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Constrained Source Coding with Side Information
Amos Lapidoth, Andreas Malär, and Michèle Wigger

Abstract—The source-coding problem with side information at
the decoder is studied subject to a constraint that the encoder—
to whom the side information is unavailable—be able to compute
the decoder’s reconstruction sequence to within some distortion.

For discrete memoryless sources and finite single-letter distor-
tion measures, an expression is given for the minimal description
rate as a function of the joint law of the source and side
information and of the allowed distortions at the encoder and
at the decoder. The minimal description rate is also computed
for a memoryless Gaussian source with squared-error distortion
measures.

A solution is also provided to a more general problem where
there are more than two distortion constraints and each distortion
function may be a function of three arguments: the source
symbol, the encoder’s reconstruction symbol, and the decoder’s
reconstruction symbol.

I. I NTRODUCTION

L IKE Wyner and Ziv [1], we study a setting where
a sequence generated by a source is to be described

succinctly to a reconstructor (“decoder”) with access to some
side information. Wyner and Ziv showed that, although the
side information is not available at the describing terminal
(“encoder”), it can be beneficial in improving the trade-off
between the rate of description and the reconstruction distor-
tion. They fully characterized this trade-off for memoryless
sources with single-letter distortion measures. Unlike the case
without side information—since the side information is used
in the reconstruction process, and since the side information
is not available at the describing terminal—the describing
terminal cannot tell how the source sequence it observes
will be reconstructed. In some settings, this is unacceptable.
Steinberg [2] therefore studied the common-reconstruction
problem where an additional restriction is imposed that the
reconstruction sequence be computable with probability nearly
one at the describing terminal. This greatly limits the extent by
which the reconstruction can depend on the side information.
More generally, there is a tension between the degree by which
the reconstructing terminal utilizes the side informationand
the precision with which the describing terminal can compute
the reconstruction sequence. It is this tension that we study in
this paper.

The material in this paper was presented in part at the 2011 Information
Theory and Applications Workshop and at the 2011 IEEE International
Symposium on Information Theory.

A. Lapidoth is with the Department of Information Technology and Electri-
cal Engineering, ETH Zurich, Switzerland. (email: lapidoth@isi.ee.ethz.ch).
A. Malär was with the Department of Information Technologyand Electrical
Engineering, ETH Zurich, Switzerland. He is now with MalcomAG, Zurich,
Switzerland (email: andreas@malcom.ch). M. Wigger is withthe Communi-
cations and Electronics Department, Telecom ParisTech, Paris, France (email:
michele.wigger@telecom-paristech.fr).

The work of A. Malär was supported by an IDEA League student grant.
The work of M. Wigger was supported by the ”Emergences” grantof the city
of Paris.

✲
Xn

❄

Y n

M
✲

❄
X̂n

d
❄
X̂n

e

1

n

n
∑

i=1

E
[

dd(Xi, X̂d,i)
]

≤ Dd
1

n

n
∑

i=1

E
[

de(X̂d,i, X̂e,i)
]

≤ De;

encoder decoder

Fig. 1. Constrained Wyner-Ziv coding.

To quantify this tension, we require that the describing
terminal generate an estimate of the sequence that will be
produced at the reconstructing terminal (Figure 1). We then
study the distortions that can be simultaneously achieved at
the describing terminal (”the encoder distortion”) and at the
reconstructing terminal (”the decoder distortion”) as a function
of the description rate. If the encoder’s distortion function is
the Hamming distance and if the allowed distortion is zero,
then our problem reduces in essence to Steinberg’s common-
reconstruction problem.1 And if the allowed encoder distortion
is infinite, our problem reduces to Wyner and Ziv’s problem.
We can thus view our problem as a generalization of the
Wyner-Ziv problem and Steinberg’s common reconstruction
problem.

For discrete memoryless sources and finite single-letter
distortion functions, we provide a single-letter characterization
of the trade-off between the description rate and the distortions
at the encoder and decoder sides. We also calculate this
trade-off for a memoryless Gaussian source and squared-error
distortion functions. Finally, in Section IV, we generalize the
results to account for more than two constraints and to allow
each distortion function to depend on three arguments: the
source symbol, the encoder’s reconstruction symbol, and the
decoder’s reconstruction symbol.

Steinberg’s work was also extended in other ways. Kitti-
chokechai, Oechtering, and Skoglund [3] determined the rate-
distortion function under a common-reconstruction constraint
for a modified Wyner-Ziv setup where the encoder can influ-
ence the decoder’s side information via an action-generator.
Timo, Grant, and Kramer [4], [5] and Ahmadi, Tandon, Sime-
one, and Poor [6], [7] derived the rate-distortions function un-
der a common-reconstruction constraint for two special cases
of the Heegard-Berger/Kaspi problem (the Wyner-Ziv problem
with two decoders): [6], [7] for physically degraded side in-
formations, and [4], [5] for complementary side informations.
Ahmadi, Tandon, Simeone, and Poor [6], [7] also presented

1For a precise statement see Remark 3 in Section II-B ahead.
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the rates-distortions function under a common-reconstruction
constraint for a cascade source-coding problem when the
side informations are physically degraded. Finally, already
in [2], Steinberg studied the implications of the common-
reconstruction constraint on the simultaneous transmission of
data and state and on joint source-channel coding for the
degraded broadcast channel.

The paper is organized as follows. In the rest of this section
we introduce our notation. In Section II we treat discrete
sources and general distortions, and in Section III Gaussian
sources with quadratic distortions. In Section IV we revisit
discrete sources but this time with more and more general
distortion constraints.

A. Notation

Random variables are denoted by upper-case letters and
their realizations by lower-case letters. Vectors are denoted
by bold-face letters: random vectors by upper-case bold-
face letters, and deterministic vectors by lower-case bold-face
letters. Sets and events are denoted by calligraphic letters, i.e.,
A. An n-tuple (A1, . . . , An) is denotedAn, and then-fold
Cartesian product of the setA is denotedAn. The convex hull
of a setA is denoted by conv(A). To indicate that the random
variablesA andC and conditionally independent givenB we
write

A⊸−−B⊸−−C.

The transpose of a vectora is denoted byaT; its Euclidean
norm by ‖a‖; and the Euclidean inner product between the
vectorsa andb by 〈a,b〉. The set of real numbers is denoted
R and itsd-fold Cartesian productRd. The nonnegative reals
are denotedR+, and the positive realsR++. The respective
d-fold Cartesean products are denotedR

d
+ andRd++. We use

I(·) to denote the indicator function:I(statement) is equal to
one if the statement is true and is equal to zero if it is false.
Throughout the paperlog(·) denotes base-2 logarithm, and
log+(ξ) = max{log ξ, 0}. The abbreviation IID stands for
independently and identically distributed.

II. D ISCRETEMEMORYLESSSOURCE AND GENERAL

DISTORTIONS

A. Problem Statement

Our setting is illustrated in Figure 1 and is specified by a
tuple

(

X ,Y, X̂ , PXY , dd, de, Dd, De
)

,

whereX ,Y, X̂ are finite sets,PXY is a probability distribution
on X × Y; dd(·, ·) andde(·, ·) are nonnegative functions

dd : X × X̂ → R
+ (1)

de : X̂ × X̂ → R
+; (2)

andDd andDe are nonnegative real numbers.
The setsX , Y, andX̂ model the source, side information,

and reconstruction alphabets. A source sequenceXn ∈ Xn is
observed at the encoder (but not at the decoder) and a side-
information sequenceY n ∈ Yn at the decoder (but not at the

encoder). The sequence of pairs{(Xi, Yi)}ni=1 is assumed to
be drawn IID according to the joint lawPXY .

The encoder describes the source sequenceXn to the
decoder by an index

M = f (n)(Xn) (3)

where
f (n) : Xn → M (4)

is the encoding function and

M , {1, . . . ,M}. (5)

Based on the indexM and its side informationY n, the decoder
forms a reconstruction sequence

X̂n
d = φ(n)(M,Y n) (6)

where
φ(n) : M×Yn → X̂n (7)

is the decoder’s reconstruction function. The encoder’s esti-
mate of the decoder’s reconstruction sequence is

X̂n
e = ψ(n)(Xn) (8)

for some
ψ(n) : Xn → X̂n. (9)

The goal of the communication is that the decoder’s re-
constructionX̂n

d matches the source sequenceXn up to a
distortion no larger thanDd and the encoder’s estimatêXn

e
matches the decoder’s reconstructionX̂n

d up to a distortion
no larger thanDe. The distortions are measured by the
bounded, nonnegative, single-letter distortion functionsdd(·, ·)
andde(·, ·).

We say that a nonnegative triple(R,Dd, De) is achievable if
for everyǫ > 0 and sufficiently largen there exists a message
set of size

|M| ≤ 2n(R+ǫ) (10)

and a triple of functions(f (n), φ(n), ψ(n)) as above such that
the decoder-side reconstruction constraint

1

n

n
∑

i=1

E
[

dd(Xi, X̂d,i)
]

≤ Dd + ǫ (11)

and theencoder-side reconstruction constraint

1

n

n
∑

i=1

E
[

de(X̂d,i, X̂e,i)
]

≤ De + ǫ (12)

are both met.
Our problem is not very interesting if the distortion con-

straints cannot be met even when the source sequence is
revealed losslessly to the reconstructor. Consequently, we shall
make the following assumption throughout:

Assumption 1: The distortion functionsdd andde are such
that for eachx ∈ X there exist x̂d, x̂e ∈ X̂ satisfying
dd(x, x̂d) = 0 andde(x̂d, x̂e) = 0.
As we shall see, this assumption ensures that the triple
(R,Dd, De) is achievable wheneverR ≥ H(X |Y ).

We are interested in finding the smallest rateR such that a
given distortion pairDd, De is achievable. For givenDd, De ≥
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0, let R(Dd, De) denote the set of ratesR ≥ 0 such that the
tuple (R,Dd, De) is achievable:

R(Dd, De) , {R ≥ 0: (R,Dd, De) is achievable}. (13)

Notice that by the assumption above, the setR(Dd, De)
contains all ratesR ≥ H(X |Y ) and is thus nonempty. We
can now definerate-distortions function as

R(Dd, De) , min
R∈R(Dd,De)

R, (14)

where the minimum exists because the setR(Dd, De) is
nonempty, closed, and bounded from below by 0.

B. Related Setups

Wyner and Ziv’s classic lossy source-coding problem with
side information [1] is similar to our problem except that
Wyner and Ziv do not impose the encoder-side reconstruction
constraint (12). Informally, our problem thus reduces to the
Wyner-Ziv problem if we setDe to infinity. Wyner and Ziv’s
result can be summarized as follows:

Theorem 1 (Wyner and Ziv [1]): The rate-distortion func-
tion RWZ(Dd) in the Wyner-Ziv setup is given by

RWZ(Dd) = min
Z,φ

(

I(X ;Z)− I(Y ;Z)
)

(15)

where(X,Y ) ∼ PXY , and where the minimization is over all
functionsφ : Y ×Z → X̂ and discrete random variableZ for
which: Z takes values in an auxiliary alphabetZ of size at
most |X |+ 1;

Z⊸−−X⊸−−Y (16)

forms a Markov chain; and

E
[

dd
(

X,φ(Y, Z)
)]

≤ Dd. (17)

Since imposing the encoder-side reconstruction con-
straint (12) cannot increase the set of achievable rates,

R(Dd, De) ≥ RWZ(Dd). (18)

Equality holds whenever the encoder-side reconstruction con-
straint (12) does not pinch. For example, when̂X = X ;
Dd = De; and

de(x̂, x) = dd(x, x̂), x, x̂ ∈ X . (19)

Indeed, in this case the encoder can setX̂e,i to beXi. This
results in (12) being identical to (11) and thus superfluous.

Steinberg’s setup in [2] is obtained from ours by replacing
the encoder-side distortion constraint (12) by the more strin-
gent perfect-reconstruction constraint

Pr
[

X̂n
e 6= X̂n

d

]

≤ ǫ. (20)

Theorem 2 (Steinberg [2]): The rate-distortion function
Rcr(Dd) in Steinberg’s setup is given by

Rcr(Dd) , min
X̂

(

I(X ; X̂)− I(Y ; X̂)
)

, (21)

where the minimization is over all̂X taking value inX̂ and
satisfying

X̂⊸−−X⊸−−Y (22)

and
E
[

dd(X, X̂)
]

≤ Dd. (23)

Remark 3: Constraint (20) is equivalent to the block-
distortion constraint

E
[

I{X̂n
e 6= X̂n

d }
]

≤ ǫ. (24)

Thus, when in our setupde(·, ·) is the Hamming distortion
andDe = 0, then Steinberg’s setup differs from ours only in
that (20) is a block-distortion constraint whereas (12) is an
average-per-symbol distortion constraint.

C. Results

To describe the rate-distortions function for the setup of
Section II-A, we introduce the functioñR(Dd, De). The ex-
pression forR̃(Dd, De) in is similar to the expression for
RWZ(Dd) in (15) except that in the expression forR̃(Dd, De)
we have the additional constraint; see (28) ahead.

Given the joint lawPXY of the source and side information,
and given the distortion functionsdd, de, this function is
defined as

R̃(Dd, De) = min
Z,φ,ψ

(

I(X ;Z)− I(Y ;Z)
)

(25)

where the minimization is over all discrete random variablesZ
taking value in some finite auxiliary alphabetZ and forming
the Markov chain

Z⊸−−X⊸−−Y (26)

and over the functionsφ : Y × Z → X̂ andψ : X × Z → X̂
satisfying

E
[

dd
(

X,φ(Y, Z)
)]

≤ Dd (27)

E
[

de
(

φ(Y, Z), ψ(X,Z)
)]

≤ De. (28)

Note that, thanks to Assumption 1, the feasible set in (25)
is not empty: we can chooseZ asX andφ, ψ as the functions
whose existence is guaranteed by the assumption. This choice
demonstrates that

R̃(Dd, De) ≤ H(X |Y ). (29)

Using the convex cover method [8] it can be shown that:
Remark 4: Allowing for setsZ of cardinality greater than

|X | + 3 does not decrease the value of the optimization
problem.

A consequence of this remark is that the minimum in (25) is
achieved: indeed, we may chooseZ as the set{1, . . . , |X |+3}
with result that there are only a finite number of functionsφ,
ψ, and the problem is reduced to minimizing a continuous
function over a compact set.

The key properties ofR̃(Dd, De) are summarized in the
following proposition:

Proposition 5 (Key Properties of the Function R̃(Dd, De)):
The functionR̃(Dd, De) : R

2
+ → R+ is bounded from above

by H(X |Y ) and is nondecreasing in the distortions
(

D′
d ≥ Dd andD′

e ≥ De

)

⇒
(

R̃(D′
d, D

′
e) ≤ R̃(Dd, De)

)

.

Moreover, it is convex and continuous.
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Proof: See Appendix B.
Our main result can be now stated as:

Theorem 6: The rate-distortions function for the setup in
Section II-A is equal toR̃(Dd, De)

R(Dd, De) = R̃(Dd, De). (30)

Proof of Theorem 6: The coding scheme that establishes
achievability is a variation on the coding scheme of Wyner
and Ziv [1] and is thus only sketched. Its analysis is omitted.

Fix Z, φ, ψ satisfying (26) and (28), and fix also a block-
length n and some (small)ǫ > 0. Let C be a random
blocklength-n codebook with ⌊2n(I(X;Z)−I(Y ;Z)+2ǫ)⌋ bins,
each containing approximately2n(I(Y ;Z)−ǫ) codewords with
the total number of codewords thus being⌊2n(I(X;Z)+ǫ)⌋.
Generate the codewords independently with the components
of each codeword being drawn IIDPZ . Number the bins1
through⌊2n(I(X;Z)−I(Y ;Z)+2ǫ)⌋.

Upon observing the source sequenceXn, the encoder seeks
a codewordZ∗n in C that is jointly typical with Xn. If
successful, it sends the number of the bin containingZ∗n

as the messageM . It also produces the reconstruction se-
quenceX̂n

e by applying the functionψ componentwise toZ∗n

andXn. The decoder seeks a codewordẐn in Bin M that is
jointly typical with its side-informationY n and applies the
reconstruction functionφ componentwise toẐn and Y n to
produceX̂n

d .
The converse is proved in Subsection II-D.
Though not identical, Steinberg’s setup is very similar to our

setup when de(·, ·) is the Hamming distortion andDe is zero
(Remark 3). It is therefore not surprising that, as the following
corollary shows, the two setups lead to identical rates:

Corollary 7: Let dd(·, ·) be arbitrary, and letde(·, ·) be the
Hamming distortion function

de(x̂d, x̂e) = I{x̂d 6= x̂e}, x̂d, x̂e ∈ X̂ . (31)

Then
R(Dd, De)

∣

∣

∣

De=0
= Rcr(Dd). (32)

Proof: See Appendix A.
Remark 8: Our results can be extended to a scenario where

the encoder observes not only the source sequence{Xi}
but also some sequence{Wi} which is correlated with the
decoder’s side-information sequence{Yi}. This additional
sequence{Wi} makes it easier for the encoder to estimate the
decoder’s reconstruction sequence and thus allows the decoder
to rely more heavily on its side information{Yi}. To see how
this seemingly more general scenario reduces to our scenario
assume that{(Xi,Wi, Yi)}ni=1 are IID random triples of law
PXWY and thatWi takes value in the finite setW . Consider
now a new IID source{X̃i} taking value in the set̃X = X×W
according to the lawPXW with X̃i = (Xi,Wi). The encoder
now observes the source sequence{X̃i} only and no additional
sequences. The decoder side information is still{Yi}, and the
joint law of X̃i, Yi is PXWY . Finally define the new decoder
distortion functiond̃d : X̃ × X̂ → R

+ as

d̃d
(

(Xi,Wi), X̂i

)

= dd(Xi, X̂i),

i.e., the distortion functioñdd does not depend on theWi-
component. Solving the original scenario for this new source
and new decoder distortion function is equivalent to solving
the seemingly more general problem we described.

D. Proof of the Converse to Theorem 6

To establish the converse, we show that if a triple
(R,Dd, De) is achievable, then for everyǫ > 0

R + ǫ ≥ R̃(Dd + ǫ,De + ǫ). (33)

Since R̃(Dd, De) is continuous (Proposition 5), and sinceǫ
can be arbitrarily small, this implies thatR ≥ R̃(Dd, De)
whenever(R,Dd, De) is achievable, and consequently that
R(Dd, De) ≥ R̃(Dd, De).

The first part of our proof identifying the auxiliary random
variableZi (44) and the functionφi (46) is similar to the proof
of the Wyner-Ziv result [8]. For a given blocklength-n code
f (n), φ(n), ψ(n) satisfying (10)–(12), we have

n(R+ ǫ)
(a)

≥ H(M) (34)
(b)

≥ I(Xn;M |Y n) (35)

(c)
=

n
∑

i=1

I(Xi;M |Y n, X i−1) (36)

=

n
∑

i=1

H(Xi|Y n, X i−1)−H(Xi|M,Y n, X i−1) (37)

(d)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|M,Y n, X i−1) (38)

(e)

≥
n
∑

i=1

H(Xi|Yi)−H(Xi|M,Y n) (39)

(f)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|Zi, Yi) (40)

=

n
∑

i=1

I(Xi;Zi|Yi) (41)

(g)
=

n
∑

i=1

H(Zi|Yi)−H(Zi|Xi) (42)

=

n
∑

i=1

I(Xi;Zi)− I(Yi;Zi), (43)

where (a) follows by (10); (b) follows because conditioning
cannot increase entropy and becauseH(M |Y n, Xn) ≥ 0;
(c) follows from the chain rule for mutual information; (d)
follows because the pairXi, Yi is independent of the tuple
(X i−1

1 , Y i−1
1 , Y ni+1); (e) follows from the fact that conditioning

cannot increase entropy; (f) follows by defining

Zi , (M,Y i−1, Y ni+1); (44)

and (g) follows because with the definition above

Zi⊸−−Xi⊸−−Yi. (45)

Denote byφ(n)i the function that maps(M,Y n) to thei-th
component of then-tuple φ(n)(M,Y n), and denote byψ(n)

i
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the function that mapsXn to the i-th component of then-
tuple ψ(n)(Xn). Since there is a one-to-one correspondence
between the pairs(Yi, Zi) and (M,Y n), we can define a
functionφi that maps(Yi, Zi) to φ(n)i (M,Y n)

φi(Yi, Zi) , φ
(n)
i (M,Y n). (46)

We now define

Dd,i , E
[

dd
(

Xi, φ
(n)
i (M,Y n)

)

]

, (47)

whereE[·] is with respect toPXnY n . By definitions (46) and
(47),

E
[

dd
(

Xi, φi(Yi, Zi)
)

]

= Dd,i, (48)

whereE[·] is with respect toPXiYi
PZi|Xi

.
We next turn to the encoder-side distortion. We will show

that there exists a deterministic functionψi : X ×Z → X̂ that
achieves a distortion no larger thanDe,i, whereDe,i is the
distortion achieved byψ(n)

i (Xn), namely,

De,i , E
[

de
(

φ
(n)
i (M,Y n), ψ

(n)
i (Xn)

)

]

. (49)

To this end, we expressDe,i as

De,i

= EXn,Yi,Zi

[

de
(

φi(Yi, Zi), ψ
(n)
i (Xn)

)

]

(50)

= EXn,Zi
EYi|Xn,Zi

[

de
(

φi(Yi, Zi), ψ
(n)
i (Xn)

)

]

(51)

= EXn,Zi
EYi|Xi,X\i,Zi

[

de
(

φi(Yi, Zi), ψ
(n)
i (Xi, X\i)

)

]

, (52)

whereX\i , (X i−1, Xn
i+1). For every(xi, zi) ∈ X × Z, we

definex∗\i(xi, zi) (or for shortx∗\i) as:2

x∗\i(xi, zi) , argmin
x\i∈Xn−1

EYi|Xi=xi,X\i=x\i,Zi=zi

[

de
(

φi(Yi, zi), ψ
(n)
i (xi, x\i)

)

]

(53)

or in any other way that guarantees

EX\i|Xi=xi,Zi=zi

EYi|Xi=xi,X\i,Zi=zi

[

de
(

φi(Yi, zi), ψ
(n)
i (xi, X\i)

)

]

≥

EYi|Xi=xi,X\i=x
∗
\i
,Zi=zi

[

de
(

φi(Yi, zi), ψ
(n)
i (xi, x

∗
\i)
)

]

. (54)

We can now define the functionψi as

ψi : X × Z → X̂ (55a)

(xi, zi) 7→ ψ
(n)
i

(

xi, x
∗
\i(xi, zi)

)

. (55b)

For every(xi, x\i, zi) ∈ Xn ×Z, we have

EYi|Xi=xi,X\i=x\i,Zi=zi

[

de
(

φi(Yi, zi), ψ
(n)
i (xi, x\i)

)

]

(a)

≥ EYi|Xi=xi,X\i=x
∗
\i
,Zi=zi

[

de
(

φi(Yi, zi), ψ
(n)
i (xi, x

∗
\i)
)

]

(56)

(b)
= EYi|Xi=xi,Zi=zi

[

de
(

φi(Yi, zi), ψ
(n)
i (xi, x

∗
\i)
)

]

(57)

2If argmin is not unique,x\i(xi, zi) is defined as the first in lexicograph-
ical order.

(c)
= EYi|Xi=xi,Zi=zi

[

de
(

φi(Yi, zi), ψi(xi, zi)
)

]

, (58)

where (a) follows from the definition ofx∗\i; (b) follows
because

X\i⊸−−(Xi, Zi)⊸−−Yi; (59)

and (c) follows from the definition ofψi (55).
It now follows from (52) and (58) that

EXi,Yi,Zi

[

de
(

φi(Yi, Zi), ψi(Xi, Zi)
)

]

≤ De,i. (60)

Continuing from (43) we thus obtain

n(R+ ǫ) ≥
n
∑

i=1

I(Xi;Zi)− I(Yi;Zi) (61)

(a)

≥
n
∑

i=1

R̃(Dd,i, De,i) (62)

(b)
= n

1

n

n
∑

i=1

R̃(Dd,i, De,i) (63)

(c)

≥ nR̃

(

1

n

n
∑

i=1

Dd,i ,
1

n

n
∑

i=1

De,i

)

(64)

(d)

≥ nR̃(Dd + ǫ,De + ǫ) (65)

where (a) follows from the definition of̃R(Dd, De) and
from (45), (48), and (60); (b) follows by multiplying by
1; (c) follows from the convexity ofR̃(Dd, De) (Proposi-
tion 5); and (d) follows from the monotonicity of̃R(Dd, De)
(Proposition 5) and the fact that1n

∑n
i=1Dd,i ≤ Dd + ǫ

and 1
n

∑n
i=1De,i ≤ De + ǫ. This establishes (33) and thus

concludes the proof of the converse.

III. G AUSSIAN SOURCE AND QUADRATIC DISTORTIONS

A. Setup

We next consider the case where the source, side informa-
tion, and reconstruction alphabetsX ,Y, X̂ are the realsR; the
distortion functionsdd andde are quadratic

dd(x, x̂d) = (x − x̂d)
2, (66)

de(x̂d, x̂e) = (x̂d − x̂e)
2; (67)

and the source and side-information pair(X,Y ) is a centered
bivariate Gaussian, whereX is of varianceσ2

X

σX > 0 (68)

and Y = ξX + U for some centered GaussianU that is
independent ofX and that is of varianceσ2

U and whereξ
is a nonzero constant.3 The rate-distortions function depends
on ξ only through the ratioσ2

U/ξ
2, because the receiver can

premultiply its side information byξ−1 without affecting the
rate-distortions function. In the following we thus assumethat
ξ = 1, i.e.,

Y = X + U. (69)

We denote the rate-distortions function for this setup by
RG(Dd, De).

3The problem is not interesting whenξ is zero, because in this case the
side information is independent of the source and is thus irrelevant.
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When σU is zero the problem is not interesting, because
in this case the source sequence is determined by the side
information, andRG(Dd, De) is thus zero for all nonnegative
values ofDd andDe. We shall henceforth thus assume

σU > 0. (70)

In this case, no finite rate can allowDd to be zero (even if
we ignore the encoder-side reconstruction constraint). Thus,
we shall also assume

Dd > 0. (71)

B. Related Work

As we have seen in Section II-B, the Wyner-Ziv setup is
obtained from ours if the encoder-side reconstruction con-
straint (12) is omitted, and Steinberg’s common reconstruction
setup is obtained if (12) is replaced by (20).

For a Gaussian source and quadratic distortion measures,
Steinberg’s common reconstruction rate-distortion function is
[2]

RG
cr(Dd) =

1

2
log+

σ2
X(σ2

U +Dd)

(σ2
X + σ2

U )Dd
. (72)

The Wyner-Ziv rate-distortion function is [1]

RG
WZ(Dd) =

1

2
log+

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
. (73)

This is the rate-distortion function even if the side information
is revealed not only to the decoder but also to the encoder.

C. Result

Theorem 9: For a Gaussian source and quadratic distortion
measures, the rate-distortions functionRG(Dd, De) can be
expressed as follows:

If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X+σ2

U

}

, then

RG(Dd, De) =
1

2
log+

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
.

If
√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X
+σ2

U

}

, then

RG(Dd, De) =
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

Proof: The direct part is proved in Section III-D and the
converse in Section III-E.

Remark 10: If De = 0, then our rate-distortions function
RG(Dd, 0) coincides with Steinberg’s common-reconstruction
rate-distortion functionRG

cr(Dd) of (72):

RG(Dd, De)
∣

∣

∣

De=0
= RG

cr(Dd). (74)

Remark 11: If Dd andDe are such that
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(75)

or
(

1−
√

De

σ2
U

)2

σ2
X ≤ Dd −De (76)

then RG(Dd, De) coincides with Wyner and Ziv’s rate-
distortion functionRG

WZ(Dd) in (73). Thus, if (75) or (76)
holds, then relaxing Constraint (12) and/or revealing the side
information also to the encoder does not decrease the rate-
distortions function.

D. The Direct Part of Theorem 9

In the two cases that we shall describe in (77) and (80)
ahead, no encoding is necessary because the encoder and the
decoder can produce sufficiently good reconstructionsX̂n

e and
X̂n

d based solely on their observed sequencesXn andY n. In
these casesRG(Dd, De) is thus zero.

1) If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(77a)

and

Dd ≥ σ2
Xσ

2
U

σ2
X + σ2

U

, (77b)

then the encoder and decoder can produce the sequences

X̂n
e =

σ2
X

σ2
X + σ2

U

Xn (78)

X̂n
d =

σ2
X

σ2
X + σ2

U

Y n (79)

which satisfy the distortion constraints.
2) If

√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(80a)

and

Dd ≥ σ2
X

(

1−
√

De

σ2
U

)2

+De, (80b)

then the encoder and decoder can produce the sequences

X̂n
e =

√

De

σ2
U

Xn (81)

X̂n
d =

√

De

σ2
U

Y n (82)

which satisfy the distortion constraints.

The achievability of Theorem 9 in the remaining cases will
be established using the following proposition with a judicious
choice of the parameters.

Proposition 12: For the setup in Section III-A of a Gaus-
sian source and quadratic distortion measures, the tuple
(R,Dd, De) is achievable whenever

R ≥ 1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

(83)

for some parametersσ2
W , a > 0 andb ≥ 0 satisfying

(1− a− b)2σ2
X + a2σ2

W + b2σ2
U ≤ Dd (84a)

and
b2σ2

U ≤ De. (84b)
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Thus,

RG(Dd, De) ≤ min
a, b, σ2

W

1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

,

(85)
where the minimization is over allσ2

W , a > 0 and b ≥ 0
satisfying (84).

Proof: See Appendix C.
We can now prove the achievability part of Theorem 9 for

the remaining cases.

3) If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(86a)

and

Dd <
σ2
Xσ

2
U

σ2
X + σ2

U

, (86b)

then the choice

σ2
W =

Dd

1− σ2
X+σ2

U

σ2
X
σ2
U

Dd

(87a)

(which is positive by (86b)) and

a =
Dd

σ2
W

= 1− σ2
X + σ2

U

σ2
Xσ

2
U

Dd, (87b)

b =
σ2
X

σ2
X + σ2

U

(1− a)

=
Dd

σ2
U

. (87c)

satisfies (84) because

(1− a− b)2σ2
X + a2σ2

W + b2σ2
U

=

(

σ2
X + σ2

U

σ2
X

b− b

)2

σ2
X +

D2
d

σ2
W

+
D2

d

σ2
U

(88)

=
D2

d

σ2
X

+Dd

(

1− σ2
X + σ2

U

σ2
Xσ

2
U

Dd

)

+
D2

d

σ2
U

(89)

= Dd (90)

and

b2σ2
U =

D2
d

σ2
U

≤ De. (91)

Moreover, for this choice,

1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

=
1

2
log

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
. (92)

Thus, by (90)–(92) and by Proposition 12, we conclude
that whenDd andDe satisfy (86),

RG(Dd, De) ≤
1

2
log

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
. (93)

4) If
√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(94a)

and

Dd < σ2
X

(

1−
√

De

σ2
U

)2

+De, (94b)

then we consider the choice

b =

√

De

σ2
U

, (95a)

a =
σ2
X

σ2
X + σ2

W

(1− b), (95b)

σ2
W =

σ2
X(Dd − b2σ2

U )

σ2
X(1− b)2 + b2σ2

U −Dd

=
σ2
X(Dd −De)

σ2
X

(

1−
√

De

σ2
U

)2

+De −Dd

. (95c)

To see that the RHS of (95c) is positive note that (94b)
implies that the denominator is positive, and (94a)
implies that the numerator is positive because
(

√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

})

=⇒
(

De < min
{

σ2
U , Dd

}

)

. (96)

(Sinceσ2
X/(σ

2
X + σ2

U ) is smaller than one, the LHS of
(96) implies thatDe < σ2

U . This, and the fact that the
LHS of (96) also implies thatDeσ

2
U < D2

d demonstrates
that the LHS of (96) also implies thatDe < Dd.)
This choice satisfies (84) because

(1− a− b)2σ2
X + a2σ2

W + b2σ2
U

=

(

σ2
W (1− b)

σ2
X + σ2

W

)2

σ2
X +

(

σ2
X(1− b)

σ2
X + σ2

W

)2

σ2
W +De

(97)

=
σ2
X(1− b)2

σ2
X

σ2
W

+ 1
+De (98)

=
σ2
X(1− b)2(Dd − b2σ2

U )

σ2
X(1− b)2

+De (99)

= Dd. (100)

and
b2σ2

U = De. (101)

Moreover, for this choice,

1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

=
1

2
log

σ2
X

(

σ2
U +Dd − 2

√

σ2
UDe

)

(σ2
X + σ2

U )(Dd −De)
. (102)

Thus, by (100)–(102) and by Proposition 12, we con-
clude that when (94) holds,

RG(Dd, De) ≤
1

2
log

σ2
X

(

σ2
U +Dd − 2

√

σ2
UDe

)

(σ2
X + σ2

U )(Dd −De)
.

(103)
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Remark 13: The expressions in Proposition 12 and their
relation to (25) become more transparent when we define

Z=a(X +W ) (104a)

X̂d=bY + Z (104b)

X̂e=bX + Z (104c)

for a > 0, b ≥ 0, andW a centered Gaussian of positive
variance σ2

W independent of the pair(X,Y ). With these
definitions

I(X ;Z|Y ) =
1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

(105a)

E
[

(X − X̂d)
2
]

= (1− a− b)2σ2
X + a2σ2

W + b2σ2
U (105b)

E
[

(X̂d − X̂e)
2
]

= b2σ2
U . (105c)

SinceZ⊸−−X⊸−−Y for all choices of the parametersa > 0,
b ≥ 0, σ2

W > 0, we can also rewrite (85) as:

RG(Dd, De) ≤ min
Z,X̂d,X̂e

I(X ;Z|Y ) (106)

where the minimum is over allZ, X̂d, X̂e that are of the form
in (104) and satisfy the distortion constraints

E
[

(

X − X̂d
)2
]

≤ Dd, (107)

E
[

(

X̂d − X̂e
)2
]

≤ De. (108)

E. The Converse for Theorem 9

If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

then the converse follows by relaxing the constraint (12); see
Remark 11. We thus focus on the case where

√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

. (109)

We define the functioñRcnt : R++×R+ → R+ like R̃(·, ·)
except that its first argument (Dd) is strictly positive; the
minimum is replaced by an infimum; and the size of the
auxiliary alphabetZ can be unbounded. Thus,

R̃cnt(Dd, De) , inf
Z,φ,ψ

I(X ;Z|Y ) (110)

where the infimum is over all choices4 of the random vari-
ableZ and functionsφ, ψ satisfying

E
[

(X − X̂d)
2
]

≤ Dd, (111a)

E
[

(X̂d − X̂e)
2
]

≤ De, (111b)

Z⊸−−X ⊸−−Y, (111c)

where

X̂d , φ(Y, Z), (111d)

4To be more precise we should specify the set whereZ may take value, and
we must restrict the functionsφ andψ to be measurable. In the converseZ
will correspond to the tuple(M,Y i−1, Y n

i+1
), and we can therefore restrict

Z here to be the space where such tuples take value.

X̂e , ψ(X,Z). (111e)

In analogy to Proposition 5 we have:
Lemma 14: OverR++ × R+ the functionR̃cnt(Dd, De) is

finite; monotonic in each of its arguments; and convex.
Proof: The function is bounded by the rate-distortion

function of the Gaussian source without side information. The
proof of monotonicity is identical to the proof of monotonicity
in Proposition 5. The proof of convexity is also very similar;
only a minor change is needed to account for the fact that,
prima facie, the infimum need not be achieved.

The following lemma provides an explicit expression for
R̃cnt(Dd, De) when (109) holds.

Lemma 15: If Dd > 0 andDe ≥ 0 satisfy (109), then

R̃cnt(Dd, De) =
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(112)
Proof of Lemma 15: We first prove

R̃cnt(Dd, De) ≤
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(113)
To this end, we present a choice forZ, X̂d, X̂e that satisfies
the constraints (111) and is such that the objective function
I(X ;Z|Y ) in (110) evaluates to the RHS of (113). Our choice
depends on whether

Dd ≥ σ2
X

(

1−
√

De

σ2
U

)2

+De (114)

or

Dd < σ2
X

(

1−
√

De

σ2
U

)2

+De. (115)

In the first case (114) the RHS of (113) evaluates to 0, whereas
in the second case (115) it is positive.

WhenDd andDe satisfy (114), a suitable choice is—as in
(81) and (82) in the proof of the direct part—

Z = ∅, X̂n
e =

√

De

σ2
U

Xn, X̂n
d =

√

De

σ2
U

Y n. (116)

When Dd and De satisfy (115), a suitable choice is—as
in (95) and (104) in the direct part—

Z = a(X +W ), X̂e = bX + Z, X̂d = bY + Z, (117)

where W is a centered Gaussian of varianceσ2
W =

σ2
X (Dd−De)

σ2
X (1−

√
De/σ2

U )2+De−Dd

and independent of the pair(X,Y )

and whereb =
√

De/σ2
U and a =

σ2
X

σ2
X
+σ2

W

(1 − b). That
this choice has the desired properties follows by (100)–(102)
and (105).

Having established (113), we now complete the proof of the
lemma by proving the reverse inequality

R̃cnt(Dd, De) ≥
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(118)
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Since rates are nonnegative, it suffices to prove

RG(Dd, De) ≥
1

2
log

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

(119)
wherelog+ has been replaced bylog.

Since the joint law of(X,Y ) is fixed and is a bivariate
Gaussian law

I(X ;Z|Y ) = h(X |Y )− h(X |Y, Z)

=
1

2
log

(

2πe
σ2
Xσ

2
U

σ2
X + σ2

U

)

− h(X |Y, Z). (120)

Consequently, (119) is equivalent to

Ω ≤ 1

2
log

(

2πeσ2
U

Dd −De

σ2
U +Dd − 2

√

σ2
UDe

)

, (121)

whereΩ is defined as

Ω , sup
Z,φ,ψ

h(X |Y, Z) (122)

under the same constraints (111) that defineR̃cnt(Dd, De)
in (110).

To prove (121) we first note that, sincêXd is a deterministic
function of (Y, Z),

h(X |Y, Z) = h(X − X̂d|Y, Z, X̂d) (123)

= h(X − X̂d|X − X̂d + U,Z, X̂d) (124)

≤ h(X − X̂d|X − X̂d + U) (125)

where in the second line we recalled thatY = X + U (69),
and where the last line follows because conditioning cannot
increase differential entropy.

The Markov conditionZ⊸−−X⊸−−Y (111c) and the fact
that Y = X + U (69) imply that

Z⊸−−X⊸−−U. (126)

This, combined with the assumption thatU is independent
of X , implies thatU is independent of(X,Z). And sinceX̂e

is a function of(X,Z),

U and (X̂e, X, Z) are independent. (127)

This independence implies thatU is independent of(X−X̂e).
This latter independence and the fact thatX − X̂d can be
expressed as−

(

X̂d − X̂e − (X − X̂e)
)

implies that

Cov(X − X̂d, U) = −Cov(X̂d − X̂e, U). (128)

From (128), (111b), the fact that the variance of a random
variable cannot exceed its second moment, and the fact that
the magnitude of a correlation coefficient cannot exceed1, it
follows that

|Cov(X − X̂d, U)|2 ≤ Deσ
2
U . (129)

From (125) and (129) we thus obtain

Ω ≤ Γ (130)

whereΓ is defined as

Γ , sup
X̂d

h(X − X̂d|X − X̂d + U) (131)

subject to the relaxed constraints

Var(X − X̂d) ≤ Dd, (132a)
∣

∣Cov(X − X̂d, U)
∣

∣

2 ≤ Deσ
2
U . (132b)

We now proceed to studyΓ. Define

A , X − X̂d (133)

so
Γ = sup

A
h(A|A+ U) (134)

subject to

Var(A) ≤ Dd, (135a)
∣

∣Cov(A,U)
∣

∣

2 ≤ Deσ
2
U . (135b)

By the conditional max-entropy theorem [9], the supremum
in (134) is achieved when(A,U) are jointly Gaussian, as we
henceforth assume. As we next argue, the lemma’s hypothesis
that (109) holds implies that the choice ofA as −U is not
in the feasible set. Indeed, with this choice|Cov(A,U)|2 is
equal toσ4

U , which violates (135b) because (109) and (96)
imply

De < min{σ2
U , Dd}. (136)

We thus assume in the following thatA is jointly Gaussian
with U and thatA 6= −U . Consequently,

h(A|A+ U)

=
1

2
log

(

2πe

(

σ2
U − (σ2

U + κAU )
2

σ2
A + σ2

U + 2κAU

))

(137)

=
1

2
log

(

2πe
σ2
Aσ

2
U − κ2AU

σ2
A + σ2

U + 2κAU

)

(138)

whereσ2
A , Var(A) andκAU , Cov(A,U).

We can thus rewrite the optimization problem in (131) as

Γ = sup
κAU ,σ2

A

1

2
log

(

2πe
σ2
Aσ

2
U − κ2AU

σ2
A + σ2

U + 2κAU

)

(139)

subject to

0 ≤ σ2
A ≤ Dd, (140)

0 ≤ |κAU |2 ≤ Deσ
2
U , (141)

0 ≤ |κAU |2 ≤ σ2
Aσ

2
U . (142)

(We have to add the last constraint because the magnitude of
a correlation coefficient cannot exceed one.) For fixedκAU ,
the objective function in (139) is monotonically increasing in
σ2
A (see also (137)), and so is the RHS of Constraint (142).

Therefore, it is optimal to choose in (139)

σ2
A = Dd. (143)

Substituting this choice in (139) and (142) yields

Γ = sup
κAU

1

2
log

(

2πe
Ddσ

2
U − κ2AU

Dd + σ2
U + 2κAU

)

(144)

subject to (141) and

0 ≤ |κAU |2 ≤ Dd σ
2
U . (145)
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Notice that, whenever (109) holds, the RHS of (141) is upper-
bounded by the square ofmin{Dd, σ

2
U}. Consequently,

(

(109) and (141)
)

⇒
(

|κAU | < min{Dd, σ
2
U}
)

. (146)

Since the RHS of (146) implies (145),
(

(109) and (141)
)

⇒ (145), (147)

and Constraint (145) is redundant. We therefore ignore Con-
straint (145) and study the maximization in (144) subject to
(141) only.

To this end, we compute the derivative of the objective
function in (144) with respect toκAU :

d
dκAU

(

1

2
log

(

2πe
Ddσ

2
U − κ2AU

Dd + σ2
U + 2κAU

))

=
−(Dd + κAU )(σ

2
U + κAU )

(Dd + σ2
U + 2κAU )(Ddσ2

U − κ2AU )
. (148)

By (146), the derivative in (148) is negative for all feasible
κAU . Hence, the objective function in (144) is decreasing on
the (symmetric) interval of interest (141), and it is optimal to
choose

κAU = −
√

Deσ2
U . (149)

The optimality of this choice allows us to evaluateΓ via (144)
and hence to upper-boundΩ via (130). This yields the desired
bound (121), which establishes the lemma.

Proof of Converse when (109) holds: Using Lemma 14
and Lemma 15 we can follow the steps of the proof in
Section II-D of the converse part of Theorem 6. The remaining
technicality is continuity. Continuity in the interior, i.e., on
R++ × R++ follows from convexity. It thus only remains to
establish continuity whenDd > 0, (109) holds, andDe is zero.
This can be done by inspecting (112).

IV. M ORE AND MORE-GENERAL CONSTRAINTS

So far we have only studied settings with two distortion
functions, one of which—the decoder-side distortion function
dd(x, x̂d)—depends on the source symbol and the decoder’s re-
construction, and the other—the encoder-side distortion func-
tion de(x̂d, x̂e)—depends on the decoder’s and the encoder’s
reconstruction symbols. In this section we extend our setting
to allow for more than two distortion functions and to allow
for distortions that depend on all three symbols: the source
symbol x, the decoder’s reconstruction symbolx̂d, and the
encoder’s reconstruction symbol̂xe . We shall also allow
the reconstruction alphabets to differ. But all alphabets are
assumed finite.

A. Problem Statement

The new setup differs from the setup in Section II in two
ways.

• The encoder-side reconstruction̂Xn
e and the decoder-side

reconstructionX̂n
d take value in the finite alphabetŝXn

e
and X̂n

d which can be different.

• There areK (possibly larger than2) distortion constraints
specified by theK distortion functions

dk : X × Xd ×Xe → R+, k ∈ {1, . . . ,K} (150)

and the correspondingK maximal-allowed distortions
D1, . . . , DK (all of which are assumed to be nonneg-
ative).

We say that the tuple(R,D1, . . . , DK) is achievable if for
everyǫ > 0 and sufficiently largen there exist a message set
M of size |M| ≤ 2n(R+ǫ) and functions

f (n) : Xn → M (151a)

φ(n) : M×Yn → X̂n
d (151b)

ψ(n) : Xn → X̂n
e (151c)

such that the messageM = f (n)(Xn) and the reconstruction
sequenceŝXn

d = φ(n)(M,Y n) andX̂n
e = ψ(n)(Xn) satisfy:

1

n

n
∑

i=1

E
[

dk(Xi, X̂d,i, X̂e,i)
]

≤ Dk + ǫ, k ∈ {1, . . . ,K}.

(152)

In analogy to Assumption 1, we shall assume:
Assumption 2: To eachx ∈ X corresponds somêxd ∈ X̂d

and somêxe ∈ X̂e satisfying

dk(x, x̂d, x̂e) = 0, k ∈ {1, . . . ,K}. (153)

We seek the smallest rateR for which the tuple
(R,D1, . . . , DK) is achievable. This is defined as follows.
Given a maximal-allowed-distortion tuple(D1, . . . , DK), let

RExt(D1, . . . , DK)

, {R ∈ R+ : (R,D1, . . . , DK) is achievable}. (154)

Assumption 2 implies that the setRExt(D1, . . . , DK) contains
all rates exceedingH(X |Y ) and is thus nonempty. The rate-
distortions functionRExt can now be defined as

RExt(D1, . . . , DK) , min
R∈RExt(D1,...,DK)

R, (155)

where the minimum exists because the region
RExt(D1, . . . , DK) ⊂ R+ is nonempty, closed, and bounded
from below by 0.

B. Result

To describe the rate-distortions function for the extended
setup of Section IV-A, we next introduce the function
R̃Ext(D1, . . . , DK).

Given the joint lawPXY of the source and side information,
and given the distortion functionsd1, . . . , dK , this function is
defined as

R̃Ext(D1, . . . , DK) = min
U,Z,φ,ψ

(

I(X ;Z)− I(Y ;Z)
)

(156)

where the minimization is over all discrete auxiliary random
variablesZ andU satisfying

(U,Z)⊸−−X⊸−−Y (157)
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and over all functionsφ : Y×Z → X̂d andψ : X×Z×U → X̂e

that simultaneously satisfy theK distortion constraints

E
[

dk
(

X,φ(Y, Z), ψ(X,Z,U)
)]

≤ Dk, k ∈ {1, . . . ,K}.
(158)

The following proposition provides cardinality bounds on
the support sets of the auxiliary random variables.

Proposition 16 (Cardinality Bounds): The minimum defin-
ing R̃Ext(D1, . . . , DK) is not increased if we restrict the
cardinality of the support setZ of Z to

|Z| ≤ |X ||U|+K + 1 (159)

and the cardinality of the support setU of U to

|U| ≤ K. (160)

Proof: The cardinality bound onZ can be justified using
the convex cover method [8]. The cardinality bound onU is
proved in Appendix D.

Remark 17 (Improved Cardinality Bound): The cardinality
bound onU can be strengthened:|U| need not exceed the
number of distortion constraints in (152) that depend onX̂e,i.
The latter number equals1 in the original setup of Section II
thus allowing us to recover Theorem 6.

Proposition 18 (Key Properties of the Function R̃Ext):
The function R̃Ext : R

K
+ → R+ is bounded from above by

H(X |Y ); it is nondecreasing in the distortions
(

D′
1 ≥ D1, . . . , D

′
K ≥ DK

)

=⇒
(

R̃Ext(D
′
1, . . . , D

′
K) ≤ R̃Ext(D1, . . . , DK)

)

;

and it is convex and continuous.
Proof: The proof is similar to the proof of Proposition 5

in Appendix B and is omitted.
Theorem 19: The rate-distortions function for the setup in

Section IV-A is equal toR̃Ext(D1, . . . , DK):

RExt(D1, . . . , DK) = R̃Ext(D1, . . . , DK). (161)

Proof: The achievability, i.e., that

RExt(D1, . . . , DK) ≤ R̃Ext(D1, . . . , DK), (162)

can be proved using a scheme that is similar to the one
that was sketched in the proof of Theorem 6. The only
difference is that, to produce the reconstruction sequenceX̂n

e ,
the encoder applies the functionψ component-wise to the
tuple (Xn, Z∗n, Un), where, conditional on(Xn, Z∗n), the
components of the sequenceUn are generated independently
according to the conditional lawPU|Z,X . The analysis of this
scheme is omitted.

We next prove the converse, i.e., that

RExt(D1, . . . , DK) ≥ R̃Ext(D1, . . . , DK). (163)

Fix some positiveǫ, a blocklengthn, and a rateR. Let M
be a message set of size|M| ≤ 2n(R+ǫ), and letf (n), φ(n),
andψ(n) be encoding and reconstruction functions as in (151)
that satisfy theK distortion constraints in (152). For every
i ∈ {1, . . . , n}, defineZi in (44)

Zi , (M,Y i−1, Y ni+1) (164)

and defineUi as

Ui , (X i−1
1 , Xn

i+1). (165)

Notice that for everyi ∈ {1, . . . , n}

(Ui, Zi)⊸−−Xi⊸−−Yi. (166)

Also, following the steps in (34)–(43), we can conclude that

n(R+ ǫ) ≥
n
∑

i=1

I(Xi;Zi)− I(Yi;Zi). (167)

We further define—as in Section II-D—φ(n)i to be the
function that maps(M,Y n) to thei-th symbol ofφ(n)(M,Y n)

andψ(n)
i to be the function that mapsXn to the i-th symbol

of ψ(n)(Xn). Then, the symbolφ(n)i (M,Y n) can be written
as

φi(Yi, Zi) , φ
(n)
i (M,Y n), (168)

andψ(n)
i (Xn) can be written as

ψi(Xi, Zi, Ui) , ψ
(n)
i (Xn), (169)

for some functionsφi andψi with arguments in the respective
domains. We finally define for eachk ∈ {1, . . . ,K} and i ∈
{1, . . . , n}

Dk,i , E
[

dk(Xi, φ
(n)
i (M,Y n), ψ

(n)
i (Xn))

]

, (170)

whereE[·] is with respect toPXnY n . Notice that

n
∑

i=1

Dk,i ≤ Dk + ǫ, k ∈ {1, . . . ,K} (171)

because the chosen encoding and reconstruction functions
f (n), φ(n), andψ(n) satisfy (152). Moreover, by definitions
(168)–(170),

E
[

dk
(

Xi, φi(Yi, Zi), ψi(Xi, Zi, Ui)
)]

= Dk,i, (172)

whereE[·] is with respect toPXiYi
PUiZi|Xi

.
Combining (167) and (172) with the definition of̃RExt, we

obtain

n(R+ ǫ) ≥
n
∑

i=1

I(Xi;Zi)− I(Yi;Zi) (173)

≥
n
∑

i=1

R̃Ext(D1,i, . . . , DK,i) (174)

≥ nR̃Ext

(

1

n

n
∑

i=1

D1,i, . . . ,
1

n

n
∑

i=1

DK,i

)

(175)

≥ nR̃Ext
(

D1 + ǫ, . . . , DK + ǫ), (176)

where the last two inequalities follow by the convexity and
the monotonicity ofR̃Ext and by (171). By the continuity of
R̃Ext and becauseǫ > 0 and the blocklengthn are arbitrary,
the converse (163) follows immediately from (176).
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APPENDIX A
PROOF OFCOROLLARY 7

When de(·, ·) is the Hamming distortion andDe = 0, our
average-per-symbol distortion constraint (12) is less stringent
than the block-distortion constraint (24) in Steinberg’s setup
(Remark 3). Consequently,

Rcr(Dd) ≥ R(Dd, 0). (177)

It remains to prove the reverse inequality. LetZ, φ, andψ be
minimizers ofR(Dd, 0), so

R(Dd, 0) = I(X ;Z)− I(Y ;Z) (178a)

E
[

dd
(

X,φ(Y, Z)
)]

≤ Dd (178b)

φ(Y, Z) = ψ(X,Z) w.p. 1 (178c)

Z⊸−−X⊸−−Y. (178d)

To prove the reverse inequality we shall upper-boundRcr(Dd)
by showing that

X̂ , φ(Y, Z) (179)

is feasible in the minimization (21) that defines it.
From the definition ofX̂ (179) and from (178c), it follows

that X̂ is computable (almost surely) from(X,Z). This
combines with (178d) to establish that

(X̂, Z)⊸−−X⊸−−Y (180)

and,a fortiori, that

X̂⊸−−X⊸−−Y. (181a)

And by (178b) and (179),

E
[

dd
(

X, X̂
)]

≤ Dd. (181b)

It follows from (181) thatX̂ is feasible in the minimization
(21) definingRcr(Dd) and thus

Rcr(Dd) ≤ I(X ; X̂)− I(Y ; X̂) (182)

= I(X ; X̂|Y ) (183)

≤ I(X ;Z|Y ) (184)

= I(X ;Y )− I(X ;Z) (185)

= R(Dd, 0) (186)

where (183) follows from (181a); where (184) follows, by the
(conditional) data processing inequality, from

X̂⊸−−(Y, Z)⊸−−X (187)

(which holds by (179)); where (185) follows from (178d);
and (186) follows from (178a). Inequalities (177) and (186)
establish the corollary.

APPENDIX B
PROOF OFPROPOSITION5

That R̃(Dd, De) is bounded byH(X |Y ) is just a restate-
ment of (29). Monotonicity holds because the feasible set
in the minimization definingR̃(Dd, De) is enlarged (or is
unaltered) whenDd and/orDe are increased.

As to the convexity, letZ(1), φ(1), ψ(1) andZ(2), φ(2), ψ(2)

be the random variables and functions that achieve the minima
in the definitions ofR̃

(

D
(1)
d , D

(1)
e

)

and R̃
(

D
(2)
d , D

(2)
e

)

. Let
Q ∼ Bernoulli(λ) be independent of(X,Y, Z(1), Z(2)). Define

Z ,
(

Q,Z(Q)
)

(188)

and the functions

φ(Y, Z) , φ(Q)
(

Y, Z(Q)
)

(189)

ψ(X,Z) , ψ(Q)
(

X,Z(Q)
)

. (190)

Then
Z⊸−−X⊸−−Y ; (191)

E[dd(X,φ(Y, Z))] (192)

= λE[dd(X,φ
(1)(Y, Z(1)))]

+(1− λ)E[dd(X,φ
(2)(Y, Z(2)))] (193)

≤ λD
(1)
d + (1− λ)D

(2)
d ; (194)

and

E[de(φ(Y, Z), ψ(X,Z))] (195)

= λE[de(φ
(1)(Y, Z(1)), ψ(1)(X,Z(1)))]

+(1− λ)E[de(φ
(2)(Y, Z(2)), ψ(2)(X,Z(2)))] (196)

≤ λD(1)
e + (1 − λ)D(2)

e ; (197)

soZ, φ, ψ are feasible for the distortions
(

λD
(1)
d + (1− λ)D

(2)
d , λD(1)

e + (1− λ)D(2)
e

)

.

Consequently,

R̃
(

λD
(1)
d + (1 − λ)D

(2)
d , λD

(1)
e + (1− λ)D

(2)
e

)

≤ I(X ;Z)− I(Y ;Z)

= H(X)−H(X |Z)−H(Y ) +H(Y |Z)
= H(X)−H(X |Z(Q), Q)−H(Y ) +H(Y |Z(Q), Q)

= H(X)− λH(X |Z(1))− (1− λ)H(X |Z(2))

−H(Y ) + λH(Y |Z(1)) + (1− λ)H(Y |Z(2))

= λ
(

I(X ;Z(1))− I(Y ;Z(1))
)

+ (1 − λ)
(

I(X ;Z(2))− I(Y ;Z(2))
)

.

= λ R̃
(

D
(1)
d , D

(1)
e

)

+ (1− λ) R̃
(

D
(2)
d , D

(2)
e

)

. (198)

To conclude the proof it remains to prove thatR̃(Dd, De)
is continuous onR2

+. (Continuity onR2
++ is a consequence of

the convexity, but we also claim continuity in the closed set
R

2
++.) SinceR2

+ is locally simplicial (as can be verified by
the definition in [10, Section 10, p. 84] or using [10, Theorem
20.5, p 184]), the convexity of̃R(Dd, De) on R

2
+ implies its

upper-semicontinuity relative toR2
+. It thus remains to prove
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lower-semicontinuity relative toR2
+. That is, we need to show

that
(

D
(κ)
d , D(κ)

e

)

→
(

Dd, De
)

implies that there is a subsequence{κν} such that

R̃(Dd, De) ≤ lim
ν→∞

R̃(D
(κν)
d , D(κν)

e ).

Let φ(κ), ψ(κ), P (κ)
Z|X achieve R̃(D(κ)

d , D
(κ)
e ) with Z =

{1, . . . , |X | + 3}. Since there are only a finite number of
functions fromY × Z to X̂ and only a finite number of
functions fromX×Z to X̂ , we can choose a subsequence{κν}
along which: the mappingsφ(κν) do not depend onν and can
be thus denotedφ; the mappingsψ(κν) do not depend onν
and can be thus denotedψ; and the conditional lawsP (κν)

Z|X

converge to some conditional law that we denoteP
(0)
Z|X . By the

continuity of mutual information,̃R(D(κν)
d , D

(κν)
e ) converges

to I(X ;Z) − I(Y ;Z) evaluated with respect toP (0)
Z|XPXY ,

and R̃(Dd, De) cannot exceed this value becauseP (0)
Z|X , ψ,

andφ are in the feasible set defining it.

APPENDIX C
PROOF OFPROPOSITION12

We present and analyze a scheme that achieves the rate-
distortions tuples in Proposition 12. Before describing the
scheme, we introduce some notation and lemmas onn-
dimensional spheres.

A. On n-dimensional Spheres

An n-sphere of radius r > 0 centered at ξ ∈ R
n is the set

of all vectorsx ∈ R
n satisfying

‖x− ξ‖ = r.

When the center of the sphereξ is the origin0, we call it a
centered sphere, and when the radius of the sphere is1, we
call it a unit sphere.

We denote the angle between two nonzero vectorsu,v ∈
R
n by ∢(u,v). Its cosine is

cos∢(u,v) ,
〈u,v〉
‖u‖‖v‖ . (199)

Given a nonzero vectorµ on ann-sphereS, thespherical cap
of half-angle θ centered at µ is the set of all vectorsx on S
satisfying

∢(µ,x) ≥ θ.

The surface area of such a spherical cap does not depend on
the vectorµ but only on the dimensionn, the radius of the
spherer, and the angleθ. If the radiusr = 1, we denote this
surface area byCn(θ).

We say that a randomn-vector is uniformly distributed over
ann-sphere, if it is drawn according to a uniform probability
measure over the surface of this sphere.

The proofs of the following four lemmas are based on
results in [11] and omitted.

Lemma 20: Let Ψ be uniformly distributed over the cen-
tered unitn-sphere, and letµ be a deterministic unit-length
vector inRn. Then,

Pr[〈Ψ,µ〉 ≥ τ ] =
Cn(arccos(τ))

Cn(π)
, 0 ≤ τ ≤ 1. (200)

Lemma 21: For 0 ≤ τ < 1:

lim
n→∞

1

n
log

(

Cn(arccos(τ))

Cn(π)

)

=
1

2
log(1 − τ2). (201)

Lemma 22: Let f : R → (0, 1] be such that the limit

− η1 , lim
n→∞

1

n
log f(n) (202)

exists andη1 > 0. Then,

lim
n→∞

(

1− f(n)
)2nη2

=

{

1 if η1 > η2

0 if η1 < η2.
(203)

Lemma 23: For θ ∈ (0, π/2)

lim
n→∞

Cn(θ)

Cn(π)
= 0, (204)

whereas forθ ∈ (π/2, π)

lim
n→∞

Cn(θ)

Cn(π)
= 1. (205)

B. Scheme

Our scheme has parameters

a, δ, σ2
W > 0 and b ≥ 0 (206)

that must satisfy Conditions (84a) and (84b), which we repeat
for convenience here:

(1− a− b)2σ2
X + a2σ2

W + b2σ2
U ≤ Dd (207)

b2σ2
U ≤ De. (208)

To describe and analyze the scheme we use vector notation.
Let X denote then-dimensional column-vector that results
when the source symbols are stacked on top of each other

X ,
(

X1 X2 . . . Xn

)T
. (209)

Likewise define the side-information vectorY and the recon-
struction vectorŝXd, andX̂e.

1) Codebook generation: Let

σ2
Z , a2(σ2

W + σ2
X), (210)

R′ ,
1

2
log

(

σ2
X + σ2

W

σ2
W

)

, (211)

R ,
1

2
log

(

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Wσ
2
U

(σ2
X + σ2

U )σ
2
W

)

. (212)

Draw ⌈2nR′⌉ independent random n-vectors
{Z(1),Z(2), . . . ,Z(⌈2nR′⌉)} uniformly over the centered
n-sphere of radiusr =

√

nσ2
Z . Assign these vectors to

⌊2n(R+δ)⌋ bins: the first⌈2(R′−R−δ)⌉ are assigned to bin1,
the following ⌈2(R′−R−δ)⌉ vectors are assigned to bin2, etc.
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More specifically, ifB(m) denotes the set of vectors assigned
to binm ∈ {1, . . . , ⌊2n(R+δ)⌋}, then

B(m) =
{

Z(m−1)⌈2(R′−R−δ)⌉+1, . . . ,Zm⌈2(R′−R−δ)⌉

}

for m = 1, . . . , ⌊2n(R+δ)⌋ − 1 and

B
(

⌊2n(R+δ)⌋
)

,
{

Z(⌊2n(R+δ)⌋−1)+1, . . . ,Z⌈2nR′⌉

}

.

The codebookC , {Z(1),Z(2), . . . ,Z(⌈2nR′⌉)}.
2) Encoder: Given the source sequenceX = x, the encoder

looks for the codewordz∗ ∈ C that is closest to having the
“correct” angle withx:

z∗ = argmin
z∈C

∣

∣

∣cos∢(x, z)−
√

1− 2−2R′

∣

∣

∣ . (213)

The encoder then sendsM = m∗, wherem∗ denotes the index
of the bin containingz∗. It also produces the reconstruction
sequencêxe = z∗ + bx.

3) Decoder: Given M = m∗ and the side-information
vectorY = y, the decoder chooses

ẑ = argmin
z∈B(m∗)

∣

∣

∣cos∢(y, z) −
√

1− 2−2(R′−R)
∣

∣

∣ , (214)

and produces the reconstruction sequencex̂d = ẑ+ by.
With probability 1 the argmins in (213) and (214) are

unique.

C. Analysis

We fix ǫ > 0 sufficiently small such that

(1− 4ǫ)
√

1− 2−2(R′−R) >
√

1− 2−2(R′−R−δ/2), (215)

and define the following four events:

1) Esrc : “The source and side information are atypical”,
i.e.,

∣

∣

∣

1

n
‖X‖2 − σ2

X

∣

∣

∣
> ǫσ2

X or (216a)
∣

∣

∣

1

n
‖Y‖2 − σ2

Y

∣

∣

∣ > ǫσ2
Y or (216b)

| cos∢(X,Y) − ρXY | > ǫρXY (216c)

whereρXY denotes the correlation coefficient between
X andY :

ρXY =

√

σ2
X

σ2
X + σ2

U

. (217)

2) Eenc : “No codeword has a good angle with the source
sequence”, i.e.,
∣

∣

∣ cos∢(X,Z∗)−
√

1− 2−2R′

∣

∣

∣ > ǫ
√

1− 2−2R′ . (218)

3) Edec1 : “The chosen codewordZ∗ does not have the
correct angle with the side-information sequence”, i.e.,

∣

∣

∣ cos∢(Y,Z∗)−
√

1− 2−2(R′−R)
∣

∣

∣ > 4ǫ
√

1− 2−2(R′−R).

(219)

4) Edec2 : “The decoder does not find the correct code-
word”, i.e.,

Ẑ 6= Z∗. (220)

Also, we define the event

E , Esrc ∪ Eenc ∪ Edec1 ∪ Edec2.
Lemma 24:

lim
n→∞

Pr[E ] = 0. (221)

Proof: We note

Pr[E ] ≤ Pr[Esrc] + Pr[Eenc|Ecsrc] + Pr[Edec1|Ecsrc ∩ Ecenc]
+Pr[Edec2|Ecsrc ∩ Ecenc]. (222)

In the following we show that each term on the RHS of (222)
tends to zero as the blocklengthn tends to infinity. The first
limit

lim
n→∞

Pr[Esrc] = 0 (223)

follows directly from the weak law of large numbers. The
second limit

lim
n→∞

Pr[Eenc|Ecsrc] = 0 (224)

can be shown following the same steps as in the proof of
Limit (134) in [12]. The third limit

lim
n→∞

Pr[Edec1|Ecsrc ∩ Ecenc] = 0 (225)

is proved as follows. We have

cos∢(Y,Z∗) = cos∢(X,Y) cos∢(X,Z∗) +
〈Y⊥,Z∗⊥〉
‖Y‖‖Z∗‖

(226)

whereY⊥ andZ∗⊥ denote the components ofY andZ that
are orthogonal toX:

Y⊥ , Y − 〈X,Y〉
‖X‖2 X (227)

= Y − cos∢(X,Y)‖Y‖ X

‖X‖ , (228)

and

Z∗⊥ , Z∗ − 〈X,Z∗〉
‖X‖2 X (229)

= Z∗ − cos∢(X,Z∗)‖Z∗‖ X

‖X‖ . (230)

Let tXZ∗ satisfy

tXZ∗ ∈
[

(1− ǫ)
√
2−2R′ , (1 + ǫ)

√
2−2R′

]

(231)

and letx andy be vectors inRn satisfying
∣

∣

∣

1

n
‖x‖2 − σ2

X

∣

∣

∣ ≤ ǫσ2
X (232a)

∣

∣

∣

1

n
‖y‖2 − σ2

Y

∣

∣

∣
≤ ǫσ2

Y σ
2
Y (232b)

| cos∢(x,y) − ρXY | ≤ ǫρXY . (232c)

Then, conditional on events

Ecsrc, Ecenc, X = x, Y = y, cos∢(X,Z∗) = tXZ∗ ,
(233)

by (231) and (232c), we have

cos∢(X,Y) cos∢(X,Z∗) ≤ (1 + ǫ)ρXY (1 + ǫ)
√
2−2R′
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(a)

≤
√

1− 2−(R′−R)(1 + 3ǫ) (234a)

and

cos∢(X,Y) cos∢(X,Z∗) ≥ (1− ǫ)ρXY (1− ǫ)
√
2−2R′

(a)

≥
√

1− 2−(R′−R)(1 − 3ǫ),

(234b)

where Inequalities(a) follow because

ρXY ·
√

1− 2−2R′ =
√

1− 2−(R′−R) (235)

and becauseǫ ∈ (0, 1). Moreover, conditional on the events
in (233), the vectorZ∗⊥ is uniformly distributed over a
centered(n− 1)-dimensional sphere of radiusσ2

Z(1− t2XZ∗),
and thus Limit (236) on top of the next page follows by
Lemmas 20 and 23.

We can combine Limit (236) and Inequalities (234) to obtain
the limit (237) on top of the next page. If in (237) we take
the expectation with respect toX,Y, andcos∢(X,Z∗) (but
keep the conditioning on eventsEcsrc andEcenc), we obtain the
desired third limit (225).

We finally prove the fourth limit

lim
n→∞

Pr[Edec2|Ecsrc ∩ Ecenc] = 0. (238)

To this end, we define eventE2 as

cos∢(Y,Z′) <
√

1− 2−2(R′−R−δ/2), ∀Z′ ∈ (B(M)\Z∗) .
(239)

Recalling the decoding rule in (214) and the definition of
event Edec1 in (219), we see that whenEcdec1 and E2 occur
simultaneously, then by condition (215) the decoder finds the
correct codeword̂Z = Z∗. Therefore,

Pr[Edec2|Ecsrc, Ecenc] ≤ 1− Pr[Ecdec1 ∩ E2|Ecsrc, Ecenc] , (240)

and thus (225) and the limit

lim
n→∞

Pr[Ec2 |Ecsrc, Ecenc] = 0 (241)

establish (238).
We now prove (241). For eachm ∈

{

1, . . . , ⌊2n(R+δ)⌋
}

,
we index the vectors in them-th bin from 1 to |B(m)| and
we shall refer to thek-th vector in thism-th bin byZm,k. Let
K∗ be the index ofZ∗, i.e.,ZM,K∗ = Z∗. By the symmetry
of the code construction and the encoding rule, the probability
Pr[Ec|Ecsrc, Ecenc,M = m,K∗ = k] does not depend on the
valuesm and k. We therefore, assume in the following that
M = 1 and K∗ = 1. If we additionally condition on
X = x and on cos∢(X,Z∗) = tXZ∗ > 0, the vectors
Z1,2, . . . ,Z1,|B(1)| (i.e., the vectors in bin1 that are notZ∗)
are independent and uniformly distributed over the centered
n-sphere of radius

√

nσ2
Z without the spherical cap of half-

anglearccos(tXZ∗) centered atx. Thus, 2
Cn(π)

is an upper
bound on the conditional density of the normalized vectors

1√
nσ2

Z

Z1,2, . . . ,
1√
nσ2

Z

Z1,|B(1)| on the centered unitn-sphere.

Applying Lemma 20, we therefore obtain Inequality (243)
shown on top of the next page. We note that for anyγ ∈ [0, 1]

0 ≤
(

1− 2Cn(arccos(γ))

Cn(π)

)

≤ 1 (245)

and hence the mappingt 7→
(

1− 2Cn(arccos(γ))
Cn(π)

)t

is decreas-
ing in t > 0. Therefore, since

|B(1)| − 1 < 2n(R
′−R−δ) (246)

we further obtain (244). If now we take the expectation with
respect toX, M , andK∗ (but keep the conditioning onEcsrc
andEcenc), (244) results in

Pr [E2| Ecsrc, Ecenc]

< 1−



1−
2Cn

(

arccos
√

1− 2−2(R′−R− δ
2 )
)

Cn(π)





2n(R′−R−δ)

.

(247)

The desired limit (241) follows by (247) and by Lemma 22.
In fact, applying Lemma 22 to

η2 = R′ −R− δ (248)

and to the function

f : n→ 2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)
, (249)

we obtain that the right-hand side of (247) tends to 1 asn
tends to infinity because

η1 , − lim
n→∞

1

n
log

(

2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)

)

= R′ −R− δ/2 (250)

> η2. (251)

Here, the equality holds by Lemma 21 and because the factor
2 in the logarithm does not change the limit, and the inequality
holds by (248) and becauseδ > 0.

This concludes the proof of limit (241) and thus of the
fourth limit (238). Combining finally (222) with (223)–(225)
and (238) establishes the proof of the lemma.

We can now bound the expected distortions of our scheme.
We have

E
[

d
(n)
d (X, X̂d)

]

= Pr[Ec]E
[

d
(n)
d (X, X̂d)

∣

∣Ec
]

+Pr[E ]E
[

d
(n)
d (X, X̂d)

∣

∣E
]

, (252)

and

E
[

d(n)e (X̂d, X̂e)
]

= Pr[Ec]E
[

d(n)e (X̂d, X̂e)
∣

∣Ec
]

+Pr[E ]E
[

d(n)e (X̂d, X̂e)
∣

∣E
]

. (253)

The decoder-side distortion satisfies

d
(n)
d (x, x̂d) =

1

n
‖x− z∗ − by‖2 (254)

≤ 3

n
‖x‖2 + 3

n
‖z∗‖2 + 3

n
b2‖y‖2, (255)

where the inequality holds by the Cauchy-Schwarz Inequality
and because an arithmetic mean of two nonnegative numbers
cannot be smaller than it’s geometric mean. Therefore,

Pr[E ]E
[

d
(n)
d (X, X̂d)

∣

∣E
]
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lim
n→∞

Pr

[

∣

∣〈y⊥,Z∗⊥〉
∣

∣ ≤ ǫ
√

1− 2−2(R′−R)‖y‖
√

σ2
Z

∣

∣

∣X = x,Y = y, cos∢(X,Z∗) = tXZ∗

]

= 1 (236)

lim
n→∞

Pr
[∣

∣

∣ cos∢(Y,Z∗)−
√

1− 2−2(R′−R)
∣

∣

∣ ≤ 4ǫ
√

1− 2−2(R′−R)
∣

∣

∣Ecsrc, Ecenc,X = x,Y = y, cos∢(X,Z∗) = tXZ∗

]

= 1

(237)

Pr





|B(1)|
⋃

k=2

(

cos∢(Y,Z1,k) ≥
√

1− 2−2(R′−R−δ/2)
)

∣

∣X = x,M = 1,K∗ = 1, Ecsrc, Ecenc





= 1−
|B(1)|
∏

k=2

(

1− Pr
[

cos∢(Y,Z1,k) ≥
√

1− 2−2(R′−R−δ/2)
∣

∣X = x,M = 1,K∗ = 1, Ecsrc, Ecenc
])

(242)

< 1−
(

1− 2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)

)|B(1)|−1

(243)

≤ 1−
(

1− 2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)

)2n(R′−R−δ)

(244)

≤ 3

n
Pr[E ]E

[

‖X‖2 + ‖Z∗‖2 + b2‖Y‖2
∣

∣E
]

(256)

=
3

n
E
[

‖X‖2 + ‖Z∗‖2 + b2‖Y‖2
]

− 3

n
Pr[Ec]E

[

‖X‖2 + ‖Z∗‖2 + b2‖Y‖2
∣

∣Ec
]

(257)

≤ 3
(

σ2
X + σ2

Z + b2(σ2
X + σ2

U )
)

−3
(

σ2
X(1 − ǫ) + σ2

Z + b2(σ2
X + σ2

U )(1− ǫ)
)

Pr[Ec](258)

≤ 3
(

σ2
X + σ2

Z + b2(σ2
X + σ2

U )
)

(

1− (1− ǫ)Pr[Ec]
)

. (259)

In the eventEc, we can derive a bound on the decoder-side
distortiond(n)d (x, x̂d) that is tighter than (255):

d
(n)
d (x, x̂d)

=
1

n
‖x− z∗ − by‖2 (260)

=
1

n
‖x‖2 + 1

n
‖z∗‖2 + b2

n
‖y‖2

− 2

n
〈x, z∗〉 − 2b

n
〈x,y〉 + 2b

n
〈z∗,y〉 (261)

≤ (1 + ǫ)σ2
X + σ2

Z + (1 + ǫ)b2(σ2
X + σ2

U )

− 2(1− ǫ)2aσ2
X − 2(1− ǫ)3bσ2

X

+ 2(1 + ǫ)(1 + 4ǫ)abσ2
X (262)

≤ (1 + a2 + b2 − 2a− 2b+ 2ab)σ2
X + a2σ2

W + b2σ2
U

+ ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 6bσ2
X + 10abσ2

X)

+ 8ǫ2abσ2
X + 2ǫ3bσ2

X (263)

≤ Dd

+ ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 8bσ2
X + 18abσ2

X)
(264)

where the first inequality follows from the definition of the
eventEc, the second by throwing away some negativeǫ-terms,
and the third from Condition (207) and becauseǫ < 1. Since

Pr[Ec] ≤ 1, we thus have:

Pr[Ec]E
[

d(n)e (X̂d, X̂e)
∣

∣Ec
]

≤ Dd + ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 8bσ2
X + 18abσ2

X).

(265)

Combining (252), (259), and (265), we obtain

E
[

d
(n)
d (X, X̂d)

]

(266)

≤ Dd + 3
(

σ2
X + σ2

Z + b2σ2
Y

)

(

1− (1 + ǫ)Pr[Ec]
)

+ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 8bσ2
X + 18abσ2

X).

(267)

Similarly, we have for the encoder-side distortion:

d(n)e (x, x̂d) =
1

n
‖by − bx‖2 (268)

≤ 2

n
b2‖y‖2 + 2

n
b2‖x‖2, (269)

and thus,

Pr[E ]E
[

d(n)e (Xd, X̂e)
∣

∣E
]

≤ 2

n
E
[

b2‖Y‖2 + b2‖X‖2
]

− 2

n
Pr[Ec]E

[

b2‖Y‖2 + b2‖X‖2
∣

∣

∣Ec
]

(270)

≤ 2
(

b2(σ2
X + σ2

U ) + b2σ2
X

)

(

1− (1− ǫ)Pr[Ec]
)

. (271)

Moreover, in the eventEc we can derive a bound on the
encoder-side distortiond(n)e (x̂d, x̂e) that is tighter than (269):

d(n)e (x̂d, x̂e) =
1

n
‖by − bx‖2 (272)

=
1

n
b2
(

‖x‖2 + ‖y‖2 − 2〈x,y〉
)

(273)

≤ (1 + ǫ)b2σ2
X + (1 + ǫ)b2(σ2

X + σ2
U )

− 2b2(1− ǫ)3σ2
X (274)
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≤ b2σ2
U + ǫb2(8σ2

X + σ2
U ) + ǫ3b2σ2

X (275)

≤ De + ǫb2(9σ2
X + σ2

U ), (276)

where the last inequality follows by Assumption (208) and
becauseǫ < 1. SincePr[Ec] ≤ 1, we thus have

Pr[Ec]E
[

d(n)e (X̂d, X̂e)
∣

∣Ec
]

≤ De + ǫb2(9σ2
X + σ2

U ). (277)

Combining finally (253), (271), and (277), we obtain

E
[

d(n)e (Xd, X̂e)
]

≤ De + 2
(

b2σ2
Y + b2σ2

X

)

(

1− (1− ǫ)Pr[Ec]
)

+ǫb2(9σ2
X + σ2

U ). (278)

Recall that the rate of our scheme is smaller thanR+δ and
that ǫ, δ > 0 can be chosen arbitrarily close to 0. Therefore,
from (267), (278), and Lemma 24 we conclude that when
a, σ2

W > 0 andb ≥ 0 satisfy (207) and (208), then our scheme
can achieve the triple
(

R =
1

2
log

(

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

)

, Dd, De

)

.

(279)
This establishes Proposition 12.

APPENDIX D
THE CARDINALITY BOUND ON U

To prove the cardinality bound (160) onU , we shall need
the following variation on Carathéodory’s theorem.

Lemma 25: Any point on the boundary of the convex
hull of a compact set inRd can be expressed as a convex
combination ofd or fewer points in the set.

Proof: Let S be a compact subset ofRd, and letx be a
boundary point of its convex hull conv(S). Sincex is in the
convex hull ofS, it follows from Carathéodory’s theorem that
there existd+ 1 or fewer points

x1, . . . ,xν ∈ S, ν ≤ d+ 1 (280)

and positive coefficients summing to1

λ1, . . . , λν > 0,
ν
∑

i=1

λi = 1 (281)

such that

x =

ν
∑

i=1

λi xi. (282)

We shall show that, in fact, of theseν points, we can findd
or fewer points whose convex combination isx.

Since x is on the boundary of conv(S), there exists a
hyperplaneH that supports conv(S) at x. Thus,

H =
{

ξ ∈ R
d : cTξ = cTx

}

(283a)

for some vectorc ∈ R
d and

cTx = max
x̃∈conv(S)

cTx̃ (283b)

so
cTx ≥ cTxi, i = 1, . . . , ν. (284)

We shall next show that the pointsx1, . . . ,xν are inH. To
that end we note that by (282)

0 = cT

(

x−
ν
∑

i=1

λi xi

)

=

ν
∑

i=1

λic
Tx−

ν
∑

i=1

λic
Txi

=
ν
∑

i=1

λi

(

cTx− cTxi

)

where the second equality holds because theλ’s sum to 1
(281). Since theλ’s are all positive, it follows from (284) that
all the terms on the RHS are nonnegative. Since they sum to
zero, they must all be zero. And since theλ’s are positive, we
conclude that

cTxi = cTx, i ∈ {1, . . . , ν} (285)

and the vectorsxi are all in H. The vectorx can thus be
written as a convex combination of theν vectors inx1, . . . ,xν
in H. Since H is (d − 1)-dimensional, it follows from
Carathéodory’s theorem thatx is in fact a convex combination
of d or fewer of the vectorsx1, . . . ,xν .

The cardinality bound onU can now be proved as follows.
Proof of the Cardinality Bound on U in Proposition 16:

Let the discrete random variablesU andZ over the alphabets
U and Z, the functionφ : Y × Z → X̂d, and the function
ψ : X ×Z×U → X̂e satisfy (157) and (158). We shall exhibit
a random variablẽU over the alphabet

Ũ , {1, . . . ,K} (286)

and a functionψ̃ : X × Z × Ũ → X̂e satisfying

Ũ⊸−−(X,Z)⊸−−Y (287)

and theK distortion constraints

E
[

dk
(

X,φ(Y, Z), ψ̃(X,Z, Ũ)
)

]

≤ Dk, k ∈ {1, . . . ,K}.
(288)

Since the Markov conditions (157) and (287) imply

(Ũ , Z)⊸−−X⊸−−Y, (289)

this will allow us to replaceU andψ with Ũ and ψ̃ and thus
conclude the proof.

To describeŨ and ψ̃, we need some definitions. For each
pair (x, z) ∈ X × Z and eachk ∈ {1, . . . ,K}, define

D
(x,z)
k = Pr

[

dk
(

X,φ(Y, Z), ψ(X,Z,U)
)

∣

∣

∣ (X,Z) = (x, z)
]

= E
[

dk
(

x, φ(Y, z), ψ(x, z, U)
)]

, (290)

where the expectation is, by (157), with respect to
PU|XZ(·|x, z)PY |X(·|x). Define also the vector-valued func-
tion

h(x,z) : U → R
K
+

u 7→







E
[

d1
(

x, φ(Y, z), ψ(x, z, u)
)]

...
E
[

dK
(

x, φ(Y, z), ψ(x, z, u)
)]






(291)
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where the expectation is with respect toPY |X(·|x). Let S(x,z)

denote the image ofh(x,z):

S(x,z) ,
{

s ∈ R
K
+ : s = h(x,z)(u) for someu ∈ U

}

. (292)

By definitions (290)–(292)








D
(x,z)
1
...

D
(x,z)
K









∈ conv
(

S(x,z)
)

(293)

and, consequently, there exists a point

s̄(x,z) =









s̄
(x,z)
1
...

s̄
(x,z)
K









on the boundary of conv(S(x,z)) with

s̄
(x,z)
k ≤ D

(x,z)
k , k ∈ {1, . . . ,K}. (294)

SinceS(x,z) is compact (it contains at most|X̂e| points because
h(x,z)(u) depends onu only via ψ(x, z, u)), Lemma 25
implies that s̄(x,z) can be written as a convex combination
of K or fewer points inS(x,z):

s̄(x,z) =

K
∑

j=1

λj s
(x,z)
j , (295)

where s
(x,z)
1 , . . . , s

(x,z)
K ∈ S(x,z) and the coefficients

λ1, . . . λK ∈ [0, 1] sum to 1. Letu(x,z)1 , . . . , u
(x,z)
K ∈ U be

preimages ofs(x,z)1 , . . . , s
(x,z)
K so

h(x,z)
(

u
(x,z)
j

)

= s
(x,z)
j , j ∈ {1, . . . ,K}. (296)

We can now define the functioñψ as mapping every pair
(x, z) ∈ X × Z and everyj ∈ {1, . . . ,K} to

ψ̃(x, z, j) , ψ
(

x, z, u
(x,z)
j

)

. (297)

And we define the random variablẽU to be conditionally
independent ofY given (X,Z) with the conditional law

Pr
[

Ũ = j|X = x, Z = z
]

= λ
(x,z)
j , j ∈ {1, . . . ,K}.

(298)
The Markov condition (287) thus holds by definition. More-
over, (290), (291), and (294)–(298) combine to prove that
Ũ and ψ̃ also satisfy theK distortion constraints in (288):
denoting thek-th component of the vectorsj by sj,k, for
j, k ∈ {1, . . . ,K},

E
[

dk
(

x, φ(Y, z), ψ̃(x, z, Ũ)
)

]

=
K
∑

j=1

λjE
[

dk
(

x, φ(Y, z), ψ̃(x, z, j)
)

]

(299)

=

K
∑

j=1

λjE
[

dk
(

x, φ(Y, z), ψ(x, z, u
(x,z)
j )

)

]

(300)

=

K
∑

j=1

s
(x,z)
j,k (301)

= s̄k (302)

≤ D
(x,z)
k , (303)

where the first equality holds by (298), the second equality
by (297), the third equality by (291) and (296), the fourth
equality by (295), and the inequality at the end by (294).
Finally, from (303) we conclude that

E
[

dk
(

X,φ(Y, Z), ψ̃(X,Z, Ũ)
)

]

=
∑

x∈X ,z∈Z

Pr[X = x, Z = z]E
[

dk
(

x, φ(Y, z), ψ̃(x, z, Ũ)
)

]

(304)

≤
∑

x∈X ,z∈Z

Pr[X = x, Z = z]D
(x,z)
k (305)

≤ Dk (306)

where the last inequality follows from the definition ofD(x,z)
k

in (290) and the fact that the tuple(U,Z, φ, ψ) satisfies the
original distortion constraints in (158).
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