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Abstract—Motivated by the looming “capacity crunch” in fiber channel;
fiber-optic networks, information transmission over such ystems 2) NFDM removes deterministic inter-symbol interference
is revisited. Among numerous distortions, inter-channel mter- (IS1) (intra-channel interactions) for each user;

ference in multiuser wavelength-division multiplexing (WDM) 3 tral | iant . f dat K
is identified as the seemingly intractable factor limiting he ) spectral invariants as carriers of data are remark-

achievable rate at high launch power. However, this distofibn ably stable and noise-robust features of the nonlinear
and similar ones arising from nonlinearity are primarily du e to Schrodinger (NLS) flow;

the use of methods suited for linear systems, namely WDM and  4) with NFDM, information in each channel of interest can

linear pulse-train transmission, for the nonlinear opticd channel. ; ; ; -
Exploiting the integrability of the nonlinear Schrddinger (NLS) (tj)e (tzlonv;a?r:entlyt.realld a}[rrl]ylvvhe{r(‘a in a network indepen
equation, a nonlinear frequency-division multiplexing (NFDM) en ¥0 .e optical pa eng (). ]

scheme is presented, which directly modulates non-intergiag As described in [Part 1], the nonlinear Fourier transfornaof

signal degrees-of-freedom under NLS propagation. The main signal with respect to a Lax operator consists of discrete an
distinction between this and previous methods is that NFDM cqgntinuous spectral functions, in one-to-one correspooge

Is able to cope with the nonlinearity, and thus, as the the Sl ity the signal. In this paper we focus mainly on discrete
power or transmission distance is increased, the new method

does not suffer from the deterministic cross-talk betweenignal ~SPeCtrum modulation, which captures a large class of input

components which has degraded the performance of previous Signals of interest. For this class of signals, the invers@ N

approaches. In this paper, emphasis is placed on modulation is a map from2N complex parameters (discrete spectral

of the discrete component of the nonlinear Fourier transfom degrees-of-freedom) to a¥-soliton pulse in the time domain.

of the signal and some simple examples of achievable spedira ryiq gnecial case corresponds to an optical communication

efficiencies are provided. . . . L .
system employing multi-soliton transmission and deteciio

Index Terms—Fiber-optic communications, nonlinear Fourier he focusing regime.

transform, Darboux transform, multi-soliton transmission. A physically important integrable channel is the opticagfib

channel. Despite substantial effort, fiber-optic commatiins
I. INTRODUCTION using fundamental solitons.€., 1-solitons) has faced numer-

HIS PAPER is a continuation of Part[[1[1] and Part 1PUS challenges in the past decades. This is partly becaase th
T [2] on data transmission using the nonlinear FourigPectral efficiency of conventional soliton systems is dgfly
transform (NFT). [Part I] describes the mathematical tamls duite low (o ~ 0.2 bits/s/Hz), but also because on-off keyed
derlying this approach to communications. Numerical methosolitons interact with each other, and in the presence cfenoi
for implementing the NFT at the receiver are discussed {R€ system reach is limited by the Gordon-Haus effect [3].
[Part I1]. The aims of this paper are to provide methods fdlthough solutions have been suggested to alleviate these
implementing the inverse NFT at the transmitter, to disculignitations [3], most current research is focused on the use
the influence of noise on the received spectra, and to provifespectrally-efficient pulse shapes, such as sinc anddaise
some example transmission schemes, which illustrate sémec@sine pulses, with digital backpropagation at the receive
the spectral efficiencies achievable by this method. [4]. Although these approaches provide a substantial sgect
The proposed nonlinear frequency-division multiplexingfficiency at low to moderate signal-to-noise ratios (SNRs)
(NFDM) scheme can be considered as a generalization tBeir efficacy saturates after a finite SNR20 — 30 dB where
orthogonal frequency-division multiplexing (OFDM) to @t » ~ 5— 9 bits/s/Hz. This, as we shall see in Section I, is due

grable nonlinear dispersive communication chanriéls [ Tto the incompatibility of the wavelength-division multgxing
advantages of NFDM stem from the following: (WDM) with the flow of the NLS equation, causing severe

1) NFDM removes deterministic inter-channel interferend@t_T_EChannel mteEer(rjencfel: i . h .
(cross-talk) between users of a network sharing the samﬁ ereisa vast. ody o iterature on solitons in mathematics
physics, and engineering; seeg, [3], [5]-[8] and references
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the pulse-propagation properties a@f-solitons, is usually input power, and then asymptotically vanishe$Pas> oo (see
limited to small N (e.g, N = 2,3), or focuses on specific e.g, [4] and references therein).
isolatedN-solitons €.g, pulses of the form! sech(t)). Signal In this section we briefly review WDM, the method com-
processing problems(g, detection and estimation) involvingmonly used to multiplex many channels in practical optical
soliton signals in the Toda lattice and other models have befiber systems. We identify the origin of capacity limitatson
considered by Singer [8]. There is also a related work hg this model and explain that this method and similar ones,
Hasegawa and Nyu, “eigenvalue communicatian” [9], whictvhich are borrowed from linear systems theory, are poorly
is reviewed and compared with our approach in Sedtion]VI-Buited for efficient communication over nonlinear opticheéfi
after NFDM is explained. networks. In particular, certain factors limiting the amrable
While a fundamental soliton can be modulated, detected arades in the prior work are an artifact of these methods fipta
analyzed in the time domairy-solitons are best understood/VDM) and may not be fundamental. In subsequent sections,
via their spectrum in the complex plane. In this paper, these continue the development of the NFDM approach that is
pulses are obtained by implementing a simplified inverse NRible to overcome some of these limitations, in a manner ¢hat i
at the transmitter using the Darboux transform and are demdandamentally compatible with the structure of the nordine
ulated at the receiver by recovering their spectral conisimg fiber-optic channel.
the forward NFT. Since the spectral parameters of a multi-
soliton naturally dg not intergct with one another (at Ie'.ast A. System Model
the absence of noise), there is potentially a great advaritag ) )
directly modulating these non-interacting degrees-eéfiom. [ Of convenience, we reproduce the system model given
Sending anN-soliton train for largeN and detecting it at In [Part_ 1]. we _C(_)n3|der a §tan(j_ard single-mode fiber with
the receiver—a daunting task in the time domain due to tHispersion coeﬁ!0|en182, noqllngarlty parametey and Igngth
interaction of the individual components—can be effic'uentlﬁ' After appropriate normahzatl_on (seeg, [Part, Sec_tlon L
accomplished, with the help of the NFT, in the nonlinedt@rticularly Eq. (3)]), the evolution of the slowly-vargrpart
frequency domain. q(t, 2) o_f a narrc_>wband signal as a function of rgtardec_i time
The paper is organized as follows. In Sectioh II, we rd.and distancer is well modeled by the stochastic nonlinear

visit the wavelength-division multiplexing method comnhon Schrodinger equation

gsed in in optical fiber ngtworks and idlentify inter—channe_l Ja:(t,2) = qu + 2|q(t, 2)|2q(t, 2) + n(t, 2), (1)
interference as the capacity bottleneck in this methods Thi

section provides further motivation for the NFT approactyhere subscripts denote differentiation an@, z) is a ban-
taken here. In Sectidn]ll, we study algorithms for impleaendlimited white Gaussian noise process,, with

ing the inverse_nonlinear Fc_)urier transform at the traremit E {n(t, 2)n*(t', 2')} = 0265(t — ¢')3(z — 2'),

for signals having only a discrete spectrum. Among several

methods, the Darboux transform is found to provide a sigtabihere dp(x) = 2Bsinc(2Bz), where B is the normalized
approach. The first-order statistics of the (discrete)reigkies noise bandwidth and where denotes the expected value. It
and the continuous spectral amplitudes in the presencei®fissumed that the transmitter is bandlimitedt@nd power
noise are calculated in Sectibn]IV. In Sectloh V we calculatanited to P, i.e,

some spectral efficiencies achievable using very simple NFT 17

examples. Finally, we provide some remarks on the use of E—/ lq(t,0)?dt = P,

the NFT method in Sectioh VI and conclude the paper in T Jo

Section VII. where7T — oo is the communication time. Note that the power

constraint in this paper is an equality constraint.

In fiber-optic communication systems, noise can be in-
troduced in a lumped or distributed fashion. The former
case arises in systems using erbium-doped fiber amplifiers

Recent studies on the capacity of WDM optical fiber ne{EDFAs) located at the end of each fiber span [3]. We refer
works suggest that the information rates of such networkstts this type of noise asumped noise If noise is injected
ultimately limited by the impacts of the nonlinearity, ndgne continuously throughout the fiber as a result of distributed
inter-channel and intra-channel nonlinear interactigggL0]. Raman amplification (DRA), as irJ(1), one hdsstributed
The distortions arising from these interactions have deiter noise [4]. Here the fiber loss is assumed to be perfectly
istic and (signal-dependent) stochastic components tltat g compensated by the amplifier. In this paper, we consider
with the input signal power, diminishing the achievableffat
high powers. In these studies, for a class of ring constetiaf TABLE |
the achievable rates of the WDM method increases with aver- FIBER PARAMETERS
age input power powef?, reaching a peak at a certain critical

II. ORIGIN OF CAPACITY LIMITS IN WDM OPTICAL
NETWORKS

nsp | 1.1 excess spontaneous emission factor
—347. )
lin this paper, the term édchievable raté refers to a lower bound to h ?5322;%'_'0 s Plartmkfs constant
the capacity. It is obtained by optimizing mutual infornoatiunder some v ’ 721 center Irequency
assumptionsg.g, considering a sub-optimal transmitter and receiver or a @ | 0.046 le . fiber loss (0.2 dB/km)
method of communication, a subset of all possible inputitistions, etc. 2l 1.27 W™ km nonlinearity parameter
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the DRA model, hencd]1) explicitly contains no loss terraeries instead of Fourier integrals. Thus each user opeaate
— see also Remark]5. In this model, the noise spectilsingle frequency centered in a band of wifithand
density is given by? = 02L/(P,T,), whereo? = ng,ahv, N1

with parameters given in Tablé I, and wheRy = 2/(7L) q(t,0) = Z i (0)eT2m W ©)
and T,, = /|B=2|L£/2 are normalization scale factors. The pard

unnormalized signal and noise bandwidth can be obtained b . , -
dividing the corresponding normalized bandwidth By. A WKere{qk(O)} are the Fourier series coefficients:at- 0.

S : . . . As the periodic signal{3) evolves in the nonlinear optical
derivation of [1) and a discussion about sources of NOIS€ ABer, new frequency components are created and the signal
fiber-optic channels can be found [n [3],[11]. ’ N Y P 9

. . . : . . may not remain periodic as ihl(3). However, assuming a small
Mathematically, stochastic partial differential equaso y P 0i(3) 9

: ) . W, there are a large number of frequencies (users) at0
(PDEs) such ad{1) are usually interpreted via their equiy- 9 ) equer ( ) -~

; : : _"and we can assume a Fourier series with variable coefficients
alent integral representations. Integrating a stochgsta:

. - . . or ¢(t, z) at
cess with unbounded variation, such as white noise, can q(t,z) atz >0

be problematic. Consider, for instance, the Riemann iategr N1 -

J79 9(2)dB(2) ~ g(1)(B(z + dz) — B(2)), whereB(z) is alt,2) = Y ae(x)e”™" )
the Wiener process ande [z, z 4+ dz]. Since the integrand k=0

is not approximately constant iix, z + dz], the value of the Substituting [(#) into [(1), we get the NLS equation in the

integral depends oh The choice ofl leads to various inter- discrete frequency domain

pretations for a stochastic PDE, notably Ito and Stratichov e 9o )
representations, in which, respectivély; z andl = z+dz/2. J—g, =AWk ar(2) + 2|qk(2)|"qr(2)
Fortunately, since in our application noise is bandlimited dispersion SPM
its temporal component, the stochastic PDE (1) is essbntial 2
a finite-dimensional system and there is no difficulty in the * qk(z)g 12(2)]
rigorous interpretation of {1).
XPM
B. Achievable Rates of WDM Optical Fiber Networks +2) qe(2)45 (2) s m—e(2) +ni (), (5)
Fiber-optic communication systems often use wavelength- éef&?
division multiplexing to transmit information. Similar to "

frequency-division multiplexing, information is multgted in
distinct wavelengths. This helps to separate the signals
different users in a network, where they have to share t
same links between different nodes.

igf which n; are the noise coordinates in frequency and

ere we have identified the dispersion, self-phase mddulat
(SPM), cross-phase modulation (XPM) and four-wave mixing
FWM) terms in the frequency domé&in

Fig. @ shows the system model of a link in an optice{l e : .
fiber network between a source and a destination. There ar(l,\t IS 'mpo”af“ to. note that the opt|caI.WDM channeJ IS a
nlinear multiuseinterference channelith memory [12].

N fiber spans between multiple users at the transmitter (Tg ) :
and multiple users at the receiver (RX). The signal of so € mt_er-channe_l interference terms are the XPM and FWM
ere is no ISl in the assumed isolated pulse transmission

of these users is destined to a receiver other than the . )

shown in Fid.l. As a result, at the end of each span thereni?del ) W'th one Qeg_ree-of-freedom Per user. Howgver n

a reconfigurable optical add-drop multiplexer (ROADM) tha pults)e—traln tranim|§5|on modelfwhth > 1, hreplzcmgh

may drop e sigralo someo o sers o, ere arounusdt] o 1] 12 1 Iverse o shous t e er

frequency bands, add the signal of potential external ugdes terference ('intra-chffnnel interaction) ’Performance \A)t/mvl

are interested in evaluating the per degree-of-freedomagp . L

(bits/s/Hz) of the optical fiber link from the transmitter ttoe transmlssmn_system depends on hO.VY interference and IS| are
treated, and in particular the availability of the user sigrat

receiver. &he receiver. Several cases can be considered
In WDM, the following (baseband) signal is transmitte The received signal(. £) associated with[{2) can be

over the channel N projected into the space spanned by(t)exp(j2rkWt),
— ; l=12,....M,k=0,1,...,N' — 1, for some N’ and
_ £ j2rkWt )y ) ' ) ; '
q(t,0) = (Z Skm(t)) € ’ ) M', similar to [2). In this manner, the channel is discretized
h=0 Z:_l o as a map from a finite number of degrees-of-freedom:
wherek andl are user and time mdme@%}{‘il are symbols {sf fg\fz;ld,]\if at the channel input, to their corresponding values
transmlged.by usek, W = B/N |s_the per-user bandW|d_th_,§ = {3t g;;é:{\ff’ at the channel output. In generall £ N
{(W(t)}l:} IS an (_)rthonor_mal basis for the space of finitg,q 5 # M, since signal bandwidth and duration at the
energy signals with Fourier spectrum [rW/2,W/2], N

_ _ transmitter and receiver might be different.
is the number of WDM users anti/ is number of symbols _ If one has a finite number of degrees-of-freederand s,

Per user. To |IIustrate_ the essential aspects, we ter_nnoraﬂas access to all of them and joint transmission and detectio
simplify (Z) by assuming thad/ =1 and ¢, (t) = 1, V¢, i.e,

each user sends a pure sinusoid, so as to work with FouriétSome authors define XPM differently.
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Fig. 1. Fiber-optic communication system (aftef [4]).

of s and s is practical, the channel is essentially a single-user The monotonicity ofC(P), of course, holds true for any
vector channek — §, whose capacity is non-decreasing witlset of transition probabilities in a discrete-time memesgl

average input power [13] channel, including those obtained from nonlinear channels
Nel M Consider, for instance, a nonlinear memoryless chamngl,
P = 1 Elst |2 the continuous-time zero-dispersion optical fiber chaimte
b—0 I=1 presence of a filter at the receiver. When a signal propagates

If joint transmission and detection is not possibéeg, in in this channel, its spectrum can spread continuously. The
frequencyk or in time ¢, then one can either treat interferenc8MOUNt of spectral broadening depends on the pulse shape

as noise (as currently assumed in WDM networks), or examifl@d: in particular, on the signal intensity. Thus a signahwi
various strategies to manage interference. By analogythith 'ar9€ cost may also require a large transmission bandwittth a

linear N-user interference channél]14], [15], these strategi8&y Pe filtered out by the receiver filter. However, a largstco
include signal-space orthogonalizatioe.d, as achieved by dUMMYy signal does not need to be decoded. Thus, as for any
NFDM in the deterministic model) and, if enough informatiofiiScrete-time memoryless channel, the capacity (bitsgjn

about the channel is known, interference cancellatiortipar S Non-decreasing with the average input power -

larly in the strong regime) and interference alignmentnié of Although_ C(P) IS monotonic, It may saturate,e., ap-
these interference management strategies can be sudiyesshfioach a finite constant for large valuesBf In the zero-
applied, then, again, the capacity of each user can be ngﬁ_persmn optical fiber example, _nonllnearlty W|II_ cause a
decreasing with average input power. If none of these gfiete Signal-dependent spectral broadening, and large-eninggis

is applicable so that interference is treated as noise, or"#@Y Proaden beyond the bandwidth of the receiver filter. Thus
additional constraints are present, the achievable ratiaeof the nonlinearity could potentially cause the capaciyp) to
channel of interest in WDM can saturate or decrease wigiRturate; a precise analysis would depend on the definitibns

average input power. Below, we clarify these cases in mdp@ndwidth and time duration.
detail. Of course a saturating’(P) is a serious limitation to
It is obvious that capacity is a non-decreasing function gtta communications. Firstly, from a practical standpoint
cost under an inequality constraint. Below, we assume &APacity that saturates is equivalent to one that that peaks
average cost defined by an equality constraint. This may ritcondly, in many channels one may not be able to increase
be a suitable definition from a practical point of view, but ithe average cost in the particular manner described above. F
is certainly of theoretical interest and it is also the cartien instance, it is not possible to send a symbol with arbityaril
in optical fiber communication. large cost in a channel in which each symbol has a finite cost
1) Single-user Memoryless Channelhe capacity-cost Or in the presence of a peak-power constraint. Thirdly, meo
function of a single-user vector discrete-time memoryle§@ses increasing the average cost will limit the admissiiplet
channel with input alphabet having a symbol with unbounddtistributions and decrease the capatity
cost is a non-decreasing function of an equality-constchin  2) Single-user Channels with Memorythe argument of
average cost [13]. The argument 6f [13] goes as follows. [£3] can be repeated for channels with finite memorny,
a rate R is achievable at cosP by some input distribution when the influence of a large-cost symbol vanishes in a
p(x), then, for a small positive, a rate of at leastl —¢)R is finite time interval. Whenever such a large-cost symbol is
achievable at cosP’ > P using the distributior{l —¢)p(z)+ transmitted, the receiver can simply wait for the channel to
ed(xz — z1) wherex; is a symbol of large cost. Intuitively, settle before resuming normal operation. As before, in the
sending a symbol; of large cost with small probability limit of small ¢, the loss in data rate is negligible. Of course,
allows average cost to grow with negligible impact on thas before, saturation can occur; for example] [16] gives an
achieved rate. Since the channel is memoryless, trangmisstxample of a channel with memory whet§’P) can saturate
of 1 does not affect the other symbols transmitted. Essentially
the transmitter remains in a low-power state most of the ,time 3As a simple example, a binary-input channel with input cests: ¢; can

which effectively turns the equality constraint to an inalify ~achieve a capacity’(ca) with average cost, in the rangeco < cq < c1.
. S 3] for detalil I f di . However, since&”(co) = C(c1) = 0, C(cq) is non-monotonic. This situation
constraint. Seel [13] for details, as well as for a discussiQg, pe observed in computer simulations at average powese tb the peak

about more general scenarios. power.
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even if optimal detection is performed. In optical fiber networks, not much information is known
In fiber-optic channels, the SPM term of each user &bout interference signals. The location, or the number, of
available at the receiver for that user. Its deterministict,p ROADMs, and how many signals and with what properties
if needed, can be removed,g, by backpropagation and itshave joined or left the link may be unknown. These signals
(signal-dependent) stochastic part can be handled by coalRy not co-originate, so cooperation and precoding among
ing and optimal detection over a long block of damg( users may not be possible. In the absence of such information
maximum likelihood sequence detection). Deterministic df is difficult to perform techniques such as interferenca-ca
stochastic nonlinear intra-channel effects do not cause #ellation or alignment. In this paper, we refer to such syste
capacity to vanish if the channel has finite memory (as assumptions as theetwork scenarioThe WDM simulations
the previous paragraph) and such joint detection is peddrmin the literature, and our analysis in this section, assumes
Note that using a sub-optimal receiver in the fiber-optid@ network scenario, in which the nonlinear interference is
channel may cause the achievable rate to saturate with ingngvoidably treated as noise.
power. Consider, by way of analogy, a usual linear channelln @ nonlinear channel where, by definition, additivity is
y™ = T(s™)+n™, wheres™, 5y, n™ € C™ are, respectively, not preserved under the action of the channel, multiplexing
the input, output and noise blocks afft: C™ — C™ is an user signals in a linear fashiore.g, by adding them in
invertible linear transformation. If” is not a multiplication time (time-division multiplexing), in frequency (WDM or
(diagonal) operator, the channel is subject to ISI. Inwerti traditional OFDM) or in space (multi-mode communications)
the channel at the receiver completely removes this Id¢ads to inter-channel interference. In the case of WDM wher
% = s; +n;, where§ = T-'y andn = T~ 'n, giving an the available bandwidth is very limited, the interferense i
additive noise channel with colored, but signal-indepemdesignificant and, if treated as noise in a network scenario,
noisé A (suboptimal) receiver which ignores noise correlaHltimately limits the achievable rates of such optical fibgs-
tion and performs isolated symbol detection achieves a ra@ns. In Sectiof VI-G a brief discussion of other transmoissi

(lower bound to the capacity) going to infinity with averagéechniques is given.
input power. In contrast, now consider a nonlinear channelAmong the two interference terms FWM and XPM, FWM

y™ = F(s™,n™), whereF : C™ x C™ — C™ is a nonlinear is cubic in signal amplitude and has a larger variance. It is

transformationj.e., each output component is a nonlinear obvious that this interference grows rapidly when incregsi
function of signals” € C™ and noisen™ € C™. If F(s™,0) the common average powét (or the number of usersV),

is invertible, channel inversion at the receiver, in geheimes Ultimately overwhelming the signal and limiting the achiev

8; = si+hi(s™,n™), for some functiorh;. As a result, in non- able rate. The per-degree-of-freedom achievable ratebeof t

linear systems, channel inversioe.d, by backpropagation) channel of interest in WDM method versus average power in

leaves a residual “stochastic IS¥;(s™, n™) for each symbol. @ network scenario/(P), is noise-limited in the low SNR

This form of ISI is absent when the noise is zero. In thiggime, followinglog(1 + SNR), and interference-limited in

case, a receiver based on backpropagation and isolatecbsyntibe high SNR regime, decreasing to zerb [4]./[10].l [1[7]. [18]

detection gives rise to an ISI-limited communication systeSee also Fid.]3 and Remdrk 2.

with suboptimal performance. This occurs when assumingT0 summarize the preceding discussion, the transmission

a memoryless model for the fiber-optic channel. Treatifgtes achievable over the nonlinear Schrodinger chaneel d

stochastic ISI as noise can lead to a bounded achievable re@nd on the method of transmission and detection, as well as

This is one reason thdtP) has a peak in some of the priorthe assumptions on the model. One can assume a single-user

work. or a multiuser channel, with or without memory, and with or

The case of channels with infinite memory can be mot4thout optical filtering. It is thus important, when comiray

involved. Here sending a symbol with large cost may rend@ifferent resulits, to clarify which modeling assumptioras/é

the rest of transmission useless. Thus care must be takeP§¢n made.

nonlinear channels in which the memory grows with signal. . .
. . - C. Inter-channel Interference as the Capacity Bottlenetk i

3) Multiuser Channels with Interferencénter-channel in- : :

terference in the frequency domain is mathematically thed duWDlvI Optical Fiber Networks

of intra-channel ISI in the time domain. The difference iatth N the previous section we argued that, while intra-channel

1) cooperation and joint detection is generally not possibinterference can be handled by signal processing and coding

among users, and 2) while the bandwidth is usually |imitemter—c_hannlel interference ultimately limits thg a(?hlnjmrate .

transmission time can be practically unlimited. In an cgtic ©f optical fiber networks. The current practice in fiber-opti

fiber network, many users have to share the same optical fi§@fmunication is to send a linear sum of signals in tieg (

link. Some user signals join and leave the optical link & Pulse train) and in frequencg.g, WDM) in the form of [2),

intermediate points along the fiber, leaving behind a residne linear orthogonality of which is corrupted by the noatn

nonlinear impact. Thus we should assume that each user AB8r channel. This corresponds to modulatingar-algebraic

access only to the signal in its own frequency band, and tR¥pdesin the nonlinear channek(g, sending sinc functions).
signal of users:’ # k is unknown to the usek. Thus we identify conventional linear multiplexing as a nmajo

culprit limiting the achievable rate of current approacies
40f course, naive channel inversion may result in noise ergraent, which Optl(?al fiber networks. A modlflcz_mon .Of add-drop ml_JltIpleX )
we ignore for the purposes of this discussion. ers is needed so that the incoming signals are multiplexed in
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Fig. 2. (a) 5 WDM channels, with the channel of interest atdhater. The dotted and solid graphs represent, respgetie input and (noisy) output

after backpropagation. Neighbor channels are dropped ddedaat the end of the each span in the link, creating a rdsiidigaference for the channel of

interest. (b) Channel of interest at the input (dotted regi) and at the output after backpropagation (solid curVeg mismatch is due to the fact that the
backpropagation is performed only on the channel of inteaed the interference signals cannot be backpropagatethtéc-channel interference is increased
with signal intensity.

a nonlinear fashion, exciting non-interacting signal @egr mean interference terms that are present even in the absence
of-freedom under the NLS propagation. This corresponds @b noise. This lack of interference is a consequence of the
modulating appropriatenonlinear modessupported by the integrability of the cubic nonlinear Schrodinger equatio
channel é.g, in the case of focusing regime, sendidg 1 + 1 dimensions, and is generally not feasible for other
soliton functions). types of nonlinearity (even if the nonlinearity is weakearh

To illustrate the effect of the inter-channel interfereirctne ~ cubic!). This results in a deterministic “orthogonalizat for
application of the WDM method to the nonlinear fiber channefje nonlinear optical fiber channel for any value of dispersi
we have simulated the transmission of 5 WDM channels ov@@nlinearity, signal power or transmission distance.
2000 km of standard single-mode fiber with parameters froRemarkl. Note that, as a consequence of the data-processing
Tablel]. At the end of each span, a ROADM filters the centriequality, for an information-theoretic study it is notcae
channel of interest (COI) at0 GHz bandwidth, and adds essary to perform deterministic signal processing such as
four independent signals in neighboring bands, with sysibddackpropagation. One is only concerned with transitiorbpro
chosen uniformly from a common constellation. At the chdnnabilities, which include effects such as rotations or other
output, the COI is filtered and backpropagated according ¢eterministic transformations. Backpropagation justs aide
the inverse NLS equation. Fig] 2 compares the input agglstem engineer to simplify the task of the signal recovery
output frequency-domain waveforms, after backpropagatio- being an invertible operation, it does not change the
of the COI. Fig.[2(a) shows five random instances of thaformation content of the received signal.

multiplexed signals; note that, because out-of-band &gare Remark?2. An appropriate information-theoretic framework

t-band sianals at th .  related to the tri Yor WDM is to describe the achievable rate region of fiie
ot-band sighals at the recelver are hotrefated to the tr user nonlinear interference channel with memory by a joint

ones. Only the COI is backpropagated. Comparing [ig. 2 te(Ry,...,Ry). This is, however, difficult to achieve. If one

With Fig.[Z(b), it can be seen that the nonlinear inter'Cmm‘\solates a single channel, the corresponding r&te, would
interference is stronger at higher powers. depend on the distribution of the signals of the other userd (
The simulated achievable rates of WDM are shown ifot just their average powers). In WDM, users can operate at
F|gB Here the distribution of the user of interest is O[]]IEEﬂ low powers most of the time’ as prescribed in Se ||_B (a)
and interference signals correspond to independent symbghd each get a rate potentially saturating with power (even
chosen uniformly from a common multi-ring constellationpy regarding interference as noise). However, in a network
The two cases of large and small inter-channel interferenggenario, interfering users may transmit data according to
shown in the figure correspond to large and small user pealy distribution — including, in the extreme case, sending a
powers, by scaling user constellations. It is clear fron‘hbogymbm with powerP all the time. The rates shown in Fig. 3,
Fig. [2 and Fig[B that, as the average transmitted poweryignishing at high powers, are obtained when interferingsuse
increased, the signal-to-noise ratio in the COl, and as @tressend data based on uniform distributions, while the distidin
the information I’ate, vanishes to zero. Note that this EffaCI Of the user Of interest is Opt|m|zed The average power foh ea
also be predicted by a simple SNR analysis at the receivgger was increased in the manner explained in the deseriptio
see also[[19]. of the simulation, and not as in [13] (prescribed in SedfieRl |
Using the mathematical and numerical tools described (a)). As noted earlier, this need not to be elaborated sinee t
Parts | and I, this paper aims to show that it is possible t@nishing and saturating scenarios are essentially deuoiva
exploit the integrability of the nonlinear Schrddingeruag Some of the non-monotonic achievable rate graphs in the
tion and induce ak-user interference channel on the NLSiterature, similar to Fig.13, given appropriate assummiccan
equation so that both theeterministicinter-channel and inter- be interpreted as rates saturating with power at the lotato
symbol interferences are simultaneously zero for all usérsthe peak, by staying in a low power regime most of the time,
a multiuser network. Here by “deterministic interfereneeg if needed.
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15 T T T B. Modulating the Discrete Spectrum
—e— small interference Let the nonlinear Fourier transform of the signgt) be
= large interference represented by(t) «— (¢ (A),¢(A;)). When the continuous

spectrumg(\) is set to zero, the nonlinear Fourier transform
consists only of discrete spectral functiaj(s;), i.e, N com-
plex numbers\, ..., Ay in C* together with the correspond-
ing N complex spectral amplitudeg),),...,d(Ax). In this

—_
s}
T
|

Achievable rate [bits/s/Hz]

51 = case, the inverse nonlinear Fourier transform can be worked
out in closed-form, giving rise tav-soliton pulses([20]. The
simplified expressions, however, quickly get complicatésbmw
N > 2, and tend to be limited to low-order solitons.

00 60 One can, however, create and modulate these multi-solitons

numerically. In this section we study various schemes fer th
implementation of the inverse NFT at the transmitter when
Gg=0.

1) Discrete Spectrum Modulation by Solving the Riemann-
Hilbert System:The inverse nonlinear Fourier transform can
I1l. THE DISCRETESPECTRAL FUNCTION be obtained by solving a Riemann-Hilbert system of integro-
algebraic equations or, alternatively, by solving the &mif

A. Background i . .
_ _ . Levitan-Marchenko integral equations — seqy, [Part |,
Here we briefly recall the definition of the discrete spectraa tion viI. A-B particularly Eqgs. (30a)—(30d)]. Greatrsi

function in the context of the nonlinear Schrodinger emmat jisications occur wherj()) is zero. For instance, in this case
We first consider the deterministic version 0f (1), where thg jntegral terms in the Riemann-Hilbert system vanish and
noise is zero. Later, we will treat noise as a perturbation gf, integro-algebraic system of equations is reduced to an

the noise-free equation. _ _ algebraic linear system, whose solutions Ateoliton signals.
The nonlinear Fourier transform of a signal [iih (1) arises via Let V(t,\;) and V(t, \*) denote the scaled eigenvectors
»\) » g

the spectral analysis of the operator associated with; and\; defined by their boundary conditions
o - ~ . .
- —q(t) . at +oo (they are denoted by! and V! in [Part 1]). Setting
L=j( o “) _ j(px 6
J (—q*(t) -5 ) 7 (D% + Q) © the continuous spectral functigii)\) to zero in the Riemann-
Hilbert system of [Part I, Eqgs. (30a)—(30d)], we obtain an
algebraic system of equations

Fig. 3. Achievable rates of the WDM method in a network scienar

_ D
whereD = 5

0 —q 1 0
= andX; = . N . i\
“ <_C]* 0 ) ’ (O _1) f/(t AF ) — (1) + Z q()‘i)ezﬂltv(tv)‘i)
Let v(t, \) be an eigenvector of with eigenvalue\. Follow- " 0) A = i
ing [Part I, Section 1V], the discrete spectral function bét N . i
si i i i i 0 g (N)e PNV (L, A))
gnal propagating according tidl (1) is obtained by solvimg t V(t, Am) = _ Z i) 8)
the Zakharov-Shabat eigenprobldm = A\v, or equivalently 1 =1 Am = A
v = < _‘Z/\ q(ﬂ) v, ot = —00,A) — (1) M () Let K be anN x N matrix with entries
—q*(t)  JA 0 Gie2init
where the initial condition was chosen based on the assump- [Kli; = /\Z*_ EEWE 1<4,5<N.
tion that the signal(¢) vanishes a$t| — co. The system of J '
ordinary differential equationg](7) is solved frotn= —co Leteyyx; be the all one column vectat; =1,i=1,---, N,
to ¢ = +oo to obtain v(+oo,A). The nonlinear Fourier and define variables
coefficientsa(\) andb(\) are then defined as
. - Usxn = (V(t, A1) Vit A2) -+ V(t,An)),
a(N) = lim vy (¢, \)e?™, ~ - o . - .
t=oo Uaxn = (V(ta /\1) V(t’ /\2) T V(t’ /\N)) ’

b(X) = lim va(t, e IAt

Finally, the discrete spectral function is defined on theaunpp (1) = (6T> (oo = ( (:)F>
half complex planeCt = {\ : 3()\) > 0}: 0)” ’

e
. b(A) . —eTK*
Q( J) ak()\j)’ J ) 9 9 J2><N JQ JlK ( eT ) 5

where subscripth denotes differentiation and; are the
isolated zeros ofi()\) in CT, i.e, solutions ofa();) = 0.
The continuous spectral function is defined on the real axis
A€ R asg(\) = b(A)/a(N). Fivxa = (@ie¥Mt geidat ... gye2idnt)T,

Joxn =J1 + oK = (eTK> )
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Using these variables, the algebraic equatidhs (8) arelisimfiound for many integrable equatioris [20], taking on similar
fied to forms that usually involve the derivatives of the logaritiof
~ S the transformed variable.
U=nL+UK, U=J-UK" Let us substitute(#, z) = G(t, 2)/F(t, =), where, without
Note thatK* is the complex conjugate df (not the conjugate l0ss of generality, we may assume tifétt, =) is real-valued.
transpose). The solution of the above system is To keep track of the effect of nonlinearity, let us restore th
. . nonlinearity parametey in the NLS equation. Plugging =

U=(J2— 1K) (In+ KK") T J(In + KK”) _* G/Finto the NLS equation

U=(1+ LK)(Iy+KK*) =J(In+KK*) . it = qu + 291al%,
From [Part |, Section. VII. B, Eq. 32], th&-soliton formula

C we get
is given by
, 1 i (G,F — FG,) = FGy — 2F,G, — GF,
a(t) = ~2je" (Iy + K*K) ™" F*. ) i ) F oo
t
The right hand side is a complex scalar and has to be evaluated +2 F G
for everyt to determine the value aof(t) everywhere. = FGy — 2F,Gy + GFy
Example 1. It is useful to see that the (sgaled) eigen- i 2Ft2 +1|G” - FFttG7 (11)
vector for a single-soliton with spectrum(*5*,z) = F
qoemwzefj(aszz)z is where we have added and subtrac2édFy;. Equation[(I1l) is
1 _jo trilinear in F* andG. It can be made bilinear by setting
(&
U(t7 )\; Z) = 5 SeCh[W(t — L‘o)] (ew(tt())) ) j(GzF _ GFZ) _ FGtt _ 2Fth + GFtt, (123.)

. F? +4|G]? — FFy =0. 12b
where® = at + (o —w?)z — Zjo — § andto = L log %’L— o ¢ FY|_ | . " . (12b)
2az. The celebrated equation for the single-soliton obtainddis is & special solution fof (11) which, as we shall see; cor
from (9) is responds taV-soliton solutions. It is very convenient (though

o not necessary) to organize_(12&)=(12b) using the Hiidta
q(t) = —jwe 7" 9% sech (w(t — to)) - (10) operator

From the phase-symmetry of the NLS equation, the faetpr pn b)) — 0 o\" bt/
in (I0) can be dropped. The real and imaginary part of the i (a(t), b(t)) = ot ot a(®)bt)y—
eigenvalue are the frequency and amplitude of the solitote N

that the discrete spectral amplitugdg\) is responsible for the resulting in
phase and time-center of the soliton. (jD, + D})FG =0, (13a)
Unfortunately the Riemann-Hilbert system is found to be D?FF = 2v|G*. (13b)

occasionally ill-conditioned for larg&’. The N™ row of the
K matrix is proportional taexp(2jAnt). Thus this row gets
a large scale factor &¥()\) is increased#( < 0) which then

Note that theD-operator acts on a pair of functions to
produce another function. Note further thaf (13a) does not

makesly + K* K ill-conditioned at large negative times. Asdepgnd on the nonlinearity parametgr That is 1o say, the
a result, the Riemann-Hilbert system, at least in the ctirre pnlinearity has been separated from equationl(13a). For

form, is not the best method for numerical generation\ef some_other mtegr_able equatioresd, the Kort_eyveg-de Vries
solitons. equa_ltlon). for which one gets only one bilinear PDE, the

2) Discrete Spectrum Modulation via the Hirota BiIin—nogil;ir:]izzrr'tyHi‘:gtr:rgegzrti'sn'nmfacgmcangil)ega(\:lzn;gllitt%ﬁs a th
earization Scheme:lt is also possible to generate multi- d

solitons without solving a Riemann-Hilbert system or dilec form of a sum .Of expgnsnhalg. '_A‘S shown in Appenfik A,
using the NFT. A method which is particularly analyticallyandG are obtained a3 [20]L [21]:
insightful is the Hirota direct method [20]. It prescribeés, F(t,z) = Z 51(b) exp (bTX n bTRb)7
some sense,onlinear superpositiofor integrable equations. b={0,1}2N

The Hirota method for an integrable equation works by Gt z) = Z 5a(b) e (bTX+bTRb)
introducing a transformation of the dependent variable ’ 2 *P ’
to convert the original nonlinear equation to one or more b={0p2N
homogeneous bilineaPDEs. For integrable equations, thavhereb = [b;]?Y] is a binary column vectorp; = {0,1},
nonlinearity usually is canceled or separated out. Thdtiegu X = [X;]?Y), X; = (it — kiz + ¢, Gion = (' kign = k],
bilinear equations have solutions that can be expressetas s¢; v = ¢}, X;+n = X/, k; = j¢? is the dispersion relation,
of exponentials. Computationally, bilinear equationssaslwed Ry «on IS the Riemann matrix,
perturbatively by expanding the unknowns in terms of the
powers of a small parameter For integrable equations, this
series truncates, rendering approximate solutions ofouari Rij = § 2108 (¢ — () —log7y, (N + 3 —i)(N + 3 —j) >0,
orders to be indeed exact. The bilinear transformation bas b —2log (¢; + ¢j) +logy, i< Nandj> N +1,

0, P27,
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G
interaction
e~ (witjan)t : terms

{b1} —

e*((.derijz)t

{bQ}—) bk: to wy, <_ q:G/F
) mapper : )

e*((.«)]\f%’jO(N)t

{on} —
F
interaction
terms
Fig. 4. Hirota modulator for creatingv-solitons.
and the natural Fourier basis functions that solve linear PDé&s,
N oN integraple systems, exp(_)nentially decaying/growing fions
L, Yb= > b, are suitable. The addition of the decaying/growing factor
01(b) = =1 =Nt er“t is the point at which the nonlinear Fourier transform
0, otherwise diverges from the linear Fourier transform_[21]. Secondly,
N 2N for each individual soliton term, the Hirota method adds
L Y bi=1+ > b, two-way interaction terms, three-way interaction ternts,,e
d2(b) = i=1 = N1

until all the interactions are accounted for. In this way th
interference between individual components is removed, as

Matrix R is upper triangular (with zeros on diagonal) and suc10Wn schematically in Figl 4. Talilé Il shows these intépact
that when it is partitioned into fouN x N blocks, thel1, 12 terms forV =1,2,3. _
and22 blocks capture, respectively, the interaction betwaign ~ While the Hirota method reveals important facts about
andX;, X; andX*, andX; andX* variables. The entries in signal degrees-of-freedom in the NLS equation, it may not

[l 7 j? i j . . . N

i i be the best method to compute multi-solitons numerically.

the 11, 12 and22 blocks are, respectively, given Bylog(¢; — " o 92N o P 22N | Mol Yy
¢;)~log 7, ~2log(Gi+Cy_ ;) +logy and2log(Cy_,—C4_,)— There are(y) ~ 22V and (7,) ~ erms inF’ an
log . Eigenvalues\; are related ta@; via {; = —2j\;, whereas

0, otherwise

G respectively, and unless one truncates the interactionster

the Hirota spectral amplitudes; are generally different from &t SOme step, the complexity quickly grows, making it hard to
those of other methods. computeN-solitons forN > 10.

FunctionsF” andG are in the form of the sum of all possible 3) Recursive Discrete Spectrum Modulation Using Darboux

exponentials such that iff the number of non-conjugate angfransformation: Multi-solitqn soluti_ons of the NLS equation
conjugate variables; and X is the same while irG; the can be constructed recurswely using the Dgrboux tran;form
former is one more than the latter. For each exponential, terfipn- The Darboux transformation, originally introducectie
termsR;; corresponding to the interaction between all possibf®@Mext of the Sturm-Liouville differential equations alader
pairsX; andX;, i # j, in the exponent are added: see TaHle (Hsed in nonlinear |r_1tegrable _systems, prowdgs the pdisgibi
Note that functionsF and & both contribute to the O constructa solution of an integrable equation from a@oth
signal amplitude, whereasF, being real-valued, doessolunon [22]. For instance, one can start from the trivial

not contribute to the signal phase. Using the identiﬁﬁlunonq: 0 of the NLS equation, and recursively obtain all
By log F = (FttF _ th) /F?, (I3B) is reduced toy(t, 2)|? = igher-orderV-soliton solutions. This approach is particularly

v~ 19y log F. Therefore it is also possible to derive the ampIiWeII suited for numerical |mpI¢mentat|on.
Let z(t, A\; g) denote a solution of the system

tude ofq solely in terms of a function of'. This is because
F andG are not independent. x = P(C,q)x,

Two important observations follow from the Hirota method. v, = M((,q)e (14)
Firstly, multi-soliton solutions of the NLS equation in the * T
andG domain ¢ = G/ F) are the summation of exponentiallyfor the signaly and complex numbef = A (not necessarily an
decaying/growing functiong™+*¢7**=*= each located at a eigenvalue of), where theP andM are2 x 2 matrix operators
frequencya. That is to say, while plane waves®*—** are defined in [Part I]. It is clear that = [z}, —x%]7 satisfies
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TABLE Il
THE STRUCTURE OF THEINTERACTION TERMS IN F' AND GL.
F
N=1 14+ X1+ X7 +FR3
2 14 X1+ X{+R13 | oXo+XJ+Ros | o X1+ XJ+R14 | oXo+XT+Ra3 | oX1+Xo+ X+ X5+ Ri2+Riz+Ria+Raz+Roa+Raa
3 1+ 8X1+Xf + eXerX; + eX3+X§ + (8X1+X§ + 8X2+Xf + eX1+X§ + eXaJrXf + 8X2+X§ + 8X3+X§> +

(8X1+x2+x;f+x; 4 eX1HXo b XT+XE | X1+ Xo+ X5+X5 4 o X1+ Xa+ X[ +X5 4 X1+ Xa+X[+X5 | X1+ Xa+X3+X3

feXo+Xa+X{+X] | oXo+Xa+X]+X3 +6X2+X3+X§‘+X§) 4 X1+ Xo+Xa+X]+X5+X3

G
N=1 eX1
2 eX1 4 X2 4 X1+ X2+ XT+R12+Ris+Ras | o X1+ X2+ X5+ Ri2+Ria+Rog
3 eX1 teX2 4 X3 4 <6X1+X2+Xf + eX1+X2+X5 + eX1+Xo+X3 +6X1+X3+Xf + eX1+X3+X5 + eX1+X3+X3

eX2+Xa+X] | oXo+Xa+X5 4 8X2+X3+X§:> + <6X1+X2+X3+X1*+X§ + X1+ Xo+ Xa+XT+X5 4 8X1+X2+X3+X;+X§:>

YFor N = 3, termsR;; in the exponent are not shown, due to space limitation.

(I4) for ¢ — ¢*, and furthermore, by cross-eliminatiop,is chosen to be the (non-canonical) eigenvectgis A;; 0) =
a solution of the integrable equation underlyingl(14). [Aje=N¢ B,eiit]T. The coefficientsA; and B; control the
The Darboux theorem is stated as follows. spectral amplitudes and the shape of the pulses. For a single

Theorem 1 (Darboux transformation)Let ¢(, \;¢) be a soliton, 4; = eXp_(]lq) and B; = |ql.
known solution of(Id), and sety = SI'S—!, where S = Remark 3. In this paper we mostly use Darboux method

[6(t, X\ q), (L, X; q)] and T = diag(\, \*). If v(t, u; q) satis- for numerical generation aW-solitons and discrete spectrum

fies (14), thenu(t, si; §) obtained from the Darboux transformSimulations. Hirota method, on the other hand, is preferred
for the analytical examination aiV-soliton and insight into

u(t, ;@) = (ud — ) v(t, 15 9), (15) the NFT. The Riemann-Hilbert approach is more general and

- captures the continuous spectrum too (though it is somstime

satisfies(Id) as well, for il-behaved)
1 2 C. Evolution of the Discrete Spectrum
Furthermore, bothg and g satisfy the integrable equation Recall that the imaginary and real parts of the eigenvalues
underlying the syster@4). correspond, respectively, to soliton amplitude (energydl a
Proof: See AppendiXB. m frequency. If the discrete spectrum of the signal lies cateby

Theorem[L immediately provides the following observan the imaginary axis, thev-soliton does not travel while

tions. propagating (with respect to a traveling observer). The-ind

vidual components of aiV-soliton pulse with frequencies;
off the jw axis travel in retarded time with speeds proportional
to R\; (frequency).

The manner ofN-soliton propagation thus depends on the
choice of the eigenvalues. AN-soliton signal is essentially
composed ofV single-solitons coupled together, similar to a
molecule which groups a number of atoms. If the eigenvalues
: . N\ have non-zero distinct real parts, various componentgltiay
obtained fromy according t0[(16), and(t, u; g) is one different speeds and eventually, when- oo, the N-soliton

of its eigenvectors. : ;
: . ) _decomposes intdV separate solitons
These observations suggest a two-step iterative algorithm

to generateN-solitons, as illustrated in the FigE][5—6. De-
note a k-soliton pulse with eigenvaluesq, \a,...,\x by ¢
q(t; M1, X, ..., A\x) == ¢®). The update equations for the
recursive Darboux method are given in Tabld Ill. Note thathere \; = («; + jw;)/2 are eigenvalues and; is the

v(t, \;;¢*TY) can also be obtained directly by solvingime center. This breakdown of a signal to its individual
the Zakharov-Shabat systei (7) fof*t1). It is however components, while best observed in the case of multi-swijto
more efficient to update the required eigenvector accordiigysimply a result of group velocity dispersion and exists fo
to Table[Il. The algorithm is initialized from the trivial all pulses similarly (including sinc functions). The extesf
solution ¢(® = 0. The initial eigenvectors in Fig.]6 arebreakdown and shift depends on a variety of factors, such

1) From ¢(t, A; q) andv(t, u;q), we can obtainu(t, u; q)
according to[(Ib). If, is an eigenvalue of, theny is
an eigenvalue of as well. Furthermore, since(t, u =
X;4) # 0, M is also an eigenvalue df It follows that the
eigenvalues ofj are the eigenvalues af together with
A

2) ¢ is a new solution of the equation underlyinig](14)

N
(t,z) — Zwie*jo‘itﬂ(o‘?*”?)”j@ sech(w;(t — 2,2 — t;)),
i=1
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O (t Akr15 (8 Ay o+ 5 Ar)) j Gt M Aes) o (t, 5 q(t; Ay oo Ax)) ot s q(t A1, Akrn))
q(ta >‘13 ,/\k) U(t7/\k+17q(t7/\17 a)‘k)) —T

(a) (b)

Fig. 5. Updates in the Darboux transformation: (a) signalaig; (b) eigenvector update.

q(t) =0 q(t; M q(t; M1, A) —@— -+ q(t; M, ..., A1) —O—>

) ) At A, )
u(t, A1;0) v(t, i gt A1) v(t, A3 q(t; A1, A2)) 'g v(t, AN gt AL An—1))
o(t, Ag; 0) o(t, As; q(t; A1) (t, A3 q(t; M, A2)) '03
v(t, As; 0) o(t, A gt A1) 0(t, As; q(t; A1y Az)) '@
®
(t, An—2;0) v(t, An—15q(t; A1) v(t, Ans q(t; A1, A2))
v(t, An-130) v(t, Awia(t; M) 1

Fig. 6. Darboux iterations for the construction of Aksoliton.

as the length of the fiber, number of mass points, fibérng-haul fiber-optic communications, one can treat nose a
dispersion and dispersion-management schemes. Theseffacsmall perturbation and still safely use the NFT.
of pulse broadening must be carefully considered, espgcial Calculation of the exact statistics of the spectral dathat t

if dispersion is not managed. receiver can be quite cumbersome. This is essentially lsecau
the NLS equation with additive noise, unlike the noise-free
D. Demodulating the Discrete Spectrum equation, has little or no structure, giving rise to comguiéx!

To demodulate a multi-soliton pulse, the eigenproblEn
needs to be solved. There is limited work in the mathemati
literature concerning the numerical solution of the Zakkar
Shabat spectral problem] (7). In [Part IlI], we have studlet
methods by which the nonlinear Fourier transform of a signg
may be computed numerically. In particular, in this paper we
use the layer-peeling and Ablowitz-Ladik methods describé&emarks. Note that in this paper, we have not included the

in [Part 1] to estimate the discrete spectrum. The reader@geCtS of fiber loss in our model. This assumption is justifie
referred to [Part 1] for details. in systems using distributed ideal Raman amplification civhi

compensates loss but adds an equal amount of noise. Therefor
loss is essentially traded with noise, which is treated ia th
section.

In this section we generalize the deterministic model con- . ) i
sidered so far to include the effects of amplified spontaseou ,”_”9'36 IS added_ In-a -Iumped fashpn, we have the.deter-
nistic NLS equation with random initial data at the input

emission (ASE) noise during signal propagation. We presemf
a method to approximate the statistics of the spectral data®h &ach fiber span. In this case, the NFT can be used without
the receiver. approximation.

. . L . If noise is injected continuously throughout the fiber as a
Remarké_l. In S_ectlon[E we identified mter-channel Inter'result of DRA, we have the stochastic NLS equatigh (1) that
ference in multiuser WDM networks as the intractable fact

o . Ycludes an additive space-time noise term. This equaton i
limiting the achievable rate_s of the_current methods at hl%nerally not integradk However, we can discretize the fiber
Eg&crgogovéi?hlgnggrwear:jsgnﬁo?ﬂftir:z ?o V;?g\lf;;fﬁg?e to a large number of small fiber segments and add lumped
comprehénsive analysis rfoise at the end of each segment. Each such injection of noise
' acts as a random perturbation of the initial data at the input
The addition of noise disturbs the VaniShing or periOdi§f the next Segment_ The DRA can thus be approximate|y

boundary conditions usually assumed in the developmentipfated similar to the lumped noise case. In this case, NFT is
the nonlinear Fourier transform. One may therefore questigsed under such approximation.

whether the NFT is in fact well defined in this case. Fortu-

nately, since the ASE n.Oise power in optical fibers is _qmte5ln a special case, the NLS equation with a certain real-daneltiplicative
small compared to the signal power for SNMR0 dB used in potential can still be integrablé [23, Appendix D].

pressions could be obtained, it is unlikely that they oul

suitably tractable for data communications studies. One
n, however, approximate these statistics using a patiarb
eory, or simulate them on a computer. In this paper weviollo
perturbation theory approach.

(Cgriational representations for the noise statistics nef/exact

IV. STATISTICS OF THESPECTRAL DATA
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TABLE Il
UPDATE EQUATIONS FOR THERECURSIVEDARBOUX METHOD

Eigenvector update:
v
[|o(t, Aer1; ¢

+ (N1 = Mer)vr (kg1 a®)v3 (8 Aega; g7 (8, )\j;q(k))},

v1(t, Aj; gD = {{(Aj = Xit1) o1 (t,Ak+1;q(k))|2 + (A = Appq) |va(ts >\k+1§q(k))|2 }vl (t, Ay q®)

1
[|lv(, Akﬂ;q(k))HQ

F(Af1 = )5 (8 A1 ¢ )2t Aegrs g5 (¢, Aj;q(k))},

. . NNT NNT .
va(t, Aj; ¢ TY) = {{(AJ = X)) |1 Aeg1; a7 4+ (A = A1) [v2(t Aega; ¢ }v2(t,>\j;q(k))

fork=0,...,N—2andj=k+2,...,N.
Signal update:

v1(t, M5 )5 My 0))
llo(t, Aksas q(k))H2

q(k+1) = q(k) + 2]()\z+1 — >‘k+1)

In this section, we study the effect of the lumped and For the non-self adjoint operatofs the orthogonality that
distributed noise perturbations on the NFDM channel modele require is between the space of left and right eigenvector
We assume that the noise vanishes, or is negligiblg| as co of L associated with distinct eigenvalues; that is to say,
and has a finite energy such that the signal remains absoluteétween eigenvectors d@f associated withh and eigenvectors
integrable almost surely (NFT assumptions). of the adjoint operatoE* associated withy # A*. Let us equip

the space of eigenvectors with the usiidlinner product
A. Perturbation of Eigenvalues o

1) Lumped NoiseThe NFT aris_es in the spectral analyfsis (u,v) = / (urv} + ugv}) dt.
of the L operator[(B). We can easily analyze the perturbations
of the eigenvalues of thé operator to the first order in the
noise levele. It can be verified that the operatdi; L is self-adjoint,i.e.,

Let us denote the nonlinear Fourier transformgdf) in  (u, X3Lv) = (33Lu, v), whereXs = diag(1, —1) is the Pauli
the absence of noise byj(\),G(A;)). As the signalg(¢t) at matrix.
the input of each small segment is perturbed;tt) + en(¢) We use a small noise approximation, expanding unknown
for some small parameter and (normalized) noise processvariables in noise level as
n(t), the (discrete) eigenvalues and spectral amplitudes &evia

— 0o

slightly from their nominal values. Separating the signadl a () = v @) + oM () + S0P (@) +--- . (18d)
noise terms, the perturbedand \ satisfy A=2O L xD L 2\@) 4. (18b)
L+ eR)v = Av, R= N , 17 e assume these variables are analytic functionssm that

oo W h iabl lytic functionssaf th

the above series are convergent. Plugdingl(1Ba)}-(18bjiio
where R is the matrix containing the noise. The study ofnd equating like powers af we obtain

the nonlinear Fourier transform in the presence of (small)

input noise is thus a perturbation theory of the non-sejbiat Lv©® = Xy (19)
operatorL + eR. (L — /\(0))1;(1) =—(R- )\(1))0(0)’
Perturbation theory of Hermitian operators is well-stadie (L — /\(o))v(g) — (R- )\(1))0(1) L A@,0

(e.g, in quantum mechanics). The Zakharov-Shabat operator

in (I7) is however non-self-adjoint. Unfortunately mosefus gnd so on. The first term implies that® and A(© are
properties of self-adjoint operators (in particular, théstence ejgenvalue and eigenvector of the (nominal) operdiofTo
of a complete orthonormal basis from eigenvectors) do ngfiminate v; from the second equation, we take the inner

carry over to non-self-adjoint operators. For either tyfe @roduct on both sides of (IL9) with some vectar the left
operator, deterministic perturbation analysis alreadistex hand side of the resulting expression is

in the literature [[24]-£[2[7]. These results, however, ar@-no

stochastic and the distribution of the scattering data il st (u, (L — X)Wy = (L = XO)*q, vV

lacking. A very interesting work is[ [28] in which authors = ((L* = X%y, oWy, (20)
calculate the distribution of the spectral data for the &dec

case in which the channel is noise-free and the input isTa have the right-hand side ¢f (20) vanish, we can chaotse
white Gaussian stochastic process. There is also much wbekan eigenvector of the adjoint operafdrassociated with an
pertaining to the statistics of the parameters of a singlites; eigenvalugu = A(9*, i.e,, (L* — \(9*)y = 0. Since L*(q) =
seee.qg, [29] and references therein. L(—q), if Lv = X%y, it can be verified thal.*u = A\(®)y for
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u = [v1, —v2] = T3v. Settingu = u® = 30O (¢, A*), where we assumefdj| = w so that the soliton is centered at
@ _ @ Ro®) to = 0. Furthermore,

(u(©® p(0) (Z3v(t, \*), Ru(t, M)
Using similar calculations we obtaik(®) (v (£, XY (£, \)n* + va (t, XY} (¢, \)n) dt

0 1 0 1 /
@ _ (WO Ro) ) ), 00) /

WO @) T (0 )

A

A

1
1 sech?(wt) (va(t, \*) — v3 (t, \)) Radt
and so on.

To summarize, the fluctuations of th& eigenvalue\,, with
nominal eigenvectov,, is given by 1

=- /sech(wt) tanh(wt)Radt — %/sech(wt)i‘mdt,
Wns Bon) 2y 210N (@21)

(Un, Vn) wheren = nexp(j®) has the same statistics as It follows

sech?(wt) (va (¢, A*) + v3(t, \))Sndt

B~ =

—J

[\

;\n:/\n—f—é

whereu,, = X3v, and ' denotes the eigenvalue after noisé;hat
addition. It follows that the perturbation of the eigenwsu
is distributed, to the first order, according to a zero-mean Xz = _/SeCh(T) tanh(7)z1 (7, 2)dr, (24a)
complex Gaussian distribution.
Continuing this approach to find higher-order fluctuations Wy = /SeCh(T)Z2(T’Z)dTv (24b)
of eigenvectorsp®), k > 1, is not straightforward because
the underlying operator is not self-adjoint. wherez; = Rz, z2 = Sz andz(t, 2) = a(t/w, 2), i.e, z; and
2) Distributed Noise: Consider now the perturbed NLSz2 are mdependent Gaussian processes each with total power
equation wWzo?. The Gordon-Haus effect can be observed from the
a, equation. Note that in fiber optics noise is added to the
J6: = que + 2|a*q + en(t, 2), (22)  signal,i.e., n in this subsection should be replaced wjti

wheree is a small parameter (noise power) and the normaliz&emark6. Note that the higher-order termg? in expansion
noise termn(t, z) represents the combined effects of the signg21) are signal-dependent (even though they are normaliged
loss and the distributed noise. (un,vy)). For instance, Exampld 2, and as well as Eig. 8 (b),
Let us represenf(22) with the sanieand M of the noise- show that noise variance grows with signal. In this casedrigh
free equation and now letvary with z. The equality of mixed order terms need to be included as well for precision. The

derivativesv,, = v,; gives perturbation approach given in this section takes into aato
Y +gu + 24lql? only the first term in the expansion, and as a result mostly
( L dhe o I T AT q) 0 describes the bulk of the distribution in the small noiseitlim
—az + jag, + 2jlal*q Jz

Note, however, that the first term is also signal-dependent.
This, upon re-arranging and usirig(22), simplifies to Thus the effect of the noise growth with signal is accounted
_ _ for in the above analysis.
Av =€eRv, R=—R.

Note that, as before, we do not have, z) a priori because,
according to[{B), it depends on the noisy signél, z) and B. Perturbation of Spectral Amplitudes
)\(2), both of which are unknown. However, if the noise level Usmg a similar perturbaﬂon approach, we can study the
¢ is small, we can expand(t, ) and X in powers ofe as in influence of noise on spectral amplitudes as well.
(183) and[(18b) to obtait\(?)), = 0 and Rv(® = (A1), (") As reported in [Part II], in the Riemann-Hilbert approach
(e, (AV). appears as a time-independent eigenvalue @fe discrete spectral amplitudes are chaotic even where nois
R(t)). Taking the inner-product with(®) = $50(%) (£, A*) on s zero. We thus here consider first-order fluctuation of con-
both sides ofRv(® = (A().v(®), we obtain the first-order tinuous spectral amplitudes, under the lumped noise model.

variation of eigenvalues Continuous spectral amplitudes are obtained by solving the
(0) 7,,(0) following Riccati equation [Part 1]
(A1), = M (23)
W@, o) ay(t, ) . o s )
’ = —(q(t t t —(q* (¢t *(t
It follows from (Z3) that the distribution of the deviation dt (q(8, ) + en®)y™(t, ) = (@ (1, A) + en™(1)
of the eigenvalues is approximately a zero-mean condilipna (25)

Gaussian random variable. The variance of this random vari—h N = q
able is signal-dependent, and although eigenvectors dfan wherey(—oo, ) =0 an

soliton can be represented as a series from Darboux tramsfor _ o . J

it is best calculated numerically i¥ > 2. a(t,2) = a(t) exp(2jM0), - 4(\) = Am y(t,A).

Example2. Consider the single-soliton of Exampile 1. It cane can write a Fokker-Planck equation for the probability
be verified that{Xzv(t, \*),v(t,\)) = —%(1 + |q|2) = —1, distribution ofy(t, \) in @5) [30], [31]. If the signalg(t) is
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known,e.g, ¢(t) = 0, the resulting equation can be solved. limprove upon the on-off keying solitons, first we continugus

general, however, we can expand modulate one eigenvalue in a given regidre.( a classical

9 soliton but with varying amplitude, width and phase). Wetnex

y(t,A) = yo(t, A) + ey (t,A) + €ya(t, A) +--- consider multi-soliton systems with a number of constieltet
G(A) = Go(N) + €i(A) + €GN + -+, on eigenvalues and discrete spectral amplitudes.

Throughout this section, we consider a 2000 km single-
ode single-channel optical link in which fiber loss is per-
ectly compensated in a distributed manner using Raman

amplification. Fiber parameters are given in Table I. Disjmer
compensation is not applied, as it is an advantage of the NFT
G(t,\) =2 / q(m, Nyo(r, A)dr, approach that no optical dispersion management or nominea

ity compensation is required. We let pulses interact néjra

as atoms in a molecule, and perform signal processing at
the receiver on these groups. The method however works
. Gl o Gr) for dispersion managed fibers as well, and in general with
@i(A) =e / (r, Ae dr. operations that do not change integrability.

— 00

and equate like powers af We obtain thatjy(\) (and its
correspondingyo (¢, A)) is the spectral amplitude when nois
is zero (assuming(t, \) =~ q(t, Ao)). Define

t

— 00

andn(t,\) = — (n(t)yd(t,A) + n*(t)). Then

This is a conditionally Gaussian random variable (for earh
with variance A. Spectral Efficiency of 1-Soliton Systems
o0 Traditional soliton transmission systems ically do not
Elg (V) = 036_2%(00’”/ (Iyo(r, MI* +1) 22T Vdr, pave high spectral efficiencies. This);s becat%ré theyarﬂplitu
- and the width of a single-soliton are inversely related, and
where we assumed that noise is delta-correlated. If for soRgnce they require a lot of time or bandwidth per degree-
signa}ls,E|qA_1(/\)|2 is unbounded, the above perturbation exst freedom provided. Errors in a soliton transmission eyst
pansion fails and a slow-scale varialife= ¢t needs to be occyr ejther because of the Gordon-Haus timing jitter ffec
introduced. . _ ~ (which is the primary source of the errors, if not managg}) [3
In summary, in this section we showed that a simple firsy gmpjitude (energy) fluctuations. It follows from Galifea
order perturbation analysis, though inaccurate, givegs jnyariance [5] that the Gordon-Haus effect exists for atide
into the nature of the statistics in the nonlinear spectrgt ises to the same extent and is not specific to solitoris. Th
domain. In the next section, we discuss the impact of theenoigassical effect can be reduced with the help of suitably de-

on the achievable spectral efficiencies. signed filters. We do not treat Gordon-Haus jitter analylijca
however, system simulations naturally include this effect
V. SOME ACHIEVABLE SPECTRAL EFFICIENCIESUSING Let us first consider a classical soliton system with only one
THENFT eigenvalue\ = (a + jw)/2. The joint densityf o(a,w) at

We now turn to a numerical study of data modulatiogny fixed distance can be obtained froni (2#b)—(24a) (or by
in the nonlinear Fourier domain, providing some simulatiopxtracting the dynamics af andw from the stochastic NLS
results and examples of achievable spectral efficienciest, F equation, resulting in a pair of coupled stochastic ordinar
in Sectiond V-A to[V-C, we set the continuous spectrum t@ifferential equations).
zero and modulate the discrete spectrum. This special cas®lote that a soliton of the deterministic NLS equation
corresponds to aiv-soliton data transmission system. Then, iftunched into a system described by the stochastic NLS equa-
Sectior VD), we set the discrete spectrum to zero and maglultien would, of course, have a growing continuous spectrum
the continuous spectrum. too. In addition, there would be a small chance of creating

For the discrete spectrum modulation, we begin with @dditional solitons out of noise at some distance, or the
classical on-off keying soliton transmissiodV(= 1), in soliton spectrum might collapse into the real axis in the
which, in any symbol period’, either zero or a fundamentalA plane. All these effects are negligible if noise is small
soliton is sent. We then increasé and the spectral efficiency €nough,2Wzo? < E(0), and the propagation distance is
by considering an(N > 2)-soliton system, occupying thenot exceedingly long. Thus, at a length scale determined by
same time interval as the on-off keyed soliton system, addl’z0® < E(0), we can still think of the noisy signal as a
maintaining the same bandwidth requirements. The locatig@liton with re-modulated parameters.
of the eigenvalues and the values of the discrete spectraMultiplying the stochastic NLS equatiof (22) ly, sub-
amplitudes can be jointly modulated for this purpose. Wel sh&acting from its conjugate, integrating over time, andngsi
see that the effective useful region in the upper half-plafigtegration by parts in the dispersion term, we get
to exploit the potential of discrete eigenvalue modulati®n oo
limited by a variety of f_actors. _ B_E — 9% / (1, 2)Z (7, z)dr,

Modulating the nonlinear spectrum generates pulses with 0z
variable width, power, and bandwidth. We take the aver-
age time, average power, and the maximum bandwidth whereE(z) = [ |¢(7,2)|?dr is the energy, and = —en* is a
properly convert bits/symbol to bits/s/Hz. As a first step tnoise process similar ten. Replacingg(t, z) — ¢(t,0) in the
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(a) Capacity (bits/symbol) and, (b) spectral efficie (bits/s/Hz), of soliton systems using direct detectismmpling att = 0, and the NFT.

small noise limit, we obtain that energy fluctuation is a sign requires for transmission. For a one soliton signal, we have
dependent conditionally Gaussian random variable) ~ approximately
Nr(E(0),0%E(0)) (02 = 2Wz03/P). Ignoring the energy

of the continuous spectrum in the small noise limft < 1, 7

we haveFE ~ 2w and therefore

5 w(0) > o?,

w(z)=w(0)+o
function (PDF) is

1 _ (w=—wg)?

wlwg) = ——
f(l\Qo( | 0) \/m

)

and the PDF ofr = /w givenry = /wg, w,wy > 0, is

approximately a Rician distribution

1 _(r=r)?
[ o2
2

fRiR, (r|ro) = p

2r _ T2+2T3 2170

%ge o 0(7), r,To > g,

which is signal-independent in the high SNR regime.
In [31] we have shown that a half-Gaussian density

2
2nP
gives the asymptotic capacity fdr (27)

2
_ %0
e 27, WOZO,

fQo (wo) =

C ~ %1og(SNR),

where SNR= £

Translating capacity in bits/symbol to spectral efficiemty

(26)

where . ~ Ng(0,1). The conditional probability density

BW(Wo) = 0.950.10, (29)

where the widthT'(wy) includes a guard time—four times
the full width at half maximum power (FWHM)—so as to
minimize the intra-channel interactions.

Using [29), the maximum spectral efficiency of a baseline

e e | wy=w(0), (27) on-off keying system is obtained to be abowt~ 0.15

bits/s/Hz at the average poweP, = 0.16 mW. Note that
the per unit cost capacity problerh {28) is non-convex and
hence finding the global optimum may prove to be challenging.
Here we simply optimize mutual information and scale it
by BW(S) x ET(wp) evaluated at the mutual-information-
maximizing input distribution.

Fig.[d shows the achievable rate and the spectral efficiency
of a 1-soliton system with amplitude modulation using vasio
detection methods. Note that since we do not solve the opti-
mization problem[(Z28), the spectral efficiencies shown & th
Fig.[d(b) are only lower bounds on the actual achievable val-
ues. Figd. B(a)—(b) show the constellation at the transnstid
the “noise balls” (of radius equal to one standard deviatibn
the distance to the transmitted point) accumulated oveORD,
simulation trials at the receiver. The actual number of gign
levels is 64 in the simulations. Calculation of the apprcaden
rate is performed using the Arimoto-Blahut algorithm and is
confirmed by numerical interior point optimization.

Note that, as is clear from Figsl 7(a)—(b), sampling signals

bits/s/Hz depends on the receiver architecture. Assuntiag tatt¢ = 0 is clearly a bad idea; it is shown here just to see the
the receiver is able to decode pulses with variable widties, teffects of the timing jitter on —soliton systems.

spectral efficiency(P) is obtained by
1

EP(WQ) S 7),

(28)

B. Spectral Efficiency of 2-Soliton Systems

To illustrate how the NFT method works, we start off with

where T'(wp) and P(wp) are the width and the power of atwo simple examples. These two examples are intended to

single-soliton with amplitudey, and BW(.S) = max BW(wy)

explain the details of transmission and detection using the

wp€S ..
is the maximum passband bandwidth that the signal S¥ET. but they have not been optimized for performance.
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can generally be best decoded with the help of the nonlinear
Fourier transform.
In this example, the receiver needs to estimate the pulse-
g duration. This can be done in many waysg, using the
NFT computations already performed: zeros of the signal in
1 05F f 1 time can be detected whéste’*, v2e 7] reaches a constant
| 0 | ‘ | value in steady state. This can be checked at timesT,
1 -04 -02 0 02 04 ¢=2T) andt = 2.587;. If one of the signals is zero at the end
R(N) of another signal, one can monitor the energy of the contiauo
(b) spectrum to make sure that it is small. If the symbol duration
is fixed to be the maximum.587}, the addition ofS5; and
fhig- 8. (3 Etiﬁenmé'i#e Constelrllati%? at theltéaﬂsm(ijﬁe)- Mbi;%_ba"; I?IH S, increases both time interval and cardinality of signal set
D P T depercenchiahtie b siich that the spectal efiiency and data rate remain aunsta
standard deviation of the received eigenvalue. (log(6)/2.58), while operating atr7% of the on-off keying
signal power.
Since solitons with purely imaginary eigenvalues do not
1) Modulating EigenvaluesConsider the following signal syffer from major temporal or spectral broadening, spéctra

+ 2000000000

— =
® T O|leeecccocooooeeo o
~ >

=

set with 4 elements: efficiencies at the fiber output are essentially the sameaseth

S, ;0 at the input to the fiber.
. N 2) Modulating Eigenvalues and Spectral Amplitudés§e
SQ : q(05]) = 1, . . .
- , can improve upon the previous example by modulating the

Sy + 4(0.257) = 0.5, spectral amplitudes as well. Consider the following sigsel
Sy : §(0.255,0.55) = (1,1). (30)

Table[TM shows the energy, duration, power and the bandwidth S (3’ . 3

of these signals. Sz — 55 q(0.55) = qu,

We compare this with a standard on-off keying (OOK) Se—So : 4(0.255) = Go,
soliton transmission system, consistingsfandS,. From the Si0— Sie §(0.254,0.55) = (G5, da)-

signal parameters given in Talile]1V, it follows that the OOK

system provides aboyk = 0.33 bits/s/Hz spectral efficiency we make a 3-ary constellation ofy € {0.5,1,1.5}. This

at Py = 0.1876 mW and Ry = 7.42 Gbits/s data rate. Note creates a signal set with 16 elements. Here pulses are extend

that the noise level is so small compared to the imaginagy 37, time duration. The resulting constellation has average

part of the eigenvalues that this scheme essentially aehiav power P = 1.06F, and average time duratidhi = 2.2367},

transmission rate of 2 bits/symbol. whereP, andT; are the power and the symbol-duration of the
The full constellation defined in_(80) has average powgfenchmark on-off keying system. Therefore the new sigrtal se

P = 0.46F, and average time duratidfi = 1.6571, where provides aboup = log 16/(2.236 T, W) = 1.79x po bits/s/Hz

Py and Ty are the power and the time duration of thend operates ak = 1.79 x R, for about the same average

fundamental soliton. The new signal set therefore providggwer. If we fix symbol durations to be the maximu,

a spectral efficiency of abouyt = log4/(1.6571Wo) = then the improvement ip = 2.2p, = 0.73 bits/s/Hz, at80%

1.2121 x Po bits/s/Hz and Operates a = 1.2121 x R() of the average power.

for about the same average pow@ { 0.1748 mW). Note  again, since the real part of the eigenvalues is not modu-

that without S, the average power would be higher and ifyieq, signals do not suffer from major temporal or spectral
addition the improvement in the spectral efficiency WOU'Broadening.

be slightly smaller compared to the on-off keying system. . . .
Signal S, is the new signal (a 2-soliton) that goes beyon emark7. Note that modulating the eigenvalues includes only

conventional pulse shapes. Such signals do not cost mucmﬁ_amplitl"de information (similarly t8/-ary frequency-shift-
terms of timex maximum bandwidth product, while they ad eying). To excite the other half of the degrees-of-freedom

additional elements to the signal set. These additionalassg '€Presenting the phase, discrete spectral amplitudesiashou
also be considered. Whilgj(A;)| may be noisy, the phase

£G(;) or a function of{G();)}’~" can be investigated for

TABLE IV this purpose.

PARAMETERS OF THE SIGNAL SET IN@BO)L.
signal| energy| duration FWHM| 99% duration| power | bandwidth

S1 0 To Th 0 Wo

Sa Eo To Ty Py Wo iCi _Soli >
o |05 5 o7 o7, 0.257 | 0.5 C. Spectral Efficiency oV-Soliton Systemgy > 3
Ss |15 FEy 4,281 2.58T1 0.58P, | 0.5,

L Here o — 9 Tn — 1763 at FWHM Ty — 5.2637 (29% To achieve greater spectral efficiencies, a dense corigialla
ere Lo =2, 1o = 1. al power, 77 = 5. ) . .
energy), Py = 0.38 and Wy = 0.5714. The normalization factors in the upper half _ComF?'eX plar_le ne_eds to be ?OnsmerEd' A
in the NLS equation ard}, = 25.246 ps and P, = 0.5 mW at spectral constellation with possible eigenvalues i@* (from
dispersion0.5 ps/(nm — km) andy = 1.27 W~ 'km ™" which k eigenvalues are chosei < k < n) andm possible
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Fig. 9. Achievable rates in (a) a single-channel, and (b) aMMptical fiber system using the nonlinear Fourier transf@ma backpropagation. The SNR
is calculated at the system bandwidth and can be adjustegptesent th@ptical signal-to-noise ratio. Note that since we have used raissifie functions
with 50% excess bandwidtip = 2C.

values for spectral amplitudes provides up to values in a region not limited to thgv axis, is likely to yield
. significantly higher spectral efficiencies.
n The recent work of[[32] also describes optical transmission
1 1 =nl 1 = o :
©8 <kz_%) <k>m ) nlog(m+1), schemes based ofV-soliton transmission and the inverse

scattering transform, with reports on some achievabletsglec
bits per symbol (fewer if a subset is chosen). One can coatingfficiencies.

the approach presented in the previous examples by inogeasi

n andm. The receiver architecture presented in [Part 1] is fairIE/) o . .
simple and is able to decode NFT signals rather efficiently.D: Spectral Efficiencies Achievable by Modulating the Con-

Some choices of spectral parameters may translate to pul%gous Spectrum

having a large peak to average power ratio, large (99%)In addition to the discrete spectrum, the continuous spec-

bandwidth, or large (99%) time duration at= 0 or during trum can, in some cases, also be modulated.

their propagation. The signal set should thus be expurdgated Here we consider the modulation of classical raised-cosine

avoid such undesirable signals. We have not yet found ruleslses, with 50% excess bandwidth. The continuous spectrum

for modulating the spectrum so that such undesirable signaf an isolated raised-cosine pulse is purely continuous at

are not generated. For the small examples given here, we &am amplitudes, resembling its ordinary Fourier transform

check pulse properties directly; however, appropriategties We modulated the amplitude of an isolated raised-cosine

criteria for the spectral data (particularly the discrgtectral pulse, propagated the pulse over an optical fiber channél, an

amplitudes) should be developed. estimated the continuous spectrum of the received siged. T
In this simulation, we assume a constellation with 30 pointeceived spectrum was then compared with the spectrum of

uniformly chosen in the interval < A\ < 2 on the imaginary all possible transmitted waveforms at the transmitter gitie

axis and create allV-solitons,1 < N < 6. We then log-Euclidean distance

prune signals with undesirable bandwidth or duration from o

this large signal set. The remaining multi-solitons areduse . . 1 . . 2

carriers of data in the fiber system described at the beginnin da2(\), 1 (N) = P / log (1 F1a(N) = ()] )d)\'

of Section[VV. Here a spectral efficiency af5 bits/s/Hz is e

achieved. For this calculation, we take the maximum pulseFig.[9(a) shows the estimated achievable rates in a typical

width (containingd9% of the signal energy) and the maximumnsingle-channel fiber-optic system, comparing detectideraf

bandwidth of the signal set. By increasimgand m, pulse filtering, backpropagation, and matched-filtering, withtede

widths get large and the shift of the signal energy from th#n using the nonlinear Fourier transform. A multi-ringgsie-

symbol period, due to the Gordon-Haus effect, becomes lessft keying modulation was used, with rings at 16 distinct

significant. Gordon-Haus effect for solitons is as impar@s amplitude values and 32 different phase values per ring. The

it is for sinc function transmission and backpropagation. complex plane was quantized into the Voronoi regions corre-
We would note that the spectral efficiency reported hesponding to the ring constellation, to discretize the clehim:

was achieved using only a rather simplistic design approagut. Capacity was computed via the Arimoto-Blahut alganith

We believe that a more sophisticated search over the desigre NFT is calculated at either 64 or 1024 uniformly spaced

space, in particular exploiting the possibility of moreveldy discrete points on the real axis over a range containing most

modulating spectral amplitudes and phase and choosing-eigef the pulse energy. The 1024-point NFT is compared with a
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1024-point fast Fourier transform (FFT) implementatiorniod 3(A) (amplitude)
split-step Fourier method in the backpropagation scherne. T
simulation is performed for a standard single-mode fibehwit <o+ [ user —1 user 0 user 1

dispersion parametép = 17 ps/(nm — km). As can be seen,
the NFT and backpropagation methods achieve approximately
the same rates. The slight improvement in the NFT method
can be attributed to the stability of the continuous spédata Fig. 10.  PartitioningC* for multiuser communication using the NFT.
compared to the traditional time data (amplitude and phase a

the O_Utpl_Jt of a matched filter). _A. Multiuser Communications Using the NFT
This simulation was repeated for 5 WDM channels with A potential gain i hievable in fib i N b
the system architecture of Figl 1. Here, low-pass filters ang”® POtental gain 1s achievable in hiber-optic systems by

ROADMs are placed at the end of each fiber segment. Tﬁgt.'ploﬁmg r']e_thtOde’ such as NFDM, which are less prone to
spectral efficiency in this case is obviously lower due giier-channetl interierence.

the inter-channel interference. Here too, NFT and FFTd)ast% Recall lthat Im NFDM the (;eal and _ |m?g||natry taxes_ of |
backpropagation produce approximately the same results. € complex plane correspond, approximately, to the signa

From Fig[9 it follows that at low SNRs NFT and backproptreqqen?y and energy. To use N.FDM as a multiuser com
) . . munication method, we can partition the complex plane into
agation achieve about the same rates. As the SNR is increasgd . . . : . :
- . isjoint regions.e.g, vertical bins. Each bin can be assigned
the spectral efficiency of backpropagation degrades due 10 :
. ~t0"a user and can contain one or more degrees-of-freedom. To
ISI (under the commonly-assumed isolated symbol detection .. . L
: . . : multiplex user signals, traditional ROADMs must be repthce
in which the memory is not accounted for) or inter-channel. . . .
. . . with nonlinear add-drop multiplexers (NADMs) which func-
interference (in a network scenario). However, the spbctrﬂa\ n according to the NET. In princiole. each NADM would
efficiency of the NFT scheme may be higher due to its inheren? g - NP p'e,

immunity to cross-talk, provided that users are multiptex compute the spectrum of its input signals and filter the dggna

: : . . X80 be dropped ifC™T. It would then places the spectrum of the
appropriately in the nonlinear frequency domain in a mséiu signals to be added in empty bands and produces the output
setup; see Sectidn VIIE.

Igignal by taking the inverse NFT. In this way, each user is
A X assigned a region in the complex plane and, in the absence
beyor;d t_hosS shownhm IS: 9 (a)—(b)dcéue;o h|gh n:i_me” noise, does not interfere with other users; see [Ei§. 10 as
complexity. Up to the 25 — 30 SNOWNR 1N FI9S. el as Sectiof VI-B. In such a manner, NFDM results in an

(a)—(l_)) sig_nals only have a continuous spec_trum. T'B?thogonalization for the deterministic nonlinear Sahinger
made simulations doable. Beyond these SNRs, discrete m Snnel

points start to appear. This is in fact the SNR level where
the nonlinearity starts to become significant (becausehén tB
focusing regime, the discrete spectrum is the component of
the NFT which is primarily responsible for the nonlineayity !N @ nonlinear interference channel, the interference can
In the N-soliton transmission simulations of the previou§ave two components. The first, termed “deterministic feter
subsections, we began with a desired spectral constellatf]'ce:” arises from the (deterministic) interaction of tignals
at the transmitter. As a result, the initial conditions rembd Of Other users with the user of interest, and in general isgure
in the Newton algorithm at the receiver were known and tHYen in the absgnce of noise. The seco_nd, term(_ed “stochastic
detection was computationally feasible. The difficultyrine Nterference,” arises from the (stochastic) coupling ofsao
however, was that the properties of the resulting signathén with the signals of other users, interfering with the chdmfe

time-domain (bandwidth and time duration) were not proper|[Nt€rest. Thus, noise can affect the channel of interesty
understood. In contrast, in this subsection we started with{in-0and noise) and indirectly (by introducing interfecej

signal set in the time domaire., raised-cosine signals. WhenTYypically deterministic interference is stronger thancststic
Rterference.

a signal is scaled according to a time-domain constellatid i ) " . .
discrete mass points appear at unknown places in the complefn® NLS equation with additive noise has no known inte-
plane. The difficulty here is that the properties of the resgl grability structure, in the sense of possessing a set of non-

signals in the spectral domain are not properly understasd. INteracting degrees-of-freedom. As a result, while the NFT
a result, it is difficult to search for these discrete massigoi Method does not suffer from (strong) deterministic interfe

without a priori information on their locations. The potaht €NC€. & (weak) stochastic interference is expected to lseite

advantage of NFDM thus remains to be illustrated. In other words, even when users are multiplexed so that
they do not interact in the absence of noise, the addition

of noise can introduce stochastic interference. In corspari
VI. DISCUSSION conventional WDM with backpropagation is subject to both
deterministic and stochastic interference.

In this section, we make a few remarks about the NFT Finally, note that an additive (in-band) white noise in the
method, clarify some of its properties and potential pcadti time domain has coordinates in the spectral domain which may
issues, and suggest some possible directions for futuesinvnot be independent. Such correlations should be accouated f
tigation. when designing signal detectors.

R(A) (frequency)

Noise in the Spectral Coordinates
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C. NFDM versus OFDM the channel to be linear, the near-integrable channel is

NFDM and OFDM are essentially similar in the absence of €ngineered to be integrable, so as to support its natural
noise. However, as noted above, in cases where the presencelonlinear modes, which characteristically tend to form in
of noise breaks the integrability structure, then, unlikeDM, the medium.
the signal degrees-of-freedom are not independent in NFDM. b) High Complexity:The nonlinear Fourier coefficients

Note also that, while the ordinary Fourier transform of at the receiver are calculated usir@(n) operations per
signal is a function of a real variable, the NFT of a signal igonlinear frequency, where is the number of signal samples
generally defined on the whole complex plaihe, nonlinear in time. In comparison with with thé&(nlogn) complexity
frequencies are complex-valued. Since complex frequenc# the FFT, the complexity of an-point NFT is, at present,
in the upper half complex plane are isolated points, thi8(n?) (assuming a fixed number of Newton steps are needed
component in the support of the NFT can be modulatéd the case of discrete frequencies). The complexity of the
too. OFDM is conceptually in analogy with the continuouransmitter can be even higher. As a result, the NFT is
spectrum modulation, where only the spectral amplitudes aurrently computationally difficult to implement or sonmats
modulated. The discrete spectrum differs further from theven to simulate. It is therefore of interest to developefast
continuous spectrum in that it is the frequencies G algorithms.
themselves that contribute to the signal energy, and nat the c¢) Hardware Limitations: Optical or electrical signal
spectral amplitudes. processing ofN-solitons and their required hardware.d,

The analogy between NFDM and OFDM can be betté¥/Ds) may not be as simple as those in linear systems. The
understood in fibers with negative dispersion parametehign NFT decoder typically requires signal samples at increment
case,q* is replaced with—¢* in @) and [T) and the (noise- smaller than the Nyquist period. An interpolation step may b
free) channel is still integrable. Here, similar to OFDMgthneeded to find all the necessary data.
nonlinear frequencies are real and information is encoaéd o

in spectral amplitudes. This case is appealing analyji@dd g achievable Rates Using NFDM

numerically, since the underlyinfy operator is Hermitian. . ) L.
Y ying op As mentioned earlier, a stochastic interference can be

) present in NFDM. As a result, although the achievable rate of
D. Advantages and Disadvantages of NFDM NFDM in a multiuser channel can be higher than that of WDM
1) Advantages:Some of the advantages of using NFDMvith backpropagation (at least in the limit that noise gaes t
were outlined in Sectiol I. In short, deterministic disimms, zero), it too may ultimately peak at some finite SNR. We have
i.e., distortions that arise even in a noise-free system (SPRbt yet simulated the capacity at high SNRs to see when this
XPM, FWM, ISI and interference) are zero for all users of enay potentially happen. However, note that, regardleshef t

multiuser network. method of transmission, the noisy channel will fundamdytal
2) Disadvantages: be subject to interference due to the lack of integraility

a) Aplicable only to Perfectly Integrable ModelstFDM Note that the decline of the achievable rates in WDM
critically relies on the integrability of the channel. Losssimulations in prior work is mostly due to the deterministic
higher-order dispersion, and other perturbations caused distortions. Our capacity simulations, as well as those in
filters and communication equipment not taken into accou, Fig. 36], show that in the absence of noise the rates
in this study contribute to deviations from integrabiliihere of the WDM method still vanish (or saturate, depending
are, however, several reasons to believe that the ovelired on assumptions on interfering users) at high powers in the
from the transmitter to the receiver can still be close to aretwork scenario. This is not the case for multiuser NFDM

integrable channel: whose achievable rate is unbounded when noise is absent.
« Using Raman amplification, the effects of loss are minimal/e thus expect improvements in the information rates using
(and indeed are traded with noise perturbation). NFDM, due to the immunity to the deterministic distortions.

« The NFT is applicable as long as the system can support
soliton transmission. Solitons have been implemented i Eigenvalue Communication of Hasegawa and Nyu
practice in the presence of communication equipment
(filters, multiplexers, analog-to-digital (A/D) converte
etc). This is an indicator that the overall channel is sti
nearly integrable.

As noted in introduction, as well as in [Part 1], the work of
Fasegawa and Nyu on “eigenvalue communication” [9] is re-
ated to the NFT-based approach taken in this paper. Hasegaw
« Mathematically one has stability results for solitons [33E.nd Nyu mgke the o_bservat|on that t_he time-domain data is
. : . . . ._distorted while the eigenvalues remain constant and can be
A soliton passing through a filter might be slightly dis- . : i
) . . uied for communication. The authors then considered single
torted, but it re-organizes its shape so as to revert bac . T .S
: - . . user channels, encoded information in conserved quasjtitie
to its original shape (or to form a soliton with a nearb)é1 . X
nd used the inverse scattering transform (IST) as a means to

discrete spectrum in the complex plane). - . ’ =
. Considering that the performance of the WDM method déj_ecode these conserved quantities. The idea is illustfated

grades asymptotically with SNR, it may be worthwhile t(g)ulses of the formd sech(t).
'den“f)( sources of pertur_batlons to integrability in .NFDM 6Since, for instance, the NLS equation with a generic adslifiotential
and minimize them. This way, rather than engineeringpes not have conserved quantities.
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The use of conserved quantities in a communication chantreinsmission distance, is introduced between users’ lsigna
is desirable since it facilitates deterministic signalqassing However, a system designed for one transmission distange ma
at the receiver and may simplify communication design. Hovfail to operate at a larger distance: As the signal propagate
ever, fundamentally it does not offer any capacity improgatn further in distance, at some point orthogonalization ig.los
if one uses an equivalent set of non-conserved quantiigs ( Also, in principle, as the signal power tends to infinity, the
amplitude and phase). In fact, it is clear that #rire signal transmission time of the user of interest tends to infinitwal
itself is a conserved quantity under backpropagation and canin effect, TDM turns the multiuser channel into a single-
be perfectly recovered. Thus the approach [df [9] does nader one in order to address the interaction problem adsdcia
achieve anything more than what BP does. It is therefore neith the linear multiplexing. Ignoring practical issues @
necessary to aim at extracting and modulating quantities canetwork scenario, a TDM system designed for the worst-case
served by a channel. Furthermore, the application of corsger system and user parameters can be nearly capacity-aaievin
guantities in a multiuser setup is in and of itself not usefuin that regime. In fact, this is also true for WDM: if one
since conservation does not imply separability which ulieier has infinite bandwidth, users’ signals can be widely sepdrat
the NFDM approach. such that in the range of system and user parameters their

In contrast, our primary motivation for introducing NFT-interaction is negligible.
based methods stems from recent capacity studies [4] and ouFhe distinguishing feature of NFDM is that, determinis-
observation, made in Secti@d Il, that a major reason that thieally, it is an exact orthogonalization for any transnoss
capacity rolls off in prior work, after abstracting away Rondistance, signal power, dispersion or nonlinearity patame
essential aspects, is predominantly because these methbders’ signals may overlap in time and frequency, but they
in essence, modulate linear-algebraic modes. When usedhir separated in the nonlinear Fourier domain.

a nonlinear channel, this leads to a significant inter-cklnn

interference and ISI. We noted that the NLS equation, howevg The Discrete Nonlinear Fourier Transform

supports nonlinear modes which have a crugidependence
property, that can be used to build a interference-free muItiusgr

system. The mathematical framework necessary to rev - .
y y and periodic, should be implemented. The development of the

signal degrees-of-freedom is the IST. As a result, in [Havel " ¢ i Fourier t ‘ ists in th th
began with IST, shifted the focus from the scattering thﬁorgéScre € nonfinear Fourer transtorm exists in the matrema

considered IST as a Fourier transform, filtered its litevatu'>> literature [[Z1], [[34}-[36] — although it is not as fully
accordingly and presented a signal-and-systems perspectggvebped as the continuous one. Therg are-also Important
This then paved the way for [Part Il] and this paper Whosdelfferences in the way that the spectrum is defined.
overall goal was to construct NFDM, which can be viewed as
a generalization of OFDM to nonlinear systems. The exigenc
of an OFDM-like scheme for a nonlinear system is rather Motivated by recent studies showing that the achievable
surprising. In [Part II] and this paper, we developed dstaitates of current methods in optical fiber networks vanish
of NFDM transmitter and receiver. Note that NFDM may noat high launch power due to the impact of nonlinearity, in
have eigenvalues as in[9]. Indeed the analogy between NFO)R&rt I], [Part 11], and this paper we have revisited infotioa
and OFDM can be best understood in the defocusing regiti@ansmission in such nonlinear systems. In these papers, we
where, similarly to the ordinary Fourier transform, one haguggested using the nonlinear Fourier transform to transmi
a transformationj(A). This signal transformation underliesinformation over integrable communication channels sugh a
NFDM. the optical fiber channel, which is governed by the nonlinear
Schrddinger equation. In this transmission scheme, néer
. . . tion is encoded in the nonlinear Fourier transform of the
G. Linear Multiplexing Methods other than WDM signal, consisting of two components: a discrete and a con-
In this paper, we mostly focused on WDM as an exampletiuous spectral function. With this new method, deterstini
linear multiplexing method. There are however other meshodistortions arising from the dispersion and nonlineastych
as well which, in essence, modulate linear-algebraic mémtes as inter-symbol and inter-channel interference are zerafo
transmission and behave similarly. Time-division multiphg single-user channel or all users of a multiuser network.
(TDM), OFDM and multi-mode communication are other We took the first steps towards the design of a communica-
examples. tion system implementing the nonlinear Fourier transfova.
Although mathematically these methods are not exact @roposed a Darboux-transform-based algorithm for modulat
thogonalizations, within a certain range of system and useg the discrete spectrum at the transmitter, and we pradvide
parameters they can potentially be approximate orthogonalfirst-order perturbation analysis of the influence of naise
izations. For instance, at low powers where the nonling#@it the received spectrum. Furthermore, we provided examples
weak, each o, WDM users achieve$/n of the degrees-of- illustrating how the NFT can be used for data transmission.
freedom. Among these schemes, TDM is different in that, thdthough these small examples clearly demonstrate improve
dimension in which the multiplexing occurse., time, can ments over their benchmark systems, more sophisticatge-lar
be practically unlimited. TDM can be capacity-achieving i§cale simulations are required to demonstrate the poteatia
a sufficient guard time, depending on the users’ powers aachieve high spectral efficiencies.

To implement NFDM in practice, the discrete nonlinear
urier transform, in which time domain signal is discrete

VII. CONCLUSIONS
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Because nonlinearity is a key feature of fiber-optic net- The first iterationn = 1 is

works, the development of nonlinearity-compatible traizssm Hlg =0
sion schemes, like those based on the nonlinear Fouries-tran ’
form, is likely to continue to be a fruitful research direxti {(fl)“ =0,
which gives
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APPENDIXA A. Case N=1

SOLUTION OF HIROTA EQUATIONS We havefy =1, go = f1 =0 andg; = eX*. Forn = 2

Because[(13a) and_(113b) are homogeneous equations in
the order of derivatives that occur in each term, exponkntia H(l.g2) = —H(f1g1) =0,
(f2)ue = —3 D3 fLf1 + 79197 = veXr 50,

functions are candidate solutions. Let us exp&hdndG as
F(t,2) = fo(t,2) +efi(t,2) + Efalt,2) + - -, At this point, since one variabl¥; already exists and/ = 1,
i t truncating the process by choosing zero solutions
G(t,z) = go(t, z) + eqr(t, z) + €2ga(t, z) + -+ -, we aim at ing the p y 9
(t,2) = got, 2) + eg1 (¢, 2) g2(t,2) and avoiding the inclusion of termsp(X;), ¢ > 2. We thus
for some small parameter The bilinear terms i (13a)=(18b) consider the solution
e oo n oo n g2 = 07 f2 = 8X1+XT+R137
FG = Z e (Z fkgnk> , FF = Z " (Z fkfnk) ., whereR3 = —2log(¢y 4 () + log~. It can be verified that
n=0 k=0 n=0 k=0 the above solution then gives all other terfis= g, = 0,
s k > 3, and the iteration truncates. The 1-soliton solution is

GI* = Z € <Z 9k9fz—k> ‘ obtained as
k=0

n=0

G X1
Substituting these expressions irito (13a)={13b) and equat 1= 5 = [ X TXi+Rn
like powers ofe gives rise to a recursive procedure to obtain 1, _ 1
{fnt1,gn+1} from {f.,gn}. To begin finding unknowns = ie*ER“e“X1 sech <§RX1 + §R13) )

recursively, we can set initiallfy = 1. The zero-order term
¢’ then givesgy = 0. Starting with{fo = 1,90 = 0}, the By setting¢, = —2jA\ = w — jo whereA, = (a + jw)/2 is
recursive equations are: the eigenvaluek; = j¢f = 2aw — j(a® —w?), ¢1 = log -,
we get

n—1
Hlgn=— 3 H(fugn i), L
g kgz:l (fkg k) q=we jat+j(a® —w?)z—j4q sech (W(t — 20z — tO)) ’

log 24l and 2 denotes phase.

1
w w

n—1 n—1
Ouifn=—3% kZl D3 fifrn—k +7 kZI Ik wheret, =

where H = jD, + D?. It can be seen thaf, 11 = gon = 0. B. Case N=2
At each iteratiom one of f,, or g,, is non-zero, which is used
in the next iteration. For a general nonlinear system, tigma
continue indefinitely. However, for integrable equatioas,
shown below for the NLS equation, this series truncates anfiH (1.92) = —H f1g1 = 0,
exact solutions of various finite order are obtained. (f2)ue = —3D? f1f1 + 79197

Before proceeding, it is useful to know properties of the =5 (€X1+X1* 4 X+ XS 4 o XotX] 4 ex2+xg)_
Hirota operators. LetX; = (it — k;z + ¢;, with dispersion

Forn=1wegetf, =1, g0 = f1 = 0andg; = eX1 +eX2,
The next iteratiom = 2 is

relationk; = j¢2. Then: We choose the solutiog, = 0 and
1) DieXiei = DFeXieXi = (5 — ()24, fo = XIHXI R | X4 XS+ | Xo X[+ Rag
2) D.eXieXi = —D,eXieXi = (kj — k;)eXit¥; L XetXitRa
3) HeieXs = (j(kj — ki) + (¢ — G)?) X2, ’
4) H(1.eX) = (jk+¢He®, X =t —kz + ¢; where
5) H(etei) = ;;H(l.et™%9), where «;; = 210g(Ci — ;) — log, ij<Norij>N+1,
(ks = ki) + (G = G)?) / (Gks + ki) + (G +G)%)s R = ' _ _
6) H(eX!eXitXi) = H(eXHX] eXi) = 0; —2log(¢; +¢j) +1logy, i< Nandj>N+1,
7) H(l.g) = He*ieXi has a solutiony = ajeXi+%, and Gy n_Cr
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Then = 3 iteration is The first equation giveg, = 0. For the second one, using
{Hl.g3  H(fig+ fags) = —H Fale™ 46, riroperty 1), vlve have * *
O f3 = 0. SDEfaufy = S DF (XTI XX+
The second equation givefy = 0. The first one, using + X2t Xi+Has +eX2+X5+R24)2
property 6), simplifies to — G- q)QeQXlJFXHX;JrRMRM
H(l.g3) _ _H(exl*-i—Xg-i—Rgg'eXl) _ H(€X2+X;+R24.€X1) + (<2 _ C1)26X1+2Xf+X2+R13+R23
_H(exf-i—Xl-i—ng'eXg) . H(6X1+X§+R14'6X2)' F G+ G —C— q)2eX1+X1*+X2+X;+R13+R24

+ (Cik +l—CG— C;)28X1+X1*+X2+X;+R14+R23

Using property 7), a solution is . C1)26X1+X2+2X;+R14+R24

_ X1+ X[ +X2+R X1+ X2+ X,+R 2 X[ +2Xo+X,+R R
93__(a23)1e 1+X, + X2+ 23—}—(124)16 1+ X2+ X5 +Rog +(<;_<f) e X1 T2X2+Xo +Rog+ oy
i . _ * 2 X1+ X, +Xo+X5+Ris+R
Fagg et XI+Xe R 26X1+X2+X2+R14) = (G4 — G —(p)Ter TR AT
) ) * 12 X1+ X{ +Xo+ X7+ Ria+Ra3
Ri3 Ra3) ,X1+X7+X> + (Cl TG <2) c
- _ 1 e
(a13,2€ + a3 1€ ) e + 7{ele+x1 +X5+Ris+Ris+Ras
— (0114 28R14 + (ag 1€R24) 8X1 +X2+X;. (31)
, ) + eX1+2X7+ X2+ Riz+Roz+ Rz

Here + X1+ X2 +2XS + RiatRoat Raz
o Ny = j(ki - (/%i +k5))) + (G — (Q: +¢)? + eX;+2X2+X;+R23+R24+R34}- (32)
J(kzi + (k] ;Lka;)) + (C;t(éi +¢)? Also
_ GG x eXiHXIHXa+ Xy
G+ i 7{exl+2X{‘+X2+R12+ng+zzz23
and similarly, + X1+ X +2X5+ Ris+Ruat Raa
3k = (7 + k) + (G = (G +G)? - 2T R
Sy (kR (G (G G2 XTI R R R (39)
_G=G The terms inside braces in{32) and](33), involving;, 2X5,
S 2X7 and2X3, cancel out using identitieR}, = Rs4, Ri3 =

Ri3, R}, = Ras, R5, = Ra4. The terms containingxp(X; +

The first coefficients = a132¢f12 + a3 122 in is
192 i G X7+ X2 + X3), after some algebra, simplify and we obtain

o — G =G eftis 4 G—G oFes fa= e X1+ X7+ X2+ X5+ Ria+ Rig+Ria+Roz+Roa+ Raa
G+ ¢ G+
G —C Y G —G y One can check thaf, = g, = 0, k > 5. It follows that
TGTe Grar T arg Grar TR TR RS RSO ST T
. (G — <2)2 4 X +X2+X2*+Rl2+Rl4+R247
(Cik + Cl)Q(CT + <2)2 F=1+ €X1+Xf+313 + eX1+X§+R14 + 6X2+XT+R23
— Pzt RiztRos

+ €X2+X2*+R24

In the same manner, the second coefficient a4 seff1+ + 4 X1 XX+ Xo+ Razt Rag+ Raat Raa+ Raat ag

gy 1e2¢ in (3]) is obtained as
) C. General Formula
= —(G = G) = _ePfretRiatRag The calculations in the previous subsections illustrate ho
(G + )R +E6)? one can add an additional teraxp(Xy) to g; and update
F and G. Using similar calculations)N-soliton solutions are
obtained inductively. Furthermore, at this point the stuue
g3 = X1t X +Xo+ Rzt Ris+Ras | oXn+Xo+ X5+ R+ RiatRaa - of F and G, noted earlier, becomes clear.
In the Hirota method, eigenvalues = («o; + jw;)/2 are
Then = 4 iteration is: related to¢; by ¢; = —2j\; = w; — ja;. For N = 1, the
spectral amplitude is determined via = log(2w?/G1). While
Hl.94 =0, eigenvalues in the Riemann-Hilbert, Hirota and Darbouxmet
(f)ee = —3D3(faf2) + V(9395 + 9193)- ods are the same, other spectral parameters are different.

It follows that
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APPENDIXB
PROOF OF THEDARBOUX THEOREM

[9]
[10]
See [22] for the proof of a more general theorem. Here we
give a simple proof for Theoref 1. 1]

Let ¢(t,\;q) be a known eigenvector associated with
andg, i.e, satisfyingg, = P(), q)¢. Its adjointp(t, X;q) = [12]
(¢35, —¢%] satisfiesg, = P(\*, q)¢. Denote this known solu-
tion asS = [¢, ], T = diag(A, A*), and S = STS~ 1. 3]

We can verify thatS, = JST+@Q.S, whereJ = diag(—7, j)
and Q = offdiag(q, —¢*). In addition we haves; = [JX +
Q,Y].

Given thate(t, A; q) is known, the Darboux transformation
maps {U(tv 3 Q)v ﬁ(ta M3 Q)} to {u(ta M3 q~)a ﬂ’(ta s d)} accord-
ing to

_ [14]

[15

[16]

U=VA-3V, [17]

whereV = [v,7], U = [u,u], A = diag(p, u*).
We haveV, = JVA + QV and
Uy = ViA — (V +2V)
=(JVA+QV)A - ([JS+Q,X]V + S(JVA+QV))
=(JVA+QV)A=SJVA — ([JE+Q, %] +2Q)V
=J(VA=SV)A + JEVA - SJVA
+QVA—([JE+Q,X]+2Q)V
=JUA+[L,EVA - ([JE+Q, %] +XQ)V + QVA
=JUA+[J,Z]VA = (JE2+ QX —ZJ) V + QVA
[
[

(18]

[19]

[20]
[21]

[22]

= JUA+[J,Z]VA = [J, 2]V — QZV 4+ QVA
=JUA+[J,Z](VA-XV)+ Q(VA - XV)
=JUA+(Q+[]X])U
= JUA + QU,
whereQ = Q + [J, 3.
It follows that v and @ satisfy the P-equationsu; =
P(p,q)u and i, = P(p*, §)u. In the same manner we camnpeg]

show thatu and @ satisfy theM-equationsu, = M (u, §)u
anda, = M(u*, q)a.

[23]
[24]

[25]

[27]
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