146)

holds in this parameter settings. This result recovers dliat
the marginal-posterior-mode detectdrs|[51]. It may mea th
the relationshipG = 0, which corresponds to the case where
the self-coupling term vanishes, is required to achieve the

individually optimal performance.

B. Derivation of Propositiofi]5

Since the covariance matri® of (@) becomes

r=(> (o6 )p(Yaer) e

m=0 n=0
=D(1+8G" +8G + B*GTG)™! (148)
by using Assumptiohl4, we then hay®” = R. Similarly, the

reaction matrixI" is represented as
I'=(1+8G) '8G (149)
=-Y (-8)"G (150)

n=1

Since G is a lower triangular Toeplitz matrix, thE is also
a lower triangular Toeplitz matrix, i.e[;(**") := I'(s=s") for

s> s andT(s) =0 for s < 5.

14

Therefore, the last term on the right-hand side[0f [152) & th
t — oo limit is evaluated as

t t
lim g D0 3T as)
t'=—1s=—1
[e%e} t
Yo (fm ) ase)
n=1 s=—1
] (159
where
t
= % Z £, (160)

Taking thet — oo limit and using [(I5P), the average single-
user procesg of (I52) becomes

@ |

(161)

First, we evaluate:, which corresponds to the signal part.
If seriesk(—1, k(... converges, thek = k(). Sincek is
obtained as: = 1 — Bk(>) 3207 G =1 — Byk, we then
have
— 1 J—
- T h "

Next, we consider the variance of Gaussian random variable
v. The average of is obviously(v), = lim o 745 > p_ 4
(™)), = 0. Using the definition of the persistent correlation

o]

(162)

Under Assumption3, it can be considered that the system_ lim;_, C(t), the variance of is given by
responds to its past in an averaged way. We therefore canside

the average ob(®) instead oflim,_,.. ¢(**1), which gives

1 t
_ S+ 151
s :Z (151)
_k+v+9+— Z Z L) f(p*)),  (152)
t’:—l s=—1
where we putk = S k9 o= Y o®

and 0 = t+2 S__,0%). Under Assumption§]1 and 2,
S0 LGB s written by
t
. (t,t")\n
Jim, >0 @) 1o
t'=—1
t t t
e (t.01) (1,11
“hm Y (3 3 et
'=—1 Mi1=-1 tn—1=—1
N G(tnz,tnnganm’)) (154)
t t
(t.01) ca(t:11)
_thggo Z Z GG
t1=—1 tn_1=—1
. % G(tnfz.,tn—l) (155)
o (156)

(@

>v T%OO 7‘—}—22Z Z

—1t'=

(+ 667" D1+ Gy

(163)

—ZZ (1+BGT) HO (A +pGT)" 1)
s=0 s’'=0
. (t—s— t'+s’)
XTIEEO T+22t§1t’; 1D (64
2 1-2
=:F, (166)

where we here write((1 + SGT)"H#+™t as (1 +
BGT)~1)(7) since(1+BG ")~ is a Toeplitz matrix. Namely,
v obeys a Gaussian distribution with mean zero and variance
F: o ~ N(0,F). The Gaussian random variable can be
represented as = v/Fz by using standard Gaussian random
variablez ~ N(0,1).

Limit f(¢®)) ast — co converges by usmg Assumptldﬂs 1,
2 and[3. We therefore have= lim; o 1+ 2 S o) =
¢ () and f hmt—>oo_t+2 ZtL:—l f(¢(t )) = f(¢(oo))
These relationships givé = f(¢). Applying function f to
both sides of[(181) and letting(z) := f, we obtain

9(2) = FE+ 2VF + 0 + Gg(2)), (167)
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where G := Bx/(1 + Bx). The persistent overlapn := reaction terni"(t:t") explicitly into TTI parts and further small
lim;_, . m(®), which is identical to that of(128), then becomesontributions:
m = lim (f(6*))), (168) G =G G, (177)
e P(tt) =) 4 Pt (178)
=(fYs = [ Dzg(z). 169 - -
D= [[Pat2) (09 ith limy o GO+ — GO, andlim,, o IO — [0,
. . S(t—t') A(t—t'
We then have the persistent correlation where G' . andr (=) dep?ttg Tl pgrtt?/ that are referred
to as persistent parts The G(:*) and I'(t*) denote small
c= lim lim <f(¢ t+7 )f(¢(t v (170) contribution terms that are referred to m—persisteng parts
Tro0treo If weak long-term memory holds, the@(**) and I'(:t)
=(fA)s = / Dzg(2)?, (171) vanish fort — oo. We here assume that some small long-
term memory, but such that the limi€s(t) := limy_, o G
in a similar way. Since we assume Assumption 2, the int@nd I®) = lim, . T'**) exist and also bothy :=
grated response of (I3]) is a finite non-negative numberim; . th LG, A = Time Yy T(t), ¥ =
and is then given by limy 00 Zt, LGt') and# = limy o Zt, I'(t') exist.
, . When AssumptlorEB holds, the |dent|t|i.=n§mt_>OO Gt =
X = lim @) (172) andlim_o 0" =0 hold.
tooo = 901 We expand[(92) for smalts, and find
af dg(z e n o
=(=);= [ D D 173 I = N G G™ 179
Gple= [ D55 = g [ Do @r9 r=Scar > () 79)
For arbitrary functionf'(x) that can be expanded around-= =(1+8G)"'8G
0, the bit error rateP, := lim;_, o Pb(t) can be evaluated as 0o n—1 _
+ )03 (=BG)™M(BG)(-BG)" ™ + O(G?),
i (t) = T Q- n=1m=0
Jim (F(F@))o = (P = [ D2Fo(:). @74 (180)

Therefore, the bit error raté, can be evaluated as (133).  where the(t, ') elements of thet+2) x (1+2) matricesG, G,
Setting #*) = 0, i.e., # = 0, we have then arrived atT', andI' are G, G(t:t) Tt and (4t respectively.

Propositior[b. From [180), the persistent and the non-parsistent pafsisf
given byT = (1 + ﬁé)‘lﬁé andI'. Then,5 becomes
C. Stability Analysis for Stationary Estimates 3 lim Z Z Z n 4 1)( ﬁé(m))"é(svt') (181)
If Assumption[3 (WLTM) is violated, the dynamics do HOO t——1s——1n=0
not achieve the stationary estimate. For example, osmijlat BX
behavior in the dynamics corresponds to this situationhis t - (1+8Y)2 (182)

subsection, we investigate where Assumpliibn 3 is violaret
obtain the following proposition.
Proposition 6: The condition where WLTM is violated is

3We next substitutd (177) intd_(I23) and take the average with
respect to iterative stepsi.e., =5 S,__,, to both-sides of
the substituted equation, which gives

given by
_ = N _ ﬂ s s
3 b.(99) 2 p=k+o+0+— X~ Z Zrt ) f(0*).
— [ Dz =) >1, (175) BX 2, &~ =
(1+8x)? Jr o (183)
whereg(z) and all parameters are identical to the se{’of[134) As lim,_,.. Gt since we assume Assumptibh 2 (finite
— -) . > ! .
If we put f(z) = tanh(x/0?) andf = 0 andG = 0, condition mtegratf}d response), V,VG find
(I78) can be simplified as a® = lim Gt (184)
B / 2/ E 2012 . 9{f(¢"))w
——— 5 — = lim —————"— 185
oI T B OF RDz[l tanh”(E + z\/E)] >1, (176) Jim 39ft,)2 t (185)
whereE, F, andc are the same ab (144)), (145), ahd (146), re- = lim <<ﬁ> % f(5)> . (186)
spectively. Equatiod (176) coincides with the AT instaki[L] 2o \\00 ) t+2 = o

of the marginal-posterior-mode detector [[51]. This coodit Suybstituting this equation into the definition ¢f the follow-
(I78) is also identical to the microscopic instability, ehiiis jng identity is found:

derived by the belief update of the BP-based detectar [25].
In the rest of this subsection, we derive Proposifibn 6. Let X = :y<<8f> > ) (187)
us separate the response functiéfi*) and the Onsager 90

v
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Although ¥ = 4 = 0 always solves this equation, one find&€ach elements,, € {—1,1} is an ii.d. random variable
another solution wherty/%)((0f/90)%)s = 1 holds, which with equal probability. Also, leps(b) = [T, ps(bx) denote

is equivalent to the AT line[]1]. Sincg = 0 is required to the joint prior distribution of inputb € {—1,1}¥. Input
hold Assumptioi 2 and (187) represents an evaluatio®,of distributionp,(b) is arbitrary. The fading model is represented
the evaluated value should not be greater tifan.e., x < by arbitrary probability distributiop,(a) = [r_; pa(ax)-
4((0f/00)?)5, to diverge stationary estimates. We thereforghe distributionp,(a) is assumed to have finite moments.

have an instability condition of Assumptionh 2 as Especially it has the second-order moment\Ve analyze the
3 oF 2 system in the large-system limit whefé N — oo, while the
— (== > 1, 188) ratio 5 = K/N is kept finite.
(7)) ), (168 raop BN P

o ) ) U Definition 5: (Generic iterative algorithm) The updating
by substituting[(182). Using = x + x ~ x and [137), we e for tentative decisioh!” € R of bit signalb; at staget
have then arrived at Propositibh 6. is

IX. DECOUPLINGPRINCIPLE

With the statistical-mechanical approach][51].1[20],1[21] b = fuf), (190)
a complexmany-user problensuch as an inference problem
where many users’ transmitted signals in the CDMA system is
reduced to an equivalesingle-user problemThis approach with
brings a significant interpretation in the communicatiogaty.

This is known as th@ecoupling principlefound by Guo and . 1%
Verdd [20]. It claims that the vector channel concatenatitd ugf) = RWp, — Z Jts) ZWkk/l;k’ (s)
optimal detection is equivalent to a bank of independermgisin 1

s=—1

user additive white Gaussian noise channels, whose signal-

t
noise ratio degrades due to the multiple-access interéeen _ Z PR 4 gt (191)
the large-system limit under a certain randomness assampti s——1

of the channel.

The decoupling principle has recently attracted a great dea
of attention and has been investigated in defail [24]] [42Nhereh = (hy, -+ ,hg)T, W = (Wip), R®), JE) | AG),
Especially, by applying density evolution, Ikehara andakan f,(:"s), andd®) are parameters. Transfer functign R — R
have found that the decoupling principle holds not only @ arbitrary and applied componentwise. O
equilibrium but also at each stage of the BP-based detecto (t)

. : Ofrhe u,,’ is a summation of messages from tentative de-
[24]. Their analysis was however based on an assumption.

t) L .
of independence of messages. The GFA allows us t0 St@smns. Thed,’ is again introduced to define a response

algorithms without assuming the independence of messag%scuon' Leth; be an output of the matched filter for user

[6], 71, [82], [33], [34]. In this section, we investigatdig¢ hy, = s, - y, and Ieﬂjf '9$ ak x K cgrrelan.o.r? matrix
| - ) . ) . which is defined byW = S'S with S = (s, ,SK)-
decoupling principle via detection dynamics using GFA bx initializati gD _ 0. Thi ic algorith
considering an arbitrary fading model. ror Infialization, We us,, ~ = 9. 11IS generic aigorthm
includes various types of iterative multiuser detectormabke
following examples.
. ) . Example 2:1f we set the transfer functiorf and the pa-
In this section, we focus on a generic system model and gneters as
generic iterative multiuser detection algorithm.
We now consider & -input N-output vector channel, which
can be regarded as a fully-synchrondasiser CDMA system f(x) =tanh(z), (192)
with spreading factorV or a multiple-input multiple-output )

A. Generic Detection Algorithm

(s) _ —2
(MIMO) system. Letb = (b1,--- ,bx)' € R* denote the R/ =0 (193)
input vector, andy = (y1,--- ,yn~) | € RY denote the output JE) =725, o, (194)
vector of the channel. The output is given by a linear ne =9;(f) _ f;(f’sl) o, (195)
transform as
y=Sb+mn, (189)

where S = (a1s1, -+ ,axsk) denotes anN x K chan- the algorithm of [(190) is identical to soft-PIC 7Y =
nel state matrix, which includes the received amplitugle tanh[; (k) — 25:1 Wkk,bgf))]. O
sy = ——(s1x,--- ,snk) | denote the channel parameters for

VN7 .
the spreading code sequence of ugerand n is a vector

consisting of i.i.d. zero-mean Gaussian random variablgs wP!C- If the_F,(j’S " are chosen to cancel the Onsager reaction,
. . O i - ~
variances2. We use control parameter® as the estimate then algorithm[(190) gives ORC-PIC [52]. O

of the channel noise variance instead of true noise varianceExample 4:We next consider the following parameters and

Example 3: All parameters excerffgf’sl) use those of soft-
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function: where B, U, and D are matrices with elements

N _ Z Cole]

(207)
f(z) = tanh(x), (196) ]
(t) —fg2 _otn-1 , s ,
AT o+ A= QT (197) Ues) =5, 0+ 8 Y JeDGm) (208)
RW =A® 4+ AWg[1 — QW RV, (198) ’ =
91(:) —0, (199) Diss) = R(S)R(S ) 4+ BIRGI R s’)
Piss) _ (s)
I =—0,0AY%, (200) . S (o
. _R()ZJ(x)m()
J®9) =10 < s < t)A®) H ABIB[ — ¢ T/:S‘l
s/=s+1 (s) (8,7) ()
- R J m
+1(s =t)A®, (201) T;
+ >0 ) gengE o), (209)
with Q) = K-15°K [5{V]2. Here,I(P) denotes an indica- Teotbr=l )
tor function, wh|ch takes value 1 # is true, or O otherwise. ' g > - o
) (s",8") /ot L ("7 (8"
We assume thaQ)(t) can be regarded as a constant with As =I(s" # 5) (65 s+ B Z J G >
respect tob by using the central limit theorem. Theln_(190) ) ) T=t
is equivalent to the BP-based detecfor! [25]. O +I(s" = s)R (210)

As previously mentioned, the iterative detection alganith
(190) includes various types of iterative algorithms. lpshl
be noted that in all these detectobg gives an approximate
value for the posterior-mean at th&* stage [52], [[25]. We
obtain the analytical result, which involves the following

with Dv = |27 R|~'/2dv exp[— v - R~'v]. All these param-
eters mentioned above are obtained from the following three
kinds of quantities:

measure:

(g(bk,v))

D ab'* ) g(b
/vk/RH2<SH k> k> Uk)

t—1
< 8[os V] T ofos™

s=—1

~ fu)], (202)

1

<akbk BI(:) > *

M=

m®) = lim
K—o0
k=1

:<akbk55€8)>*k,bk,ak ’
K

1 7(s)7(s

k=1

:<Bl(:)[;l(cs )>*k;bk7ak )

(211)

’
) = lim
K—oo

C(S’S

(212)
K

s,8") / . i 7(s) —1 s")
G Mo <) Jim 2> (B (B,
with —1(s < &) (S (R 0k) )y by (213)
where G55 = 0 for s < &' due to causality. HereA =
(0s+1,5) Isa(t+1) x (t+ 1) matrix. Operator - }; denotes
the expectation with respect to random varigliland operator
® denotes the Hadamard product, i.el,@ B = (a;;bi;)
for A = (a;;) and B = (b;;). Terms(R~'v)®) denote the
s element of the vectoR'v. Term %, T(s5)5(+) in
(203) represents the retarded self-interaction, whichalked
the Onsager reaction.

U = kb o 4 3 [0 PO,
s'=—1

(203)

where g(Bk,vk) denotes an arbitrary function oby.
G BT andwy, = (00, -+ 0T, The parame-
ters are as follows:

B. Decoupling Principle

—_ (1 _ -1 _ T\—1
R=Q0-5B)" D1-5B") (204) From the average of (202) we find the effective single-user
= 7 AT 1T (205) processh" ™" = f(u!*) andb! " = 0. Variablewv; can be
- Zl +1® U™l regarded as thét + 1)-dimensional Gaussian variable with
. T mean vector0 and covariance matri®. Using [208), the
K = A, (206)

effective single-user iterative process can be writtenhie t
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by ——» By s’)(B,(:) (R™'v:) )y, 1.0, Tespectively. The macroscopic
by —»] y I parameters contain the effects of all users as averages; the
: Vector channel Multiuser detector fore, these can be represented by each user’s distribution.
Hence, [ZI}) holds for any usér All the parameters if(214)
PK—] —"®  can only be represented by each user’s distribution.
@ This result[[2I¥) means that each user experiences an equiv-
R alent single-user additive noise channel whose signabise
by ———»{ _Scalar channel |‘§_;“'|S‘"9'e“‘se‘ detector H_'bl“) ratio degrades due to both the multiple-access interferand
by ——»[ _Scalar channel |+ Single-user detector [+——=bo()  the Onsager reaction, at each stage of the algorithm. This
: P : property is called the decoupling principle [20]. The anyeit
by e —— i Single-user detector Bk ® channel noise generally becometslnon Gaussiantdiule to the
e el existence of the Onsager reactiprf,__, T'(“~ 1 )f( ).
® Figure[3 has a schematic of the decoupllng pnnuple.
Fig. 4.  Schematic of decoupling principle. (a) Vector ctelniollowed by Figure[S shows the results of the analysis. Approximate

t t=1)y -
multiuser detection and estimates at stagéb) Equivalent scalar channels posterior-mean estimator (PMH))é) (u,(c )) is used as

followed by single-user detectors and estimates at stage the single-user detector. It should be noted thatl(214)ieapl
that equivalent channel noise becomes Gaussian if the ®nsag

— y o . reaction is cancelled. However, for soft-PIC, the Onsager
b — channel detector [ P® reaction is not cancelled (Figl 5 (b)). If the Onsager reacti
does not vanish, the noise distribution is not centered rat ze
@ Therefore, soft-PIC must be suboptimal.
bi(-1) ... by(t1) Under the assumption of the large-system limit, the perfor-
______________ 1 weeeeeeeeeee. - mance of algorithm{190) at stagean be evaluated by using
F1-2) Fe1ty ¢ the equivalent scalar channel determined from three types o
Eftective ' Mi(t-1,-1) (L) macroscopic parametefsq, C, G), wherem, C, andG are
sl CpoSn b i a(t+1)-dimensional vectofm!~ "), - -, m(=D)T a(t+1)x
amplitude ! reaction L (t+1) matrix (C#)) and a(t41) x (t+1) matrix (G(>* )2,
Acken) - NORCAED) mrmmmmmmmrrr e respectively. The bit error ratE( of hard decisions sgh”]
) Qg /L N D) [ Smgle-user at thet'h stage is given b)Pb = 2(1—(bx sgn[ ]>v,b,€,ak).
k N N detector [ kO We next consider the case where we set the parameters
®) in (I90) to those of ORC-PIC. The reaction term in the
Erfective . effective single-user process is determined by two matrice
signal Gi‘é?:éa“ I’ andT;. It is considered that the parameiérrepresents a
amplitude retarded self-interaction caused by iterative calcutatihe
axk(t)  NOR(-LL) parameterl’;, on the other hand, is arbitrary; therefore we
/L can choosd; that cancel the Onsager reaction. Using the
Qg Ukt S‘gg‘g;gff - -b«  inductive method, we can show that the Onsager reaction

is entirely cancelled at each stage when the parameter
I is set to(I'b)® = GV [p(t=1) — (Tb)(~V)] and
(T'b)(=1) = (I'b)® = 0. This parametef" coincides with the
parameter derived by density evolution|[52]. Density etiolu
cannot treat the Onsager reaction, however density ewoluti
can be applied to derive an algorithm that can correctly elanc
the Onsager reaction.

In the case where we set the parameters[in ](190) to
those of the BP-based detector, we confirmed the Onsager
reaction is cancelled at least at stage 8 through straigteiol
calculations. In this casd; becomesdiag(A(—1,0,--- ,0).
Therefore, for both ORC-PIC and the BP-based detector (at
least at stage 8), the equivalent single-user channelsizn g

©

Fig. 5. Vector channnel and equivalent single-user chanr{e) Vector
channel, multiuser detection, and tentative decision. Hl)ivalent single-
user non-Gaussian channel, single-user detection, atatitendecision. (c)
Equivalent single-user Gaussian channel, single-us@ctien, and tentative
decision.

following simple form.

u,(:) :ak/%(s)bk + v,(f)

b IO EE )

214
S (214) as an additive white Gaussian noise channel (Hig. 5 (c)).
vxzith) ol ~ /(\/(()) RG=1s=D) where b = fu{*™), X. CONCLUSION
b :
by © = fly, 7)) = 0. Introducing the average(sc))ver We evaluated the detection dynamics of soft-PIC, ORC-
Uk @S (:)u, JDvi- and using [(2T4), thenn!®, pic and the BP-based detector by applying GFA in the

C(s) and G(Svs'> are obtained asn(®) = (byb\”)y by .ars

o a large-system limit. We also showed that GFA could treat the
O BB Yo bpan, and G I(s

< dynamics of belief propagation.
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From the practical point of view, iterative algorithms are
generally utilized as suboptimal methods. It is important t

understand the detection dynamics in detail to improveadete Evaluating the averaged generating functional straightfo
Quardly, one can obtain Lemnia 1. Substitutiity (1) dAd (3) into

tors. We confirmed that the results from the density evofuti
analysis could be obtained from those of the GFA analysis

APPENDIXB
DERIVATION OF LEMMA 1]

19

), the summation over all messages becomes

omitting the Onsager reaction term. The GFA could correctly

treat the Onsager reaction, which is a retarded self-iotiera

due to iterations, and gives density evolution a basic theor “k

We also studied the decoupling principle in iterative mul-

k=1

Z Wirr bk/ — Z)](j)) b(t + —= Z skn” + H(t

tiuser detection algorithms using GFA. and found that the (215)

decoupling principle holds. The reconstruction algoritofm

compressed sensing could also be analyzed by GFA [37]. TABLE |

SUMMARY OF NOTATIONS
APPENDIXA _ the first -
variable or top-left  description
NOTATIONS element
We here summarize notations, which are used in this papey,

. notations for models)

in Table[. It should be noted that notations to describe th e B the number of Users

GFA result don’t contain the user numbky since a many- n~ ¢ Nt - spreading code length

user problem is reduced to an equivalent single-user pmoble k%' € {1,---, K} - user number

in GFA. In Table[] 'BP’ denotes BP-based detector. ff’e“Ni {1 N} - g?;ge'merval index
s, st € {-1,0,--- ,t} - stage
s =(sh) € {:i:l}N st spreading code of usér
b= (by) € {£1}K by information bits

bt = (b,it)) € RK B\ tentative soft decisions

b1 = (V) € {£1}% b\ tentative hard decisions
y=(y*) e RN yt received signals
n = (n*) € RN nt noise vector
oo € RT — true noise variance
o €RT - control parameter
W = (W) € REXE Wi correlation matrix
Pt = (w(t)) € RK Y) dummy functions
o) = (9“)) € RK ot external message
h = (hy) € RE h1 matched filter outputs
fR—=>R - transfer function
| (fff’sl)) e RE+Dxe+)  pELTD parameter for ORC-PIC
R® ¢ Rt - parameter for BP
A®) ¢ R - parameter for BP
QW e Rt - parameter for BP
Jts) ¢ RF - parameter for BP
v €RT - inverse temperature
S = (apsy) € RVXK aisi channel state matrix
ap € RT - received amplitude
Pb@) € RT - bit error rate
(notations for GFA)
b= (b®) e RtH1 b(=1) tentative soft decisions
b= (b)) ¢ {£1}t+1 b(=1 tentative hard decisions
P = (p®)) € REF! (=1 dummy functions
0= (1) ¢ RtH1 6(-1 external message
n=(n®) e R+ (=1 macroscopic parameter
7= ) eRrt+! =1 macroscopic parameter
k= (k) c Rt+1 k(=D macroscopic parameter
k= (I% )) € Rt+1 ECD macroscopic parameter
q = (¢(=*)) € REFDXE+D gt b= macroscopic parameter
G=(q" )) € Re+HDxE+D) GgeL=D macroscopic parameter
Q=(Q Qs )) e REHDxe+)  C1.-)  macroscopic parameter
0 = (Q(5)) e RE+DXt+D  HE1.—)  macroscopic parameter
L= (L(ss )) € REFDx¢+D 1,10 macroscopic parameter
L= (L)) e REFDXE+D  LL=1  macroscopic parameter
m = (m(s) ) € € Rt+1 m(=1 overlap
C = (€3N e REFDXEHD  ¢C1.=D  correlation function
G = (G(5)) e REFDXE+D  gC1.-D  response function
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The average generating functiondl«] is represented using vff) and wff) which are defined as:

ul®) = (u§5)7 .
(218). Using Dirac’s delta functiod, we first introduce the
definition of u(~1) u*=1) into Z[v], which is written in
terms of them, as

R+1K

t—1

u(}?))T

Al

B(— S e S )
x p[bl 1)](H_ by Fluy,
it V2T
t
X exp [_i S B .¢<s>}
s=—1
K K
x H Hé( " Wi (b — ) — b
s=—1k=1 k'=1
7 v (s)
_ g0 uu_gsﬂ (216)
s ,
\/N,; k k

where du:=T]"_", TTr, d”’c . The arguments of Dirac’s

whose elements are defined by

K
(s) . 1 17 (5)
vy, = = sy, 218
k /_K]; kK ( )
1 K
w ::\/—EE: si{1— b} (219)

b
Il

1

It should be noted that the averaged generating functignal

of 2I1) includesss, - - - , sx only in terms of these variables
vff) and w#) Due to this, random variables, - - - , sx are
isolated and are able to be averaged. Introduc}ﬁ)gandwff)
into termE, ... -} in (211), one obtains

78K7n{"

. (s), it _ : (8) ,)(8)
ex —1 (o v n- —1 v
delta functionsd(-) represent the definition o{uk }. The p{ Vo Ouz::ls;l g B;SZ_:l e H
term of 0 is rewritten by applymg the Fourier mtegral form of K
D|racs delta functiond(z) = [, dze'™™ asé(u s _ [--]) = &0 — 1 ZSH{‘(S)
(), (5) . BOTUR &k
Iz du exp{f (uy, [ ‘1)}. We then have k=1
K
s 1 7(s
x5<w,§ P =N s - by >}>
7 — (-1 i =
Zlp] = > bty duda
B=1) ... B R2(HDE = / dvdodwdw
-1 K Rt
; A 1, _j(s) _ p(s) Nl
X exp [1 S:Z_1 ;uk {Uk E k } X exp [1 Z Z {’U;(,LS)’U(S) + w(s)w,(f) Bv&s)wﬁs)}}
: K p=1s=—-1
; 7(s), 1 (s) N t—1
—1 b ’l/J . s
Sglg k Yk xEn{exp{—u/BaoZ Z vft)nﬂ]}
t K p=1s=—1
7 jt+1) ()12 N -1 K
+ In - — —f :| 1 (s 1o (8
Z;{ == S - ) <E,. {p[v_ﬁ Y (S sl
p=1s=-1 k=1
><IE317...7SK7n{exp K -
. . +( Y st (1 - by )}]} (220)
. - 1 . (s) k=1
—1\/3002 Z <—nguk >n“
p=1s=—1 \/K k=1
N t—1 1 K
—ig Z Z <— Z sgﬂ(s)) We here again used the Fourier integral form of Dirac’s delta
== \VE T The termE,{- - - } in (220) becomes
K
1 )]}
[ —= " s {bp — b} , 217
N
En{exp [—1\/_00 Z Z v S)n“}}
N rt—1 K dal p=1s=-1
where Qu._]gs::ll @kl ﬂ% Without loss of generality, N : 1
we can set to, =1 (Vk) H [——503 Z Z ’Ul(tS)’U,L(LS/):|' (221)
To take the average af}, - - - , sx, we introduce variables pe1 2 s——1s——1
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Sincet is finite, termEg, ...

s {1 in (220) is given by

t—1 K

N
Es, ... 7SK{exp |:—i\/% Z _Z {ﬁ,L(LS) Z sgaiﬂ

S a0l + a0 - i)

[
=
>

ﬂ —

p=1k=1 s=—1
N K t—1
1 1
_ I NONG)
—Hﬂwb(KZm
p=1k=1 s=—1

21

eﬁp{iQ(s’s,)(Q(f’s,), —[--])} and S(LE) —[]) = Jy
dL(®) exp{iL(®*) (L) —[...])}. We here introduce
the notationsdu := [['_', d“;: da = Hi;l_ld:};,
dp = ML, =TI A,
dk = tHlS dk(5> dk = H;;ll‘ldki(si' dg :=
| - - dq(ss)’ dg = [, S/:ﬂdd(s,s)
dQ = | O P (oS dQ =
| by o d@<”> dL [J Y | DA g
> t 1 s,8 L t 1 dv,’
dL = 1‘[ N | dL V. dv =TT 11‘152,(1)¢§,
~ v dw,;
do = H# 1Hs_71 \/—’ Qw = H# 11_[5_71 \/2— and

d = ], H‘;%l :/% Since the initial probabiliy,
which is given ag[b(~1] := [T, 6(b{ "), is factorizable,

the averaged generating functiona[v)] factorizes into

N t—1 t—1 K H . . . . .
1 o1 () (s Single-user contributions, i.e., with respect to user inde
= H exp[—§ Z Z {Ufb ) (} Zuk Ug ”fb ) We have then arrived at Lemrha 1.
pn=1 s=—1s'=—1 k=1
Lm0 L) o)
-H?l(f) (E ,; a;, — It ; by "y, uA)l(f )
. ® . K APPENDIXC
~(s ~(s") OMNCORINEY DERIVATION OF PROPOSITIO
+w£)<E;uk —?;bk 1y, )Uft) NI
K K . . .
o <1 1 Zl;(s) 1 Zl;(s/) Taking the limit of [88) and[(84) for allk and s, the
K K~ k K~ k single-user measurg_(40) becomes user independent. ltiegan b
K therefore, represented without the user indegquation [(4D)
(£)7(s") \ 5(s -1
+K;bk b, )u; >} +O(K )} (222) becomes
We next separate the relevant one-stage and two-stagesvalue y;,, lim ( f(B w, @)

which are appeared i (222): () 50} {850}

K
1 = (s N NP
n® = —KZbEQ, (223) /M“/Rm( ) w (b, w, ) f(b, u,0)
k;l - (228)
1 -~ 7 7 A~
B0 = LS, 224 [ duai [ < a5 . b, )
K}; ; (224) - S:Hl
K — b y
’ 1 7(s)7(s - <f(b7u7u)>*7 (229)
¢ = =", (225)
K=
| K @) (6" where
() .= N g9l 226
Q K; Vay (226) N
1 K w*(b,u,'ﬁ/)
L) = 3" b ag (227)
K= = 6] exp[Z{lnf——[b“*” PO}
Equation [(22R) is only written in terms of these variables s s=-1
) 1) 50 06D and L&), We hereaft I o ,
'), . q , Q an . We hereafter ca (5.5 () () (5,8")7.(8) 0 (s
these variablesnacroscopic parametersvhich describe the IZ /Z{Q +L bt}
nature of the system and are also often called dnger = OS
parameters Similar to the way to derive[(220), one can () £,(5) _ [(®) _ () 230
introducem(®, k&), ¢(+=), Q<) and L&) into @22). T IZ“ u M s (230)

The term ofd in (222) is again rewritten by applying the
Fourier integral form of Dirac’s delta such ésn (s) —[ 1)

- fp A GXP{iﬁ @) [ ])} (k@ —[---]) = Jz  We consider two kind of functions ag(b, u, ). First, we
dk®) exp{ik® (k&) —[--- D}, (¢ —[---]) = f dq(s 3 treat an arbitrary functiorf(b) that does not include: and
exp{ig(**) (¢(**") —[ D 8@ —[---]) = [, dQ®**) 4. In this case, one can, therefore, perform the integral with
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respect tou and@. The numerator of (228) becomes

fos (115
/ udi /R » (H db(s)

: (ﬁl o

o34 (1+AG)'D(1+AG) 4

b)

Y]

7 —f[B“*”—f(u“))J)

X
% ebe(1+BGT)’1ﬁ+iﬂ»(u—5—l§:)f(5)

t
= [ duda / ( dB(S))éb(‘
Jawas [ (11 5)a

1)]

t—1

v ﬁ[g<s+1)f(u<s>)])
X _— 2
<5H1 V2T
% e—gu T Ra+ia- (u—fc—I‘l;)f(B), (231)
where R := (1 + G)"'D(1 4+ G)™" andT := (1 +
BG)~1BG. We use variable transformatioms= v — k —T'b

andw = u, which gives

o( u(® u(S)) do®) dw®)
8 v(®) w(s)) 2m

> ei'u-'u)f%'uer

<S>)f<5>6[6<-1>1

T _ﬁ[g<s+1)_f(,;<s)+v<s>+(pg)<s))]2>
X e 2 :
<5H1 V2
t—1
d’U(S) 1
— / R71 efzvRv
/( l_[ Y% 27T) | |

dB(S))f(5)5[5(_l)]
[b(s+1) F(ES) 40 4(Tb) )] > (232)

Taking the limity — oo, the numerator of (40), finally, arrives
at

D db(s)) S[p—1)
JEE / (H ]

’7 L pls+1) () 4 (9) (s)y)2 =
<l e ORI = (1(®),

s=—1

(233)

where Dv := dw|27R|"/2¢~ 2B "% Since (1) = 1, the
effective path measur& (#0) in the limjit— oo is given by

lim (f (b))

y—0oQ

(234)
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Equation [[8b) can be obtained from (234),1(51) ahdl (60).
Equation [(86) is given by (2B4),_(b5) ard [61).

Next, we consider a functiobi®) 4 that corresponds t@ (9).
In a similar way to have[(Z$3) one obtain

/ duda /R r+2( 1‘[ db<s)> 6w 0590

-J(1L5

: /Rt+2< H dg(s))fa(s)g[g(—n]
\/ﬂ

(10

s=—1
D - db® )ib® R~ 1wsp(— Y
/ v/}Rt+2 <SH >1 vo] ]

y e_§(5(5+1)_f(fc(s)_;’_v(s)_’_(ri,)(s))f

X
Sgl V2T
= (iR v),
by using the notation of (2B3). We therefore have

t
/dudﬂ/ ( H df,(s)>w*(f)’u’ﬂ)g(s)ﬂ(s/)
Ré+2 s=—1

= (ib®) (R 0))). (236)

Equation [(8F) can be obtained from _(234), (234).] (59) and
(62). We have then arrived at Propositldn 1.

A, a*)) dv®) dw®)
A(v() wls)) 27

iv-w—Lw-
>weww sw-Rw

V2D () 0 1(TB) )] >

(235)

APPENDIXD
DERIVATION OF PROPOSITIONT|

The inductive method is applied.

(i) The case of = —1. This is an initial stage, therefore the
Onsager reaction term does not exist. To cancel the Onsager
reaction term, the matrikb is simply chosen ad'b)(~!) = 0.
This is automatically held by the initializaitdi—) = 0. The
matrix G is G = 0 because of causality.

(i) The case oft = 0. In this case,G is al x 1 zero
matrix O and I' becomesl’ = (1 + 3G)™18G = O. The
Onsager reaction term is therefofd = O. To cancel the
Onsager reaction term, we only have to choose mdtrixs

0

(Tb)=Y = 0. Matrix G is
G == ( G(O’_l) >
until here.

(iii) The case of stagé = 1. SinceG' € R**? is a nilpotent
matrix, i.e., G> = O, then the Onsager reaction terfib
becomes

0

0 (237)

I'b [(1+ BG)'BG]b

(o )

0
gg(o-fl)

0)'

0
0

0
10

(
(

)

0 (238)
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To cancel the Onsager reaction term, one ne@ts® = holds fors € {—1,0,1}. The matrixG is
0. If (I'b)® is chosen as this, the averaggV)) = [Dv N 0 0 0 0
7.(0) 4_,,(0) 4 p(0) i (0)
sgn[k(© 4+ 4(©) 4+ 9] only includes?'™ and does not depend G(0.-1) 0 0 0 0
on #(-1. Therefore, GV = 9(b™M) /96— = 0 holds. (1,0
The matrixG is G= 0 & 0 00 (245)
0 0o G®Y 0 o0
0 0 0 0 0 0 G®2 0
_ 0,—1 . .
G=| GOV 0 0 (239) until here. Note that it is expected that
0 GUoY o
Tb)» = gaH=DRE-D — (Dp)(E-=1)
until here. t—1
(iv) The case of stage= 2. SinceG € R**3 is a nilpotent - - Z(_ﬁ)t*S (H G(T“’”)B(S) (246)
matrix, i.e.,G3 = O, then the ORCT'b is

will holds for anyt > 1 in an analogy with[(244).

_ ~13mp
e = [+ BG) BG] (vi) Staget > 3
= [BG - We here assume that the Theorem holds for stage
0 0 0 t € {—17}% 1,---,t}. Namely, we assume that
— G(O -1) 0 0 b(0) (Tb)=1), ... (I'b)® are given by
ﬂ2g(1 :0) (7(0,—1) gg(l-,o) 0 p(1) (fi,)(*l) _0
240 ([5)(* =0
= ﬁG(l O)b(O) . ( ) (f\i))(l) — ﬁG(l’O)B(O)
Therefore, if['b is chosen as ' t—1 t—1 y
. . (T5)) = — <—ﬁ)t—5( G<T+1>T>>b<s>,(z47)
([o)M) = a0, (241) ; 13

then it cancels the Onsager reaction term. When we choo and G has the following form:

(T'b)( as this, the averagdh®) = [Dv sgnk™® + o) + 0 0
6] only includesf(1) and does not depend ai—") and GO~ 0
0(0). Therefore,G(.Q’S) = (b)) /06— = 0 holds fors € = GO 0 . (248)
{-1,0}. The matrixG is _ _

0 0 0 0 0 G(H—l,t) 0

0,—1

G — GOy ((1) 0 0 0 (242) SinceG € RUF3x(1+3) s a nilpotent matrix, i.e.(x'* = O,
0 G 0 0 then Onsager reaction terfib € R'™3 can be calculated as
0 0 G&Y o R
- b = [(1+pG)"'8GIb
until here. _ 2 t+1 4217
= [BG—(BG)>+ - + (-1 G)+2)b
(v) The case of stage= 3. SinceG € R*** is a nilpotent 15 (BG) 0( yree ™
matrix, i.e.,G* = O, then the ORCT'b is 0
~ ~ (1 0 7
b = [(1+ ﬂG)’lﬂG] BG"
(2,D)7(1) _ g2 (2 1) (1,0)7,(0)
18G — BG) ] BG=Yh [3 G G
0 =
O t—1 t*l B
= ﬂG (L0)p . Z —s <H G("'Jrlv"')) b(s)
ﬁG(2 l)b 1) _ B2G (2 I)G(l O)b(O) ? T:f
(243) _ (_B)H—l—s (H G(T-l—l,'r)) B(S)
s=0 T=s
Therefore, if{'b is chosen as (249)
(F6)® = BGDED _ 2GR GLOFO), 244y ' I'b is chosen as

t t
then it cancels the Onsager reaction term. When we chooseI'®)"™" ==Y "(=8)"*'~ (H G(TH’T))b(S)a (250)
(Tb)® as this, the averagdb®) = [Dv sgn[k® + s=0 T=s
v® 4 93] only includes (1) and does not depend onthe Onsager reaction term is cancelled. When we choose
9(=1 ... 9(1). Therefore,G®*) = (@) /98- = 0 (I'b)+Y as this, the averag@ht2) = [ Dv sgn[k(*+1) +



JOURNAL OF IEEE XXX XXX, VOL. XX, NO. XX, AUGUST 2010 24

v+ + 9+ D] only includess*+1) and does not depend onDirac’s delta function, which gives
o1 ... 91, Therefore,G(+2:5) = (b)) /00— = 0
holds fors € {—1,0,1,--- ,t}.

If the claim holds for stage € {—1,0,1,---,t}, it holds
for staget + 1. This proves Proposition 3.

Zwl= Y sbo) [ duda

HO) .o BB
SN ) (s) _ g(s)
X exp i y — AR _gt®
APPENDIXE Xp{lgkz_:lu oy k k)
DERIVATION OF PROPOSITIONZ t K 5
g V(1) (s)y12
+ In—— — LD fy
S>3t~ B - s

One can evaluate the BP-based detector in the same manner

as soft-PIC. The summation over all messages, which is the N t—1 1 X
argument oftanh(- - - ) of (I4) becomes —iy/Boo » Y R (—K > sga§j>)
p=1s=0 k=1
N t—1 1 K )
SONIE DT
p=1s=0 \/E k=1

K
’LLS) :R(t) Z Wkk/bk/ —+ A(t)B](:) 1 K
k'=1 - #/ R(S) _ J(Sws,)l;(s/)
N * ( K Z %k Z k ’
_ Z Jts) ZWkk’b( +R Z (253)

s=—1 k'=1
+6% (251)

Substituting [(IL) and[{3) into[(24), the averaged generating
i 7 i (s)
functional Z[v] is represented as where da:=[]'", [[¥ du; . To take the average of

s=—1 k=1
s1, -+, Sk, we introduce the following variables:
Z[th] =Eor ... orcm [/ du
R+ K
X [5<1>]< ﬁ i é{%ﬁ*”f(ui”)}?)
e
P oy V2m .
t (), 1 gy (3)
I O RNe v == sy (254)
xexp[lzb P ] \/szl
o o _ 1 5 - ()
t—1 K s g (s
= — R®) — J&5p } 255
(010w aoiy =g 2} e
s=0k=1 k'=1
N
£ S0 Wi RO T2
s=—1 k'=1 p=1
- 9<5>)] (252)
k )
It should be noted that the averaged generating functigng)
of @) onlgl includessy, - -- , sx in terms of these variables
w“ andw,”’. Due to this, the random variables, - - - , s
wheredu:=[]'_} kK 1 ﬁ Without loss of generality we are |solated and their average is able to be taken. Intrugum

can putb, = 1 (Vk). We apply the Fourier integral form ofvu and w,(f into the termEg, ... s,.n{---} in (10), one
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obtains

‘/R2tN QUQWEsl,»»» ,sK,n{

N t-1 N ot-1
exp {—i\/ﬁao Z Z R(S)Ul(f)n“ —ip Z Z Ul(f)wl(f)} }
p=1s=—1 p=1s=—1
O LS~ o)
X 5(1} R sha,’ >
k \/E; k %k
o _ L y (s")
X 5(wk — —ZSZ{R(S) — Z J(S’S/)I;kS })
\/E k=1 sl=—1
:/ dvdodwdw
R4tN
N t-1
y exp{ S5 P 1 aPuld — o )wff)}]
p=1s=—1
N
X En{exp [—1\/_002 Z Ry (S)nu]}
p=1s=—1
N
x Eg, SK{eXp[—l TR Z _Z <{) s) Zsl‘u%)
p=1s=—1
K s ~
k=1 s'=—1
o) do(®)
Whered’l} = HN 1 Hs——l \/ﬁ d'U = HN 1 Hs——l \/E
w S)
d'LU = H u=1 Hs——l \/T = 1_.[ =1 HS——l

25

TermEg, ...

sx{-}in (258) becomes

{eloisls

Ry
K
+al Y st(R Z TP
k=1

K

DI

k=1

H}

Ee, .. s )

y 1s5=0
s'=—1

1
K

) _ R Z g

T/==1
~_ RGN i J(s7)

1 e (s
SIS

K

+Z ZJST)JST|: Zi)

T=—17/=—1 k=1

for finite ¢. The relevant one-stage and two-stage values, which
are equal to those of soft-PIC’s analysis, appeared_in] (259)
are separated by introducing (223)[=_(R27). The terna of
(222) is again rewritten by applying the Fourier integraifo

of Dirac’s delta function as well as the case of soft-PIC’s

|

K ~
b,(j)]
k=1

1
K

ol

(259)

F
We here again use the Fourier integral form of Dirac’s deltgnalysis.

TermE,{---} in (258) is given by

t—1
R(S)Ul(f)nu

oo v 3 )

p=1s=0
N t—1 t—1

= [[ exp [——ﬁaéZZRS)R(S (s) m} (257)
p=1 s=0s"=0

Since the initial probability, which is given agb(—V)] :=
]'[k ( 1)), is factorized, the averaged generating func-
tlonal [1/;] factorizes into single-user contributions. The
averaged generating functional is therefore simplified to
Z|] = [ dndndkdkdqdgdQdQdLAL exp[K (®+U+Q)+
O(In K)], in which functions®, ¥, Q2 are given by

t—1

=i 3 {7 + bk}

s=—1

t—1 -1
+i Z Z {q(svs')q(svs')

s=—1g'=—1

+ Q(S,SI)Q(S,S/) + f/(sxs/)L(st/)}’ (260)
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K )
1 ]
-= 5 :m{/RM( H 2 ) ]/dudu the single-user measure
k=1

t—1 7 ~
T e s wi ({0, u, @})
XGXP[Z{lnE—E[b( IR e
s=—1 1) R (s+1) (s)y12
B Jexp L;{ln - e - )
i Z Z {q(sﬂs)b(S)b(S) 1
s=—1s'=—1 —i q(ss s)b(s +Q s,s’ s) (s)
+ OGO 4 Oy ZOZ{
t—1 3 X +1(s8Np( S)U(S)}
+i Z 4 {ul®) — AR 91(:) — k0 i1 .
s=—1 Hi S oy — AGps) -6 O]
t—1 B t _ Z { }
—i Z b(s)ﬁ(s) _j Z ps) ](CS)]’ (261) -1
= = —iZb(S)ﬁ(s)} | (263)
s=0 saddle
instead of the single-use measurel (40) for soft-PIC.
The integral in the averaged generating functiafifab] will
be evaluated by the dominating saddle-point of the exponent
® + ¥ 4+ Q in the large system limitKk — oo. Using
the identities [(3b) —[(35) and_(44) £46) with (263), the
1 R R differentiation of ® + ¥ + Q with respect ton*), 7(*), k(*),
Q ::E 1n/dvdvgwdw ]{(S), q(s,s ), qA(s,s ), Q(s,s ), Q(s,s ), L(S"S ), and L(S’S) leads
us to the following saddle-point equatiois](50)[=](59) with
~ exp[ Z Z {vff & wff) _ gvﬁ)wﬁs)} (263), respectively. Comparing these saddle-point eqnsti
p—1 s——1 with (434) — [49), we again find the following relationships:
1 77(5) = m(s), q(sxs/) = C(S,S/)’ andL(S)S/) = iG(S,S/)'
—3 Z Z Z {ﬁUQR DRy )y ( The integral inQ with respect tov and @ is given by
p=ls==15=1 Q= -4 {n|D|+n|Q+ (31— B) D1 (3"'1- B)|},
+0Q () where matricesB and D whose(s, s') elements are given by
+v(5)< s Z JE L >w,§> s
T=—1 B . _irG) () _ Z JENGs) (264)
T=-—1
+ ( (R(s s’ JST)L(SS ) (s") )
T; D) ::% RORE) L REIRE)
) < RO B .
— RO S )
T/=—1

“ RO Y gy ZRED S peny o)

= = —RED Y e

s s’ ., , T=—1
£33 S gt Yol ] o) . o
Rl + > > et (2e8)

T==—17'=-1

respectively.
The saddle-point equations includifg are evaluated as
One can deduce the meaning of macroscopic parameters i ws. One findsj®) = 0 and¢(*) = 0. We put
dn‘ferentla'uon of the averaged generating functiadap| with
respect t06 ) and zpk . The averaged generating functional R R
ALRS dominated by a saddle-point fé¢ — oco. U:=3"'1+B, (266)

Applying the same way as the derivation of soft-PIC, we R .
again obtain[(44) -£{46), with the avera@el(40). which has for light notations. Noting that/ includesG via B and using
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the cofactor expansion ¢t7|, we find

o2

IG(s")
1

19
ﬂaGss’)

(s —

In |U]|

t—1
1 N
== )y JEHTE, (267)
AUl &=,

Wherel?(s-rs’) denotes a cofactor of thg, s’) element of the
matrix U, which does not includ&/(*:*). The (t+1) x (t+1)
matrix L = (L)) then becomes

- 1
L =-— — |:
BIU|
J=1 —1)U( 1,-1)
J (0, O)U(O -1)

JL-1r(-1t-1)
J(0.0)f7(0,t-1)

J(t 1t— 1)U(t 1,-1) J—1,t=1)f7(t-1,t-1)

_|_
J(t=1,t— l)U(t 1,-1) Jt=1t=1) 7 (t—1,t-1)
0
0
J(fl,fl) J(fl,fl)
1 J(©0.0) J(0,0) )
- ) ® AadjUT
BIU| : :
J(t—l,t—l) J(t—l,t—l)
_|_ N
J(tfl,tfl) J(tfl.,tfl)
0 0 )
+ ®@ AladjU™
0 0
=—JooU) '-J oAU
_..._Jt®At(UT)_ (268)

whereU := SU andadjA denotes an adjoint matrix oA.
The definition ofJ; is given by [114).

Due to Q O, Q can be expanded a&m|A +
Q = TrlnA + trA~'Q. The Q%) is obtained as
Q(S ) = =M%, and we then hav@ = —iz M T =

i3(1 + ﬁG) D1 + BGT)™!, where M = (37'1 +
G) ID(B11 + GT) 1 and D(") BD. Noting that
|1—BBT| only containsk(®) in a single rowk(5> is obtained
ask(®) = |A(y|, whereB := Bly_o = —Zj: JETGTs)
and the definition of\(, is given by [(11B).
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overlapm(®), the average single-user correlati6ti**"), and

the average single-user response functigfi<"), which are
defined by [(4l7) —[{49). The averaged generating functional
Z 1] is dominated by a saddle-point in the large system limit.
We then arrive at Propositidd 4.
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