
CACR TECHNICAL REPORT 2014 1

New Families of Optimal Frequency-Hopping

Sequences of Composite Lengths

Jin-Ho Chung, Guang Gong, and Kyeongcheol Yang

Abstract

Frequency-hopping sequences (FHSs) are employed to mitigate the interferences caused by the

hits of frequencies in frequency-hopping spread spectrum systems. In this paper, we present two new

constructions for FHS sets. We first give a new construction for FHS sets of lengthnN for two positive

integersn and N with gcd(n,N) = 1. We then present another construction for FHS sets of length

(q − 1)N , whereq is a prime power satisfyinggcd(q − 1, N) = 1. By these two constructions, we

obtain infinitely many new optimal FHS sets with respect to the Peng-Fan bound as well as new optimal

FHSs with respect to the Lempel-Greenberger bound, which have lengthnN or n(q−1)N . As a result,

a great deal of flexibility may be provided in the choice of FHSsets for a given frequency-hopping

spread spectrum system.
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I. I NTRODUCTION

Frequency-hopping spread spectrum techniques have been widely used in ultrawideband com-

munications, military applications, Wi-Fi, Bluetooth, andso on [1–6]. A frequency-hopping

sequence (FHS) represents an ordered list of the frequencies assigned to a user at each time

slot. In communication systems based on frequency-hopping, it is necessary to properly select

an FHS or an FHS set in order to mitigate the interference caused by the hits of frequencies. For

example, multiple access systems require FHS sets with low correlation and large size, while

some systems such as Bluetooth need a single FHS with good autocorrelation. For these reasons,

design of good FHS sets or FHSs has been a major issue in frequency-hopping spread spectrum

systems.

The main purpose of FHS design is to find an FHS or an FHS set which is optimal under a

given condition. In general, the optimality of an FHS set is measured by the Peng-Fan bound

[7], whereas that of a single FHS is by the Lempel-Greenberger bound [8]. There are several

algebraic or combinatorial constructions for optimal FHSsor FHS sets in the literature [8–27].

Moreover, some generic extension methods have been proposed [28,29], which generate several

new families of optimal FHS sets. In the case that no mathematical structure which gives an

optimal FHS set with some desired parameters has been found,extension of a given FHS set

may be a good alternative to obtain new FHS sets with such parameters.

In this paper, we present two new extension methods for an FHSset, which increase its

length and alphabet size, but preserve its maximum Hamming correlation. We first give a new

construction for FHS sets of lengthnN for two positive integersn andN with gcd(n,N) = 1.

We then present another construction for FHS sets of length(q−1)N , whereq is a prime power

with gcd(q−1, N) = 1. The two construction methods can be applied to any existingFHS sets or

FHSs satisfying some constraints, as summarized in Table I.Moreover, by properly combining

the two methods, it is possible to obtain infinitely many new optimal FHS sets with respect to the

Peng-Fan bound as well as new optimal FHSs with respect to theLempel-Greenberger bound,

which have lengthnN or n(q − 1)N . As a result, a great deal of flexibility may be provided in

the choice of FHSs or FHS sets for a given frequency-hopping spread spectrum system.

The outline of the paper is as follows. In Section II, we give some preliminaries to FHSs.

We give a new construction of FHS sets with lengthnN and provide some new optimal FHS
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sets and optimal FHSs as its example in Section III. We present a new construction of FHS sets

with length (q − 1)N and obtain optimal FHS sets and optimal FHSs with new parameters in

Section IV. Finally, we give some concluding remarks in Section V.

II. PRELIMINARIES

Throughout this paper, the following notation will be used:

• 〈x〉y: the least nonnegative residue ofx moduloy for an integerx and a positive integery;

• ⌊z⌋: the largest integer less than or equal toz;

• ⌈z⌉: the least integer greater than or equal toz;

• Zn: the ring of integers modulon for a positive integern.

Let F , {f0, f1, . . . , fM−1} be the set of available frequencies in a frequency-hopping

multiple-access system. A sequenceX , {X(t)}N−1
t=0 is called an FHS of lengthN over F

if X(t) ∈ F for all 0 ≤ t ≤ N − 1. For f ∈ F , the number of occurrences off within X,

denoted byNX(f), can be written as

NX(f) = |{t : X(t) = f, 0 ≤ t ≤ N − 1}|.

For two FHSsX and Y of length N over F , the (periodic) Hamming correlationbetweenX

andY is defined as

HX,Y (τ) =
N−1
∑

t=0

h[X(t), Y (〈t + τ〉N)], 0 ≤ τ ≤ N − 1

where

h[x, y] =







1, if x = y

0, otherwise.

If X = Y , it is called theHamming autocorrelationof X, and is denoted byHX(τ) for short.

The following proposition can be easily derived.

Proposition 1. The Hamming correlation between two FHSsX , {X(t)}N−1
t=0 and Y ,

{Y (t)}N−1
t=0 overF can be written as

HX,Y (τ) =
N−1
∑

t=0

∑

f∈F

h[X(t), f ] · h[Y (〈t + τ〉N), f ].
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The maximum out-of-phase Hamming autocorrelationof X is defined as

H(X) = max
1≤τ≤N−1

{HX(τ)}.

If H(X) = λa for a nonnegative integerλa, X is called an(N,M, λa)-FHS. In general, the

optimality of an FHS is measured by the Lempel-Greenberger bound.

Theorem 2 (Lempel-Greenberger Bound, [8]). For an (N,M, λa)-FHS X, we have

λa ≥

⌈

(N − b)(N + b − M)

M(N − 1)

⌉

(1)

whereb = 〈N〉M .

The Lempel-Greenberger bound can be rewritten as follows.

Corollary 3 ([12]). For any FHSX of lengthN over a frequency set of sizeM ,

H(X) ≥







a, if N 6= M

0, if N = M
(2)

whereN = aM + b, 0 ≤ b ≤ M − 1.

Let X be an FHS set consisting ofL FHSs of lengthN overF with |F| = M . For f ∈ F ,

the number of appearances off in X is defined as

NX (f) =
∑

X∈X

NX(f).

For any two distinct FHSsX andY of X , let

H(X,Y ) = max
0≤τ≤N−1

{HX,Y (τ)}.

Themaximum out-of-phase Hamming autocorrelationHa(X ) and themaximum Hamming cross-

correlation Hc(X ) of X are defined as

Ha(X ) = max
X∈X

{H(X)},

Hc(X ) = max
X,Y ∈X , X 6=Y

{H(X,Y )},

respectively. Themaximum Hamming correlationof X is defined as

H(X ) = max{Ha(X ), Hc(X )}.
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If H(X ) = λ for a certain nonnegative integerλ, thenX is called an(N,M, λ; L)-FHS set.

Peng and Fan established a bound onHa(X ) andHc(X ) of an FHS set in terms of frequency

set size, length, and the number of FHSs.

Theorem 4 (Peng-Fan Bound, [7]). Let X be an FHS set consisting ofL FHSs of lengthN

overF with |F| = M . Then

M(N − 1)Ha(X ) + NM(L − 1)Hc(X ) ≥ N(NL − M). (3)

The following corollary is frequently used as a simplified version of the Peng-Fan bound.

Corollary 5 ([7]). An (N,M, λ; L)-FHS setX satisfies

H(X ) ≥

⌈

(NL − M)N

(NL − 1)M

⌉

(4)

and

H(X ) ≥

⌈

2INL − (I + 1)IM

(NL − 1)L

⌉

whereI = ⌊NL
M

⌋.

In practical applications, the required length and alphabet size of an FHS or an FHS set are

variable according to the specification of a given system or environment. Thus, it is very important

to select FHSs or FHS sets with optimal Hamming correlation under the given condition. In the

following sections, two new FHS construction methods will be presented, from which infinitely

many new optimal FHSs or FHS sets can be obtained.

III. C ONSTRUCTION OFFREQUENCY-HOPPINGSEQUENCES OFLENGTH nN

Several optimal FHS sets were constructed from algebraic orcombinatorial structures [8–27].

In the case that no mathematical structures for optimal FHS sets with some desirable parameters

can be found, extension of a given FHS set may be a good solution to obtain new optimal

FHS sets with such parameters. In [28], Chunget al. applied the interleaving technique [30,31]

to the construction of FHS sets. As a result, an(N,M, λ; L)-FHS set can be extended to a
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(dN,M, dλ; ⌊L/d⌋)-FHS set for any integerd with 2 ≤ d ≤ L. While the number of frequencies

is fixed in this extension, the maximum correlation increases and the set size decreases. Later,

Zeng et al. [29] presented another extension method of FHS sets by using the interleaving

technique and field extension, in which the maximum correlation and the set size are preserved.

These two extension methods are generic in the sense that they can be applied to any FHS set

satisfying some constraints. In this section, we will give anew generic extension method which

preserves the maximum correlation and the set size. We will also show that several infinite

families of new optimal FHSs or FHS sets can be constructed from our extension.

A. New Construction of FHS Sets

The Chinese Remainder Theorem (CRT) [32] tells us that whenV andW are positive integers

such thatgcd(V,W ) = 1, any integert with 0 ≤ t < V W can be uniquely represented as

t , (tV , tW )

where tV = 〈t〉V and tW = 〈t〉W . By using the CRT, it is possible to extend an FHS set to

another one in the following way.

Construction A: Let X , {X0, X1, . . . , XL−1} be an (N,M, λ; L)-FHS set overF , where

Xi = {Xi(t)}
N−1
t=0 . Let q1 = pa1

1 for a prime p1 and a positive integera1, wherep1 satisfies

gcd(p1, N) = 1 andNX (f) ≤ p1 − 1 for any f ∈ F . For 0 ≤ i ≤ L − 1, let Yi , {Yi(t)}
q1N−1
t=0

be the FHS overZq1 ×F , defined as

Yi(t) , Yi(t0, t1) = ( 〈ηi(t1)t0〉q1 , Xi(t1) )

wheret0 = 〈t〉q1, t1 = 〈t〉N , andηi is the function given by

ηi(t1) =
i−1
∑

m=0

NXm
(Xi(t1)) + |{u : Xi(u) = Xi(t1), 0 ≤ u ≤ t1}| . (5)

Construct an FHS setYA as

YA = {Yi | 0 ≤ i ≤ L − 1}.
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Remark: Define theL × N array associated with the FHS setX in Construction A as



























X0(0) · · · X0(t1) · · · X0(N − 1)
...

. . .
...

.. .
...

Xi−1(0) · · · Xi−1(t1) · · · Xi−1(N − 1)

Xi(0) · · · Xi(t1) · · · Xi(N − 1)
...

. . .
...

.. .
...

XL−1(0) · · · XL−1(t1) · · · XL−1(N − 1)



























.

The numberηi(t1) in Construction A is equal to the number of appearances of the symbol

f = Xi(t1) in the subarray

X0(0) · · · X0(t1) · · · X0(N − 1)
...

. ..
...

.. .
...

Xi−1(0) · · · Xi−1(t1) · · · Xi−1(N − 1)

Xi(0) · · · Xi(t1)

.

Clearly, 1 ≤ ηi(t1) ≤ NX (f) ≤ p1 − 1 for any 0 ≤ i ≤ L − 1 and any0 ≤ t1 ≤ N − 1.

Furthermore, we haveηi(t1) 6= ηj(〈t1 + τ1〉N) if i 6= j or τ1 6= 0, whenXi(t1) = Xj(t1 + τ1).

These properties ofηi would be useful to prove the optimality of the FHS setYA. �

Each symbol of the FHSs in Construction A has a vector form withtwo components. However,

the structure of the alphabet does not matter since each symbol is mapped into an available

frequency by a one-to-one mapping. The Hamming correlationcan be calculated by using the

fact that a hit occurs only when bothYi(t) andYj(t+τ) in Zq1×F have the same components in

each coordinate. The following lemma is useful to calculatethe Hamming correlation of FHSs

whose symbols are of a vector form with two components.

Lemma 6. Let V and W are two positive integers withgcd(V,W ) = 1. Let X , {X(t)}V W−1
t=0

andY , {Y (t)}V W−1
t=0 be two FHSs of lengthV W overF1×F2 such thatX(t) = (a(tV ), b(tW )),

and Y (t) = (c(tV ), d(tW )) with tV = 〈t〉V and tW = 〈t〉W , where{a(tV )} and {c(tV )} are

sequences of lengthV overF1, and{b(tW )} and {d(tW )} are sequences of lengthW overF2.
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The Hamming correlation betweenX and Y is given by

HX,Y (τ) =
W−1
∑

tW =0

∑

f∈F2

h[b(tW ), f ] h[d(〈tW + τW 〉W ), f ]

·

V −1
∑

tV =0

h[a(tV ), c(〈tV + τV 〉V )

whereτV = 〈τ〉V and τW = 〈τ〉W .

Proof. Define twoV × W arraysX andY by

X ,

















(a(0), b(0)) · · · (a(0), b(tW )) · · · (a(0), b(W − 1))

...
. . .

...
. . .

...

(a(tV ), b(0)) · · · (a(tV ), b(tW )) · · · (a(tV ), b(W − 1))

...
. . .

...
. . .

...

(a(V − 1), b(0)) · · · (a(V − 1), b(tW )) · · · (a(V − 1), b(W − 1))

















and

Y ,

















(c(τV ), d(τW )) · · · (c(τV ), d(〈tW + τW 〉W )) · · · (c(τV ), d(〈τW − 1〉W ))

...
. . .

...
. . .

...

(c(〈tV + τV 〉V ), d(τW )) · · · (c(〈tV + τV 〉V ), d(〈tW + τW 〉W )) · · · (c(〈tV + τV 〉V ), d(〈τW − 1〉W ))

...
. . .

...
. . .

...

(c(〈τV − 1〉V ), d(τW )) · · · (c(〈τV − 1〉V ), d(〈tW + τW 〉W )) · · · (c(〈τV − 1〉V ), d(〈τW − 1〉W ))

















where each entry ofX andY is in F1×F2. It is clear thatHX,Y (τ) is equal to the number of the

common entries ofX andY having the same elements inF1 ×F2. If b(tW ) 6= d(〈tW + τW 〉W ),

the tW -th columns ofX andY have no such entries. Otherwise the number of such common

entries in them is determined by comparing{a(tV )}V −1
tV =0 and{c(〈tV + τV 〉V )}V −1

tV =0. That is, we

have

HX,Y (τ) , HX,Y (τV , τW )

=
V −1
∑

tV =0

W−1
∑

tW =0

h [ (a(tV ), b(tW )), (c(〈tV + τV 〉V ), d(〈tW + τW 〉W ))]

=
V −1
∑

tV =0

W−1
∑

tW =0

h [ a(tV ), c(〈tV + τV 〉V )] h [ b(tW ), d(〈tW + τW 〉W )]

=
W−1
∑

tW =0

h [ b(tW ), d(〈tW + τW 〉W )] ·
V −1
∑

tV =0

h [ a(tV ), c(〈tV + τV 〉V )] .

By applying Proposition 1, we get the assertion. 2
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Theorem 7. The setYA in Construction A is a(q1N, q1M,λ; L)-FHS set. Furthermore,H(Yi) =

H(Xi) for all 0 ≤ i ≤ L − 1.

Proof. For 0 ≤ τ ≤ q1N − 1, let τ0 = 〈τ〉q1 and τ1 = 〈τ〉N . By Lemma 6, the Hamming

correlationHi,j(τ) betweenYi andYj is given by

Hi,j(τ) := Hi,j(τ0, τ1)

=
N−1
∑

t1=0

∑

f∈F

h[Xi(t1), f ] · h[Xj(〈t1 + τ1〉N), f ]

·

q1−1
∑

t0=0

h[〈{ηi(t1) − ηj(〈t1 + τ1〉N)} · t0〉q1
, 〈ηj(〈t1 + τ1〉N) · τ0〉q1

].

In order to computeHi,j(τ), we divide the problem into two cases.

Case i)i = j andτ1 = 0. Sinceηi(t1) = ηj(〈t1 + τ1〉N) in this case, we get

Hi,i(τ0, 0) =
N−1
∑

t1=0

∑

f∈F

h[Xi(t1), f ] · h[Xi(t1), f ] ·

q1−1
∑

t0=0

h[ 0, 〈ηi(t1) τ0〉q1 ].

If τ0 = 0, then

Hi,j(0, 0) =
N−1
∑

t1=0

∑

f∈F

h[Xi(t1), f ] ·

q1−1
∑

t0=0

h[0, 0]

=
N−1
∑

t1=0

q1

= q1N.

If 1 ≤ τ0 ≤ q1 − 1, then

Hi,j(τ0, 0) =
N−1
∑

t1=0

∑

f∈F

h[Xi(t1), f ] ·

q1−1
∑

t0=0

0

= 0

where the first equality comes from the fact thatηi(t1)τ0 6= 0 mod q1 since1 ≤ ηi(t1) ≤ p1−1.

Therefore,

Hi,i(τ0, 0) :=







q1N, if τ0 = 0

0, otherwise.

Case ii)i 6= j or τ1 6= 0. In this case, ifXi(t1) = Xj(〈t1 + τ1〉N) = f for somef ∈ F , then

ηi(t1) − ηj(〈t1 + τ1〉N) 6= 0 mod p1
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since1 ≤ ηi(t1) 6= ηj(〈t1 + τ1〉N) ≤ p1 − 1. Hence,

q1−1
∑

t0=0

h[〈{ηi(t1) − ηj(t1 + τ1)} · t0〉q1 , 〈ηj(〈t1 + τ1〉N) · τ0〉q1 ] = 1

whenXi(t1) = Xj(〈t1 + τ1〉N). Then,

Hi,j(τ0, τ1) =
N−1
∑

t1=0

∑

f∈F

h[Xi(t1), f ] h[Xj(〈t1 + τ1〉N), f ]

=
N−1
∑

t1=0

h[Xi(t1), Xj(〈t1 + τ1〉N)]

= HXi,Xj
(τ1)

≤ λ

sincei 6= j or τ1 6= 0.

By summarizing the results of Cases i) and ii), we have

Hi,i(τ) =



















q1N, if τ = 0

0, if τ0 6= 0 andτ1 = 0

HXi,Xi
(τ1), if τ1 6= 0

for any 0 ≤ i ≤ L − 1, and

Hi,j(τ) = HXi,Xj
(τ1) ≤ λ

for any 0 ≤ i 6= j ≤ L − 1 and any0 ≤ τ ≤ N − 1. 2

It is easily checked thatNYA
((a, f)) = NX (f) for anya ∈ Zq1 and anyf ∈ F in Construction

A. Therefore, it is possible to extend the length ofYA by the factorq2 = pa2
2 , wherea2 is a

positive integer andp2 is a prime withp2 > p1 and gcd(p2, N) = 1. In this way, Construction

A can be applied recursively infinitely many times.

Corollary 8. LetX be an(N,M, λ; L)-FHS set overF , whereXi = {Xi(t)}
N−1
t=0 . For a positive

integer k, let qi = pai

i for 1 ≤ i ≤ k, wherep1, . . . , pk are primes withp1 < · · · < pk and

a1, . . . , ak are positive integers. Assume thatn = q1 · · · qk satisfiesgcd(n,N) = 1 andNX (f) ≤

p1 − 1 for any f ∈ F . Then there exists an(nN, nM, λ; L)-FHS set overZqk
× · · · ×Zq1 ×F .
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If X in Corollary 8 is optimal with respect to the Peng-Fan bound, the resultant FHS set is

also optimal whenever
⌈

(NL−M)N
(NL−1)M

− 1
LM

⌉

=
⌈

(NL−M)N
(NL−1)M

⌉

since

(NL − M)N

(NL − 1)M
−

1

LM
<

(nNL − nM) · N

(nNL − 1) · nM
<

(NL − M)N

(NL − 1)M
.

For example, the(9n, 3n, 3; 3)-FHS set extended from the(9, 3, 3; 3)-FHS set given in [10] is

always optimal as long asn satisfies the conditions in Corollary 8. Moreover, if each FHSof X

is optimal with respect to the Lempel-Greenberger bound, itis guaranteed that each FHS in the

resultant set is always optimal because
⌊

nN
nM

⌋

=
⌊

N
M

⌋

. Some new optimal FHS sets obtained by

recursively applying Construction A are listed in Table II. Since Construction A can be applied

to any existing FHS sets, it is expected that there exist somemore classes of optimal FHS sets

which can be obtained from our construction, but are not listed there.

Example 9. Let X , {X0, X1, X2} be the optimal(9, 3, 3; 3)-FHS set overZ3 given in [10],

where

{X0(t1)}
8
t1=0 = {0, 0, 0, 0, 1, 2, 0, 2, 1},

{X1(t1)}
8
t1=0 = {1, 1, 1, 1, 2, 0, 1, 0, 2},

{X2(t1)}
8
t1=0 = {2, 2, 2, 2, 0, 1, 2, 1, 0}.

It is easily checked that

{η0(t1)}
8
t1=0 = {1, 2, 3, 4, 1, 1, 5, 2, 2},

{η1(t1)}
8
t1=0 = {3, 4, 5, 6, 3, 6, 7, 7, 4},

{η2(t1)}
8
t1=0 = {5, 6, 7, 8, 8, 8, 9, 9, 9}.

Let q1 = p1 = 11 in Construction A. The FHSY0 overZ11×Z3 can be obtained from the11×9



12 CACR TECHNICAL REPORT 2014

array
























































(0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 2) (0, 0) (0, 2) (0, 1)

(1, 0) (2, 0) (3, 0) (4, 0) (1, 1) (1, 2) (5, 0) (2, 2) (2, 1)

(2, 0) (4, 0) (6, 0) (8, 0) (2, 1) (2, 2) (10, 0) (4, 2) (4, 1)

(3, 0) (6, 0) (9, 0) (1, 0) (3, 1) (3, 2) (4, 0) (6, 2) (6, 1)

(4, 0) (8, 0) (1, 0) (5, 0) (4, 1) (4, 2) (9, 0) (8, 2) (8, 1)

(5, 0) (10, 0) (4, 0) (9, 0) (5, 1) (5, 2) (3, 0) (10, 2) (10, 1)

(6, 0) (1, 0) (7, 0) (2, 0) (6, 1) (6, 2) (8, 0) (1, 2) (1, 1)

(7, 0) (3, 0) (10, 0) (6, 0) (7, 1) (7, 2) (2, 0) (3, 2) (3, 1)

(8, 0) (5, 0) (2, 0) (10, 0) (8, 1) (8, 2) (7, 0) (5, 2) (5, 1)

(9, 0) (7, 0) (5, 0) (3, 0) (9, 1) (9, 2) (1, 0) (7, 2) (7, 1)

(10, 0) (9, 0) (8, 0) (7, 0) (10, 1) (10, 2) (6, 0) (9, 2) (9, 1)

























































,

that is,

{Y0(t)}
98
t=0 = {(0, 0), (2, 0), (6, 0), (1, 0), (4, 1), (5, 2), (8, 0), (3, 2), (5, 1), (9, 0),

· · · , (2, 1), (2, 0), (6, 0), (1, 0), (9, 0), (6, 1), (7, 2), (7, 0), (7, 2), (9, 1)}.

Similarly,

{Y1(t)}
98
t=0 = {(0, 1), (4, 1), (10, 1), (7, 1), (1, 2), (8, 0), (9, 1), (5, 0), (10, 2), (5, 1),

· · · , (4, 2), (6, 1), (1, 1), (9, 1), (8, 1), (7, 2), (9, 0), (1, 1), (8, 0), (7, 2)};

{Y2(t)}
98
t=0 = {(0, 2), (6, 2), (3, 2), (2, 2), (10, 0), (7, 1), (10, 2), (8, 1), (6, 0), (11, 2),

· · · , (9, 0), (10, 2), (7, 2), (6, 2), (7, 2), (4, 0), (1, 1), (6, 2), (4, 1), (2, 0)}.

For 0 ≤ i, j ≤ 2, the Hamming correlationHi,j(τ) betweenYi and Yj is easily computed as

Hi,j(τ) =



























99, if i = j and τ = 0 mod 99

0, if i = j, 9 |τ and 11 ∤ τ

0, if i 6= j and 9| τ

3, otherwise.

Clearly,YA , {Y0, Y1, Y2} is an optimal(99, 33, 3; 3)-FHS with respect to the Peng-Fan bound.

Moreover, each FHSYi is an optimal(99, 33, 3)-FHS with respect to the Lempel-Greenberger
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bound. In a similar way,X can be extended to an optimal(117, 39, 3; 3)-FHS set, an optimal

(1287, 429, 3; 3)-FHS set, or infinitely many optimal FHS sets. �

B. New Optimal Single FHS

Given a length and a frequency set size, the existence of an optimal FHS with respect to

the Lempel-Greenberger bound is not always guaranteed. Forinstance, it is easily checked that

neither a(5, 2, 2)-FHS nor a(6, 2, 3)-FHS exists. Thus, it is also an important problem to find an

optimal FHS with respect to the Lempel-Greenberger bound, which has a length or an alphabet

size not covered in the literature.

Construction A in the case ofL = 1 leads to the construction of a new single FHS. Based on

Construction A, it is possible to obtain new optimal FHSs withrespect to the Lempel-Greenberger

bound.

Corollary 10. Assume that there exists an optimal(N,M, λa)-FHSX with respect to the Lempel-

Greenberger bound, defined overF . For positive integersk and a1, . . . , ak, let qi = pai

i , 1 ≤

i ≤ k, wherep1, . . . , pk are primes withp1 < · · · < pk. If n = q1 · · · qk satisfiesgcd(n,N) = 1

and NX(f) ≤ p1 − 1 for any f ∈ F , then there exists an optimal(nN, nM, λa)-FHS over

Zqk
× · · · × Zq1 ×F .

Proof. Let N = aM + b with 0 ≤ b ≤ M − 1. Then λa = a if M 6= N , and λa = 0

if M = N by Corollary 3. From Construction A, an(nN, nM, λa)-FHS Y can be obtained.

SincenN = a(nM) + nb with 0 ≤ nb ≤ n(M − 1), Y is optimal with respect to the Lempel-

Greenberger bound by Corollary 3. 2

Corollary 10 tells us that any optimal FHS with respect to the Lempel-Greenberger bound

can be extended to an optimal FHS of a longer length over a larger set of available frequencies,

if properly chosen. Some examples of new optimal FHSs are shown in Table III.

Example 11. Let X = {X(t)}18
t=0 be the(19, 6, 3)-FHS overZ6 given by

{X(t)}18
t=0 = {0, 0, 1, 1, 2, 4, 2, 0, 3, 2, 5, 0, 3, 5, 1, 5, 4, 4, 3}
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in [13]. By applying Construction A toX with q1 = p1 = 5, we obtainY = {Y (t)}94
t=0 over

Z5 × Z6 as

{Y (t)}94
t=0 = {00, 20, 21, 11, 42, 04, 22, 10, 33, 22, 05, 40, 43, 15, 21, 05, 24, 14, 43,

40, 00, 11, 41, 32, 44, 02, 30, 23, 42, 45, 00, 23, 45, 41, 25, 04, 34, 13,

30, 30, 01, 21, 22, 34, 32, 00, 13, 12, 35, 10, 03, 25, 11, 45, 34, 04, 33,

20, 10, 41, 01, 12, 24, 12, 20, 03, 32, 25, 20, 33, 05, 31, 15, 14, 24, 03,

10, 40, 31, 31, 02, 14, 42, 40, 43, 02, 15, 30, 13, 35, 01, 35, 44, 44, 23}

where (x, y) is simply denoted byxy for x ∈ Z5 and y ∈ Z6. It is easily checked thatY is

an optimal (95, 30, 3)-FHS with respect to the Lempel-Greenberger bound. Similarly, X can

be extended to an optimal(133, 42, 3)-FHS, an optimal(665, 210, 3)-FHS, or infinitely many

optimal FHSs. �

IV. CONSTRUCTION OFFREQUENCY-HOPPINGSEQUENCES OFLENGTH (q − 1)N

In [29], some new optimal((q−1)N, qM −∆, λ; L)-FHS sets obtained from an(N,M, λ; L)-

FHS set were presented, whereq is a prime power and∆ is determined by the properties of the

given FHS set. In this section, we present a new constructionfor optimal FHS sets with similar

parameters in a different approach. LetFq be the finite field ofq elements andα a primitive

element ofFq. For any nonzero elementβ of Fq, we haveβ = αl for an integer0 ≤ l ≤ q − 2.

By using the CRT and the finite field, it is possible to construct anew FHS set.

Construction B: Let X , {X0, X1, . . . , XL−1} be an (N,M, λ; L)-FHS set overF , where

Xi = {Xi(t)}
N−1
t=0 . Assume thatq is a prime power satisfyinggcd(q−1, N) = 1 andNX (f) ≤ q

for any f ∈ F . Let ζ be a one-to-one function from{1, . . . , q} to Fq. For 0 ≤ i ≤ L − 1, let

Yi , {Yi(t)}
(q−1)N−1
t=0 be the FHS overFq ×F , defined as

Yi(t) , Yi(t0, t1) =
(

αt0 + ζi(t1), Xi(t1)
)

wheret0 = 〈t〉q−1, t1 = 〈t〉N , andζi(t1) = ζ(ηi(t1)) with ηi defined in (5). Construct the FHS

setYB as

YB = {Yi | 0 ≤ i ≤ L − 1}.
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Theorem 12. The setYB in Construction B is a((q − 1)N, qM, λ; L)-FHS set.

Proof. For 0 ≤ τ ≤ (q − 1)N − 1, let τ0 = 〈τ〉q−1 and τ1 = 〈τ〉N . In a similar way to the

Proof of Theorem 7, the Hamming correlationHi,j(τ) betweenYi andYj is given by

Hi,j(τ) , Hi,j(τ0, τ1)

=
N−1
∑

t1=0

∑

f∈F

h[Xi(t1), f ] · h[Xj(t1 + τ1), f ]

·

q−2
∑

t0=0

h[αt0 (1 − ατ0) , ζj(t1 + τ1) − ζi(t1) ].

In order to computeHi,j(τ), we divide the problem into two cases.

Case i)τ0 = 0. In this case,

Hi,j(τ) , Hi,j(τ0, τ1)

=
N−1
∑

t1=0

∑

f∈F

h[Xi(t1), f ] h[Xj(t1 + τ1), f ] ·

q−2
∑

t0=0

h[0, ζj(t1 + τ1) − ζi(t1) ].

Note that
q−2
∑

t0=0

h[0, ζj(t1 + τ1) − ζi(t1) ] =







q − 1, if i = j andτ1 = 0

0, otherwise

by the fact thatηi(t1) 6= ηj(〈t1 + τ1〉N) andζ is one-to-one. Consequently,

Hi,j(τ) =







(q − 1)N, if i = j andτ1 = 0

0, otherwise.

Case ii)τ0 6= 0. Sinceα is a primitive element ofFq, we have

q−2
∑

t0=0

h[αt0(1 − ατ0), ζj(t1 + τ1) − ζi(t1) ] =







0, if i = j andτ1 = 0

1, otherwise.

Hence,

Hi,j(τ) =







0, if i = j andτ1 = 0

HXi,Xj
(τ1), otherwise.

In summary,

Hi,j(τ) ≤







(q − 1)N, if i = j andτ = 0

λ, otherwise.
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Therefore, we get the assertion. 2

Remark: Compared with the construction in [29], Construction B requires one additional con-

dition that gcd(q − 1, N) = 1. However, the alphabet size ofYB in Construction B is always

exactlyqM , while the alphabet size in [29] is given byqM −|Ψ|, whereΨ = {f |NX (f) = 1}.

Moreover, the condition that1 ≤ NX (f) ≤ q−1 in [29] is also different from the condition that

1 ≤ NX (f) ≤ q in Construction B.

Note thatNYB
((x, f)) ≤ NX (f) for any x ∈ Fq and anyf ∈ F in Construction B. Hence, it

is possible to apply Construction A toYB. By combining Construction B with Construction A

in this way, other classes of optimal FHS sets and FHSs with new parameters can be obtained,

as shown in the following corollaries and Tables III and IV.

Corollary 13. Assume that there exists an optimal(N,M, λ; L)-FHS setX overF . Let qi = pai

i

for 1 ≤ i ≤ k such thatp1, . . . , pk are primes withp1 < · · · < pk and gcd(pi, N) = 1 for

1 ≤ i ≤ k. Let q be a prime power satisfyinggcd(q− 1, q1 · · · qk) = 1 and gcd(q− 1, N) = 1. If

NX (f) ≤ p1−1 andNX (f) ≤ q for all f ∈ F , then there exists an(n(q−1)N,nqM, λ; L)-FHS

setYB′, wheren = pa1
1 · · · pak

k with positive integersa1, . . . , ak.

Corollary 14. Assume that there exist an optimal(N,M, λa)-FHS X over F . Let qi = pai

i

for 1 ≤ i ≤ k such thatp1, . . . , pk are primes withp1 < · · · < pk and gcd(pi, N) = 1 for

1 ≤ i ≤ k. Let q be a prime power satisfyinggcd(q− 1, q1 · · · qk) = 1 and gcd(q− 1, N) = 1. If

NX(f) ≤ p1 − 1 and NX(f) ≤ q for all f ∈ F , then there exist an(n(q − 1)N,nqM, λa)-FHS

Y over Fq × F . In particular, Y is optimal if N = M or bq ≥ N , whereN = aM + b with

0 ≤ b ≤ M .

Note that in Corollary 10, the optimality with respect to the Lempel-Greenberger bound is

always preserved becausenN
nM

= N
M

. However, an additional condition is needed in Corollary 14

since (q−1)nN

qnM
< N

M
.

V. CONCLUSION

We showed two new extension method for constructing FHS sets. We also proved that infinitely

many families of new optimal FHS sets with respect to the Peng-Fan bound as well as new
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optimal FHSs with respect to the Lempel-Greenberger bound can be obtained from them.

Compared with the previous extension methods in [28] and [29], our constructions give new

optimal FHS sets for much more general cases, as shown in Table I. Moreover, several new

classes of optimal FHSs or FHS sets are provided in Tables II–IV, whose parameters are not

covered in the literature.
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TABLE I

EXTENSION METHODS OF AN(N, M, λ; L)-FHS SET X . HERE, p1, . . . , pk ARE PRIMES WITHp1 < · · · < pk AND q IS A

PRIME POWER.

References Extended FHS set Constraints

[28] (dN, M, dλ;
⌊

L
d

⌋

) 2 ≤ d ≤ L

[29] ((q − 1)N, qM − |Ψ|, λ; L)

1 ≤ NX (f) ≤ q − 1

for all f ∈ F ,

Ψ = {f |NX (f) = 1}

Construction A (nN, nM, λ; L)

1 ≤ NX (f) ≤ p1 − 1

for all f ∈ F ,

n = p
a1

1 · · · pak

k ,

gcd(n, N) = 1

Construction B ((q − 1)N, qM, λ; L)

1 ≤ NX (f) ≤ q,

for all f ∈ F ,

gcd(q − 1, N) = 1

Combination of

Constructions A and B

(n(q − 1)N,

n(q − 1)M, λ; L)

1 ≤ NX (f) ≤ p1 − 1,

1 ≤ NX (f) ≤ q

for all f ∈ F ,

n = p
a1

1 · · · p
ak

k ,

gcd(n, q − 1) = gcd(q − 1, N)

= gcd(n, N) = 1
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TABLE II

PARAMETERS OFSOME NEW OPTIMAL FHS SETS WITH RESPECT TO THEPENG-FAN BOUND OBTAINED FROM

CONSTRUCTIONA. HERE, p, p1, . . . , pk ARE PRIMES WITHp1 < · · · < pk , n = p
a1

1 · · · pak

k , AND r IS A PRIME POWER.

New FHS Set

(N, M, λ; L)

Individual FHS

(N, M, λa)
Constraints

(

n(rl − 1), n rm, rl−m; rm
)

(

n(rl − 1), n rm, rl−m − 1
)

optimal

1 ≤ m ≤ l,

p1 > rl

(

np2, np, p; p
)

(

np2, np, p
)

optimal
p1 > p2

(np, n (e + 1), g; e)
(np, n (e + 1), g − 1)

optimal

p = eg + 1,

2 ≤ g ≤ e,

p1 > p

(n(r − 1), n (e + 1), g; e)
(n(r − 1), n (e + 1), g − 1)

optimal

r = eg + 1,

e(e + 1) ≥ r − 1,

p1 > r

(

n(rl
−1)

h
, n rm, rl−m

−1
h

; h
)

(

n(rl
−1)

h
, n rm, rl−m

−1
h

)

optimal

gcd(l, h) = 1,

h | r − 1,

1 ≤ m ≤ l,

p1 > rl
−1
h

(nv, n (e + 1), g; g1)
(nv, n (e + 1), g − 1)

optimal

v = eg + 1 = s
m1

1 · · · smk

k ,

s1 < · · · < sk : odd primes,

si = egi + 1 for all i,

g1 ≥ e ≥ 2, p1 ≥ eg1
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TABLE III

PARAMETERS OFSOME NEW OPTIMAL FHSS WITH RESPECT TO THELEMPEL-GREENBERGERBOUND OBTAINED FROM

CONSTRUCTIONSA AND B. HERE, p, p1, . . . , pk ARE PRIMES WITHp1 < · · · < pk , n = p
a1

1 · · · pak

k , AND BOTH q AND r ARE

PRIME POWERS.

Parameters

(N, M, λa)
Constraints

(nv, n e, g)

v = eg + 1 = r
m1

1 · · · r
mk

k ,

r1 < · · · < rk : odd primes,

ri = egi + 1 for all i,

2 ∤ gi, p1 > e + 1

(nv, n e, g)

v = eg + 1 = r
m1

1 · · · rmk

k ,

r1 < · · · < rk : odd primes,

ri = egi + 1 andri ≡ 3 mod 4 for all i,

2|gi, p1 > e + 1
(

np2, np, p
)

p1 > 2p − 1

(n(r − 1), n (e + 1), g − 1)
r = eg + 1,

e(e + 1) ≥ r − 1, p1 > e
(

n(rl − 1), n rm, rl−m − 1
)

1 ≤ m ≤ l, p1 > rl−m

(

n(rl
−1)

h
, n rm, rl−m

−1
h

) gcd(n, h) = 1, h | r − 1,

1 ≤ m ≤ n, p1 > rl−m
−1

h

(n(q − 1)v, nq e, g)

v = eg + 1 = r
m1

1 · · · rmk

k ,

r1 < · · · < rk : odd primes,

ri = egi + 1 for all i,

2 ∤ gi, p1 > e + 1,

gcd(n, q − 1) = gcd(q − 1, v) = gcd(v, n) = 1

(n(q − 1)v, n e, g)

v = eg + 1 = r
m1

1 · · · r
mk

k ,

r1 < · · · < rk : odd primes,

ri ≡ 3 mod 4 andri = egi + 1 for all i,

2|g, p1 > e + 1,

gcd(n, q − 1) = gcd(q − 1, v) = gcd(v, n) = 1

(n(q − 1)v, n q(e + 1), g − 1)

v = eg + 1 = r
m1

1 · · · rmk

k ,

r1 < · · · < rk : odd primes,

ri = egi + 1 for all i,

2 ≤ g ≤ e, p1 > e, (e − g + 2)q > v,

gcd(n, q − 1) = gcd(q − 1, v) = gcd(v, n) = 1

(

n(q − 1)
(

rl − 1)
)

, nqrm, rl−m − 1
)

1 ≤ m ≤ n,

p1 > rl−m, q > rl
−1

rm−1
,

gcd(n, q − 1) = gcd(q − 1, rl − 1) = gcd(rl − 1, n) = 1
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TABLE IV

PARAMETERS OFSOME NEW OPTIMAL FHS SETS WITH RESPECT TO THEPENG-FAN BOUND OBTAINED BY COMBINING

CONSTRUCTIONSA AND B. HERE, p, p1, . . . , pk ARE PRIMES WITHp1 < · · · < pk , n = p
a1

1 · · · p
ak

k , AND BOTH q AND r ARE

PRIME POWERS.

New FHS Set

(N, M, λ; L)

Individual FHS

(N, M, λa)
Constraints

(

n(q − 1)(rl − 1), nq rm, rl−m; rm
)

(

n(q − 1)(rl − 1), nq rm, rl−m − 1
)

optimal

1 ≤ m ≤ l,

p1 > rl, q > rl

gcd(n, q − 1) = gcd(q − 1, rl − 1)

= gcd(rl − 1) = 1

(

n(q − 1)p2, nqp, p; p
)

(

n(q − 1)p2, nqp, p
)

near-optimal

p1 > p2, q ≥ p2,

gcd(n, q − 1) = gcd(q − 1, p)

= gcd(p, n) = 1

(n(q − 1)p, nq (e + 1), g; e)
(n(q − 1)p, nq (e + 1), g − 1)

optimal

p = eg + 1,

2 ≤ g < e,

p1 > p, q > p,

gcd(n, q − 1) = gcd(q − 1, p)

= gcd(p, n) = 1

(n(q − 1)(r − 1), nq (e + 1), g; e)
(n(q − 1)(r − 1), nq (e + 1), g − 1)

optimal

r = eg + 1,

e(e + 1) ≥ r − 1,

p1 > r, q > q1,

gcd(n, q − 1) = gcd(q − 1, r − 1)

= gcd(r − 1, n) = 1

(

n(q−1)(rl
−1)

h
, nq rm, rl−m

−1
h

; h
)

(

n(q−1)(rl
−1)

h
, nq rm, rl−m

−1
h

)

optimal

gcd(n, h) = 1,

h | r − 1,

1 ≤ m ≤ l,

p1 > rl
−1
h

, q > rl
−1
h

,

gcd(n, q − 1) = gcd(q − 1, rl − 1)

= gcd(rl, n) = 1

(n(q − 1)v, nq (e + 1), g; g1)
(n(q − 1)v, nq (e + 1), g − 1)

optimal

v = eg + 1 = s
m1

1 · · · s
mk

k ,

s1 < · · · < sk : odd primes,

si = egi + 1, g1 < e ≥ 2,

p1 ≥ eg1, q(e + g − 2) > v,

gcd(n, q − 1) = gcd(q − 1, v)

= gcd(v, n) = 1


