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Gaussian Half-Duplex Relay Networks:

improved constant gap and connections with

the assignment problem

Martina Cardone, Daniela Tuninetti, Raymond Knopp and Umer Salim

Abstract

This paper considers a general Gaussian relay network where a source transmits a message to a

destination with the help of N half-duplex relays. It proves that the information theoretic cut-set upper

bound to the capacity can be achieved to within 2.021(N +2) bits with noisy network coding, thereby

reducing the previously known gap. Further improved gap results are presented for more structured

networks like diamond networks.

It is then shown that the generalized Degrees-of-Freedom of a general Gaussian half-duplex relay

network is the solution of a linear program, where the coefficients of the linear inequality constraints are

proved to be the solution of several linear programs, known in graph theory as the assignment problem,

for which efficient numerical algorithms exist. The optimal schedule, that is, the optimal value of the

2N possible transmit-receive configurations/states for the relays, is investigated and known results for

diamond networks are extended to general relay networks. It is shown, for the case of 2 relays, that only
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3 out of the 4 possible states have strictly positive probability. Extensive experimental results show that,

for a general N -relay network with N ≤ 8, the optimal schedule has at most N +1 states with strictly

positive probability. As an extension of a conjecture presented for diamond networks, it is conjectured

that this result holds for any HD relay network and any number of relays.

Finally, a 2-relay network is studied to determine the channel conditions under which selecting the

best relay is not optimal, and to highlight the nature of the rate gain due to multiple relays.

Index Terms

Relay networks, Generalized Degrees-of-Freedom, Capacity to within a constant gap, Inner bound,

Outer bound, Half-duplex, Assignment Problem, Weighted Bipartite Matching Problem.

I. INTRODUCTION

Cooperation between nodes in a network has been proposed as a potential and promising

technique to enhance the performance of wireless systems in terms of coverage, throughput,

network generalized Degrees-of-Freedom (gDoF) and robustness / diversity. This last point is

of great importance, especially in military and satellite communications, where redundancy and

diversity play a significant role, by insuring a more reliable link between two networks (military

communication) and two ground stations (satellite communication), with respect to the point-to-

point communication.

The simplest form of collaboration can be modeled as a Relay Channel (RC) [2]. The RC

is a multi-terminal network where a source conveys information to a destination with the help

of one relay. The relay has no own data to send and its only purpose is to assist the source in

the transmission. Motivated by the undeniable practical importance of the RC, in this paper we

analyze a system where the communication between a source and a destination is assisted by

multiple relays. In particular, we mainly focus on the enhancement in terms of gDoF due to the

use of multiple Half-Duplex (HD) relays. A relay is said to work in HD mode if at any time /

frequency instant it can not simultaneously transmit and receive. The HD modeling assumption is

at present more practical than the Full-Duplex (FD) one. This is so because practical restrictions

arise when a node can simultaneously transmit and receive, such as for example how well

self-interference can be canceled, making the implementation of FD relays challenging [3], [4].
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A. Related Work

The RC model was first introduced by van der Meulen [5] in 1971. Despite the significant

research efforts, the capacity of the general RC is still unknown. In their seminal work [2], Cover

and El Gamal proposed a general outer bound, now known as the max-flow min-cut outer bound

or cut-set for short, and two achievable schemes: decode-and-forward (DF) and compress-and-

forward (CF). The cut-set outer bound was shown to be tight for the degraded RC, the reversely

degraded RC and the semi-deterministic RC [2], but it is not tight in general [6].

Although more study has been conducted for FD relays, there are some important references

threating HD ones. In [7], the author studied the time-division duplexing RC. Both an outer

bound, based on the cut-set argument, and an inner bound, based on partial decode-and-forward

(PDF) were developed. In [7], the time instants where the relay switches from listen to transmit

and vice versa are assumed fixed, i.e., a priori known by all nodes; we refer to this mode

of operation as deterministic switch. In [8], it was shown that higher rates can be achieved by

considering a random switch at the relay. In this way the randomness that lies into the switch may

be used to transmit (at most one bit per channel use of) further information to the destination. In

[8], it was also shown how the memoryless FD framework incorporates the HD one as a special

case, and as such there is no need to develop a separate theory for networks with HD relays.

The pioneering work of [2] has been extended to networks with multiple relays. In [9], the

authors proposed several inner and outer bounds for FD relay networks as a generalization of

DF, CF and the cut-set bound; it was shown that DF achieves the ergodic capacity of a wireless

Gaussian network with phase fading if phase information is locally available and the relays are

close to the source node.

The exact characterization of the capacity region of a general memoryless network is chal-

lenging. Recently it has been advocated that progress can be made towards understanding the

capacity by showing that achievable strategies are provably close to (easily computable) outer

bounds [10]. As an example, in [11], the authors studied FD Gaussian relay networks with

N + 2 nodes (i.e., N relays, a source and a destination) and showed that the capacity can

be achieved to within
∑N+2

k=1 5min{Mk, Nk} bits with a network generalization of CF named

quantize-remap-and-forward (QMF), where Mk and Nk are the number of transmit and receive

antennas, respectively, of node k. Interestingly, the gap result remains valid for static and ergodic
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fading networks where the nodes operate either in FD mode or in HD mode; however [11] did

not account for random switch in the outer bound. In [12], the authors demonstrated that the

QMF scheme can be realized with nested lattice codes. Moreover they showed that for single

antenna HD networks with N relays, by following the approach of [8], i.e., by also accounting

for random switch in the outer bound, the gap is 5N bits. Recently, for single antenna networks

with N FD relays, the 5(N + 2) bits gap of [11] was reduced to 2 × 0.63(N + 2) bits (where

the factor 2 accounts for complex-valued inputs) thanks to a novel ingenious generalization of

CF named noisy network coding (NNC) [13].

The gap characterization of [13] is valid for a general Gaussian network with FD relays; the

gap grows linearly with the number of nodes in the network, which could be a too coarse capacity

characterization for networks with a large number of nodes. Smaller gaps can be obtained for

more structured networks. For example, a diamond network [14] consists of a source, a destination

and N relays where the source and the destination can not communicate directly and the relays

can not communicate among themselves. In other words, a general Gaussian relay network with

N relays is characterized by (N+2)(N+1) generic channel links, while a diamond network has

only 2N non-zero channel links. In [14] the case of N = 2 relays was studied and an achievable

region based on time sharing between DF and amplify-and-forward (AF) was proposed. The

capacity of a general FD diamond network is known to within 2 log(N + 1) bits [15]. If, in

addition, the FD diamond network is symmetric, that is, all source-relay links are equal and all

relay-destination links are equal, the gap is less than 2 bits for any N [16].

HD diamond networks have been studied as well. In a HD diamond network with N relays,

there are 2N possible combinations of listening / transmitting states, since each relay, at a given

time instant, can either transmit or receive. For the case of N = 2 relays, [17] showed that out

of 2N = 4 possible states only N + 1 = 3 states suffice to achieve the cut-set upper bound to

within less than 4 bits; we refer to the states with strictly positive probability as active states.

The achievable scheme of [17] is a clever extension of the two-hop DF strategy of [18]. In [17]

a closed-form expression for the aforementioned active states, by assuming no power control

and deterministic switch, was derived by solving the dual linear program (LP) associated with

the LP derived from the cut-set upper bound. The work in [19] considered a general diamond

network with N = 2 relays and an ‘antisymmetric’ diamond network with N = 3 relays and

showed that a significant fraction of the capacity can be achieved by: (i) selecting a single relay,
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or (ii) selecting two relays and allowing them to work in a complementary fashion as in [17].

Inspired by [17], the authors of [19] also showed that, for a specific HD diamond network with

N = 3 relays, at most N +1 = 4 states out of the 2N = 8 possible ones are active. The authors

also numerically verified that for a general HD diamond network with N ≤ 7 relays, at most

N + 1 states are active and conjectured that the same holds for any number of relays.

Relay networks were also studied in [20], where an iterative algorithm was proposed to

determine the optimal fraction of time each HD relay transmits/receives by using DF under

deterministic switching mechanism.

B. Contributions

In this work we study a general Gaussian HD relay network, whose exact capacity is unknown,

by following the approach proposed in [8]. Our main contributions can be summarized as follows:

1) We prove that NNC is optimal to within 2.021(N + 2) bits. This gap is smaller than the

5N bits gap available in the literature [10], [12] for any N ≥ 2. We also show that the new

gap for the HD relay network may be further decreased by considering more structured

systems, such as the diamond network, for which the gap is of order N .

2) The bounding technique we use is tighter than the one proposed in [13] and, as a by-product

of our approach, we reduce the gap for a general multicast complex-valued Gaussian FD

network with K nodes from 1.26K bits to 1.021K bits.

3) In order to determine the gDoF of the channel, one needs to find a tight high-SNR

approximation for the different mutual information terms involved in the cut-set upper

bound. As a result of independent interest, we show that such tight approximations can

be found as the solution of Maximum Weighted Bipartite Matching (MWBM) problems,

or assignment problems [21]. The MWBM problem is a special LP for which efficient

polynomial-time algorithms, such as the Hungarian algorithm [22], exist. Although not

explored here, this technique may be useful in solving other similar problems such as that

of finding the gDoF of a general Multiple-Input-Multiple-Output (MIMO) system.

4) We extend the results of [17] from a 2-relay diamond network to a general 2-relay

network and we show that, out of the 2N = 4 possible states, at most N + 1 = 3 are

active. Similarly to the HD diamond network studied in [19], we verify through extensive

numerical evaluations that, for a general relay network with N ≤ 8 relays, at most N + 1
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states are active. Based on this evidence, we conjecture that the conjecture of [19] holds

for any HD relay network.

5) We finally consider a general relay network with N = 2 relays. We highlight under which

channel conditions a best-relay selection scheme is strictly suboptimal in terms of gDoF

and we gain insight into the nature of the rate gain attainable in networks with multiple

relays. For example, we show when the interaction between the relays, which is impossible

in diamond networks, increases the gDoF.

C. Paper Organization

The rest of the paper is organized as follows. Section II describes the channel model and

defines the gDoF and the notion of capacity to within a constant gap. Section III shows that the

cut-set upper bound and the NNC lower bound for a general Gaussian HD relay network are to

within a constant gap from each another. Section IV proves the equivalence between the problem

of finding the coefficients of the linear inequality constraints of the LP derived from the cut-set

upper bound and the MWBM problem; it also shows that, for a 2-relay network, the number of

active states in the cut-set upper bound is at most 3; it finally presents a conjecture regarding the

maximum number of active states sufficient to characterize the cut-set upper bound for a general

relay network and for any number of relays. Section V provides an example of a HD relay

network with N = 2 relays; it determines under which channel conditions the gDoF achieved

with the best-relay selection strategy is strictly smaller than the gDoF attained by exploiting

both relays; it provides insights into the synergies of multiple relays. Section VI concludes the

paper.

Notation

We use the notation convention of [23]: [n1 : n2] is the set of integers from n1 to n2 ≥ n1,

[x]+ := max{0, x} for x ∈ R; Y j is a vector of length j with components (Y1, . . . , Yj); for an

index set A we let YA = {Yj : j ∈ A}; 0j is a column vector of length j of all zeros; 1j is a

column vector of length j of all ones; Ij is the identity matrix of dimension j; f1(x)
.
= f2(x)

means that limx→∞ f1(x)/f2(x) = 1. |A| indicates the determinant of the matrix A or the

cardinality of the set A, which one is usually clear from the context, while ‖a‖ is the Euclidean

length of the vector a. To indicate a sub matrix of the matrix A where only the rows indexed
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by the set R and the columns indexed by the set C are retained, we use the Matlab-inspired

notation AR,C . Moreover, for a square matrix A, diag[A] is a vector containing the diagonal

elements of A, while for a vector a, diag[a] is a diagonal square matrix with the elements of

a on the main diagonal. X ∼ N (µ, σ2) indicates that X is a proper-complex random variable

distributed normally with mean µ and variance σ2.

II. SYSTEM MODEL

A. General memoryless relay network

A memoryless relay network has one source (node 0), one destination (node N + 1), and N

relays indexed from 1 to N . It consists of N + 1 input alphabets (X1, · · · ,XN ,XN+1) (here Xi
is the input alphabet of node i except for the source/node 0 where, for notation convenience, we

use XN+1 rather than X0), N + 1 output alphabets (Y1, · · · ,YN ,YN+1) (here Yi is the output

alphabet of node i), and a transition probability PY[1:N+1]|X[1:N+1]
. The source has a message W

uniformly distributed on [1 : 2nR] for the destination, where n denotes the codeword length and

R the transmission rate in bits per channel use (logarithms are in base 2). At time i, i ∈ [1 : n],

the source maps its message W into a channel input symbol XN+1,i (W ), and the k-th relay,

k ∈ [1 : N ], maps its past channel observations into a channel input symbol Xk,i

(
Y i−1
k

)
. The

channel is assumed to be memoryless, that is, the following Markov chain holds for all i ∈ [1 : n]

(W,Y i−1
[1:N+1], X

i−1
[1:N+1])→ X[1:N+1],i → Y[1:N+1],i.

At time n, the destination outputs an estimate of the message based on all its channel observations

as Ŵ
(
Y n
N+1

)
. The capacity is the largest nonnegative rate such that P[Ŵ 6=W ]→ 0 as n→+∞.

In this general memoryless framework, each relay can listen and transmit at the same time,

i.e., it is a FD node. HD channels are a special case of the memoryless FD framework in the

following sense [8]. With a slight abuse of notation compared to the previous paragraph, we

let the channel input of the k-th relay, k ∈ [1 : N ], be the pair (Xk, Sk), where Xk ∈ Xk as

before and Sk ∈ {0, 1} is the state random variable that indicates whether the k-th relay is in

receive-mode (Sk = 0) or in transmit-mode (Sk = 1). In the HD case the transition probability

is specified as PY[1:N+1]|X[1:N+1],S[1:N ]
.
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B. The Gaussian HD relay network

The single-antenna complex-valued power-constrained Gaussian HD relay network is described

by the input/output relationship

Y = HeqX+ Z, (1a)

Heq :=

IN − diag[S] 0N

0TN 1

 H

diag[S] 0N

0TN 1

 (1b)

where

• Y := [Y1, . . . , YN , YN+1]
T ∈ CN+1 is the vector of the received signals.

• X := [X1, . . . , XN , XN+1]
T ∈ CN+1 is the vector of the transmitted signals (recall that,

although the source is referred to as node 0, its input is indicated as XN+1 rather than X0).

Without loss of generality, we assume that the channel inputs are subject to the average

power constraint E [|Xk|2] ≤ 1, k ∈ [1 : N + 1].

• S := [S1, . . . , SN ] ∈ {0, 1}N is the vector of the binary relay states, which takes into account

if the k-th relay is receiving (Sk = 0) or transmitting (Sk = 1) for k ∈ [1 : N ].

• H ∈ C(N+1)×(N+1) is the constant channel matrix known by all terminals defined as

H :=

Hr→r Hs→r

Hr→d Hs→d

 . (2)

The entry in position (i, j) of the channel matrix in (2) represents the channel from node

j to node i, (i, j) ∈ [1 : N + 1]2, in particular:

– Hr→r ∈ CN×N defines the network connections among relays, i.e., [Hr→r]ij , (i, j) ∈
[1 : N ]2, is the channel gain from the j-th relay to the i-th relay. Notice that the entries

on the main diagonal of Hr→r do not matter for channel capacity, since the k-th relay,

k ∈ [1 : N ] can remove the ‘self-interference’ Xk from Yk.

– Hs→r ∈ CN×1 is the column vector which contains the channel gains from the source

to the relays, i.e., [Hs→r]i,1, i ∈ [1 : N ], is the channel gain from the source to the i-th

relay;

– Hr→d ∈ C1×N is the row vector which contains the channel gains from the relays to

the destination, i.e., [Hr→d]1,i, i ∈ [1 : N ], is the channel gain from the i-th relay to

the destination;
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– Hs→d ∈ C1×1is the channel gain between the source and the destination (recall that by

our notation the source input is indicated as XN+1 rather than X0).

• Z := [Z1, . . . , ZN , ZN+1]
T ∈ CN+1 is the jointly Gaussian noise vector. Without loss

of generality, the noises are assumed to have zero mean and unit variance. Furthermore

we assume, not without loss of generality [24], that the noises are independent, i.e., the

covariance of Z is the identity matrix.

The capacity of the Gaussian HD relay network in (1) is not known in general. In order to

evaluate the ultimate performance of this system we make use of two metrics: the gDoF and the

capacity to within a constant gap. The capacity to within a constant gap is defined as:

Definition 1. The capacity C of the Gaussian HD relay network in (1) is said to be known to

within GAP bits if one can show an achievable rate R(in) and an outer bound R(out) such that

R(in) ≤ C ≤ R(out) ≤ R(in) + GAP, (3)

where GAP is a constant that does not depend on the channel gain matrix H in (1).

Knowing the capacity to within a constant gap implies the exact knowledge of the gDoF

defined as:

Definition 2. The gDoF of the Gaussian HD relay network in (1) is defined as

d := lim
SNR→+∞

C

log(1 + SNR)
, (4)

where C is the capacity and SNR ∈ R+ parameterizes the channel gains as |hij|2 = SNRβij , for

some non-negative βij , (i, j) ∈ [1 : N + 1]2.

The gDoF in (4) is an exact characterization of the capacity at high-SNR, while the capacity

to within a constant gap in (3) quantifies how far inner and outer bounds are in the worst SNR

scenario.

III. CAPACITY TO WITHIN A CONSTANT GAP

This section is devoted to the capacity characterization of the Gaussian HD relay network

in (1) to within a constant gap. To accomplish this, we first adapt the cut-set upper bound [9]

and the NNC lower bound [13] to the HD case by following the approach proposed in [8]. Then

we show that these bounds are at most a constant number of bits apart. Our result is:
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Theorem 1. The cut-set upper bound for the HD relay network with N relays is achievable to

within

GAP ≤ 2.021(N + 2) bits, (5)

by using as achievable scheme NNC with deterministic switch.

Proof: Here we prove a general gap result for multicast single-antenna complex-valued

power-constrained Gaussian HD networks in the spirit of [13, Theorem 4]. The channel model

is defined as in the Section II-B except that each node k ∈ [1 : K] has an independent message

of rate Rk for the nodes indexed by D 6= ∅ so that the channel input/output relationship reads

Y = (IK − S) H S X+Z. The gap for a HD relay network with N relays is a special case of

this setup for K = N + 2.

The capacity of a HD Gaussian multicast network can be lower bounded by adapting the

NNC scheme for the general memoryless network [13] to the HD case by following [8]. For

each A ⊆ [1 : K]\∅ and such that Ac∩D 6= ∅, similarly to [13, eq.(20)], the NNC lower bound

gives ∑
i∈A

Ri ≥ I(XA; ŶAc|XAc , S[1:K])− I(YA; ŶA|ŶAc , X[1:K], S[1:K])

≥
2K∑
s=1

λs log

∣∣∣∣I|Ac| + 1

1 + σ2
HA,sH

H
A,s

∣∣∣∣− |A| log(1 + 1

σ2

)
, (6)

where λs := P[S[1:K] = s] ∈ [0, 1],∀s ∈ [1 : 2K ] :
∑2K

s=1 λs = 1, where “S[1:K] = s” is a

shorthand notation for S[1:K] = [S1, . . . , SK ] where Sk ∈ [0 : 1], ∀k ∈ [1 : K], are such that

s = 1+
∑K

k=1 Sk2
K−k (for example “S[1:5] = 8” means S[1:5] = [S1, . . . , S5] = [0, 0, 1, 1, 1] since

8−1 = 0 ·24+0 ·23+1 ·22+1 ·21+1 ·20; similarly diag[s]|s=8 = diag
[
[0, 0, 1, 1, 1]

]
). The matrix

HA,s is defined as HA,s :=
[
(IK−diag[s]) H diag[s]

]
Ac,A. In all states s ∈ [1 : 2K ], we consider

i.i.d. N (0, 1) inputs, time sharing random variable Q set to Q = S[1:K] (with this choice the

nodes can coordinate), and compressed output Ŷk := Yk + Ẑk, k ∈ [1 : K], for Ẑk ∼ N (0, σ2)

independent of all other random variables (note that the variance of Ẑk does not depend on the

user index k).
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The cut-set upper bound in [9] adapted to the HD case [8] gives, similarly to [13, eq.(19)],∑
i∈A

Ri ≤ I(XA, SA;YAc |XAc , SAc)

≤ I(SA;YAc) + I(XA;YAc |XAc , S[1:K])

≤ H(SA) +
2K∑
s=1

λs log
∣∣I|Ac| +HA,sKA,sH

H
A,s
∣∣

(a)

≤ |A| log(2) +
2K∑
s=1

λs log

∣∣∣∣I|Ac| + 1

1 + σ2
HA,sH

H
A,s

∣∣∣∣
+

2K∑
s=1

λsRank[HA,s] log

(
emax

{
1,

1 + σ2

e

|A|
Rank[HA,s]

})min

{
1+σ2

e
,
Rank[HA,s]
|A|

}

(b)

≤ |A| log(2) +
2K∑
s=1

λs log

∣∣∣∣I|Ac| + 1

1 + σ2
HA,sH

H
A,s

∣∣∣∣
+min{|A|, |Ac|} log

(
emax

{
1,

1+σ2

e

|A|
min{|A|, |Ac|}

})min
{

1+σ2

e
,
min{|A|,|Ac|}

|A|

}
, (7)

for all A ⊆ [1 : K]\∅ and such that Ac ∩ D 6= ∅ (see [13, eq.(4)]), where KA,s represents

the covariance matrix of XA conditioned on S[1:K] = s. The inequality in (a) follows since the

entropy of a random variable can be upper bounded with the support of the variable and by using

[13, Lemma 1] for some σ2 ≥ e− 2. The inequality in (b) is due to the fact that the function is

increasing with respect to the rank of the channel matrix and the rank is upper bounded by the

minimum between the number of rows and of columns.

By letting γ = 1 + σ2 ≥ e − 1 and µ = |A|
K

, the gap between the cut-set upper bound in (7)

and the NNC lower bound in (6) becomes

GAP ≤ K

(
min
γ≥e−1

max
µ∈[0:1]

{
µ log

(
2γ

γ − 1

)
+

+min {µ, 1− µ}min

{
γ

e
,
min{µ, 1− µ}

µ

}
log

(
max

{
e,

γµ

min{µ, 1− µ}

})})
(c)
=
K

2

(
min
γ≥e−1

{
log

(
2γ

γ − 1

)
+min

{γ
e
, 1
}
log
(
emax

{
1,
γ

e

})})
(d)
= 2.021K bits,

where the maximum over µ ∈ [0, 1] is attained at µopt = 1
2

and the minimum over γ is attained

at γopt =
√
4e+1+1

2
and these results lead to the equalities in (c) and (d), respectively.
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We observe that the gap in (5) improves, for any number of relays greater than one, on the

previously known gap result of 5N bits [12]. Moreover:

Remark 1. The gap result in (5) for N=1 gives GAP≤6.0630 bits, which is greater than the

1.61 bits gap we found for the single relay case in [25]. This is due to the fact that the bounding

steps in the special case of N=1 are tighter than those we used here for a general N .

Note also that for a single relay, PDF is optimal to within 1 bit [25]. However, PDF does

not seem to be easily extendable to networks with an arbitrary number of relays [9], which is

the main motivation for considering NNC here.

Remark 2. In a preliminary version of this work [1], by using a bounding technique as in [26,

pages 20-5, 20-7] we obtained

GAP ∼= N + 2

2
log (4(N + 2)) bits. (8)

As shown in Fig. 1 the gap in (5) is smaller that the one in (8) for N ≥ 2. This is accomplished

thanks to the tighter bound from [13, Lemma 1].

Remark 3. From [13], the gap of a general K-user multicast complex-valued FD Gaussian

network is (2 × 0.63)K. However, by using the tighter bound Rank[HA,s] ≤ min{|A|, |Ac|},
instead of Rank[HA,s] ≤ |A|, the gap can be reduced to (2× 0.5105)K.

A smaller gap than the one in (5) may be obtained by deriving tighter bounds on specific

network topologies. For example, in [15] it was found that for a Gaussian FD diamond network

with N relays the gap is of the order log(N), rather than linear in N [13]. Moreover, for a

symmetric FD diamond network with N relays the gap does not depend on the number of relays

and it is upper bounded by 2 bits [16]. The key difference between a general relay network

and a diamond network is that for each subset A we have Rank[HA] ≤ 2, i.e., the rank of any

channel sub-matrix does no longer depend on the cardinality of the index set A. Based on the

simpler topology of a diamond network we have:

Proposition 1. The cut-set upper bound for the Gaussian HD diamond network with N relays

is achievable to within

GAP ≤ 4

N + 2
log

(
N + 2

2
+

(N + 2)3

8

)
+ (N + 2) log

(
2 +

8

(N + 2)2

)
(9)
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bits.

Proof: The proof can be found in Appendix A.

When N � 1, the gap in (9) can be approximated as GAP ∼= N bits. As expected, the gap

in (9) for the HD diamond network is in general (for N ≥ 3) smaller than that in (5) computed

for the general HD relay network; this is in line with what happens in the FD case. However, in

FD for the diamond network the gap is logarithmic in N [15], while the gap in (9) still grows

linearly with N . This is in part due to the fact that, in the HD outer bound, there is an entropy

term due to the random switch that is maximized by considering a uniform probability over the

all possible listen / transmit states that, for the multicast network, are 2N+2 (see Appendix A).

As we shall see in the next section, for a general HD network with N relays, only N + 1

states, out of the possible 2N states, appear to be needed to characterize the cut-set upper bound.

It is subject of current investigation on how to use this observation to develop bounds leading

to a smaller gap.

IV. ANALYSIS OF THE OPTIMAL SCHEDULE

In general, for a N -relay network, 2N states are possible. A capacity achieving scheme must

optimize the fraction of time each of these states occurs. In [17], it was proved that for a diamond

network with N = 2 relays, out of the 2N = 4 possible states, at most N+1 = 3 have a non-zero

probability and are sufficient to characterize the cut-set upper bound, i.e., we say that there are

N + 1 = 3 active states. In [19], the authors extended the result of [17] to a special case of

diamond network with N = 3 relays; based on numerical evidences, [19] conjectured that for a

N -relay diamond network out of the 2N possible states at most N +1 states are active. Here we

extend these results to a general Gaussian HD relay network as follows. The claim “out of 2N

possible states only N + 1 states are active as far as gDoF is concerned” is proved analytically

for N = 2, shown to hold by numerical evaluations for N ≤ 8 and conjectured to hold for any

N . If the conjecture were true, it would show that HD relay networks have intrinsic properties

regardless of their topology, i.e., known results for diamond networks are not a consequence of

the simplified network topology.

In order to determine the gDoF we must find a tight high-SNR approximation for the different

MIMO-type mutual information terms involved in the cut-set upper bound (see Section III eq.(7)).
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As a result of independent interest, besides the application to the Gaussian HD relay network

studied in this paper, we first show that such an approximation can be found as the solution of

a Maximum Weighted Bipartite Matching (MWBM) problem.

A. The maximum weighted bipartite matching (MWBM) problem

In graph theory, a weighted bipartite graph, or bigraph, is a graph whose vertices can be

separated into two sets such that each edge in the graph has exactly one endpoint in each set.

Moreover, a non-negative weight is associated with each edge in the bigraph [27]. A matching,

or independent edge set, is a set of edges without common vertices [27]. The MWBM problem,

or assignment problem, is defined as a matching where the sum of the edge weights in the

matching has the maximal value [21]. The Hungarian algorithm is a polynomial time algorithm

that efficiently solves the assignment problem [22]. Equipped with these definitions, we now

show the following high-SNR approximation of the MIMO capacity:

Theorem 2. Let H ∈ Rk×n be a full-rank matrix, where without loss of generality k ≤ n.

Let Sn,k be the set of all k-combinations of the integers in [1 : n] and Pn,k be the set of all

k-permutations of the integers in [1 : n]. Then,

|Ik +HHH | =
∑
ς∈Sn,k

∑
π∈Pn,k

k∏
i=1

|hi,π(i)|2︸ ︷︷ ︸
=SNR

∑k
i=1

[Bς ]i,π(i)

+ T
.
= SNRMWBM(B), (10)

MWBM(B) := max
ς∈Sn,k

max
π∈Pn,k

k∑
i=1

[Bς ]i,π(i), (11)

where B is the SNR-exponent matrix defined as [B]ij = βij ≥ 0 : |hij|2 = SNRβij , Bς is the

square matrix obtained from B by retaining all rows and those columns indexed by ς , and T is

the sum of terms that overall have an exponential behavior that is less than MWBM(B).

Proof: The proof can be found in Appendix B. The expression in (11) is a possible way of

writing the MWBM problem.

Theorem 2 establishes an interesting connection between the capacity of a MIMO channel

(with independent inputs) and graph theory. Note that the high-SNR expression found in The-

orem 2 holds for correlated inputs as well, as long as the average power constraint is a finite

constant. More importantly, Theorem 2 allows to move from DoF, where all exponents βij have
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the same value, to gDoF, where different channel gains have different exponential behavior. DoF

is essentially a characterization of the rank of the channel matrix; gDoF captures the potential

advantage due to ‘asymmetric’ channel gains. gDoF, to the best of our knowledge, has been

investigated so far only for Single-Input-Single-Output (SISO) networks with very few number

of nodes; we believe that the reason is that in these cases one has only to consider equivalent

Multiple-Input-Single-Output (MISO) and Single-Input-Multiple-Output (SIMO) channels, or to

explicitly deal with determinants of matrices with small dimensions. Our result extends the gDoF

analysis to any MIMO channel as we explain through some examples:

1) Case k = 1 ≤ n: In a MISO or SIMO channel, with channel vector h := [h1, . . . , hn] such

that |hk|2 = SNRβk , k ∈ [1 : n], one trivially has

log(1 + ||h||2) = log

(
1 +

n∑
i=1

SNRβi

)
SNR�1.
= log

(
SNRmaxi∈[1:n]{βi}

)
.

The corresponding MWBM problem has one set of vertices A1 consisting of k = |A1| = 1

node and the other set of vertices A2 consisting of n = |A2| ≥ 1 nodes. The weights of the

edges connecting the single vertex in A1 to the n vertices in A2 can be represented as the

non-negative vector B = [β1, . . . , βn]. Clearly, the optimal MWBM(B) = maxi∈[1:n]{βi}
assigns the single vertex in A1 to the vertex in A2 that is connected to it through the edge

with the maximum weight.

2) Case k = n = 2: As another example from the 2-user interference channel literature,

consider the cut-set sum-rate upper bound [28]

log
(
I2 +HHH

) SNR�1.
= log

(
SNRmax{β13+β24,β23+β14}

)
,

H :=

h13 h23

h14 h24

 =

SNRβ13/2 ejθ13 SNRβ23/2 ejθ23

SNRβ14/2 ejθ14 SNRβ24/2 ejθ24

 .
The corresponding MWBM problem has one set of vertices A1 consisting of k = |A1| = 2

nodes (for future references let us refer to these vertices as nodes 1 and 2 – see first

subscript in the channel gains) and the other set of vertices A2 consisting also of n =

|A2| = 2 nodes (for future references let us refer to these vertices as nodes 3 and 4 – see

second subscript in the channel gains). The weights of the edges connecting the vertices in

A1 to the vertices in A2 can be represented as the non-negative weights βji, i = 3, 4, j =

1, 2. In this example, one possible matching assigns node 1 to node 3 and node 2 to node
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4 (giving total weight β13+β24), while the other possible matching assigns node 2 to node

3 and node 1 to node 4 (giving total weight β23+β14); the best assignment is the one that

gives the largest total weight.

Notice that the MWBM is a tight approximation of the 2× 2 MIMO capacity only when

the channel matrix is full rank, see [28, eq.(5) 1st line], but it is loose when the channel

matrix is rank deficient, see [28, eq.(5) 2nd line, and compare with eq.(11)]. The reason

is that the MWBM can not capture the impact of phases in MIMO situations. To exclude

the case of a rank deficient channel matrix from our general setting for any value of k

and n, we may proceed as in [29, page 2925]. Namely, we pose a reasonable distribution,

such as for example the i.i.d. uniform distribution, on the phases θji, i = 3, 4, j = 1, 2,

so that almost surely the channel matrix is full rank.

3) Case k = 2, n = 3: The MWBM allows to find the high-SNR approximation of any MIMO

system capacity. As an example, which to the best of our knowledge is not known from

the literature, consider a full-rank MIMO systems n = 3 transmit antennas and k = 2

receive antennas and with SNR-exponent matrix B =

β11 β12 β13

β21 β22 β23

. In this case we

have

MWBM(B) = max
{
β11 + β22, β11 + β23, β12 + β21, β12 + β23, β13 + β21, β13 + β22

}
,

which can also be obtained by tedious direct computation of the limiting value of the

corresponding log-det formula.

B. The gDoF for a general N -relay network

With Theorem 2 we can now express the gDoF d in (4) of the Gaussian HD relay network

in (1) as a LP. In particular, let

fT := [0T2N , 1] (12a)

xT := [λ1, . . . , λ2N , d], (12b)
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then

d = max{fT x} (12c)

s.t.

−A 12N

1T2N 0

x ≤ f , x ≥ 0, (12d)

where the non-negative matrix A ∈ R2N×2N has entries (recall that, although the source is

referred to as node 0, its input is indicated as XN+1 rather than X0)

[A]ij := lim
SNR→+∞

I(XAi∪{N+1};YAci∪{N+1}|XAci , S[1:N ] = sj)

log(1 + SNR)
. (12e)

By a simple application of Theorem 2 we have

Theorem 3. [A]ij = MWBM(BAi,sj).

The notation in eq.(12e) and in Theorem 3 is as follows. B indicates the SNR-exponent matrix

defined as [B]ij = βij ≥ 0 : |hij|2 = SNRβij (defined in (2)), and the indices (i, j) have the

following meaning. Index i refers to a “cut” in the network and index j to a “state of the relays”.

Both indices range in [1 : 2N ] and must be seen as the decimal representation of a binary number

with N bits. Ai, i ∈ [1 : 2N ], is the set of those relays who have a one in the corresponding

binary representation of i − 1 (example for N = 3: for i − 1 = 6 = 1 · 22 + 1 · 21 + 0 · 20 we

have A7 = {1, 2} and therefore Ac7 = {3}). sj , j ∈ [1 : 2N ], sets the state of a relay to the

corresponding bit in the binary representation of j − 1 (example for N = 3: for j − 1 = 6 we

have s7 = [1, 1, 0], which means that relays 1 and 2 are transmitting and relay 3 is receiving).

Finally,

BAi,sj :=

IN − diag[sj] 0N

0TN 1

 H

diag[sj] 0N

0TN 1


{N+1}∪Aci ,{N+1}∪Ai

.

One interesting question is how many λj , i.e., λj is the fraction of time the network is in state

j ∈ [1 : 2N ], are strictly positive [17], [19]. In [17], the authors analyzed the diamond network

with 2 relays and showed that out of the 4 possible states only 3 states are active. The proof

considers the dual of the LP in (12). Here we extend the result of [17] to the fully-connected

HD relay network with 2 relays; our proof identifies the channel conditions under which setting

the probability of one of the states to zero is without loss of optimality. We have:
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Theorem 4. For a general HD relay network with 2 relays, there exists an optimal schedule

that optimizes d in (12c) with at most 3 active states.

Proof: The proof can be found in Appendix C, which uses the notation in (13) where: αsi

is the SNR-exponent on the link from the source to relay i, i ∈ [1 : 2], αid is the SNR-exponent

on the link from relay i, i ∈ [1 : 2], to the destination, βi is the SNR-exponent on the link

from relay j to relay i, (i, j) ∈ [1 : 2]2 with j 6= i, and the direct link from the source to the

destination has SNR-exponent normalized to 1.

We conjecture that for a general HD relay network with any number of relays Theorem 4

continues to hold, similarly to the conjecture presented in [19] for the diamond network. Namely:

Conjecture. For a general HD relay network with N relays, there always exists an optimal

schedule that maximizes the gDoF with at most N + 1 active states.

The conjecture holds for the case of 2 relays as proved in Theorem 4. We proceeded through

the following numerical evaluations: for each value of N ≤ 8, we generated uniformly at random

the SNR exponents of the channel gains, we computed the entries of A in (12) with the Hungarian

algorithm, we solved the LP in (12) with the simplex method and we counted the number of

constraints that equal the optimal gDoF (which is a known upper bound on the number of non

zero entries of an optimal solution). The minimum and the maximum number of active states

were found to be 1 and N + 1, respectively, as shown in Fig. 2, which also shows the average

number of active states computed by giving an equal weight to all the tried channels. Note that

the minimum number of active states for a generic HD relay network with N relays has to be at

least N +1. To see this, consider a ‘line network’ where the source can only communicate with

relay 1, relay 1 can only communicate with relay 2, etc, and relay N can only communicate

with the destination; in a line network, N +1 non-zero states are necessary to enable the source

to communicate with the destination. It is interesting that the minimum number of active states

given by N +1 also appears to be the required maximum number of active states for achieving

the optimal gDoF-wise network operation. If the reduction of the number of active states from

exponential to linear as conjectured holds, it offers a simpler and more amenable way to design

the network [19].

October 12, 2018 DRAFT



19

V. FULLY-CONNECTED RELAY NETWORK WITH N = 2 RELAYS

To gain insights into how relays are best utilized, we consider a network with N = 2 relays.

The analysis presented here differs from the one in [19] in the following: (i) we study the fully-

connected network, while in [19] only the diamond network is treated; (ii) we explicitly find

under which channel conditions the gDoF performance is enhanced by exploiting both relays

instead of using only the best one, and (iii) we provide insights into the nature of the rate gain

in networks with multiple HD relays.

We consider the parameterization in (13) where, in order to increase the readability of the

document, the SNR-exponents are indicated as

[
log(|hij|2)
log(SNR)

]
(i,j)∈[1:3]2

=


? β1 αs1

β2 ? αs2

α1d α2d 1

 , (13)

where ? denotes an entry that does not matter for channel capacity (because a relay can remove

the ‘self-interference’), αsi is the SNR-exponent on the link from the source to relay i, i ∈ [1 : 2],

αid is the SNR-exponent on the link from relay i, i ∈ [1 : 2], to the destination, βi is the SNR-

exponent on the link from relay j to relay i, (i, j) ∈ [1 : 2]2 with j 6= i, and the direct link from

the source to the destination (entry in position (3,3) in (13)) has SNR-exponent normalized to

1 without loss of generality. Note that in order to consider a network without a direct link it

suffices to consider all the other SNR-exponents to be larger than 1, or simply replace ‘1’ with

‘0’ in the discussion in the rest of the section.

We next derive the gDoF in both the FD and HD cases.

A. The Full-Duplex Case

For the FD case, the cut-set bound is achievable to within 2× 0.5105× 4 = 4.084 bits with

NNC (see Remark 3). As a consequence, it can be verified that the gDoF for the FD case is

d
(FD)
N=2 = min

{
max {1, αs1, αs2} ,max {αs2 + α1d, β2 + 1} ,

max {αs1 + α2d, β1 + 1} ,max {1, α1d, α2d}
}
≥ 1. (14)

Notice that the gDoF in (14) is no smaller than the gDoF that could be achieved by not using the

relays, that is, by communicating directly through the direct link to achieve gDoF = 1. Notice
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also that the gDoF in (14) does not change if we exchange αs1 with α2d and αs2 with α1d, i.e.,

if we swap the role of the source and destination. We aim to identify the channel conditions

under which using both relays strictly improves the gDoF compared to the best-relay selection

policy (which includes direct transmission from the source to the destination as a special case)

that achieves

d
(FD)
N=2,best relay = max

{
1,min{αs1, α1d},min{αs2, α2d}

}
∈ [1, d

(FD)
N=2]. (15)

We distinguish the following cases:

Case 1): if

either

 αs1 ≥ αs2

α1d ≥ α2d

or

 αs1 < αs2

α1d < α2d

then, since one of the relays is ‘uniformly better’ than the other, we immediately see that

d
(FD)
N=2 = d

(FD)
N=2,best relay, so in this regime selecting the best relay for transmission is gDoF optimal.

Case 2): if not in Case 1, then we are in

either

 αs1 ≥ αs2

α1d < α2d

or

 αs1 < αs2

α1d ≥ α2d

.

Consider the case αs2 ≤ αs1, α1d < α2d (the other one is obtained essentially by swapping the

role of the relays). This corresponds to an ‘asymmetric’ situation where relay 1 has the best link

from the source but relay 2 has the best link to the destination. In this case we would like to

exploit the inter relay communication links (which is not present in a diamond network) to create

a route source→relay1→relay2→destination in addition to the direct link source→destination.

Indeed, in this case d
(FD)
N=2 in (14) can be rewritten as

d
(FD)
N=2 = min

{
max {αs2 + α1d, β2 + 1} ,max{1,min{αs1, α2d}}

}
, (16)

where the term max{1,min{αs1, α2d}} in (16) corresponds to the gDoF of a virtual single-relay

channel such that the link from the source to the “virtual relay” has SNR-exponent αs1 and the

link from the “virtual relay” to the destination has SNR-exponent α2d. We aim to determine the

subset of the channel parameters αs2 ≤ αs1, α1d < α2d for which the gDoF in (16) is strictly

larger than the ‘best relay’ gDoF in (15). The case αs2 ≤ αs1, α1d < α2d subsumes the following
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possible orders of the channel gains:

case i α1d α2d αs2 αs1

case ii α1d αs2 α2d αs1

case iii α1d αs2 αs1 α2d

case iv αs2 α1d α2d αs1

case v αs2 α1d αs1 α2d

case vi αs2 αs1 α1d α2d

We partition the set of channel parameters αs2 ≤ αs1, α1d < α2d as follows:

• Sub-case 2a) (all but cases i and vi in the table above): if

max{αs2, α1d} < min{αs1, α2d}, (17)

then

d
(FD)
N=2,best relay = max{1, αs2, α1d}, (18)

which is strictly less than d
(FD)
N=2 in (16) if

either max{1, αs2, α1d} < min{αs1, α2d} ≤ max {αs2 + α1d, β2 + 1}

or
{
max {αs2 + α1d, β2 + 1} < min{αs1, α2d}

}
∩ Oc

where O :={β2=0, αs2+α1d≤1} ∪ {α1d=0, β2+1≤αs2} ∪ {αs2=0, β2+1≤α1d}.

that is, for

max{1, αs2, α1d} < min{αs1, α2d} except in region O. (19)

• Sub-case 2b) (case i in the table above): if α1d < α2d ≤ αs2 ≤ αs1, then the condition

d
(FD)
N=2,best relay = max{1, α2d} < d

(FD)
N=2 = min

{
max {αs2 + α1d, β2 + 1} ,max{1, α2d}

}
is never verified, i.e., in this case d

(FD)
N=2,best relay = d

(FD)
N=2.

• Sub-case 2c) (case vi in the table above): if αs2 ≤ αs1 ≤ α1d < α2d, then

d
(FD)
N=2,best relay = max{1, αs1} < d

(FD)
N=2 = min

{
max {αs2 + α1d, β2 + 1} ,max{1, αs1}

}
is never verified, i.e., in this case d

(FD)
N=2,best relay = d

(FD)
N=2.

Recall that there is also a regime similar Case 2) where the role of the relays is swapped.
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Fig. 3 gives an example of a network satisfying the conditions in (17), i.e., the assumption is

0 ≤ y < x without loss of generality. By exploiting both relays, the system attains

d
(FD)
N=2 = min

{
max{1, x, y},max{2x, z + 1},max{2y, z + 1}

}
= min

{
max{1, x},max{2y, z + 1}

}
,

while, by using only the best relay, it achieves

d
(FD)
N=2,best relay = max

{
1,min{x, y}

}
= max

{
1, y
}
.

By (19), we have d
(FD)
N=2 > d

(FD)
N=2,best relay if

x > max
{
1, y
}

except
{
z = 0, y ≤ 1

2

}
. (20)

B. The Half-Duplex Case

With HD, the gDoF is given by (12), which with the notation in (13) and with λ1 = λ00,

λ2 = λ01, λ3 = λ10 and λ4 = λ11 becomes

d
(HD)
N=2 = maxmin

{
λ00D

(0)
1 + λ01D

(1)
1 + λ10D

(2)
1 + λ11D

(3)
1 ,

λ00D
(0)
2 + λ01D

(1)
2 + λ10D

(2)
2 + λ11D

(3)
2 ,

λ00D
(0)
3 + λ01D

(1)
3 + λ10D

(2)
3 + λ11D

(3)
3 ,

λ00D
(0)
4 + λ01D

(1)
4 + λ10D

(2)
4 + λ11D

(3)
4

}
, (21)

where the maximization is over λij = P[S1 = i, S2 = j] ≥ 0, (i, j) ∈ {0, 1}2, such that

λ00 + λ01 + λ10 + λ11 = 1 and

D
(0)
1 := max {1, αs1, αs2} , D

(1)
1 = D

(0)
2 := max {1, αs1} ,

D
(3)
4 := max {1, α1d, α2d} , D

(2)
1 = D

(0)
3 := max {1, αs2} ,

D
(1)
2 := max {αs1 + α2d, β1 + 1} , D

(3)
2 = D

(1)
4 := max {1, α2d} ,

D
(2)
3 := max {αs2 + α1d, β2 + 1} , D

(3)
3 = D

(2)
4 := max {1, α1d} ,

D
(3)
1 = D

(2)
2 = D

(1)
3 = D

(0)
4 := 1.

For future reference, if only one relay helps the communication between the source and the

destination then the achievable gDoF is [25]

d
(HD)
N=2,best relay = 1 + max

i∈[1:2]

[αsi − 1]+ [αid − 1]+

[αsi − 1]+ + [αid − 1]+
∈ [1, d

(HD)
N=2 ]. (22)
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An analytical closed form solution for the optimal {λij} in (21) is complex to find for general

channel gain assignments. However, numerically it is a question of solving a LP, for which

efficient numerical routines exist. By using Theorem 4, we can set either λ00 or λ11 to zero.

For the example in Fig. 3 the optimal schedule has λ00 = λ11 = 0 without loss of optimality,

from Theorem 4. By letting λ01 = γ ∈ [0, 1] and λ10 = 1− γ (recall 0 ≤ y < x without loss of

generality), the gDoF in (21) can be written as

d
(HD)
N=2 = max

γ∈[0,1]
min

{
γmax{1, x}+ (1− γ)max{1, y}, (23a)

γmax{2x, z + 1}+ (1− γ), (23b)

γ + (1− γ)max{2y, z + 1}
}

(23c)

= 1 +min

{
[x− 1]+max{2y − 1, z}

[x− 1]+ +max{2y − 1, z} − [y − 1]+
, (23d)

max{2x− 1, z}max{2y − 1, z}
max{2x− 1, z}+max{2y − 1, z}

}
. (23e)

By using only the best relay as in (22), we would achieve

d
(HD)
N=2,best relay = 1 +

[x− 1]+[y − 1]+

[x− 1]+ + [y − 1]+
. (24)

It can be easily seen that the best relay selection policy is strictly suboptimal if (20) is verified,

as for the FD case.

VI. CONCLUSIONS

In this work we analyzed a network where a source communicates with a destination across

a Gaussian channel. This communication is assisted by N relays operating in half-duplex mode.

We characterized the capacity to within a constant gap by using an achievable scheme based on

noisy network coding. We also showed that this gap may be further reduced by considering more

structured systems, such as the diamond network. We conjectured that the optimal schedule has

at most N+1 active states, instead of the possible 2N . This conjecture has been supported by the

analytical proof in the special case of N = 2 relays and in general by numerical evaluations. We

finally analyzed a network with N = 2 relays, and we showed under which channel conditions

by exploiting both relays a strictly greater gDoF can be attained compared to a network where

best-relay selection is used.
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An interesting connection between the high-SNR approximation of the point-to-point MIMO

capacity and the Maximum Weighted Bipartite Matching problem from graph theory has been

discovered.

APPENDIX A

PROOF OF PROPOSITION 1

In a multicast network, where Hr→r = 0 and Hs→d = 0 in (2), the rank of any channel sub

matrix is upper bounded by 2. Thus, with Rank[HA,s] ≤ 2 in the cut-set bound in the step

preceding (7) and by using the NNC lower bound in (6), the gap becomes

GAP ≤ min
γ≥e−1

max
µ∈[0:1]

{
2min

{
γ

e
,

2

µK

}
log

(
max

{
e,
γ µK

2

})
+µK log

(
2γ

γ − 1

)}
(a)
= min

γ≥e−1

{
2min

{
γ

e
,
2

K

}
log

(
emax

{
1,
γ

e

K

2

})
+K log

(
2γ

γ − 1

)}
(b)
=

 2 log(e)1+
√
1+2Ke
2e

+K log
(

2
√
1+2Ke+2√
1+2Ke−1

)
if K ≤ 2

4
K
log
(
K
2
+ K3

8

)
+K log

(
2 + 8

K2

)
if K > 2

,

where: the equality in (a) follows since the function is always increasing in µ so the maximum

is attained for µopt = 1; the minimum over γ is attained for

γopt =

 1+
√
1+2Ke
2

if K ≤ 2

1 + K2

4
if K > 2

and this leads to the equality in (b).

By substituting K = N +2 in order to obtain the special case of the HD multi-relay diamond

network we get (9).

APPENDIX B

PROOF OF THEOREM 2

Let Sn,k be the set of all k-combinations of the integers in [1 : n] and Pn,k be the set of all

k-permutations of the integers in [1 : n]. Let σ(π) be the sign / signature of the permutation π.

We start by demonstrating that the asymptotic behavior of |Ik +HHH | is as that of |HHH |,
i.e., the identity matrix can be neglected. By using the determinant Leibniz formula [30], in fact
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we have,

|Ik +HHH | =
∑
π∈Pn,k

σ(π)
k∏
i=1

[
Ik +HHH

]
i,π(i)

=
∑
π∈Pn,k

σ(π)

{(
k∏
i=2

[
Ik +HHH

]
i,π(i)

)([
Ik +HHH

]
1,π(1)

)}

=
∑
π∈Pn,k

σ(π)

(
k∏
i=2

[
Ik +HHH

]
i,π(i)

)
δ[1− π(1)]

+
∑
π∈Pn,k

σ(π)
k∏
i=2

[
Ik +HHH

]
i,π(i)

[
HHH

]
1,π(1)

,

where δ[n] =

 0 n 6= 0

1 n = 0
is the Kronecker delta. Let

A (SNR) :=
∑
π∈Pn,k

σ(π)

(
k∏
i=2

[
Ik +HHH

]
i,π(i)

)
δ[1− π(1)]

B (SNR) :=
∑
π∈Pn,k

σ(π)
k∏
i=2

[
Ik +HHH

]
i,π(i)

[
HHH

]
1,π(1)

,

we have that A (SNR) = o (B (SNR)) , because lim
SNR→+∞

A(SNR)
B(SNR)

= 0 where the SNR parameterizes

the channel gains as |hij|2 = SNRβij , for some non-negative βij . This is so because, as a function

of SNR, B (SNR) grows faster than A (SNR) due to the term
[
HHH

]
1,π(1)

. By induction it is

possible to show that this reasoning holds ∀i ∈ [1 : k] and hence

|Ik +HHH | .=
∑
π∈Pn,k

σ(π)
k∏
i=1

[
HHH

]
i,π(i)

= |HHH |.
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Therefore, now we focus on the study of |HHH |. We have

|HHH | (a)=
∑
ς∈Sn,k

|Hς ||HH
ς | =

∑
ς∈Sn,k

|Hς |2

(b)
=
∑
ς∈Sn,k

∣∣∣∣∣∣
∑
π∈Pn,k

σ(π)
k∏
i=1

[Hς ]i,π(i)

∣∣∣∣∣∣
2

=
∑
ς∈Sn,k


 ∑
π1∈Pn,k

σ(π1)
k∏
i=1

[Hς ]i,π1(i)

 ∑
π2∈Pn,k

σ(π2)
k∏
j=1

[Hς ]j,π2(j)

∗
=
∑
ς∈Sn,k


 ∑
π∈Pn,k

k∏
i=1

∣∣∣[Hς ]i,π(i)

∣∣∣2


+

 ∑
π1,π2∈Pn,k,π1 6=π2

σ(π1)σ(π2)
k∏
i=1

k∏
j=1

[Hς ]i,π1(i)

(
[Hς ]j,π2(j)

)∗
(c)

≤
∑
ς∈Sn,k


 ∑
π∈Pn,k

k∏
i=1

∣∣∣[Hς ]i,π(i)

∣∣∣2


+

 ∑
π1,π2∈Pn,k,π1 6=π2

k∏
i=1

k∏
j=1

√∣∣∣[Hς ]i,π1(i)

∣∣∣2 ∣∣∣[Hς ]j,π2(j)

∣∣∣2


=
∑
ς∈Sn,k


 ∑
π∈Pn,k

SNR
∑k
i=1[Bς ]i,π(i)


+

 ∑
π1,π2∈Pn,k,π1 6=π2

SNR
1
2(
∑k
i=1[Bς ]i,π1(i)

+
∑k
j=1[Bς ]j,π2(j))


(d).
=
∑
ς∈Sn,k

 ∑
π∈Pn,k

SNR
∑k
i=1[Bς ]i,π(i)


.
= SNRmaxς∈Sn,k maxπ∈Pn,k

∑k
i=1[Bς ]i,π(i) ,

where the equalities / inequalities above are due to the following facts:

• equality (a): by applying the Cauchy-Binet formula [30] where Hς is the square matrix

obtained from H by retaining all rows and those columns indexed by ς;

• equality (b): by applying the determinant Leibniz formula [30];

• inequality (c): by applying the Cauchy-Swartz inequality [31];
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• equality (d): when SNR→∞, we have
k∑
i=1

[Bς ]i,π(i) ≥
1

2

(
k∑
i=1

[Bς ]i,π1(i) +
k∑
j=1

[Bς ]j,π2(j)

)
.

Consider the following example. Let a = SNRβa , b = SNRβb , c = SNRβc , d = SNRβd

|ab− cd|2 ≤ |a|2|b|2 + |c|2|d|2 + 2|a||b||c||d|.

Now apply the gDoF formula, i.e.,

d := lim
SNR→+∞

log (|a|2|b|2 + |c|2|d|2 + 2|a||b||c||d|)
log(1 + SNR)

= max

{
βa + βb, βc + βd,

βa + βb + βc + βd
2

}
,

but

βa + βb + βc + βd
2

≤ 2max {βa + βb, βc + βd}
2

= max {βa + βb, βc + βd} .

Therefore, the term βa+βb+βc+βd
2

does not contribute in characterizing the gDoF. By direct

induction, the above reasoning may be extended to a general number of terms leading to∑k
i=1 [Bς ]i,π(i) ≥ 1

2

(∑k
i=1 [Bς ]i,π1(i) +

∑k
j=1 [Bς ]j,π2(j)

)
.

APPENDIX C

PROOF OF THEOREM 4

In a HD relay network with N = 2, we have 4 possible states that may arise with probabilities

λj with j ∈ [1, 4]. We let λ1 = λ00, λ2 = λ01, λ3 = λ10 and λ4 = λ11, where λij = P[S1 =

i, S2 = j] ≥ 0, (i, j) ∈ {0, 1}2, such that λ00+λ01+λ10+λ11 = 1. Here we aim to demonstrate

that a schedule with λ00λ11 = 0 is optimal, i.e., it maximizes the capacity of the HD relay

network with N = 2. Let

αs1 − 1 := α?s1, αs2 − 1 := α?s2,

α1d − 1 := α?1d, α2d − 1 := α?2d.

The LP in (12) with the notation in (13) becomes
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d
(HD)
N=2 = 1 +maxmin

{
λ00D

(0)
1 + λ01D

(1)
1 + λ10D

(2)
1 + λ11D

(3)
1 ,

λ00D
(0)
2 + λ01D

(1)
2 + λ10D

(2)
2 + λ11D

(3)
2 ,

λ00D
(0)
3 + λ01D

(1)
3 + λ10D

(2)
3 + λ11D

(3)
3 ,

λ00D
(0)
4 + λ01D

(1)
4 + λ10D

(2)
4 + λ11D

(3)
4

}
, (25)

where

D
(0)
1 := max {0, α?s1, α?s2} , D

(1)
1 = D

(0)
2 := max {0, α?s1} ,

D
(3)
4 := max {0, α?1d, α?2d} , D

(2)
1 = D

(0)
3 := max {0, α?s2} ,

D
(1)
2 := max {α?s1 + α?2d + 1, β1} , D

(3)
2 = D

(1)
4 := max {0, α2d} ,

D
(2)
3 := max {α?s2 + α?1d + 1, β2} , D

(3)
3 = D

(2)
4 := max {0, α?1d} ,

D
(3)
1 = D

(2)
2 = D

(1)
3 = D

(0)
4 := 0.

Now we have to consider the different cases that may arise:

• Case 1: max {0, α?s1, α?s2} = 0⇐⇒ α?s1 ≤ 0, α?s2 ≤ 0. In this case we have:

D
(0)
1 = D

(0)
2 = D

(0)
3 = D

(0)
4 = 0,

that is λ00 is not involved in the optimization; hence, we can set λ00 = 0 without loss of

optimality.

• Case 2 a: α?s1 > 0, α?s2 ≤ 0. In this case we have

d = 1 + max
(λ00,λ01,λ10,λ11)∈[0,1]4:λ00+λ10+λ01+λ11≤1

min {

λ00α
?
s1 +λ01α

?
s1 +0 +0

0 +0 +λ10max {α?s2 + α?1d + 1, β2} +λ11max {0, α?1d}
0 +λ01max {0, α?2d} +λ10max {0, α?1d} +λ11max {0, α?1d, α?2d}

 ,

since the second constraint in (25) is always greater than the first one.

Assume (λ00, λ01, λ10, λ11) is optimal with λ00 > 0; the solution (0, λ00 + λ01, λ10, λ11)

gives a higher gDoF (the first and the second equations remain the same, the last one is

increased); we reached a contradiction. Hence the optimal solution must have λ00 = 0.

• Case 2 b: α?s1 ≤ 0, α?s2 > 0. As Case 2 a above but with the role of the sources swapped.

Also in this case the optimal solution must have λ00 = 0.
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• So far we showed that if min {α?s1, α?s2} ≤ 0 then λ00 = 0 is optimal. Due to the symmetry

of the problem, by swapping α?sj with α?jd, if min {α?1d, α?2d} ≤ 0, then λ11 = 0 is optimal.

In oder to prove our claim we must consider one last case:

min {α?s1, α?s2} > 0 and min {α?1d, α?2d} > 0, (26)

that is when all the links from the source to the relays and all links from the relays to the

destination are strictly larger than the direct link.

In order to prove our claim, we must partition the set of parameters in (26) into two regimes,

say O0 and O1, where in regime O0 we show λ00 = 0 is optimal and in regime O1 that

λ11 = 0 is optimal. By the symmetry of the problem when swapping α?sj with α?jd, the

regime O0 must be equal to regime O1 when α?sj and α?jd are swapped. Next we show that

O0 = {α?s1α?s2 ≥ α?1dα
?
2d}, O1 = {α?s1α?s2 ≤ α?1dα

?
2d}.

• Case 3: α?s1 > 0, α?s2 > 0, α?1d > 0, α?2d > 0. Without loss of generality, we assume

α1d ≥ α2d; in this case we have

D
(0)
1 := max {α?s1, α?s2} , D

(1)
1 = D

(0)
2 := α?s1,

D
(2)
1 = D

(0)
3 := α?s2, D

(3)
1 = D

(2)
2 = D

(1)
3 = D

(0)
4 := 0,

D
(1)
2 := max {α?s1 + α?2d + 1, β1} , D

(3)
2 = D

(1)
4 := α?2d,

D
(2)
3 := max {α?s2 + α?1d + 1, β2} , D

(3)
3 = D

(2)
4 = D

(3)
4 := α?1d.

Now we aim to find the conditions under which setting λ00 = 0 increases the gDoF compared

to a case where λ00 > 0. Finding these conditions is equivalent to solve a system where

λ00 is now split into three parts, that we name λ?01, λ
?
10 and λ?11. In other words, our

aim is to demonstrate that (0, λ01 + λ?01, λ10 + λ?10, λ11 + λ?11) gives a larger gDoF than

(λ00, λ01, λ10, λ11) with λ00 = λ?01 + λ?10 + λ?11. This is equivalent to solve

xmax {α?s1, α?s2} ≤ λ?01α
?
s1 + λ?10α

?
s2

xα?s2 ≤ λ?10max {α?s2 + α?1d + 1, β2}+ λ?11α
?
1d

xα?s1 ≤ λ?01max {α?s1 + α?2d + 1, β1}+ λ?11α
?
2d

0 ≤ λ?01α
?
2d + λ?10α

?
1d + λ?11α

?
1d,
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where λ?01 + λ?10 + λ?11 = x. Now, by substituting λ?11 = x− λ?01 − λ?10, we obtain

xmax {α?s1, α?s2} ≤ λ?01α
?
s1 + λ?10α

?
s2

x (α?s2 − α?1d) ≤ λ?10max {α?s2 + 1, β2 − α?1d} − λ?01α?1d
x (α?s1 − α?2d) ≤ λ?01max {α?s1 + 1, β1 − α?2d} − λ?10α?2d

λ?01 ≤
xα?1d

α?1d − α?2d
.

Notice that, in the last inequality, λ?01 ≤ 1 holds if there exists a 0 ≤ x ≤ 1 such that

x ≤ α1d−α2d

α1d
and this is always true since α1d−α2d

α1d
≤ 1. Assume equality in the last constraint

and substitute the value of λ?01 in the other inequalities. We obtain

λ?10 ≥ x
max {α?s1, α?s2}α?1d −max {α?s1, α?s2}α?2d − α?s1α?1d

α?s2α
?
1d − α?s2α?2d

:= A (27)

λ?10 ≥ x
α?s2α

?
1d − α?s2α?2d + α?1dα

?
2d

max {α?s2 + 1, β2 − α?1d}α?1d −max {α?s2 + 1, β2 − α?1d}α?2d
:= B (28)

λ?10 ≤ x
max {α?2d + 1, β1 − α?s1}α?1d + α?s1α

?
2d − α?2d2

α?1dα
?
2d − α?2d2

:= C (29)

λ?01 =
xα?1d

α?1d − α?2d
. (30)

Thus we should have

max {A,B} ≤ λ?10, λ?10 ≤ C

which is possible if max {A,B} ≤ C.

We notice that A ≤ C always holds since: (i) if max {α?s1, α?s2} = α?s1, A is always negative

(while C is always positive); (ii) if max {α?s1, α?s2} = α?s2, then

α?s2α
?
1dmax {α?2d + 1, β1 − α?s1}+ α?s2α

?
s1α

?
2d ≥ α?s2α

?
1d (α

?
2d + 1) + α?s2α

?
s1α

?
2d

≥ α?s2α
?
1dα

?
2d − α?s1α?1dα?2d.

Thus, our analysis reduces to find the channel conditions such that B ≤ C. We must verify

for which value of the channel parameters the following inequality holds

LHS := max {α?s2 + 1, β2 − α?1d}
(
max {α?2d + 1, β1 − α?s1}α?1d + α?s1α

?
2d − α?2d2

)
≥ α?2d (α

?
s2α

?
1d − α?s2α?2d + α?1dα

?
2d) =: RHS.
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Then the LHS of the inequality above, by using the fact that

max {α?s2 + 1, β2 − α?1d} ≥ α?s2,

max {α?2d + 1, β1 − α?s1} ≥ α?2d,

can be upper bounded as

max {α?s2 + 1, β2 − α?1d}
(
max {α?2d + 1, β1 − α?s1}α?1d + α?s1α

?
2d − α?2d2

)
≥ α?s2

(
α?2dα

?
1d + α?s1α

?
2d − α?2d2

)
=: LHS ′.

If LHS ′ ≥ RHS then also LHS ≥ RHS; therefore ,

α?s2
(
α?2dα

?
1d + α?s1α

?
2d − α?2d2

)
≥ α?2d (α

?
s2α

?
1d − α?s2α?2d + α?1dα

?
2d)

⇐⇒ α?s1α
?
s2 ≥ α?1dα

?
2d.

Thereby, we can draw the following conclusion: assume (λ00, λ01, λ10, λ11) is optimal with

λ00 > 0; as demonstrated above, the solution (0, λ01 + λ?01, λ10 + λ?10, λ11 + λ?11) gives a

higher gDoF; we reached a contradiction. Hence the optimal solution must have λ00 = 0.

By the same reasoning, λ11 = 0⇐⇒ α?s1α
?
s2 ≤ α?1dα

?
2d.
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Fig. 1: Gap in (5) (solid curve) and gap in (8) (dashed curve) for the HD Gaussian relay

network. The gap in (5) is smaller than that in (8) for any number of relays greater than or

equal to 2.
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Fig. 2: Average, minimum and maximum number of active states to characterize the capacity

of a HD relay network.
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Fig. 3: Example of a two-relay network.
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