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On the Weight Distribution of Cyclic Codes with
Niho Exponents

Shuxing Li, Tao Feng and Gennian Ge

Abstract

Recently, there has been intensive research on the weight distributions of cyclic codes. In this paper, we compute the weight
distributions of three classes of cyclic codes with Niho exponents. More specifically, we obtain two classes of binary three-
weight and four-weight cyclic codes and a class of nonbinaryfour-weight cyclic codes. The weight distributions followfrom the
determination of value distributions of certain exponential sums. Several examples are presented to show that some of our codes
are optimal and some have the best known parameters.
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I. I NTRODUCTION

Cyclic codes are a special class of linear codes with preferable algebraic properties. In favor of practical use, cycliccodes
enjoy efficient encoding and decoding algorithms. They havebeen widely used in many areas such as communication and data
storage system. Moreover, cyclic codes are employed to construct other interesting structures, such as quantum codes [22],
frequency hopping sequences [6] and so on.

For a cyclic codeC of length l over some finite fieldFp, each codewordc = (c0, . . . , cl−1) can be identified with a
polynomial

∑l−1
i=0 cix

i ∈ Fq[x]. Indeed,C is an ideal of the principle ideal domainFp[x]/(x
l − 1). Thus, it can be expressed

asC = (g(x)), whereg(x) ∈ Fp[x] with g(x) | xl − 1 is called thegenerator polynomialof C. A cyclic codeC is said to have
i zerosif its generator polynomial can be factorized as a product ofi irreducible polynomials overFp. When its dual code
C⊥ hasi zeros, we callC as a cyclic code withi nonzeros. A cyclic codeC is irreducible if it has one nonzero and reducible
otherwise.

Let Ai be the number of codewords inC with Hamming weighti, where0 ≤ i ≤ l. The weight distribution{A0, A1, . . . , Al}
is an important research subject in coding theory. For irreducible cyclic codes, it is pointed out by McEliece [18] that their
weights can be expressed via Gauss sums. While there are manyresults concerning the weight distributions of irreducible
cyclic codes, we refer the readers to a comprehensive survey[5] and the references therein.

For reducible cyclic codes with few nonzeros, their weight distributions have been intensively studied, including [3], [4],
[9], [10], [12], [13], [14], [15], [16], [17], [19], [23], [24], [25], [26], [27], [28], [29], [30]. Basically, the weight distribution
is closely related to the value distribution of certain exponential sum, which is difficult to compute in general. Thus, the study
of weight distributions stimulates the development of delicate techniques concerning the computation of exponentialsums in
recent years. For instance, Luo and Feng [14], [15] proposedan elegant method employing quadratic forms to compute the
value distribution. Their idea inspires a series of works following this line [3], [16], [28], [29], [30]. In [4], [17], the authors
express the weights of cyclic codes via Gauss period. This observation leads to further studies in [10], [23], [24], [25], [27].
In a word, motivated by these original ideas, much progress has been made recently.

In this paper, we consider the weight distribution of certain cyclic codes with two nonzeros. We fixn = 2m, wherem is
a positive integer. Letp be a prime andq = pn be a prime power. We useFq to denote the finite field of orderq and fix
θ to be a primitive element ofFq. We useCq,d1,d2 to denote the cyclic code of lengthq − 1 with two zerosθd1 and θd2 .
Namely, the generator polynomial ofCq,d1,d2 is gd1(x)gd2(x), wheregi(x) is the minimal polynomial ofθi overFp. By the
Pless power moment identities [21], determining the weightdistribution ofCq,d1,d2 is equivalent to determining that of its dual
codeC⊥

q,d1,d2
, which is a reducible cyclic code with two nonzeros. Usually, it is convenient to study the dual codeC⊥

q,d1,d2
,

since it owns a simple trace representation due to Delsarte [2].
Given a primep, a positive integerd is of Niho-typeif d ≡ pi (mod pm− 1) for some integeri. Without loss of generality,

we can assume thatd ≡ 1 (mod pm − 1). For two Niho exponentsd = s(pm − 1) + 1 and d′ = s′(pm − 1) + 1, we call
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them equivalentif d′ ≡ pid (mod pn − 1) for some integeri. Moreover,d′ ≡ pmd (mod pn − 1) if and only if s + s′ ≡ 1
(mod pm + 1). Hence, we can restricts in the range1 ≤ s ≤ pm−1 + 1. For a Niho exponentd = s(pm − 1) + 1 with
(d, pn − 1) = 1, its inversed−1 = s′(pm − 1) + 1 is also of Niho type, wheres′ ≡ s

2s−1 (mod pm + 1) and 1
2s−1 represents

the inverse of2s− 1 modulepm + 1. The term Niho-type stems from the study of Niho which concerns the cross correlation
distribution between a maximal length sequence (m-sequence) and its decimation [20]. Letζp be thep-th complex root of
unity. If (d1, q − 1) = (d2, q − 1) = 1, then the weight distribution ofC⊥

q,d1,d2
can be obtained from the value distribution of

∑

x∈Fq

ζTrn(ax+x
d
−1
1

d2)
p , a ∈ Fq,

which identifies with the cross correlation distribution between a pair ofm-sequences with Niho-type decimationd−1
1 d2.

It is worthy noting that there are a few papers concerning cyclic codes with Niho exponents. In [1], Charpin considers the
weight distribution ofC⊥

2n,d1,1
with (d1, 2

n − 1) = 1. It is proved that this code has at least four nonzero weights. In [13], Li
et al. consider a class of binary cyclic codes with three nonzeros and Niho exponents, and they obtain the weight distribution.

This paper concerns the weight distribution ofC⊥
q,d1,d2

, whered1 andd2 are both of Niho-type. We observe that the Niho
exponentsd1 andd2 need not to be coprime withq− 1. By specifying certain conditions ond1 andd2, we obtain the weight
distributions of two classes of binary cyclic codes and a class of nonbinary cyclic codes. The weight distributions are determined
by computing the value distributions of

S(a, b) =
∑

x∈F2n

(−1)Trm(ax2m+1)+Trn(bx
d2)

and
T (a, b) =

∑

x∈Fq

ζTrn(ax
d1+bxd2)

p ,

where Trm (resp. Trn) is the absolute trace fromFpm (resp.Fq) to Fp. Moreover, several examples are presented to show that
some of our binary cyclic codes are optimal linear codes or have the best known parameters.

The rest of this paper is organized as follows. In Section II,we present some preliminaries including Delsarte’s Theorem,
Niho’s Theorem and the Pless moment identities. The generalstrategy for our computation of weight distributions will be
outlined. In Section III, we calculate the weight distributions of two classes of binary cyclic codes with Niho exponents. Several
examples are provided to show that some of our codes are either optimal or having the best known parameters. In Section IV,
we derive the weight distribution of a class of nonbinary cyclic codes with Niho exponents. Section V concludes the paper.

II. PRELIMINARIES

This section is devoted to some preliminaries. In the first part, we fix some notations. In the second part, we introduce
Delsarte’s Theorem and Niho’s Theorem. A generalization ofNiho’s Theorem over odd characteristic is also presented. Based
on Delsarte’s Theorem, determining weight distributions can be translated into the computation of value distributions of certain
exponential sums. Meanwhile, Niho’s Theorem builds an elegant connection between the values of these exponential sumsand
the solutions of certain equations. Thus, we can determine the values by analysing the corresponding equation. In the third
part, we introduce some moment identities. These moment identities are used to compute the frequencies of these values.

A. Notations

In this subsection, we fix some notations which will be used throughout the rest of this paper. Letm be a positive integer
and fixn = 2m. Let p be a prime andq = pn. Let Fq be the finite field of orderq andθ be a primitive element ofFq. Define
the set of squares (resp. nonsquares) inFq asQ (resp.NQ). Whenp is an odd prime, for eachx ∈ F

∗
q , there are exactly two

elements inF∗
q whose square equal tox. We denote them by±x

1
2 .

DefineS = {x ∈ Fq|xx̄ = 1}, wherex̄ = xpm

. Thus,S is a cyclic group of orderpm + 1. In addition, for any positive
integerl, we setSl = {xl | x ∈ S}.

Given a positive integerd, we usecl(d) to denote the least positive integerk such that2kd ≡ d (mod 2n − 1).
We use Trn (resp. Trm) to denote the absolute trace fromFq (resp.Fpm) to Fp. Let ζp denote thep-th complex root of

unity. We consider the following two exponential sums:

S(a, b) =
∑

x∈F2n

(−1)Trm(ax2m+1)+Trn(bx
d2)

and
T (a, b) =

∑

x∈Fq

ζTrn(ax
d1+bxd2)

p .
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To make it more clear, we write
T1(a, b) =

∑

x∈F2n

(−1)Trn(ax
d1+bxd2)

and
T2(a, b) =

∑

x∈Fq

ζTrn(ax
d1+bxd2)

p ,

wherep is an odd prime inT2(a, b).

B. Delsarte’s Theorem and Niho’s Theorem

For a cyclic codeC⊥
q,d1,d2

, there is a nice trace representation of its codewords. Moreprecisely, by Delsarte’s Theorem [2],
we have

C⊥
q,d1,d2

= {c(a, b) = (Trn(aθ
id1 + bθid2))q−2

i=0 | a, b ∈ Fq}.

The Hamming weight of a codewordc(a, b) can be expressed as

wH(c(a, b)) = (q − 1)−
1

p

∑

x∈F∗

q

∑

λ∈Fp

ζλTrn(ax
d1+bxd2)

p

= (q − 1)(1−
1

p
)−

1

p

∑

λ∈F∗

p

∑

x∈F∗

q

ζTrn(λax
d1+λbxd2)

p .

Consequently, the information of the weight distribution can be obtained from the value distribution of
∑

x∈F∗

q

ζTrn(ax
d1+bxd2)

p , a, b ∈ Fq.

Next, we will see that whend1 andd2 are Niho exponents, the possible values of this exponentialsum are determined by the
solutions of certain equation.

At first, we consider the casep = 2. Thepolar representationsays that eachx ∈ F
∗
2n can be uniquely represented asx = yz,

wherey ∈ F
∗
2m andz ∈ S. This fact is a key ingredient of the following lemma which isessentially proposed by Niho [20].

Here we provide a short proof to make this paper self-contained.

Lemma 1. Let p = 2 and q = 2n.
1) If d2 = s2(2

m − 1) + 1, we haveS(a, b) = (U(a, b)− 1)2m, whereU(a, b) is the number ofz ∈ S satisfying

b̄z2(2s2−1) + a
1
2 z2s2−1 + b = 0.

2) If d1 = s1(2
m − 1) + 1 andd2 = s2(2

m − 1) + 1, we haveT1(a, b) = (V (a, b)− 1)2m, whereV (a, b) is the number of
z ∈ S satisfying

b̄z2s2−1 + āzs1+s2−1 + azs2−s1 + b = 0.

Proof: We only prove 2) since the proof of 1) is analogous. For eachx ∈ F
∗
2n , we can writex = yz, wherey ∈ F

∗
2m and

z ∈ S. Therefore,

T1(a, b) = 1 +
∑

x∈F
∗

2n

(−1)Trn(ax
d1+bxd2)

= 1 +
∑

y∈F
∗

2m

∑

z∈S

(−1)Trn(ayz
d1+byzd2 )

= 1− |S|+
∑

z∈S

∑

y∈F2m

(−1)Trn((az
1−2s1+bz1−2s2 )y)

= −2m +
∑

z∈S

∑

y∈F2m

(−1)Trm((az1−2s1+bz1−2s2+āz2s1−1+b̄z2s2−1)y)

= −2m + |{z ∈ S | az1−2s1 + bz1−2s2 + āz2s1−1 + b̄z2s2−1 = 0}| · 2m

= (V (a, b)− 1)2m.

Secondly, we consider the case wherep is an odd prime. The situation is slightly different since the polar representation
does not hold whenp is odd. Instead, eachx ∈ Q (resp.x ∈ NQ) can be expressed twice asx = yz or x = (−y)(−z) (resp.
x = θyz or x = θ(−y)(−z)), wherey ranges overF∗

pm andz ranges overS. Therefore, we have

2 ∗ F∗
q = {yz|y ∈ F

∗
pm , z ∈ S} ∪ {θyz|y ∈ F

∗
pm , z ∈ S},
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where2 ∗ F∗
q is the multiset in which each element ofF∗

q appears twice and the two sets on the right hand side are regarded
as multisets. A modification of Lemma 1 leads to the followinglemma.

Lemma 2. Let p be an odd prime andq = pn. Supposed1 = s1(p
m − 1)+ 1 andd2 = s2(p

m − 1)+ 1. Then for anyλ ∈ F
∗
p,

we haveT2(λa, λb) = (W (a, b)− 1)pm, whereW (a, b) is the number ofu ∈ S satisfying

b̄u2s2−1 + āus1+s2−1 + aus2−s1 + b = 0.

Proof: For anyλ ∈ F
∗
p, we have

T2(λa, λb) = 1 +
∑

x∈F∗

q

ζTrn(λax
d1+λbxd2)

p

= 1 +
1

2

∑

y∈F
∗

pm

∑

z∈S

(ζTrn(λ(ayz
d1+byzd2))

p + ζTrn(λ(aθ
d1yzd1+bθd2yzd2 ))

p )

= 1− |S|+
1

2

∑

z∈S

∑

y∈Fpm

(ζTrn((az
1−2s1+bz1−2s2 )λy)

p + ζTrn((aθ
d1z1−2s1+bθd2z1−2s2 )λy)

p )

= −pm +
1

2

∑

z∈S

∑

y∈Fpm

(ζTrm((az1−2s1+bz1−2s2+āz2s1−1+b̄z2s2−1)λy)
p

+ ζTrm((aθd1z1−2s1+bθd2z1−2s2+āθ̄d1z2s1−1+b̄θ̄d2z2s2−1)λy)
p ).

Denote the number ofz ∈ S satisfying

az1−2s1 + bz1−2s2 + āz2s1−1 + b̄z2s2−1 = 0

by W1(a, b) and the number ofz ∈ S satisfying

aθd1z1−2s1 + bθd2z1−2s2 + āθ̄d1z2s1−1 + b̄θ̄d2z2s2−1 = 0

by W2(a, b). We have

T2(λa, λb) = (
W1(a, b) +W2(a, b)

2
− 1)pm.

Thus, it remains to prove thatW (a, b) = W1(a,b)+W2(a,b)
2 . Direct computation shows that the above two equations are

respectively equivalent to
b̄z2(2s2−1) + āz2(s1+s2−1) + az2(s2−s1) + b = 0 (1)

and
b̄η2s2−1z2(2s2−1) + āηs1+s2−1z2(s1+s2−1) + aηs2−s1z2(s2−s1) + b = 0, (2)

whereη = θ−(pm
−1) is a generator ofS. Setu = z2. Equation (1) becomes

b̄u2s2−1 + āus1+s2−1 + aus2−s1 + b = 0, (3)

whereu ∈ S2. For each solutionu of (3), it corresponds to two solutions±u
1
2 of (1). In the same way, Equation (2) becomes

b̄(ηu)2s2−1 + ā(ηu)s1+s2−1 + a(ηu)s2−s1 + b = 0, (4)

whereηu ∈ S \S2. For each solutionηu of (4), it corresponds to two solutions±u
1
2 of (2). Note that the solutions of Equation

(3) (resp. Equation (4)) are exactly the solutions of

b̄u2s2−1 + āus1+s2−1 + aus2−s1 + b = 0

belonging toS2 (resp.S \ S2). Thus, we deduceW (a, b) = W1(a,b)+W2(a,b)
2 and the proof is now complete.

C. Moment Identities

From now on, we useN2(q, d1, d2) to denote the number of solutions to the equations
{

xd1 + yd1 = 0
xd2 + yd2 = 0

, x, y ∈ Fq. (5)

Similarly, let N3(q, d1, d2) denote the number of solutions to the equations
{

xd1 + yd1 + zd1 = 0
xd2 + yd2 + zd2 = 0

, x, y, z ∈ Fq. (6)
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The following moment identities play an important role in the determination of weight distributions.

Lemma 3. Let p be an odd prime andq = pn. Then we have

1)
∑

a∈F2m

∑

b∈F2n
S(a, b) = 23m.

2)
∑

a∈F2m

∑

b∈F2n
S(a, b)2 = 23mN2(2

n, 2m + 1, d2).
3)

∑

a,b∈F2n
T1(a, b) = 22n.

4)
∑

a,b∈F2n
T1(a, b)

2 = 22nN2(2
n, d1, d2).

5)
∑

a,b∈F2n
T1(a, b)

3 = 22nN3(2
n, d1, d2).

6)
∑

a,b∈Fq
T2(a, b) = p2n.

7)
∑

a,b∈Fq
T2(a, b)

2 = p2nN2(q, d1, d2).
8)

∑

a,b∈Fq
T2(a, b)

3 = p2nN3(q, d1, d2).

Proof: The proof is routine and analogous to that of [16, Lemma 4]. Sowe omit it here.
Consequently, precise information of these moment identities is available if we can count the number of solutions of certain

equation systems.

III. B INARY CYCLIC CODESWITH NIHO EXPONENTS

Considering a Niho exponentd = s(2m − 1) + 1, it is straightforward to verify that

cl(d) =

{

m if s ≡ 1
2 (mod 2m + 1),

n otherwise,

where 1
2 represents the inverse of2 modulo2m + 1.

This section concerns the weight distributions of binary cyclic codes with Niho exponents. The first part studies the weight
distribution of C⊥

2n,d1,d2
with cl(d1) = m and cl(d2) = n. For this purpose, we compute the value distribution ofS(a, b).

In the second part, we consider the weight distribution ofC⊥
2n,d1,d2

with cl(d1) = cl(d2) = n. By imposing some specific
conditions ond1 and d2, we obtain the value distribution ofT1(a, b). Thus, the weight distribution of related cyclic codes
follows immediately.

A. The Value Distribution ofS(a, b) and Related Cyclic Codes

Throughout this subsection, we consider the value distribution of S(a, b) with d2 = s2(2
m − 1) + 1. To ensure that2m + 1

andd2 are not equivalent, we haves2 6≡ 1
2 (mod 2m + 1). As a preparation, we have the following lemma.

Lemma 4. Supposeq = 2n and l = (2s2 − 1, 2m + 1). ThenN2(q, 2
m + 1, d2) = (2n − 1)l + 1.

Proof: By definition,N2(q, 2
m + 1, d2) is the number of solutions to the equations

{

x2m+1 + y2
m+1 = 0

xd2 + yd2 = 0
, x, y ∈ Fq. (7)

Wheny = 0, we have one solution(x, y) = (0, 0). Wheny ∈ F
∗
2n , by settingz = x

y
, we only need to consider the system

{

z2
m+1 = 1
zd2 = 1

, z ∈ Fq. (8)

Each solution of (8) corresponds to2n − 1 solutions of (7). Sincel = (2s2 − 1, 2m + 1) = (d2, 2
m + 1), (8) is equivalent to

zl = 1, which has exactlyl solutions inFq. Hence, we deduce thatN2(q, 2
m + 1, d2) = (2n − 1)l + 1.

We are now ready to determine the value distribution of

S(a, b) =
∑

x∈F2n

(−1)Trm(ax2m+1)+Trn(bx
d2).

Theorem 5. Assumen = 2m with m ≥ 1. Defined2 = s2(2
m − 1) + 1 with s2 6≡ 1

2 (mod 2m + 1). Setq = 2n and
l = (2s2 − 1, 2m + 1). Then the value distribution ofS(a, b) is listed in Table I.

Proof: By 1) of Lemma 1, we haveS(a, b) = (U(a, b)− 1)2m, whereU(a, b) is the number ofz ∈ S satisfying

b̄z2(2s2−1) + a
1
2 z2s2−1 + b = 0.

When (a, b) = (0, 0), it is easy to see thatU(a, b) = 2m + 1 andS(a, b) takes the trivial value22m. Below, we consider the
case(a, b) 6= (0, 0). Settingu = z2s2−1, the equation becomes

b̄u2 + a
1
2u+ b = 0,
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TABLE I
VALUE DISTRIBUTION OF THEOREM5

Value Frequency

22m 1

(2l − 1)2m
(22m−1)(2m−l+1)

2l2

(l − 1)2m (22m−1)((2m+2)l−2m−1)
l2

−2m 23m − 1 + (22m−1)(2m+1−(2m+1+3)l)
2l2

TABLE II
WEIGHT DISTRIBUTION OFTHEOREM6

Weight Frequency

0 1

22m−1
− (2l − 1)2m−1 (22m−1)(2m−l+1)

2l2

22m−1
− (l − 1)2m−1 (22m−1)((2m+2)l−2m−1)

l2

22m−1 + 2m−1 23m − 1 +
(22m−1)(2m+1−(2m+1+3)l)

2l2

which has either0, 1 or 2 solutions inSl. Sincel = (2s2 − 1, 2m + 1), for anyu ∈ Sl, the equationz2s2−1 = u has exactlyl
solutions inS. Therefore, we haveU(a, b) ∈ {0, l, 2l} when (a, b) 6= (0, 0). Consequently,S(a, b) takes three distinct values
{−2m, (l − 1)2m, (2l − 1)2m} when (a, b) 6= (0, 0). The corresponding frequencies of these values can be obtained from
Lemma 3 and Lemma 4. The proof is now complete and we list the value distribution in Table I.

As a direct consequence of Theorem 5, we obtain the weight distribution of a class of binary cyclic codes.

Theorem 6. Assumen = 2m with m ≥ 1. Defined1 = 2m + 1 and d2 = s2(2
m − 1) + 1 with s2 6≡ 1

2 (mod 2m + 1). Set
q = 2n and l = (2s2 − 1, 2m +1). ThenC⊥

q,d1,d2
is a [2n − 1, 3m, 22m−1 − (2l− 1)2m−1] binary code. Its weight distribution

is listed in Table II.

Given m, the code is determined by one parameters2. From now on, we refer the code table as the one maintained by
Grassl [11]. We present some examples concerning the weightdistributions of the cyclic codes derived from the above theorem.
According to the code table, some of them are optimal linear codes.

Example 7. Whenm = 2, we haves2 ∈ {1, 2}. Thenl = (2s2 − 1, 2m + 1) = 1 for both choices ofs2. The corresponding
two cyclic codes are[15, 6, 6] binary codes with the same weight distribution:

1 + 30x6 + 15x8 + 18x10.

Referring to the code table [11], our cyclic codes are optimal.

Example 8. Whenm = 3, we haves2 ∈ {1, 2, 3, 4}. Furthermore, we havel = (2s2 − 1, 2m + 1) = 1 for s2 ∈ {1, 3, 4}. The
corresponding three cyclic codes are[63, 9, 28] binary codes with the same weight distribution:

1 + 252x28 + 63x32 + 196x36.

Referring to the code table [11], our cyclic codes are optimal.

B. The Value Distribution ofT1(a, b) and Related Cyclic Codes

Now, we compute the value distribution ofT1(a, b) in one special case. Throughout this subsection, we fixd1 = s1(2
m−1)+1

andd2 = s2(2
m − 1) + 1 wheres1 = 2k−1t− t−1

2 ands2 = 2k−1t+ t+1
2 for some positive integerk and some odd number

t ≥ 1. To ensure thatd1, d2 are not equivalent andcl(d1) = cl(d2) = n, we have(2k − 1)t, (2k +1)t 6≡ 0 (mod 2m +1). We
call two pairs of Niho exponents(d1, d2) and (d′1, d

′
2) equivalentif (d1, d

′
1) and (d2, d

′
2) are pairwise equivalent or(d1, d′2)

and(d2, d′1) are pairwise equivalent. Sets1 = 2k−1t− t−1
2 , s2 = 2k−1t+ t+1

2 , s′1 = 2k+m−1t− t−1
2 ands′2 = 2k+m−1t+ t+1

2 .
It is easy to see thats1 + s′2 ≡ 1 (mod 2m + 1) and s′1 + s2 ≡ 1 (mod 2m + 1). Namely, k and k + m produce two
equivalent pairs of Niho exponents. Thus, we can restrictk in the range1 ≤ k ≤ m. A similar analysis shows that we can
assume1 ≤ t ≤ 2m+1 without loss of generality. Below, we will determine the value distribution ofT1(a, b) with some more
conditions imposed.

As a preparation, we have the following lemma.

Lemma 9. Supposeq = 2n and l = (t, 2m + 1). Then
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1) N2(q, d1, d2) = (2n − 1)l + 1.
2) N3(q, d1, d2) = (2m − 2)(2n − 1)l2 + 3(2n − 1)l + 1.

Proof: 1) Note that
(d1, 2

n − 1) = ((2k − 1)t, 2m + 1)

and
(d2, 2

n − 1) = ((2k + 1)t, 2m + 1).

Thus,l divides both(d1, 2n − 1) and (d2, 2n − 1). Moreover, we have either(d1, 2n − 1) = l or (d2, 2n − 1) = l. Hence, the
system

{

ud1 = 1
ud2 = 1

has exactlyl solutions. Following the same spirit of the proof in Lemma 4,the remaining part is routine.
2) By definition,N3(q, d1, d2) is the number of solutions to the equations

{

xd1 + yd1 + zd1 = 0
xd2 + yd2 + zd2 = 0

, x, y, z ∈ Fq. (9)

Whenz = 0, there areN2(q, d1, d2) = (2n − 1)l + 1 solutions.
Whenz 6= 0, the situation is more involved. By settingu = x

z
andv = y

z
, we only need to consider the system

{

ud1 + vd1 = 1
ud2 + vd2 = 1

, u, v ∈ Fq. (10)

Each solution of (10) corresponds to2n − 1 solutions of (9). Ifu = 0 or v = 0, by the proof of 1), the system (10) has
exactly l solutions. Ifuv 6= 0, by the polar representation,u andv can be uniquely expressed asu = αδ andv = βγ, where
α, β ∈ F

∗
2m andδ, γ ∈ S. Thus the system (10) is equivalent to

{

αδ−t(2k−1) + βγ−t(2k−1) = 1

αδ−t(2k+1) + βγ−t(2k+1) = 1
. (11)

Note that

∆ =

∣

∣

∣

∣

∣

δ−t(2k−1) γ−t(2k−1)

δ−t(2k+1) γ−t(2k+1)

∣

∣

∣

∣

∣

= δ−t(2k−1)γ−t(2k+1) − δ−t(2k+1)γ−t(2k−1).

Below, we split our discussion into two cases.
If ∆ = 0, we haveδt = γt. Comparing with (11), we haveδt = γt = 1 and the system (11) degenerates toα + β = 1.

Note that there arel2 pairs of (δ, γ) such thatδt = γt = 1. Moreover, for each pair(δ, γ), there are2m − 2 pairs of (α, β),
such thatα+ β = 1 andαβ 6= 0. Hence, there are(2m − 2)l2 solutions in this case.

If ∆ 6= 0, i.e., δt 6= γt, solving the system (11) yields

α =
1 + γ2t

δ−t(2k−1)(1 + δ−2tγ2t)
,

β =
1 + δ2t

γ−t(2k−1)(1 + δ2tγ−2t)
.

We are going to show that no solution exists in this case. Since α ∈ F
∗
2m , we haveα = ᾱ, which leads toδt = 1. Similarly,

sinceβ ∈ F
∗
2m , we obtainγt = 1. Thus, we haveδt = γt = 1, which contradicts to∆ 6= 0. Therefore, there is no solution

when∆ 6= 0.
To sum up, we deduce thatN3(q, d1, d2) = (2n−1)l+1+(2n−1)((2m−2)l2+2l) = (2m−2)(2n−1)l2+3(2n−1)l+1.

The following lemma due to Dobbertin et al. [8] describes thepossible number of solutions to certain equation.

Lemma 10. [8, Lemma 22] Fora, b, c ∈ F2n , the equation

x2r+1 + ax2r + bx+ c = 0

has either0, 1, 2 or 2r0 + 1 solutions inF2n , wherer0 = (r, n).

For anyz ∈ S anda, b ∈ Fq with aā+ bb̄ 6= 0, we define the fractional linear transformation (FLT) onS as

Φa,b(z) =
az + b

b̄z + ā
.
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It is straightforward to verify that the FLT is well-defined and induces a permutation onS. In particular, the composition of
two FLTs is also an FLT. More precisely, we have

Φa3,b3 = Φa1,b1Φa2,b2 ,

where
(

a3 b3
b̄3 ā3

)

=

(

a1 b1
b̄1 ā1

)(

a2 b2
b̄2 ā2

)

and
a3ā3 + b3b̄3 = (a1ā1 + b1b̄1)(a2ā2 + b2b̄2) 6= 0.

Now we proceed to consider the value distribution of

T1(a, b) =
∑

x∈F2n

(−1)Trn(ax
d1+bxd2).

Theorem 11. Let p = 2, q = 2n and n = 2m with m ≥ 2. Given an integer1 ≤ k ≤ m, set s1 = 2k−1t − t−1
2 and

s2 = 2k−1t + t+1
2 with odd integer1 ≤ t ≤ 2m + 1. Defined1 = s1(2

m − 1) + 1 and d2 = s2(2
m − 1) + 1. Assume

(2k − 1)t, (2k + 1)t 6≡ 0 (mod 2m + 1) and l = (t, 2m + 1). If one of the following condition holds:

i) m ≡ −1 (mod k),
ii) (k, 2m) = 1,

then the value distribution ofT1(a, b) is listed in Table III.

Proof: By 2) of Lemma 1, we haveT1(a, b) = (V (a, b)− 1)2m, whereV (a, b) is the number ofz ∈ S satisfying

b̄z(2
k+1)t + āz2

kt + azt + b = 0. (12)

If (a, b) = (0, 0), it is easy to see thatV (a, b) = 2m + 1 andT1(a, b) takes the trivial value22m. Our main task is to prove
that T1(a, b) takes at most four nontrivial values if Condition i) or Condition ii) holds.

Settingw = zt, Equation (12) becomes
b̄w2k+1 + āw2k + aw + b = 0. (13)

Sincel = (t, 2m + 1), each solutionw ∈ Sl of (13) corresponds tol solutions of (12). Below, we focus on Equation (13) and
study the number of its solutions inSl.

At first, assume Condition i) holds. Ifa 6= 0 and b = 0, we haveāw2k−1 + a = 0, which impliesw2k−1 = a
ā
∈ S. Noting

thatm ≡ −1 (mod k), it is straight forward to verify that

(2k − 1, 2m + 1) =

{

1 if k is odd,

3 if k is even.

Hence,(13) has no more than3 solutions inSl. A similar treatment shows that(13) has no more than3 solutions inSl when
a = 0 andb 6= 0. If ab 6= 0, we continue our analysis using a technique proposed in [7, Proposition 1]. Supposeaā+ bb̄ = 0,
we have(b̄w2k + a)(w + b

a
) = 0, which has no more than2 solutions inSl. Whenaā + bb̄ 6= 0, we consider the following

FLT:
Φa,b(w) =

aw + b

b̄w + ā
.

By (13), we have

w2k =
aw + b

b̄w + ā
= Φa,b(w).

Sincem ≡ −1 (mod k), there exists an integeri such thatki = m+ 1. Applying Φa,b on both sides of the above equation
with i− 1 times, we obtain

w2ki

= Φa′,b′(w),

where
(

a′ b′

b̄′ ā′

)

=

(

a b
b̄ ā

)i

.

For w ∈ S, we havew2ki

= w2m+1

= w−2. It follows that

a′w3 + b′w2 + b̄′w + ā′ = 0.

Hence,(13) has no more than3 solutions inSl. To sum up, when(a, b) 6= (0, 0), (13) has either0, 1, 2 or 3 solutions inSl.
This implies thatV (a, b) ∈ {0, l, 2l, 3l} when (a, b) 6= (0, 0).
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TABLE III
VALUE DISTRIBUTION OF THEOREM11

Value Frequency

22m 1

(3l − 1)2m
(22m−1)(2m+1−2l)(2m+1−l)

6l3

(2l − 1)2m (22m−1)((2m+3)l−2m−1)(2m+1−l)
2l3

(l − 1)2m (22m−1)((22m+1+2m+2+6)l2−(22m+1+7·2m+5)l+(2m+1)2)
2l3

−2m (22m−1)(6(22m+1)l3−(6·22m+9·2m+11)l2+(3·22m+9·2m+6)l−(2m+1)2)
6l3

TABLE IV
WEIGHT DISTRIBUTION OF THEOREM13

Weight Frequency

0 1

22m−1
− (3l − 1)2m−1 (22m−1)(2m+1−2l)(2m+1−l)

6l3

22m−1
− (2l − 1)2m−1 (22m−1)((2m+3)l−2m−1)(2m+1−l)

2l3

22m−1
− (l − 1)2m−1 (22m−1)((22m+1+2m+2+6)l2−(22m+1+7·2m+5)l+(2m+1)2)

2l3

22m−1 + 2m−1 (22m−1)(6(22m+1)l3−(6·22m+9·2m+11)l2+(3·22m+9·2m+6)l−(2m+1)2)
6l3

Secondly, assume Condition ii) holds. Ifb = 0, (13) becomes̄aw2k−1 + a = 0. Since(k, 2m) = 1, it is easy to see that this
equation has no more than1 solution inSl. If b 6= 0, by Lemma 10,(13) has either0, 1, 2 or 3 solutions inSl. To sum up,
when(a, b) 6= (0, 0), (13) has either0, 1, 2 or 3 solutions inSl. This implies thatV (a, b) ∈ {0, l, 2l, 3l} when(a, b) 6= (0, 0).

Consequently, we have shown thatT1(a, b) takes at most four nontrivial values{−2m, (l − 1)2m, (2l − 1)2m, (3l − 1)2m}
if Condition i) or Condition ii) holds. The frequencies of these values easily follow from Lemma 3 and Lemma 9. The proof
is now complete and we list the value distribution in Table III.

Remark 12. Whenk is odd, each pair(k,m) meeting the Condition i) always satisfies the Condition ii).

The following theorem is a direct consequence of Theorem 11.

Theorem 13. Let p = 2, q = 2n and n = 2m with m ≥ 2. Given an integer1 ≤ k ≤ m, set s1 = 2k−1t − t−1
2 and

s2 = 2k−1t + t+1
2 with odd integer1 ≤ t ≤ 2m + 1. Defined1 = s1(2

m − 1) + 1 and d2 = s2(2
m − 1) + 1. Assume

(2k − 1)t, (2k + 1)t 6≡ 0 (mod 2m + 1) and l = (t, 2m + 1). Suppose one of the following condition holds:
i) m ≡ −1 (mod k),
ii) (k, 2m) = 1.

ThenC⊥
q,d1,d2

is a [2n − 1, 4m, 22m−1 − (3l − 1)2m−1] binary code. Its weight distribution is listed in Table IV.

Given m, the code is determined by two parametersk and t. Below, we present some examples concerning the weight
distributions of the cyclic codes derived from the above theorem. According to the code table, some of them have the best
known parameters.

Example 14. Whenm = 3, up to the equivalence of(d1, d2), a pair (k, t) satisfying the conditions in Theorem 13 belongs to
{(1, 1), (1, 5), (1, 7)}. For all these three pairs,l = (t, 2m+1) = 1. Hence the corresponding three cyclic codes are[63, 12, 24]
binary codes sharing the same weight distribution:

1 + 588x24 + 504x28 + 1827x32 + 1176x36.

Referring to the code table [11], the best known binary linear code with length63 and dimension12 has minimum distance
24. Therefore, our cyclic codes have the best known parametersand are more preferable than linear code in practice.

Example 15. Whenm = 4, up to the equivalence of(d1, d2), a pair (k, t) satisfying the conditions in Theorem 13 belongs
to {(1, 1), (1, 3), (1, 5), (1, 7), (1, 9), (1, 11), (1, 13), (1, 15)}. For all these eight pairs,l = (t, 2m + 1) = 1. Hence the
corresponding eight cyclic codes are[255, 16, 112] binary codes sharing the same weight distribution:

1 + 10200x112 + 4080x120 + 30855x128 + 20400x136.

Referring to the code table [11], the best known binary linear code with length255 and dimension16 has minimum distance
112. Therefore, our cyclic codes have the best known parametersand are more preferable than linear code in practice.
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TABLE V
VALUE DISTRIBUTION OF THEOREM17

Value Frequency

p2m 1

( 3l
2
− 1)pm

2(p2m−1)(l−pm−1)(l−2pm−2)

3l3

(l − 1)pm (p2m−1)(2pm+2−(pm+3)l)(l−2pm−2)
l3

( l
2
− 1)pm 2(p2m−1)((p2m+2pm+3)l2−(2p2m+7pm+5)l+2(pm+1)2)

l3

−pm
(p2m−1)(3(p2m+1)l3−(6p2m+9pm+11)l2+6(p2m+3pm+2)l−4(pm+1)2)

3l3

IV. N ONBINARY CYCLIC CODESWITH NIHO EXPONENTS

This section is devoted to the computation of the weight distribution of certain nonbinary cyclic codes with Niho exponents.
Accordingly, we focus on the value distribution ofT2(a, b). Throughout this section, we fixd1 = s1(p

m − 1) + 1 and
d2 = s2(p

m−1)+1 wheres1 = t+2
4 ands2 = 3t+2

4 for somet ≡ 2 (mod 4). To ensure thatd1 andd2 are not equivalent, we
havet 6≡ 0 (mod pm+1). Moreover, sets1 = t+2

4 , s2 = 3t+2
4 , s′1 = t′+2

4 ands′2 = 3t′+2
4 . Supposes1+s′1 ≡ 1 (mod pm+1)

ands2+s′2 ≡ 1 (mod pm+1). Then we havet+ t′ ≡ 0 (mod 4(pm+1)). Namely, if t+ t′ ≡ 0 (mod 4(pm+1)), we obtain
two equivalent pairs of Niho exponents. Hence, we can restrict t in the range1 ≤ t ≤ 4(pm + 1). Below, we will determine
the value distribution ofT2(a, b).

As a preparation, we have the following lemma.

Lemma 16. Let p be an odd prime andq = pn. If l = (t, pm + 1), then

1) N2(q, d1, d2) =
(pn

−1)
2 l + 1.

2) N3(q, d1, d2) =
(pm

−2)(pn
−1)

4 l2 + 3(pn
−1)
2 l + 1.

The proof of this lemma is somewhat lengthy and we present it in the Appendix. Now we proceed to determine the value
distribution of

T2(a, b) =
∑

x∈Fq

ζTrn(ax
d1+bxd2)

p ,

wherep is an odd prime.

Theorem 17. Assumen = 2m with m ≥ 1. Let p be an odd prime andq = pn be a prime power. Given a positive integert
with t ≡ 2 (mod 4) and t 6≡ 0 (mod pm+1), sets1 = t+2

4 ands2 = 3t+2
4 . Defined1 = s1(p

m−1)+1, d2 = s2(p
m−1)+1

and l = (t, pm + 1). Then the value distribution ofT2(a, b) is listed in Table V.

Proof: By Lemma 2, we haveT2(a, b) = (W (a, b)− 1)pm, whereW (a, b) is the number ofu ∈ S satisfying

b̄u
3t
2 + āut + au

t
2 + b = 0.

If (a, b) = (0, 0), we haveW (a, b) = pm+1 andT2(a, b) takes the trivial valuep2m. If (a, b) 6= (0, 0), since( t2 , p
m+1) = l

2 ,
the above equation clearly has either0, l

2 , l or 3l
2 solutions inS. Namely,W (a, b) ∈ {0, l

2 , l,
3l
2 }. ThusT2(a, b) takes four

nontrivial values{−pm, ( l
2 − 1)pm, (l− 1)pm, (3l2 − 1)pm} when(a, b) 6= (0, 0). The frequencies of these values easily follow

from Lemma 3 and Lemma 16. The proof is now complete and we listthe value distribution in Table V.
By Lemma 2,T2(λa, λb) = T2(a, b) for anyλ ∈ F

∗
p. Therefore, we can easily deduce the following theorem by Theorem 17.

Theorem 18. Assumen = 2m with m ≥ 1. Let p be an odd prime andq = pn be a prime power. Given a positive integert
with t ≡ 2 (mod 4) and t 6≡ 0 (mod pm+1), sets1 = t+2

4 ands2 = 3t+2
4 . Defined1 = s1(p

m−1)+1, d2 = s2(p
m−1)+1

and l = (t, pm+1). ThenC⊥
q,d1,d2

is a [pn−1, 4m, (pm−pm−1)(pm+1− 3l
2 )] p-ary code. Furthermore, the weight distribution

of C⊥
q,d1,d2

is listed in Table VI.

Given p and m, the code is determined by one parametert. Below, we present a few examples concerning the weight
distribution ofp-ary cyclic codes derived from the above theorem.

Example 19. Settingp = 3, m = 3 and t = 14, we haveq = 729, d1 = 105, d2 = 287 and l = (t, pm + 1) = 14. The
corresponding cyclic codeC⊥

q,d1,d2
is a [728, 12, 126] ternary code with weight distribution:

1 + 104x126 + 4056x252 + 70304x378 + 456976x504.

Example 20. For p = 5, m = 2 and 2 ≤ t ≤ 50 with t ≡ 2 (mod 4) and t 6= 26, we can obtain twelve cyclic codes with
q = 625 and l = (t, pm + 1) = 2. All these cyclic codes are[624, 8, 460] 5-ary codes with the same weight distribution:

1 + 62400x460 + 15600x480 + 187824x500 + 124800x520.
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TABLE VI
WEIGHT DISTRIBUTION OF THEOREM18

Weight Frequency

0 1

(pm − pm−1)(pm + 1−

3l
2
)

2(p2m−1)(l−pm−1)(l−2pm−2)

3l3

(pm − pm−1)(pm + 1− l) (p2m−1)(2pm+2−(pm+3)l)(l−2pm−2)
l3

(pm − pm−1)(pm + 1−

l
2
) 2(p2m−1)((p2m+2pm+3)l2−(2p2m+7pm+5)l+2(pm+1)2)

l3

(pm − pm−1)(pm + 1) (p2m−1)(3(p2m+1)l3−(6p2m+9pm+11)l2+6(p2m+3pm+2)l−4(pm+1)2)
3l3

V. CONCLUSION

In this paper, we consider the weight distributions of cyclic codes with Niho exponents. As is well known, the determination
of weight distributions essentially relies on the calculation of some exponential sums. In particular, we completely determine
the value distribution ofS(a, b) and compute the value distributions ofT1(a, b) and T2(a, b) in some cases. As a direct
consequence, we obtain the weight distributions of some binary and nonbinary cyclic codes. More specifically, we produce two
classes of binary three-weight and four-weight cyclic codes and a class of nonbinary four-weight cyclic codes. By presenting
several examples, we observe that some of them are optimal linear codes and some of them have the best known parameters.

APPENDIX

Here, we give the proof of Lemma 16.
Proof of Lemma 16:1) This proof is similar to that of 1) in Lemma 9 and we omit it here.

2) By definition,N3(q, d1, d2) is the number of solutions to the equations
{

xd1 + yd1 + zd1 = 0
xd2 + yd2 + zd2 = 0

, x, y, z ∈ Fq. (14)

Whenz = 0, there are exactlyN2(q, d1, d2) =
(pn

−1)
2 l + 1 solutions.

Whenz 6= 0, the situation is more involved. By settingu = −x
z

andv = − y
z
, we only need to consider the system

{

ud1 + vd1 = 1
ud2 + vd2 = 1

, u, v ∈ Fq. (15)

Each solution of (15) corresponds topn − 1 solutions of (14). Ifu = 0 or v = 0, it is easy to see that the system (15) has
exactly l

2 solutions. Ifuv 6= 0, we split our discussion into the following four cases:

i) u ∈ Q andv ∈ Q,
ii) u ∈ Q andv ∈ NQ,
iii) u ∈ NQ andv ∈ Q,
iv) u ∈ NQ andv ∈ NQ.

Recall that eachx ∈ Q (resp.x ∈ NQ) can be expressed twice asx = yz and x = (−y)(−z) (resp.x = θyz and
x = θ(−y)(−z)) when y ranges overF∗

pm and z ranges overS. Moreover,F∗
pm ∩ S = {±1}. We will deal with these four

cases respectively.
For Case i), we can writeu = αδ andv = βγ, whereα, β ∈ F

∗
pm andδ, γ ∈ S. Thus the system (15) can be rewritten as

{

αδ−
t
2 + βγ− t

2 = 1

αδ−
3t
2 + βγ− 3t

2 = 1
. (16)

Note that

∆ =

∣

∣

∣

∣

δ−
t
2 γ− t

2

δ−
3t
2 γ−

3t
2

∣

∣

∣

∣

= δ−
t
2 γ−

3t
2 − δ−

3t
2 γ−

t
2 .

If ∆ = 0, we haveδt = γt, i.e., γ
t
2 = ±δ

t
2 . When γ

t
2 = δ

t
2 , comparing with (16), we haveα + β = δ

t
2 . Noting that

F
∗
pm ∩S = {±1}, we haveα+β = δ

t
2 = ±1. There arel

2

4 pairs of(δ, γ) such thatδ
t
2 = γ

t
2 = 1 or δ

t
2 = γ

t
2 = −1. Moreover,

for each pair(δ, γ), there arepm − 2 pairs of (α, β), such thatα+ β = 1 andαβ 6= 0. Hence, there are(p
m
−2)
2 l2 tuples of

(α, β, δ, γ) satisfying (16) whenγ
t
2 = δ

t
2 . A similar treatment shows there are(p

m
−2)
2 l2 tuples of(α, β, δ, γ) satisfying (16)

whenγ
t
2 = −δ

t
2 . Since bothu andv have been expressed twice, there are1

4 (
(pm

−2)
2 l2 + (pm

−2)
2 l2) = (pm

−2)
4 l2 solutions of

(15) when∆ = 0.
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If ∆ 6= 0, i.e., δt 6= γt, solving the system (11) yields

α =
1− γt

δ−
t
2 (1− δ−tγt)

,

β =
1− δt

γ−
t
2 (1− δtγ−t)

.

We are going to show that no solution exists. Sinceα, β ∈ F
∗
pm , by α = ᾱ andβ = β̄, we haveδ2t = 1 andγ2t = 1. Since

δt 6= γt, we have eitherδt = 1, γt = −1 or δt = −1, γt = 1. However,δt = 1 implies β = 0 andγt = 1 implies α = 0.
Hence, there exists no solution when∆ 6= 0. Totally, there are(p

m
−2)
4 l2 solutions of (15) in Case i).

For Case ii), we can writeu = αδ andv = θβγ, whereα, β ∈ F
∗
pm andδ, γ ∈ S. Thus the system (15) can be rewritten as

{

αδ−
t
2 + θd1βγ− t

2 = 1

αδ−
3t
2 + θd2βγ− 3t

2 = 1
. (17)

Note that

∆ =

∣

∣

∣

∣

δ−
t
2 θd1γ−

t
2

δ−
3t
2 θd2γ−

3t
2

∣

∣

∣

∣

= θd2δ−
t
2 γ−

3t
2 − θd1δ−

3t
2 γ−

t
2 .

If ∆ = 0, we deduceδtθ
t
2 (p

m
−1) = γt. Setη = θp

m
−1, thenη is a generator ofS. We haveη

t
2 = (γ

δ
)t = ηjt for some

integerj. This is equivalent tojt ≡ t
2 (mod pm + 1), which is impossible sincet ≡ 2 (mod 4).

If ∆ 6= 0, solving the system (17) yields

α =
δ

t
2 (1− θ−

t
2 (p

m
−1)γt)

1− θ−
t
2 (p

m−1)δ−tγt
,

β =
γ

t
2 (1− δt)

θd1(1− θ
t
2 (p

m−1)δtγ−t)
.

With α = ᾱ and β = β̄, we can deduce thatδtγt = 1 and γ2t = θt(p
m
−1). Thus, we haveα = δ

t
2 (1−θ

−
t
2
(pm−1)

δ−t)

1−θ
−

t
2
(pm−1)

δ−2t
. By

α = ᾱ, we haveδt = ±1. Thus,γt = ±1. However, this contradicts toγ2t = θt(p
m
−1) sincet 6≡ 0 (mod pm + 1). Hence,

(15) has no solution in Case ii).
For Case iii), the situation is similar to Case ii) and (15) has no solution in Case iii).
For Case iv), we can writeu = θαδ andv = θβγ, whereα, β ∈ F

∗
pm andδ, γ ∈ S. Thus the system (15) can be rewritten

as
{

αδ−
t
2 + βγ−

t
2 = θ−d1

αδ−
3t
2 + βγ− 3t

2 = θ−d2
.

Note that

∆ =

∣

∣

∣

∣

δ−
t
2 γ− t

2

δ−
3t
2 γ− 3t

2

∣

∣

∣

∣

= δ−
t
2 γ− 3t

2 − δ−
3t
2 γ− t

2 .

If ∆ = 0, a similar argument as Case ii) shows that no solution exists. If ∆ 6= 0, a similar treatment as Case i) shows that
no solution exists. Hence, (15) has no solution in Case iv).

Combining the four cases discussed above, we can deduce thatN3(q, d1, d2) =
(pn

−2)
2 l + 1 + (pn − 1)( (p

m
−2)
4 l2 + l) =

(pm
−2)(pn

−1)
4 l2 + 3(pn

−1)
2 l + 1.
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