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Abstract

This paper gives the approximate capacity region of a two-user MIMO interference channel with limited

receiver cooperation, where the gap between the inner and outer bounds is in terms of the total number of receive

antennas at the two receivers and is independent of the actual channel values. The approximate capacity region is

then used to find the degrees of freedom region. For the special case of symmetric interference channels, we also

find the amount of receiver cooperation in terms of the backhaul capacity beyond which the degrees of freedom

do not improve. Further, the generalized degrees of freedom are found for MIMO interference channels with equal

number of antennas at all nodes. It is shown that the generalized degrees of freedom improve gradually from a

“W” curve to a “V” curve with increase in cooperation in terms of the backhaul capacity.
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I. INTRODUCTION

Wireless networks with multiple users are interference-limited rather than noise-limited. Interference

channel (IC) is a good starting point for understanding the performance limits of interference-limited

communications. In spite of research spanning over three decades, the capacity of the IC has been

characterized only for some special cases [1–7].

ICs model practical cellular networks. However, since the cellular base stations are connected via

backhaul links, making efficient use of the backhaul is an important practical problem. This backhaul

can lead to cooperation between transmitters in the downlink and cooperation between the receivers

in the uplink [8–13]. Cooperation between transmitters or receivers can help mitigate interference by

forming a distributed MIMO system which provides performance gain. The rate at which they cooperate,

however, is limited, due to physical constraints. In this paper, we tackle the fundamental problem of

efficient use of limited-capacity backhaul for multiple-input multiple-output (MIMO) uplink ICs (with

receiver cooperation). Recently, many results have shown that transmitter and receiver cooperation can be

employed in ICs to achieve an improvement in data rates [14–22]. However, most of the existing works on

ICs with cooperation are limited to discrete memoryless channels or to single-input single-output (SISO)

channels. This paper analyzes two-user MIMO Gaussian ICs with limited receiver cooperation.

The authors of [14] considered a two-user SISO Gaussian IC with limited receiver cooperation where

there are links with fixed capacities between the two receivers and they found the capacity region of the

channel within two bits. In this paper, we find an outer bound and an inner bound for the capacity region

that are within N1+N2 bits for a general MIMO IC with limited receiver cooperation (i.e., limited backhaul

capacity), where N1 and N2 are the numbers of receive antennas at the two receivers, respectively. We

use an achievability scheme based on that for the discrete memoryless channel in [14]. In this scheme,

receivers do not decode the messages immediately upon receiving the signals from the transmitters. One

of the receivers quantizes its received signal at an appropriate distortion, bins the quantization codeword

and sends the bin index to the other receiver. For quantizing the received signal, a novel distortion function

for MIMO IC is given in this paper. The other receiver decodes its own information based on its own

received signal and the received bin index. After decoding, it bin-and-forwards the decoded common

messages back to the other receiver and helps it decode. This paper uses the signal distributions and

auxiliary variables that are different from those in [14] and in such a way that can be used for a MIMO

IC to achieve a constant gap to the capacity region.
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We note that the achievability strategy for the SISO IC in [14] is to split the transmit signal into public

and private messages using the Han-Kobayashi message splitting where the private message is received

at the unintended receiver below the noise floor. For a MIMO IC with limited receiver cooperation, we

proposed a counterpart of Han-Kobayashi splitting in [23] where the covariance matrices for the public

and the private messages were properly designed. In this paper, we give an achievability scheme based on

the splitting scheme in [23]. Further, the authors of [14] proposed different choices of power splits between

the public and the private messages for three different regions of SISO IC corresponding to: weak, mixed

and strong interferences. In this paper, for MIMO IC, we propose a single choice of covariance matrices

for the public and private messages for all regimes rather than considering different regimes separately.

For the special case of SISO IC, the achievability scheme used in this paper reduces to a different one

from that given in [14]. The achievability scheme uses the convex hull of the regions formed by two

strategies corresponding to different decoding orders. The convex hull of the two regions eliminates two

constraints in each region resulting in a constant gap between the inner and the outer bounds.

Having characterized the outer and inner bounds within a constant gap, and as a result having the

approximate capacity region, we also find the degrees of freedom (DoF) region for the two-user MIMO

IC with limited receiver cooperation. We find that the DoF region improves with the increase in cooperation

in terms of the backhaul capacity. For the case of symmetric number of antennas in both the transmitters

and the receivers, we find that the DoF improves up to a certain point in terms of the backhaul capacity,

and beyond which the DoF does not improve anymore.

The symmetric DoF region formed when both each transmitter has M antennas and each receiver has

N antennas, is a pentagon with bounds only on individual DoF (d1, d2) and sum DoF (d1 + d2) for all

cases except when N < M < 2N . Thus, when the number of antennas at all the nodes are the same

i.e., M = N , the DoF region is a pentagon. However, when N < M < 2N , the DoF region also has

constraints on 2d1 + d2 and d1 + 2d2. These constraints are known to not hold for IC with no cooperation

[5], and for ICs with infinite cooperation which corresponds to a multiple-access channel (MAC) [24].

In this paper, we find that the extra bounds on 2d1 + d2 and d1 + 2d2 are dominant for a finite non-zero

limited cooperation (when the backhaul capacity is less than a certain value) for N < M < 2N . We note

that this result shows that the role of transmit and receive antennas cannot be interchanged to get the

reciprocity result which exists in the case of no cooperation [5].

Finally, we also characterize the generalized degrees of freedom (GDoF) for a MIMO IC with limited
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receiver cooperation, when the cooperation links are of the same capacity which is increasing with a base

signal-to-noise ratio (SNR) parameter, say SNR (as β log SNR). Note that even though the DoF region

is found in general, we find the GDoF only in a limited setting when the number of antennas at all the

nodes are the same (say M ). We assume that the channel strengths of the direct links have values of the

order SNR while the cross links have channel strengths of the order SNRα. We find that the increase in

the cooperation leads to improvement in GDoF. For a given M and α, the GDoF increases till β = Mα

at which point the GDoF with limited cooperation is the same as that with full cooperation. Without any

receiver cooperation, the GDoF is a “W” curve (a curve between the GDoF and α). We note that the “W”

curve changes to a “V” curve and then to an increasing function as the backhaul capacity increases.

The remainder of the paper is organized as follows. Section II introduces the model for a MIMO IC

with limited receiver cooperation and the capacity region. Sections III describes our results on the capacity

region. Section IV describes our results on the DoF region and the GDoF. Section V concludes the paper.

The detailed proofs of various results are given in Appendices A-D.

II. CHANNEL MODEL AND PRELIMINARIES

In this section, we describe the channel model that is used in this paper. A two-user MIMO IC consists

of two transmitters and two receivers. Transmitter i is labeled as Ti and receiver j is labeled as Dj for

i, j ∈ {1, 2}. Further, we assume Ti has Mi antennas and Dj has Nj antennas. Henceforth, such a MIMO

IC will be referred to as the (M1, N1,M2, N2) MIMO IC. The channel matrix between transmitter Ti and

receiver Dj is denoted by Hij ∈ CNj×Mi . We shall consider a time-invariant channel where the channel

matrices remain fixed for the entire duration of communication. At time t, transmitter Ti transmits a

vector Xi(t) ∈ CMi×1 over the channel with a power constraint tr(E(XiX
†
i )) ≤ 1 (A† is the conjugate

transpose of the matrix A).

Let Qij = E(XiX
†
j ) for i, j ∈ {1, 2}. We say A � B if B−A is a positive semi-definite (p.s.d.) matrix

and we say A � B if B � A. The identity matrix of size s × s is denoted by Is. Further, we define

x+ , max{x, 0}. We also note that 0 � Qii � I , and 0 � QijQ
†
ij � I .

We also incorporate a non-negative power attenuation factor, denoted as ρij , for the signal transmitted

from Ti to Dj . The received signal at receiver Di at time t is denoted as Yi(t) for i ∈ {1, 2}, and can be
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written as

Y1(t) =
√
ρ11H11X1(t) +

√
ρ21H21X2(t) + Z1(t), (1)

Y2(t) =
√
ρ12H12X1(t) +

√
ρ22H22X2(t) + Z2(t), (2)

where Zi(t) ∈ CNi×1 ∼ CN(0, INi) is the i.i.d. complex Gaussian noise, ρii is the received SNR at

receiver Di and ρij is the received interference-to-noise-ratio at receiver Dj for i, j ∈ {1, 2}, i 6= j. A

MIMO IC with limited receiver cooperation is fully described by four parameters. The first is the numbers

of antennas at each transmitter and receiver, namely (M1, N1,M2, N2). The second is the set of channel

gains, H = {H11, H12, H21, H22}. The third is the set of average link qualities, ρ = {ρ11, ρ12, ρ21, ρ22}.

The fourth parameter is C = {C12, C21} where Cji is the capacity of the cooperation (backhaul) link from

receiver Dj to Di. We assume that these parameters are known to all transmitters and receivers. Also, the

cooperation channels are orthogonal to each other and they are orthogonal to the data channels.

The receiver-cooperation links are noiseless with finite capacities. Encoding is causal in the sense that

the signal transmitted from Dj at time t is a function of whatever is received over the data channel, or

on the cooperation link up to time t − 1. In addition, the decoded signal at Di, m̂i, is a function of the

received signal from the channel, Yi(t), and the cooperation signal transmitted from Dj to Di, Γji, for

i ∈ {1, 2}. Thus, the decoding functions of the two receivers are given as

m̂i = fit(Γji, Yi(t)), (3)

where fit is the decoding function of Di at time t. Let us assume that Ti transmits information at a rate

of Ri to receiver Di using the codebook Ci,n of length-n codewords with |Ci,n| = 2nRi . Given a message

mi ∈ {1, . . . , 2nRi}, the corresponding codeword Xn
i (mi) ∈ Ci,n satisfies the power constraint mentioned

before. From the received signal Y n
i and the cooperation message from Dj , i.e. Γji, Di obtains an estimate

m̂i of the transmitted message mi using a decoding function. Denote the average probability of decoding

error by ei,n = Pr( m̂i 6= mi).

A rate pair (R1, R2) is achievable if there exists a family of codebooks Ci,n and decoding functions

such that maxi{ei,n} goes to zero as the block length n goes to infinity. The capacity region C(H, ρ, C)

of the IC with parameters H , ρ and C is defined as the closure of the set of all achievable rate pairs.

Consider a two-dimensional rate region C(H, ρ, C). Then, the region C(H, ρ, C)	([0, a]×[0, b]) denotes

the region formed by {(R1, R2) : R1, R2 ≥ 0, (R1 + a,R2 + b) ∈ C(H, ρ, C)} for some a, b ≥ 0. Further,
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we define the notion of an achievable rate region that is within a constant number of bits of the capacity

region as follows.

Definition 1. An achievable rate region A(H, ρ, C) is said to be within b bits of the capacity region if

A(H, ρ, C) ⊆ C(H, ρ, C) and A(H, ρ, C)⊕ ([0, b]⊕ [0, b]) ⊇ C(H, ρ, C).

III. INNER AND OUTER BOUNDS ON CAPACITY REGION

In this section, we give the outer and inner bounds on the capacity region of a two-user MIMO IC

with limited receiver cooperation. Let Ro be the convex hull of the region formed by (R1, R2) satisfying

the following constraints.

R1 ≤ log det
(
IN1 + ρ11H11H

†
11

)
+ min{log det

(
IN2 + ρ12H12H

†
12 − ρ12ρ11H12H

†
11(

IN1 + ρ11H11H
†
11

)−1
H11H

†
12

)
, C21}, (4)

R2 ≤ log det
(
IN2 + ρ22H22H

†
22

)
+ min{log det

(
IN1 + ρ21H21H

†
21 − ρ21ρ22H21H

†
22(

IN2 + ρ22H22H
†
22

)−1
H22H

†
21

)
, C12}, (5)

R1 +R2 ≤ log det

(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21 − ρ11ρ12H11H

†
12

(
IN2 + ρ12H12H

†
12

)−1
H12H

†
11

)
+

log det

(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21

(
IN1 + ρ21H21H

†
21

)−1
H21H

†
22

)
+

C12 + C21, (6)

R1 +R2 ≤ log det

(
IN1 + ρ11H11H

†
11 − ρ11ρ12H11H

†
12

(
IN2 + ρ12H12H

†
12

)−1
H12H

†
11

)
+

log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ C12, (7)

R1 +R2 ≤ log det

(
IN2 + ρ22H22H

†
22 − ρ22ρ21H22H

†
21

(
IN1 + ρ21H21H

†
21

)−1
H21H

†
22

)
+

log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

)
+ C21, (8)

R1 +R2 ≤ log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

[√ρ11H†11 √ρ12H†12]+

 √ρ21H21

√
ρ22H22

[√ρ21H†21 √ρ22H†22]
 , (9)
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2R1 +R2 ≤ log det

(
IN1 + ρ11H11H

†
11 − ρ11ρ12H11H

†
12

(
IN2 + ρ12H12H

†
12

)−1
H12H

†
11

)
+

log det

(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21

(
IN1 + ρ21H21H

†
21

)−1
H21H

†
22

)
+

log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

)
+ C12 + C21, (10)

R1 + 2R2 ≤ log det

(
IN2 + ρ22H22H

†
22 − ρ22ρ21H22H

†
21

(
IN1 + ρ21H21H

†
21

)−1
H21H

†
22

)
+

log det

(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21 − ρ11ρ12H11H

†
12

(
IN2 + ρ12H12H

†
12

)−1
H12H

†
11

)
+

log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ C21 + C12, (11)

2R1 +R2 ≤ log det

IN1+N2 +

 √ρ22H22

√
ρ21H21

(IM2 − ρ21H
†
21

(
IN1 + ρ21H21H

†
21

)−1
H21

)
[√

ρ22H
†
22

√
ρ21H

†
21

]
+

 √ρ12H12

√
ρ11H11

[√ρ12H†12 √ρ11H†11]
+

log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
12

)
+ C21, (12)

R1 + 2R2 ≤ log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

(IM1 − ρ12H
†
12

(
IN2 + ρ12H12H

†
12

)−1
H12

)
[√

ρ11H
†
11

√
ρ12H

†
12

]
+

 √ρ21H21

√
ρ22H22

[√ρ21H†21 √ρ22H†22]
+

log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ C12. (13)

The following theorem shows that the capacity region of a two-user MIMO IC with limited receiver

cooperation is within N1 +N2 bits of Ro.

Theorem 1. The capacity region for an (M1, N1,M2, N2) two-user MIMO IC with limited receiver

cooperation, CRC , is bounded from outside and inside as

Ro 	 ([0, N1 +N2]× [0, N1 +N2]) ⊆ CRC ⊆ Ro. (14)

Thus, the inner and outer bounds are within N1 +N2 bits.

Outer Bound: The complete proof that Ro is an outer bound for the capacity region of the two-user

MIMO IC with limited receiver cooperation is given in Appendix A.
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(4), (5) and (9) are cut-set based upper bounds. The other bounds are obtained based on genie-aided

strategies making use of Fano’s inequality, the data processing inequality, the fact that the cooperation

messages are functions of (Y1, Y2), and the fact that Gaussian distribution maximizes the entropy. The

detailed derivations are given in Appendix A.

Inner Bound: Here, we will give a brief description of the achievability strategy. The complete proof

can be found in Appendix B.

The achievability scheme is based on a two-round strategy, similar to that used in [14] for SISO

interference channels. It consists of two parts: 1) the transmission scheme and 2) the cooperation protocol.

1) Transmission Scheme:

Each transmitter Ti splits its own message into private and common sub-messages and sends

Xi = Xip +Xic, (15)

where Xip ∼ CN (0, Qip) denotes the private message, and Xic ∼ CN (0, Qic) denotes the common

message. We assume that Xip and Xic are independent with

Qip = IMi
−√ρijH†ij(INj + ρijHijH

†
ij)
−1√ρijHij, (16)

and Qic = IMi
−Qip, (17)

for i ∈ {1, 2}.

It is shown in Appendix B of [23] that Qip � 0 and Qic � 0. Further, this message split is such

that a private signal is received at the other receiver with constant power. More specifically, we have

ρijHijQipH
†
ij � INj thus the received signal at receiver Dj corresponding to the private signal from

transmitter Ti is below the noise floor.

Remark: Note that the power allocation in (16)-(17) is different from that given in [14] even for a

SISO channel. In [14] different achievability schemes were given for weak, mixed, and strong interference

regimes. Here what we propose is a single choice of parameters for all interference regimes. For the special

case of SISO IC, the above scheme constitutes an alternative choice of variances to those proposed in

[14].

2) Cooperation Protocol:

We use a two-round cooperation protocol similar to that in [14]. In the first round, Dj quantizes its

received signal and sends out the bin index. And then in the second round, Di i 6= j (i, j) ∈ {1, 2}
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receives this side information and decodes its desired messages (its own message plus the other’s public

message). After decoding, Di randomly bins the decoded public messages, and sends the bin indices to

Dj . Finally, Dj decodes its message. In this two-round strategy, STGj→i→j , the processing order is: Dj

quantize-and-bins, Di decode-and-bins and finally Dj decodes. Its achievable rate region is denoted by

Rj→i→j . By time-sharing, the rate region R , conv{R2→1→2∪R1→2→1}, i.e. the convex hull of the union

of the two rate regions is achievable.

For simplicity, we consider strategy R2→1→2. D2 does not decode messages immediately upon receiving

its signal. It first quantizes its signal by a pre-generated Gaussian quantization codebook with certain

distortion and then sends out a bin index determined by a pre-generated binning function. It sets the

distortion level equal to the aggregate power level of the noise and T2’s private signal. D1 decodes

the two common messages and its own private message, by searching in transmitters’ codebooks for a

codeword triplet that is jointly typical with its received signal and some quantization point (codeword) in

the given bin after retrieving the receiver-cooperative side information (the bin index). After D1 decodes,

it uses two pre-generated binning functions to bin the two common messages and sends out these two

bin indices to D2. After receiving these two bin indices, D2 decodes the two common messages and its

own private message, by searching in the corresponding bins and T2’s private codebook for a codeword

triplet that is jointly typical with its received signal.

Although the cooperation protocol is similar to that in [14], the distortion function used for the

quantization of the received signal needs to be extended to the case of multiple antennas. We here describe

the distortion function for STG2→1→2. For the quantization, we use the quantization codebook satisfying

Ŷ2 , Y2 + Ẑ2, (18)

where the distortion Ẑ2 ∼ CN(0,∆) with

∆ = IN2 + ρ22H22Q2pH
†
22. (19)

D2 then sends the bin index to D1. The rate loss due to this quantization, ξ, is given as

ξ , I(Ŷ2;Y2|X1c, X1, X2c, Y1)
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= h
(√

ρ22H22X2p + Z2 + Ẑ2|
√
ρ21H21X2p + Z1

)
− h

(
Ẑ2

)
= h

(√
ρ22H22X2p + Z2 + Ẑ2,

√
ρ21H21X2p + Z1

)
− h (

√
ρ21H21X2p + Z1)− h

(
Ẑ2

)
= log det

 IN2 + ∆ + ρ22H22Q2pH
†
22

√
ρ21ρ22H22Q2pH

†
21

√
ρ21ρ22HjiQ2pH

†
22 IN1 + ρ21H21Q2pH

†
21


− log det

(
IN1 + ρ21H21Q2pH

†
21

)
− log det (∆)

= log det

(
IN2 + ∆ + ρ22H22Q2pH

†
22 −
√
ρ21ρ22H22Q2pH

†
21

(
IN1 + ρ21H21Q2pH

†
21

)−1
√
ρ21ρ22H21Q2pH

†
22

)
− log det (∆)

= log det

(
IN2 + ∆ + ρ22H22

(
Q2p − ρ21Q2pH

†
21

(
IN1 + ρ21H21Q2pH

†
21

)−1
H21Q2p

)
H†22

)
− log det (∆)

≤ log det
(
IN2 + ∆ + ρ22H22Q2pH

†
22

)
− log det (∆)

= log det (2∆)− log det (∆)

= N2. (20)

Thus, we see that the rate loss ξ is upper bounded by the constant N2. That is, replacing Ŷ2 by Y2

incurs at most N2 bits.

Remark: The distortion specified in (19) may not be optimal. The achievable rates can be further

improved if we optimize over all possible distortions. For instance, if the cooperative link capacity is

relatively large, we could lower the distortion level to achieve a better description of the received signals.

With the expression of ∆ in (19), however, we can show that the achievable rate region is within a constant

number of bits to the capacity region for any channel parameters.

Considering the convex hull of the union of the achievable rate regions by the strategies STG2→1→2

and STG1→2→1 for MIMO IC, we show in Appendix B that we can get the achievable rate region for the

general MIMO IC. Moreover, we will show in Appendix B that two of the bounds in each region will

not play a role in the convex hull. This is because if any of these bounds is active, the bound on R1 +R2

is active and thus following the arguments in [14] we get that these bounds will not be active when we

take the convex hull of the two regions. This is illustrated in Figure 1, where it is seen that two of the

bounds in each region are not dominant when a convex hull of the regions is taken.
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Fig. 1. Time sharing of two regions R2→1→2 and R1→2→1. The four lines with arrow marks indicate that the corresponding bounds are
not active when the convex hull of the two regions is taken.

Having considered the inner and outer bounds for the capacity region of the two-user IC with limited

receiver cooperation, we have shown that the inner bound and the outer bound are within N1 +N2 bits,

thus finding the capacity region of the two-user IC with limited receiver cooperation, approximately.

The authors of [14] found the capacity region for the SISO IC with limited receiver cooperation within

2 bits. Theorem 1 generalizes the result to find the capacity region of MIMO IC with limited receiver

cooperation within N1 +N2 bits.

In Figure 2, we compare the inner bound given in Section V of [14] for a SISO IC to that obtained in

Lemma 5 through some numerical examples. Since the outer bounds are the same for SISO, we only plot

one outer bound. Let SNRi = ρii|Hii|2 and INRi = ρji|Hji|2 for j 6= i. In Figure 2(a), we consider a weak

interference regime (SNR1 ≥ INR2 and SNR2 ≥ INR1) with C21 = 1.1, C12 = 1.1, SNR1 = 5, SNR2 = 5,

INR1 = 2 and INR2 = 2. In Figure 2(b), we consider strong interference regime (SNR1 ≤ INR2 and

SNR2 ≤ INR1) with C21 = 6, C12 = 11, SNR1 = 1000, SNR2 = 1500, INR1 = 4000 and INR2 = 10000.

In Figure 2(c), we consider a mixed interference regime (SNR1 ≥ INR2 and SNR2 ≤ INR1) with C21 = 6,

C12 = 11, SNR1 = 9000, SNR2 = 1500, INR1 = 5000 and INR2 = 1000. We see from Figure 2 that the

inner bounds are comparable. In the above example for weak interference channel, the strategy in this

paper gives better achievable region than that in Section V.C. of [14].

In Figure 3, we see the improvement in the capacity region (outer bound) for a MIMO IC with limited

receiver cooperation. The parameters chosen for limited cooperation are M1 = N2 = 3, M2 = N1 = 4,
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ρ11 = ρ22 = ρ12 = ρ21 = 108, C21 = 21, C12 = 15,

H11 =


0.3096 0.1974 0.1080

0.3066 0.4470 0.3885

0.3595 0.6582 0.9854

0.4595 0.6582 0.4566


, H22 =


0.9070 0.6690 0.6854 0.6565

0.6067 0.9480 0.6585 0.6645

0.4465 0.6167 0.6845 0.3685

 ,

H21 =


0.8660 0.9767 0.4595 0.6582

0.8603 0.5850 0.6582 0.9854

0.3066 0.4470 0.6585 0.3885

0.3066 0.6167 0.4470 0.3885


, and H12 =


0.1890 0.7650 0.3864

0.6678 0.2880 0.3867

0.4886 0.7904 0.2684

 . (21)

IV. DOF AND GDOF REGIONS

In this section, we will use the DoF and GDoF regions to characterize the capacity region of the MIMO

IC with limited receiver cooperation in the limit of high SNR. We first describe our results on the DoF

region of the two-user MIMO IC with limited receiver cooperation, and then proceed to the results on

GDoF.

A. DoF Region

The DoF characterizes the simultaneously accessible fractions of spatial and signal-level dimensions

(per channel use) by the two users when all the average channel parameters are an exponent of a nominal

SNR parameter. Thus, we assume that

lim
log SNR→∞

logCij
log SNR

= βij, and

lim
log SNR→∞

log ρij
log SNR

= 1, (22)

where β12, β21 ∈ R+.

The DoF region is defined as the region formed by the set of all (d1, d2) such that (d1 log SNR −

o(log SNR), d2 log SNR − o(log SNR))1 is inside the capacity region. Further, the DoF is the maximum

d such that (d, d) is in the DoF region. We note that since the channel matrices are of full ranks with

probability 1, we will have the DoF and GDoF (next subsection) regions with probability 1 over the

randomness of channel matrices.
1a = o(log SNR) indicates that limSNR→∞

a
log SNR

= 0.
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In this subsection, we find the DoF region for the two-user MIMO IC with limited receiver cooperation.

We use the approximate capacity region characterization in Theorem 1 to get the DoF region for the two-

user MIMO IC as follows.

Theorem 2. The DoF region for a general MIMO IC with limited receiver cooperation is given as follows:

d1 ≤ min (M1, N1) + min{min{N2, (M1 −N1)
+}, β21}, (23)

d2 ≤ min (M2, N2) + min{min{N1, (M2 −N2)
+}, β12}, (24)

d1 + d2 ≤ min{N1, (M1 −N2)
+ +M2}+ min{N2, (M2 −N1)

+ +M1}+ β12 + β21, (25)

d1 + d2 ≤ min{N1, (M1 −N2)
+}+ min{N2,M1 +M2}+ β12, (26)

d1 + d2 ≤ min{N2, (M2 −N1)
+}+ min{N1,M1 +M2}+ β21, (27)

d1 + d2 ≤ min{N1 +N2,M1 +M2}, (28)

2d1 + d2 ≤ min{N2, (M2 −N1)
+ +M1}+ min{N1, (M1 −N2)

+}+

min{N1,M1 +M2}+ β12 + β21, (29)

d1 + 2d2 ≤ min{N1, (M1 −N2)
+ +M2}+ min{N2, (M2 −N1)

+}+

min{N2,M2 +M1}+ β12 + β21, (30)

2d1 + d2 ≤ min{N1 +N2,M1}+ min{N1,M1 +M2}+ β21, (31)

d1 + 2d2 ≤ min{N1 +N2,M2}+ min{N2,M1 +M2}+ β12. (32)

Proof: The proof can be found in Appendix C.

Corollary 1. The symmetric DoF region where β12 = β21 = β, N1 = N2 = N , and M1 = M2 = M , is

given as follows:

For M ≤ N :

d1 ≤ M,

d2 ≤ M,

d1 + d2 ≤ N + β; (33)
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For 2N ≤M :

d1 ≤ N + β,

d2 ≤ N + β,

d1 + d2 ≤ 2N ; (34)

For N ≤M ≤ 2N :

d1 ≤ min{M,N + β},

d2 ≤ min{M,N + β},

d1 + d2 ≤ min{M + β, 2N},

2d1 + d2 ≤ N +M + β,

d1 + 2d2 ≤ N +M + β. (35)

These three cases are illustrated in Figure 4.

Corollary 2. For the symmetric DoF region where β12 = β21 = β, N1 = N2 = N , and M1 = M2 = M ,

cooperation improve the DoF region for β ≤ min{N, (2M −N)+}.

Proof: For M ≤ N it can be seen from (33) that the cooperation improves the DoF region for

β ≤ (2M −N)+ = min{N, (2M −N)+}.

Also, for 2N ≤ M it can be seen from (34) that the cooperation improves the DoF region for β ≤

N = min{N, (2M −N)+}.

For N ≤M ≤ 2N , we consider the following four cases.

Case 1 - β ≤M −N , β ≤ 2N −M : In this case, the symmetric DoF region reduces to

d1 ≤ N + β,

d2 ≤ N + β,

d1 + d2 ≤ β,

2d1 + d2 ≤ N +M + β,

d1 + 2d2 ≤ N +M + β. (36)

In this region, β is always less than min{N, (2M −N)+} because β ≤ M −N ≤ N = min{N, (2M −
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(a) M ≤ N . (b) 2N ≤M .

(c) N ≤ M ≤ 2N , where D = min(M,N + β), E =
M+N+β

2
, and F = min(M + β, 2N).

Fig. 4. The DoF region for symmetric MIMO IC with limited receiver cooperation (grey areas).

N)+}. Hence increasing β always enlarges the region.

Case 2 - β ≥M −N , β ≤ 2N −M : In this case, the symmetric DoF region reduces to

d1 ≤ M,

d2 ≤ M,

d1 + d2 ≤ M + β,

2d1 + d2 ≤ N +M + β,

d1 + 2d2 ≤ N +M + β. (37)

In this region, β is always less than min{N, (2M −N)+} because β ≤ 2N −M ≤ N = min{N, (2M −
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N)+}. In this case, increasing β always enlarges the region. According to Figure 3(c), while β ≤ 2N−M ,

we get 2E ≤ 3N and F ≤ 2N which indicates none of the red, green and blue lines could include the

point (d1, d2) = (M,M) below them. Also, increasing β leads to the increase of E and F in Figure 3(c)

and as a result, enlarges the symmetric DoF region.

Case 3 - β ≤M −N , β ≥ 2N −M : In this case, the symmetric DoF region reduces to

d1 ≤ N + β,

d2 ≤ N + β,

d1 + d2 ≤ 2N,

2d1 + d2 ≤ N +M + β,

d1 + 2d2 ≤ N +M + β. (38)

In this region, β is always less than min{N, (2M −N)+} because β ≤ M −N ≤ N = min{N, (2M −

N)+}. In this case, increasing β always enlarges the region. According to Figure 3(c), when β ≤M −N ,

we get D,E ≤M ≤ 2N = F and also, increasing β leads to the increase of D and E in Figure 3(c) and

as a result, enlarges the symmetric DoF region.

Case 4 - β ≥M −N , β ≥ 2N −M : In this case, the symmetric DoF region reduces to

d1 ≤ M,

d2 ≤ M,

d1 + d2 ≤ 2N,

2d1 + d2 ≤ N +M + β,

d1 + 2d2 ≤ N +M + β. (39)

In this region, changing β only changes E in Figure 3(c). Also, we can easily see that the black line

and red line intersects at (d1, d2) = (M, 2N −M). The green line includes this intersection point when

β ≥ N and will be below this point when β ≤ N which means increasing β improves the DoF region

until β ≤ N = min{N, (2M −N)+}.
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B. GDoF Region

The notion of GDoF generalizes the DoF metric by additionally emphasizing the signal level as a

signaling dimension. It characterizes the simultaneously accessible fractions of spatial and signal-level

dimensions (per channel use) by the two users when all the average channel parameters vary as exponents

of a nominal SNR parameter as follows

lim
log SNR→∞

logCij
log SNR

= βij,

lim
log SNR→∞

log ρij
log SNR

=


1, if i = j

α, if i 6= j

, (40)

where α, β12, β21 ∈ R+.

The GDoF region is defined as the region formed by the set of all (d1, d2) such that (d1 log SNR −

o(log SNR), d2 log SNR − o(log SNR)) is inside the capacity region. Further, the GDoF is the maximum

d such that (d, d) is in the GDoF region. Thus, both the GDoF region and GDoF are functions of link

quality scaling exponent α.

Next we present our results on the GDoF region for the two-user MIMO IC with limited receiver

cooperation. For the general case, the computation of GDoF region is hard and thus we will only consider

the case that M1 = M2 = N1 = N2 = M . We also assume that β21 = β12 = β. With these assumptions,

the GDoF region for the two user MIMO IC with limited receiver cooperation is given in the following

Theorem.

Theorem 3. The GDoF region for a two-user symmetric MIMO IC with limited receiver cooperation is

equivalent to the convex hull of the:

d1 ≤ M + min{(α− 1)+M,β}, (41)

d2 ≤ M + min{(α− 1)+M,β}, (42)

d1 + d2 ≤ 2M max{(1− α)+, α}+ 2β, (43)

d1 + d2 ≤ (1− α)+M +M max{1, α}+ β, (44)

d1 + d2 ≤ 2M max{1, α}, (45)



19

d1 + 2d2 ≤ M max{(1− α)+, α}+

(1− α)+M +M max{1, α}+ 2β, (46)

2d1 + d2 ≤ M max{(1− α)+, α}+

(1− α)+M +M max{1, α}+ 2β, (47)

d1 + 2d2 ≤ M max{(2− α)+, α}+M max{1, α}+ β, (48)

2d1 + d2 ≤ M max{(2− α)+, α}+M max{1, α}+ β. (49)

Proof: The proof can be found in Appendix D.

Corollary 3. The GDoF for a two-user MIMO IC with limited receiver cooperation, when M1 = M2 =

N1 = N2 = M and β21 = β12 = β is given as

GDOFRC = min{M + min{(α− 1)+M,β},M max{(1− α)+, α}+ β,

1

2
(1− α)+M +

1

2
M max{1, α}+

1

2
β,M max{1, α},

1

3
M max{(1− α)+, α}+

1

3
(1− α)+M +

1

3
M max{1, α}+

2

3
β,

1

3
M max{(2− α)+, α}+

1

3
M max{1, α}+

1

3
β}. (50)

Since the GDoF in Corollary 3 is the minimum of many terms, we evaluate the minimum in (50) to

reduce the expression of GDoF as follows.

For 0 ≤ β ≤ M
2

:

GDoFRC =



M, if 0 ≤ α ≤ β
M
,

M(1− α)+ + β, if β
M
≤ α ≤ 1

2
,

Mα + β, if 1
2
≤ α ≤ 2

3
− β

3M
,

1
2
(M(2− α)+ + β), if 2

3
− β

3M
≤ α ≤ 1,

1
2
(Mα + β), if 1 ≤ α ≤ 2 + β

M
,

M + β, if 2 + β
M
≤ α.

(51)

For M
2
≤ β ≤M :
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GDoFRC =



M, if 0 ≤ α ≤ β
M
,

1
2
(M(2− α)+ + β), if β

M
≤ α ≤ 1,

1
2
(Mα + β), if 1 ≤ α ≤ 2 + β

M
,

M + β, if 2 + β
M
≤ α.

(52)

For M ≤ β:

GDoFRC =



M, if 0 ≤ α ≤ 1,

Mα, if 1 ≤ α ≤ β
M
,

1
2
(Mα + β), if β

M
≤ α ≤ 2 + β

M
,

M + β, if 2 + β
M
≤ α.

(53)

The authors of [1] found the GDoF for the two-user symmetric MIMO IC without cooperation as

follows

GDoFNRC =



M(1− α)+, if 0 ≤ α ≤ 1
2
,

Mα, if 1
2
≤ α ≤ 2

3
,

1
2
(M(2− α)+), if 2

3
≤ α ≤ 1,

1
2
Mα, if 1 ≤ α ≤ 2,

M, if 2 ≤ α.

(54)

Figure 5 compares the GDoF for the two-user symmetric MIMO IC with and without receiver cooper-

ation. In Figure 5(a), the “W”-curve obtained without cooperation delineates the very weak (0 ≤ α ≤ 1
2
),

weak (1
2
≤ α ≤ 2

3
), moderate (2

3
≤ α ≤ 1), strong (1 ≤ α ≤ 2) and very strong (α ≥ 2) interference

regimes. In the presence of weak collaboration (0 ≤ β ≤ M
2

), the “W”-curve improves to another

“W”-curve which delineates to extremely weak (0 ≤ α ≤ β
M

), very weak ( β
M
≤ α ≤ 1

2
), weak

(1
2
≤ α ≤ 2

3
− β

3M
), moderate (2

3
− β

3M
≤ α ≤ 1), strong (1 ≤ α ≤ 2 + β

M
) and very strong (2 + β

M
≤ α)

interference regimes. In the presence of weak collaboration (0 ≤ β ≤ M
2

), we see that the GDoF is strictly

greater than that without collaboration for every α > 0. The GDoF improvement indicates an unbounded

gap in the corresponding capacity regions as the SNR goes to infinity.

For moderate collaboration (M
2
≤ β ≤M ), the “W”-curve improves to a “V”-curve which delineates to

the very weak (0 ≤ α ≤ β
M

), weak ( β
M
≤ α ≤ 1), strong (1 ≤ α ≤ 2 + β

M
) and very strong (2 + β

M
≤ α)
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Fig. 5. GDoF for MIMO IC with limited receiver cooperation when all nodes have the same number of antennas M .

interference regimes, and we see that the GDoF with collaboration is strictly greater than that without

collaboration for α > 0 similar to the weak collaboration.

For strong collaboration (β ≥M ), the “W”-curve improves to an increasing curve which delineates to

the very weak (0 ≤ α ≤ 1), weak (1 ≤ α ≤ β
M

), strong ( β
M
≤ α ≤ 2 + β

M
) and very strong (2 + β

M
≤ α)

interference regimes. The slopes of increase of GDoF with α changes at the border of these regimes.

We note that for a given M and α, increasing β improves the GDoF till β = Mα, after which there
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is no improvement in the GDoF since the GDoF at this point is the same as that with full cooperation.

This can be seen also in the following corollary.

Corollary 4. The symmetric GDoF for a two-user MIMO IC with limited receiver cooperation, when

M1 = M2 = N1 = N2 = M and β21 = β12 = β = Mα is equal to M max(1, α) which is the same as

that with full cooperation.

Proof: We only need to compare M max(1, α) with all the bounds of the Corollary 3 and see that

it is smaller or equal to all of them in Corollary 3, or

M max{1, α} ≤ M + min{(α− 1)+M,β},

M max{1, α} ≤ M max{(1− α)+, α}+ β,

M max{1, α} ≤ 1

2
(1− α)+M +

1

2
M max{1, α}+

1

2
β,

M max{1, α} ≤ M max{1, α},

M max{1, α} ≤ 1

3
M max{(1− α)+, α}+

1

3
(1− α)+M +

1

3
M max{1, α}+

2

3
β,

M max{1, α} ≤ 1

3
M max{(2− α)+, α}+

1

3
M max{1, α}+

1

3
β. (55)

Since all these expressions can be shown to hold, M max(1, α) is achievable. Further, since M max(1, α)

is also an outer bound, the Corollary 4 holds.

V. CONCLUSIONS

This paper characterizes the approximate capacity region of the two-user MIMO interference channels

with limited receiver cooperation within N1+N2 bits. This approximate capacity region is used to find the

DoF region for the two user MIMO interference channels with limited receiver cooperation. We also find

the maximum amount of cooperation needed to achieve the outer bound of unlimited receiver cooperation.

Further, the GDoF region is found for a two-user MIMO interference channel with equal antennas at all

the nodes. With the GDoF region, we find that the “W” curve without cooperation changes gradually to

“V” curve with full cooperation. The cooperation improves the GDoF till the capacity of the cooperation

link is of the order of αM log SNR when the GDoF reaches the GDoF with full cooperation.

Finally we note that the GDoF results for general number of transmit and receive antennas remains as

an open problem.
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APPENDIX A

PROOF OF OUTER BOUND FOR THEOREM 1

In this Appendix, we will show that CRC ⊆ Ro. The set of upper bounds to the capacity region

will be derived in two steps. First, the capacity region is outer-bounded by a region defined in terms

of the differential entropy of the random variables associated with the signals. These outer-bounds use

genie-aided information at the receivers. Second, we outer-bound this region to prove the outer-bound as

described in the statement of Theorem 1.

The following result outer-bounds the capacity region of a two-user MIMO IC with limited receiver

cooperation.

Lemma 1. Let Si and S̃i be defined as Si ,
√
ρijHijXi + Zj and S̃i ,

√
ρijHijXi + Z̃j , respectively,

where Z̃i ∼ CN(0, IMi
) is independent of everything else. Then, the capacity region of a two-user MIMO

IC with limited receiver cooperation is outerbounded by the region formed by (R1, R2) satisfying

R1 ≤ h(H11X1 + Z1)− h(Z1) + min{h(H12X1 + Z2|H11X1 + Z1)− h(Z2), C21}, (56)

R2 ≤ h(H22X2 + Z2)− h(Z2) + min{h(H21X2 + Z1|H22X2 + Z2)− h(Z1), C12}, (57)

R1 +R2 ≤ h(Y1|S̃1) + h(Y2|S̃2)− h(Z̃1)− h(Z̃1) + C21 + C12, (58)

R1 +R2 ≤ h(H11X1 + Z1|S1) + h(Y2)− h(Z1, Z2) + C12, (59)

R1 +R2 ≤ h(H22X2 + Z2|S2) + h(Y1)− h(Z1, Z2) + C21, (60)

R1 +R2 ≤ h(Y1, Y2)− h(Z1, Z2), (61)

2R1 +R2 ≤ h(H11X1 + Z1|S1) + h(Y1) + h(Y2|S2)− h(Z1, Z2)− h(Z1) + C21 + C12, (62)

R1 + 2R2 ≤ h(H22X2 + Z2|S2) + h(Y2) + h(Y1|S1)− h(Z1, Z2)− h(Z2) + C21 + C12, (63)

2R1 +R2 ≤ h(Y1, Y2|S̃2) + h(Y1)− h(Z1, Z2)− h(Z1) + C21, (64)

R1 + 2R2 ≤ h(Y1, Y2|S̃1) + h(Y2)− h(Z1, Z2)− h(Z2) + C12. (65)

Proof: The proof follows the same lines as the proof of Lemma 5.1 in [14], replacing SISO channel

gains by MIMO channel matrices and is thus omitted here.

The rest of the section outer-bounds this region to get the outer bound in Theorem 1. For this, we will

introduce some useful Lemmas.
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The next result outer-bounds the entropies and the conditional entropies of two random variables by

their corresponding Gaussian random variables.

Lemma 2 ( [25]). Let X and Y be two random vectors, and let XG and Y G be Gaussian vectors with

covariance matrices satisfying

Cov

 X

Y

 = Cov

 XG

Y G

 , (66)

Then, we have

h(Y ) ≤ h(Y G), (67)

h (Y | X) ≤ h
(
Y G

∣∣ XG
)
. (68)

The next result gives the determinant of a block matrix, which will be used extensively in the sequel.

Lemma 3 ( [26]). For block matrix M =

 A B

C D

 with submatrices A, B, C, and D, we have:

detM =


detA det(D − CA−1B), if A is invertible,

detD det(A−BD−1C), if D is invertible.
(69)

The next result gives a monotonicity result for a function which will be used to upper bound some of

the terms in Lemma 1.

Lemma 4 ( [23]). Let L(K,S) be defined as

L (K,S) , K −KS(IN + S†KS)
−1
S†K, (70)

for some M ×M p.s.d. Hermitian matrix K and some M ×N matrix S. Then if 0 � K1 � K2 for some

Hermitian matrices K1 and K2, we have

L (K1, S) � L (K2, S) . (71)
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Define XG
1 and XG

2 as having a Gaussian distribution with the covariance matrix

Cov

 XG
1

XG
2

 = Cov

 X1

X2

 . (72)

Define SGi ,
√
ρijHijX

G
i + Zj , S̃i

G
,
√
ρijHijX

G
i + Z̃j and Y G

i ,
√
ρiiHiiX

G
i +
√
ρjiHjiX

G
j + Zi.

The rest of the section considers the 10 terms in Lemma 1 and outer-bounds each of them to get the

terms in the outer-bound of Theorem 1.

(56)→(4): We can split the bound in (56) into two upper bounds. The first bound is

R1 ≤ h(H11X1 + Z1)− h(Z1) + h(H12X1 + Z2|H11X1 + Z1)− h(Z2)

= h(H12X1 + Z2, H11X1 + Z1)− h(Z1)− h(Z2)

(a)

≤ log det

 IN2 + ρ12H12Q11H
†
12

√
ρ12ρ11H12Q11H

†
11

√
ρ12ρ11H11Q11H

†
12 IN1 + ρ11H11Q11H

†
11


(b)
= log det(IN1 + ρ11H11Q11H

†
11) + log det(IN2 + ρ12H12Q11H

†
12

−ρ12ρ11H12Q11H
†
11(IN1 + ρ11H11Q11H

†
11)
−1H11Q11H

†
12)

(c)

≤ log det(IN1 + ρ11H11H
†
11) + log det(IN2 + ρ12H12Q11H

†
12

−ρ12ρ11H12Q11H
†
11(IN1 + ρ11H11Q11H

†
11)
−1H11Q11H

†
12)

= log det(IN1 + ρ11H11H
†
11) + log det(IN2

+ρ12H12(Q11 − ρ11Q11H
†
11(IN1 + ρ11H11Q11H

†
11)
−1H11Q11)H

†
12)

(d)

≤ log det(IN1 + ρ11H11H
†
11) + log det(IN2 + ρ12H12H

†
12

−ρ12ρ11H12H
†
11(IN1 + ρ11H11H

†
11)
−1H11H

†
12), (73)

where (a) follows from Lemma 2 and from the fact that h(Zi) = log det (2πeINi), (b) follows from

Lemma 3, (c) follows from the fact that log det(.) is a monotonically increasing function on the cone of

positive definite matrices and we have Qii � IMi
for i ∈ {1, 2}, and (d) follows from Lemma 4 where

K1 = Q11, K2 = IM1 and S =
√
ρ11H

†
11. It gives the first part of the bound (4).
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The second bound is

R1 ≤ h(H11X1 + Z1)− h(Z1) + C21

(a)
= log det(IN1 + ρ11H11Q11H

†
11) + C21

(b)

≤ log det(IN1 + ρ11H11H
†
11) + C21, (74)

where (a) follows from Lemma 2 and from the fact that h(Zi) = log det (2πeINi), (b) follows from the

fact that log det(.) is a monotonically increasing function on the cone of positive definite matrices and

we have Qii � IMi
for i ∈ {1, 2}. It gives the second part of the bound (4).

(57)→(5): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(58)→(6): For the bound (58) in Lemma 1,

R1 +R2 ≤ h(Y1|S̃1) + h(Y2|S̃2)− h(Z̃1)− h(Z̃1) + C21 + C12

= h(
√
ρ11H11X1 +

√
ρ21H21X2 + Z1|

√
ρ12H12X1 + Z̃2) + h(

√
ρ12H12X1 +

√
ρ22H22X2 + Z2|

√
ρ21H21X2 + Z̃1)− h(Z̃1)− h(Z̃1) + C21 + C12

(a)

≤ h(
√
ρ11H11X

G
1 +
√
ρ21H21X

G
2 + Z1|

√
ρ12H12X

G
1 + Z̃2) + h(

√
ρ12H12X

G
1 +

√
ρ22H22X

G
2 + Z2|

√
ρ21H21X

G
2 + Z̃1)− h(Z̃1)− h(Z̃1) + C21 + C12

= h(
√
ρ11H11X

G
1 +
√
ρ21H21X

G
2 + Z1,

√
ρ12H12X

G
1 + Z̃2)− h(

√
ρ12H12X

G
1 + Z̃2)

+h(
√
ρ12H12X

G
1 +
√
ρ22H22X

G
2 + Z2

√
ρ21H21X

G
2 + Z̃1)− h(

√
ρ21H21X

G
2 + Z̃1)

−h(Z̃1)− h(Z̃1) + C21 + C12

(b)
= log det

 IN1 + ρ11H11Q11H
†
11 + ρ21H21Q22H

†
21

√
ρ12ρ11H11Q11H

†
12

√
ρ12ρ11H12Q11H

†
11 IN2 + ρ12H12Q11H

†
12


+ log det

 IN2 + ρ22H22Q22H
†
22 + ρ12H12Q11H

†
12

√
ρ21ρ22H22Q22H

†
21

√
ρ21ρ22H21Q22H

†
22 IN1 + ρ21H21Q22H

†
21


− log det(IN2 + ρ12H12Q11H

†
12)− log det(IN1 + ρ21H21Q22H

†
21) + C21 + C12

(c)
= log det(IN1 + ρ11H11Q11H

†
11 + ρ21H21Q22H

†
21 − ρ11ρ12H11Q11H

†
12

(IN2 + ρ12H12Q11H
†
12)
−1H12Q11H

†
11) + log det(IN2 + ρ22H22Q22H

†
22 +

ρ12H12Q11H
†
12 − ρ22ρ21H22Q22H

†
21(IN1 + ρ21H21Q22H

†
21)
−1H21Q22H

†
22) +

C12 + C21



27

(d)

≤ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1H21H

†
22) +

C12 + C21, (75)

where (a) follows from Lemma 2, (b) follows from the fact that h(Zi) = log det (2πeINi), (c) follows

from Lemma 3, and (d) follows from the fact that log det(.) is a monotonically increasing function on

the cone of positive definite matrices and we have Qii � IMi
for i ∈ {1, 2}, and Lemma 4 where for the

first term K1 = Q11, K2 = IM1 and S =
√
ρ12H

†
12 and for the second term where K1 = Q22, K2 = IM2

and S =
√
ρ21H

†
21. It gives the bound (6).

(59)→(7): For the bound (59) in Lemma 1,

R1 +R2 ≤ h(H11X1 + Z1|S1) + h(Y2)− h(Z1, Z2) + C12

= h(H11X1 + Z1|H12X1 + Z2) + h(Y2)− h(Z1, Z2) + C12

≤ h(H11X
G
1 + Z1|H12X

G
1 + Z2) + h(Y G

2 )− h(Z1, Z2) + C12

= h(H11X
G
1 + Z1, H12X

G
1 + Z2)− h(H12X

G
1 + Z2) + h(Y G

2 )− h(Z1, Z2) + C12

(a)

≤ log det

 IN1 + ρ11H11Q11H
†
11

√
ρ12ρ11H11Q11H

†
12

√
ρ12ρ11H12Q11H

†
11 IN2 + ρ12H12Q11H

†
12


+ log det(IN2 + ρ12H12Q11H

†
12 + ρ22H22Q22H

†
22)

− log det(IN2 + ρ12H12Q11H
†
12) + C12

(b)
= log det(IN1 + ρ11H11Q11H

†
11 − ρ11ρ12H11Q11H

†
12(IN2 + ρ12H12Q11H

†
12)
−1H12Q11H

†
11) +

+ log det(IN2 + ρ12H12Q11H
†
12 + ρ22H22Q22H

†
22) + C12

(c)

≤ log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

+ log det(IN2 + ρ12H12Q11H
†
12 + ρ22H22Q22H

†
22) + C12

(d)

≤ log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12, (76)

where (a) follows from the fact that h(Zi) = log det (2πeINi), and (b) follows from Lemma 3, and (c)

follows from Lemma 4 where K1 = Q11, K2 = IM1 and S =
√
ρ12H

†
12, and (d) follows from the fact that
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log det(.) is a monotonically increasing function on the cone of positive definite matrices and we have

Qii � IMi
for i ∈ {1, 2}. It gives the bound (7).

(60)→(8): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(61)→(9): For the bound (61) in Lemma 1, assume infinite capacity between the receivers, i.e., consider

a single receiver. We get

R1 +R2 ≤ h (Y1, Y2)− h (Z1, Z2)

(a)

≤ log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

Q11

[√
ρ11H

†
11

√
ρ12H

†
12

]
+

 √ρ21H21

√
ρ22H22

Q22

[√
ρ21H

†
21

√
ρ22H

†
22

]
(b)

≤ log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

[√ρ11H†11 √ρ12H†12]+

 √ρ21H21

√
ρ22H22

[√ρ21H†21 √ρ22H†22]
 , (77)

where (a) follows from Lemma 2 and from the fact that h(Zi) = log det (2πeINi), and (b) follows from

the fact that log det(.) is a monotonically increasing function on the cone of positive definite matrices

and we have Qii � IMi
for i ∈ {1, 2}. It gives the bound (9).

(62)→(10): For the bound (62) in Lemma 1,

2R1 +R2 ≤ h(
√
ρ11H11X1 + Z1|S1) + h(Y1) + h(Y2|S2)− h(Z1, Z2)− h(Z1) + C21 + C12

≤ h(
√
ρ11H11X

G
1 + Z1|SG1 ) + h(Y G

1 ) + h(Y G
2 |SG2 )− h(Z1, Z2)− h(Z1) + C21 + C12

= h(
√
ρ11H11X

G
1 + Z1, S

G
1 )− h(SG1 ) + h(Y G

1 ) + h(Y G
2 , S

G
2 )− h(SG2 )− h(Z1, Z2)

−h(Z1) + C21 + C12

= h(
√
ρ11H11X

G
1 + Z1,

√
ρ12H12X

G
1 + Z2) + h(

√
ρ12H12X

G
1 +
√
ρ22H22X

G
2 + Z2,

√
ρ21H21X

G
2 + Z1) + h(

√
ρ11H11X

G
1 +
√
ρ21H21X

G
2 + Z1)− h(

√
ρ12H12X

G
1 + Z2)

−h(
√
ρ21H21X

G
2 + ZG

1 )− h(Z1, Z2)− h(Z1) + C21 + C12
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(a)

≤ log det

 IN2 + ρ12H12Q11H
†
12 + ρ22H22Q22H

†
22

√
ρ22ρ21H22Q22H

†
21

√
ρ22ρ21H21Q22H

†
22 IN1 + ρ21H21Q22H

†
21


+ log det

 IN1 + ρ11H11Q11H
†
11

√
ρ12ρ11H11Q11H

†
12

√
ρ12ρ11H12Q11H

†
11 IN2 + ρ12H12Q11H

†
12


+ log det(IN1 + ρ11H11Q11H

†
11 + ρ21H21Q22H

†
21)

− log det(IN2 + ρ12H12Q11H
†
12)− log det(IN1 + ρ21H21Q22H

†
21) + C12 + C21

(b)

≤ log det(IN1 + ρ11H11Q11H
†
11 − ρ11ρ12H11Q11H

†
12(IN2 + ρ12H12Q11H

†
12)
−1H12Q11H

†
11) +

log det(IN2 + ρ22H22Q22H
†
22 + ρ12H12Q11H

†
12 − ρ22ρ21H22Q22H

†
21(IN1 + ρ21H21Q22H

†
21)
−1

H21Q22H
†
22) + log det(IN1 + ρ11H11Q11H

†
11 + ρ21H21Q22H

†
21) + C12 + C21

(c)

≤ log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1H21H

†
22) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) + C12 + C21, (78)

where (a) follows from Lemma 2 and from the fact that h(Zi) = log det (2πeINi), (b) follows from Lemma

3, and (c) follows from Lemma 4 and the fact that log det(.) is a monotonically increasing function on

the cone of positive definite matrices and we have Qii � IMi
for i ∈ {1, 2}. It gives the bound (10).

(63)→(11): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(64)→(12): For the bound (64) in Lemma 1,

2R1 +R2

≤ h(Y1, Y2|S̃2) + h(Y1)− h(Z1, Z2)− h(Z1) + C21

(a)

≤ h(Y G
1 , Y

G
2 |S̃2

G
) + h(Y G

1 )− h(Z1, Z2)− h(Z1) + C21

= h(Y G
1 , Y

G
2 , H21X

G
2 + Ẑ1)− h(H21X

G
2 + Ẑ1) + h(Y G

1 )− h(Z1, Z2)− h(Z1) + C21

(b)

≤ h(Y1, Y2, H21X2 + Ẑ1)− h(H21X2 + Ẑ1)− h(Z1, Z2) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) + C21
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(c)

≤ log det
IN2 + ρ22H22Q22H

†
22 + ρ12H12Q11H

†
12

√
ρ21ρ22H22Q22H

†
21 +

√
ρ11ρ12H12Q11H

†
11

√
ρ22ρ21H22Q22H

†
21

√
ρ21ρ22H21Q22H

†
22 +

√
ρ11ρ12H11Q11H

†
12 IN1

+ ρ11H11Q11H
†
11 + ρ21H21Q22H

†
21 ρ21H21Q22H

†
21

√
ρ22ρ21H21Q22H

†
22 ρ21H21Q22H

†
21 IN1

+ ρ21H21Q22H
†
21


− log det(IN1 + ρ21H21Q22H

†
21) + log det(IN1 + ρ11H11H

†
11 + ρ21H21H

†
21) + C21

(d)
= log det

IN1+N2 +

[ √
ρ22H22

√
ρ21H21

]
(Q22 −Q22H

†
21(IN1 + ρ21H21Q22H

†
21)
−1H21Q22)[

√
ρ22H

†
22

√
ρ21H

†
21]

+

[ √
ρ12H12

√
ρ11H11

]
Q11[
√
ρ12H

†
12

√
ρ11H

†
11]

+ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
12) + C21

(e)

≤ log det

IN1+N2 +

[ √
ρ22H22

√
ρ21H21

]
(IM2 −H

†
21(IN1 + ρ21H21H

†
21)
−1H21)[

√
ρ22H

†
22

√
ρ21H

†
21]

+

[ √
ρ12H12

√
ρ11H11

]
[
√
ρ12H

†
12

√
ρ11H

†
11]

+ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
12) + C21, (79)

where (a) and (b) follow from Lemma 2 and from the fact that h(Zi) = log det (2πeINi) and the fact

that log det(.) is a monotonically increasing function on the cone of positive definite matrices and we

have Qii � IMi
for i ∈ {1, 2}, (c) follows from Lemma 2, (d) follows from Lemma 3, and (e) follows

from Lemma 4 and the fact that log det(.) is a monotonically increasing function on the cone of positive

definite matrices and we have Qii � IMi
for i ∈ {1, 2}. It gives the bound (12).

(65)→(13): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

APPENDIX B

PROOF OF ACHIEVABILITY FOR THEOREM 1

In this section, we prove the achievability for Theorem 1. Denote the RHS of the 10 terms in (4)-(13) as

I1 to I10, respectively. We will show a constant gap achiavability result for the two-user MIMO Gaussian

IC with limited receiver cooperation in the following Lemma.

Lemma 5. The capacity region for the two-user MIMO IC with receiver cooperation contains the region
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formed by (R1, R2) such that

R1 ≤ I1 −N1 −N2,

R2 ≤ I2 −N1 −N2,

R1 +R2 ≤ min{I3, I4, I5, I6} −N1 −N2 −max(N1, N2),

2R1 +R2 ≤ min{I7, I9} − 2N1 − 2N2,

R1 + 2R2 ≤ min{I8, I10} − 2N1 − 3N2. (80)

The rest of this section proves this Lemma. This region is within N1 + N2 bits of the outer bound

giver by Ro and thus proves the achievability for Theorem 1. In the following, we will consider the rate

regions for STG2→1→2 and then take the convex hull of STG2→1→2 and STG1→2→1 to get this result.

Lemma 6. If we consider STG2→1→2, the capacity region of the two-user MIMO Gaussian IC with limited

receiver cooperation includes the set of (R1, R2) such that

R1 ≤ I(X1;Y1|X2c), (81)

R1 ≤ I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12, (82)

R2 ≤ I(X2;Y2|X1c) + C12, (83)

R2 ≤ I(X2c;Y1|X1) + I(X2;Y2|X1c, X2c), (84)

R1 +R2 ≤ I(X2c, X1;Y1) + I(X2;Y2|X1c, X2c) + (C21 − ξ)+, (85)

R1 +R2 ≤ I(X2c, X1;Y1, Ŷ2) + I(X2;Y2|X1c, X2c), (86)

R1 +R2 ≤ I(X2c, X1;Y1|X1c) + I(X1c, X2;Y2|X2c) + C12 + (C21 − ξ)+, (87)

R1 +R2 ≤ I(X2c, X1;Y1, Ŷ2|X1c) + I(X1c, X2;Y2|X2c) + C12, (88)

R1 +R2 ≤ I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2) + C12, (89)

R1 +R2 ≤ I(X1;Y1|X1c, X2c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c) + C12, (90)

2R1 +R2 ≤ I(X1, X2c;Y1) + I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12 + (C21 − ξ)+, (91)

2R1 +R2 ≤ I(X1, X2c;Y1, Ŷ2) + I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12, (92)

R1 + 2R2 ≤ I(X1, X2c;Y1|X1c) + I(X1c, X2;Y2) + I(X2;Y2|X1c, X2c) + C12 + (C21 − ξ)+, (93)
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R1 + 2R2 ≤ I(X1, X2c;Y1|X1c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c) + I(X2;Y2|X1c, X2c)

+C12 + (C21 − ξ)+, (94)

R1 + 2R2 ≤ I(X1, X2c;Y1, Ŷ2|X1c) + I(X1c, X2;Y2) + I(X2;Y2|X1c, X2c) + C12, (95)

R1 + 2R2 ≤ I(X1, X2c;Y1, Ŷ2|X1c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c)

+I(X2;Y2|X1c, X2c) + C12. (96)

where Ŷi is defined in (18).

Proof: The proof follows similarly to that in subsection V.C. of [14], replacing scalars in the SISO

channel by vectors for the MIMO channel.

The rest of the section inner bounds the convex hull of union of this region and the one achieved from

STG1→2→1 to get the inner bound in Theorem 1.

The achievability scheme is a 2-round protocol as described in Section III and the transmission scheme

is based on (15), (16) and (17).

We will first evaluate some entropies that will be used in inner bounds of the achievable rate region.

h (Yi) = log det(INi + ρiiHiiH
†
ii + ρjiHjiH

†
ji) +Ni log(2πe), (97)

h (Yi|Xi) = log det
(
INi + ρjiHjiH

†
ji

)
+Ni log(2πe). (98)

In addition, we have

h(Yi|Xic, Xjc) ≥ h(Yi|Xic, Xjc, Xj) = log det(INi + ρiiHiiQipH
†
ii) +Ni log(2πe)

= log det(INi + ρiiHiiH
†
ii −
√
ρiiρijHiiH

†
ij(INj + ρijHijH

†
ij)
−1√ρiiρijHijH

†
ii +Ni log(2πe). (99)

Moreover, we have

h(Yi|Xjc, Xi) ≤ log det(INi + ρjiHjiQjpH
†
ji) +Ni log(2πe)

(a)

≤ log det (2INi) +Ni log(2πe)

= Ni +Ni log(2πe), (100)
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where (a) follows from Lemma 11 of [23] by substituting √ρjiH†ji in S. This shows that h(Yi|Xjc, Xi)

is upper-bounded by Ni.

The rest of the section evaluates some terms in Lemma 6. We will not evaluate the bounds (81) and

(92) for now and show that the rest of the bounds contain a region within N1 + N2 bits of the outer

bounds.

(82): For this bound in Lemma 6, we have

I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12

= I(X1;Y1|X1c, X2c) + I(X1c, X2p;
√
ρ12H12X1 +

√
ρ22H22X2p + Z2) + C12

= I(X1;Y1|X1c, X2c) + h(
√
ρ12H12X1 +

√
ρ22H22X2p + Z2)− h(

√
ρ12H12X1p + Z2) + C12

≥ I(X1;Y1|X1c, X2c) + h(
√
ρ12H12X1 + Z2)− h(

√
ρ12H12X1p + Z2)

= I(X1;Y1|X1c, X2c) + I(X1c;
√
ρ12H12X1 + Z2)

= I(X1;Y1|X2c, X1c) + I(X1c;Y2|X2)

= h(Y2|X2)− h(Y2|X2, X1c) + h(Y1|X2c, X1c)− h(Y1|X2c, X1c, X1)

(a)

≥ h(Y2|X2) + h(Y1|X2c, X1c)−N1 −N2 − (N1 +N2) log(2πe)

(b)
= log det(IN2 + ρ12H12H

†
12) + log det(IN1 + ρ11H11Q1pH

†
11 + ρ21H21Q2pH

†
21)−N1 −N2

(c)

≥ log det(IN2 + ρ12H12H
†
12) + log det(IN1 + ρ11H11Q1pH

†
11)−N1 −N2

(d)
= log det(IN1 + ρ11H11H

†
11) + log det(IN2 + ρ12H12H

†
12 − ρ12ρ11H12H

†
11

(IN1 + ρ11H11H
†
11)
−1H11H

†
12)−N1 −N2, (101)

where (a) follows from (100), (b) follows from the assumed Gaussian distributions, (c) follows from the

fact that log det(.) is a monotonically increasing function on the cone of positive definite matrices, and

(d) follows from the fact that using Lemma 3,

log det(IN2 + ρ12H12H
†
12) + log det(IN1 + ρ11H11Q1pH

†
11)

= log det

 IN2 + ρ12H12H
†
12

√
ρ12ρ12H12H

†
11

√
ρ11ρ12H11H

†
12 IN1 + ρ11H11H

†
11


= log det(IN2 + ρ12H12H

†
12 − ρ12ρ11H12H

†
11(IN1 + ρ11H11H

†
11)
−1H11H

†
12) +

log det(IN1 + ρ11H11H
†
11). (102)
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Thus, we see that this R1 bound is within N1 +N2 bits to the outer bound in (4).

(83): For this term in Lemma 6, we have

I(X2;Y2|X1c) + C12

= h(Y2|X1c)− h(Y2|X1c, X2) + C12

(a)

≥ h(Y2|X1c) + C12 −N2 −N2 log(2πe)

= log det(IN2 + ρ22H22H
†
22 + ρ12H12Q1pH

†
12)−N2 + C12

(b)

≥ log det(IN2 + ρ22H22H
†
22) + C12 −N2, (103)

where (a) follows from (100) and (b) follows from the fact that log det(.) is a monotonically increasing

function on the cone of positive definite matrices.

Thus, we see that this R2 bound is within N2 bits of the outer bound in (5).

(84): For this term in Lemma 6, we have

I(X2c;Y1|X1) + I(X2;Y2|X1c, X2c)

= h(Y1|X1)− h(Y1|X1, X2c) + h(Y2|X1c, X2c)− h(Y2|X1c, X2c, X2)

(a)

≥ h(Y1|X1) + h(Y2|X1c, X2c)−N1 −N2 − (N1 +N2) log(2πe)

(b)
= log det(IN1 + ρ21H21H

†
21) + log det(IN2 + ρ22H22Q2pH

†
22 + ρ12H12Q1pH

†
12)−N1 −N2

(c)

≥ log det(IN1 + ρ21H21H
†
21) + log det(IN2 + ρ22H22Q2pH

†
22)−N1 −N2

(d)
= log det(IN2 + ρ22H22H

†
22) + log det(IN1 + ρ21H21H

†
21 − ρ21ρ22H21H

†
22

(IN2 + ρ22H22H
†
22)
−1H22H

†
21)−N1 −N2, (104)

where (a) follows from (100), (b) follows from the assumed Gaussian distributions, and (c) follows from

the fact that log det(.) is a monotonically increasing function on the cone of positive definite matrices

and (d) follows from Lemma 3. Using Lemma 3 it is easy to see that

log det(IN1 + ρ21H21H
†
21) + log det(IN2 + ρ22H22Q2pH

†
22)

= log det

 IN1 + ρ21H21H
†
21

√
ρ21ρ21H21H

†
22

√
ρ22ρ21H22H

†
21 IN2 + ρ22H22H

†
22


= log det(IN1 + ρ21H21H

†
21 − ρ21ρ22H21H

†
22(IN2 + ρ22H22H

†
22)
−1H22H

†
21) +

log det(IN2 + ρ22H22H
†
22). (105)
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Thus, we see that this R2 bound is within N1 +N2 bits of the outer bound in (5).

(85): For this bound in Lemma 6, we have

I(X2c, X1;Y1) + I(X2;Y2|X1c, X2c) + (C21 − ξ)+

= h(Y1)− h(Y1|X2c, X1) + h(Y2|X1c, X2c)− h(Y2|X1c, X2) + (C21 − ξ)+

(a)

≥ h(Y1) + h(Y2|X1c, X2c) + C21 −N1 − 2N2 − (N1 +N2) log(2πe)

= log det(IN1 + ρ21H21H
†
21 + ρ11H11H

†
11) + log det(IN2 + ρ22H22Q2pH

†
22 + ρ12H12Q1pH

†
12)

+C21 −N1 − 2N2

(b)

≥ log det(IN1 + ρ21H21H
†
21 + ρ11H11H

†
11) + log det(IN2 + ρ22H22Q2pH

†
22)

+C21 −N1 − 2N2

= log det(IN2 + ρ22H22H
†
22 − ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1H21H

†
22) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) + C21 −N1 − 2N2, (106)

where (a) follows from (100) and (20), and (b) follows from the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices.

Thus, we see that this R1 +R2 bound is within N1 + 2N2 bits of the outer bound in (8).

(86): For this bound in Lemma 6, we have

I(X2c, X1;Y1, Ŷ2) + I(X2;Y2|X1c, X2c)

= h(Y1, Ŷ2)− h(Y1, Ŷ2|X2c, X1) + h(Y2|X1c, X2c)− h(Y2|X1c, X2)

(a)

≥ h(Y1, Ŷ2)− h(Y1, Ŷ2|X2c, X1) + h(Y2|X1c, X2c)−N2 −N2 log(2πe)

= h(Y1, Ŷ2)− h(Y1, Ŷ2|X2c, X1) + log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12)−N2

(b)

≥ h(Y1, Ŷ2)− h(Y1, Ŷ2|X2c, X1) + log det(IN2 + ρ22H22Q2pH
†
22)−N2

= h(Y1, Ŷ2)− h(
√
ρ21H21X2p + Z1,

√
ρ22H22X2p + Z2 + Ẑ2) + log det(IN2 + ρ22H22Q2pH

†
22)

−N2

(c)
= h(Y1, Ŷ2)− log det(∆ + IN2 +H22Q2pH

†
22)− log det(IN1 +H12Q2pH

†
12 −

H12Q2pH
†
22(∆ + IN2 +H22Q2pH

†
22)
−1H22Q2pH

†
12) + log det(IN2 + ρ22H22Q2pH

†
22)

−N2 − (N1 +N2) log(2πe)



36

(d)
= h(Y1, Ŷ2)− log det(IN2 +H22Q2pH

†
22)− log det(IN1 +H12Q2pH

†
12

−H12Q2pH
†
22(∆ + IN2 +H22Q2pH

†
22)
−1H22Q2pH

†
12) + log det(IN2 + ρ22H22Q2pH

†
22)

−2N2 − (N1 +N2) log(2πe)

= h(Y1, Ŷ2)− log det(IN1 +H12Q2pH
†
12 −H12Q2pH

†
22(∆ + IN2 +H22Q2pH

†
22)
−1H22Q2pH

†
12)

−2N2 − (N1 +N2) log(2πe)

(e)

≥ h(Y1, Ŷ2)− log det(IN1 +H12Q2pH
†
12)− 2N2 − (N1 +N2) log(2πe)

(f)

≥ h(Y1, Ŷ2)−N1 − 2N2 − (N1 +N2) log(2πe)

= log det

 IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

√
ρ11ρ12H11H

†
12 +
√
ρ21ρ22H21H

†
22

√
ρ11ρ12H12H

†
11 +
√
ρ21ρ22H22H

†
21 ∆ + IN2 + ρ22H22H

†
22 + ρ12H12H

†
12


−N1 − 2N2 − (N1 +N2) log(2πe)

= log det(∆ + IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + log det(IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

−√ρ11ρ12H11H
†
12 +
√
ρ21ρ22H21H

†
22(∆ + IN2 + ρ22H22H

†
22 + ρ12H12H

†
12)
−1

√
ρ11ρ12H12H

†
11 +
√
ρ21ρ22H22H

†
21)−N1 − 2N2

≥ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + log det(IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

−√ρ11ρ12H11H
†
12 +
√
ρ21ρ22H21H

†
22(IN2 + ρ22H22H

†
22 + ρ12H12H

†
12)
−1√ρ11ρ12H12H

†
11

+
√
ρ21ρ22H22H

†
21)−N1 − 2N2 (107)

= log det

 IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

√
ρ11ρ12H11H

†
12 +
√
ρ21ρ22H21H

†
22

√
ρ11ρ12H12H

†
11 +
√
ρ21ρ22H22H

†
21 IN2 + ρ22H22H

†
22 + ρ12H12H

†
12


−N1 − 2N2

= log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

 [
√
ρ11H

†
11

√
ρ12H

†
12] +

 √ρ21H21

√
ρ22H22

 [
√
ρ21H

†
21

√
ρ22H

†
22]


−N1 − 2N2

= h(Y1, Y2)−N1 − 2N2

= log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

 [
√
ρ11H

†
11

√
ρ12H

†
12] +

 √ρ21H21

√
ρ22H22

 [
√
ρ21H

†
21

√
ρ22H

†
22]


−N1 − 2N2, (108)
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where (a) and (f) follow from (100), and (b) and (e) follow from the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices, (c) follows from the fact that

h(
√
ρ21H21X2p + Z1,

√
ρ22H22X2p + Z2 + Ẑ2)

= log det

 IN1 + ρ21H21Q2pH
†
21

√
ρ21ρ22H21Q2pH

†
22

√
ρ21ρ22H22Q2pH

†
21 ∆ + IN2 + ρ22H22Q2pH

†
22

+ (N1 +N2) log(2πe)

= log det(∆ + IN2 +H22Q2pH
†
22) + log det(IN1 +H12Q2pH

†
12 −

H12Q2pH
†
22(∆ + IN2 +H22Q2pH

†
22)
−1H22Q2pH

†
12) + (N1 +N2) log(2πe), (109)

and (d) follows from the fact that ∆ = IN2 +H22Q2pH
†
22 and hence:

log det(∆ + IN2 +H22Q2pH
†
22)

= log det 2(IN2 +H22Q2pH
†
22)

= log det(IN2 +H22Q2pH
†
22) +N2. (110)

Thus, we see that this R1 +R2 bound is within N1 + 2N2 bits of the outer bound in (9).

(87): For this bound in Lemma 6, we have

I(X2c, X1;Y1|X1c) + I(X1c, X2;Y2|X2c) + C12 + (C21 − ξ)+

= h(Y1|X1c)− h(Y1|X1c, X2c, X1) + h(Y2|X2c)− h(Y2|X2c, X1c, X2) + C12 + (C21 − ξ)+

(a)

≥ h(
√
ρ11H11X1p +

√
ρ21H21X2 + Z1) + h(

√
ρ12H12X1 +

√
ρ22H22X2p + Z2)

+C12 + C21 −N1 − 2N2 − (N1 +N2) log(2πe)

= log det(IN1 + ρ11H11Q1pH
†
11 + ρ21H21H

†
21) + log det(IN2 + ρ22H22Q2pH

†
22 + ρ12H12H

†
12)

+C12 + C21 −N1 − 2N2

= log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1H21H

†
22) +

C12 + C21 −N1 − 2N2. (111)

where (a) follows from (100) and (20).

Thus, we see that this R1 +R2 bound is within N1 + 2N2 bits of the outer bound in (6).
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(88): For this bound in Lemma 6, we have

I(X2c, X1;Y1, Ŷ2|X1c) + I(X1c, X2;Y2|X2c) + C12

= I(X2c;Y1, Ŷ2|X1c) + I(X1;Y1, Ŷ2|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12

≥ I(X2c; Ŷ2|X1c) + I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12

(a)

≥ I(X2c;Y2|X1c)−N2 + I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12

(b)

≥ I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2) + C12 −N2

= h(Y1|X1c, X2c)− h(Y1|X1, X1c, X2c) + h(Y2)− h(Y2|X1c, X2) + C12 −N2

(c)

≥ h(Y1|X1c, X2c) + h(Y2) + C12 −N1 − 2N2 − (N1 +N2) log(2πe)

= log det(IN1 + ρ11H11Q1pH
†
11 + ρ21H21Q2pH

†
21) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12 −N1 − 2N2

(d)

≥ log det(IN1 + ρ11H11Q1pH
†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12 −N1 − 2N2

= log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12 −N1 − 2N2, (112)

where (a) follows from

I(X2c; Ŷ2|X1c) ≥ I(X2c;Y2|X1c)−N2, (113)

which is true since

I(X2c; Ŷ2|X1c)− I(X2c;Y2|X1c) +N2

= h(Ŷ2|X1c)− h(Ŷ2|X1c, X2c)− h(Y2|X1c) + h(Y2|X1c, X2c) +N2

= log det(∆ + IN2 + ρ22H22H
†
22 + ρ12Q1pH12H

†
12)

− log det(∆ + IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12)

− log det(IN2 + ρ22H22H
†
22 + ρ12H12Q1pH

†
12)

+ log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12) +N2
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= log det(∆ + IN2 + ρ22H22H
†
22 + ρ12Q1pH12H

†
12)

− log det(IN2 + ρ22H22H
†
22 + ρ12H12Q1pH

†
12)

− log det(2∆ + ρ12H12Q1pH
†
12)

+ log det(∆ + ρ12H12Q1pH
†
12) +N2

≥ 0, (114)

(b) follows from the fact that

I(X2c;Y2|X1c) + I(X1c, X2;Y2|X2c)

= I(X2c;Y2, X1c) + I(X1c, X2;Y2|X2c)

≥ I(X2c;Y2) + I(X1c, X2;Y2|X2c)

= I(X1c, X2, X2c;Y2) + I(X1c, X2;Y2), (115)

(c) follows from (100) and (d) follows from the fact that log det(.) is a monotonically increasing function

on the cone of positive definite matrices.

Thus, we see that this R1 +R2 bound is within N1 + 2N2 bits of the outer bound in (7).

(89): For this bound in Lemma 6, similar to the last term we have

I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2) + C12

≥ log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12 −N1 −N2, (116)

which results from the proof of the last bound.

Thus, we see that this R1 +R2 bound is within N1 +N2 bits of the outer bound in (7).
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(90): For this bound in Lemma 6 we have

I(X1;Y1|X1c, X2c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c) + C12

= h(Y1|X1c, X2c)− h(Y1|X1c, X2c, X1) + h(Y1|X1)− h(Y1|X1, X2c) + h(Y2|X2c)

−h(Y2|X1c, X2, X2c) + C12

(a)

≥ h(Y1|X1c, X2c) + h(Y1|X1) + h(Y2|X2c) + C12 − 2N1 −N2 − (2N1 +N2) log(2πe)

= h(Y1|X1c, X2c) + h(
√
ρ21H21X2 + Z1) + h(Y2, X2c)− h(X2c) + C12 − 2N1 −N2 − (2N1 +N2) log(2πe)

= log det

 ρ22H22H
†
22 + ρ12H12H

†
12

√
ρ22H22Q2c

√
ρ22Q2cH

†
22 Q2c

− log det (Q2c) + h(Y1|X1c, X2c) +

h(
√
ρ21H21X2 + Z1) + C12 − 2N1 −N2 − (2N1) log(2πe)

= log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+

log det
(
Q2c − ρ22Q2cH

†
22(IN2 + ρ22H22H

†
22 + ρ12H12H

†
12)
−1H22Q2c

)
− log det (Q2c) +

h(Y1|X1c, X2c) + h(
√
ρ21H21X2 + Z1) + C12 − 2N1 −N2 − (2N1) log(2πe)

= log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11 + ρ21H21Q2pH

†
21) +

log det
(
Q2c − ρ22Q2cH

†
22(IN2 + ρ22H22H

†
22 + ρ12H12H

†
12)
−1H22Q2c

)
− log det (Q2c) +

+ log det
(
IN1 + ρ21H21H

†
21

)
+ C12 − 2N1 −N2

≥ log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11) +

log det
(
Q2c − ρ22Q2cH

†
22(IN2 + ρ22H22H

†
22)
−1H22Q2c

)
− log det (Q2c) +

+ log det
(
IN1 + ρ21H21H

†
21

)
+ C12 − 2N1 −N2

≥ log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11) +

log det
(
Q2c −Q2

2c

)
− log det (Q2c) + log det

(
IN1 + ρ21H21H

†
21

)
+ C12 − 2N1 −N2

= log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11) +

+ log det (Q2p) + log det
(
IN1 + ρ21H21H

†
21

)
+ C12 − 2N1 −N2

= log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11) +

+ log det (Q2p) + log det
(
IM2 + ρ21H

†
21H21

)
+ C12 − 2N1 −N2

= log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11) +

+ log det
(
IM2 − ρ21H

†
21(IN1 + ρ21H21H

†
21)
−1H21

)
+ log det

(
IM2 + ρ21H

†
21H21

)
+ C12 − 2N1 −N2
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= log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11) +

+ log det
(
IM2 − ρ21H

†
21(IN1 + ρ21H21H

†
21)
−1H21 + ρ21H

†
21H21−

ρ21H
†
21H21ρ21H

†
21(IN1 + ρ21H21H

†
21)
−1H21

)
+ C12 − 2N1 −N2

= log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11Q1pH

†
11) +

+ log det
(
IM2 + ρ21H

†
21

(
IM2 −H21ρ21H

†
21(IN1 + ρ21H21H

†
21)
−1 − (IN1 + ρ21H21H

†
21)
−1
)
H21

)
+C12 − 2N1 −N2

(c)
= log det(IN1 + ρ11H11Q1pH

†
11) + log det(IN2 + ρ22H22H

†
22 + ρ12H12H

†
12) + C12 − 2N1 −N2

= log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12 − 2N1 −N2, (117)

where (a) follows from (100), (b) follows from Lemma 3 and (c) follows from the fact that log det(.) is

a monotonically increasing function on the cone of positive definite matrices.

Thus, we see that this R1 +R2 bound is within 2N1 +N2 bits of the outer bound in (7).

(91): For this bound in Lemma 6 we have

I(X1, X2c;Y1) + I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2|X2c) + C12 + (C21 − ξ)+

= h(Y1)− h(Y1|X1, X2c) + h(Y1|X1c, X2c)− h(Y1|X1c, X2c, X1) + h(Y2|X2c)

−h(Y2|X1c, X2, X2c) + C12 + (C21 − ξ)+

(a)

≥ h(Y1) + h(Y1|X1c, X2c) + h(Y2|X2c) + C12 + C21 − 2N1 − 2N2 − (2N1 +N2) log(2πe)

= log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) + log det(IN1 + ρ11H11Q1pH

†
11 + ρ21H21Q2pH

†
21)

+ log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12H

†
12) + C12 + C21 − 2N1 − 2N2

(b)

≥ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) + log det(IN1 + ρ11H11Q1pH

†
11)

+ log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12H

†
12) + C12 + C21 − 2N1 − 2N2

= log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1H21H

†
22) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) + C12 + C21 − 2N1 − 2N2, (118)

where (a) follows from (100) and (20), and (b) follows from the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices.
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Thus, we see that this 2R1 +R2 bound is within 2N1 + 2N2 bits of the outer bound in (10).

(93): For this bound in Lemma 6 we have

I(X1, X2c;Y1|X1c) + I(X1c, X2;Y2) + I(X2;Y2|X1c, X2c) + C12 + (C21 − ξ)+

= h(Y1|X1c)− h(Y1|X1c, X1, X2c) + h(Y2)− h(Y2|X1c, X2) + h(Y2|X1c, X2c)

−h(Y2|X1c, X2c, X2) + C12 + (C21 − ξ)+

(a)

≥ h(Y1|X1c) + h(Y2) + h(Y2|X1c, X2c) + C12 + C21 − 2N1 − 2N2 − (N1 + 2N2) log(2πe)

= log det(IN1 + ρ11H11Q1pH
†
11 + ρ21H21H

†
21) + log det(IN2 + ρ22H22H

†
22 + ρ12H12H

†
12)

+ log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12) + C12 + C21 − 2N1 − 2N2

(b)

≥ log det(IN1 + ρ11H11Q1pH
†
11 + ρ21H21H

†
21) + log det(IN2 + ρ22H22H

†
22 + ρ12H12H

†
12)

+ log det(IN2 + ρ22H22Q2pH
†
22) + C12 + C21 − 2N1 − 2N2

= log det(IN2 + ρ22H22H
†
22 − ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1H21H

†
22) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C21 + C12 − 2N1 − 2N2, (119)

where (a) follows from (100) and (20), and (b) follows from the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices.

Thus, we see that this R1 + 2R2 bound is within 2N1 + 2N2 bits of the outer bound in (11).

(94): For this bound in Lemma 6 we have

I(X1, X2c;Y1|X1c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c) + I(X2;Y2|X1c, X2c)

+C12 + (C21 − ξ)+

= h(Y1|X1c)− h(Y1|X1, X2c, X1c) + h(Y1|X1)− h(Y1|X1, X2c) + h(Y2|X2c)

−h(Y2|X1c, X2, X2c) + h(Y2|X1c, X2c)− h(Y2|X1c, X2c, X2) + C12 + (C21 − ξ)+

(a)

≥ h(Y1|X1c) + h(Y1|X1) + h(Y2|X2c) + h(Y2|X1c, X2c) + C12 + C21 − 2N1 − 3N2 − 2(N1 +N2) log(2πe)

= log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12) + log det(IN1 + ρ11H11Q1pH

†
11 + ρ21H21H

†
21) +

log det(IN1 + ρ21H21H
†
21) + log det(IN2 + ρ22H22Q2pH

†
22 + ρ12H12H

†
12) +

C21 + C12 − 2N1 − 3N2
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(b)

≥ log det(IN2 + ρ22H22Q2pH
†
22) + log det(IN1 + ρ11H11Q1pH

†
11 + ρ21H21H

†
21) +

log det(IN1 + ρ21H21H
†
21) + log det(IN2 + ρ22H22Q2pH

†
22 + ρ12H12H

†
12) +

C21 + C12 − 2N1 − 3N2

(c)

≥ log det(IN2 + ρ22H22Q2pH
†
22) + log det(IN1 + ρ11H11Q1pH

†
11 + ρ21H21H

†
21) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C21 + C12 − 2N1 − 3N2

= log det(IN2 + ρ22H22H
†
22 − ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1H21H

†
22) +

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C21 + C12 − 2N1 − 3N2, (120)

where (a) follows from (100) and (20), and (b) follows from the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices and (c) follows from

log det(IN1 + ρ21H21H
†
21)

= h(Y1|X1)

(d)

≥ h(Y2)− h(Y2|X2c)

= log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12)−

log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12H

†
12), (121)

where (d) follows from (117).

Thus, we see that this R1 + 2R2 bound is within 2N1 + 3N2 bits of the outer bound in (11).

(95): For this bound in Lemma 6 we have

I(X1, X2c;Y1, Ŷ2|X1c) + I(X1c, X2;Y2) + I(X2;Y2|X1c, X2c) + C12

= h(Y1, Ŷ2|X1c)− h(Y1, Ŷ2|X1, X2c, X1c) + h(Y2)− h(Y2|X1c, X2) + h(Y2|X1c, X2c)

−h(Y2|X1c, X2c, X2) + C12

(a)

≥ h(Y1, Ŷ2|X1c)− h(Y1, Ŷ2|X1, X2c, X1c) + h(Y2) + h(Y2|X1c, X2c) + C12 − 2N2 − 2N2 log(2πe)

= h(Y1, Ŷ2|X1c)− h(
√
ρ21H21X2p + Z1,

√
ρ22H22X2p + Z2 + Ẑ2) + h(Y2|X1c, X2c) + h(Y2)

+C12 − 2N2 − 2N2 log(2πe)



44

(b)
= h(Y1, Ŷ2|X1c)− log det(∆ + IN2 + ρ22H22Q2pH

†
22)− log det(IN1 + ρ12H12Q2pH

†
12 −

ρ12ρ22H12Q2pH
†
22(∆ + IN2 + ρ22H22Q2pH

†
22)
−1H22Q2pH

†
12) + h(Y2|X1c, X2c) + h(Y2)

+C12 − 2N2 − (N1 + 3N2) log(2πe)

(c)

≥ h(Y1, Ŷ2|X1c)− log det(∆ + IN2 + ρ22H22Q2pH
†
22)− log det(IN1 + ρ12H12Q2pH

†
12)

+h(Y2|X1c, X2c) + h(Y2) + C12 − 2N2 − (N1 + 3N2) log(2πe)

= h(Y1, Ŷ2|X1c)− log det(∆ + IN2 + ρ22H22Q2pH
†
22)− log det(IN1 + ρ12H12Q2pH

†
12)

+ log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12) + h(Y2) + C12 − 2N2 − (N1 + 2N2) log(2πe)

(d)
= h(Y1, Ŷ2|X1c)− log det 2(IN2 + ρ22H22Q2pH

†
22)− log det(IN1 + ρ12H12Q2pH

†
12)

+ log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12) + h(Y2) + C12 − 2N2 − (N1 + 2N2) log(2πe)

= h(Y1, Ŷ2|X1c)− log det(IN2 + ρ22H22Q2pH
†
22)− log det(IN1 + ρ12H12Q2pH

†
12)

+ log det(IN2 + ρ22H22Q2pH
†
22 + ρ12H12Q1pH

†
12) + h(Y2) + C12 − 3N2 − (N1 + 2N2) log(2πe)

≥ h(Y1, Ŷ2|X1c)− log det(IN1 + ρ12H12Q2pH
†
12) + h(Y2) + C12 − 3N2 − (N1 + 2N2) log(2πe)

≥ h(Y1, Ŷ2|X1c) + h(Y2) + C12 −N1 − 3N2 − (N1 + 2N2) log(2πe)

(e)

≥ log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

 (IM1 −H
†
12(IN2 + ρ12H12H

†
12)
−1H12)[

√
ρ11H

†
11

√
ρ12H

†
12]

+

 √ρ21H21

√
ρ22H22

 [
√
ρ21H

†
21

√
ρ22H

†
22]

+ h(Y2) + C12 −N1 − 3N2 −N2 log(2πe)

= log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

 (IM1 −H
†
12(IN2 + ρ12H12H

†
12)
−1H12)[

√
ρ11H

†
11

√
ρ12H

†
12]

+

 √ρ21H21

√
ρ22H22

 [
√
ρ21H

†
21

√
ρ22H

†
22]

+ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12

−N1 − 3N2, (122)

where (a) follows from (100), (b) is achieved similar to (109), and (c) follows from the fact that log det(.)

is a monotonically increasing function on the cone of positive definite matrices, (d) follows from (19),
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and (e) is due to

h(Y1, Ŷ2|X1c)

= h(Y1, Ŷ2, X1c)− h(X1c)

= log det


IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

√
ρ12ρ11H11H

†
12 +
√
ρ22ρ21H21H

†
22

√
ρ11H11Q1c

√
ρ12ρ11H12H

†
11 +
√
ρ22ρ21H22H

†
21 ∆ + IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

√
ρ12H12Q1c

√
ρ11Q1cH

†
11

√
ρ12Q1cH

†
12 Q1c


−h(X1c) + (M1 +N1 +N2) log(2πe)

(f)
= log det

 IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

√
ρ12ρ11H11H

†
12 +
√
ρ22ρ21H21H

†
22

√
ρ12ρ11H12H

†
11 +
√
ρ22ρ21H22H

†
21 ∆ + IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

−
 H11

H12

Q1c(Q1c
−1)Q1c[H

†
11H

†
12]

+ h(X1c)− h(X1c) + (N1 +N2) log(2πe)

= log det

 IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

√
ρ12ρ11H11H

†
12 +
√
ρ22ρ21H21H

†
22

√
ρ12ρ11H12H

†
11 +
√
ρ22ρ21H22H

†
21 ∆ + IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

−
 H11

H12

 (IM1 −Q1p)[H
†
11H

†
12]

+ (N1 +N2) log(2πe)

(g)

≥ log det

 IN1 + ρ11H11H
†
11 + ρ21H21H

†
21

√
ρ12ρ11H11H

†
12 +
√
ρ22ρ21H21H

†
22

√
ρ12ρ11H12H

†
11 +
√
ρ22ρ21H22H

†
21 IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

−
 H11

H12

 (IM1 −Q1p)[H
†
11H

†
12]

+ (N1 +N2) log(2πe)

= log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

 (IM1 −H
†
12(IN2 + ρ12H12H

†
12)
−1H12)[

√
ρ11H

†
11

√
ρ12H

†
12]

+

 √ρ21H21

√
ρ22H22

 [
√
ρ21H

†
21

√
ρ22H

†
22]

+ (N1 +N2) log(2πe), (123)

where (f) is due to Lemma 3 and (g) results from Lemma 3 and the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices and also the fact that ∆ is a positive definite

matrix.

Thus, we see that this R1 + 2R2 bound is within N1 + 3N2 bits of the outer bound in (13).
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(96): For this bound in Lemma 6 we have

I(X1, X2c;Y1, Ŷ2|X1c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c)

+I(X2;Y2|X1c, X2c) + C12

= h(Y1, Ŷ2|X1c)− h(Y1, Ŷ2|X1c, X1, X2c) + h(Y1|X1)− h(Y1|X1, X2c) + h(Y2|X2c)

−h(Y2|X2c, X1c, X2) + h(Y2|X1c, X2c)− h(Y2|X1c, X2c, X2) + C12

(a)

≥ h(Y1, Ŷ2|X1c)− h(Y1, Ŷ2|X1c, X1, X2c) + h(Y1|X1) + h(Y2|X2c) + h(Y2|X1c, X2c)

+C12 −N1 − 2N2 − (N1 + 2N2) log(2πe)

(b)

≥ h(Y1, Ŷ2|X1c) + h(Y1|X1) + h(Y2|X2c) + C12 − 2N1 − 3N2 − 2(N1 +N2) log(2πe)

= h(Y1, Ŷ2|X1c) + log det(IN1 + ρ21H21H
†
21) + log det(IN2 + ρ22H22Q2pH

†
22 + ρ12H12H

†
12)

+C12 − 2N1 − 3N2 − (N1 +N2) log(2πe)

(c)

≥ h(Y1, Ŷ2|X1c) + log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12 − 2N1 − 3N2 − (N1 +N2) log(2πe)

(d)

≥ log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

 (IM1 −H
†
12(IN2 + ρ12H12H

†
12)
−1H12)[

√
ρ11H

†
11

√
ρ12H

†
12]

+

 √ρ21H21

√
ρ22H22

 [
√
ρ21H

†
21

√
ρ22H

†
22]

+ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + C12

−2N1 − 3N2, (124)

where (a) follows from (100), (c) follows from (117), and (b) and (d) can be seen similar to the proof

of the last bound.

Thus, we see that this R1 + 2R2 bound is within 2N1 + 3N2 bits of the outer bound in (13).

We define the region Rp including all the achievability bounds in (81)-(96) except for (81) and (92).

Up to now, we have analyzed all the bounds of Rp. We proved in Rp that:

R1 ≤ I1 −N1 −N2,

R2 ≤ I2 −N1 −N2,

R1 +R2 ≤ min{I3, I4, I5, I6} −N1 −N2 −max(N1, N2),

2R1 +R2 ≤ min{I7, I9} − 2N1 − 2N2,

R1 + 2R2 ≤ min{I8, I10} − 2N1 − 3N2. (125)
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Thus, Rp contains the region which is within N1 +N2 bits to the outer bound R0.

Now, add constraints (92) and (81) to Rp. [14] proved that whenever (92) is active, at least one of the

R1 +R2 bounds is active, which can be extended to the MIMO case because Claim 5.6 in [14] is true in

general independent of the number of antennas. We will now present similar reasoning for bound (81) to

show that whenever bound (81) is active, at least one of the R1 +R2 bounds is active.

The value of R1 +R2 at the intersection of (81) and (93) is greater than the average value of R1 +R2

in (85) and (89):

RHS of (81) + RHS of (93)

= I(X1;Y1|X2c) + I(X1, X2c;Y1|X1c) + I(X1c, X2;Y2) + I(X2;Y2|X1c, X2c) + C12 + (C21 − ξ)+

(a)

≥ I(X2c, X1;Y1) + I(X2;Y2|X1c, X2c) + (C21 − ξ)+ + I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2) + C12

= RHS of (85) + RHS of (89), (126)

where (a) follows from the fact that

I(X1;Y1|X2c) + I(X1, X2c;Y1|X1c)− I(X2c, X1;Y1)− I(X1;Y1|X1c, X2c)

= h(Y1|X2c) + h(Y1|X1c)− h(Y1)− h(Y1|X1c, X2c)

(b)

≥ 0, (127)

where (b) results from the following fact that if A, B, C and D are invertible positive semi-definite

M ×M matrices then

det(A+B). det(A+ C) ≥ det(A+B + C). det(A), (128)

because it is equivalent to

det(A+B). det(A−1). det(A+ C) ≥ det(A+B + C), (129)

or

det(A+B + C +BA−1C) ≥ det(A+B + C), (130)

which is trivial.

It shows that when both the bounds (81) and (93) are active, at least one of the bounds (85) or (89)
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will be active also.

The value of R1 +R2 at the intersection of (81) and (94) is greater than the average value of R1 +R2

in (85) and (90):

RHS of (81) + RHS of (94)

= I(X1;Y1|X2c) + I(X1, X2c;Y1|X1c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c) + I(X2;Y2|X1c, X2c)

+C12 + (C21 − ξ)+

(a)

≥ I(X2c, X1;Y1) + I(X2;Y2|X1c, X2c) + (C21 − ξ)+ + I(X1;Y1|X1c, X2c) + I(X2c;Y1|X1) +

I(X1c, X2;Y2|X2c) + C12

= RHS of (85) + RHS of (90), (131)

where (a) follows from (127).

It shows that when both the bounds (81) and (94) are active, at least one of the bounds (85) or (90)

will be active also.

The value of R1 +R2 at the intersection of (81) and (95) is greater than the average value of R1 +R2

in (86) and (89):

RHS of (81) + RHS of (95)

= I(X1;Y1|X2c) + I(X1, X2c;Y1, Ŷ2|X1c) + I(X1c, X2;Y2) + I(X2;Y2|X1c, X2c) + C12

(a)

≥ I(X1, X2c;Y1, Ŷ2|X1c) + I(X2;Y2|X1c, X2c) + I(X1;Y1|X1c, X2c) + I(X1c, X2;Y2) + C12

= RHS of (86) + RHS of (89), (132)

where (a) follows from the fact that

I(X1;Y1|X2c)− I(X1;Y1|X1c, X2c)

= I(Y1|X2c)− I(Y1|X1c, X2c)

= log det(IN1 + ρ11H11H
†
11 + ρ21H21Q2pH

†
21)− log det(IN1 + ρ11H11Q1pH

†
11 + ρ21H21Q2pH

†
21)

≥ 0. (133)

It shows that when both the bounds (81) and (95) are active, at least one of the bounds (86) or (89)

will be active also.
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The value of R1 +R2 at the intersection of (81) and (96) is greater than the average value of R1 +R2

in (86) and (90):

RHS of (81) + RHS of (96)

= I(X1;Y1|X2c) + I(X1, X2c;Y1, Ŷ2|X1c) + I(X2c;Y1|X1) + I(X1c, X2;Y2|X2c)

+I(X2;Y2|X1c, X2c) + C12

(a)

≥ I(X1, X2c;Y1, Ŷ2|X1c) + I(X2;Y2|X1c, X2c) + I(X1;Y1|X1c, X2c) + I(X2c;Y1|X1) +

I(X1c, X2;Y2|X2c) + C12

= RHS of (86) + RHS of (90), (134)

where (a) follows from (133).

It shows that when both the bounds (81) and (96) are active, at least one of the bounds (86) or (90)

will be active also.

So, when (81) is active, we can see that at least one of the R1 + R2 bounds in (85)-(90) is active in

R2→1→2. Hence, with a strategy similar to the one in Claim 5.6 of [14] for (92) we can see that the bound

(81) does not show up in conv{R2→1→2 ∪R1→2→1}.

Therefore, the R1 bound (81) and the 2R1 + R2 bound (92) do not show up in R = conv{R2→1→2 ∪

R1→2→1} and R is within N1 +N2 bits per user to the outer bounds in Theorem 1.

APPENDIX C

PROOF OF THEOREM 2

In this section, we will find the limit of Ro/ log SNR as SNR→∞ to get the result stated in Theorem

2 when Cij ∼ SNRβij and ρij ∼ SNR where β12, β21 ∈ R+.

This follows from Theorem 1 since the capacity region is inner and outer- bounded by Ro with constant

gaps which would vanish for the DoF. Before going over each of the above terms and finding their high

SNR limit, we first give some lemmas that will be used in the proof.

Lemma 7 ( [4]). Let H1 ∈ CN×M1 , H2 ∈ CN×M2 ,..., and Hk ∈ CN×Mk be k full rank and independent
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channel matrices. Then, the following holds

log det(IN + ρH1H
†
1 + ρH2H

†
2 + ...+ ρHkH

†
k)

= log det(IN + ρ[H1 ... Hk][H1 ... Hk]
†)

= min{N,M1 +M2 + ...+Mk}log ρ+ o(log ρ). (135)

Lemma 8 ( [23]). Let Hii ∈ CNi×Mi and Hij ∈ CNi×Mj be two channel matrices with each entry

independently chosen from CN(0, 1). Then, the following holds with probability 1 (over the randomness

of channel matrices).

log det(INi + ρHiiH
†
ii − ρHiiH

†
ij(INj + ρHijH

†
ij)
−1
ρHijH

†
ii)

= min{Ni, (Mi −Nj)
+}log ρ+ o(log ρ). (136)

Lemma 9. Let Hii ∈ CNi×Mi and Hij ∈ CNj×Mi be two channel matrices with each entry independently

chosen from CN(0, 1). Then, the following holds with probability 1 (over the randomness of channel

matrices).

log det(INj + ρHijH
†
ij − ρHijH

†
ii(INi + ρHiiH

†
ii)
−1
ρHiiH

†
ij)

= min{Nj, (Mi −Ni)
+}log ρ+ o(log ρ). (137)

Proof: The proof is similar to that of Lemma 8.

Now we find the high SNR limits of the bounds in (4)-(13) leading to Theorem 2.

(4)→(23): Consider bound (4) in Ro, we have

log det
(
IN1 + ρ11H11H

†
11

)
+ min{log det

(
IN2 + ρ12H12H

†
12 − ρ12ρ11H12H

†
11(

IN1 + ρ11H11H
†
11

)−1
H11H

†
12

)
, C21}

= log det(IN1 + ρH11H
†
11) + min{log det(IN2 + ραH12H

†
12 − ρ2H12H

†
11

(IN1 + ρH11H
†
11)
−1H11H

†
12), C21}

(a)
= (min{M1, N1}+ min{min{N2, (M1 −N1)

+}, β21})log SNR + o(log SNR ), (138)

where (a) follows from Lemma 7 and Lemma 9. Now, dividing both sides by log SNR, we obtain (23).



51

(5)→(24): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(6)→(25): Consider bound (6) in Ro, we have

log det

(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21 − ρ11ρ12H11H

†
12

(
IN2 + ρ12H12H

†
12

)−1
H12H

†
11

)
+

log det

(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21

(
IN1 + ρ21H21H

†
21

)−1
H21H

†
22

)
+

C12 + C21

= log det(IN1 + ρH11H
†
11 + ρH21H

†
21 − ρρH11H

†
12(IN2 + ρH12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρH22H
†
22 + ρH12H

†
12 − ρρH22H

†
21(IN1 + ρH21H

†
21)
−1H21H

†
22) +

C12 + C21

(a)
= (min{N1, (M1 −N2)

+ +M2}+ min{N2, (M2 −N1)
+ +M1}+

β12 + β21)log SNR + o(log SNR )), (139)

where (a) follows from Lemma 7 and Lemma 8. Now, dividing both sides by log SNR, we obtain (25).

(7)→(26): Consider bound (7) in Ro, we have

log det

(
IN1 + ρ11H11H

†
11 − ρ11ρ12H11H

†
12

(
IN2 + ρ12H12H

†
12

)−1
H12H

†
11

)
+

log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ C12

= log det(IN1 + ρH11H
†
11 − ρρH11H

†
12(IN2 + ραH12H

†
12)
−1H12H

†
11) +

log det(IN2 + ρH22H
†
22 + ρH12H

†
12) + C12

(a)
= (min{N1, (M1 −N2)

+}+ min{N2,M1 +M2}+ β12)log SNR + o(log SNR ), (140)

where (a) follows from Lemma 7 and Lemma 9. Now, dividing both sides by log SNR, we obtain (26).

(8)→(27): This is obtained similarly to the previous bound by exchanging 1 and 2 in the indices.

(9)→(28): Consider bound (9) in Ro, using Lemma 7 we have

log det

IN1+N2 +

 √ρ11H11

√
ρ12H12

 [
√
ρ11H

†
11

√
ρ12H

†
12] +

 √ρ21H21

√
ρ22H22

 [
√
ρ21H

†
21

√
ρ22H

†
22]


= log det

IN1+N2 + ρ

 H11

H12

 [H†11 H
†
12] + ρ

 H21

H22

 [H†21 H
†
22]


= min{N1 +N2,M1 +M2}log SNR + o(log SNR ). (141)
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(10)→(29): Consider bound bound (10) in Ro, we have

log det

(
IN1 + ρ11H11H

†
11 − ρ11ρ12H11H

†
12

(
IN2 + ρ12H12H

†
12

)−1
H12H

†
11

)
+

log det

(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 − ρ22ρ21H22H

†
21

(
IN1 + ρ21H21H

†
21

)−1
H21H

†
22

)
+

log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

)
+ C12 + C21

= log det log det(IN1 + ρH11H
†
11 − ρH11H

†
12(IN2 + ρH12H

†
12)
−1ρH12H

†
11) +

log det(IN2 + ρH22H
†
22 + ρH12H

†
12 − ρH22H

†
21(IN1 + ρH21H

†
21)
−1ρH21H

†
22) +

log det(IN1 + ρH11H
†
11 + ρH21H

†
21) + β12 + β21

(a)
= min{N2, (M2 −N1)

+ +M1}+ min{N1, (M1 −N2)
+}+

min{N1,M1 +M2}+ β12 + β21, (142)

where (a) is obtained from Lemma 7 and Lemma 8. Now, dividing both sides by log SNR, we obtain

(29).

(11)→(30): This is obtained similarly to the previous bound by exchanging 1 and 2 in the indices.

(12)→(31): Consider bound (12) in Ro, we have

log det

IN1+N2 +

 √ρ22H22

√
ρ21H21

 (IM2 − ρ12H
†
21(IN1 + ρ21H21H

†
21)
−1H21)[

√
ρ22H

†
22

√
ρ21H

†
21]

+

 √ρ12H12

√
ρ11H11

 [
√
ρ12H

†
12

√
ρ11H

†
11]

+ log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
12

)
+ C21

= log det

IN1+N2 + ρ

 H22

H21

 (IM2 − ρH
†
21(IN1 + ρH21H

†
21)
−1H21)[H

†
22 H

†
21]

+ρ

 H12

H11

 [H†12 H
†
11]

+ log det
(
IN1 + ρH11H

†
11 + ρH21H

†
12

)
+ C21

= (min{N1 +N2,M1}+ min{N1,M1 +M2}+ β21)log SNR

+o(log SNR ). (143)

(13)→(32): This is obtained similarly to the previous bound by exchanging 1 and 2 in the indices.

Combining the above results we obtain Theorem 2 results.
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APPENDIX D

PROOF OF THEOREM 3

In this section, we will find the limit of Ro/ log SNR as SNR→∞ to get the result stated in Theorem

3 when Cij ∼ SNRβij , ρij ∼ SNR for i = j and ρij ∼ SNRα for i 6= j where β12, β21 ∈ R+.

This follows from Theorem 1 since the capacity region is inner and outer- bounded by Ro with constant

gaps which would vanish for the DoF. Before going over each of the above terms and finding their high

SNR limit. We first give some lemmas that will be used for the proof.

Lemma 10 ( [4]). Let H1 ∈ CM×M , H2 ∈ CM×M , ..., and Hk ∈ CM×M be k full rank channel matrices.

Then, the following holds

log det(IM + ρα1H1H
†
1 + ρα2H2H

†
2 + ...+ ραkHkH

†
k)

= max{α1, α2, ..., αk}M log ρ+ o(log ρ). (144)

Lemma 11 ( [23]). Let Hii ∈ CM×M and Hij ∈ CM×M be two channel matrices with each entry

independently chosen from CN(0, 1). Then, the following holds with probability 1 (over the randomness

of channel matrices).

log det(IM + ρHiiH
†
ii −
√
ρραHiiH

†
ij(IM + ραHijH

†
ij)
−1√

ρραHijH
†
ii)

= (1− α)+M log ρ+ o(log ρ). (145)

Lemma 12. Let Hii ∈ CM×M and Hij ∈ CM×M be two channel matrices with each entry independently

chosen from CN(0, 1). Then, the following holds with probability 1 (over the randomness of channel

matrices).

log det(INj + ραHijH
†
ij −
√
ρραHijH

†
ii(INi + ρHiiH

†
ii)
−1√

ρραHiiH
†
ij)

= (α− 1)+M log ρ+ o(log ρ). (146)

Proof: The proof is similar to that of given in [23].
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Lemma 13. Let H ∈ CM×M be a full rank channel matrix. Then, the following holds

IM − ρH†(IM + ρHH†)−1H

= (IM + ρH†H)−1 (147)

Proof: Let B , IM + ρH†H . Thus,

IM − ρH†(B†)−1H = (B)−1 (148)

Since B is invertible, it is enough to show that

B − ρH†(B†)−1HB = IM , (149)

which is equivalent to showing

ρH†(B†)−1HB = ρH†H (150)

So it is enough to prove (B†)−1HB = H . Or, HB = B†H , which holds since B = IM + ρH†H .

Now we find the high SNR limits of the bounds in (4)-(13) leading to Theorem 3.

(4)→(41): Consider bound (4) in Ro, we have

log det(IM + ρH11H
†
11) + min{log det(IM + ραH12H

†
12 − ρα+1H12H

†
11

(IM + ρH11H
†
11)
−1H11H

†
12), C21}

(a)
= (M + min{(α− 1)+M,β})log SNR + o(log SNR )), (151)

where (a) follows from Lemma 10 and Lemma 12. Now, dividing both sides by log SNR, we obtain (41).

(5)→(42): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(6)→(43): Consider bound (6) in Ro, we have

log det(IM + ρH11H
†
11 + ραH21H

†
21 − ρα+1H11H

†
12(IN2 + ραH12H

†
12)
−1H12H

†
11) +

log det(IM + ρH22H
†
22 + ραH12H

†
12 − ρα+1H22H

†
21(IN1 + ραH21H

†
21)
−1H21H

†
22) +

C12 + C21

(a)
= (2M max{(1− α)+, α}+ 2β)log SNR + o(log SNR )), (152)
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where (a) follows from Lemma 10 and Lemma 11. Now, dividing both sides by log SNR, we obtain (43).

(7)→(44): Consider bound (7) in Ro, we have

log det(IM + ρH11H
†
11 − ρα+1H11H

†
12(IM + ραH12H

†
12)
−1H12H

†
11) +

log det(IM + ρH22H
†
22 + ραH12H

†
12) + C12

(a)
= ((1− α)+M +M max{1, α}+ β)log SNR + o(log SNR )), (153)

where (a) follows from Lemma 10 and Lemma 12. Now, dividing both sides by log SNR, we obtain (44).

(8)→(44): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices which gives

the same bound as the last one.

(9)→(45): Consider bound (9) in Ro, we have

log det

I2M +

 √ρH11

√
ραH12

[√ρH†11 √ραH†12]+

 √ραH21

√
ρH22

[√ραH†21 √ρH†22]


= log det

 IM + ρH11H
†
11 + ραH21H

†
21 ρ

α+1
2 H11H

†
12 + ρ

α+1
2 H21H

†
22

ρ
α+1
2 H12H

†
11 + ρ

α+1
2 H22H

†
21 IM + ρH22H

†
22 + ραH12H

†
12


(a)
= log det(IM + ρH11H

†
11 + ραH21H

†
21) + log det(IM + ρH22H

†
22 + ραH12H

†
12 −

(ρ
α+1
2 H12H

†
11 + ρ

α+1
2 H22H

†
21)(IM + ρH11H

†
11 + ραH21H

†
21)
−1

(ρ
α+1
2 H11H

†
12 + ρ

α+1
2 H21H

†
22))

= log det(IM + ρH11H
†
11 + ραH21H

†
21) + log det(IM + ρH22H

†
22 + ραH12H

†
12 −

ρα+1(H12H
†
11 +H22H

†
21)(IM + ρH11H

†
11 + ραH21H

†
21)
−1(H11H

†
12 +H21H

†
22))

= (2M max{1, α})log SNR + o(log SNR ), (154)

where (a) is obtained from Lemma 3. Now, dividing both sides by log SNR, we obtain (45).

(10)→(46): Consider bound (10) in Ro, we have

log det log det(IM + ρH11H
†
11 − ρα+1H11H

†
12(IN2 + ραH12H

†
12)
−1H12H

†
11) +

log det(IM + ρH22H
†
22 + ραH12H

†
12 − ρα+1H22H

†
21(IN1 + ραH21H

†
21)
−1H21H

†
22) +

log det(IM + ρH11H
†
11 + ραH21H

†
21) + C12 + C21

(a)
= (M max{(1− α)+, α}+ (1− α)+M +M max{1, α}+ 2β)log SNR + o(log SNR ), (155)
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where (a) is obtained from Lemma 10, Lemma 10 and Lemma 11. Now, dividing both sides by log SNR,

we obtain (46).

(11)→(47): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(12)→(48): Consider bound (12) in Ro, we have

log det

I2M +

 √ρH22

√
ραH21

(IM − ραH†21(IN1 + ραH21H
†
21

)−1
H21

)[√
ρH†22

√
ραH†21

]

+

 √ραH12

√
ρH11

[√ραH†12 √ρH†11]
+ log det

(
IM + ρH11H

†
11 + ραH21H

†
12

)
+ C21

(a)
= log det

I2M +

 √ρH22

√
ραH21

(IM + ραH†21H21

)−1 [√
ρH†22

√
ραH†21

]

+

 √ραH12

√
ρH11

[√ραH†12 √ρH†11]
+ log det

(
IM + ρH11H

†
11 + ραH21H

†
12

)
+ C21

(b)
= (M max{1, α}+ β) log SNR + o (log SNR) + log det IM + ρH22(IM + ραH†21H21)

−1H†22 + ραH12H
†
12 ρ

α+1
2 (H22(IM + ραH†21H21)

−1H†21 +H12H
†
11)

ρ
α+1
2 (H21(IM + ραH†21H21)

−1H†22 +H11H
†
12) IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21


(c)
= (M max{1, α}+ β)log SNR + o(log SNR) + log det(IM + ρH11H

†
11 +

ραH21(IM + ραH†21H21)
−1H†21) + log det(IM + ρH22(IM + ραH†21H21)

−1H†22 + ραH12H
†
12 −

(ρ
α+1
2 (H22(IM + ραH†21H21)

−1H†21 +H12H
†
11))(IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21)
−1

(ρ
α+1
2 (H21(IM + ραH†21H21)

−1H†22 +H11H
†
12)))

= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 + ραH12H

†
12 −

ρα+1(H22(IM + ραH†21H21)
−1H†21 +H12H

†
11)(IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21)
−1

(H21(IM + ραH†21H21)
−1H†22 +H11H

†
12)) + o(log SNR)
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= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 + ραH12H

†
12

−ρα+1H12H
†
11(IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21)
−1H11H

†
12

−ρα+1H22(IM + ραH†21H21)
−1H†21(IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21)
−1H11H

†
12

−ρα+1H12H
†
11(IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21)
−1H21(IM + ραH†21H21)

−1H†22

−ρα+1H22(IM + ραH†21H21)
−1H†21(IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21)
−1H21

(IM + ραH†21H21)
−1H†22) + o(log SNR)

(d)
= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)

−1H†22 + ραH12H
†
12

−ρα+1H12H
†
11(IM + ρH11H

†
11 + ραH21(IM + ραH†21H21)

−1H†21)
−1H11H

†
12) + o(log SNR)

= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 + ραH12H

†
12

−ρα+1H12H
†
11(IM + ρH11H

†
11 + (ρ−αH†21

−1
(IM + ραH†21H21)H

−1
21 )−1)−1H11H

†
12) + o(log SNR)

= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 + ραH12H

†
12

−ρα+1H12H
†
11(IM + ρH11H

†
11 + (ρ−αH†21

−1
H−121 + IM)−1)−1H11H

†
12) + o(log SNR)

= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 +

ραH12(IM − ρH†11(IM + ρH11H
†
11 + (ρ−αH†21

−1
H−121 + IM)−1)−1H11)H

†
12) + o(log SNR)

= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 +

ραH12(IM − (ρ−1H−111 (IM + ρH11H
†
11 + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1
)−1)H†12) + o(log SNR)

(e)
= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)

−1H†22 +

ραH12(ρ
−1H−111 (IM + ρH11H

†
11 + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1 − IM)

(ρ−1H−111 (IM + ρH11H
†
11 + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1
)−1H†12) + o(log SNR)

= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 +

ραH12(ρ
−1H−111 (IM + ρH11H

†
11 + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1 − ρ−1H−111 (ρH11H
†
11)H

†
11

−1
)

(ρ−1H−111 (IM + ρH11H
†
11 + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1
)−1H†12) + o(log SNR)

= (M +M max{1, α}+ β)log SNR + log det(IM + ρH22(IM + ραH†21H21)
−1H†22 +

ραH12(ρ
−1H−111 (IM + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1
)

(ρ−1H−111 (IM + ρH11H
†
11 + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1
)−1H†12) + o(log SNR)
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= (M +M max{1, α}+ β)log SNR +M max{(1− α)+, α− 1}log SNR + o(log SNR)

= (M max{(2− α)+, α}+M max{1, α}+ β)log SNR + o(log SNR), (156)

where (a) is obtained from Lemma 13, (b) is obtained from Lemma 10, (c) is obtained from Lemma 3,

(d) is because the three eliminated sentences have a constant upper bounds and (e) follows from the fact

that IM −X−1 = (X − IM)X−1 where X = ρ−1H−111 (IM + ρH11H
†
11 + (ρ−αH†21

−1
H−121 + IM)−1)H†11

−1
.

Now, dividing both sides by log SNR, we obtain (48).

(13)→(49): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

Combining the above results we obtain Theorem 3 results.
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