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Abstract

Noncooperative game-theoretic tools have been increasingly used to study many important resource

allocation problems in communications, networking, smart grids, and portfolio optimization. In this

paper, we consider a general class of convex Nash Equilibrium Problems (NEPs), where each player aims

at solving an arbitrary smooth convex optimization problem. Differently from most of current works, we

do not assume any specific structure for the players’ problems, and we allow the optimization variables of

the players to be matrices in the complex domain. Our main contribution is the design of a novel class

of distributed (asynchronous) best-response- algorithms suitable for solving the proposed NEPs, even in

the presence of multiple solutions. The new methods, whose convergence analysis is based on Variational

Inequality (VI) techniques, can select, among all the equilibria of a game, those that optimize a given

performance criterion, at the cost of limited signaling among the players. This is a major departure from

existing best-response algorithms, whose convergence conditions imply the uniqueness of the NE. Some of

our results hinge on the use of VI problems directly in the complex domain; the study of these new kind of

VIs also represents a noteworthy innovative contribution. We then apply the developed methods to solve

some new generalizations of SISO and MIMO games in cognitive radio systems, showing a considerable

performance improvement over classical pure noncooperative schemes.

1 Introduction and Motivation

In recent years, there has been a growing interest in the use of noncooperative games to model and solve

resource allocation problems in communications and networking, wherein the interaction among several agents

is by no means negligible and centralized approaches are not suitable. Examples are power control and

resource sharing in wireless/wired peer-to-peer networks, cognitive radio systems (e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12]), distributed routing, flow and congestion control, and load balancing in communication networks

(e.g., [13, 14, 15] and references therein), and smart grids (see [16, 17] and references therein). Two recent

special issues on the subject are [18, 19].

Among the variety of models and solution concepts proposed in the literature, the Nash Equilibrium

Problem (NEP) plays a central role and has been used mostly to model interactions among individuals

∗The work of G. Scutari is supported by the National Science Foundation Grant No. CNS-1218717. The work of J.-S. Pang

is based on research supported by the U.S. National Science Foundation grant No. CMMI 0969600. The work of D. P. Palomar

was supported by the Hong Kong RGC 617810 research grant. Part of this paper has been presented at the 31st Annual IEEE

International Conference on Computer Communications (IEEE INFOCOM 2012).

1

http://arxiv.org/abs/1212.6235v2


competing selfishly for scarce resources. In a NEP there is a finite number I of players; each player i makes

decisions on a set of variables xi belonging to a given feasible set xi ∈ Qi. The goal of each player i is to

minimize his own objective function fi(xi,x−i) over Qi while anticipating the reactions x−i , (xj)
I
j 6=i=1 from

the rivals:
minimize

xi

fi(xi, x−i)

subject to xi ∈ Qi.
(1)

The NEP is the problem of finding a vector x⋆ , (x⋆
i )

I
i=1 such that each x⋆

i belongs to Qi and solves the

player’s problem (given x⋆
−i):

fi(x
⋆
i , x

⋆
−i) ≤ fi(xi, x

⋆
−i), ∀xi ∈ Qi. (2)

Such a point x⋆ is called a Nash Equilibrium (NE) or, more simply, a solution of the NEP. In words, a NE

is a feasible strategy profile x⋆ such that no single player can benefit from a unilateral deviation from x⋆
i .

In this paper we focus on NEPs in the general form (1), in the following setting: i) the optimization

variables of each player can be either real vectors or complex matrices; ii) each optimization problem in (1)

is convex for any given feasible x−i; and iii) players’ objective functions are continuously differentiable in all

the variables (more precisely, functions of complex variables are assumed to be R-differentiable, see Sec. 5).

We will term such a game (real or complex ) player-convex NEP. Note that assumptions ii) and iii) are mild

and quite standard in the literature, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19] where special

instances of the player-convex NEP (1) are studied. The convexity assumption ii) makes the NEP numerically

tractable (a NE may not even exist otherwise) while, to date, the differentiability of the players’ functions

seems indispensable to analyze distributed solution methods [20, 21], unless the game has a very specific

structure, like in potential or supermodular games; see, e.g., [22, 23, 24] and references therein. Motivated

by recent applications of noncooperative models in MIMO communications [7, 8, 10, 11, 25], we also allow,

according to i), players’ optimization variables to be complex matrices, which significantly enlarges the range

of applicability of model (1). To the best of our knowledge, this is the first work where a complex NEP in

the general form (1) is considered.

While the solution analysis (e.g., solution existence) of a real player-convex NEP relies on standard results

in game theory (see, e.g., the seminal work [26], or [20] for more recent results), the development of distributed

solution algorithms is much more involved. The goal of this paper is to address this difficult task in the broad

setting described above. We are interested in the design and analysis of (possibly) asynchronous iterative

best-response algorithms, suitable for solving real and complex player-convex NEPs, even in the presence of

multiple NEs. By “best-response” algorithms we mean iterative schemes where the players iteratively choose

the (feasible) strategy that minimizes their cost functions, given the actions of the other players; the reason

for our emphasis on best-response schemes will be described shorty.

1.1 Literature review

The study of iterative algorithms for (special cases of) player-convex NEPs has been addressed in a number of

papers, under different settings and assumptions; the main features and limitations of current state-of-the-art

approaches are discussed next.

A first class of papers is composed of works motivated by specific applications, some examples are [1,

2, 3, 4, 5, 7, 8, 9, 10, 11], where different resource allocation problems in communications are modelled as

noncooperative games and solved via iterative algorithms; all these formulations are special cases of the NEP
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(1). A key feature of all these models is that the best-response of each player (i.e., the optimal solution of each

player’s optimization problem) is unique and can be expressed in closed form; this simplifies enormously the

application of standard fixed-point arguments to the study of the convergence of best-response algorithms.

A monotonicity-based approach is instead used in [27, 28]. Even though algorithms in [29, 30, 27] do not

require a closed form solution of players’ optimization problems, they can be computationally very demanding

and the convergence conditions are based on assumption whose verification for games arising from realistic

applications remains elusive. Last but not least, convergence conditions of the algorithms proposed in all the

aforementioned papers imply the uniqueness of the NE.

A more general and powerful methodology suitable for studying noncooperative games is offered by the

theory of finite-dimensional Variational Inequalities (VIs) [31]. VI and complementarity problems have a long

history and have been well documented in the literature of operation research [31], but only recently they

have been brought to the attention of the signal processing, communications, and networking communities

[2, 4, 6, 10, 32, 33]. Given a subset K of R
n and a vector-valued function F : K → R

n, the VI problem,

denoted by VI(K,F), consists in finding a point x⋆ ∈ K such that

(x− x⋆)T F(x⋆) ≥ 0 ∀x ∈ K. (3)

The VI approach to real player-convex NEPs as in (1) hinges on an easy equivalence with the (partitioned)

VI problem VI(K,F) in (3), with K =
∏I

i=1Qi and F = (∇xi
fi(x))

I
i=1 (intended to be a column vector),

where ∇xi
fi(x) denotes the gradient of fi with respect to xi. Based on this equivalence, one can solve a real

player-convex NEP by focusing on the associated VI problem and taking advantage of the many (centralized

and distributed) solution methods available in the literature for partitioned VIs [31, Vol. II].

In the effort of obtaining distributed schemes for NEPs, researchers have focused on so called projection

algorithms [31, Ch. 12] for partitioned VIs; see, e.g., [34, 35, 36] (and also [26, 37] for related approaches).

However, these solution methods suffer from some drawbacks, which strongly limit their applicability in

practice, especially in the design of wireless systems. First, they are not “incentive compatible”, meaning

that selfish users may deviate from them, unless they are imposed by some authority as a protocol to follow.

Second, and most importantly, they generally converge very slowly; this has been observed in a number of

different applications (see, e.g., numerical results in [35, 36, 37] and Fig. 4 in Sec. 7).

A different approach to the design of algorithms for partitioned VIs has been followed in [38, 39], where

the authors investigated the local and global convergence of various iterative synchronous methods that de-

compose the original VI problem into a sequence of simpler lower-dimensional VI subproblems. Unfortunately

the convergence analysis in [38, 39], based on contraction arguments, leads to abstract convergence condi-

tions, whose verification in practice seems not possible. Easier conditions to be checked have been obtained

recently in [20] for simultaneous best-response algorithms, still using the VI approach. However, conditions in

[20, 38, 39] are applicable only to a restricted class of real NEPs; they indeed imply the (uniformly) strongly

convexity of the players’ cost functions and the uniqueness of the NE. In the presence of multiple solutions,

the distributed computation of even a single NE of real/complex NEPs via best-response algorithms becomes

a difficult and unsolved task.

The analysis of the current literature carried out so far leads to the following conclusions: When it comes

to distributed computation of NE via best-response dynamics, the following issues arise: i) the convergence

analysis and algorithms apply only to a restricted class of NEPs, whose players’ cost functions and feasible

sets have a very specific structure, leaving outside player-convex NEPs in the general form (1); ii) the best-
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response mapping of each player must be unique and/or is required to be computed in closed form; iii)

convergence is obtained only under conditions implying the uniqueness of the NE; and iv) none of current

results and VI-based methodologies can be applied to study and solve complex player-convex NEPs, which

arise naturally, e.g., from applications in MIMO communications.

1.2 Main contributions

In order to address the key issues listed at the end of the previous subsection, in this paper we introduce

several new developments that are summarized next.

1. Building on our recent contributions [20, 21, 32, 40], we develop a VI-based unified theory for the study

and design of distributed best-response algorithms for the solution of real player-convex NEPs, having

(possibly) multiple solutions. Our unified framework has many desirable properties, such as:

− It provides a systematic methodology for analyzing old and new algorithms, simplifying greatly the

application of game-theoretical models to new problems.

− It improves on traditional synchronous methods studied in the literature, see e.g. [20, 26, 34,

35, 36, 37], by providing for the first time totally asynchronous and distributed methods for general

player-convex NEPs. In spite of their better features, the proposed algorithms converge under weaker

conditions than those available in the literature for synchronous best-response schemes; nevertheless,

the convergence conditions still imply the uniqueness of the NE.

− It provides convergent best-response schemes also for NEPs having multiple solutions. Although

no centralized control is required, these schemes need some (limited) signaling among the players.

Nevertheless, our algorithms are still applicable to a variety of resource allocation problems in wireless

systems, such as [1, 2, 3, 4, 5, 7, 8, 9, 10, 11] and constitute the fist class of provable convergent

distributed best-response schemes for NEPs with multiple solutions. Moreover, an additional new

feature of our methods is that one can also control the quality of the achievable solution by forcing

convergence to a NE that optimizes a further performance criterion (thus performing an equilibrium

selection). This feature is very appealing in the design of practical wireless systems, where algorithms

with unpredictable performance are not acceptable.

− It does not require the players’ best-response to be unique or given in closed form.

− It allows us to gauge the trade-off between signaling and characteristic of the resulting algorithms.

2. We develop an entirely new theory for the study of VIs in the complex domain along with new several

instrumental technical tools (of independent interest). Once this new theory has been established, one

can (almost) effortlessly extend all the aforementioned results to player-convex NEPs whose players’

optimization variables are complex matrices. The resulting algorithms are new to the literature.

To the best of our knowledge the above features constitute a substantial advancement in the distributed so-

lution methods of noncooperative games, which enlarges considerably scope and flexibility of game-theoretical

models in wireless distributed (MIMO) networks. In order to illustrate our techniques we consider some new

MIMO games over vector Gaussian Interference Channels (ICs), modeling some distributed resource alloca-

tion problems in SISO and MIMO CR systems. These games are examples of NEPs that cannot be handled

by current methodologies. Numerical results show the superiority of our approach with respect to plain

4



noncooperative solutions as well as good performance with respect to centralized solutions, in spite of very

limited signaling among the players.

The paper is organized as follows. Sec. 2 introduces the just mentioned new resource allocations problems.

Building on the connection between VIs and NEPs, Sec. 3 focuses on the solution analysis of real convex-

player NEPs; special emphasis is given to some classes of vector functions F and its properties that play a

key role also in the convergence analysis of distributed algorithms for NEPs. Sec. 4 and Sec. 5 constitute

the core theoretical part of the paper; in Sec. 4 we provide various distributed algorithms for solving real

player-convex NEPs in several significant settings along with their convergence properties; Sec. 5 generalizes

the main results obtained for real convex-player NEPs (VIs) to the complex case. Sec. 6 shows how to apply

the developed machinery to the resource allocation problems introduced in Sec. 2, whereas Sec. 7 provides

some numerical results corroborating our theoretical findings. Finally, Sec. 8 draws some conclusions.

2 Motivating Examples: Noncooperative Games Over Gaussian ICs

To motivate and illustrate our new results more in detail, we start introducing some novel resource allocation

problems over SISO frequency-selective and MIMO Gaussian ICs, widely extending formulations that have

already been studied in the literature. We will show that these problems cannot be analyzed and solved using

current results and algorithms, but call for a more general theory.

The IC is suitable to model many practical multiuser systems, such as digital subscriber lines, wireless

ad-hoc and Cognitive Radio (CR) networks, peer-to-peer systems, multicell OFDM/TDMA cellular systems,

and Femtocell-based networks. We will focus on CR systems; however the proposed techniques can be readily

applied also to the other aforementioned network models.

2.1 The SISO case

We consider an I-user N -parallel Gaussian interference channel, modeling a CR system composed of I

secondary users (SUs) and P primary users (PUs). In this model, there are I transmitter-receiver pairs−the

SUs−where each transmitter wants to communicate with its corresponding receiver over a set of N parallel

Gaussian subchannels which may represent time or frequency bins (here we consider transmissions over the

frequency-selective IC without loss of generality). We denote by Hij(k) the (cross-) channel transfer function

over the k-th frequency bin between the secondary transmitter j and the receiver i, while the channel transfer

function of secondary link i is Hii(k). The transmission strategy of each user (pair) i is the power allocation

vector pi = {pi(k)}Nk=1 over the N subcarriers; the power budget of each transmitter i is
∑N

k=1 pi(k) ≤ Pi. In

a CR system, additional power constraints limiting the interference radiated by the SUs need to be imposed.

Here we envisage the use of the following general interference constraints: for each SU i,
N∑

k=1

wi(k) pi(k) ≤ αi, i = 1, . . . , I, (4)

where wi(k) ∈ R
m
+ and αi ∈ R

m
+ are nonnegative m-length vectors. Note that constraints in the form of (4)

are general enough to include, as special cases, for example: i) spectral mask constraints pi ≤ pmax
i , where

pmax
i = (pmax

i (k))Nk=1 is the vector of spectral masks over licensed bands; and ii) interference temperature

limit-like constraints
∑N

k=1|H
(P,S)
pi (k)|2pi(k) ≤ Ipi for p = 1, . . . , P, where H

(P,S)
pi (k) is the cross-channel

transfer function over carrier k between the secondary transmitter i and the primary receiver p, and Ipi is

the maximum level of interference that SU i is allowed to generate. Let us define by
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P̃ siso

i ,

{
pi ∈ R

N :
N∑

k=1

pi(k) ≤ Pi, 0 ≤ pi ≤ pmax
i

}
, (5)

the set of power budget constraint of SU i including explicitly the power budget and spectral mask constraints.

Under basic information theoretical assumptions (see, e.g., [1, 4]), the maximum achievable rate on link

i for a specific power allocation profile p1, . . . ,pI is

ri(pi,p−i) =
N∑

k=1

log

(
1 +

|Hii(k)|2pi(k)
σ2
i (k) +

∑
j 6=i |Hij(k)|2pj(k)

)
(6)

where p−i , (p1, . . . ,pi−1,pi+1, . . . ,pI) is the set of all the users power allocation vectors, except the i-

th one, and σ2
i (k) +

∑
j 6=i |Hij(k)|2pj(k) is the variance of the noise plus the multiuser interference (MUI)

over subcarrier k measured by the receiver i, with σ2
i (k) denoting the power of the thermal noise (possibly

including the interference generated by the PUs).

In this setting, the system design is formulated as a NEP: the aim of each player (link) i, given the strategy

profile p−i of the others, is to choose a feasible power allocation pi that maximizes the rate ri(pi,p−i), i.e.,

maximize
pi

ri(pi,p−i)

subject to

(a) :

(b) :

pi ∈ P̃ siso

i ,
N∑

k=1

wi(k) pi(k) ≤ αi,





, P siso

i

(7)

for all i = 1, . . . , I, where P̃ siso

i and ri(pi,p−i) are defined in (5) and (6), respectively. We denote the NEP

based on (7) by Gsiso =
〈
P siso, (ri)

I
i=1

〉
, with P siso ,

∏
i P siso

i and P siso

i being the feasible set of the

optimization problem (7) of SU i. Note that Gsiso is an instance of the real player-convex NEP in (1).

Literature review. Special cases of the NEP in (7) have been extensively studied in the literature in the

context of ad-hoc networks, namely when there are only power constraints (a) [1, 2, 4, 5, 41]. In such a

simplified setting, given the strategy profile p−i, the optimization problem of each player reduces to:

maximize
pi

ri(pi,p−i)

subject to pi ∈ P̃ siso

i .
(8)

We denote the game resulting from (8) by G̃siso =
〈
P̃ siso, (ri)

I
i=1

〉
, with P̃ siso ,

∏
i P̃ siso

i . Introducing

the matrices M , (Mij)
I
i, j=1 ∈ R

N I×N I and Γ ∈ R
I×I defined respectively as

Mij , diag

{( |Hij(k)|2
|Hii(k)|2

)N

k=1

}
and [Γ]ij ,





0, if i = j;

maxk
|Hij(k)|2
|Hii(k)|2

, otherwise,
(9)

the state-of-the-art-results on G̃siso can be collected together in the following theorem, where ρ(A) denotes

the spectral radius of A.

Theorem 1 Given the NEP G̃siso (with no interference constraints), the following hold.

(a) G̃siso has a nonempty and compact solution set ;
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(b) If M ≻ 0 then G̃siso has a unique NE [2, 4];

(c) If ρ(Γ) < 1, then G̃siso has a unique NE and the asynchronous Iterative Waterfilling Algorithm (IWFA)

based on the waterfilling best-response as proposed in [4] converges to the equilibrium.

Theorem 1 provides a satisfactory characterization of the NEP G̃siso under ρ(Γ) < 1 (or M positive

definite). However, condition ρ(Γ) < 1 may be too restrictive in practice; indeed there are channel scenarios

resulting in games G̃siso having multiple Nash equilibria, resulting thus in ρ(Γ) > 1. In such cases, the IWFA

is no longer guaranteed to converge and there are no algorithms available in the literature solving the game

G̃siso. Moreover, the results in Theorem 1 as well as the mathematical tools used in [1, 2, 4, 5, 41] to study

G̃siso cannot be applied to the more general Gsiso, even in the case of unique NE. The theoretical analysis of

Gsiso is then an open problem, which will be addressed in Sec. 6, based on the general framework that we

introduce in the forthcoming sections.

2.2 The MIMO case

In a MIMO setting, the secondary transceivers are equipped with multiple antennas and are allowed to

transmit over a multidimensional space, whose coordinates may represent time slots, frequency bins, or

angles. In this setting, we envisage the use of the following very general interference constraints:

- Null constraints:

UH
i Qi = 0,

where Qi ∈ C
nTi

×nTi is the transmit covariance matrix of SU i with nTi
being the number of transmit

antennas and Ui ∈ C
nTi

×rUi is a tall matrix whose columns represent the “directions” along with user

i is not allowed to transmit. We assume, without loss of generality (w.l.o.g.) that each matrix Ui is

full-column rank and, to avoid the trivial solution Qi = 0, rUi
< nTi

.

- Soft and peak power shaping constraints:

tr
(
GH

piQiGpi

)
≤ Iavepi and λmax

(
FH
piQiFpi

)
≤ Ipeakpi , p = 1, 2, . . . ,

which represent a relaxed version of the null constraints by limiting the total average and peak average

power radiated along the range space of matrices Gpi ∈ C
nTi

×nGp and Fpi ∈ C
nTi

×nFp , where Iavepi and

Ipeakpi are the maximum average and average peak power respectively that can be transmitted along the

directions spanned by Gpi and Fpi.

Null constraints are enforced to prevent SUs from transmitting over prescribed subspaces (the range

space of Ui), which for example can identify portion of licensed spectrum, time slots used by the PUs,

and/or angular directions identifying the primary receivers as observed from the secondary transmitters.

Soft shaping constraints can be used instead to control the (average and peak average) power radiated by

the SUs along prescribed time/frequency/angular “directions” (those spanned by the columns of matrices Gpi

and Fpi); for instance, classical power constraints, such as per-antenna power constraints [Qi]kk ≤ βik with

k = 1, , . . . nTi
, or power budget constraints tr(Qi) ≤ Pi are example of soft-shaping constraints.

Under basic information theoretical assumptions (see, e.g., [8]), the maximum information rate on sec-

ondary link i for a given set of user covariance matrices Q1, . . . ,QI , is

Ri(Qi,Q−i) = log det
(
I+HH

iiR−i(Q−i)
−1HiiQi

)
(10)
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where R−i(Q−i) , Rni
+
∑
j 6=i

HijQjH
H
ij is the covariance matrix of the noise plus MUI, with Rni

∈ C
nRi

×nRi

denoting the covariance matrix of the thermal Gaussian zero mean noise (possibly including the interference

generated by the PUs), and assumed to be positive definite; Q−i , (Qj)j 6=i is the set of all the users covariance

matrices, except the i-th one; Hii∈ C
nRi

×nTi is the channel matrix between the i-th secondary transmitter

and the intended receiver, whereas Hij∈ C
nRi

×nTj is the cross-channel matrix between secondary source j

and destination i. Within the above setup, the game theoretical formulation is: for each SU i = 1, . . . , I,

maximize
Qi�0

Ri(Qi,Q−i)

subject to

(a) :

(b) :

(c) :

(d) :

tr (Qi) ≤ Pi,

UH
i Qi = 0,

tr
(
GH

piQiGpi

)
≤ Iavepi , λmax

(
FH
piQiFpi

)
≤ Ipeakpi , p = 1, 2, . . . ,

Qi ∈ Qi,





, P mimo

i

(11)

where Qi ⊆ C
nTi

×nTi is an abstract set that can accommodate (possibly) additional constraints on the

covariance matrix Qi, on top of the power and interference constraints; we only make the (blanket) assumption

that each Qi is closed and convex. We refer to the NEP based on (11) as Gmimo =
〈
Pmimo, (Ri)

I
i=1

〉
, with

Pmimo ,
∏

i Pmimo

i and Pmimo

i defined in (11). Note that Gmimo is an instance of the complex NEP (1).

Literature review. The design of MIMO CR systems under different interference-power/interference-

temperature constraints has been addressed in a number of papers. Distributed algorithms (mostly) for

ad-hoc networks based on game theoretical formulations have been proposed in [25, 7, 42, 8, 11]; the state-of-

the-art result is the asynchronous MIMO IWFA solving the NEP in (11), in the presence of constraints (a)

[8] and (b) [11] only. Results in these papers are strongly based on the specific structure of the optimization

problem and the resulting solution−the MIMO waterfilling-like expression−and thus are not applicable to

the general NEP (11). Gmimo is thus an other example of a novel game whose solution analysis requires new

mathematical tools, which is the goal of this paper. The study of Gmimo is addressed in Sec. 6.2 and will

result as a direct application of the framework developed in the forthcoming sections for complex NEPs.

3 Nash Equilibrium Problems

In a standard real NEP there are I players each controlling a variable xi ∈ R
ni that must belong to the

player’s feasible set Qi, which is assumed to be closed and convex: xi ∈ Qi. In what follows we denote by

x , (x1, . . . ,xI), the vector of all players’ variables, while x−i , (x1, . . . ,xi−1,xi+1, . . . , xI) denote the

vector of all players’ strategies variables except that of player i. The aim of player i, given the other players’

strategies x−i, is to choose an xi ∈ Qi that minimizes his cost function fi(xi,x−i), i.e.,

minimize
xi

fi(xi, x−i)

subject to xi ∈ Qi.
(12)

Note that the players’ optimization problem are coupled since the players’ objective function (may) depend on

the other players’ choices. Define the joint strategy set of the NEP by Q =
∏I

i=1Qi, whereas Q−i ,
∏

j 6=iQj,

and set f ,(fi)
I
i=1. The NEP is formally defined by the tuple G = 〈Q, f〉. A solution of the NEP is the well-

known Nash Equilibrium (NE), which is formally defined in (2).
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We recall that a solution of (12), given x−i, is also called best-response of user i. A useful way to see

a NE is as a fixed-point of the best-response mapping for each player; this suggests the use of (iterative)

best-response-based algorithms to solve the game. Given the limitations of classical fixed-point results in

the study of convergence of best-response based algorithms (cf. Sec. 1), we address this issue by reducing

the NEP to a VI problem. The main advantage of this reformulation is algorithmic, since once it has been

carried out, we can build on the well-developed VI theory [31] in order to design new solution methods for

NEPs. In the rest of this paper, we freely use some basic results from VI theory. Since this theory is not

widely known in the information theory, communications, and signal processing communities, for the reader

convenience we summarize the VI results used in this paper in Appendix A.

3.1 Connection to variational inequalities

At the basis of the VI approach to NEPs there is an easy equivalence between a real NEP and a suitably

defined partitioned VI. This equivalence follows readily from the minimum principle for convex problems and

the Cartesian structure of the joint strategy set Q [31, Prop. 1.4.2].

Proposition 2 Given the real NEP G = 〈Q, f〉, suppose that for each player i the following hold:

i) the (nonempty) strategy set Qi is closed and convex;

ii) the payoff function fi(xi,x−i) is convex and continuously differentiable in xi for every fixed x−i.

Then, the game G is equivalent to the VI(Q,F), where F(x) , (∇xi
fi(x))

I
i=1.

In the sequel we refer to the VI(Q,F) defined in previous proposition as the VI associated to the NEP

G. It is possible to relax the assumptions in Proposition 2 and still get useful connections between games

and VIs [20]; but since our aims are mainly computational, we do not pursue this topic further. Indeed,

throughout the paper, we will make the following blanket convexity/smoothness assumptions, unless stated

otherwise.

Assumption 1. For each i = 1, . . . , I, the set Qi is a nonempty, closed, and convex subset of Rni and the

function fi(xi,x−i) is continuously differentiable on Q =
∏

iQi and convex in xi for every fixed x−i ∈ Q−i.

Assumption 2. For each i = 1, . . . , I, each function fi(x) is twice continuously differentiable with bounded

derivatives on Q =
∏

iQi.

3.2 Existence and uniqueness of a NE

Building on the VI reformulation in the previous section and the existence/uniqueness results for VIs (see

Theorem 41 in Appendix A), we can easily state the following theorem that needs no further proof.

Theorem 3 Given the real NEP G = 〈Q, f〉, suppose that G satisfies Assumption 1 and let F(x) , (∇xi
fi(x))

I
i=1.

Then, the following statements hold:

(a) Suppose that for every i the strategy set Qi is bounded. Then the NEP has a nonempty and compact

solution set;

(b) Suppose that F is a monotone function on Q. Then the NEP has a convex (possibly empty) solution set;

(c) Suppose that F is a P (or strictly monotone) function on Q. Then the NEP has at most one solution;

(d) Suppose that F is a uniformly-P (or strongly monotone) function on Q. Then the NEP has a unique

solution.
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The above theorem and many of the algorithmic developments to follow hinge critically on the mono-

tonicity or P properties of the function F. However, checking such properties by using directly the definition

(see Def. 40 in Appendix A) is in general not possible. It is then useful to derive more practical conditions

to establish whether the aforementioned properties hold. It is well known that when Q is an open set and F

is continuously differentiable on Q, with Jacobian matrix denoted by JF, it holds that [31, Prop. 2.3.2]:1

F(x) is monotone on Q ⇔ JF(x) � 0, ∀x ∈ Q;
F(x) is strictly monotone on Q ⇐ JF(x) ≻ 0, ∀x ∈ Q;
F(x) is strongly monotone on Q ⇔ JF− csm I � 0, ∀x ∈ Q;

(13)

where A � 0 (A ≻ 0) means that A is a positive semidefinite (definite) matrix. The verification of these

kind of conditions is often difficult and, furthermore, in many practical instances their verification cannot

easily be linked to physical characteristics of the systems being studied. Therefore, our aim in the remaining

part of this subsection is developing some (conceptually) simpler and new conditions that permit to deduce

the desired F properties and that, at least in some instances, can give some further insight into the problem

at hand. The conditions we introduce here capture some kind of “diagonal dominance” property of JF, and

will play a key role in the convergence theory of the algorithms introduced in Sec. 4.

Let us define the matrix JFlow having the same dimension as JF(x):

[JFlow]rs ,





inf
x∈Q

[
BT JF(x)B

]
rr
, if r = s,

− sup
x∈Q

∣∣[BT JF(x)B
]
rs

∣∣ , otherwise,
(14)

where B ∈ R
n×n is an arbitrary nonsingular matrix. A case that is relevant in the analysis of NEPs is

that of partitioned VIs. This corresponds to the set Q being a Cartesian product of lower-dimensional sets:

Q ,
∏I

i=1Qi, with each Qi ⊆ R
ni being nonempty, closed, and convex and with n ,

∑I
i=1 ni. When

this structure arises it will be quite natural to partition both F and x accordingly and therefore write

F(x) = (Fi(x))
I
i=1 and x = (x)Ii=1, where Fi : Q → R

ni is the ith-component block function of F and

xi ∈ R
ni is the ith-component block of x. In the case of partitioned VIs, let us introduce the “condensed”

I × I real matrices ΥF and ΓF:

[ΥF]ij ,

{
αmin
i , if i = j,

−βmax
ij , otherwise,

and [ΓF]ij ,

{
0, if i = j,

βmax
ij /αmin

i , otherwise,
(15)

with

αmin
i , inf

x∈Q
λleast

(
CT

i JiFi(x)Ci

)
and βmax

ij , sup
x∈Q

∥∥CT
i JjFi(x)Cj

∥∥ , (16)

where λleast (A) denotes the smallest eigenvalue of 1
2(A + AT ) (the symmetric part of A), JjFi(x) is the

Jacobian of Fi(x) with respect to xj , and Ci ∈ R
ni×ni with i = 1, . . . , I, is a set of arbitrary nonsingular

matrices. Note that in the definition of ΓF we tacitly assumed all αmin
i 6= 0 and βmax

ij are finite; the latter

condition is equivalent to the boundedness of JjFi(x) on Q. Matrices B and Ci’s provide an additional

degree of freedom in obtaining conditions for monotonicity and P properties of F that can be linked to

physical characteristics of the systems being studied (see Sec. 6 for some examples). In order to explore the

relationship between the two matrices ΥF and ΓF , we need the following definition (see, e.g., [43, 44]).

1Conditions in (13) can be generalized also to the case in which Q is closed; this will be done in Sec. 5, where we introduce

the VI problem in the complex domain; see Proposition 28.
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Definition 4 A matrix M ∈ R
n×n is called P matrix if every principal minor of M is positive.

Any positive definite matrix is obviously a P-matrix, but the reverse does not hold (unless the matrix

is symmetric). Furthermore, building on the properties of the P-matrices [43, Lemma 13.14], one can show

that ΥF is a P-matrix if and only if ρ(ΓF) < 1, where ρ(A) denotes the spectral radius of A (see, e.g., [5]).

Matrices JFlow and ΥF are useful to obtain sufficient conditions for the monotonicity and P property of

the mapping F, as given next.

Proposition 5 Let F : Q→ R
n be continuously differentiable with bounded derivatives on the closed and

convex set Q. The following statements hold:

(a) If JFlow is copositive,2 then F is monotone on Q;

(b) If JFlow is strictly copositive,2 then F is strictly monotone on Q;

(c) If JFlow is positive definite, then F is strongly monotone on Q with strong monotonicity constant given

by csm = λleast (JFlow) [or csm = λleast (ΥF )].

If we assume a Cartesian product structure, i.e. F = (Fi(x))
I
i=1 and Q =

∏
iQi, then:

(d) If ΥF is positive semidefinite/P0-matrix, then F is a monotone/P0 function on Q;

(e) If ΥF is a P-matrix [which is equivalent to ρ(ΓF) < 1], then F is a uniformly P-function on Q with

uniform P constant given by

ĉuP(F) =
δ(ΥF)

I · (1 + ζ(ΥF)/δ(ΥF))
2(I−1) ·maxi=1,...,I λmax(CT

i Ci)
, (17)

where ζ(ΥF) , maxr 6=q |[ΥF]rq|, and δ(ΥF) , min{σ([ΥF]αα) : α ⊆ {1, . . . , I}}, with σ([M]α α)

denoting the smallest of the real eigenvalues (if any exists) of the principal submatrix of M of order α.

Proof. See Appendix B.

Remark 6 (On the uniqueness conditions) Under the assumption that F(x) = (∇xi
fi(x))

I
i=1 is contin-

uously differentiable with bounded derivatives on Q (Assumption 2), a sufficient condition for the uniqueness

of the NE is that the matrix ΥF defined in (15) be a P matrix [cf. Theorem 3(d) and Proposition 5(e)]. It

turns out that this condition is sufficient also for global convergence of best-response asynchronous distributed

algorithms described in Sec. 4. Note that if ΥF is a P matrix, it must be αmin
i = infz∈Q

[
λmin(∇2

xi
fi(z))

]
> 0

for all i, where λmin(∇2
xi
fi(z)) denotes the minimum eigenvalue of ∇2

xi
fi(z).

3 Thus an implicit consequence

of the P assumption on the matrix ΥF is the uniform positive definiteness of the matrices ∇2
x1
fi on Q, which

implies the uniformly strong convexity of fi(·, x−i) for any given x−i ∈ Q−i and thus the uniqueness of the

solution of the i-th player’s optimization problem, for any given x−i ∈ Q−i.

The β’s in the definition of the matrix ΥF measure the coupling of the players’ optimization problems:

the larger the β’s, the more coupled the players’ subproblems are. Indeed, if all the β’s were 0, the game

G =<Q, f> would decompose into I uncoupled optimization problems; in such a case, requiring the matrix

2A matrix A is copositive if x
T
Ax ≥ 0 for all x ≥ 0; it is strictly copositive if x

T
Ax > 0 for all 0 6= x ≥ 0. A positive

(semi)definite matrix is (strictly) copositive.
3Note the difference between λmin and λleast; the former is used for symmetric matrices, whereas the latter refers to possibly

non symmetric matrices. Of course if A is symmetric, then λmin(A) = λleast(A).
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ΥF to be P simply amounts to requiring all α’s to be positive, which obviously implies uniqueness of the

solution. It is reasonable that if the β’s increase from zero but remain small enough with respect to the α’s,

the game will still have a unique solution. The P property quantifies how large the β’s can grow while still

preserving the uniqueness of the solution. �

We conclude this subsection providing a sufficient condition for the matrix ΥF in (15) to be a P (positive

definite) matrix, which can be derived by elementary diagonal dominance arguments.

Proposition 7 The matrix ΥF in (15) is a P-matrix if one of the following two sets of conditions are

satisfied: for some w = (wi)
I
i=1 > 0,

1

wi

∑

j 6=i

wj

βmax
ij

αmin
i

< 1, ∀i = 1, · · · , I, 1

wj

∑

i 6=j

wi

βmax
ij

αmin
j

< 1, ∀j = 1, · · · , I. (18)

If actually both conditions in (18) are satisfied, then ΥF is positive definite.

The sufficient conditions in Proposition 7 will be shown in Sec. 6 to have an interesting physical interpretation

in the context of power control problems in CR systems.

3.3 Problem classes

Based on the previous results, it is natural to introduce the following classes of real NEPs.

Definition 8 A real NEP G = 〈Q, f〉 is:

i) a monotone NEP if Assumption 1 holds and the associated VI(Q,F) is monotone;

ii) a uniformly P NEP if Assumption 1 holds and the associated VI(Q,F) is uniformly P;

iii) a PΥ NEP if Assumptions 1 and 2 hold and the matrix ΥF of the associated VI(Q,F) is P.

Monotone Uniformly P

PΥ

Figure 1: Relation among NEP classes.

Figure 1 summarizes the relations between these classes of problems. Note that a monotone NEP is not

necessarily uniformly P; it is enough to observe that monotone NEPs may have multiple NE (see Example

#1 in Sec. 7), whereas uniformly P NEPs have only one solution [cf. Theorem 3(d)]. Similarly, PΥ NEPs

(and thus uniformly P NEPs) are not a subclass of monotone NEPs, as shown by the following example.

Example 9 (A PΥ NEP which is not monotone) Consider a real NEP with two players, each control-

ling one scalar variable: x1 and x2. The players’ problems are

minimizex1

1

2
x21 + 4x1x2

subject to x1 ∈ [0, 10]

minimizex2

1

2
x22 −

1

8
x1x2

subject to x2 ∈ [−2, 2]

The VI associated to this NEP is VI([0, 10]× [−2, 2],F), with F = [x1 +4x2, x2 − (1/8)x1]
T . The symmetric

part of JF, JFs, and the matrix ΥF are given by:

12



JFs =

[
1 31/16

31/16 1

]
, ΥF =

[
1 −4
−1/8 1

]
.

Since JFs has a negative determinant, F cannot be monotone; on the other hand it is easy to check that the

two principal minors of ΥF are positive, implying that G is a P NEP.

Centralized algorithms for monotone and uniformly PΥ NEPs, based on VI theory, are well-known [31, vol

II]; in this paper, we focus on the more challenging issue of devising distributed (and possibly asynchronous)

solution schemes for NEPs, which is the topic of the next section.

4 Distributed Algorithms for NEPs

This section along with the next one constitute the core theoretical part of the paper. We develop here a

novel theory that allows devising distributed algorithms for computing Nash equilibria in several significant

settings. More specifically, we will provide novel distributed (asynchronous) algorithms for the solution of:

(a) PΥ NEPs; and (b) monotone NEPs.

Since monotone NEPs may have multiple solutions, in case (a) we will further consider both the situations

in which one is interested in computing any one solution, and the situations in which one wants to select

the best solution, according to a given criterion. In each of the settings above we will provide best-response-

based distributed algorithms along with their convergence properties; the proposed algorithms differ in: i)

the computational effort; ii) the players’ synchronization/signaling requirements; and iii) the convergence

speed. Note that while centralized solution methods are known for uniformly P NEPs, the development of

distributed algorithms for this class of games is at the time of this writing an open problem.

This section is organized in three parts. Sec. 4.1 and Sec. 4.2 focus on algorithms for PΥ and monotone

NEPs, respectively; results in this sections will be the building blocks for the more difficult issue of equilibrium

selection problem addressed in Sec. 4.3.

4.1 Best-response distributed algorithms for PΥ NEPs

Since in a NEP every player is trying to minimize his own objective function, a natural approach to compute

a solution of a NEP is to consider an iterative algorithm wherein all the players, given the strategies of the

others and according to a given scheduling (e.g., sequentially or simultaneously), update their own strategy

by solving their optimization problem (12). Here, we focus on a very general class of best-response-based

algorithms, namely the totally asynchronous best-response algorithms (in the sense specified in [45]). In these

schemes, some players may update their strategies more frequently than others and they may even use an

outdated information about the strategy profile used by the others; which is very appealing in many practical

multiuser communication systems, such as wireless ad-hoc networks or CR systems wherein synchronization

requirements are hard to enforce.

To provide a formal description of the algorithm, we need to introduce some preliminary definitions. In

an asynchronous scheme, the users may not update their own strategies at each iteration; let denote then

by Ti ⊆ T ⊆ {0, 1, 2, . . .} the set of times at which player i updates his own strategy xi, denoted by x
(n)
i

(thus, implying that, at time n /∈ Ti, x(n)
i is left unchanged). Moreover, in computing their optimal strategy,

the users can use an outdated version of the others’ strategies; let then τ ij(n) be the most recent time at

which the strategy profile of player j is perceived by player i at the n-th iteration (observe that τ ij(n) satisfies
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0 ≤ τ ij(n) ≤ n). Hence, if player i updates its strategy at the n-th iteration, then he minimizes his cost

function using the following (possibly) outdated strategy profile of the other players:

x
(τ i(n))
−i ,

(
x
(τ i1(n))
1 , . . . ,x

(τ i
i−1(n))

i−1 ,x
(τ i

i+1(n))

i+1 , . . . ,x
(τ i

I(n))
I

)
. (19)

Some standard conditions in asynchronous convergence theory, which are fulfilled in any practical implemen-

tation, need to be satisfied by the schedule Ti’s and τ ij(n)’s, namely for each i:

A1) 0 ≤ τ ij(n) ≤ n (at any given iteration n, each player i can use only the strategy profile x
(τ i(n))
−i adopted

by the other players in the previous iterations );

A2) limk→∞ τ ij(nk) = +∞, where {nk} is a sequence of elements in Ti that tends to infinity [for any given

iteration index nk, the values of the components of x
(τ i(n))
−i in (19) generated prior to nk are not used

in the updates of x
(n)
i , when n becomes sufficiently larger than nk];

A3) |Ti| =∞ (no player fails to update his own strategy as time n goes on).

Using the above definitions, the totally asynchronous algorithm based on the best-responses of the players is

described in Algorithm 1. The convergence properties of the algorithm are given in Theorem 10.

Algorithm 1: Asynchronous Best-Response Algorithm

(S.0) : Choose any feasible x(0) ∈ Q and set n = 0.

(S.1) : If x(n) satisfies a suitable termination criterion: STOP

(S.2) : for i = 1, . . . , I, compute

x
(n+1)
i =





x⋆
i ∈ argmin

xi∈Qi

fi

(
xi, x

(τ i(n))
−i

)
, if n ∈ Ti

x
(n)
i , otherwise

(20)

(S.3) : n← n+ 1; go to (S.1).

Theorem 10 Let G = 〈Q, f〉 be a PΥ NEP. Any sequence {x(n)}∞n=0 generated by Algorithm 1 converges to

the unique NE of G, for any given updating schedule of the players satisfying assumptions A1-A3.

Proof. See Appendix C.

Remark 11 (Flexibility of the algorithm) Algorithm 1 contains as special cases a large number of algo-

rithms, each one obtained by a possible choice of the schedule of the users in the updating procedure (i.e., the

parameters {τ ij(n)} and {Ti}). Examples are the simultaneous (Jacobi scheme) and sequential (Gauss-Seidel

scheme) updates, where the players update their own strategies simultaneously and sequentially, respectively.

Indeed, the Jacobi update corresponds to the schedule τ ij(n) = n and Ti = {1, 2, . . .} for all i and j, whereas

the Gauss-Seidel scheme is obtained by taking τ ij(n) = n and Ti = {i, i+ I, i+2I, . . .} for all i and j. More-

over, variations of such a totally asynchronous scheme, e.g., including constraints on the maximum tolerable

delay in the updating and on the use of the outdated information (which leads to the so-called partially

asynchronous algorithms), can also be considered [45]. An important result stated in Theorem 10 is that all

the algorithms resulting as special cases of Algorithm 1 are guaranteed to reach the unique NE of the NEP,
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under the same set of convergence conditions, since the matrix ΥF does not depend on the particular choice

of {τ ij(n)} and {Ti}. Note that all the algorithms coming from Algorithm 1 are robust against missing or

outdated updates of the players. This feature strongly relaxes the constraints on the synchronization of the

players’ updates; which makes this class of algorithms appealing in many practical distributed systems.

Note that the (synchronous) projection-response algorithms for monotone VIs (and thus NEPs) proposed

in [35] and [31, 34] are not guaranteed to converge if applied to a PΥ NEP that is not monotone. �

Remark 12 (On the convergence conditions) Global convergence of Algorithm 1 is guaranteed under

the P property of ΥF (or equivalently ρ(ΓF) < 1). However, we have already pointed out in Remark 6 that

such a condition cannot be satisfied if there is a player whose cost function has a singular Hessian, even in

just one point. In fact, if this is the case, we have, αmin
i = 0 for some i, let us say i = 1, which implies that

ΓF has a 1 in the left-upper corner. Since ΓF is nonnegative, we have that this implies ρ(ΓF) ≥ 1 [46, Th.

1.7..4]. Assuming that the element 1 is contained in an irreducible principal matrix, we will actually have

ρ(ΓF) > 1. Note that the irreducibility assumption is extremely weak and trivially satisfied if ΓF is positive,

which is true in many applications. In the next section we discuss a remedy for this issue. �

Remark 13 (On the convergence rate) As shown in Proposition 42 in Appendix C, in the setting of

Theorem 10 the best-response mapping [see (82)] is a contraction. Building on this and choosing for notational

simplicity in (16) Ci = I for all i, it is straightforward to show that the convergence rate of the synchronous

Jacobi version of Algorithm 1 is geometric with factor ‖ΓF‖ < 1 (see, e.g., [45, Prop. 1.1]). Therefore, one

can readily determine how many iterations are needed to surely achieve a desired accuracy ε > 0:

‖xn − x⋆‖ ≤ ε for any positive n ≥ n , log

(
ε (1− ‖ΓF‖)∥∥x(1) − x(0)

∥∥

)
/ log (‖ΓF‖) , (21)

where x⋆ is the unique NE of G and ‖ΓF‖ < 1 is the best-response contraction constant, with ΓF defined in

(15). Note that when the joint feasible set Q is bounded with diameter dQ, we can obtain an overestimate

of n that is independent on x(1) and x(2): n ≤ log (ε (1− ‖ΓF‖)/dQ) / log (‖ΓF‖).
The case of asynchronous implementations is conceptually similar but necessarily more complex; we refer

the interested reader to [45, Sec. 6.3.5]. �

4.2 Proximal distributed algorithms for monotone NEPs

In this section we deal with monotone NEPs (see Definition 8). Since monotone NEPs in general have

multiple NE, Algorithm 1 solving PΥ (or uniformly P) NEPs may fail to converge. There is a host of

solution methods available in the literature to solve monotone real VIs and thus monotone NEPs (see, e.g.,

[31, Vol. II]), but these algorithms are centralized. Recently, in [35], the authors proposed some distributed

synchronous schemes for solving monotone VIs, based on the gradient-response mapping; we have already

discussed the main drawbacks of these algorithms, see Sec. 1 (see also Sec. 6 for some numerical results).

The development of distributed best-response algorithms for solving monotone NEPs with (possibly)

multiple solutions is a challenging task; in this subsection, we cope with this issue building on a regularization

technique known as proximal algorithms, see [31, Ch 12] for an introduction to proximal point methods for

VIs. The proposed approach is to reduce the solution of a single monotone NEP to the solution of a sequence

of PΥ NEPs with a particular structure. The advantage of this method is that we can efficiently solve each
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of the PΥ NEPs with convergence guarantee using Algorithm 1 (cf. Sec. 4.1); the disadvantage is that, to

recover the solution of the original monotone NEP, one has to solve a (possibly infinite) number of PΥ NEPs.

However, it is important to remark from the outset that this potential drawback is greatly mitigated by the

fact that, as we discuss shortly, (i) one only needs to solve these PΥ NEPs inaccurately; (ii) the (inaccurate)

solution of the PΥ NEPs usually requires little computational effort; and (iii) in practice, a fairly accurate

solution of the original NEP is obtained after solving a limited number of PΥ NEPs.

Before introducing the formal description of the algorithm, let us begin with some simple observations

motivating how the sequence of PΥ NEPs is built. Let G = 〈Q, f〉 be a monotone NEP; consider a perturbation

of this game defined as Gτ ,y =
〈
Q, (fi + (τ/2)‖ • −yi‖2)Ii=1

〉
, where τ is a positive parameter and y = (yi)

I
i=1

is a given vector in R
n, with each yi ∈ R

ni ; we term y center of the regularization. Note that Gτ ,y is the

game wherein each player i, anticipating x−i ∈ Q−i, solves the following convex optimization problem:

minimize
xi

fi(xi, x−i) +
τ
2‖xi − yi‖2

subject to xi ∈ Qi.
(22)

Let us consider now the VI reformulations of G and Gτ ,y, given by VI(Q,F) and VI(Q,Fτ ,y) respectively,

where F(x) , (∇xi
fi(x))

I
i=1 and Fτ ,y(x) = F(x)+τ (x−y), and let us introduce the matrices ΥF and ΥFτ,y

associated to G and Gτ ,y, respectively [see (15)]. It is not difficult to check that

ΥFτ,y = ΥF + τI. (23)

Note that ΥFτ,y does not depend on y. It follows readily from (23) that if τ is large enough, ΥFτ,y is a P

matrix, meaning that Gτ ,y is a PΥ NEP, for any given y ∈ R
n. More specifically, using the definitions of

βmax
ij ’s and αmin

i ’s as given in (16), we have the following.

Lemma 14 For any given y ∈ R
n, the game Gτ ,y = 〈Q, (fi + (τ/2)· ‖ • −yi‖2)Ii=1

〉
is a PΥ NEP for every

τ larger than τ̄ (independent of y), with

τ̄ , max
1≤i≤I




∑

j 6=i

βmax
ij − αmin

i



 . (24)

Nice as it is, the result above would be of no practical interest if we were not able to connect the solutions

of Gτ ,y to those of G. Indeed, the solutions of G and Gτ ,y are in general different but, nevertheless, there

exists a connection between them: a point x⋆ is a solution of G if and only if x⋆ is a solution of Gτ ,x⋆.

Proposition 15 Let G = 〈Q, f〉 be a monotone NEP. For any given τ > 0, x⋆ ∈ Q is a solution of G if and

only if x⋆ is a solution of Gτ ,x⋆.

Proof. See Appendix D.

Lemma 14 and Proposition 15 open the way to the design of convergent distributed algorithms for mono-

tone NEPs, as shown next. Let us choose τ being large enough so that Gτ ,y is a PΥ NEP (cf. Lemma 14). It

follows from Theorem 3 that Gτ ,y has a unique solution, denoted by Sτ (y). Using Sτ (y), Proposition 15 can

be restated as follows: x⋆ is a solution of G if and only if it is a fixed point of Sτ (•), i.e., x⋆ = Sτ (x
⋆). It seems

then natural to compute the solutions of G using the fixed-point-type iteration x(n+1) = Sτ (x
(n)), starting

from a feasible point x(0); which corresponds to solving the sequence of NEPs Gτ ,x(n) for n = 0, 1, . . .. If τ is

sufficiently large [e.g., as in (24)], each Gτ ,x(n) is a PΥ NEP (cf. Lemma 14), and thus its unique solution can
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be computed in a distributed way with convergence guarantee by the asynchronous best-response algorithm

described in Algorithm 1 (cf. Theorem 10). The above discussion motivates the following algorithm for

computing the solutions of a monotone NEP, whose convergence properties are given in Theorem 16 below.

Algorithm 2: Proximal Decomposition Algorithm (PDA)

Data : Let τ > 0 be given.

(S.0) : Choose any feasible x(0) ∈ Q and set n = 0.

(S.1) : If x(n) satisfies a suitable termination criterion: STOP.

(S.2) : Solve the game Gτ ,x(n) and set x(n+1) , Sτ (x
(n))

(S.3) : n← n+ 1; go to (S.1).

Theorem 16 Let G = 〈Q, f〉 be a monotone NEP with a nonempty solution set. Suppose that τ is large

enough so that ΥFτ, y is a P matrix. Then, Algorithm 2 is well defined, and the sequence {x(n)}∞n=0 generated

by the algorithm converges to a solution of the game G.

Algorithm 2 is of great conceptual interest, but its applicability is limited, unless one is able to easily

compute Sτ (x
(n)). Although there are interesting problems in which this can be done efficiently (see Sec.

6), in general one is expected to solve a number of PΥ NEPs, each of them requiring an infinite iterative

method to compute each Sτ (x
(n)). To overcome this issue, we propose next a variant of Algorithm 2, in

which suitable approximations of Sτ (x
(n)) can be used. Algorithm 3 below describes such a variant, where

we have added a further degree of freedom in the updating rule: the new iteration x(n+1) is not necessarily

given by (an approximation of) Sτ (x
(n)), but lies instead on the line connecting the old iteration x(n) to (the

approximation of) Sτ (x
(n)).

Algorithm 3: Approximate Proximal Decomposition Algorithm (APDA)

Data : Let {ε(n)}∞n=0, {η(n)}∞n=0 and τ > 0 be given.

(S.0) : Choose any feasible x(0) ∈ Q and set n = 0.

(S.1) : If x(n) satisfies a suitable termination criterion: STOP.

(S.2) : Solve the game Gτ ,x(n) within the accuracy ε(n): Find a z(n) s.t. ‖z(n) − Sτ (x
(n))‖ ≤ ε(n).

(S.3) : Set x(n+1) , (1− η(n))x(n) + η(n)z(n).

(S.4) : n← n+ 1; go to (S.1).

The error term ε(n) measures the accuracy used at iteration n in computing the solution Sτ (x
(n)) of Gτ ,x(n) .

The parameter η(n) instead, introduces a memory in the updating rule, it establishes where exactly we move

along the line passing through the old iterations x(n) and z(n). Note that if we take ε(n) = 0 and η(n) = 1 for

all n, Algorithm 3 reduces to Algorithm 2. The advantage of Algorithm 3 with respect to Algorithm 2 is that

z(n) can be computed in a finite number of steps, so that Algorithm 3 becomes implementable in practice.

Obviously, the errors ε(n)’s and the parameters η(n)’s must be chosen according to some suitable conditions,

if one wants to guarantee convergence. These conditions are established in the following theorem.

Theorem 17 Let G = 〈Q, f〉 be a monotone NEP with a nonempty solution set. Suppose that τ is large

enough so that ΥFτ, y is a P-matrix. Choose {ε(n)} ⊂ [0,∞) such that
∑∞

n=1 ε
(n) <∞ and {η(n)} ⊂ [Rm, RM ],

with 0 < Rm ≤ RM < 2. Then, Algorithm 3 is well defined, and the sequence {x(n)}∞n=0 generated by the

algorithm converges to a solution of G.
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The proof of Theorem 17 (and thus also Theorem 16) is a consequence of the following facts and thus

is omitted: i) [31, Th. 12..3.9]; ii) The observation that G is equivalent to the VI(Q,F) (Proposition 2),

with F = (∇xi
fi)

I
i=1, and the VI(Q,F) has a solution; and iii) Under the P property of ΥFτ, y , Step S.2 of

Algorithm 3 (and Algorithm 2) is well defined (Theorem 10).

It is interesting to remark that for sake of simplicity we assumed τ to be a fixed number. However, τ

can be varied from iteration to iteration provided that τ ∈ (τ̄ , τmax], where τmax is any finite number. We

also note that the sequence {x(n)} generated by Algorithm 3 may not be feasible, but all the limit points are

feasible. If one is interested in maintaining feasibility throughout the iterates, it is enough to choose η(n) ≤ 1

and compute in Step 2 a feasible z(n), which can be done, e.g., by applying Algorithm 1 to Gτ ,x(n) .

While the utility of having possibly inexact solutions in Step S.2 of Algorithm 3 is apparent, the usefulness

of Step S.3 is less evident. This kind of “averaging” is known as over-relaxation and has its roots in classical

successive over-relaxation methods for solving systems of linear equations [47, Sec. 7.4]. In our context, the

extra degree of freedom offered by Step S.3 can bring numerical improvements; see, e.g., [31].

Algorithm 3 is conceptually a double loop scheme wherein at each (outer) iteration n, given x(n), one

needs to compute the approximation z(n), which requires an inner iterative process. Since the condition∑∞
n=1 ε

(n) <∞ implies ε(n) ↓ 0, when the iterations progress, Sτ (x
(n)) has to be estimated with an increasing

accuracy. However, in practice, this is not a problem since when iterations progress, {x(n)} usually converges,

implying ‖x(n+1) − x(n)‖ → 0. One can then use x(n) as a good approximation to initialize any (inner)

procedure in Step 2 to compute z(n). It turns out that, in spite of the increasing precision requirements, in

practice a suitable z(n) in Step 2 can be computed very easily.

Finally, observe that a natural choice for computing z(n) in Step 2 of Algorithm 3 is Algorithm 1. When

this choice is made, Algorithm 3 also becomes an asynchronous method, having all the desired features

described in the previous section (see Remark 11). The only difference with Algorithm 1 is that, in Algorithm

3, “from time to time” (precisely when the inner termination test ‖z(n)−Sτ (x
(n))‖ ≤ ε(n) in Step 2 is satisfied)

the objective function of the players are changed by updating the regularizing term from τ
2‖xi − x

(n)
i ‖2 to

τ
2‖xi−x(n+1)

i ‖2, which generally requires some coordination among the players to establish when a satisfactory

approximation z(n) has been reached. The remark below discusses issues related to this aspect.

Remark 18 (On the inner termination criterion) We have seen that, in Step 2 of Algorithm 3, the

players must be able to decide whether ‖z(n) −Sτ (x
(n))‖ ≤ ε(n) holds. This can be easily done if one uses a

synchronous Jacobi version of Algorithm 1; in fact one can readily estimate the number of iterations needed

to achieve the accuracy ε(n) using (21), where ΓF is replaced by ΓFτ . However, this estimate can be very

conservative and, in any case, it is not applicable if an asynchronous version of Algorithm 1 is used. In the

following we suggest a different, simple, distributed protocol to decide whether ‖z(n) − Sτ (x
(n))‖ ≤ ε(n),

which can be used in both synchronous and asynchronous implementations of Algorithm 1.

Observe preliminarily that an error bound on the distance of the current iteration z(n) from the solution

Sτ (x
(n)) of Gτ ,x(n) can be obtained by solving a convex (quadratic) problem (see, e.g., [31, Prop. 6.3.1], [31,

Prop. 6.3.7]). For example, under the P properties of ΥF
τ,x(n)

defined in (23), the following error bound

holds for the game Gτ ,x(n) [31, Prop. 6.3.1]: a (finite) constant c > 0 exists such that

‖z− Sτ (x
(n))‖ ≤ c ‖Fnat

τ (z) ‖, ∀z ∈ Q, (25)

where Fnat
τ (z) , z − ΠQ (z− F(z)− τ z), with ΠQ (x) denoting the Euclidean projection of x onto the

closed and convex set Q. Note that, since Q has a Cartesian structure, Fnat
τ (z) can be partitioned as
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Fnat
τ (z) =

([
Fnat
τ (z)

]
i

)I
i=1

, where each
[
Fnat
τ (z)

]
i
= zi −ΠQi

(zi − Fi(z) − τ zi) can be locally computed by

the associated player i by solving a quadratic program, as long as Fi(z) is available at the player side.4

Using (25), the implementation of Step 2 of Algorithm 3 can be obtained as follows. Each player i choses

preliminarily a suitable local termination sequence {ε(n)i }n ⊂ [0,∞) such that
∑∞

n=1 ε
(n)
i <∞; the termination

criterion of each player i becomes then
∥∥[Fnat

τ

(
x(n)

)]
i

∥∥ ≤ ε
(n)
i , which can be locally implemented. Once the

desired local accuracy is reached by all the players, they can all update the center of their regularization.

Note that this protocol guarantees that the requirement on the sequence ε(n) in Step 2 as stated in Theorem

17 is met, since ε(n) ,
∑I

i=1 ε
(n)
i satisfies

∑∞
n=1 ε

(n) <∞. �

Remark 19 (On the communications overhead) The last issue to address for a practical implementa-

tion of the termination protocols discussed in Remark 18 is how the players can detect the others having

reached the desired accuracy in Step 2 of Algorithm 3. If one uses a synchronous Jacobi version of Algo-

rithm 1 in Step 2 and the joint feasible set Q is bounded, conceptually there is no need of any information

exchange, since each player can locally estimate the number of iterations needed to reach the accuracy ε(n)

as discussed in Remark 13. However, even when possible, this approach is probably too conservative, since

the estimated n can be unnecessarily large. In practice, and whenever one is not using a synchronous Jacobi

method, the termination criterion (25) can be easily implemented, at the cost of limited signaling, performing

the following protocol. Each user sends out one bit when
∥∥[Fnat

τ

(
x(n)

)]
i

∥∥ ≤ ε
(n)
i . Once one and therefore

all players receive bits from all the others, they can update their regularization. Note that in the context of

distributed algorithms for the solution of optimization problems, VIs, and games, this is a minimal signaling

requirement; see, e.g., [48, 49] and [45, Ch. 1.3, 1.4], [45, Ch. 3.5.7], [45, Ch. 8] for some representative

examples. Furthermore, we observe that in many practical applications exchanging one bit is viable. For

instance, in the CR systems considered in Sec. 2 and Sec. 6, this can be done using network control channels.

Finally, we conclude this remark suggesting a simple heuristic that does not require any signaling: each

user updates its regularization only after experiencing no changes in
∥∥[Fnat

τ

(
x(n)

)]
i

∥∥ (or his cost function)

for a prescribed number of iterations. While this heuristic does not guarantee theoretical convergence, its

effectiveness in many practical scenarios, as those considered in Sec. 6, is rather apparent. �

4.3 Equilibrium selection for monotone NEPs

In the previous section we discussed distributed algorithms for the computation of a solution of monotone

NEPs. A feature of these algorithms is that they converge under mild conditions that do not imply the

uniqueness of the NE of the NEP. In the presence of multiple equilibria, however, the proposed algorithms do

not allow to perform any selection of the solution they reach, but they may converge in principle to any NE

of the game; which makes the achievable system performance unpredictable. It would be interesting instead

to be able to select, among all the solutions of the game, the one(s) that satisfies some additional criterion.

We refer to this problem as equilibrium selection problem. In this section, we address this issue; the outcome

will be a novel set of distributed algorithms along with their convergence properties that solve the equilibrium

selection problem; this additional feature comes at the price of a (moderate) increase of the complexity in

computing the players’ best-response solution and signaling among the players.

Let us introduce first an informal description of the algorithm. Let G =< Q, f > be a monotone NEP and

let SOL(Q, f) denote its solution set, assumed to be nonempty without loss of generality. Recall that since

4In many practical applications, as those considered in Sec. 2 and Sec. 6, each
[

F
nat
τ (z)

]

i
can be computed by local

measurements from the players.
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G is monotone, SOL(Q, f) is always convex (cf. Theorem 3). Stated in mathematical terms, the equilibrium

selection problem consists in solving the following bi-level optimization problem:

minimize
x

φ(x)

subject to x ∈ SOL(Q, f),
(26)

where the function φ : R
n → R is assumed to be continuously differentiable and convex. The function

φ thus defines the additional criterion according to which one wants to select a solution in the set of the

NE of G: solving (26) indeed corresponds to choosing the NE of G that minimizes φ. Note that, under

the monotonicity of G, (26) is a convex optimization problem [SOL(Q, f) is convex]. However, standard

solution techniques cannot be applied because the feasible set SOL(K, f) is only implicitly defined and, in

general, it is not expressed as a standard system of inequalities. To overcome this difficulty, and in the same

spirit of the previous section, instead of attacking problem (26) directly, we propose to solve a sequence of

standard regularized NEPs (“standard” means a game whose players’ feasible sets are not of an implicit type,

and therefore can be solved by classic methods, like Algorithm 1). Each standard regularized game has the

following structure Gτ ,ε,y =
〈
Q, (fi + ε φ+ (τ/2)‖ • −yi‖2)Ii=1

〉
, where ε and τ are fixed positive constants

and y , (yi)
I
i=1 is a given point in R

n with each yi ∈ R
ni ; Gτ ,ε,y is a NEP wherein each player i, anticipating

x−i ∈ Q−i, solves the following convex optimization problem:

minimize
xi

fi(xi, x−i) + ε φ(xi, x−i) +
τ
2‖xi − yi‖2

subject to xi ∈ Qi.
(27)

Note that the players’ problems in this game differ from (22) in the presence of the additional term εφ(x)

in the objective function. It is not surprising that φ appears in the players’ objective functions; roughly

speaking, it represents the additional amount of information to be included in the game to “drive” the system

toward the desired solution.

Proceeding as in the previous section, we can now establish the connection between the regularized NEPs

Gτ ,ε,y and the equilibrium selection problem (26). Fist of all note that, in the setting of problem (26), the

NEPs Gτ ,ε,y is equivalent to the VI(Q,Fτ ,ε,y) where Fτ ,ε,y , F+ε∇φ+τ (I−y) and I : x 7→ x is the identity

map. Denoting by ΥFτ,ε,y the matrix defined in (15) and associated to Fτ ,ε,y, Lemma 20 below shows that

there exists a sufficiently large τ such that ΥFτ,ε,y is a P matrix, implying that Gτ ,ε,y is a PΥ NEP.

Lemma 20 Let G = 〈Q, f〉 be a monotone NEP; let φ : Rn 7→ R be a continuously differentiable function on

Q whose gradient ∇φ is Lipschitz continuous on Q, with constant Lφ; and let ε̄ > 0 be given. For any fixed

y ∈ R
n, the game Gτ ,ε,y =

〈
Q, (fi + εφ+ (τ/2)‖ • −yi‖2)Ii=1

〉
with ε ∈ [0, ε̄] is a PΥ NEP for every τ larger

than τ̄ ε̄ (independent on y and ε)

τ̄ ε̄ , max
1≤i≤I




∑

j 6=i

βmax
ij − αmin

i



+ (I − 1) ε̄ Lφ, (28)

where βmax
ij ’s and αmin

i ’s are defined in (16).

In the setting of Lemma 20, Gτ ,ε,y is a PΥ NEP and thus has a unique solution, denoted by Sτ ,ε(y) [cf.

Theorem 3]; such a Sτ ,ε(y) can be computed with convergence guaranteed using Algorithm 1 on Gτ ,ε,y. The

solution of the original equilibrium selection problem (26) can be recovered using the fixed-point-type iteration

x(n+1) = Sτ ,ε(n)(x(n)), starting from a feasible point x(0) and by suitably varying ε(n); which corresponds to

solve the sequence of NEPs Gτ ,ε(n),x(n) for n = 0, 1, . . .. This procedure is made formal in Algorithm 4 below.
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Algorithm 4: Proximal-Tikhonov Regularization Algorithm (PTRA)

Data : Let {ε(n)} ↓ 0 and τ > 0 be given.

(S.0) : Choose any feasible x(0) ∈ Q and set n = 0.

(S.1) : If x(n) satisfies a suitable termination criterion, STOP.

(S.2) : Set x(n+1) to be the solution of the game Gτ ,ε(n),x(n) .

(S.3) : Set n← n+ 1 and return to (S.1).

Note that, since in Algorithm 4 the sequence {ε(n)} converges to zero, there always exists an ε̄ > 0 such

that ε(n) ∈ [0, ε̄], implying by Lemma 20 that for a sufficiently large τ all the games Gτ ,ε(n),x(n) in the Step 2

of the algorithm are PΥ NEPs and thus have a unique solution; this makes the sequence {x(n)}∞n=0 generated

by Algorithm 4 well defined. The convergence properties of the algorithm are given in the following theorem.

Theorem 21 Let G = 〈Q, f〉 be a monotone NEP with a nonempty solution set SOL(Q, f). Consider the

equilibrium selection problem (26) and suppose that i) φ is continuously differentiable and convex on Q; ii)

the level sets of φ on SOL(Q, f) are bounded; and iii) ∇φ is Lipschitz continuous on Q, with constant Lφ.

Moreover, suppose that τ is large enough so that Gτ ,ε(n),x(n) is a PΥ NEP for any n, and choose the sequence

{ε(n)} such that ε(n) > 0 for all n, {ε(n)} ↓ 0, and
∑∞

n=0 ε(n) = ∞. Then Algorithm 4 is well defined; the

sequence {x(n)}∞n=0 is bounded; and every of its limit points is a solution of (26).

Proof. See Appendix E.

Theorem 21 guarantees convergence of the algorithm under mild assumptions. Conditions on φ are pretty

standard; in particular, assumptions i) and ii) together with the monotonicity of G state that the optimization

problem (26) is convex and admits a solution; whereas iii) guarantees that there exists a finite (large enough) τ

such that Gτ ,ε(n),x(n) is a PΥ NEP (cf. Lemma 20). The assumptions on the sequence {ε(n)}∞n=1 are also rather

weak and require ε(n) to go to zero, but not too fast; which can be satisfied, e.g., by taking ε(n) = 1/(1+na),

with n = 0, 1, 2, . . . and a being any positive constant. This assumption on ε(n) is not new and has already

been used in a few papers dealing with the combination of Tikhonov and proximal regularization; we refer

the reader to [50] and references therein for a wider discussion on this point.

The implementation of Algorithm 4 requires the ability of solving at each round n the PΥ NEP Gτ ,ε(n),x(n) .

If one is interested in distributed solution schemes, Algorithm 1 applied to Gτ ,ε(n),x(n) is the natural choice.

Note that the convergence conditions of the algorithm applied to Gτ ,ε(n),x(n) as stated in Theorem 10 are

always met, provided τ is large enough; see, e.g., (28) in Lemma 20.

As in the previous section, note that, unless one has simple ways to compute the solutions of the games

Gτ ,ε(n),x(n) , Algorithm 4 requires at each step the exact computation of the solution of the regularized games

Gτ ,ε(n),x(n) (inner loop), which in principle requires a conceptually infinite procedure. While in practice this

might not be a problem, it still leaves open the question of whether, paralleling the results of the previous

section, one can develop versions of Algorithm 4 where inexact solutions are used in the Step 2. The answer

to this question is positive, but the corresponding theory is rather complex and, for sake of simplicity, we

prefer to omit it here; the interest reader can work it out using results in [21].

4.4 A bird’s-eye view

In the previous three sections we proposed several distributed algorithms for real player-convex NEPs, which

are applicable to different scenarios. Fig. 2 summarizes the results obtained so far, showing that, in spite of

apparent diversities, all the algorithms belong to a same family.
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Real player-convex  NEPs
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minimize

xi

fi(xi,x−i)
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min
xi
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τ

2

∥

∥

∥
xi − x

(n)
i

∥

∥

∥

2

+ ε(n)φ(xi,x−i)

s.t. xi ∈ Qi,

G
τ, ε(n),x(n) : for each i = 1, . . . , I, G

τ, ε(n),x(n) : for each i = 1, . . . , I,

min
xi

fi(xi,x−i) +
τ

2

∥

∥

∥
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(n)
i

∥

∥

∥

2

s.t. xi ∈ Qi,

G

is

[Merit function φ]

PΥ

Figure 2: The roadmap of the proposed distributed solution methods for real player-convex NEPs

Conceptually, what we have proposed is indeed a unified algorithm, where the users can explicitly choose

the degree of desired cooperation and signaling, converging to solutions having different performance, namely:

i) any one NE, when there is no (or very limited) cooperation among users, and ii) the “best” NE (according

to an outer merit function φ), at the cost of more coordination. The choice of one scheme in favor to the other

as well as the merit function φ will depend then on the trade-off between signaling and performance that the

users are willing to exchange/achieve. The core of the proposed solution methods can be summarized in the

following unified updating rule: at iteration n, the optimal strategy of each user i is

x
(n+1)
i = argmin

xi∈Qi

{
fi

(
xi,x

(n)
−i

)
+ π

(νn)
i

(
xi, x

(n)
−i

)
+

τ

2

∥∥∥xi − x
(νn)
i

∥∥∥
2
}

(29)

where the first term fi(xi,x
(n)
−i ) is the usual term in an iterative best-response algorithm, the second term

π
(νn)
i (xi, x

(n)
−i ) (whose update is performed at iteration νn) can be interpreted as a nonlinear pricing in the

objective function of the users, and the third term
τ

2

∥∥∥xi − x
(νn)
i

∥∥∥
2

is a (proximal) regularization. Observe

that there are two iteration indexes: n is the main discrete-time unit, whereas νn is increased every few

discrete-time units (e.g., if νn = ⌊n/10⌋, then νn is updated every 10 discrete-time units).

The price function π
(νn)
i can be interpreted as a measure of the “altruism/selfishness” of the users and

represents the trade-off factor between signaling and performance. Indeed, we may have the following:

• π
(νn)
i = 0 (no cooperation): The users are not willing to cooperate; the best one can get is converge to

any one solution of the game (i.e., with no control on the quality of the solution); this is guaranteed

even in the presence of multiple equilibria if the NEP is monotone (PΥ);
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• π
(νn)
i 6= 0 (some cooperation): The users may exchange some signaling in the form of pricing through the

function π
(νn)
i (xi, x

(n)
−i ) = ε(νn) φ(xi, x

(n)
−i ) and converge to the NE that minimizes the merit function

φ(x); convergence is guaranteed if the NEP is monotone.

Remark 22 (Role of pricing) It is important to remark that the pricing term π
(νn)
i does not need to be

linear; moreover it has a well understood role in the system optimization. This is a major departure from

current literature that uses linear pricing as a heuristic to improve the performance of a NE in power control

games (see, e.g., [51] for scalar power control problems); in these works there is neither a proof of convergence

of the modified game nor a theoretical explanation of the performance improvement due to pricing. As a

direct product of our framework, we obtain instead a clear understanding of the meaning of the pricing; for

example, a linear price in the form ε(νn) πT
i xi, with ε(νn) → 0, corresponds to the selection of a NE that

minimizes the linear function
∑

i π
T
i xi, resulting likely in better system performance.

5 Variational Inequalities and Games in the Complex Domain

The results presented so far apply to real NEPs. However, in many applications, e.g., in digital communi-

cations, array processing, and signal processing, the variables involved in the optimization are complex. For

instance, in the MIMO problems introduced in Sec. 2, players’ optimization variables are complex matrices.

For these applications the reformulation of the problem into the real domain is awkward, very difficult to han-

dle, and generally leads to final conditions that cannot be easily interpreted in terms of the original complex

setup. Indeed, this “natural” approach has long been abandoned in the signal processing and communication

communities, since it has shown to be inadequate. It seems instead more convenient to work directly in the

complex domain. This requires the use of some sophisticated tools hinging on involved analytic developments.

However, once one has mastered these tools, the prize is a very smooth and immediate generalization of all

the results developed in the previous section, thus easily providing a whole set of new methods for the solution

of NEPs in the complex domain.

In order to follow this plan in this section we first recall some basic results about the so-called Wirtinger

calculus, prompted by the lack of a well-established notation and definitions for R-matrix derivatives; two

good tutorials on the subject are [52, 53]. We then proceed to the development of several new technical tools

that are then applied to the study of VIs and NEPs in the complex domain. We start introducing in Sec.

5.2 the minimum principle for constrained convex optimization problems in the domain of complex matrices,

generalizing the already known complex gradient-vanishing conditions obtained in [52] for the unconstrained

case. As intermediate result, we also introduce a Taylor expansion of real-valued functions of complex matrices

that is amenable to our MIMO applications. The second important contribution is given in Sec. 5.3, where,

after introducing the VI problem in the complex domain and the associated monotonicity and P properties,

we provide new matrix conditions for these properties to hold. These conditions are the natural generalization

of those obtained in Sec. 3, provided that a new definition of Jacobian matrix for complex-valued matrix

functions as well as a tailored concept of positive (semi-)definiteness are used. Finally, in Sec. 5.5, we

establish the connection between VIs and NEPs in the complex domain, and discuss its main implications.

5.1 R-matrix derivatives

In practical applications, we often deal with optimization of real-valued functions f : C ∋ z 7→ f(z) ∈ R of a

complex variable z that are not differentiable in C (termed also C-differentiable or holomorphic).5 However,

5It is a known fact that nonconstant real-valued functions (of complex variables) are not C-differentiable.
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the same univariate function f : C→ R can also be viewed as a bivariate function of its real and imaginary

components, i.e., f(z) = g(zR, zI), where g : R2 7→ R is a real-valued function of the real variables zR , Re(z)

and zI , Im(z). This way, one may be able to replace the nonexistence of the C-derivative of f with the

existence of the real partial derivatives of g(zR, zI), which is actually what one needs to compute a stationary

point of the function. This motivates the introduction of the so-called R-derivative and conjugate R-derivative

of f : C→ R at z0 ∈ C, formally defined as

∂f

∂z
(z0) ,

1

2

(
∂f(z)

∂zR
− j

∂f(z)

∂zI

)∣∣∣∣
z=z0

and
∂f

∂z∗
(z0) ,

1

2

(
∂f(z)

∂zR
+ j

∂f(z)

∂zI

)∣∣∣∣
z=z0

, (30)

respectively, where j =
√
−1. Note that the derivatives above must be interpreted formally, because z

and its conjugate z∗ in (30) are treated as they were mutually independent; the derivatives ∂f
∂zR

and ∂f
∂zI

represent instead the true (non-formal) partial derivatives of f viewed as a bivariate function of zR and zI ,

i.e., f = f̌(zR, zI). When ∂f
∂zR

and ∂f
∂zI

exist (and are continuous), implying that (30) is well-defined, we say

that f is R-differentiable (or continuously R-differentiable); similarly to the real case, when we say that a

function f : K → R is R-differentiable (or continuously R-differentiable) on the closed set K, we mean that

the function is so on an open set containing K.

The R-derivatives defined in (30) for a real-valued function can be naturally extended to complex-valued

functions of a complex argument, that is, f : C→ C; formally we still have (30), but now f(z) = f̌(zR, zI) ,

f̌R(zR, zI) + j · f̌I(zR, zI), with f̌ : R2 7→ C and f̌R, f̌I : R2 7→ R, and by ∂f/∂zR we mean ∂f/∂zR ,

∂f̌R/∂zR + j · ∂f̌I/∂zR (similarly for ∂f/∂zI).

When f is a (complex-valued) scalar function of complex matrices, that is f : Cn×m → C, we have n ·m
component-wise R-derivatives ∂f

∂(Z)ij
and n ·m conjugate R-derivatives ∂f

∂(Z∗)ij
. The question naturally arises

how to order these n ·m complex terms; obviously this can be done in many ways. It is worthwhile noticing

that, even though they all contain the same n ·m derivatives, not all definitions have the same properties;

for instance for some of them a useful chain rule does not exist. Next, we introduce two definitions, both

useful for our derivations and widely used in the literature [52]; in the former definition, the n ·m (conjugate)

R-derivatives are displayed in the same order as (Z)ij and (Z∗)ij appear in Z and Z∗, whereas in the latter we

arrange all the elements in a row vector. Given f : Cn×m → C, the (matrix) gradient and co(njugate)-gradient

of f at Z0 ∈ C
n×m are defined as

∇Zf(Z0) ,
∂ f(Z)

∂Z

∣∣∣∣
Z=Z0

with

[
∂ f

∂Z

]

ij

=
∂ f

∂ (Z)ij
, ∀i = 1, . . . , n and j = 1, . . . ,m

∇Z∗f(Z0) ,
∂f(Z)

∂Z∗

∣∣∣∣
Z=Z0

with

[
∂ f

∂Z∗

]

ij

=
∂ f

∂ (Z∗)ij
, ∀i = 1, . . . , n and j = 1, . . . ,m,

(31)

where ∂f
∂(Z)ij

and ∂f
∂(Z)∗ij

are the R-derivative and conjugate R-derivative of the complex-valued function f

w.r.t. (Z)ij and (Z∗)ij , respectively. Note that ∇Zf(Z0) and ∇Z∗f(Z0) are matrices having the same size

of Z. Alternatively, one can arrange the elements ∂f
∂(Z)ij

and ∂f
∂(Z∗)ij

in a row vector, and define DZf(Z) and

DZ∗f(Z) at Z0 ∈ C
n×m as

DZf(Z0) ,
∂ f(Z)

∂ vec (Z)T

∣∣∣∣∣
Z=Z0

= vec (∇Zf(Z0))
T and DZ∗f(Z0) ,

∂ f(Z)

∂ vec (Z∗)T

∣∣∣∣∣
Z=Z0

= vec (∇Z∗f(Z0))
T

,

(32)
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where vec (A)T stands for (vec (A))T . For (complex-valued) matrix functions of complex matrices, FC :

C
n×m → C

p×q, we arrange the pq · nm (conjugate) R-derivatives in the following pq × nm matrices

DZF
C(Z0) ,

∂ vec
(
FC(Z)

)

∂ vec (Z)T

∣∣∣∣∣
Z=Z0

, with

[
∂ vec

(
FC
)

∂ vec (Z)T

]

ij

=
∂
[
vec
(
FC
)]

i

∂ [vec (Z)]j
, ∀i = 1, . . . , pq and j = 1, . . . , nm,

DZ∗FC(Z0) ,
∂ vec

(
FC(Z)

)

∂ vec (Z∗)T

∣∣∣∣∣
Z=Z0

, with

[
∂ vec

(
FC
)

∂ vec (Z∗)T

]

ij

=
∂
[
vec
(
FC
)]

i

∂ [vec (Z∗)]j
, ∀i = 1, . . . , pq and j = 1, . . . , nm.

(33)

The pq×nm matrices DZF
C and DZ∗FC are called Jacobian and conjugate Jacobian of FC. Note that when

FC is a scalar function of Z, i.e., FC(Z) = f(Z) with f : Cn×m → C, definitions (33) reduce to (32). Practical

rules to compute R-derivatives and conjugate R-derivatives introduced above can be found in [52].

5.2 The minimum principle

Let C
n×m be the space of complex n × m matrices, and let K ⊆ C

n×m be a closed and convex set. We

consider the optimization problem

minimize
Z

f(Z)

subject to Z ∈ K,
(34)

where f : K → R is a real-valued convex and continuously R-differentiable function on K. At the basis of the

minimum principle there is the first-order Taylor expansion of f at Z0 ∈ K as proved in Appendix F:

f(Z0 +∆Z)− f(Z0) ≃ 2Re
(

tr
(
(∇Zf(Z0))

T ∆Z
))

, 2 〈∆Z, ∇Z∗f(Z0)〉 (35)

where we used (∇Zf)
∗ = ∇Z∗f since f is real [see (30)], and we introduced the inner product 〈•, •〉 :

C
n×n × C

n×n → R, defined as

〈A, B〉 , Re
(
tr
(
AHB

) )
. (36)

Note that the norm induced by the inner product 〈•, •〉 is the Frobenius norm, i.e., 〈A, A〉 = Tr(AHA) =

‖A‖2F . Using (35) we can now introduce the minimum principle as given next.

Lemma 23 Given the convex optimization problem (34) in the setting above, X ∈ K is an optimal solution

of (34) if and only if X satisfies 〈Z−X, ∇Z∗f(X)〉 ≥ 0 for all Z ∈ K.

Proof. See Appendix F.

It is interesting to observe that if the optimal solution X is in the interior of K [e.g., the optimiza-

tion problem (34) is unconstrained, implying K = C
n×m), then the above optimality conditions reduce to

∇Z∗f(X) = 0, or equivalently ∇Zf(X) = 0, which are the well-established complex gradient-vanishing con-

ditions obtained in [52] for the unconstrained minimization. We conclude this section with an example of

application of the minimum principle, which is instrumental for the analysis in Sec. 6.

Example 24 (An application of the minimum principle) Consider the following single-user rate max-

imization problem

maximize
Z

f(Z) , log det
(
Rn +HZHH

)

subject to Z ∈ K,
(37)
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where Rn ∈ C
m×m is a positive definite matrix, H ∈ C

m×n, and K is any convex and compact subset of the

n× n complex positive semidefinite matrices (assumed to be nonempty). Note that f(Z) is a concave (real-

valued) function on the feasible set K but is not real if defined on C
n×n. Since we are interested in minimizing

f over K, in order to apply the minimum principle, one approach we can follow is to consider without loss of

generality the modified function f̃ : K̃ → R, defined as f̃(Z) , 2Re (f(Z)), where K ⊂ K̃ ⊆ C
n×n is any open

set over which f(Z) is well defined (it is sufficient that det
(
Rn +HZHH

)
6= 0); indeed, f̃ coincides with

f over K, but it is real everywhere (in its domain). Moreover, f̃ is R-differentiable on K̃.6 The conjugate

(matrix) R-derivative of f̃ at Z0 ∈ K̃ is (see Appendix G)

∇Z∗ f̃(Z0) = HH(Rn +HZH
0 HH)−1H. (38)

Introducing G : K → C
n×n, defined as G = G(Z) , −∇Z∗ f̃(Z) = −HH(Rn + HZHH)−1H (note that

Z ∈ K and thus Z = ZH), and invoking Lemma 23, the optimization problem (37) is then equivalent to the

minimum principle: find a Z ∈ K such that 〈Y − Z, G(Z)〉 ≥ 0, for all Y ∈ K. �

5.3 The VI problem in the complex domain

With the developments of the previous section at hand, we can now introduce the definition of the VI problem

in the domain of complex matrices, termed the complex VI problem. Similarly to the real case (cf. Appendix

A), one can think of the VI problem as the generalization of the minimum principle (cf. Lemma 23), where

the co-gradient ∇Z∗f is replaced with a complex-valued matrix mapping. The formal definition is given next.

Definition 25 Given a convex and closed set K ⊆ C
n×m and a complex-valued matrix function FC(Z) : K ∋

Z → C
n×m, the complex VI problem, denoted by VI

(
K,FC

)
, consists in finding a point Z ∈ K such that〈

Y − Z,FC(Z)
〉
≥ 0 for all Y ∈ K. The solution set of the VI

(
K,FC

)
is denoted by SOL

(
K,FC

)
.

When K has a Cartesian structure, i.e., K ,
∏I

i=1Ki with each Ki ⊆ C
ni×mi , we write FC(Z) ,(

FC
i (Z)

)I
i=1

and Z , (Zi)
I
i=1, with FC

i (Z) : K → C
ni×mi and Zi ∈ C

ni×mi . In such a case, with a slight abuse

of notation, we will still use for the partitioned VI
(
K,FC

)
the compact notation

〈
Y − Z,FC(Z)

〉
, by meaning∑I

i=1

〈
Yi − Zi,F

C
i(Z)

〉
. Moreover, the definitions of DZF

C(Z) and DZ∗FC(Z) as given in (33) depend in

principle on the ordering according to which the components of FC(Z) and Z are grouped in the vec operator.

For our purposes, the following ordering is the most convenient, which is tacitly assumed throughout the pa-

per: vec
(
(FC

i (Z))
I
i=1

)
,
[
vec(FC

1 (Z))
T , . . . , vec(FC

I (Z))
T
]T

and vec
(
(Zi)

I
i=1

)
,
[
vec(Z1)

T , . . . , vec(ZI)
T
]T

.

5.4 Monotonicity and P properties of VI
(
K,FC

)

We can now readily extend the definitions of monotonicity and P property for real-valued vector functions

(see Definition 40 in Appendix A) to complex-value matrix maps FC; the aforementioned definitions are in

6The introduction of the auxiliary function f̃ might appear an unnecessary complication, which needs clarification. The

original function f is defined over a (sub)set of positive semidefinite matrices. The theory of matrix derivatives introduced in

this paper cannot be applied however to functions of matrices having a structure. The function f̃ is introduced just to overcome

this issue; indeed, it is defined over an open set of unpatterned matrices while being equal to f over the set of interest. An

alternative approach would be working directly with the original f and using the so-called complex (patterned) generalized

derivatives [52]. However, up to date there are no rules to compute matrix derivatives over arbitrary manifolds, which strongly

limits the applicability of this methodology in practice. This motivates the former approach.
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fact formally the same, with the only difference that the scalar product and the Euclidean norm are replaced

with the inner product 〈•, •〉 defined in (36) and the Frobenius norm, respectively. The non-trivial task

is instead to derive easy conditions to check guaranteeing these properties. These conditions are indeed

instrumental to study convergence of algorithms for complex NEPs. The interesting result we prove next is

that we can obtain necessary and sufficient conditions for a continuously (R-)differentiable FC(Z) to be a

monotone function or (sufficient conditions to be) a P function on K that are formally equivalent to those

obtained for real-valued vector functions F(x) [cf. (13) and Proposition 5], provided that we introduce a novel

definition of Jacobian matrix suitable for complex-valued functions of complex variables; such a Jacobian will

contain both R-derivatives and conjugate R-derivatives of FC(Z).

Given the complex VI
(
K,FC

)
, suppose that FC(Z) is a continuously (R-)differentiable matrix function

on K. Then, the nm × nm Jacobian matrices DZF
C(Z) and DZ∗FC(Z) in (33) are well-defined at Z ∈ K.

Let us introduce the 2nm× 2nm matrix JFC(Z), defined as

JFC(Z) ,
1

2

[
DZF

C(Z) DZ∗FC(Z)

DZ

(
FC(Z)∗

)
DZ∗

(
FC(Z)∗

)
]
, (39)

which we call “augmented Jacobian” for obvious reasons. For notational simplicity, in the sequel we will write

DZF
C(Z)∗ and DZ∗FC(Z)∗ for DZ

(
FC(Z)∗

)
and DZ∗

(
FC(Z)∗

)
, respectively. Note that the following rela-

tionships hold between the blocks of JFC(Z):
(
DZF

C(Z)
)∗

= DZ∗FC(Z)∗ and
(
DZ∗FC(Z)

)∗
= DZF

C(Z)∗.

Finally, under the assumption that FC(Z) and K have a partitioned structure and FC(Z) has bounded

(R)-derivatives on K, let us introduce the “condensed” I × I matrix ΥFC given by

[ΥFC ]ij ,

{
κmin
i , if i = j,

−ξmax
ij , otherwise,

(40)

with

κmin
i , inf

Z∈K
λleast

(
AH

i JiF
C

i (Z)Ai

)
and ξmax

ij , sup
Z∈K

∥∥∥AH
i JjF

C

i (Z)Aj

∥∥∥
F
, (41)

where JiF
C
i (Z) and JjF

C
i (Z) represent the augmented Jacobians of FC

i (Z) as defined in (39), whose R-

derivatives are taken with respect to Zi and Zj (and their conjugates), respectively; Ai ∈ C
2nimi×2nimi are

nonsingular arbitrary matrices; and ‖A‖F denotes the Frobenius norm of A. As we show shortly, JFC(Z)

and ΥFC play for complex VIs the same role as JF and ΥF introduced in Sec. 3.2 for real VIs.

Before stating the main results (Propositions 27 and 28), we need to introduce a novel relaxed definition

of (uniformly) positive (semi-)definiteness for matrices in the form (39), which takes explicitly into account

the special structure of those matrices. Instead of checking the sign of the quadratic form yHJFC(Z)y for

arbitrary y ∈ C
2nm, it turns out that one can restrict the check to structured vectors in the form y = [y1,y

∗
1]

for all y1 ∈ C
nm, which is actually the size of the vector space where Z lies. This motivates the following

definition of “augmented” (uniformly) positive (semi-)definiteness for matrices in the form of (39).

Definition 26 The augmented Jacobian JFC(Z) is said to be:

i) augmented positive semidefinite on K if for all Y ∈ C
n×m and Z ∈ K,

vec([Y,Y∗])HJFC(Z) vec([Y,Y∗]) ≥ 0; (42)

ii) augmented positive definite on K if for all 0 6= Y ∈ C
n×m and Z ∈ K, the inequality in (42) is strict;
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iii) uniformly augmented positive definite on K with constant c > 0 if for all Y ∈ C
n×m and Z ∈ K, there

exists a positive constant c > 0 such that

vec([Y,Y∗])HJFC(Z) vec([Y,Y∗]) ≥ c ‖Y‖2F . (43)

For i), ii), and iii) we will write JFC(Z)
A
� 0, JFC(Z)

A≻ 0, and JFC(Z)− cI
A
� 0, respectively.

Note that JFC(Z) is not Hermitian; which implies that vec(W)HJFC(Z)vec(W) is generally not a real

number for arbitrary W ∈ C
n×2m. However, because of the structure of JFC(Z) and vec([Y,Y∗]), with

Y ∈ C
n×m, the quadratic form vec([Y,Y∗])HJFC(Z) vec([Y,Y∗]) introduced in the proposition is always

real. Note also that if JFC(Z) is positive semidefinite, positive definite, or uniformly positive definite on K
(and thus Hermitian), then it is also augmented positive semidefinite, positive definite, or uniformly positive

definite, respectively; but the converse in general is not true (because JFC(Z) is not Hermitian). Using

Definition 26, we can now establish the connection with the monotonicity properties of FC.

Proposition 27 Let FC : K→ C
n×m be (R-)continuously differentiable on the convex set K. Suppose that K

has nonempty interior. The following statements hold:

(a) FC is monotone on K if and only if JFC(Z) is augmented positive semidefinite on K;

(b) If JFC(Z) is augmented positive definite on K, then FC is strictly monotone on K;

(c) FC is strongly monotone on K with constant csm > 0 if and only if JFC(Z) is uniformly augmented

positive definite on K with constant csm/2.

If we assume a Cartesian structure, i.e. FC = (FC
i )

I
i=1 and K =

∏I
i=1Ki, and bounded (R)-derivatives of FC

on K, then:

(d) If ΥFC is positive semidefinite/P0-matrix, then FC is a monotone/P0 function on K;

(e) If ΥFC is a P-matrix, then FC is a uniformly P-function on K.

Proof. See Appendix H.

The above proposition is the generalization of (13) and Proposition 5 to complex VIs. Note that, if the set

K has empty interior, necessary conditions in (a) and (c) generally do not hold, whereas sufficient conditions

in (a)-(c) may be too restrictive. Since some of the optimization problems of our interest have feasible sets

that fall into this class [e.g., think of the set of Hermitian matrices], it is worth extending Proposition 27 to

sets with empty interior. The next result is valid for arbitrary (nonempty) convex sets.

Proposition 28 Consider the setting of Proposition 27, but with K being any nonempty convex subset of

C
n×m. Let SK be the subspace that is parallel to the affine hull of K.7 The following statements hold:

(a) FC is monotone on K if and only if for all Y ∈ C
n×m such that Y ∈ SK and Z ∈ K, it holds

vec ([Y,Y∗])H JFC(Z) vec ([Y,Y∗]) ≥ 0;

(b) If for all 0 6= Y ∈ C
n×m such that Y ∈ SK and Z ∈ K, it holds vec ([Y,Y∗])H JFC(Z) vec ([Y,Y∗]) > 0,

then FC is strictly monotone on K;

(c) FC is strongly monotone on K with constant csm > 0 if and only for all Y ∈ C
n×m such that Y ∈ SK

and Z ∈ K, it holds vec ([Y,Y∗])H JFC(Z) vec ([Y,Y∗]) ≥ (csm/2) ‖Y‖2F .
7We recall that, given a subset K of Cn×m, the affine hull of K, denoted by Aff(K), is the set of all affine combinations of

elements in K, that is Aff(K) ,
{

Y ∈ C
n×m : Y =

∑k

i=1 αiXi, k > 0, Xi ∈ K, αi ∈ R,
∑k

i=1 αi = 1
}

.
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If we assume a Cartesian product structure, i.e. FC = (FC
i )

I
i=1 and K =

∏I
i=1Ki, and bounded (R)-derivatives

of FC(Z) on K, then statements (d) and (e) of Proposition 27 hold.

Proof. See Appendix H.

A set K of special interest for our applications (cf. Sec. 2) is the set of complex n×n positive semidefinite

matrices (and thus Hermitian). This set has empty interior, implying that one needs to use Proposition 28.

It is not difficult to see that the affine hull of such a K is the set of Hermitian matrices, which is already a

subspace. Therefore, when Proposition 28 applies to such a K, the matrices Y are restricted to the set of

Hermitian matrices. It is worth observing that, when K has nonempty interior, Proposition 28 reduces to

Proposition 27; indeed, we have Aff(K) = C
n×m, and thus SK = C

n×m.

Using Proposition 27 (or Proposition 28) and building on the structure of JFC one can obtain sufficient

conditions for JFC to be augmented positive (semi-)definite or uniformly positive semidefinite, similarly to

what we have done in Sec. 3.2 for real valued vector functions F; one can then extend the solution analysis

and methods developed for the VI(Q,F) to the complex VI
(
K,FC

)
; because of the space limitation, we leave

these tasks to the reader. In Sec. 6, we will show an instance of these conditions when specialized to the

MIMO games along with their physical interpretations.

We conclude this section by applying Proposition 27 (or Proposition 28) to the conjugate gradient of

real-valued functions of complex variables [cf. (34)]. The result is a set of novel necessary and sufficient

conditions for a (continuously R-differentiable) real-valued function of complex variables to be (strictly)

convex or strongly convex, in terms of R-derivatives. This provides an easy way to check convexity directly

in the complex domain. In order to apply Propositions 27 or 28, we need the following intermediate result,

which can be proved using the Taylor expansion (35) and similar approach used in the real case. Given a

continuously R-differentiable real-valued function f : Cn×m → R , f is convex, strictly convex, or strongly

convex on K if and only if its conjugate gradient ∇Z∗f is monotone, strictly monotone, or strongly monotone

on K, respectively. Using Proposition 27 (or Proposition 28), the convexity properties of f(Z) can be then

restated in terms of properties of the augmented Jacobian matrix JFC(Z) of FC(Z), with FC(Z) = ∇Z∗f(Z),

which we term augmented Hessian of f , HZZ∗f(Z), given by [cf. (39)]:

HZZ∗f(Z) ,
1

2

[
DZ (∇Z∗f(Z)) DZ∗ (∇Z∗f(Z))

DZ ((∇Z∗f(Z))∗) DZ∗ ((∇Z∗f(Z))∗)

]
,

1

2

[
∇2

ZZ∗f(Z) ∇2
Z∗Z∗f(Z)

∇2
ZZf(Z) ∇2

Z∗Zf(Z)

]
. (44)

Note that [cf. (33)] ∇2
ZZ∗f(Z) =

(
∇2

Z∗Zf(Z)
)∗

and ∇2
Z∗Z∗f(Z) =

(
∇2

ZZf(Z)
)∗

. It follows from Proposition

27 applied to FC(Z) = ∇Z∗f(Z) that HZZ∗f(Z) plays the role of the classical Hessian matrix of f : let

K ⊆ C
n×m be any convex set with nonempty interior, then

f(Z) is convex on K ⇔ HZZ∗f(Z)
A
� 0, ∀Z ∈ K;

f(Z) is strictly convex K ⇐ HZZ∗f(Z)
A≻ 0, ∀Z ∈ K;

f(Z) is strongly convex on K ⇔ HZZ∗f(Z)− csm I
A
� 0, ∀Z ∈ K and some csm > 0.

(45)

If the set K has empty interior, conditions (45) are replaced by those in Proposition 28 applied to

JFC(Z) = HZZ∗f(Z); we leave this easy task to the reader. Note that our conditions in (45) (and Proposition

28) generalize those obtained in [54, Prop. 1.2.6 and Exercise 1.8] for real-valued functions of real variables.
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Example 24 Revisited. Going back to the optimization problem (37), we can recover the well-known

concavity property of f(Z) on the compact and convex set K by a direct application of Proposition 28. The

expression of the augmented Hessian of f(Z) will be also used in Sec. 6.2 to study MIMO games.

Let K̃ be any open set containing K over which f(Z) is well defined, and let f̃ : K̃ → R be f̃(Z) ,

2Re (f(Z)). Since f̃ = f on K, concavity of f on K follows from that of f̃ on K. Since K has empty interior,

one needs to use Proposition 28. Observing that, for the specific set K under consideration, the set SK in

Proposition 28 is SK = {X ∈ C
n×n : X = XH}, it is sufficient to show that

−
[

vec(Y)

vec(Y∗)

]H
HZZ∗ f̃(Z)

[
vec(Y)

vec(Y∗)

]
≥ 0, ∀Z ∈ K and∀Y = YH , (46)

where HZZ∗ f̃(ZK) is the augmented Hessian of f̃(Z). In Appendix G, we show that

HZZ∗ f̃(Z) = −1

2

[
0

[
G(Z)T ⊗G(Z)

]
Kn2n2[

G(Z)H ⊗G∗(Z)
]
Kn2n2 0

]
(47)

where G(Z) , HH
(
Rn +HZHHH

)−1
H and Kn2n2 is an n2 × n2 permutation matrix such that vec(ZT ) =

Kn2n2vec(Z) (also termed commutation matrix [52, Def. 2.9]). Using (47), condition (46) becomes

0 ≤
[

vec(Y)

vec(Y∗)

]H [
0 G(Z)T ⊗G(Z)

G(Z)H ⊗G(Z)∗ 0

][
Kn2n2 vec(Y)

Kn2n2 vec(Y∗)

]

=

[
vec(Y)

vec(Y∗)

]H [
G(Z)T ⊗G(Z) 0

0 G(Z)H ⊗G(Z)∗

][
vec(Y)

vec(Y∗)

]
, ∀Z ∈ K and ∀Y = YH , (48)

where in the equality we used the property Kn2n2vec(Z) = vec(ZT ) and Y = YH . It turns our that (48) is

satisfied if G(Z)T ⊗G(Z) is positive semidefinite for all Z ∈ K. Since G(Z)T ⊗G(Z) is Hermitian on K, it

is sufficient to check that the minimum eigenvalue of G(Z)T ⊗G(Z), denoted by λmin

(
G(Z)T ⊗G(Z)

)
, is

nonnegative for all Z on K. The result follows from λmin

(
G(Z)T ⊗G(Z)

)
= λmin

(
G(Z)T

)
· λmin (G(Z)) =

λmin (G(Z))2 ≥ 0 for all Z ∈ K, which proves concavity of f̃(Z) on K and thus of f(Z) on K.

It is worth observing that while −HZZ∗f(Z) satisfies (46) [Proposition 28(a)], it is not positive (semi-)

definite, showing that the latter condition may be too restrictive for checking the convexity of a (real-valued)

function of complex variables. This strengths the importance of the proposed new concept of augmented

positive (semi-)definiteness (Definition 26) and the role of Propositions 27 and 28. �

5.5 NEPs in the complex domain

We can now establish the formal connection between complex NEPs and complex VIs. Let GC , 〈K, f〉 be

a complex NEP where each player controls a complex matrix Zi ∈ C
ni×mi that must belong to the player’s

feasible set Ki ⊆ C
ni×mi ; the cost function of each player is denoted by fi : K → R; and the joint strategy set

of the game is K =
∏

iKi. We also write Z , (Zi)
I
i=1, Z−i , (Z1, . . . ,Zi−1,Zi+1, . . .ZI), and K−i ,

∏
j 6=iKj .

The NEP problem GC consists then, for each player i = 1, . . . , I, in solving the following convex optimization

problem: given Z−i ∈ K−i,

minimize
Zi

fi(Zi,Z−i)

subject to Zi ∈ Ki.
(49)

Building on Lemma 23, it is not difficult to prove the following.
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Proposition 29 Given the complex NEP GC , 〈K, f〉 , suppose that for each player i the following hold:

i) the (nonempty) strategy set Ki is closed and convex;

ii) the payoff function fi(Zi,Z−i) is convex and continuously R-differentiable in Zi for every fixed Z−i.

Then, the complex NEP GC is equivalent to the complex VI(K,GC), where GC(Z) ,
(
∇Z∗

i
fi(Z)

)I
i=1

.

We now have all the tools necessary to extend the developments in Sec. 3 and 4 to the solution of the

complex GC. In fact, by using the results in this section about monotonicity/P properties of VI(K,GC) we

can verbatim mimic the developments of Sec. 3 and 4. We remark that this possibility was not obvious and is

instead a result of careful choices about the way to deal with complex functions. Because of space limitations,

we do not provide here all the analytic developments; however, in the next section we will illustrate them on

the specific MIMO games introduced in Sec. 2.2.

6 Noncooperative Games Over Interference Channels Revisited

In this section, we focus on the application of the general theory developed in the previous sections to some

concrete examples of practical interest. In particular, we show how the real/complex NEPs introduced in

Sec. 2 can be naturally casted in the proposed framework and thus efficiently solved. The main result in the

SISO case is a novel iterative water-filling like algorithm where the users can choose the degree of desired

cooperation via local pricing, converging to solutions having different performance/signaling trade-off; we

also prove that the best-response of each player has a multi-level waterfilling-like expression and provide an

efficient algorithm for its computation. We then extend our analysis to MIMO games and obtain similar

results. Numerical experiments show the superiority of our novel distributed algorithms with respect to plain

noncooperative solutions as well as very good performance with respect to centralized schemes.

6.1 The SISO case

We study here the game Gsiso =
〈
P siso, (ri)

I
i=1

〉
introduced in (7). The VI function associated with Gsiso

is G(p) , (Gi(p))
I
i=1 : P siso → R

N I , where each Gi(p) is defined as

Gi(p) , −∇pi
ri(p) =

(
− |Hii(k)|2
σ2
i (k) +

∑
j 6=i |Hij(k)|2pj(k)

)N

k=1

. (50)

Note that in this section, due to the nature of the problems at hand, we called the VI mapping G instead of

F used previously, and the VI variables p instead of x as used previously.

According to Proposition 5, the monotonicity/P properties of G are related to the matrices JGlow and ΥG

defined in (14) and (15). We recall that the matrices B and Ci’s in the definition of JGlow and ΥG represent a

degree of freedom that one can use; in this case it is convenient to make the following choices. Let us rearrange

the components of p by subcarriers, meaning that the vector p = (pi)
I
i=1 is permuted into p̄ = (p̄(k))Nk=1,

with p̄(k) = (pi(k))
I
i=1; it is not difficult to see that p̄ can be written as p̄ = Pp, where P is a permutation

matrix such that [P]ij = 1 if j = [(imod I)−1]N+⌈i/I⌉ mod(I ·N), and [P]ij = 0 otherwise. Using this new

ordering for the variables, matrix JG becomes PTJGP; JGlow is then obtained from PTJGP according to

(14), where B , Diag{(B(k))Nk=1} is a block diagonal matrix, with each block B(k) ∈ R
I×I being a positive

diagonal matrix with the i-th entry equal to [B(k)]ii , σ2
i (k)/|Hii(k)|2+

∑
j(|Hij(k)|2/|Hii(k)|2)pmax

j (k).

Matrix ΥG comes directly from the original JG by choosing each Ci ∈ R
N×N as a diagonal matrix, defined
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as Ci , Diag

{((
σ2
i (k) +

∑
j |Hij(k)|2pmax

j (k)
)
/|Hii(k)|2

)N
k=1

}
. The explicit expressions of JGlow and ΥG

are the following: JGlow , Diag{(JGlow(k))
N
k=1} ∈ R

N I×N I is a block diagonal matrix, whose k-th diagonal

block JGlow(k) ∈ R
I×I is

[JGlow(k) ]ij ,





1, if i = j

−|Hij(k)|2

|Hjj(k)|2
· innrij(k), if i 6= j,

(51)

and ΥG ∈ R
I×I is given by

[ΥG ]ij ,





1 if i = j

− max
1≤ k≤N

{
|Hij(k)|2

|Hjj(k)|2
· innrij(k)

}
if i 6= j,

(52)

with

innrij(k) ,
σ2
j(k) +

∑
r |Hjr(k)|2pmax

r (k)

σ2
i (k)

. (53)

Using the above definitions along with Proposition 5, Theorem 3, and Corollary 7, the main properties of G
are then given in the following proposition; Corollary 31 follows from Proposition 7.

Proposition 30 Given the real convex-player NEP Gsiso =
〈
P siso, (ri)

I
i=1

〉
, the following hold.

(a) Gsiso is equivalent to the VI(P siso,G), which has a nonempty and compact solution set;

(b) Suppose that JGlow is positive semidefinite (positive definite). Then G is monotone (strongly monotone)

on P siso; therefore Gsiso is a monotone NEP;

(c) Suppose that ΥG is a P-matrix (positive definite matrix). Then G is a uniformly P-function (strongly

monotone function) on P siso; therefore Gsiso is a PΥ NEP and has a unique NE.

Corollary 31 The matrix ΥG in (52) is a P-matrix (or a positive definite matrix) if one (or both) of the

following two sets of conditions are satisfied: for some w = (wi)
I
i=1 > 0,

Low received MUI:
1

wi

∑

j 6=i

wj max
1≤ k≤N

{
|Hij(k)|2

|Hjj(k)|2
· innrij(k)

}
< 1, ∀i = 1, · · · , I,

Low generated MUI:
1

wj

∑

i 6=j

wi max
1≤ k≤N

{
|Hij(k)|2

|Hjj(k)|2
· innrij(k)

}
< 1, ∀j = 1, · · · , I

(54)

Similar sufficient conditions can be obtained for JGlow(k) to be positive semidefinite.

These conditions have an interesting physical interpretation: the uniqueness of the NE is ensured if the

interference among the SUs is sufficiently small; this is clearly shown by Corollary 31. Specifically, the

first condition in (54) can be interpreted as a constraint on the maximum amount of interference that each

receiver can tolerate, whereas the second condition introduces an upper bound on the maximum level of

interference that each transmitter is allowed to generate. We will show shortly that these conditions play a

role also in the convergence of the proposed distributed iterative algorithms. Moreover, depending on the

level of interference in the network, the NEP Gsiso is a PΥ or monotone NEP, implying different properties

and solution schemes of the game, as described next; we classify these two scenarios as low-interference and

medium/high-interference regime, respectively.
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The case of PΥ NEP (low-interference regime). When the matrix ΥG is a P matrix (or positive definite),

the NEP Gsiso is a PΥ NEP [Proposition 30 (c)]. Invoking Theorem 10, the unique NE of the game can be

computed with convergence guarantee using Algorithm 1 on Gsiso, as stated in the next theorem.

Theorem 32 Suppose that Gsiso is a PΥ real NEP. Then, any sequence {p(n)}∞n=0 generated by Algorithm

1 applied to Gsiso converges to the unique NE of the NEP, for any given updating schedule of the players

satisfying assumptions A1 )-A3 ).

When implementing Algorithm 1, each user needs to compute his best-response solution, given the in-

terference generated by the others. In Sec. 6.1.1 (cf. Lemma 34), we prove that the best-response for the

game Gsiso has a multi-level waterfilling-like expression, implying that each user can compute his optimal

solution locally and very efficiently (he only needs to measure the overall MUI experienced at his receiver

and “waterfill” over it). Therefore, Algorithm 1 results to be totally distributed and computationally efficient,

which makes it appealing for practical implementation in CR scenarios.

The case of monotone NEP (medium/high-interference regime). When JGlow is positive semidefinite,

the NEP Gsiso is a monotone NEP, having in general multiple solutions. In such a case, to compute a

solution of Gsiso with convergence guarantee, there are two available options, namely: PDAs (either in their

exact or inexact form) and PTRA. The former are the only feasible choice when the SUs are not willing to

cooperate; whereas the latter requires some (albeit very limited) cooperation among the SUs in favor of better

performance (one can perform equilibrium selection). To the best of our knowledge, the above algorithms

are in the signal processing and communication literature the first example of distributed power control

schemes that converge even in the presence of multiple Nash equilibria. Note that, in all the aforementioned

algorithms, the best-response of the SUs can be efficiently computed via a multi-level waterfilling expression

(cf. Sec. 6.1.1). We provide next an instance of the PTRA along with its convergence conditions; PDAs are

obtained as special cases of the PTRA, and thus its description is omitted.

Equilibrium Selection via Proximal-Tikhonov Regularization Algorithm. The first step is to choose a merit

function that quantifies the quality of a NE of Gsiso. Different heuristics can be used; as an example, here

we focus on the following merit function: given the vector w , (wi)
I
i=1 ≥ 0, let

φ(p) ,

I∑

i=1

wi

∑

j 6=i

N∑

k=1

|Hij(k)|2 p i(k). (55)

This choice is motivated by the intuition that among all the solutions of Gsiso, a good candidate is the one

that minimizes the overall interference among the users, measured by φ(p), likely resulting in an “higher”

sum-rate
∑I

i=1 ri(p). The NE selection problem based on the merit function φ can be then formulated as:

minimize
p

φ(p)

subject to p ∈ SOL(P siso, r).
(56)

Problem (56) is an instance of (26); we can then solve it by applying Algorithm 4 (cf. Sec. 4.3);

which corresponds to solving a sequence of perturbed PΥ NEPs given by Gτ , ε(n),p̄ =
〈
P siso, (−ri(p)+

ε(n) γT
i pi +

τ

2
‖pi − p̄i‖2)Ii−1

〉
, whose player i’s optimization problem is: given p−i, p̄, and ε(n) > 0,
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maximize
pi∈P

siso

i

ri(pi,p−i)− ε(n) γT
i pi −

τ

2
‖pi − p̄i‖2 (57)

where γ , (γi)
I
i=1, with each γi , (

∑
j 6=iwi|Hji(k)|2)Nk=1. A partially asynchronous version of Algorithm 4

applied to (56) is described in Algorithm 5 below, and its convergence conditions are given in Theorem 33,

which is a direct application of results in Theorem 10 and Theorem 21.

Algorithm 5: NE selection for the real NEP Gsiso
(Data) : {ε(n)} ↓ 0 and τ > 0.

(S.0): Choose any p(0) ∈ P siso and a center p̄ ≥ 0 of the regularization; set ε̄ = ε(0) and n = 0.

(S.1): If p(n) satisfies a suitable termination criterion, STOP.

(S.2): For each i = 1, . . . , I, compute p
(n+1)
i as

p
(n+1)
i =





p⋆
i ∈ argmax

pi∈P siso

i

{
ri

(
pi,p

(τ−i(n))
−i

)
− ε̄γT

i pi −
τ

2
‖pi − p̄i‖2

}
, if n ∈ Ti

p
(n)
i , otherwise

(58)

(S.3) : If p(n+1) is a NE of Gτ , ε(n),p̄, then update ε̄ and the center p̄:

ε̄ = ε(n+1) and p̄i = p
(n+1)
i ∀i = 1, . . . , I; (59)

(S.4) : n← n+ 1 and return to (S.1).

Theorem 33 Suppose that: i) Gsiso is a monotone NEP; ii) {ε(n)} is such that ε(n) → 0 and
∑∞

n=0 ε(n) =∞;

and iii) τ is chosen so that ΥG + τ I is a P matrix. Then, the sequence {p(n)}∞n=0 generated by Algorithm 5

has a limit point and every such limit point is a solution of the optimization problem (56).

A sufficient condition for matrix ΥG + τ I in Theorem 33 to be P is

τ > max
1≤i≤I




∑

j 6=i

max
1≤k≤N

{ |Hij(k)|2
|Hii(k)|2

innrij(k)

}
− 1. (60)

Algorithm 5 shows that, in the presence of multiple equilibria, one can still have converge even when

best-response based schemes (cf. Algorithm 1) fail, provided that the SUs play a “sequence" of games rather

than a one-shot game; moreover, to reach the NE that minimizes the overall MUI among the users, the

players’ objective functions need to be modified in order to contain an additional term−the linear term

ε(n)γT
i pi−whose task is to “measure" on the way the quality of the solution that the algorithm is going to

reach. Such a term has also a physical interpretation: it represents a punishment imposed to the users for

using too much power and thus generating too much MUI.

Note that the computation of the optimal power allocations of the users in Algorithm 5 can be performed

locally and distributively by the users as previously discussed for the PΥ NEP, once ε(n) and γi are given.

The computation of γi requires an estimate from each user i of the cross-channel between its transmitter

and the receivers of all SUs being in the coverage radius of user i. This estimate needs to be computed only

once (before running the algorithm) and updated at the rate of the coherence time of the channel. When the

computation of γi is not possible, one can still use Algorithm 5, setting γi = 0 in (58), which corresponds to

solving the optimization problem (56) with φ(p) = 0, and thus computing just one of the solutions of Gsiso;
Theorem 33 still guarantees convergence of the algorithm, even in the presence of multiple equilibria.
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6.1.1 Efficient computation of the SISO proximal best-response solutions

In this section, we provide an efficient method for computing the best-response solutions of the rate maximiza-

tion problems introduced in the previous section. Motivated also by other resource allocation problems, such

as [55], we introduce next a very general formulation that encompasses the optimization problems studied in

this paper, whose optimal solution is proved to have a multi-level waterfilling-like expression, and provide an

efficient algorithm to compute the optimal water-levels (dual variables).

Given {Hk}Nk=1, λ = (λk)
N
k=1, c = (ck)

N
k=1, wk , (wki)

Nc

i=1, p
max , (pmax

k )Nk=1, and α ∈ R
Nc
++, and τ > 0,

with each Hk > 0 and λk > 0, consider the following optimization problem

maximize
p

∑N
k=1 [log (1 +Hk pk)− λkpk]− τ

2 ‖p− c‖2
∑N

k=1wk pk ≤ α

0 ≤ p ≤ pmax.

(61)

We will tacitly assume w.l.o.g. that: 0 < (Hk)
N
k=1 < ∞; 0 ≤ wk , (wki)

Nc

i=1 < ∞ for all k = 1, . . . , N , and

linearly independent; 0 ≤ (λk)
N
k=1 <∞; 0 ≤ (ck)

N
k=1 <∞; 0 < pmax <∞; and

∑N
k=1wk p

max
k > α.

Problem (61) is a convex problem with a polyhedral feasible set; the KKT are then necessary and sufficient

conditions for the optimality. By solving the KKT system one can prove the following result, whose proof is

omitted because of the space limitation; see [56, Sec. 7.1.1].

Lemma 34 The optimal solution of the optimization problem (61) is given by

p⋆k =


1
2

(
ck −

1

Hk

)
− 1

2τ


µ̃k −

√[
µ̃k − τ

(
ck +

1

Hk

)]2
+ 4τ





pmax
k

0

k = 1, . . . , N (62)

where [x]ba denotes the Euclidean projection of x onto [a, b], i.e., [x]ba , max(a,min(x, b)), each µ̃k , λk +

µTwk, and the water-level vector µ has to be chosen to satisfy the complementarity conditions

0 ≤ µi ⊥ αi −
N∑

k=1

wki p
⋆
k ≥ 0, ∀i = 1, . . . , Nc. (63)

The computation of the water-level µ in (62) so that the complementarity conditions in (63) are satisfied

can be done efficiently using the multiple nested bisection method described in Algorithm 6.

The basic idea of the algorithm is to employ a bisection algorithm in µ1; then, for a given µ1, use a

bisection algorithm in µ2; then in µ3, and so on. For the ith bisection level, the interval can be chosen as[
0,maxk

{(
Hk − τck − λk −

∑
j<i µjwkj

)
/wki

}]
. The convergence of the nested bisection method is given

in the following proposition, whose proof is omitted and can be found in [56, Sec. 7.1.1].

Proposition 35 Algorithm 6 converges in no more than

∏

i

⌈
log2

(
max
k
{(Hk − τck − λk) /wki} /ǫ

)⌉

iterations, where ǫ is the desired accuracy in the computation of the parameter µ.
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Algorithm 6: Multiple nested bisection algorithm for the computation of the proximal

best-response in (62).

(S.0) : Choose some accuracy ǫ.

(S.1) : Set µ
1
= 0 and µ1 = maxk {(Hk − τck − λk) /wk1}.

(S.2) : Set µ1 =
(
µ
1
+ µ1

)
/2.

(S.3) : Solve for µ2, . . .

(S-2.1) : Set µ
2
= 0 and µ2 = maxk

{(
Hk − τck − λk −

∑
j<2wkjµj

)
/wk2

}
.

(S-2.2) : Set µ2 =
(
µ
2
+ µ2

)
/2.

(S-2.3) : Solve for µ3, . . .

(S-3.1) : Set µ
3
= 0 and

µ3 = maxk

{(
Hk − τck − λk −

∑
j<3wkjµj

)
/wk3

}
.

(S-3.2) : Set µ3 =
(
µ
3
+ µ3

)
/2.

(S-3.3) : Solve for µ4, . . . ...

(S-3.4) : Using (62), if
∑N

k=1wk3p
⋆
k < α3 then set µ3 = µ3, otherwise set µ

3
= µ3.

(S-3.5) : If µ3 − µ
3
> ǫ, then go to (S-3.2).

(S-2.4) : Using (62), if
∑N

k=1wk2p
⋆
k < α2 then set µ2 = µ2, otherwise set µ

2
= µ2.

(S-2.5) : If µ2 − µ
2
> ǫ, then go to (S-2.2).

(S.4) : Using (62), if
∑N

k=1wk1p
⋆
k < α1 then set µ1 = µ1, otherwise set µ

1
= µ1.

(S.5) : If µ1 − µ
1
> ǫ then go to (S.2); otherwise STOP.

6.2 The MIMO case

Let us consider now MIMO games. Given Gmimo, let us assume w.l.o.g. that all the matrices Qi in the

game have the same dimensions nT × nT . It follows from Proposition 23 (see also Example 24) that Gmimo is

equivalent to the complex VI(Pmimo,FC) where FC(Q) ,
(
FC
i (Q)

)I
i=1

: Pmimo → CQnT×nT , with each

FC
i (Q) , − (∇Qi

Ri(Q))∗ = −HH
ii


Rni

+

I∑

j=1

HijQjH
H
ij




−1

Hii. (64)

According to Proposition 27, the monotonicity/P properties of FC(Q) on Pmimo are related to the properties of

the augmented Jacobian matrix JFC(Q). To obtain sufficient conditions easy to be checked, let us introduce

the following I × I matrix Υmimo

FC ∈ R
I×I obtained by properly “condensing” JFC(Q) (see Appendix I), and

defined as (we implicitly assume that all the channel matrices Hii are full column rank):

[Υmimo

FC ]ij ,





1 if i = j

−ρ
(
H

†H
ii HH

ijHijH
†
ii

)
· INNRij if i 6= j,

(65)

where A† denotes the Moore–Penrose pseudoinverse of A [since Hii are full column rank, we have H
†
ii =(

HH
iiHii

)−1
HH

ii ], and INNRij is defined as

INNRij ,

ρ

(
Rni

+
I∑

j=1
PjHijH

H
ij

)

λleast(Rni
)

. (66)

36



Using Proposition 23 and Proposition 27, we obtain the following characterization for Gmimo.
Proposition 36 Given the complex NEP Gmimo =

〈
Pmimo, (Ri)

I
i=1

〉
, the following hold.

(a) Gmimo is equivalent to the complex VI(Pmimo, FC), which has a nonempty and compact solution set;

(b) Suppose that Υmimo

FC is positive semidefinite. Then FC is monotone on Pmimo; therefore, Gmimo is a mono-

tone complex NEP;

(c) Suppose that Υmimo

FC is a P-matrix (positive definite matrix). Then FC is a uniformly P-function (strongly

monotone function) on Pmimo; therefore, Gmimo is a complex PΥ NEP and thus has a unique NE.

Proof. See Appendix I.

Corollary 37 The matrix Υmimo

FC is a P (or positive definite) matrix if one (or both) of the following two sets

of conditions are satisfied: for some w = (wi)
I
i=1 > 0,

Low received MUI:
1

wi

∑
j 6=i

wj

{
ρ
(
H

†H
ii HH

ijHijH
†
ii

)
· INNRij

}
< 1, ∀i = 1, . . . , I

Low generated MUI:
1

wj

∑
i 6=j

wi

{
ρ
(
H

†H
ii HH

ijHijH
†
ii

)
· INNRij

}
< 1, ∀j = 1, . . . , I

(67)

It is interesting to observe that conditions for FC to be a uniformly P-function on Pmimo are the natural

generalization of those obtained for Gsiso to be a PΥ game; they thus have the same physical interpretation,

for which we refer the reader to Sec. 6.1. Based on that, in Proposition 36 we used the same terminology as

in Definition 8, namely: Gmimo is a complex PΥ NEP if Υmimo

FC is a P matrix, whereas is a complex monotone

NEP if Υmimo

FC is a semidefinite matrix. For these two classes of NEPs we can devise distributed algorithms

having the same convergence properties and features of those developed in Sec. 4.1 and Sec. 4.2 for real PΥ

and monotone NEPs, respectively. The main results are briefly listed next; proofs are based on the same

techniques used to prove Lemma 23 and Proposition 36, and thus are omitted.

The case of PΥ NEP Gmimo (low-interference regime). When the matrix Υmimo

FC is a P matrix, the unique

NE of the game can be computed using Algorithm 1 on Gmimo, as stated in the next theorem.

Theorem 38 Suppose that Gmimo is a complex PΥ NEP. Then, any sequence {Q(n)}∞n=0 generated by Al-

gorithm 1 applied to Gmimo converges to the unique NE of the NEP, for any given updating schedule of the

players satisfying assumptions A1 )-A3 ).

The algorithm has the same desired features as the one obtained for the SISO case; see Sec. 6.1.

The case of monotone NEP Gmimo (medium-interference regime). When Υmimo

FC � 0, Gmimo is a monotone

complex NEP; in the presence of multiple solutions, we need to choose a merit function assessing the quality

of a NE of Gmimo; similarly to the SISO case, we consider the overall interference generated by all the SUs:

φ(Q) ,
I∑

i=1

wi

∑

j 6=i

tr
(
HijQjH

H
ij

)
, (68)

where wi’s are given positive weights. Building on the equivalence between the game Gmimo and the VI(Pmimo,

FC) (Lemma 23), the NE selection problem based on the merit function φ becomes:

minimize
Q

φ(Q)

subject to Q ∈ SOLC(Pmimo, FC).
(69)
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A solution of (69) can be computed in a distributed way using Algorithm 4 applied to (69); the interested

reader can find the lengthy details in [56, Sec. 6.2]. The convergence result is stated in the following theorem.

Theorem 39 Given the optimization problem (69), suppose that: i) Gmimo is a complex monotone NEP; ii)

{ε(n)} is such that ε(n) → 0 and
∑∞

n=0 ε(n) = ∞; and iii) τ is chosen so that Υmimo

FC + τ I is a P matrix.

Then, the sequence {Q(n)}∞n=0 generated by Algorithm 4 applied to (69) has a limit point and every such point

is a solution of (69).

A sufficient condition for matrix Υmimo

FC + τ I in Theorem 39 to be P is

τ > max
1≤i≤I




∑

j 6=i

ρ
(
H

†H
ii HH

ijHijH
†
ii

)
· INNRij



− 1. (70)

7 Numerical Results

In this section, we compare some of the proposed algorithms solving NEP Gsiso in (7) and Gmimo in (11) in

terms of achievable rates and convergence speed. We also compare the performance of our distributed schemes

with those achievable computing a stationary solution of the related sum-rate optimization problem (under

the same power and interference constraints). For the latter, we considered the pricing-based algorithm

proposed in [55] for the SISO case, and the solution methods proposed in [55, 57] for the MIMO setting; we

slight modified the schemes in [55, 57] in order to include the interference constraints we have proposed in

this paper. Algorithms in [55, 57] are the benchmark methods for this kind of problems. Finally, we contrast

our best-response schemes with gradient-response ones [35].

Example #1 (NE selection vs. no selection). In Fig. 3(a), we plot the SUs’ sum-rate
∑I

i=1 ri(p)

versus inner iterations (i.e., number of overall iterations required by the algorithm to converge), achieved

by the following algorithms applied to the NEP Gsiso: i) The Jacobi version of the proximal decomposition

algorithm described in Algorithm 2 (green line curve); ii) the Jacobi version of Algorithm 5 (blue line curve),

where φ(p) is given by (55); iii) the same Algorithm 5 applied to (56), where φ(p) in (55) is replaced by

−φ(p) (red line curve); and iv) the Jacobi Dynamic Pricing-based Algorithm (DPA) reaching a stationary

solution of the sum-rate maximization problem (black line curve) [55]. The choice of the merit function −φ(p)
leads to the selection of the NE solution that maximizes the overall MUI in the system, which provides a

benchmark of the sum-rate variability and an estimate of the worst-case performance over the set of the Nash

equilibria of the game. Any best-response solution involved in the optimization problems is computed using

the waterfilling-like expression introduced in Sec. 6.1.1.

The above algorithms are tested in the following setting. We considered a CR network modeled as a

Gaussian parallel IC, composed of I = 25 active users and two PUs; all the users are randomly placed within

an hexagonal cell; the channels of all the links are simulated as FIR filter of order L = 10, where each

tap is a zero mean complex Gaussian random variable with variance equal to 1/L; the number of carriers

is N = 128.. We focused on two scenarios, namely low interference regime (corresponding to ΥG being a

P matrix) and high interference regime (corresponding to JGlow being positive semidefinite). The thermal

noise variance σi
2(k) is set to one for all k and i, and the Signal-to-Noise-Ratio (SNR) of each user is set to

SNRi , 10 log10
(
Pi/σi

2(k)
)
= 5dB for all i and k. In the interference-temperature limit constraints, for the

sake of simplicity, we set the same interference thresholds αi = α1 for all the SUs, with α = 10−3 (this choice
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Figure 3: Comparison of distributed algorithms solving Gsiso.

of α is such that the power budget constraints of the SUs are not active at any optimal solution). All the

algorithms are initialized by the same starting point, chosen randomly in the set P siso, and are terminated

when the Euclidean norm of the error in two consecutive iterations becomes smaller than 10−6. In the PTDA,

we chose the center p̄ of the regularization randomly in P siso, τ = 3.5, and ε(n) = ε(0)/(1 + 10n), where

ε(0) = 0.5; in all the algorithms, the termination criterion of the inner loop, if any, is the same as the outer

loop. The above choice of the free parameters is the result of some preliminary tests; however we remark

that the proposed algorithm has been observed to be robust against the variation of such parameters.

The following comments are in order from Fig. 3(a). In the case of multiple NE, the sum-rate performance

of the network can vary significantly over the set of the NE; the relative sum-rate gap between the “worst”

and “best” NE is more than 90%. As expected, Algorithm 5 outperforms Algorithm 2, which validates the

use of criterion (55) in choosing the NE. Moreover the sum-rate loss with respect to the DPA is very limited,

and more than acceptable if one takes into account that, to be implemented, the DPA requires a significant

signaling among the users at each iteration. There are scenarios where such a signaling exchange is not

feasible (e.g., when the users are heterogeneous systems that are not willing to cooperate); in all these cases

Algorithm 5 is a good candidate. When the NE of the game is unique [ΥG is a P matrix], as expected, both

Algorithms 2 and 5 converge to the same sum-rate solution. Interestingly, this solution seems to coincide

also with the one achieved by the DPA. Finally, note that our algorithms converge quite fast.

Fig. 3(b) shows the average performance of algorithms i)-iii) considered in Fig. 3(a). We plotted the

average sum-rate versus the SNR , P , with Pi = P and σ2
i (k) = 1 for all i and k, achievable at the NE

reached by Algorithm 2 and Algorithm 5. The curves are averages over 5000 random channel realization

chosen so that the JGlow � 0. The rest of the parameters are the same as in Fig. 3(a). Fig. 3(b) confirms

the superior performance of Algorithm 5 with respect to Algorithm 2 that does not perform any equilibrium

selection. Finally, it is worth observing that projection-response algorithms proposed in [35] and [31, 34]

cannot be used to solve the PΥ NEP Gsiso (unless it is also monotone), even if the game has a unique NE.

Example #2 (Comparison with gradient-response algorithms for monotone VIs). In Fig. 4 we

compare some algorithms solving the game Gsiso under the monotonicity assumption (Gsiso is a monotone

NEP); the setup is the same of Fig. 3. More specifically, we plot the SUs rates versus the iteration index

achieved by Algorithm 2 and the Iterative Tikhonov Algorithm recently proposed in [35] for solving monotone
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VIs. In the latter algorithm we chose the variable step-size sequences γn = n−0.4 and δn = n−0.49 so that

(sufficient) conditions for the convergence given in [34, Prop. 15.1] are satisfied (we use the same notation as

in [35]; see therein for the details). The figure clearly shows that our best-response-based scheme converges

in a very few iterations, whereas the gradient-response algorithm needs much more iterations (two orders of

magnitude more) to reach comparable performance. The same convergence properties as in Fig. 4 has been

experienced for all the channel realizations we simulated.

Figure 4: Typical behavior of gradient-response versus best-response algorithms solving the monotone NEP Gsiso:
rate of three out 25 users versus the iterations achievable by the gradient-response algorithm [35] (red-line curves) and

the simultaneous best-response algorithm described in Algorithm 1 (blue-line curves).

Example #3 (NE selection vs. stationary solutions: the MIMO case). We compare here some of

the proposed algorithms in the MIMO setting. We consider the same scenario as in Fig. 3(a), with the only

difference that now all the transceivers are equipped with three antennas and there are I = 5 active SUs. The

channels are MIMO frequency-selective (the order of the channels is L = 10 and the number of subcarriers

is N = 128) and are generated in order to guarantee that the matrix ΥFC in (65) is positive semidefinite,

resulting thus in a monotone NEP Gmimo. Soft average power shaping interference constraints are imposed

to each SU along the direction of the primary transmitters; all the interference threshold are assumed to be

equal and set to Iavepi = 10−3. The best-response of each user cannot be computed in closed form (unless the

proximal regularization is not included in the objective function), but can be efficiently computed using any

nonlinear programming solvers (each player’s optimization problem is strongly convex). In Fig. 5 we plot the

sum-rate versus the inner iteration index achieved by the Jacobi version of Algorithm 2 (green-line curve),

Algorithm 4 based on the merit function φ(Q) defined in (68) (blue line curve); and iii) the Gauss-Seidel

based algorithm proposed in [57] to compute stationary solutions of the sum-rate problem (we adapted the

algorithm in [57] including the interference constraints in the feasible set of the optimization problem). Fig. 5

shows the trade-off between performance and signaling that is achievable by the three algorithms: Algorithm

7 implementing a NE selection leads to better sum-rates than Algorithm 2 at the cost of almost the same

signaling among the SUs of classical MIMO IWFAs (a constant price depending on the cross-channel matrices

needs to be computing by each SU before running the algorithms); higher sum-rates can be achieved using
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algorithm in [57] but at the cost of more signaling among the SUs (note that in the MIMO case, the scheme

[57] requires the SUs to exchange matrix informations at each iteration).
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Figure 5: Comparison of distributed algorithms solving Gmimo: Sum-rate of the SUs versus inner iterations.

8 Conclusions

In this paper, we have proposed a novel method based on VIs suitable to study and solve general real

or complex player-convex NEPs, having (possibly) multiple solutions. The proposed framework has many

desirable new features, such as: i) it can be applied to real and complex NEPs having no specific structure and

for which the best-response mapping is not available in closed form or unique; ii) the algorithms proposed for

computing a NE converge under mild conditions that do not imply the uniqueness of the equilibrium; and iii)

in the presence of multiple equilibria, one can control the quality of the computed solution by guaranteeing

convergence to the “best” NE (according to some prescribed criterion), at the cost of some signaling among

the players. These features make the proposed algorithms applicable to a variety of scenarios in different

fields; the choice of one scheme with respect to the other will depend on the trade-off between signaling and

performance that the users are willing to exchange/achieve. The analysis of algorithms for complex NEPs

hinges on the definition of the VI problem in the complex domain; this new class of VIs along with their

properties are introduced and studied for the fist time in this paper.

Finally, to have suitable case studies, we applied the proposed framework to solve some novel NEPs

modeling various resource allocation problems in SISO/MIMO CR systems. The resulting distributed best-

response algorithms were shown to converge even when current schemes proposed in the literature for related

problems fail. Numerical results showed the superiority of our (distributed) approach with respect to plain

noncooperative solutions as well as good performance with respect to centralized solutions.

Appendix

A (Partitioned) Variational Inequalities
The simplest way to see a VI is as a generalization of the minimum principle for convex optimization problems,

which is recalled next. Consider a convex optimization problem (in the minimization form), whose objective
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function f : Q 7→ R is convex and continuously differentiable on the feasible set Q ⊆ R
n,8 which is a convex

and closed subset of Rn. A point x⋆ ∈ Q is an optimal solution of the optimization problem if and only if

(x− x⋆)T ∇f (x⋆) ≥ 0, ∀x ∈ Q. (71)

The VI problem is a generalization of the minimum principle (71) where the gradient ∇f is substituted

by a general real-valued vector function F. More formally, we have the following. Let Q ⊆ R
n be a nonempty,

closed, and convex set and let F : Q → R
n be a vector-valued real function. The VI (Q, F) is the problem

of finding a feasible point x⋆ ∈ Q such that [31, Def. 1.1.1]

(x− x⋆)T F (x⋆) ≥ 0, ∀x ∈ Q. (72)

The set of solutions to this problem is denoted by SOL(Q,F).
Several standard problems in nonlinear programming, game theory, and nonlinear analysis can be nat-

urally formulated as a VI problem; many examples can be found in [31, Ch. 1], [33], and [34]. Below we

summarize some known facts and definitions about VI.

A.1 Solution analysis

In order to present results about the existence and the structure of the solution set of a VI, we introduce

some function classes.

Definition 40 A mapping F : Q→R
n, with Q closed and convex, is said to be

(i) monotone on Q if for all pairs x and y in Q,

(x− y )T (F(x)− F(y) ) ≥ 0; (73)

(ii) strictly monotone if for all pairs x 6= y in Q the inequality in (73) is strict;

(iii) strongly monotone on Q if there exists a constant csm > 0 such that for all pairs x and y in Q,

(x− y )T (F(x)− F(y) ) ≥ csm ‖x− y ‖2. (74)

The constant csm is called strong monotonicity constant.

If we assume a Cartesian product structure, i.e. F = (Fi(x))
I
i=1 and Q =

∏
iQi, then F is said to be

(iv) a P0 function on Q if for all pairs of distinct tuples x = (xi)
I
i=1 and y = (yi)

I
i=1 in Q, an index i exists

such that xi 6= yi and

(xi − yi )
T (Fi(x)− Fi(y) ) ≥ 0; (75)

(v) a P function on Q if for all pairs of distinct tuples x = (xi)
I
i=1 and y = (yi)

I
i=1 in Q, the inequality in

(75) is strict;

(vi) a uniformly P function on Q if there exists a constant cuP > 0 such that for all pairs x = (xi)
I
i=1 and

y = (yi)
I
i=1 in Q,

max
1≤ i≤Q

(xi − yi )
T (Fi(x)− Fi(y) ) ≥ cuP ‖x− y ‖2. (76)

The constant cuP is called uniformly P constant.

8When we say that a (vector-valued) function is continuous or continuously differentiable on a closed set we mean that the

function is so on an open set containing the closed set.
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If a function F enjoys one of the properties above, we will also say that the corresponding VI (Q,F) enjoys

the property (i.e., if F is monotone, we say that the VI is monotone, etc...).

Note that in the case of affine functions, F(x) = Mx + b, there is no difference between strict mono-

tonicity and strongly monotonicity, and the uniform P property coincides with the P property. Monotonicity

properties play in the VI realm the same role that convex functions play in optimization. In fact, we recall

that a differentiable function f is convex, strictly, strongly convex on a convex set Q if and only if its gradient

is monotone, strictly, strongly monotone on Q. The P properties can be viewed as an extension of the mono-

tonicity properties tailored to the possible partitioned structure of the VI; when the partitioned VI has only

one block, i.e., I = 1, the P properties collapse to the corresponding monotonicity properties. In Fig. 6 we

summarize in a pictorial way some well established relations between these various classes along with some

of their consequences. Theorem 41 provides instead a formal statement of some existence and uniqueness

results that will be used throughout the paper.

strongly monotone ⇒ strictly monotone ⇒ monotone ⇒ convex solution set

⇓ ⇓ ⇓
uniformly P ⇒ P ⇒ P0

⇓ ⇓
unique solution ⇒ at most one solution

Figure 6: Monotonicity and their consequences on VIs.

Theorem 41 Given the VI (Q, F), suppose that Q is closed and convex and F is continuous on Q. The

following statements hold:

(a) The VI(Q,F) has a (possibly empty) closed solution set. If Q is bounded, the solution set is nonempty

and thus compact [31, Cor. 2.2.5];

(b) If F is monotone on Q, then the VI(Q,F) has a (possibly empty) convex solution set [31, Th. 2.3.5];

(c) If F is strictly monotone on Q, then the VI(Q,F) has at most one solution [31, Th. 2.3.3(a)]; the same

conclusion holds if the VI(Q,F) is partitioned and F is a P function on Q [31, Prop. 3.5.10(a)];

(d) If F is strongly monotone on Q, then the VI(Q,F) has a unique solution [31, Th. 2.3.3(b)]; the same con-

clusion holds if the VI(Q,F) is partitioned and F is a uniformly P function on Q [31, Prop. 3.5.10(b)].

B Proof of Proposition 5

Because of space limitation, we prove only (e); the proof of (a)-(d) follows similar ideas.

Given x , (xi)
I
i=1,y , (yi)

I
i=1 ∈ Q, with x 6= y, let define the univariate continuously differentiable

function Φi : [0, 1] ∋ t 7→ R as Φi(t) , (xi − yi)
T (Fi (tx+ (1− t)y)) . Then, by the mean-value theorem it

follows that there exists some t̄i ∈ (0, 1) such that, denoting by zt̄i = t̄ix+ (1− t̄i)y, we have

(xi − yi)
T (Fi(x)− Fi(y)) =

dΦi(t)

dt

∣∣∣∣
t=t̄i

= (xi − yi)
T

I∑

j=1

JiFj(zt̄i) (xj − yj)

43



≥ (xi − yi)
T JiFi(zt̄i) (xi − yi)−

∣∣∣∣∣∣
(xi − yi)

T
∑

j 6=i

JiFj(zt̄i) (xj − yj)

∣∣∣∣∣∣

≥
∥∥∥C−T

i (xi − yi)
∥∥∥
2
αmin
i −

∥∥∥C−T
i (xi − yi)

∥∥∥
∑

j 6=i

βmax
ij

∥∥∥C−T
j (xj − yj)

∥∥∥ , (77)

where last inequality follows from the definition of αmin
i and βmax

ij as given in (16), and Ci’s are the set of

nonsingular matrices coming from (16). Introducing e = (ei)
I
i=1, with each ei ,

∥∥C−1
i (xi − yi)

∥∥, and using

the definition of ΥF, (77) can be written as

(xi − yi)
T (Fi(x)− Fi(y)) ≥ ei (ΥFe)i .

Since ΥF is a P-matrix, it follows from [43, Th. 3.3.4(b)] that c(ΥF) , min‖y,(yi)Ii=1‖2=1
maxi yi(ΥF y)i > 0.

Therefore, we have

max
i=1,...,I

(xi − yi)
T (Fi(x)− Fi(y)) ≥ max

i=1,...,I
ei(ΥFe)i ≥

c(ΥF)

maxi=1,...,I λmax(C
T
i Ci)

‖x− y‖2. (78)

Finally the lower bound in (17) can be proved using [43, Ex. 5.11.19], from which one can readily obtain

c(ΥF) ≥ δ(ΥF)/(I · (1 + ζ(ΥF)/δ(ΥF))
2(I−1)). This completes the proof of (e). �.

C Proof of Theorem 10

It is sufficient to show that, under the assumptions of the theorem, the best-response mapping is a block-

contraction (i.e., a contraction with respect to some block-maximum norm); the latter property indeed

guarantees that conditions of the asynchronous convergence theorem in [45, Prop. 2.1] are satisfied by the

asynchronous best-response algorithm described in Algorithm 1.

We introduce first the following norms: Given the set of nonsingular matrices Ci’s coming from (16), the

block-maximum norm on R
n, with n = n1 + . . . + nI , is defined as

‖x‖w
block

, max
i=1,...,I

∥∥C−1
i xi

∥∥
ci

, for x = (xi)
I
i=1 ∈ R

n, (79)

where ‖•‖ is the Euclidean norm on R
ni and c , [c1, . . . , cI ]

T > 0 is any positive weight vector; the (weighted)

maximum norm on R
I is defined as (see, e.g., [45])

‖x‖c∞,vec , max
i=1,...,I

|xi|
ci

, for x ∈ R
I ; (80)

and the matrix norm ‖·‖c∞,mat
on R

I×I induced by ‖·‖c∞,vec is given by

‖A‖c∞,mat
, max

i

1

ci

I∑

j=1

|[A]ij | cj , for A ∈ R
I×I . (81)

Under the under the P property of ΥF, let us introduce the best-response mapping

B(x) , (Bi(x−i))
I
i=1 : Q ∋ x 7→ Q, with Bi(x−i) , argminxi∈Qi

fi(xi, x−i). (82)
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The contraction properties of B(x) are given in the following, where ΓF is defined in (15) [note that the P

property of ΥF, implies the strong convexity of each fi(·,x−i) for any x−i ∈ Q−i, and thus αmin
i > 0 for all

i; hence, ΓF is well-defined].

Proposition 42 Suppose that ΥF in (15) is a P matrix. Then, the best-response mapping B(x) is a block-

contraction, i.e., there there exists some c > 0 such that

‖B(x)− B(y)‖c
block

≤ αc ‖x− y‖c
block

∀x,y ∈ Q (83)

with αc , ‖ΓF‖c∞,mat
< 1.

Proof. For any two vectors x,y ∈ Q we have by the minimum principle

(zi − Bi(x))T ∇xi
fi (Bi(x), x−i) ≥ 0 ∀zi ∈ Qi, i = 1, . . . , I,

(zi − Bi(y))T ∇xi
fi (Bi(y), y−i) ≥ 0 ∀zi ∈ Qi, i = 1, . . . , I.

(84)

Substituting zi = Bi(y) into the former inequality and zi = Bi(x) into the latter, adding the two resulting

inequalities we obtain with ẑi , ti(Bi(y),y−i) + (1− ti)(Bi(x),x−i) and some ti ∈ (0, 1):

0 ≤ (Bi(x)− Bi(y))T (∇xi
fi (Bi(y), y−i)−∇xi

fi (Bi(x), x−i))

= (Bi(x)− Bi(y))T ∇2
xixi

fi (ẑ) (Bi(y) − Bi(x)) + (Bi(x)− Bi(y))T
∑

j 6=i

∇2
xixj

fi (ẑ) (yj − xj) (85)

where the equality follows from the application of the main-value theorem to the univariate, differentiable,

scalar function

[0, 1] ∋ ti 7→ (Bi(x)− Bi(y))T ∇xi
fi (ti(Bi(y),y−i) + (1− ti)(Bi(x),x−i)) . (86)

Using the definition of αmin
i and βmax

ij as given in (16), we deduce from the inequality in (85)

‖Bi(x)− Bi(y)‖i αmin
i ≤

∑

j 6=i

βmax
ij ‖xj − yj‖j , i = 1, . . . , I, (87)

(the inequality in (85) is trivially satisfied if ‖Bi(x)− Bi(y)‖i = 0). Introducing the vectors eB , (eBi
)Ii=1

and e , (ei)
I
i=1 with eBi

, ‖Bi(x)− Bi(y)‖i and ei = ‖xi − yi‖i, using the definition of ΓF in (15), and the

fact that αmin
i > 0 for all i, (87) can be written in vectorial form as

eB ≤ ΓF e, ∀x,y ∈ Q. (88)

It follows from (88) that, for any given c > 0, we have

‖B(x)− B(y)‖c
block

= ‖eB‖c∞,vec ≤ ‖ΓF‖c∞,mat
‖e‖c∞,vec = ‖ΓF‖c∞,mat

‖x− y‖c
block

(89)

which proves the inequality in (83). To complete the proof we need to show that ‖ΓF‖c∞,mat < 1 for some

c > 0. Invoking [43, Lemma 13.14] and [45, Cor. 6.1], we obtain the desired result:

ΥF is a P-matrix ⇔ ∃ c̄ > 0 such that ‖ΓF‖c̄∞,mat
< 1. (90)
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D Proof of Proposition 15

Since G is a monotone NEP, the VI associated with the NEP Gτ ,y−the VI(Q,F + τ(I − y)) with F =

(∇xi
fi)

I
i=1−is strongly monotone on Q; it follows by Theorem 3(d) that Gτ ,y has a unique NE for any given

τ > 0 and y ∈ R
n. Let us denote such a unique NE by Sτ (y) , SOL(Q,F + τ(I− y)).

Necessity : Let x⋆ ∈ Q be a NE of the monotone NEP G. By Proposition 2, x⋆ ∈ SOL(Q,F); then the

following hold: ∀x ∈ Q,

(x− x⋆)T F(x⋆) ≥ 0 ⇔ (x− x⋆)T (F(x⋆) + τ(x⋆ − x⋆)) ≥ 0 ⇒ x⋆ = SOL(Q,F + τ(I− x⋆)) = Sτ (x
⋆),

implying that x⋆ is the unique NE of Gτ ,x⋆ .

Sufficiency : Let x⋆ be a NE of Gτ ,x⋆ . Then, we have x⋆ = Sτ (x
⋆), which leads to the desired result: ∀x ∈ Q,

(x− Sτ (x
⋆))T (F (Sτ (x

⋆)) + τ(Sτ (x
⋆)− x⋆)) ≥ 0 ⇔ (x− x⋆)T F(x⋆) ≥ 0.

E Proof of Theorem 21

To prove the theorem we hinge on the theory of VIs. We preliminary observe that the game G is equivalent

to the VI(Q,F), with F = (∇xi
fi)

I
i=1 (Proposition 2); SOL(Q, f) is thus also the solution set of the VI, i.e.,

SOL(Q,F) = SOL(Q, f). Moreover, still invoking Proposition 2, we have that the game Gτ ,ε(n),x(n) in Step 2

of Algorithm 4 is equivalent to the VI(Q,F(n)), where

F(n)(x) , F(x) + ε(n)∇φ(x) + τ (x− x(n)). (91)

Observe that, under the assumptions of the theorem, F(n) is strongly monotone [Definition 40(iii)], implying

that the VI(Q,F(n)) has a unique solution [Theorem 41(c)] and thus x(n+1) in Step 2 of Algorithm 4 is well

defined at each iteration. Moreover, denoting by S the solution set of (26), assumptions of the theorem,

ensure that S is nonempty, bounded, and convex. Let us introduce for each n,

δ(n) ,
1

2
dist(x(n),S) =

1

2
‖x(n) − PS(x

(n))‖2,

where PS(y) , argminx∈S‖x−y‖ denotes the Euclidean projection on the nonempty, closed, and convex set

S. Then, to prove the theorem it suffices to show that the sequence {δ(n)} converges to zero. Observe first

that, since x(n+1) at Step 2 is the solution of the game Gτ ,ε(n),x(n)−the VI(K,F(n))−we get, for any y ∈ Q,[
F(x(n+1)) + ε(n)∇φ(x(n+1))

]T
(y − x(n+1) ) ≥ τ (x(n) − x(n+1) )T (y − x(n+1) ). (92)

We can write

δ(n+1) − δ(n) =
1

2
‖x(n+1) − PS(x

(n+1)) ‖2 − 1

2
‖x(n) − PS(x

(n)) ‖2

(a)

≤ 1

2
‖x(n+1) − PS(x

(n))‖2 − 1

2
‖x(n) − PS(x

(n)) ‖2

= −1

2
‖x(n+1) − x(n)‖2 + (x(n) − x(n+1))T (PS(x

(n))− x(n+1))

(b)

≤ − 1

2
‖x(n+1) − x(n)‖2 + 1

τ
F(x(n+1))T (PS(x

(n))− x(n+1)) +
ε(n)

τ
∇φ(x(n+1))T (PS(x

(n))− x(n+1))

(c)

≤ −1

2
‖x(n+1) − x(n)‖2 + ε(n)

τ
∇φ(x(n+1))T (PS(x

(n))− x(n+1))︸ ︷︷ ︸
V (n+1)

(93)
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where: (a) follows readily from the definition of projection; (b) comes from (92) evaluated at y = PS(x
(n)) ∈

Q; and (c) can be obtained by observing that since PS(x
(n)) ∈ S ⊆ SOL(Q,F) and x(n+1) ∈ Q, we have

F(PS(x
(n)))T (x(n+1) − PS(x

(n))) ≥ 0, which yields in turn, by the monotonicity of F [Definition 40(i)],

F(x(n+1))T (PS(x
(n))− x(n+1)) ≤ 0. We now distinguish three cases.

Case 1 : Eventually, V (n+1) ≤ 0.

In this case the nonnegative sequence {δ(n)} is (eventually) non-increasing and therefore convergent. Let us

denote by n0 the index from which all V (n) are non positive, and let us consider n ≥ n0 without loss of

generality. Since S is bounded, this implies that also {x(n)} is bounded. Furthermore, it follows from (93)

that {δ(n+1) − δ(n)} converges to zero and δ(n+1) − δ(n) ≤ −(1/2) ‖x(n+1) − x(n)‖2, which shows that

lim
n→∞

‖x(n+1) − x(n)‖ = 0. (94)

Summing (93) from n0 to n− 1, we get

δ(n) − δ(n0) ≤ 1

τ

n−1∑

i=n0

ε(i)V (i+1).

Since {δ(n)} converges and V (n) ≤ 0 and
∑

n ε
(n) = ∞ in the theorem implies that lim sup

n→∞
V (n) = 0. Then,

there exists a subsequence J such that

lim
n∈J

n→∞

V (n) = 0. (95)

Since {x(n)} is bounded we may assume, without loss of generality, that lim n∈J
n→∞

x(n) = x̃. Note that, since

Q is closed, x̃ ∈ Q. We show that actually x̃ ∈ SOL(Q,F). If this is not so, there exists a point y ∈ Q such

that F(x̃)T (y− x̃) < 0. Since x(n) is the solution of the VI(K,F(n)) in Step 2 of the algorithm, we can write,

[
F(x(n)) + τ (x(n) − x(n−1) )

]T
(y − x(n) ) + ε(n−1)∇φ

(
x(n)

)T
(y − x(n) ) ≥ 0. (96)

By continuity, the definition of y, the boundedness of {x(n)}, and (94), we have, without loss of generality

(after a suitable renumeration),

lim
n∈J

n→∞

F(x(n))T (y−x(n)) < 0, lim
n∈J

n→∞

τ(x(n)−x(n−1))T (y−x(n)) = 0, lim
n∈J

n→∞

ε(n−1)∇φ(x(n))T (y−x(n) ) = 0,

which contradicts (96). Therefore x̃ ∈ SOL(Q,F).
Thanks to (94) we have lim

n∈J,n→∞
x(n−1) = x̃. Therefore, by (95) and continuity, we get ∇φ(x̃)T (PS(x̃)−

x̃) = 0. But the convexity of φ implies that φ(PS(x̃)) ≥ φ(x̃) +∇φ(x̃)T (PS(x̃) − x̃) = φ(x̃), thus showing

that x̃ ∈ S. Therefore we get lim n∈J

n→∞

δ(n) = 0. But since the whole sequence {δ(n)} is convergent, this

implies that the entire sequence {δ(n)} converges to 0, thus concluding the analysis of Case 1.

Case 2 : The two index sets J and J̄ are both infinite, where J ,
{
n | V (n) > 0

}
and

J̄ ,

{
n ∈ J | −1

2
‖x(n) − x(n−1) ‖2 + ε(n−1)

τ
V (n) > 0

}
.
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By (93), if n ∈ J̄ it might happen that δ(n) > δ(n−1), while if n 6∈ J̄ then necessarily δ(n) ≤ δ(n−1). Therefore,

since J̄ is infinite, to prove that {δ(n)} goes to zero it is enough to show that the subsequence {δ(n)}J̄ converges

to zero. To this end, first observe that for every n ∈ J̄ it holds that

ε(n−1)V (n) >
τ

2
‖x(n) − x(n−1)‖2. (97)

The sequence {x(n)}J̄ is bounded since the definition of V (n), (97) and convexity imply φ(PS(x
(n−1))) ≥

φ(x(n)). But φ(PS(x
(n−1))) is the optimal value of (26) and therefore is a number, say β, that does not

depend on the iteration n. Therefore, since x(n−1) belongs to Q, we have that {x(n)}J̄ is bounded. By

continuity, also {V (n)}J̄ is bounded. Hence, since {ε(n)} converges to 0, (97) yields

lim
n∈J̄

n→∞

‖x(n) − x(n−1)‖ = 0. (98)

Since {x(n)}J̄ is bounded, it has limit points. Let J̃ ⊆ J̄ be a subsequence such that lim n∈J̃
n→∞

= x̃. Reasoning

exactly as in Case 1, (the only difference is that instead of (94) we use (98)), we may deduce that x̃ ∈
SOL(Q,F). By continuity, ∇φ(x̃)T (PS(x̃) − x̃) ≥ 0. Thus x̃ ∈ S; hence lim n∈J̃

n→∞

δ(n) = 0. Since this

reasoning can be repeated for every convergent subsequence of {x(n)}J̄ , we conclude that lim n∈J̄

n→∞

δ(n) = 0,

thus concluding the analysis of this case.

Case 3 : The index set J is infinite while J̄ is finite. In this case, the sequence {δ(n)} is non-increasing

eventually. Therefore {δ(n)} converges, implying that {x(n)} is bounded, {δ(n+1) − δ(n)} converges to zero

and therefore, by (93), also (94) holds. At this point, we can proceed exactly as in Case 1 and Case 2 to

prove that {δ(n)} converges to zero, thus concluding the proof of the theorem. �

F Proof of Lemma 23

To prove the lemma it is sufficient to show that the first-order Taylor expansion as given in (35) holds for

the function f ; the rest of the proof follows similar steps as those used to prove the minimum principle for

(real-valued) functions of real variables and thus is omitted; see e.g., [54].

Before proving the lemma, it is useful to introduce a real-coordinate representation of real-valued functions

of complex matrices and establish the connection between standard derivatives of this representation and the

R-derivatives of the original functions of complex variables.

The complex space C
n×m of dimension n ·m has a natural structure of a real space R

2nm of dimensions

2n ·m; this comes readily, e.g., from the following isomorphic transformation:

C
n×m ∋ Z⇐⇒ ž ,

[
vec (Re(Z))

vec (Im(Z))

]
∈ R

2nm. (99)

For the sake of simplicity, in the following, we will denote by Z , C
n×m the original complex space and by

Z the elements of Z; R , R
2nm will be the 2n ·m-dimensional space of real vectors in the form ž, i.e.,

R ,

{
ž ∈ R

2nm : ž ,

[
žR

žI

]
,

[
vec (Re(Z))

vec (Im(Z))

]
, for some Z ∈ Z

}
; (100)

elements of R will be denoted by ž, and partitioned as in (100).
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Given a real-valued function of complex matrices f : Z → R, the representation of f(Z) under the

isomorphic transformation (99) is denoted by f̌(ž) = f(Z). Note that if f(Z) is R-(continuously) differentiable

on Z then f̌(ž) is (continuously) differentiable onR. Moreover, we can easily establish the connection between

the Jacobian of f̌(ž) and the Jacobian and conjugate Jacobian of f(Z) [cf. (32)], as shown next. By definition,

for any ž ∈ R, the Jacobian of f̌(ž) is

Džf̌(ž) ,
(
∇žf̌(ž)

)T
=

[
∂f̌(ž)

∂žTR
,
∂f̌(ž)

∂žTI

]
,
[
DžR f̌(ž), DžI f̌(ž)

]
. (101)

Using (30) and (32), it is not difficult to see that, for any given Z ∋ Z⇐⇒ ž ∈ R, the following hold

DZf (Z) ,
∂f (Z)

∂vec (Z)T
=

1

2

[
DžR f̌(ž)− j ·DžI f̌(ž)

]
, (102)

DZ∗f (Z) ,
∂f (Z)

∂vec (Z∗)T
=

1

2

[
DžR f̌(ž) + j ·DžI f̌(ž)

]
, (103)

which provides the desired relationship between Džf̌(ž) and DZf (Z) and DZ∗f (Z).

Exploring the above equivalences, we can now readily prove Lemma 23 leveraging on standard real calculus

results. Given a real-valued convex and continuously R-differentiable function f : K → R on K, the first-order

Taylor expansion of f(Z) = f̌(ž) at K ∋ Z0(⇔ ž0) exists and it is given by:

f(Z0 +∆Z)− f(Z0) = f̌(ž0 +∆ž)− f̌(ž0)

≃Džf̌(ž0) ·∆ž (104)

=2Re {DZf (Z0) vec (∆Z)} (105)

=2Re
{

tr
(
(∇Zf(Z0))

T ∆Z
)}

(106)

= 2 〈∆Z, ∇Z∗f(Z0)〉 , (107)

where (104) follows from the first-order Taylor expansion of real-valued functions of real vectors (see, e.g., [54]);

(105) follows from (102); (106) is due to DZf (Z0) = vec (∇Zf(Zo))
T and the property vec (A)T vec (B) =

tr
(
ATB

)
for any A,B ∈ C

n×m; and in (107) we used the fact that f is real and thus (∇Zf(Zo))
∗ = ∇Z∗f(Zo).

This completes the proof. �

G Complex Matrix Derivatives in Example 24

We derive here the expressions of the (conjugate) derivatives used in the Example 24 and Example 24 revisited.

In order to obtain the expression of the augmented Hessian HZZ∗ f̃(Z), we need to compute ∇2
ZZ∗ f̃(Z)

, DZ

(
∇Z∗ f̃(Z)

)
and ∇2

Z∗Z∗ f̃(Z) , DZ∗

(
∇Z∗ f̃(Z)

)
. We preliminary compute ∇Zf(Z) and ∇Z∗f(Z).

Recalling that [52, Prop. 3.12] d ln det (Z) = Tr
(
Z−1dZ

)
for all Z such that detZ 6= 0, with d ln det (Z)

being the (complex) differential of ln det (Z), we have (up to a constant positive factor)

df(Z) = Tr
((

Rn +HZHH
)−1

HdZHH
)
= vecT

((
HH

(
Rn +HZHH

)−1
H
)T)

vec(dZ) (108)

which, using the identification rule as given in [52, Table 3.3], leads to the following Jacobian matrices of f :

DZf(Z) = vecT
((

HH
(
Rn +HZHH

)−1
H
)T)

and DZ∗f(Z) = 0, (109)
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and thus [cf. (32)]
∇Zf(Z) =

(
HH

(
Rn +HZHH

)−1
H
)T

and ∇Z∗f(Z) = 0. (110)

It follows from (110) that

∇Z∗ f̃(Z) = ∇Z∗f(Z) +∇Z∗f(Z)∗ = (∇Zf(Z))
∗ = HH

(
Rn +HZHHH

)−1
H. (111)

Given (111), we can now compute ∇2
ZZ∗ f̃(Z) and ∇2

Z∗Z∗ f̃(Z). The differential of ∇Z∗ f̃(Z) is:

vec
[
d
(
∇Z∗ f̃(Z∗)

)]
= vec

[
HHd

(
Rn +HZHHH

)−1
H
]

(112)

= − vec
[
G(Z)(dZ)HG(Z)

]
︸ ︷︷ ︸

G(Z),HH (Rn+HZHHH )−1
H

(113)

= −
[
G(Z)T ⊗G(Z)

]
vec
[
(dZ∗)T

]
(114)

= −
[
G(Z)T ⊗G(Z)

]
Kn2n2vec [(dZ∗)] (115)

where in (113) we used the rule dZ−1 = −Z−1(dZ)Z−1 [52, Prop. 3.8]; (114) follows from the property

vec(ABC) = (CT ⊗A) vec(B) [52, Lemma 2.11]; and in the last equality we introduced the commutation

matrix Kn2n2 , which is the n2 × n2 permutation matrix such that vec(AT ) = Kn2n2vec(A) [52, Def. 1.8].

It follows from (115) and the identification rule [52, Table 3.3] that

∇2
Z∗Z∗ f̃(Z) = ∇2

ZZ∗ f̃(Z)−
[
G(Z)T ⊗G(Z)

]
Kn2n2 and ∇2

ZZ∗ f̃(Z) = 0, (116)

which leads to the expression of the augmented Hessian HZZ∗ f̃(Z) as given in (47).

H Proof of Propositions 27 and 28

It is sufficient to prove only Proposition 28; Proposition 27 is just a special case. To do that, we need the

following intermediate result.

H.1 Mean-value theorem for functions of complex variables

We provide here a version of the mean-value theorem that is suitable for real-valued functions of complex

matrices. We focus directly on the specific function that we need to prove Proposition 28.

Given a continuously R-differentiable matrix function FC : K → C
n×m on the convex and closed set

K ⊆ C
n×m and a point ∆Y ∈ C

n×m, let us consider the real-valued function of complex matrix variables

g(Z) ,
〈
∆Y, FC(Z)

〉
. (117)

For every two points Z1,Z2 ∈ K, with ∆Z , Z2 −Z1, let h(t) : [0, 1]→ R be the real-valued scalar function,

defined as [0, 1] ∋ t 7→ h(t) ,
〈
∆Y, FC (Z(t))

〉
, with Z(t) , Z1 + t∆Z. For some t̄ ∈ (0, 1), we have

g(Z2)− g(Z1) = h(1) − h(0) = h
′

(t̄) (118)

where h
′

(t) is the first order derivative of h(t) [note that h is continuously differentiable on (0, 1)], and the

last equality in (118) follows from the mean-value theorem applied to the function h(t). To compute h
′

(t) we

use the chain rule for complex matrix derivatives [52] as shown next. Rewriting h(t) as

h(t) =
1

2
tr
(
∆YH FC (Z(t))

)
+

1

2
tr
(
∆YT FC (Z(t))∗

)
(119)
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and using

DZ tr
(
∆YH FC (Z)

)
= vec (∆Y∗)T DZF

C (Z) DZ∗ tr
(
∆YH FC (Z)

)
= vec (∆Y∗)T DZ∗FC (Z)

DZ tr
(
∆YT FC (Z)∗

)
=
(
DZ∗ tr

(
∆YH FC (Z)

))∗
DZ∗ tr

(
∆YT FC (Z)∗

)
=
(
DZ tr

(
∆YH FC (Z)

))∗

we have

h
′

(t) = DZ(t)h(t)DtZ(t) +DZ(t)∗h(t)DtZ(t)
∗ (120)

=
1

2
vec (∆Y∗)T DZF

C (Z(t)) vec (∆Z) +
1

2
vec (∆Y)T DZF

C (Z(t))∗ vec (∆Z)

+
1

2
vec (∆Y∗)T DZ∗FC (Z(t)) vec (∆Z∗) +

1

2
vec (∆Y)T DZ∗FC (Z(t))∗ vec (∆Z∗)

=
1

2
vec ([∆Y, ∆Y∗])H

[
DZF

C(Z(t)) DZ∗FC(Z(t))

DZF
C(Z(t))∗ DZ∗FC(Z(t))∗

]
vec ([∆Z, ∆Z∗]) , (121)

where in (120) we used the chain rule [52, Th. 3.1]. Using (121) and the augmented Jacobian matrix JFC(Z)

introduced in (39), we can rewrite (118) in a compact form as

g(Z2)− g(Z1) = vec ([∆Y, ∆Y∗])H JFC(Z(t̄)) vec ([∆Z, ∆Z∗]) . (122)

which is the desired result.

H.2 Proof of Proposition 28

We prove only (a)-(c); the proof of (d)-(e) follows similar steps.

Sufficiency part. For (a)-(c), it is enough to prove only (c). Given two points Z1,Z2 ∈ K, let us define

∆Z , Z2 − Z1; we have, for some t̄ ∈ (0, 1),
〈
Z2 − Z1, F

C (Z2)− FC (Z1)
〉
= vec ([∆Z, ∆Z∗])H JFC(Z(t̄)) vec ([∆Z, ∆Z∗]) , (123)

where the equality follows from (122). Since Z1,Z2 ∈ K, we have that ∆Z ∈ SK; moreover Z(t̄) ∈ K (due to

the convexity of K). It follows from (123) that if there exists a constant csm such that vec ([Y,Y∗])H JFC(Z)

vec ([Y,Y∗]) ≥ (csm/2) ‖Y‖2F for all Y ∈ SK and Z ∈ K, then FC (Z) is strongly monotone on K.

Necessity part. Let us focus on the strongly monotonicity property only; monotonicity is obtained in a

similar way. Suppose that FC (Z) is strongly monotone on K with constant csm > 0. Let us show first that

vec ([Y,Y∗])H JFC(Z)vec ([Y,Y∗]) ≥ (csm/2) ‖Y‖2F for all Y ∈ SK and Z ∈ ri(K), where ri(K) denotes the

relative interior of K (see [54, Ch. 1.4] for the definition of ri(K) and its main properties). Then, we have

vec ([Y,Y∗])H JFC(Z)vec ([Y,Y∗]) =
1

2
vec ([Y,Y∗])H lim

t↓0

1

t

[
vec
(
FC(Z+ tY)− FC(Z)

)

vec
(
FC(Z+ tY)− FC(Z)

)∗

]
(124)

=
1

2
lim
t↓0

1

t2

〈
tY,FC(Z+ tY)−FC(Z)

〉
(125)

≥ csm
2

lim
t↓0

1

t2
‖tY‖2F =

csm
2
‖Y‖2F , ∀Y ∈ SK andZ ∈ ri(K), (126)

where the equality in (124) follows from the (R-)differentiability of FC (Z) on K [(124) can be proved using

the same approach as in the proof of Lemma 23 but applied to vec
(
FC(Z)

)
]; in (125) we used the definition

51



of inner product (36); and in (126) we used i) the fact that for sufficiently small t > 0, Z + tY ∈ K [since

Z ∈ ri(K)], and ii) the strongly monotonicity of FC(Z) on K.

Next, let Z ∈ K but Z /∈ ri(K); by [54, Proposition 1.4.1(a)] there exists a sequence {Zk} ⊂ ri(K) such

that Zk → Z. By (126) evaluated in each Zk ∈ ri(K) and the continuity of JFC(Z), it is follows that

vec ([Y,Y∗])H JFC(Z)vec ([Y,Y∗]) = lim
k→∞

vec ([Y,Y∗])H JFC(Zk)vec ([Y,Y∗]) ≥ csm
2
‖Y‖2F ,

for all Y ∈ SK. This completes the proof of the necessity part.

Note that Proposition 28 reduces to Proposition 27 if the set K has nonempy interior. Indeed, when this

happens, Aff(K) = C
n×m and thus SK = C

n×m.

I Proof of Proposition 36

Statement (a) follows from Proposition 29; for (b) and (c), we prove only (b).

According to Proposition 27(a), we need to show that, under the assumption that Υmimo

FC in (65) is positive

semidefinite, the augmented Jacobian matrix JFC(Q) associated to FC(Q) in (64) is augmented positive

semidefinite on Pmimo. Given (64), DQ⋆FC(Q) = 0, implying that JFC(Q) is a block diagonal matrix:

JFC(Q) =
1

2

[
DQFC(Q) 0

0
(
DQFC(Q)

)∗

]
(127)

with DQFC(Q) given by (see Appendix G for a similar computation):

DQF
C(Q) =




DQ1F
C
1 (Q, ) · · · DQI

FC
1 (Q)

...
. . .

...

DQ1F
C
I (Q) · · · DQQ

FC
I (Q)


 =




Ψ11(Q)∗ ⊗Ψ11(Q) · · · Ψ1I(Q)∗ ⊗Ψ1I(Q)
...

. . .
...

ΨI1(Q)∗ ⊗ΨI1(Q) · · · ΨII(Q)∗ ⊗ΨII(Q)




with

Ψij(Q) , HH
ii


Rni

+

Q∑

j=1

HijQjH
H
ij




−1

︸ ︷︷ ︸
,Si(Q)

Hij = HH
ii Si(Q)Hij . (128)

We will denote by Ψ
1/2
ii (Q) the square root of the positive definite matrix Ψii(Q) (recall that the channel

matrices Hii are assumed to be full-column rank), i.e., Ψii(Q) = Ψ
H/2
ii (Q)Ψ

1/2
ii (Q).

Therefore, JFC(Q) is augmented positive semidefinite on Pmimo if and only if DQF
C(Q) is positive semidef-

inite on Pmimo, or equivalently the following matrix is so:



I · · ·
(
Ψ

−H/2
11 Ψ1IΨ

−1/2
11

)∗
⊗
(
Ψ

−H/2
11 Ψ1IΨ

−1/2
11

)

...
. . .

...(
Ψ

−H/2
II ΨI1Ψ

−1/2
II

)∗
⊗
(
Ψ

−H/2
II ΨI1Ψ

−1/2
II

)
· · · I


 (129)

where for notational simplicity we omitted the dependence on Q and write Ψij , instead of Ψij(Q). The

condensed matrix associated to (129) is the following I × I matrix
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


1 · · ·
∥∥∥
(
Ψ

−H/2
11 Ψ1QΨ

−1/2
11

)∗
⊗
(
Ψ

−H/2
11 Ψ1QΨ

−1/2
11

)∥∥∥
2

...
. . .

...∥∥∥
(
Ψ

−H/2
II ΨI1Ψ

−1/2
II

)∗
⊗
(
Ψ

−H/2
II ΨI1Ψ

−1/2
II

)∥∥∥
2
· · · 1


 ,

(130)

where ‖A‖2 ,
√

ρ(AHA) is the spectral norm of A. Note that we can rewrite each of the off-diagonal terms

of (130) as: with Ψ̃ij , Ψ
−H/2
ii ΨijΨ

−1/2
ii ,

∥∥∥
(
Ψ

−H/2
ii ΨijΨ

−1/2
ii

)∗
⊗
(
Ψ

−H/2
ii ΨijΨ

−1/2
ii

)∥∥∥
2
=
∥∥∥Ψ̃

∗

ij ⊗ Ψ̃ij

∥∥∥
2
=
[
ρ
(
Ψ̃

T

ij Ψ̃
∗

ij ⊗ Ψ̃
H

ij Ψ̃ij

)]1/2
= ρ

(
Ψ̃

H

ij Ψ̃ij

)
,

(131)

where in the last equality we used the property ρ
(
ATA∗ ⊗AHA

)
= ρ

(
ATA∗

)
ρ
(
AHA

)
and the fact that

the eigenvalues of ATA∗ coincide with those of AHA. Using (131), we can now introduce the so-called

comparison matrix Υmimo

FC (Q) associated to (130) and defined as

[
Υmimo

FC (Q)
]
ij
,

{
1, if i = j

−ρ
(
Ψ̃

H

ij (Q) Ψ̃ij(Q)
)

otherwise.

It is indeed not difficult to see that if Υmimo

FC (Q) is positive semidefinite on Pmimo then so is the matrix (130) and

thus also DQF
C(Q). To conclude the proof, it is enough to show that Υmimo

FC (Q) ≥ Υmimo

FC for all Q ∈ Pmimo,

where Υmimo

FC is defined in (65) and the inequality has to be intended component-wise. The latter properties

indeed implies that if Υmimo

FC is positive semidefinite then so is Υmimo

FC (Q) on Pmimo. To this end, we focus

next on the off-diagonal terms ρ(Ψ̃
H

ij (Q) Ψ̃ij(Q)) of Υmimo

FC (Q) and prove that |[Υmimo

FC (Q)]ij | ≤ |[Υmimo

FC ]ij |
for all Q ∈ Pmimo and i 6= j. Denoting by S

1/2
i (Q) the square root of the positive definite matrix Si(Q)

defined in (128) [i.e., Si(Q) = S
H/2
i (Q)S

1/2
i (Q)], and using Ψ̃ij(Q) , Ψ

−H/2
ii (Q)Ψij(Q)Ψ

−1/2
ii (Q), we have

the following chain of equalities/inequalities: for all Q ∈ Pmimo and i 6= j,
∣∣∣
[
Υmimo

FC (Q)
]
ij

∣∣∣ = ρ
(
Ψ̃

H

ij (Q) Ψ̃ij(Q)
)
= ρ

(
ΨH

ij (Q)Ψ−1
ii (Q)Ψij(Q)Ψ−1

ii (Q)
)

= ρ
(
Ψ

−H/2
ii (Q)HH

ijSi(Q)Hii

(
HH

ii Si(Q)Hii

)−1
HH

ii Si(Q)HijΨ
−1/2
ii (Q)

)

= ρ
(
Ψ

−H/2
ii (Q)HH

ijS
H/2
i (Q) S

1/2
i (Q)Hii

(
HH

ii Si(Q)Hii

)−1
HH

ii S
H/2
i (Q)

︸ ︷︷ ︸
,PR(Hii)

� I

S
1/2
i (Q)HijΨ

−1/2
ii (Q)

)

(132)

≤ ρ
(
S
1/2
i (Q)HijΨ

−1
ii (Q)HH

ijS
H/2
i (Q)

)
= ρ

(
S
1/2
i (Q)Hij

(
HH

ii Si(Q)Hii

)−1
HH

ijS
H/2
i (Q)

)

(133)

≤ ρ
(
S
1/2
i (Q)HijH

†
iiS

−1
i (Q)H†H

ii HH
ijS

H/2
i (Q)

)
(134)

≤ ρ
(
S−1
i (Q)

)
· ρ (Si(Q)) · ρ

(
H

†H
ii HH

ijHijH
†
ii

)
(135)

≤ INNRij · ρ
(
H

†H
ii HH

ijHijH
†
ii

)
=
∣∣∣
[
Υmimo

FC

]
ij

∣∣∣ (136)

where in (132), PR(Hii) , S
1/2
i (Q)Hii

(
HH

ii Si(Q)Hii

)−1
HH

ii S
H/2
i (Q) is the orthogonal projection onto the

range space of Hii; in (133) we used the property of the projection PR(Hii) � I and the spectral radius
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inequality ρ(AHBA) ≤ ρ(AHCA) for all 0 � B � C; (134) follows from the property
(
XHAX

)−1 �
X†A−1X†H , valid for all positive definite n × n matrices A and n × k full-column rank matrices X; in

(135) we used A � ρ (A) · I and the spectral radius inequality as in (133); and finally (136) follows from

ρ
(
S−1
i (Q)

)
· ρ (Si(Q)) ≤ INNRij, with INNRij defined in (66).

The above chain of inequalities proves the desired relationship between Υmimo

FC (Q) and Υmimo

FC , which

completes the proof. �
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