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Abstract

This paper gives the approximate capacity region of a two-user MIMO interference channel with limited
receiver cooperation, where the gap between the inner and outer bounds is in terms of the total number of receive
antennas at the two receivers and is independent of the actual channel values. The approximate capacity region is
then used to find the degrees of freedom region. For the special case of symmetric interference channels, we also
find the amount of receiver cooperation in terms of the backhaul capacity beyond which the degrees of freedom
do not improve. Further, the generalized degrees of freedom are found for MIMO interference channels with equal
number of antennas at all nodes. It is shown that the generalized degrees of freedom improve gradually from a

“W” curve to a “V” curve with increase in cooperation in terms of the backhaul capacity.
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I. INTRODUCTION

Wireless networks with multiple users are interference-limited rather than noise-limited. Interference
channel (IC) is a good starting point for understanding the performance limits of interference-limited
communications. In spite of research spanning over three decades, the capacity of the IC has been
characterized only for some special cases [1-7].

ICs model practical cellular networks. However, since the cellular base stations are connected via
backhaul links, making efficient use of the backhaul is an important practical problem. This backhaul
can lead to cooperation between transmitters in the downlink and cooperation between the receivers
in the uplink [8-13]. Cooperation between transmitters or receivers can help mitigate interference by
forming a distributed MIMO system which provides performance gain. The rate at which they cooperate,
however, is limited, due to physical constraints. In this paper, we tackle the fundamental problem of
efficient use of limited-capacity backhaul for multiple-input multiple-output (MIMO) uplink ICs (with
receiver cooperation). Recently, many results have shown that transmitter and receiver cooperation can be
employed in ICs to achieve an improvement in data rates [14—22]. However, most of the existing works on
ICs with cooperation are limited to discrete memoryless channels or to single-input single-output (SISO)
channels. This paper analyzes two-user MIMO Gaussian ICs with limited receiver cooperation.

The authors of [14] considered a two-user SISO Gaussian IC with limited receiver cooperation where
there are links with fixed capacities between the two receivers and they found the capacity region of the
channel within two bits. In this paper, we find an outer bound and an inner bound for the capacity region
that are within /N;+ N, bits for a general MIMO IC with limited receiver cooperation (i.e., limited backhaul
capacity), where N; and N, are the numbers of receive antennas at the two receivers, respectively. We
use an achievability scheme based on that for the discrete memoryless channel in [14]. In this scheme,
receivers do not decode the messages immediately upon receiving the signals from the transmitters. One
of the receivers quantizes its received signal at an appropriate distortion, bins the quantization codeword
and sends the bin index to the other receiver. For quantizing the received signal, a novel distortion function
for MIMO IC is given in this paper. The other receiver decodes its own information based on its own
received signal and the received bin index. After decoding, it bin-and-forwards the decoded common
messages back to the other receiver and helps it decode. This paper uses the signal distributions and
auxiliary variables that are different from those in [14] and in such a way that can be used for a MIMO

IC to achieve a constant gap to the capacity region.



We note that the achievability strategy for the SISO IC in [14] is to split the transmit signal into public
and private messages using the Han-Kobayashi message splitting where the private message is received
at the unintended receiver below the noise floor. For a MIMO IC with limited receiver cooperation, we
proposed a counterpart of Han-Kobayashi splitting in [23] where the covariance matrices for the public
and the private messages were properly designed. In this paper, we give an achievability scheme based on
the splitting scheme in [23]. Further, the authors of [14] proposed different choices of power splits between
the public and the private messages for three different regions of SISO IC corresponding to: weak, mixed
and strong interferences. In this paper, for MIMO IC, we propose a single choice of covariance matrices
for the public and private messages for all regimes rather than considering different regimes separately.
For the special case of SISO IC, the achievability scheme used in this paper reduces to a different one
from that given in [14]. The achievability scheme uses the convex hull of the regions formed by two
strategies corresponding to different decoding orders. The convex hull of the two regions eliminates two
constraints in each region resulting in a constant gap between the inner and the outer bounds.

Having characterized the outer and inner bounds within a constant gap, and as a result having the
approximate capacity region, we also find the degrees of freedom (DoF) region for the two-user MIMO
IC with limited receiver cooperation. We find that the DoF region improves with the increase in cooperation
in terms of the backhaul capacity. For the case of symmetric number of antennas in both the transmitters
and the receivers, we find that the DoF improves up to a certain point in terms of the backhaul capacity,
and beyond which the DoF does not improve anymore.

The symmetric DoF region formed when both each transmitter has M/ antennas and each receiver has
N antennas, is a pentagon with bounds only on individual DoF (d;,ds) and sum DoF (d; + dy) for all
cases except when N < M < 2N. Thus, when the number of antennas at all the nodes are the same
ie., M = N, the DoF region is a pentagon. However, when N < M < 2N, the DoF region also has
constraints on 2d; + dy and d; + 2ds. These constraints are known to not hold for IC with no cooperation
[5], and for ICs with infinite cooperation which corresponds to a multiple-access channel (MAC) [24].
In this paper, we find that the extra bounds on 2d; + ds and d; + 2d, are dominant for a finite non-zero
limited cooperation (when the backhaul capacity is less than a certain value) for N < M < 2N. We note
that this result shows that the role of transmit and receive antennas cannot be interchanged to get the
reciprocity result which exists in the case of no cooperation [5].

Finally, we also characterize the generalized degrees of freedom (GDoF) for a MIMO IC with limited



receiver cooperation, when the cooperation links are of the same capacity which is increasing with a base
signal-to-noise ratio (SNR) parameter, say SNR (as Jlog SNR). Note that even though the DoF region
is found in general, we find the GDoF only in a limited setting when the number of antennas at all the
nodes are the same (say M ). We assume that the channel strengths of the direct links have values of the
order SNR while the cross links have channel strengths of the order SNR®. We find that the increase in
the cooperation leads to improvement in GDoF. For a given M and «, the GDoF increases till § = M«
at which point the GDoF with limited cooperation is the same as that with full cooperation. Without any
receiver cooperation, the GDoF is a “W” curve (a curve between the GDoF and «). We note that the “W”
curve changes to a “V” curve and then to an increasing function as the backhaul capacity increases.
The remainder of the paper is organized as follows. Section II introduces the model for a MIMO IC
with limited receiver cooperation and the capacity region. Sections III describes our results on the capacity
region. Section IV describes our results on the DoF region and the GDoF. Section V concludes the paper.

The detailed proofs of various results are given in Appendices A-D.

II. CHANNEL MODEL AND PRELIMINARIES

In this section, we describe the channel model that is used in this paper. A two-user MIMO IC consists
of two transmitters and two receivers. Transmitter ¢ is labeled as T; and receiver j is labeled as D; for
i,j € {1,2}. Further, we assume T, has M, antennas and D; has N, antennas. Henceforth, such a MIMO
IC will be referred to as the (M;, Ny, My, No) MIMO IC. The channel matrix between transmitter T; and
receiver D; is denoted by H;; € CYi*Mi We shall consider a time-invariant channel where the channel
matrices remain fixed for the entire duration of communication. At time ¢, transmitter T; transmits a
vector X;(t) € CMi*! over the channel with a power constraint tr(E(Xin )) <1 (A is the conjugate
transpose of the matrix A).

Let Q;; = E(XiX]T) fori,5 € {1,2}. We say A =< B if B— A is a positive semi-definite (p.s.d.) matrix
and we say A = B if B < A. The identity matrix of size s x s is denoted by I,. Further, we define
o £ max{z,0}. We also note that 0 < Q; < I, and 0 < QijQL < 1.

We also incorporate a non-negative power attenuation factor, denoted as p;;, for the signal transmitted

from T, to D;. The received signal at receiver D; at time ¢ is denoted as Y;(¢) for i € {1,2}, and can be



written as

Yi(t) = VeuHuXi(t) + /par Ha Xa(t) + Zi (1), (D
Yo(t) = /praH12X:1(t) + /pazHaa Xo(t) + Zo(1), ()

where Z;(t) € CV*1 ~ CN(0,Iy,) is the ii.d. complex Gaussian noise, p;; is the received SNR at
receiver D; and p;; is the received interference-to-noise-ratio at receiver D; for i,j € {1,2}, i # j. A
MIMO IC with limited receiver cooperation is fully described by four parameters. The first is the numbers
of antennas at each transmitter and receiver, namely (M;, Ny, Ms, No). The second is the set of channel
gains, H = {Hy1, Hy5, Hy1, Hy,}. The third is the set of average link qualities, p = {p11, p12, Pay, P22 }-
The fourth parameter is C = {C12,Cy1 } where C; is the capacity of the cooperation (backhaul) link from
receiver D; to D;. We assume that these parameters are known to all transmitters and receivers. Also, the
cooperation channels are orthogonal to each other and they are orthogonal to the data channels.

The receiver-cooperation links are noiseless with finite capacities. Encoding is causal in the sense that
the signal transmitted from D; at time ¢ is a function of whatever is received over the data channel, or
on the cooperation link up to time ¢ — 1. In addition, the decoded signal at D;, m;, is a function of the
received signal from the channel, Y;(¢), and the cooperation signal transmitted from D; to D;, I;;, for

i € {1,2}. Thus, the decoding functions of the two receivers are given as
m; = full, Yi(t), 3)

where f;; is the decoding function of D, at time ¢. Let us assume that T, transmits information at a rate
of R; to receiver D, using the codebook C, ,, of length-n codewords with |C;,,| = 2"% Given a message
m; € {1,...,2"%}, the corresponding codeword X!"(m;) € C;,, satisfies the power constraint mentioned
before. From the received signal Y;" and the cooperation message from Dj, i.e. I'j;, D; obtains an estimate
m; of the transmitted message m; using a decoding function. Denote the average probability of decoding
error by e;, = Pr( m; # my).

A rate pair (Ry, Ry) is achievable if there exists a family of codebooks C;,, and decoding functions
such that max;{e;,,} goes to zero as the block length n goes to infinity. The capacity region C(H,p,C)
of the IC with parameters H, p and C is defined as the closure of the set of all achievable rate pairs.

Consider a two-dimensional rate region C(H, 5, C). Then, the region C(H,p, C)&([0, a] x [0, b]) denotes
the region formed by {(Ry, Ry) : Ry, Ry > 0,(Ry +a, Ry +b) € C(H,p,C)} for some a,b > 0. Further,



we define the notion of an achievable rate region that is within a constant number of bits of the capacity

region as follows.

Definition 1. An achievable rate region A(H,p,C) is said to be within b bits of the capacity region if
A(H,p,C) CC(H,p,C) and A(H,p,C) @ ([0,b] @ [0,0]) 2 C(H, p, ).

ITI. INNER AND OUTER BOUNDS ON CAPACITY REGION

In this section, we give the outer and inner bounds on the capacity region of a two-user MIMO IC

with limited receiver cooperation. Let R, be the convex hull of the region formed by (R, Rs) satisfying

the following constraints.
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The following theorem shows that the capacity region of a two-user MIMO IC with limited receiver

cooperation is within N7 4+ N, bits of R,,.

Theorem 1. The capacity region for an (My, Ny, My, N3) two-user MIMO IC with limited receiver

cooperation, Cgc, is bounded from outside and inside as

Ro & ([0, Ny 4 No] x [0, Ny + No]) € Cre C R, (14)

Thus, the inner and outer bounds are within N; + N, bits.

Outer Bound: The complete proof that R, is an outer bound for the capacity region of the two-user

MIMO IC with limited receiver cooperation is given in Appendix A.



(4), (5) and (9) are cut-set based upper bounds. The other bounds are obtained based on genie-aided
strategies making use of Fano’s inequality, the data processing inequality, the fact that the cooperation
messages are functions of (Y;,Y53), and the fact that Gaussian distribution maximizes the entropy. The
detailed derivations are given in Appendix A.

Inner Bound: Here, we will give a brief description of the achievability strategy. The complete proof
can be found in Appendix B.

The achievability scheme is based on a two-round strategy, similar to that used in [14] for SISO
interference channels. It consists of two parts: 1) the transmission scheme and 2) the cooperation protocol.
1) Transmission Scheme:

Each transmitter T; splits its own message into private and common sub-messages and sends
Xi = X, + Xic, (15)

where X;, ~ CN(0,Q;,) denotes the private message, and X;. ~ CN(0,Q;.) denotes the common

message. We assume that X;, and X,. are independent with

Qip = In, — \/piniTj(INj + pinin;rj)ilx/,Oinija (16)

and Qic = [MZ - Qip; (17)

for i € {1,2}.

It is shown in Appendix B of [23] that ();, = 0 and ;. >~ 0. Further, this message split is such
that a private signal is received at the other receiver with constant power. More specifically, we have
pinijQiijj = Iy, thus the received signal at receiver D; corresponding to the private signal from
transmitter T, is below the noise floor.

Remark: Note that the power allocation in (16)-(17) is different from that given in [14] even for a
SISO channel. In [14] different achievability schemes were given for weak, mixed, and strong interference
regimes. Here what we propose is a single choice of parameters for all interference regimes. For the special
case of SISO IC, the above scheme constitutes an alternative choice of variances to those proposed in
[14].

2) Cooperation Protocol:
We use a two-round cooperation protocol similar to that in [14]. In the first round, D; quantizes its

received signal and sends out the bin index. And then in the second round, D; i # j (i,j) € {1,2}



receives this side information and decodes its desired messages (its own message plus the other’s public
message). After decoding, D; randomly bins the decoded public messages, and sends the bin indices to
D;. Finally, D; decodes its message. In this two-round strategy, ST'G;_;_,;, the processing order is: D;
quantize-and-bins, D, decode-and-bins and finally D, decodes. Its achievable rate region is denoted by
R;-i—;. By time-sharing, the rate region R = conv{Ra12UR1 49,1}, i.e. the convex hull of the union
of the two rate regions is achievable.

For simplicity, we consider strategy Ro_,1_,2. Do does not decode messages immediately upon receiving
its signal. It first quantizes its signal by a pre-generated Gaussian quantization codebook with certain
distortion and then sends out a bin index determined by a pre-generated binning function. It sets the
distortion level equal to the aggregate power level of the noise and T,’s private signal. D; decodes
the two common messages and its own private message, by searching in transmitters’ codebooks for a
codeword triplet that is jointly typical with its received signal and some quantization point (codeword) in
the given bin after retrieving the receiver-cooperative side information (the bin index). After D; decodes,
it uses two pre-generated binning functions to bin the two common messages and sends out these two
bin indices to D,. After receiving these two bin indices, D, decodes the two common messages and its
own private message, by searching in the corresponding bins and T,’s private codebook for a codeword
triplet that is jointly typical with its received signal.

Although the cooperation protocol is similar to that in [14], the distortion function used for the
quantization of the received signal needs to be extended to the case of multiple antennas. We here describe

the distortion function for ST'G5_,;_,o. For the quantization, we use the quantization codebook satisfying
Yy £ Yy + 2o, (18)

where the distortion Z, ~ CN(0, A) with

A = Ing + po2H3Qsp Hiy. (19)
D, then sends the bin index to D;. The rate loss due to this quantization, &, is given as

g é [<}}2;)/2|X167X17X267}/1)
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= logdet
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= logdet (2A) — log det (A)

= N,. (20)

Thus, we see that the rate loss & is upper bounded by the constant N,. That is, replacing Yy by Y,
incurs at most Ny bits.

Remark: The distortion specified in (19) may not be optimal. The achievable rates can be further
improved if we optimize over all possible distortions. For instance, if the cooperative link capacity is
relatively large, we could lower the distortion level to achieve a better description of the received signals.
With the expression of A in (19), however, we can show that the achievable rate region is within a constant
number of bits to the capacity region for any channel parameters.

Considering the convex hull of the union of the achievable rate regions by the strategies ST Gy 1 9
and STG;_,5 1 for MIMO IC, we show in Appendix B that we can get the achievable rate region for the
general MIMO IC. Moreover, we will show in Appendix B that two of the bounds in each region will
not play a role in the convex hull. This is because if any of these bounds is active, the bound on Ry + R»
is active and thus following the arguments in [14] we get that these bounds will not be active when we
take the convex hull of the two regions. This is illustrated in Figure 1, where it is seen that two of the

bounds in each region are not dominant when a convex hull of the regions is taken.
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Fig. 1. Time sharing of two regions R2—1-2 and Ri1—2-1. The four lines with arrow marks indicate that the corresponding bounds are
not active when the convex hull of the two regions is taken.

Having considered the inner and outer bounds for the capacity region of the two-user IC with limited
receiver cooperation, we have shown that the inner bound and the outer bound are within N; + N bits,
thus finding the capacity region of the two-user IC with limited receiver cooperation, approximately.

The authors of [14] found the capacity region for the SISO IC with limited receiver cooperation within
2 bits. Theorem 1 generalizes the result to find the capacity region of MIMO IC with limited receiver
cooperation within N; + N, bits.

In Figure 2, we compare the inner bound given in Section V of [14] for a SISO IC to that obtained in
Lemma 5 through some numerical examples. Since the outer bounds are the same for SISO, we only plot
one outer bound. Let SNR; = p;;|H;;|* and INR; = pj;|Hj;|* for j # i. In Figure 2(a), we consider a weak
interference regime (SNR; > INR; and SNR, > INR;) with Cy; = 1.1, C5 = 1.1, SNR; = 5, SNRy = 5,
INR; = 2 and INRy = 2. In Figure 2(b), we consider strong interference regime (SNR; < INR, and
SNR; < INR;) with Cy; = 6, C1o = 11, SNR; = 1000, SNRy = 1500, INR; = 4000 and INRy = 10000.
In Figure 2(c), we consider a mixed interference regime (SNR; > INRy and SNR, < INR;) with Cy; = 6,
C1o = 11, SNRy = 9000, SNRy = 1500, INR; = 5000 and INRy; = 1000. We see from Figure 2 that the
inner bounds are comparable. In the above example for weak interference channel, the strategy in this
paper gives better achievable region than that in Section V.C. of [14].

In Figure 3, we see the improvement in the capacity region (outer bound) for a MIMO IC with limited

receiver cooperation. The parameters chosen for limited cooperation are M; = Ny = 3, My = Ny = 4,



Fig. 2. Comparison of the inner bound in this paper with that in [14] for SISO interference channels.
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P11 = P22 = P12 = P21 = 108, Cy =21, C1y = 15,

0.3096 0.1974 0.1080

0.3066 0.4470 0.3885
Hyy = ,Hayp = | 0.6067 0.9480 0.6585 0.6645 |,

0.3595 0.6582 0.9854
0.4465 0.6167 0.6845 0.3685

0.9070 0.6690 0.6854 0.6565

0.4595 0.6582 0.4566

0.8660 0.9767 0.4595 0.6582

0.8603 0.5850 0.6582 0.9854
Hy = , and Hip = | 0.6678 0.2880 0.3867 | - (21)
0.3066 0.4470 0.6585 0.3885

0.4886 0.7904 0.2684

0.1890 0.7650 0.3864

0.3066 0.6167 0.4470 0.3885

IV. DOF AND GDOF REGIONS

In this section, we will use the DoF and GDoF regions to characterize the capacity region of the MIMO
IC with limited receiver cooperation in the limit of high SNR. We first describe our results on the DoF

region of the two-user MIMO IC with limited receiver cooperation, and then proceed to the results on

GDoF.

A. DoF Region

The DoF characterizes the simultaneously accessible fractions of spatial and signal-level dimensions
(per channel use) by the two users when all the average channel parameters are an exponent of a nominal

SNR parameter. Thus, we assume that

log Cz'j .
10gS|1\|II£lHOO IOg SNR a Bij’ and
log py;
=1, (22)

log SNR—c0 log SNR

where (12, 321 € RT.

The DoF region is defined as the region formed by the set of all (d;,ds) such that (d; log SNR —
o(log SNR), d3 log SNR — o(log SNR))! is inside the capacity region. Further, the DoF is the maximum
d such that (d,d) is in the DoF region. We note that since the channel matrices are of full ranks with
probability 1, we will have the DoF and GDoF (next subsection) regions with probability 1 over the

randomness of channel matrices.

'a = o(log SNR) indicates that limsnr_co logﬁ =0.



In this subsection, we find the DoF region for the two-user MIMO IC with limited receiver cooperation.

We use the approximate capacity region characterization in Theorem 1 to get the DoF region for the two-

user MIMO IC as follows.

Theorem 2. The DoF region for a general MIMO IC with limited receiver cooperation is given as follows:

dq
dy
dy + do
dy + do
dy + do
dy + do

2d, + do

dy + 2dy

2d, + dy

dy + 2d,

/AN VAN VANRR VA N VAN VAN
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IN

IN

<

min (M, Ny) + min{min{ Ny, (M; — N;)*}, B },

min (Ms, Ny) + min{min{ Ny, (M — Ny)*}, 812},

min{ Ny, (M; — No)* + My} + min{No, (My — Ny)" + My} + Bio + Boi,
min{ Ny, (M; — No)*} + min{ Ny, My + My} + B,
min{ Ny, (My — N1)*} + min{ Ny, My + My} + a1,
min{ Ny + Ny, My + M},

min{ Ny, (My — N1)" 4 My} + min{Ny, (M; — Np) "} +
min{ Ny, My + My} + Bia + Po1,

min{ Ny, (M; — No)* + My} + min{ Ny, (My — Ny)T} +
min{ Ny, My + Mi} + Pi1a + Pou,

min{ Ny + Ny, M7} + min{ Ny, My + My} + Por,

min{ Ny + Ny, M} + min{ Ny, My + My} + Pro.

Proof: The proof can be found in Appendix C.

(23)
(24)
(25)
(26)
(27)

(28)

(29)

(30)
(31

(32)

Corollary 1. The symmetric DoF region where (15 = P21 = 3, Ny = No = N, and My, = My = M, is

given as follows:

For M < N:

A
A
=

da

A
g

d1+d2 S N+6,

(33)



For 2N < M:

da

dy + ds

For N < M <2N:

d

IN

da

IN

dy + dy

IN

2dy + dy

IN

dy + 2ds

IA

These three cases are illustrated in Figure 4.

Corollary 2. For the symmetric DoF region whe

IN

N+ 8,

IN

N+ 8,

< 2N (34)

min{ M, N + 3},
min{ M, N + 3},
min{M + 3,2N},
N+ M+ 5,

N+ M+ 5. (35)

re b1g = a1 = 3, Ny = Ny = N, and M; = My = M,

cooperation improve the DoF region for 3 < min{N, (2M — N)*}.

Proof: For M < N it can be seen from (

B < (2M — NY* = min{N, (2M — N)*1.

33) that the cooperation improves the DoF region for

Also, for 2N < M it can be seen from (34) that the cooperation improves the DoF region for § <

N = min{N, (2M — N)*}.
For N < M < 2N, we consider the following

Case 1 - <M —N, p<2N — M: In this ¢

dy

da

di + ds
2dy + do

dy + 2ds

four cases.

ase, the symmetric DoF region reduces to

IA

N+ 5,

IN

N+ 5,

B,

N+ M + 8,

INIA

IN

N+M+8. (36)

In this region, (3 is always less than min{N, (2M — N)*} because 8 < M — N < N = min{N, (2M —
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N+

N+B ! N+B N !

(@ M <N. (b) 2N < M.

2E

0

DE F 2E q,

() N < M < 2N, where D = min(M,N + 38), £ =
MENES “and F' = min(M + ,2N).

Fig. 4. The DoF region for symmetric MIMO IC with limited receiver cooperation (grey areas).

N)*}. Hence increasing /3 always enlarges the region.

Case 2 - > M — N, p<2N — M: In this case, the symmetric DoF region reduces to

dy

IA

M,

da

IN

M,

dy + dy

IN

M+ 5,

2d, + do

IN

N+ M+ 8,

dy + 2dy

IN

N+ M + 8. (37)

In this region, (3 is always less than min{/N, (2M — N)*} because § < 2N — M < N = min{N, (2M —



N)*}. In this case, increasing [ always enlarges the region. According to Figure 3(c), while 8 < 2N — M,
we get 21 < 3N and F' < 2N which indicates none of the red, green and blue lines could include the
point (dy,ds) = (M, M) below them. Also, increasing /3 leads to the increase of ' and F' in Figure 3(c)
and as a result, enlarges the symmetric DoF region.

Case 3- 5 <M — N, [3>2N — M: In this case, the symmetric DoF region reduces to

dr

IN

N+ 5,

da

IN

N+ 5,

dy + dy 2N

IA

Y

2dy + dy

IN

N+ M + 8,

dy +2dy < N+M+8. (38)

In this region, (3 is always less than min{N, (2M — N)*} because 3 < M — N < N = min{N, (2M —
N)*}. In this case, increasing ( always enlarges the region. According to Figure 3(c), when 8§ < M — N,
we get D, E < M < 2N = F and also, increasing [ leads to the increase of D and E in Figure 3(c) and
as a result, enlarges the symmetric DoF region.

Case 4 - 5> M — N, 3 >2N — M: In this case, the symmetric DoF region reduces to

dy M

IA

Y

da

IA

M,

dy + ds

IA

9N,

2d, + do

IN

N+ M+ 3,

dy + 2d,

IN

N+M+5. (39)

In this region, changing S only changes E in Figure 3(c). Also, we can easily see that the black line
and red line intersects at (di,ds) = (M,2N — M). The green line includes this intersection point when
£ > N and will be below this point when 5 < N which means increasing J improves the DoF region

until 3 < N = min{N, (2M — N)*+}. n



B. GDoF Region

The notion of GDoF generalizes the DoF metric by additionally emphasizing the signal level as a
signaling dimension. It characterizes the simultaneously accessible fractions of spatial and signal-level
dimensions (per channel use) by the two users when all the average channel parameters vary as exponents

of a nominal SNR parameter as follows

log Cij ﬁ
im — =0,
log SNR—c0 log SNR !
g 1, ifi=y
™ log Pij _ : (40)
log SNR—o0 log SNR e
a, ifi#j

where a, 312, 21 € RT.

The GDoF region is defined as the region formed by the set of all (d;,ds) such that (d; log SNR —
o(log SNR), d3 log SNR — o(log SNR)) is inside the capacity region. Further, the GDoF is the maximum
d such that (d,d) is in the GDoOF region. Thus, both the GDoF region and GDoF are functions of link
quality scaling exponent c.

Next we present our results on the GDoF region for the two-user MIMO IC with limited receiver
cooperation. For the general case, the computation of GDoF region is hard and thus we will only consider
the case that M; = My = N; = Ny, = M. We also assume that 35; = (15 = . With these assumptions,
the GDOF region for the two user MIMO IC with limited receiver cooperation is given in the following

Theorem.

Theorem 3. The GDoF region for a two-user symmetric MIMO IC with limited receiver cooperation is

equivalent to the convex hull of the:

dy < M +min{(a—1)*M, 5}, (41)
dy < M +min{(a—1)"M,5}, (42)
di +dy < 2Mmax{(1—a)*, a}+ 28, (43)
dy+dy < (1—a)"M+ Mmax{1,a}+ 3, (44)
dy +dy < 2Mmax{1,a}, (45)



dy + 2ds

2dy + dy

dy + 2ds

2dy, + dy

IN

IN

IN

<

Mmax{(1 - a)*,a} +
(1—a)"M + M max{1,a} + 2,
Mmax{(1 - a)*,a} +

(1 —a)"M + M max{1,a} + 28,
Mmax{(2 — a)",a} + Mmax{l,a} + 8,

M max{(2 — a)*,a} + M max{1,a} + 3.

Proof: The proof can be found in Appendix D.

(46)

(47)
(48)

(49)

Corollary 3. The GDoF for a two-user MIMO IC with limited receiver cooperation, when M; = My =
Ny = Ny = M and sy = P12 = [ is given as

GDOFrc = min{M + min{(a — 1)* M, 8}, M max{(1 — a)*,a} + 3,

1
2

1 1
~(1—a)"M + §M max{1,a} + §B,Mmax{1,oz},

1 1 1 2
ngaX{(l - Oé)+, CY} + 5(1 - CY)+M + ngaX{L a} + gﬂa

1 1 1
§M max{(2 —a)*,a} + §M max{1,a} + 56}

(50)

Since the GDoF in Corollary 3 is the minimum of many terms, we evaluate the minimum in (50) to

reduce the expression of GDoF as follows.

For 0 < g < 4

GDoF RC —

M, if0<a<Z
M1 —a)t+ 8, 1f%§a§%,
Ma + j, 1f%§oc§§—%,
AM2-a)t+8), if2-2Z <a<l,
L(Ma+p), ifl<a<2+ 2,
M+ 8, if2+ % <a

61y
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(
M, ifo0<a<2,
lMe-a)t+p5), ifL<a<l,
GDOFRC = 2( ( ) ﬁ) M= N (52)
L(Ma+p), ifl<a<2+ L,
M + B, if 2+ 2 < a.
\
For M < j3:
(
M, ifo<a<l,
Ma, ifl<a<Z,
GDoFpo = (53)

$(Ma+ ), if%§a§2+%,
M + 3, if 2+ 2 <a.

\

The authors of [1] found the GDoF for the two-user symmetric MIMO IC without cooperation as

follows
(M(l—oz)Jr, if0<a<s,
Ma, 1f% <a< %,
GDoFnpo = 3(M(2—a)t), if2<a<1, (54)
%Ma, ifl1<a<2,
M, if2<a

(

Figure 5 compares the GDoF for the two-user symmetric MIMO IC with and without receiver cooper-
ation. In Figure 5(a), the “W”-curve obtained without cooperation delineates the very weak (0 < o < %),
weak (% <a< %), moderate (% < a < 1), strong (1 < a < 2)and very strong (o > 2) interference
regimes. In the presence of weak collaboration (0 < § < %), the “W”-curve improves to another
“W”-curve which delineates to extremely weak (0 < a < %), very weak (% < a < %), weak
(% <a< % — 3£M), moderate (% — 3£M <a<l),strong (1 <a<2+ %) and very strong (2 + % < a)
interference regimes. In the presence of weak collaboration (0 < 5 < %), we see that the GDOF is strictly
greater than that without collaboration for every a > 0. The GDoF improvement indicates an unbounded
gap in the corresponding capacity regions as the SNR goes to infinity.

For moderate collaboration (% < B < M), the “W”-curve improves to a “V”-curve which delineates to

the very weak (0 < a < %), weak (% <a<l),strong (1 <a<2+ %) and very strong (2 + % < o)
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GDoF

M2 = == p=Mr2

- ==

— B,

3Mm/4

2M/3

M2

| 11 | | | | |
BM 112 ; 213 1 2 2+B/M 512

2/3-/3M

- == =M

GDoF

BM |

32

M

12@5+M)

3mi4

I I I I I I
V2 pm 1 52 2+ByM 3 1 ByM 3 24B/M

() ¥ < B <M. (c) Bo > M.

Fig. 5. GDoF for MIMO IC with limited receiver cooperation when all nodes have the same number of antennas M.

interference regimes, and we see that the GDoF with collaboration is strictly greater than that without
collaboration for o > 0 similar to the weak collaboration.

For strong collaboration (3 > M), the “W”-curve improves to an increasing curve which delineates to
the very weak (0 < a < 1), weak (1 < a < %), strong (% <a<2+ %) and very strong (2 + % <)
interference regimes. The slopes of increase of GDoF with a changes at the border of these regimes.

We note that for a given M and «, increasing ( improves the GDoF till 5 = Ma, after which there
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is no improvement in the GDoF since the GDoF at this point is the same as that with full cooperation.

This can be seen also in the following corollary.

Corollary 4. The symmetric GDoF for a two-user MIMO IC with limited receiver cooperation, when
My = My = Ny = Ny = M and Poy = 12 = 6 = M« is equal to M max(1, «) which is the same as

that with full cooperation.

Proof: We only need to compare M max(1,a) with all the bounds of the Corollary 3 and see that

it is smaller or equal to all of them in Corollary 3, or

Mmax{1l,a} < M+ min{(a—1)"M,p},

Mmax{l,a} < Mmax{(l1—a)" a}+3,

Mmax{1l,a} < %(1—&)+M+%Mmax{1,a}+%ﬁ,

M max{1l,a} < Mmax{l,a},

M max{1l,a} < %Mmax{(l—&)*,a}%—%(1—&)*M+%Mmax{1,a}+§ﬁ,

M max{1,a} < %Mmax{(Z —a)t,a} + %M max{1,a} + %ﬁ (55)

Since all these expressions can be shown to hold, M max(1, ) is achievable. Further, since M max(1, «)

is also an outer bound, the Corollary 4 holds.

V. CONCLUSIONS

This paper characterizes the approximate capacity region of the two-user MIMO interference channels
with limited receiver cooperation within Ny + N, bits. This approximate capacity region is used to find the
DoF region for the two user MIMO interference channels with limited receiver cooperation. We also find
the maximum amount of cooperation needed to achieve the outer bound of unlimited receiver cooperation.
Further, the GDoF region is found for a two-user MIMO interference channel with equal antennas at all
the nodes. With the GDoF region, we find that the “W” curve without cooperation changes gradually to
“V” curve with full cooperation. The cooperation improves the GDOF till the capacity of the cooperation
link is of the order of aM log SNR when the GDoF reaches the GDoF with full cooperation.

Finally we note that the GDoF results for general number of transmit and receive antennas remains as

an open problem.
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In this Appendix, we will show that Crc C R,. The set of upper bounds to the capacity region

will be derived in two steps. First, the capacity region is outer-bounded by a region defined in terms

of the differential entropy of the random variables associated with the signals. These outer-bounds use

genie-aided information at the receivers. Second, we outer-bound this region to prove the outer-bound as

described in the statement of Theorem 1.

The following result outer-bounds the capacity region of a two-user MIMO IC with limited receiver

cooperation.

Lemma 1. Let S; and S; be defined as S; & VPijHii X + Z; and S; & VPiiHii X + Zj, respectively,

where Z; ~ CN(0, Ipy,) is independent of everything else. Then, the capacity region of a two-user MIMO

IC with limited receiver cooperation is outerbounded by the region formed by (R, Ry) satisfying

Ry

Ry

Ry + Rs
Ry + Rs
Ry + Rs
Ry + Rs
2R, + Ry
Ry + 2R,
2R + Ry

Ry + 2R,

AN VAN VAN VAN VNS VANS VAN VAN VAN

IN

h(Hn X1 + Zy) — M Zy) + min{h(H13 X1 + Zo|H\ X1 + Z1) — h(Zs), Cor 1,
h(Hyy Xy + Zo) — h(Zs) + min{h(Hy Xy + Z1|Hy Xo + Zo) — h(Zy), Cia},
h(Y1|S1) + h(Y3|Sy) — h(Zy) — h(Zy) + Coy + Cha,

h(H11 X1 + Z1151) + h(Y2) — h(Z1, Zs) + Cha,

h(HypXy + Z5|Ss) + h(Y1) — W(Zy, Z) + Chy,

h(Y1,Y2) — h(Z1, Za),

R(H\ X1 + Z11S1) + h(Y1) + h(Ya|S2) — h(Zy, Zy) — h(Z1) + Coy + Ca,
h(Hy Xy + Z5]Ss) + h(Yz) + h(Y1|S1) — h(Zy, Zy) — h(Z3) + Co1 + Ca,
h(Y1,Y3|S) + h(Y1) = h(Z1, Za) = h(Z1) + Chn,

h(Y1,Ys|Sy) + h(Ys) — h(Zy, Zy) — h(Zs) + Ch.

(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)

(65)

Proof: The proof follows the same lines as the proof of Lemma 5.1 in [14], replacing SISO channel

gains by MIMO channel matrices and is thus omitted here.

The rest of the section outer-bounds this region to get the outer bound in Theorem 1. For this, we will

introduce some useful Lemmas.



24

The next result outer-bounds the entropies and the conditional entropies of two random variables by

their corresponding Gaussian random variables.

Lemma 2 ( [25]). Let X and Y be two random vectors, and let X© and Y¢ be Gaussian vectors with

covariance matrices satisfying

X X6
Cov =Cov , (66)
Y Yy¢
Then, we have
h(Y) < h(Y), (67)
hY | X) < h(Y9|X9). (68)

The next result gives the determinant of a block matrix, which will be used extensively in the sequel.

A B
Lemma 3 ( [26]). For block matrix M = with submatrices A, B, C, and D, we have:

C D

det Adet(D — CA™'B), if A is invertible,
det M = (69)

det Ddet(A — BD™'C), if D is invertible.

The next result gives a monotonicity result for a function which will be used to upper bound some of

the terms in Lemma 1.

Lemma 4 ( [23]). Let L(K,S) be defined as
L(K,S)2 K- KS(Iy+S'KS) 'K, (70)

for some M x M p.s.d. Hermitian matrix K and some M x N matrix S. Then if 0 < K; < K5 for some

Hermitian matrices K, and K,, we have
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Define X and X§ as having a Gaussian distribution with the covariance matrix

X¢ X
Cov =Cov : (72)
X§ Xs
Define SlG £ 1/pininiG + Zj, giG = A /pZ]Hl]XZG + ZNJ' and Y;-G = w/puH“XZG + 1/pjiHjinG + ZZ
The rest of the section considers the 10 terms in Lemma 1 and outer-bounds each of them to get the

terms in the outer-bound of Theorem 1.

(56)—(4): We can split the bound in (56) into two upper bounds. The first bound is

Ry

IN

h(H\1 X1+ Z1) — h(Z1) + h(H12 X1 + Zo|H X1 + Z1) — h(Zs)

h(H12X1 + Zo, Hu X1+ Z1) — W(Zy) — h(Zs)
In, + P12H12Q11H1TQ \/p12P11H12Q11HI1
\/P1zp11H11Q11H;rg In, + p11H11Q11HL

= log det(INl + ,011H11Q11HL) + IOg det(]N2 + plnggQHHIQ

INE

log det

—~
=

—p12P11H12Q11HL(]N1 + P11H11Q11HL)_1H11Q11HIQ)
(e

~

log det(INl + panHL) + log det(IN2 + ,012H12Q11H1Tg

—012P11H12Q11HL(IN1 + PllHllQllHL)_lHllQllHifz)
= logdet(Iy, + p11Hi1H],) + log det(Iy,

+p12H12(Q11 — P11Q11HL(IN1 + P11H11Q11HL)AHHQH)HE)

—
IN&

log det(Iy, + p1iHi1 Hi,) + log det(Iy, + p1oHio H],

—012011H12HL(]N1 + pllHllHL)ilHHHE% (73)

where (a) follows from Lemma 2 and from the fact that h(Z;) = logdet (2mely,), (b) follows from
Lemma 3, (c¢) follows from the fact that log det(.) is a monotonically increasing function on the cone of
positive definite matrices and we have Q; < I, for i € {1,2}, and (d) follows from Lemma 4 where

Ky =Q11, Ko =1y, and S = ,/pHHL. It gives the first part of the bound (4).



The second bound is

Rl S h(H11X1 + Zl) — h(Zl) + 021

—

a

2 logdet(Iy, + prHuQuiH{}) + Co

N

(b)
< logdet(Iy, + p11H11H1T1> + Ca,
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(74)

where (a) follows from Lemma 2 and from the fact that h(Z;) = logdet (2mely,), (b) follows from the

fact that logdet(.) is a monotonically increasing function on the cone of positive definite matrices and

we have @Q;; < Iy, for i € {1,2}. It gives the second part of the bound (4).

(57)—(5): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(58)—(6): For the bound (58) in Lemma 1,

R+ Ry <

—
3
~

h(Y1]S1) + h(Ya]Sy) — h(Z1) = h(Z1) + Coy + Cha

h(v/priH1 X1 + /paa Hu Xo + Z1|\/pr2aH12 X1 + ZQ) + h(y/pr2aH12X1 +
VPp2H02Xs + Zs|\/p21 Hn Xs + 21) — h(Zl) - h(Z1) + Co1 + Cho
h(\/mHquG + \/,0_21H21X2G + Z1|\/,0_12H12X1G + Zz) + h(\/,O_mHleG +
VPHn XS + Zo|\/pr Hn XS + Z1) — h(Z1) — h(Z1) + O + Cha
h(/piiHu XE + /oo Hu XS + Zy, \/praH12 XE + Zo) — h(y/praH12 X + Z5)
+h(ypraHo X T 4 /paaHoa X§ + Zon/p Hn X§ + Z1) — h(\/pa Hu XS + 7))
_h(Zl) - h(Zl) + Co1 + Chr2

Iny + pruHuQuiHYy + por Hoy Qoo H, \/MHHQHHIQ

log det
\/p12p11H12Q11H1Tl Iy, + p12H12Q11H12
4 los det In, + p22H22Q22H§2 + P12H12Q11H1TQ \/,021p22H22Q22H2Tl
og de
\/P21/)22H21Q22H2Tg In, + /)21H21Q22Hg1

—log det(Iy, + /)12H12Q11H1r2) — log det(Iy, + P21H21Q22H;r1) + Co1 + Ch2
log det(In, + pllHllQllHL + p21H21Q22H2Tl - P11P12H11Q11H1Tg

(In, + P12H12Q11H12)71H12Q11HL) + log det(Iy, + p22H22Q22H§2 +
/)12H12Q11H1TQ - /322,021H22Q22H;1(]N1 + ,021H21Q22H;1)71H21Q22H52) +

Ci2 + Cxn



(d)
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< logdet(Iy, + annHL + /)21H21H2T1 - /311/)12H11H1TQ(IN2 + /)12H12H1Tg)71H12H1Tl) +

log det(In, + pao Hao Hyy + proHiaHy — paopar Hoo HY, (Iny + por Hor HY, ) ™" Hoy Hi) +

Cia2 + Co, (75)

where (a) follows from Lemma 2, (b) follows from the fact that h(Z;) = logdet (2mely;,), (c) follows

from Lemma 3, and (d) follows from the fact that log det(.) is a monotonically increasing function on

the cone of positive definite matrices and we have @Q;; < Iy, for i € {1,2}, and Lemma 4 where for the

first term Ky = (11, Ky = Iy, and S = \/,012H1TQ and for the second term where K; = Qq2, Ko = Iy,

and S = \/pa1 HJ,. It gives the bound (6).

(59)—(7):

Ry + Ry

For the bound (59) in Lemma 1,

<

I IA

INE

h(H X1 + Z1|81) 4+ h(Ya) — h(Z1, Zs) + Cha

h(H Xy + Z|Hio Xy + Za) + h(Ya) — h(Zy, Za) + Cha

h(H X + Z0|H1oXE 4+ Zy) + WYE) — WM Z1, Zy) + Cha

h(HXE + 2y, Hy XC 4+ Zy) — h(H1oXE + Zo) + WYL — h(Zy, Zy) + Oy
In, + puHuQuHY,  \/prapri HuQuuHi,

log det
\/,012011H12Q11HL In, + 012H12Q11HI2
+log det(/n, + ,012H12Q11H1TQ + PQ2H22Q22H;2)

—log det(In, + piaHi12Qu Hiy) + Cio

logdet(Iy, + p11H11Q11H1Tl - 011P12H11Q11H1TQ(IN2 + p12H12Q11HIQ)_1H12Q11HI1) +
+ log det(In, + p12H12Q11H12 + p22H22Q22H;2) + Ci

logdet(Iy, + priHiHY, — pripraHu Hly(In, + proHioHiy) " Hip HY) +

+log det(In, + proaH12Qu1 Hly + poo HasQao Hly) + Cis

log det(Iy, + puHuHYy — pripiaHi Hiy(In, + proHioHiy) " Hio HYy) +

log det(Iy, + pasHoo HY, + praHio HL,) + Cha, (76)

where (a) follows from the fact that h(Z;) = logdet (2wely,), and (b) follows from Lemma 3, and (c)

follows from Lemma 4 where K1 = Q11, Ky = Iy, and S = /praH.,, and (d) follows from the fact that
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log det(.) is a monotonically increasing function on the cone of positive definite matrices and we have
Qi = Iy, for i € {1,2}. It gives the bound (7).

(60)—(8): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

(61)—(9): For the bound (61) in Lemma 1, assume infinite capacity between the receivers, i.e., consider

a single receiver. We get

R1+R2 S h(}q,Yé)—h(Zl,ZQ)

(a) Ve Hn
< logdet | In,in, + Qu [\/PHHL VorH| +
\/012H12
\/Pz1H21
Q22 \/P21H2T1 \//022]‘-7;2}

\/022H22
(b) p1iH1 t t
S logdet IN1+N2 + [\/pllHll \/,012H12:| +

\/P12H12

\/P21H21
VP22Hao

where (a) follows from Lemma 2 and from the fact that h(Z;) = logdet (2mely;,), and (b) follows from

VeaH Vot | . an

the fact that logdet(.) is a monotonically increasing function on the cone of positive definite matrices
and we have (); = Iy, for i € {1,2}. It gives the bound (9).
(62)—(10): For the bound (62) in Lemma 1,

2Ry + Ry < h(y/piiHu1 X1+ Z1|S1) + h(Y1) + h(Y3|S2) — h(Z1, Z2) — h(Z1) + Co + Cha

IA

h(/priHu XE + Z0|SE) + h(Y,E) + h(YL|SS) — h(Zy1, Zy) — h(Z1) + Cay + Cia

= h(VpuHuX{ + 21, 57) — h(ST) + h(Y®) + (Y5, 55) — h(S5) — h(Z, Z»)
—h(Z1) + Cy + Chz

= h(VpuHu XY + Z1,/preHie X+ Zo) + h(y/preHie XY + /paHu XS + Zs,

Vo Hou XS + Z1) + h(v/ o Hu XY + /por Hn XS + Z1) — h(\/praH12XE + Zs)

—h(\/pngngQG + ZlG> — h(Zl, ZQ) — h(Zl> + 021 + 012
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Iy, + p12H12Q11HIQ + p22H22Q22H52 \/,022P21H22Q22H51

—
S
N

< logdet
\/mHlezzHgg Iny + por Hon Qoo HY,
+log det In, + puHnQu HY, \/mHuQquTz
Voo HiQuH{, Iy, + praHi2QuH],
+logdet(Iy, + pr1H11QuiH]| + pyr Ha1 Qoo HY,)
—log det(In, + p12H12Qu1 Hly) — log det(In, + po1 Ho1QaoH3y) + Cia + Cy
(2 log det(In, + puHuQuiHl, — puipraHiQuH(Ing + proHioQui Hiy) " HioQuu HY}) +

log det (I, + P22H22Q22H;2 + P12H12Q11H12 - P22p21H22Q22H2T1(IN1 + 021H21Q22H2Tl)_1
H21Q22H;rg) + log det(Iy, + P11H11Q11H1Tl + p21H21Q22H2Tl) + Ci2 + Cn

< logdet(Iy, + puHii H, — pripraHi Hly(In, + proHioHl,) T Hip HY ) +
log det(In, + ,022H22H;2 + /)12H12H1Tz - P22/)21H22H2T1(IN1 + 021H21H51)71H21H52) +

log det(INl + anHHL + pngnggl) + C12 + 021, (78)

where (a) follows from Lemma 2 and from the fact that h(Z;) = log det (2mely;, ), (b) follows from Lemma
3, and (c) follows from Lemma 4 and the fact that log det(.) is a monotonically increasing function on
the cone of positive definite matrices and we have @Q;; < Iy, for ¢ € {1,2}. It gives the bound (10).
(63)—(11): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.
(64)—(12): For the bound (64) in Lemma 1,

2R, + Ry
< h(Y1,Y3]S2) 4+ h(Y1) — h(Zy, Z) — h(Zy) + Co
WYEYEIST) + hYE) = b2y, Z) — h(Zy) + Coy
= W(YE Y Hu XS + 7)) — h(Hu XS + Z1) + h(YE) — h(Zy, Z3) — h(Zy) + Con
h(Y1, Yy, HyXo + Z1) — h(Hn Xy + Z1) — h(Zy, Zy) +

logdet(Iy, + p11H11HL + P21H21Hg1> + Oy
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(c)
< logdet
In, + p2aHooQoo Hiy 4 p1aHi2Q11 Hl, \/P21P22H22Q22Hgl + \/011012H12Q11HI1 \/P22,021H22Q22H2Tl
\/P21P22H21Q22H2TQ + \/P11P12H11Q11H1Tg INl + p11H11Q11HL + P21H21Q22H;r1 P21H21Q22H§1
/Pazpa Ho1 Qoo HY, po1 Ho1 Qoo HY, In, + por Ho Qoo HJ,
—logdet(In, + 021H21Q22H§1) + log det(/n, + 011H11HL + P21H21H§1) +Cn
@ P22t i £ y-1 f i
= logdet | In,4+n, + (Qa2 — QoaHy (In, + porHo1 Qoo Hsyy )™ Ho1Qo2) [N/ p22Hsy +/p21Ho, |
\/P21H21
VP12H 12
+ [ Qn[\/anIrg \/PnHL] + log det(In, + ,011H11HL + p21H21H1TQ) +Cy
\/Pan
(e) /P22Hao -
< logdet | In,4n, + { }(IMQ — H3\(In, + por Ho  HY)) ™ Hon ) [\/poz HY,y /P21 H3,

\/021H21

" [ 2V p12H 12
VPeuHu

where (a) and (b) follow from Lemma 2 and from the fact that h(Z;) = logdet (2mely,) and the fact

] [\/Pleirz vpllHL] + log det(IN1 + P11H11H1Tl + P21H21HIQ) + O, (79)

that logdet(.) is a monotonically increasing function on the cone of positive definite matrices and we
have @Q;; < Iy, for i € {1,2}, (¢) follows from Lemma 2, (d) follows from Lemma 3, and (e) follows
from Lemma 4 and the fact that log det(.) is a monotonically increasing function on the cone of positive
definite matrices and we have Q;; < I, for i € {1,2}. It gives the bound (12).

(65)—(13): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

APPENDIX B

PROOF OF ACHIEVABILITY FOR THEOREM 1

In this section, we prove the achievability for Theorem 1. Denote the RHS of the 10 terms in (4)-(13) as
I; to Iy, respectively. We will show a constant gap achiavability result for the two-user MIMO Gaussian

IC with limited receiver cooperation in the following Lemma.

Lemma 5. The capacity region for the two-user MIMO IC with receiver cooperation contains the region
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formed by (Ry, Rs) such that

Ry, < [ — Ny — Ny,
Ry < I,— Ny — Ny,
Ri+ Ry < min{ls, Iy, I5, Is} — N7y — Ny — max(Ny, Ny),
9Ry + Ry < min{ls, Iy} — 2N, — 2N,
Ri+2Ry < min{ls, [1} — 2N, — 3Ns. (80)

The rest of this section proves this Lemma. This region is within N; 4+ N, bits of the outer bound

giver by R, and thus proves the achievability for Theorem 1. In the following, we will consider the rate

regions for ST'Gy_,; o and then take the convex hull of STG5 .1 .9 and ST G 5 .1 to get this result.

Lemma 6. If we consider ST G4_,1_,9, the capacity region of the two-user MIMO Gaussian IC with limited

receiver cooperation includes the set of (Ry, Ry) such that

Ry

Ry

Ry

Ry

Ry + Ry
Ry + Ry
R+ Ry
R+ Ry
R+ Ry
R+ Ry
2R + Ry
2R + Ry

Ri+ 2R,

/AN /AN /AN /AN /AN VAN VAN VANSR VANSE VAN VAN VAN

IN

I1(Xy; Y1 Xae), (81)
I(X1; Y1 Xae, Xoo) + 1(Xie, Xo; Ya| Xoc) + Cho, (82)
I(Xs; Y| Xqe) + Cio, (83)
I(Xoe; Y1[X0) + I(Xo; Yo  Xie, Xoo), (84)
[(Xoe, X15 Y1) + 1(Xo; Ya| X, Xoo) + (Con — €)™, (85)
I(Xoe, X151, Ya) 4 1(Xa3 Ya| Xoe, Xae), (86)
[(Xae, X0 Yi|X1e) + I(Xie, Xo; Yol Xae) + Crz + (Con = )7, (87)
[(ch,Xl;Yl,Yz’ch) + I(X1e, Xo; Ya| Xoe) + Cha, (83)
I(X1; Y1 Xie, Xoe) + 1(X1e, X2 Y2) + Cha, (39)
(X1 V1| Xie, Xoe) + T(Xoe; Y| X0) + T( X, Xo; Ya| Xoe) + Cha, (90)
(X1, Xo; Y1) + 1(X1; V1| Xie, Xoo) + I( X1, Xo; Yo| Xae) + Cra + (Cor — &), (91)
I(X1, Xoe; Y1, Ya) + 1(X13 Vi Xie, Xoe) + [(Xie, Xo; V2| Xae) + Cho, 92)

(X1, Xoo; V1| X1e) + 1( X0, Xo; Ya) 4+ 1(Xo; Yo | Xie, Xoe) + Crg + (Cop — €T, (93)
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Ry +2Ry < I(Xy, Xoo; Y1|Xie) + 1(Xoe; Y11 X1) + 1( Xy, Xo; Yo | Xoe) + 1(Xo; Y2 | Xie, Xoe)
+Cha + (Cor — &), (94)

Ry + 2R, [(X1, Xoe; Y1, Yol X10) 4 I(X1e, Xo; Ya) 4 I(Xo; Ya| X1, Xoe) + Cha, (95)

IN

Ry + 2Ry < I(Xy, Xo; Y1, )}2|ch) + I(Xoe; Y1|X1) 4+ (X1, Xo; Ya| Xoc)

+1(Xo; Y| X1, Xoo) + Cia. (96)

where YZ is defined in (18).

Proof: The proof follows similarly to that in subsection V.C. of [14], replacing scalars in the SISO
channel by vectors for the MIMO channel. [ ]
The rest of the section inner bounds the convex hull of union of this region and the one achieved from
STGq 5,1 to get the inner bound in Theorem 1.
The achievability scheme is a 2-round protocol as described in Section III and the transmission scheme
is based on (15), (16) and (17).

We will first evaluate some entropies that will be used in inner bounds of the achievable rate region.

h(Y;) = logdet(In, + piHiH); + pji ;i HY;) + N;log(2me), (97)

h (Y| X;) = log det (INl. + pjiHj,»H}i) + N; log(2me). 98)
In addition, we have

h(Yi\Xiijc) > h(Yi’Xic, ch,Xj) = log det([Ni + piiHiiQipH@'T@') +N; 108;(2776)

= logdet(In, + puHH}j; — \/piapi Hi H:(In; + piy Hiy HL) ™' /puapiy Hiy HY + Ny log(2me). (99)
Moreover, we have

h(YZ‘|ch, Xz) S 10g det(]]vz + pﬂHﬂijH]TZ) + ]\/vZ 10g(27T6)

—~
N

a

< logdet (21y,) + N;log(2me)

N; + N;log(2me), (100)
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where (a) follows from Lemma 11 of [23] by substituting ,/p;; H ]TZ in S. This shows that h(Y;|X,., X;)

is upper-bounded by N;.

The rest of the section evaluates some terms in Lemma 6. We will not evaluate the bounds (81) and

(92) for now and show that the rest of the bounds contain a region within N; + N, bits of the outer

bounds.

(82): For this bound in Lemma 6, we have

IVE

=
=

VS

—
=

I(X1; Y1 X1, Xoe) + 1(Xie, Xo; Ya| Xoe) + Cha

I(X1; Y1 | Xae, Xoo) + 1(Xie, Xops /p12H12X1 + \/p22H22Xop + Z5) + Cio

I(X1; Y1 X1e, Xoo) + h(y/pr2H12 X1 + /p2aH2o Xop + Zo) — h(y/pr2H12 X1y + Z5) + Cia
I(X1; Y1 X6, Xoe) + h(\/pr2H12X1 + Zs) — h(\/praH12 X1y + Z5)

I(X1; Y1 Xe, Xoe) + I( X v/ pr2Hi2 X0 + Zs)

I(X1; Y1 Xoe, Xie) + I(X1e; Ya| Xo)

h(Ya| Xo) — h(Ya|Xa, Xic) + h(Y1|Xoc, Xie) — R(Yi1|Xoc, Xic, X1)

h(Y3|Xs) + h(Y1]| Xae, X1c) — N1 — Ny — (N7 + N2) log(2me)

log det (I, + p12H12H1Tz) + log det(/n, + PanleHL + P21H21Q2pH;1) — N1 — N,
log det(Iy, + praHiaHly) 4 log det(In, + p1i Hii Qi HY,) — Ny — No

log det (I, + p11Hi HI,) + log det(Iy, + proHioHly — propii HioHi,

(In, + puHi H]) " Hy HYy) — Ny — Ny, (101)

where (a) follows from (100), (b) follows from the assumed Gaussian distributions, (c¢) follows from the

fact that log det(.) is a monotonically increasing function on the cone of positive definite matrices, and

(d) follows from the fact that using Lemma 3,

log det(In, + praHi2Hly) + log det(In, 4+ pyyH11Q1,HY))
Iny + praHpHYy  \/prapzHiHY,

\/,011012H11H1rg In, + pllHllHL
= logdet(In, + praHi2Hly — propin HioHiy (In, + piiHy HYy) " Hi H,) +

= logdet

log det(In, + p11Hy HI,). (102)
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Thus, we see that this R; bound is within N7 + N, bits to the outer bound in (4).

(83): For this term in Lemma 6, we have

I(X9; Ya| Xic) + Ciz
= (Y2 X)) — h(Ya| X1, Xo) + Chz
> h(Y3|Xi.) + Ci2 — Ny — Ny log(2me)
— logdet(In, + paHoHiy 4+ proH12Q1,Hly) — Ny + Cis

(b)
Z lOg det([N2 + pQQHQQH;rQ) + Clg — NQ, (103)

where (a) follows from (100) and (b) follows from the fact that log det(.) is a monotonically increasing
function on the cone of positive definite matrices.
Thus, we see that this Ry bound is within N, bits of the outer bound in (5).

(84): For this term in Lemma 6, we have

I(XQC; Y1|X1) + I(XQ; )/2|ch7 XQC)

- h(le|X1> - h(le|X1a XZC) + h(Y2|cha XQC) - h(}/é|chaX207 XQ)

Z h(}/i|X1) + h(}/g|ch,ch) — Nl — NQ — (N1 + Ng) 10g(27’(‘6)

b

© log det(In, + P21H21H;r1) + log det (I, + p22H22Q2pH;2 + p12H12Q1pHIQ) — Ny — Ny
()

> logdet(Iy, + porHoHY,) + log det(In, 4 pasHaoQopHay) — Ny — Ny

—~
S
=

log det (I, + pagHao Hay) + log det(In, + po1 Hoy HY, — po1 pas Hor Hi

(Iny + pasHoo HY,) ' Hoo HY ) — Ny — Ny, (104)

where (a) follows from (100), (b) follows from the assumed Gaussian distributions, and (c) follows from
the fact that logdet(.) is a monotonically increasing function on the cone of positive definite matrices

and (d) follows from Lemma 3. Using Lemma 3 it is easy to see that

log det (I, + po1 Hoy HY,) + log det(In, + paoHaoQop Hiy)
In, + por Hoy HY, \/P21021H21H;2

\/P22021H22H;1 In, + 022H22H;2
= logdet(In, + 021H21H;1 — 021P22H21H;2(]N2 + P22H22H§2)_1H22H§1) +

= logdet

log det(Iy, + pasHon H,). (105)
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Thus, we see that this Ry bound is within /N7 + N, bits of the outer bound in (5).

(85): For this bound in Lemma 6, we have

I(Xoe, X1; Y1) 4 1(Xo; Ya| X0, Xoe) + (Cyy — €)F

= h(Y)) — h(Y1]| Xoe, X1) + R(Y2| X1e, Xoe) — A(Ya| X10, Xo) 4 (Cop — )T

—
Ve

h(Y1) + h(Y2| Xic, Xoc) + Co1 — Ny — 2N; — (N7 + Ny) log(27e)

log det (I, + pa1 Ho HY, + pry Hi H),) + log det(In, + pasHooQopHiy + proH12Q1,Hiy)

+C5% — Ny — 2N,

V=

log det (I, + pa1 Hoy HY, + pryHi HY,) + log det(In, + pasHooQopHJ,)
4Oy — Ny — 2N,
= logdet(In, + pooHooHY, — pospor Hoo HY, (Iny + por Hoy Hy ) ™ Hoy Hi,) +

log det(]]\[l + pllHllHL + leHQngl) + 021 — N1 — 2N2, (106)

where (a) follows from (100) and (20), and (b) follows from the fact that log det(.) is a monotonically
increasing function on the cone of positive definite matrices.
Thus, we see that this Ry + Ry bound is within N; + 2N, bits of the outer bound in (8).

(86): For this bound in Lemma 6, we have

I(Xoe, X1: Y1, Y5) + I(Xo; Ya| X0, Xoe)

= h(Y1,Ya) — h(Y1, Ya| Xoe, X1) + h(Ya|X1e, Xac) — h(Ya| X1, Xo)

A
Ve

h(Y1,Ys) — h(Y1, Ya| Xoe, X1) + h(Ya| Xi1e, Xoo) — Ny — Ny log(2me)
= (Y1, Ys) — h(Y1, Ya|Xoe, X1) + log det(In, + pasHooQopHiy + proH12Q1,Hiy) — Ny
(ﬁ) h(Y1,Ys) — h(Y1, Yo| Xoe, X1) + log det(In, + pasHaoQopHiy) — Ny
= h(Y1,Ys) — h(\/p2r Ho1 Xop + Z1, \/przHoa Xop + Zo + Zo) + log det (I, + paaHooQopHl,)

—
3}
~

h(Y1,Ys) — log det(A + I, + HyyQopHly) — logdet(In, + HiaQopH s —

Hqupng(A + In, + H22Q2png)_1H22Q2pH1TQ) + logdet(Iy, + p22H22Q2pH;2)

_N2 — (Nl + Ng) lOg(27T€)



—
=

A
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h(Y1,Ys) — log det(Iy, + HyQapHl,) — log det(Iy, + Hy2QopH]y

— H5Qop Hiy (A + Iy + HyoQopHiy) " HyoQop Hy) + log det(In, + paoHooQopHiy)
—2N; — (N1 + N,) log(2me)

h(Y1,Ys) — logdet(In, + Hi2QopHly — Hi9QopHiy (A + Iny + HooQopHy) L HyoQop HYy)

—2N2 — (Nl + NQ) 10g(27’(’6)

h(Y1,Ys) — logdet(Iy, + Hi2QapHly) — 2Ny — (Ny 4 N,) log(2me)
h(Y:,Ys) — Ny — 2N, — (N + N,) log(27e)
log det In, + p11H11H1Tl + 021H21H2T1 \/P11012H11HIQ + \/P21,022H21H§2
og de
\/011/)12H12H1T1 + \//)21/)22H22H;rl A+ Iy, + 022H22H2Tz + /)12H12H1Tz
—N1 — 2N2 — (N1 + Ng) 10g<271'€>
IOg det(A + [N2 =+ pQQHQQH;rQ + Pl2H12HI2) —+ IOg det(IN1 + ,011H11HI1 + pngng;rl
—\/P11012H11HIQ + \/021022H21H§2(A + Iy, + 022H22H;rz + 012H12H12)_1
\/011P12H12H1Tl + \/021P22H22H;1) — N; — 2N,
log det(In, + pasHoo Hiy 4+ proHioHL,) + log det(Iy, 4+ pyi Hy Hi, + poy Hoy HY,
- p11012H11H;Ig + \/P21p22H21H2Tz(IN2 + 022H22H2Tz + ,012H12H1T2)71\/p11012H12HL
/P2 p22Han HYy ) — Ny — 2N, (107)
log dot In, + panHL + ,021H21H2Tl \/P11,012H11HIQ + \/p21p22H21H52
og de
i \/P11P12H12HL + \/P21P22H22Hgl In, + 022H22H;2 + ,012H12H1Tz
—N; — 2N,
p11H11 VP2 Ho
logdet | Iny4n, + Wi HYy /praHip) + [v/Pa1HYy /P2 H)
p12H 12 VP22 H2o
—N; — 2N,
h’<}/17}/2> - Nl - 2N2
puHiy VP21 Har
logdet | Iny4n, + o H paHp) + /o1 HY, /P22 HY)
VP12H12 VP22 Ha:

—N; — 2Ns, (108)
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where (a) and (f) follow from (100), and (b) and (e) follow from the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices, (c) follows from the fact that

h(\/por Ho Xop + Z1,\/pasH22Xop + Zs + Zz)

In, + pa1H21 Qo Hi PaprzHo Qo H
— log det N P21 21Q2p 21 P21P22 21Q2p 22 +(N1+N2)10g(27re)

\//)21/)22H22Q2pH51 A+ Iy, + P22H22Q2pH2Tg
= logdet(A + Iy, + HyQopHL,) + log det(Iy, + Hi2QopHly —

H15Qop Hip (A + Iy + HaoQopHly) ™ HasQop Hiy) + (N1 + Ny) log(27e), (109)
and (d) follows from the fact that A = Iy, 4+ HyQ, HJ, and hence:

log det(A + I, + HapQspHl,)
= logdet 2(In, + HasQopHiy)

— logdet(Iy, + HaQopHiy) + No. (110)

Thus, we see that this R; + Ry bound is within N; + 2N, bits of the outer bound in (9).

(87): For this bound in Lemma 6, we have

(X, X15 V1| X10) + T(X1e, Xo; Ya|Xoe) + Cra + (Coy — &)

h(Y1]|X1e) — (Y1 X1e, Xoe, X1) + h(Ya| Xao) — h(Ya| Xoe, Xie, Xo) + Cra + (Coy — &)

h(v/priHi X1p + /p2ar Hn Xo + Z1) + h(y/pr2aH12 X1 + /p2aH22Xop + Z5)

+012 + 021 — N1 — 2N2 — (Nl + Nz) log(27re)

—
Ve

log det(/n, + pllHllleHL + P21H21H;r1) + log det(In, + 022H22Q2pH;2 + 012H12H1Tg)

+C2 4+ C9 — Ny — 2N,
= logdet(Iy, + puHi Hy + por Hu HY, — priproHii Hiy(In, + proHinHly) " HipHYy ) +
log det(/n, + P22H22H;2 + 1)12H12H1fz - P22P21H22Hg1([N1 + p21H21H51)71H21H52) +

Ci2 + Co — Ny — 2Ns. (111)

where (a) follows from (100) and (20).
Thus, we see that this R; + Ry bound is within N; + 2N, bits of the outer bound in (6).
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(88): For this bound in Lemma 6, we have

v

—
Ve

V=

—
)
~

I(Xoe, X33 Y1, Ya| Xio) + 1( X1, Xos Yol Xac) + Ciz

I(Xoe; Y1, Ya| X1o) + 1(X05 Vi, Yol X1, Xae) + 1(Xie, X3 Yol Xoe) + O
I(Xoe; Yz’ch) + I(X1; Y1 X1, Xoc) + 1(Xie, Xo; Ya| X)) + Cha

I(Xoe; Ya| X1e) — No + 1(X3; Y1 Xie, Xoe) + I(Xie, Xo; Y| Xoe) + Cha
I(X1; Y1 Xie, Xoe) + 1(X1e, X2;Y2) + Cra — Ny

h(Y1| X1, Xoc) — h(Y1| X1, X1e, Xoc) + h(Y2) — h(Y2| Xie, Xo) + Cra — Ny
h(Y1| X1, Xoc) + h(Y2) + Cia — N1 — 2N — (N7 + N,) log(27e)

log det (I, + p11 Hi1QupHI, + por Hay Qo Hiy) +

log det(In, + p2szzH§2 + p12H12H1TQ) + Ci2 — N1 — 2N,

log det(/n, + P11H11Q1pH1Tl) +

log det(/n, + P22H22H;2 + p12H12H1Tg) + Ci2 — N1 — 2N,

log det(In, + priHuHYy — pripraHi Hiy(In, + proHioHiy) ™ HioHY)) +

log det (I, + pao Hoo Hy + proHioH{y) + Cig — Ny — 2Ny, (112)

where (a) follows from

I(Xoe; Ya| X10) > I(Xoe; Yo | X10) — Ny, (113)

which is true since

I(Xy,; YQIXM) — I(Xac; 2| Xie) + No
- h(}}g\Xm) — h(YQ\ch, Xoe) — h(Y2| Xie) + R(Ya| X, Xoe) + No
= logdet(A + In, + paoHoo Hy + p12Qu, HioHYy)
—logdet(A + Iy, + p22H22Q2pHQTz + ,012H12Q1pH1Tz)
—logdet(Iy, + pooHasH3y + proH12Q1, Hl,)

+log det (I, + p22H22Q2pH§2 + p12H12Q1pH;rQ) + Ny
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= logdet(A+ Iy, + ,022H22H§2 + PlelpH12H1TQ)
—log det(Iy, + paoHanHy + proH12Q1,HY,)
—log det(2A + p1oH12Q1pH1y)
+ log det(A + p12H12Q1PH1T2) + N,

> 0, (114)
(b) follows from the fact that

I(Xoe; Yo | Xie) + I(Xie, Xo; Ya| Xo,)
= I(Xoe; Yo, Xic) + (X1, Xo; Ya| Xo,)
> I(Xoe; Y2) + (X, Xo; Ya| Xoc)

- I(X167X27X20;}6) +I<X167X2;}/2)7 (115)

(c) follows from (100) and (d) follows from the fact that log det(.) is a monotonically increasing function
on the cone of positive definite matrices.
Thus, we see that this R; + Ry bound is within N; + 2N, bits of the outer bound in (7).

(89): For this bound in Lemma 6, similar to the last term we have

I(X1; Y1 X0e, Xoe) + I(Xie, X23Y2) 4 Chg
> logdet(Iy, + prHiHI, — pripiaHiHiy(In, + proHioHiy) "V HioHI) +

lOg det([N2 + pQQHQQH;LQ + plelgHiTQ) + 012 — Nl — NQ, (116)

which results from the proof of the last bound.

Thus, we see that this R; + Ry bound is within N; + N5 bits of the outer bound in (7).
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(90): For this bound in Lemma 6 we have

I(X1; Y1 | Xoe, Xoe) + 1(Xoe; Y1 X0) + 1( Xy, Xo; Ya| Xoe) + Cho

h(Y1| X1e, Xoo) — h(Y1] X1e, Xoe, X1) + h(Y1]X1) — h(Y1| X1, Xoo) + h(Ya| Xoc)

—h(Y2|X1e, Xo, Xoo) + Chz

—
Ve

h(YﬂXlC, X20> + h()/1|X1) + h/<}/2|XQC) + 012 — 2N1 — N2 — (2N1 + NQ) 10g(27’(’6)

h(Y1| X1e, Xoe) + h(\/par Hn X + Z1) + h(Y2, Xoc) — h(Xa.) + Ci2 — 2N — Ny — (2N; + Ny) log(2me)

HonHY) + proHinHly  «/Dag Hoo Qo
= logdet Pttt + pathotly onHn@, — log det (Q2c) + M(Y1]X1e, Xoc) +

VP2QacHl, Q2c
h(\/ﬂQlHQlXQ + Zl) + 012 — 2N1 — N2 - <2N1) 10g(27’(’6)

= logdet <]N2 + pasHpn HY, + 012H12H1Tz> +
log det (ch — p2aQacHiy(Iny, + pasHon Hiy + p12H12H12)_1H22Q20> —logdet (Qac) +
BV X 10y Xoo) + h(x/poi Hon Xo + Z1) + Crs — 2N; — Ny — (277) log(2re)

— logdet (IN2 ¥ posHop H, + plnggHIQ) +logdet(In, + piHiQuyHl, + poy HorQop H, ) +
log det (QQC — p22Q2cH3y(In, + pan Hao HY, + pleleiz)_lech) — log det (Qac) +

+10g det <[N1 + leHQlH;l) + 012 — 2N1 — NQ

v

log det (IM 4 oo Hoo Hly + puHuH;fQ) +log det(Iy, + pu HuQupHl,) +
log det <Q2c — p22Q2cH;rQ([N2 + p22H22H52)71H22Q2c> — log det (Q2) +

+10g det ([Nl + p21H21H;rl) + 012 — 2N1 — NQ

A%

log det (IN2 + oo Hao H, + p12H12H1TQ) +logdet(Iy, + pi Hu Qi Hl)) +
log det (ch - Q%c) — log det (Q2c) + log det (]N1 + P21H21Hgl> + Cia —2N; — N,
— logdet (1N2 + posHao H, + pmHmHjQ) +log det(Iy, + pi Hu Qi Hly) +
+log det (Qa,) + log det (INl + p21H21H;1) 4 Cia — 2N; — Ny
= logdet <]N2 + PQ2H22H§2 + p12H12H1TQ> + log det(Iy, + panleHlTl) +
+log det (Qs,) + log det (1M2 + pmHnggl) + O — 2N, — N,
— logdet <1N2 ¥ posHop H, + pmHuHIQ) +logdet(In, + puHnQupHl,) +

+log det <[M2 — ple;rl(INl + pngnggl)_le) + log det <IM2 + ,021H2T1H21> + 012 — 2N1 — N2
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= lOg det (IN2 + pQQHQQng + plnggHirQ) + lOg det(INl + pllHllleHL) +

+ log det (IMQ — por HY, (Iny, + por Hor H3, ) ™ Hoy + poy Hyy Hoy—

P21H51H21021H;1([N1 + P21H21H;1)71H21) + Chi2 — 2N — Ny

= logdet (INQ + /)22H22H;2 + p12H12HI2> + log det (I, + /)11H11Q1pHL) +

+log det (IM2 + por HY, <IM2 — Hyipor HY (I, + pon Ho HY) 7 — (I + 021H21Hg1)71) H21>

+C12 — 2N, — Ny

= lOg det(]Nl —+ pllHllleHL) + log det(]]\[2 + pQQHQQH;rQ + plnggHirz) + 012 — 2N1 — N2

= logdet(Iyn, + ,011H11H1Tl — ,011p12H11H1rg(fN2 + p12H12H12)_1H12HL) +

log det (I, + ,022H22H§2 + P12H12H1TQ) + Cla — 2N; — No, (117)

where (a) follows from (100), (b) follows from Lemma 3 and (c) follows from the fact that log det(.) is

a monotonically increasing function on the cone of positive definite matrices.

Thus, we see that this R, + R bound is within 2/N; 4+ N, bits of the outer bound in (7).

(91): For this bound in Lemma 6 we have

—
Ve

Ve

I(Xy, Xoos Y1) + 1(X03 Y1 [ X, Xao) + T(Xre, Xo; Y| Xoo) + Cra + (Cor — &)

h(Y1) — h(Y1| X1, Xoc) + h(Y1]| Xie, Xoe) — h(Y1[Xie, Xoe, X1) + (Y] Xoc)

—h(Ya| X1e, X2, Xac) + Cha + (Coy — €)F

h(Y1) + h(Y1]|Xqe, Xoc) + h(Y3]| Xoe) + Cra + Cop — 2N7 — 2N; — (2N + Ny) log(2me)
log det(In, + /011H11HL + p21H21H§1) + log det(In, + P11H11Q1pHL + ,021H21Q2pH§1)
+logdet(In, + P22H22Q2pH;rz + ,012H12H1Tg) + Ch2 + Co1 — 2N — 2N,

log det(Iy, 4+ priHi Hi| + par Hoy HY,) + log det(Iy, + P11H11Q1pHL)

+ log det(In, + p22H22Q2pH;rg + p12H12HIQ) + Cia + Oy — 2N, — 2N,

log det(/n, + P11H11H1Tl - P11P12H11H12(1N2 + p12H12H;rg)_1H12HL) +

log det(In, + p22H22H;2 + p12H12HIQ - P22021H22H§1(IN1 + 021H21H§1)_1H21H;2) +

IOg det([Nl + pllHllHL + p21H21H;fl) + 012 + Cgl — 2N1 — 2N27 (118)

where (a) follows from (100) and (20), and (b) follows from the fact that logdet(.) is a monotonically

increasing function on the cone of positive definite matrices.
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Thus, we see that this 2R; + R, bound is within 2/N; + 2N, bits of the outer bound in (10).

(93): For this bound in Lemma 6 we have

(X1, Xoo; V1| X10) 4+ T(X1e, Xo; Vo) + 1(Xa; Ya| X0, Xoe) + Cla + (Cop — €)F
= h(Yl’ch) - h(Yl\ch, Xy, X2c) + h(Yz) - h(Yz’ch,Xz) + h(YQ\ch, X2c)

—h(Ys| X1c, Xoe, Xo) + Cra + (Coy — f)+

IVE

h(}/l|ch) + h(}/g) + h(YQ‘XlC, X2c) + 012 + 021 — 2N1 — 2N2 — (Nl =+ 2N2) log(27re)

log det(Iy, + /)11H11Q1pH1Tl + ,021H21H§1) + log det(In, + /)22H22Hgg + PleleIQ)

+log det(Iy, + 1022H22Q2pH;2 + p12H12Q1pHIQ) + Ci2 + Coy —2N; — 2N,

V=

log det(In, + p11 HiQupH 4 pay Hot H)) + log det(In, + paaHo Hiy + proHioHly)
+log det(In, + pagH2QopHiy) 4+ Cia 4+ Cop — 2N, — 21N,

= logdet(Iy, + po2HaoHly — paopor Hoo HY (In, + por Hoy HY, )~ Hoy HY, ) +

log det(Iy, + ,011H11HL + ,021H21H2Tl - PnplenHIg(ng + p12H12HI2)_1H12H1Tl) +

log det(In, + p22H22H§2 + p12H12H12) + Cy1 + Ci2 — 2N — 2Ns, (119)

where (a) follows from (100) and (20), and (b) follows from the fact that logdet(.) is a monotonically
increasing function on the cone of positive definite matrices.
Thus, we see that this R + 2R, bound is within 2/N; + 2N, bits of the outer bound in (11).

(94): For this bound in Lemma 6 we have

I(Xy, Xoo; Y1|X0e) + 1(Xoe Y11 X0) + 1( Xy, Xo; Yo | Xoe) + 1(Xo; Yo | Xie, Xoo)

+Cho + (Cyy — §)+

h(Y1|X1.) — h(Y1]| X1, Xoe, Xie) + (Y1 X1) — h(Y1| X1, Xoo) + h(Ya]| Xac)

—h(Ys| X1c, Xa, Xoe) + h(Ya| Xic, Xoe) — h(Ya| Xie, Xoe, Xo) + Cia + (Coy — §)+

—
Ve

h(Y1|X18) + h(Ylle) + h(}/g|X20) + h(YQ|X18, X26> + 012 + 021 - 2N1 - 3N2 - 2(N1 + Nz) 10g(27’(’6)

log det (I, + ,022H22Q2pH2TQ + P12H12Q1pH1Tz) + logdet(In, + P11H11Q1pHL + P21H21H2Tl) +

log det(Iy, + p21H21H§1) + logdet(In, + pQQHQQQQpng + p12H12HI2) +

Co1 + Cia — 2N; — 3N,
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V=

log det(Iy, + pasHooQopHiy) + log det(Iy, + p11 HyQupHI| + pay Hoy HY) +
log det (I, + po1 Hoy Hi,) + log det(Iy, + paa HaoQopHay + proHio Hly) +
Co + C1a — 2N7 — 3N,
> logdet(In, + ,022H22Q2pHgg) + logdet(In, + P11H11Q1pH1Tl + p21H21H;rl) +
log det (I, + ,022H22H§2 + P12H12HIQ) + C91 4+ Ci2 — 2Ny — 3N,
= logdet(In, + ,022H22H52 — p22p21H22H;rl(INl + p21H21H51)_1H21H;2) +
log det(/In, + ,011H11H1Tl + P21H21H;1 - P11p12H11HIQ(1N2 + p12H12H;rg)_1H12H1T1) +

log det(IN2 + pQQHQQH;rQ + p12H12HI2) + 021 + 012 — 2N1 — 3N2, (120)

where (a) follows from (100) and (20), and (b) follows from the fact that logdet(.) is a monotonically

increasing function on the cone of positive definite matrices and (c) follows from

log det (I, + po1 Ho Hy)

h(Y1]X3)

IVE

h<}/2) - h’(}/Q‘XQC)

log det([N2 + P22H22H;2 + plnggHiB) —

log det (I, + paaHooQopHly + praHioHy), (121)

where (d) follows from (117).

Thus, we see that this R, + 2R, bound is within 2/N; + 35 bits of the outer bound in (11).

(95): For this bound in Lemma 6 we have

I(X1, Xo; Y1, Ya| X10) + I(Xie, Xo; Ya) + I(Xo; Ya| Xie, Xoe) + Cig

h(Yl,Yz’ch) — h(Y3, 5}2’X17X2C,X1c) + h(Y2) — h(Ya| X1e, Xo) + h(Y2|Xie, Xoc)
—h(Y2| X1e, Xoc, X2) + C1a

(Y1, Ya| X1e) = h(Y1, V2| X1, X, Xic) + h(Y2) + (Y| X1c, Xac) + Cha — 2N; — 2N, log(2re)
h(Y1, Ya| X10) — B(/por Hor Xop + Z1, /przHo Xop + Zo + Zo) + h(Ya| X1e, Xae) + h(Y2)

+012 — 2N2 — 2N2 10g(2’ﬂ'€>
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= (Y1, Ya| X1.) — logdet(A + In, + pooHaoQopHiy) — log det(In, + proH12QopHiy —
pr2p22 H12Qap Hiy (A + I, + poa HopQop Hiy) ™ H2oQop Hy) + h(Ya| X1e, Xoe) + h(Y2)
+Cha — 2Ny — (N1 4 3Ns) log(2me)

> (Y1, Ya|X1e) — logdet(A + In, 4 pooHaoQopHiy) — log det(Iy, 4 proaH12QopHly)
+h (Y| X1e, Xoe) + 1(Y2) + Chg — 2Ny — (N7 + 3N;) log(27e)

= (Y3, Ys]X1o) — logdet(A + I, + pasHooQopHl,) — log det(In, + proH12QopHly)

+log det(Iy, + po2 HaoQop Hiy + proaH12QupHiy) + h(Y2) + Cia — 2Ny — (Ny + 2N,) log(2me)

d A~
(:) h(Yi, Yé|ch) — log det 2(]]\]2 + pQQHQQQng;[Q) — log det(]Nl + p12H12Q2pH1[2)
+logdet(/n, + 022H22Q2pH2Tg + ,012H12Q1prg) + h(Y3) + C1a — 2Ny — (N7 + 2N,) log(27e)
= h(Y1,Ya|X1.) — logdet(In, + pasHonQopHly) — log det(In, + praH1oQopHYy)
+10g det([N2 + /)22H22Q2pH52 + p12H12Q1pH12) + h<}/2) + 012 — 3N2 — (Nl + 2N2) 10g(27’(€)
> (Y1, Ys|X1e) —logdet(Iy, + praH12QopHly) + h(Y3) + Cia — 3Ny — (N7 + 2N,) log(27e)
> WY1, Ya|X1e) + h(Ys) + Cia — Ny — 3N, — (Ny + 2N,) log(2me)
(e) Vit _
> logdet | In,4n, + (In, — Hiy(Iny + proHi2HY) " Hio) Ve Hiy v/przHi)
\/P12H12
PQ1H21 i i
—+ [Vp?lHQI \/pQQHQQ] —+ h(}/Q) —+ 012 — N1 — 3N2 — N2 10g(27T6)
V/P22Hao
Vp1rH1 B
= logdet | Iny4n, + (In, — Hiy(Ing + proHioHly) " Hio) [V Hiy /P2l
\/P12H12
1021H21 t t 1 1
(VP21 Hyy \/pazHyy| | +logdet(In, + paaHaoHoy + praHioHiy) + Cia
V/P22Hoo
~ N, — 3N, (122)

where (a) follows from (100), (b) is achieved similar to (109), and (c) follows from the fact that log det(.)

is a monotonically increasing function on the cone of positive definite matrices, (d) follows from (19),



and (e) is due to

h(Y1, Ya| X1

= h(Y1,Ys, X1e) — h(X1e)

45

In, + PanHlTl + ,021H21H2Tl \/012P11H11H1Tg + \/022,021H21H;2 Vo H Qe

= logdet \/,012011H12H1Tl + \/,022021H22H;rl A+ Iy, + P22H22H2Tg + ,012H12H1T2 VP12H12Q1c

| \/PancHL \/P12Q1CH1TQ
—h(ch) + (Ml + Nl + Nz) log(27r6)

In, + annHL + P21H21H;1 \/,012P11H11HIQ + \/p22021H21H52

—~
~

= logdet —
\/012/)11]‘[12]’111 + \/p22;021H22H§1 A+ Iy, + P22H22Hgg + p12H12H1Tg
Hll 1 1 f
Q1c(Q1e )Qlc[HnHu] + h(X1e) — h(Xie) + (N1 + No) log(2me)
Hys
~ logdet In, + p11H11HI1 + 021H21H§1 \/,012/311H11H1TQ + \/P22P21H21H2Tg
\/012,011H12H1Tl + \/022P21H22H51 A+ Iy, + P22H22H2Tg + PleleIQ
Hll T +
H (Iar, — Qup) [H{1 Hiy] | + (N1 + Ng) log(27e)
12
(é) log det In, + p11H11HI1 + p21H21H;r1 \/012P11H11H12 + \/p22921H21H2Tg
> logde —
\//)12/711[‘[12H1Tl + \//322/)21[‘[22}[;1 In, + P22H22H;2 + p12H12HIQ
Hu t ot
" (IMl - le)[Hnle] + (Nl + Ns) log(27re)
12
\/ﬂan _
= logdet | In,4n, + (Inty, — Hy(In, + proHi2Hy) ™ Hyo) [ /o Hiy v/przHY)
\/P12H12
021H21

" [P HYy /poaHL,) | + (N + Ny) log(2me),
v/ P221122

(123)

where (f) is due to Lemma 3 and (g) results from Lemma 3 and the fact that log det(.) is a monotonically

increasing function on the cone of positive definite matrices and also the fact that A is a positive definite

matrix.

Thus, we see that this R; + 2R, bound is within N; 4+ 3Ny bits of the outer bound in (13).
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—
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: For this bound in Lemma 6 we have

I(X1, Xoe; Y1, 5}2|X1c) + I (Xoe; Y1|X1) + I( X1, Xo; Yol Xoc)

+1(Xo; Ya| X1e, Xoe) + Chz

(Y1, Ya| X1c) = h(Y1, V| X1c, X1, Xoe) + h(Vi|X1) — B(Y2| X1, Xac) + h(Ya| Xoc)
—h(Ya| Xoe, X1c, Xo) + h(Ya| X1e, Xoc) — h(Y2|X1e, Xoe, Xo) + C1o

h(Y1, Yol Xic) = h(Y1, Yol Xie, X, Xaoc) + A(Y1|X0) + h(Ya| Xoc) + h(Ya| Xie, Xac)

+C19 — N; — 2Ny — (N7 + 2Ns) log(2me)

h(Y1, Ya| X1.) 4+ h(Y1|X1) + h(Ya]| Xo) + Cia — 2N; — 3N, — 2(Ny + Ny) log(2me)
h(Y1, Ya|X1e) + log det(In, + poy Hoy Hy)) + log det(In, + pao HasQopHiy + proHioHly)
+C19 — 2Ny — 3Ny — (N7 + Ns) log(2me)

h(Y1, Y| X1.) 4 log det(In, + paoHao Hiy + proHioHly) 4+ Cra — 2Ny — 3Ny — (Ny + Ny) log(2me)

\/P11H11 _
logdet | In,+n, + (In, — Hiy(In, + proHi2HY) " Hio) [ Hiy v/proHi)
Vp12Hi2
p21H21 1 t f 1
(Vp21Hyy /paaHy) | +logdet(In, + pooHooHiy + proHiaH{y) + Cho
\/022H22
—2N; — 3N, (124)

where (a) follows from (100), (c¢) follows from (117), and (b) and (d) can be seen similar to the proof

of the last bound.

Thus, we see that this Ry + 2R, bound is within 2/N; + 3N, bits of the outer bound in (13).

We define the region R” including all the achievability bounds in (81)-(96) except for (81) and (92).

Up to now, we have analyzed all the bounds of R”. We proved in R? that:

Ry < L1 — Ny — Ny,
Ry < I, — Ny — Ny,
Ri+ Ry < min{ls, Iy, I5, Is} — Ny — Ny — max(Ny, Ny),
OR, + Ry < min{ls, Iy} — 2N, — 2N,
Ri+2Ry < min{ls, [} — 2N, — 3Ny, (125)
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Thus, R? contains the region which is within N; 4+ N, bits to the outer bound R.

Now, add constraints (92) and (81) to RP. [14] proved that whenever (92) is active, at least one of the
R; + R, bounds is active, which can be extended to the MIMO case because Claim 5.6 in [14] is true in
general independent of the number of antennas. We will now present similar reasoning for bound (81) to
show that whenever bound (81) is active, at least one of the R; + Ry bounds is active.

The value of R; + R, at the intersection of (81) and (93) is greater than the average value of R; + R,
in (85) and (89):

RHS of (81) + RHS of (93)

I(X1; V1| Xoe) + 1( Xy, Xoe Y| Xae) + 1(Xie, Xo; Ya) + 1(Xo; Yo | Xie, Xoo) + Cra + (Coy — f)+

,\
Ve

I(Xoe, X1; Y1) + 1(Xo; Ya| Xic, Xoo) + (Coy — §)+ + 1(X1; V1| Xae, Xoe) + 1(Xie, Xo3 Ya) 4+ Cho

RHS of (85) + RHS of (89), (126)
where (a) follows from the fact that

I(X0; Y| Xoe) + 1( Xy, Xog; V1| Xae) — 1(Xoe, Xu3 Y1) — (X33 Y1 [ X, Xo)
= h(Y1[Xa) + h(Y1|X1e) = (Y1) — R(Y1[Xic, Xoc)

®)
> 0, (127)

where (b) results from the following fact that if A, B, C' and D are invertible positive semi-definite

M x M matrices then
det(A+ B).det(A+ C) > det(A+ B+ C).det(A), (128)
because it is equivalent to
det(A + B).det(A™).det(A+C) > det(A+ B+ C), (129)
or
det(A+ B+ C+ BA™'C) > det(A+B+0Q), (130)

which is trivial.

It shows that when both the bounds (81) and (93) are active, at least one of the bounds (85) or (89)
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will be active also.
The value of R; + R- at the intersection of (81) and (94) is greater than the average value of R; + R,

in (85) and (90):

RHS of (81) + RHS of (94)
= 1(Xy; Y1 Xoe) + T( Xy, Xoes Y[ X1e) + T(Xoe; V1] X1) + 1( X, Xo; Yo  Xoe) + T(Xo; Yo  Xie, Xoc)
+Chg + (Co1 — §)+
I(Xoe, X13 Y1) 4 1(Xo; Yo | Xie, Xae) + (Co1 — )7 + (X103 V1| X 1o, Xoe) + I(Xae; V1| X7) +
I(Xie, X2; Y| Xoe) + Cha

= RHS of (85) + RHS of (90), (131)

where (a) follows from (127).

It shows that when both the bounds (81) and (94) are active, at least one of the bounds (85) or (90)
will be active also.

The value of R; + R, at the intersection of (81) and (95) is greater than the average value of R; + R,
in (86) and (89):

RHS of (81) + RHS of (95)

I(X1; Y1 | Xoe) + (X1, Xoes Y1, %‘ch) + I(Xie, Xo; Ya) + 1(Xo; Ya| Xie, Xoe) + Cha

IVE

I( X1, Xoe; Y7, Y2|X1c> + I(Xo; Y2 | X1e, Xoo) + 1(X1; V1| X1e, Xoe) + 1(Xie, Xo; Y2) + Cho

RHS of (86) + RHS of (89), (132)
where (a) follows from the fact that

I(X1; Y1 Xoe) — 1(Xy; V1] X, Xoe)
= I(YVI‘XQC) - [(}/1|X107X20)

= logdet(In, + ,011H11HI1 + P21H21Q2pH2T1) — log det(In, + P11H11Q1pH1Tl + p21H21Q2pH;rl)

v

0. (133)

It shows that when both the bounds (81) and (95) are active, at least one of the bounds (86) or (89)

will be active also.
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The value of R; + R» at the intersection of (81) and (96) is greater than the average value of R; + R,
in (86) and (90):

RHS of (81) + RHS of (96)
= I(X1;Y1|Xoe) + (X1, Xoe; Y1, }}Q‘ch) + I(Xoe; Y1|X7) 4+ 1(Xie, Xo; Ya| Xoc)

+I(X2;Y2‘X1C,X2c) + (o

IVE

I(X1, Xoc; K,%’ch) + I(Xo; Y2 | X1e, Xoo) + 1(X1; V1| X1e, Xoe) + 1(Xae; Yi|Xy) +

I(Xie, Xo; Y| Xo.) 4+ Cho

RHS of (86) + RHS of (90), (134)

where (a) follows from (133).

It shows that when both the bounds (81) and (96) are active, at least one of the bounds (86) or (90)
will be active also.

So, when (81) is active, we can see that at least one of the R; + Ry bounds in (85)-(90) is active in
Ro_,1-,2. Hence, with a strategy similar to the one in Claim 5.6 of [14] for (92) we can see that the bound
(81) does not show up in conv{Ro_1 40 UR121}-

Therefore, the R; bound (81) and the 2R; + R bound (92) do not show up in R = conv{Ra_1 4o U

Ri9-1} and R is within Ny + N, bits per user to the outer bounds in Theorem 1.

APPENDIX C

PROOF OF THEOREM 2

In this section, we will find the limit of R,/ log SNR as SNR — oo to get the result stated in Theorem
2 when Cj; ~ SNR? and pi; ~ SNR where (12, 521 € RY.

This follows from Theorem 1 since the capacity region is inner and outer- bounded by R, with constant
gaps which would vanish for the DoF. Before going over each of the above terms and finding their high

SNR limit, we first give some lemmas that will be used in the proof.

Lemma 7 ( [4]). Let H, € CN>*Mi H, € CN*M2 | and Hy, € CN*Mr be k full rank and independent
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channel matrices. Then, the following holds

log det(In + pHyH] + pHyH) + ... 4+ pHy HJ)
= logdet(Iy + p[H; ... Hy][H; ... Hy]")

= min{N, M; + M, + ... + My }Hog p + o(log p). (135)

Lemma 8 ( [23]). Ler H; € CN*Mi gnd H;; € CN>*Mi be two channel matrices with each entry
independently chosen from CN(0,1). Then, the following holds with probability 1 (over the randomness

of channel matrices).

-1
log det(In, + pHyH}; — pHyH,(In, + pHi; HY) pHiyHY)

= min{N;, (M; — N;)* Hog p + o(log p). (136)

Lemma 9. Ler H;; € CN*Mi gnd H;; € CNi*Mi be two channel matrices with each entry independently

chosen from CN(0, 1). Then, the following holds with probability 1 (over the randomness of channel

matrices).
log det(Iy, + pHyHY; — pHy HY(Iy, + PﬂiiHiTi)_lpﬂiiﬂL)
= min{N;, (M; — N;)* Hog p + o(log p). (137)
Proof: The proof is similar to that of Lemma 8. [ ]

Now we find the high SNR limits of the bounds in (4)-(13) leading to Theorem 2.
(4)—(23): Consider bound (4) in R,, we have

IOg det (]Nl + ,011H11H1[1) + mm{log det <]N2 + plQHIQHIQ — 012P11H12HL

-1
<]N1 + p11H11HL> HnHIz) ,Cor}
= logdet(In, + pHy H{,) + min{log det(In, + p*Hio Hiy — p*Hyo Hi,

(In, + pHy HY)) " Hi Hy), Con}

—~
S
N

(min{ My, N1} + min{min{ Ny, (M; — N;)"}, B21})log SNR + o(log SNR ), (138)

where (a) follows from Lemma 7 and Lemma 9. Now, dividing both sides by log SNR, we obtain (23).
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(5)—(24): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.
(6)—(25): Consider bound (6) in R,, we have

-1
log det (INl + P11H11H1Tl + P21H21H2T1 - P11012H11H1Tg <[N2 + P12H12HIQ> HlQHL) +

log det <1N2 + posHoo HYy + proHisHly — pazpai Han H, <[N1 + 021H21H§1>1H21H§2) +
Cra + Coy

= logdet(Iy, + pHi1Hiy + pHy Hi, — ppHi1 Hiy(In, + pHyoHly) ™ Hin Hy) +
log det(I, + pHyHjy + pHioHly — ppHoo H}y (I, + pHay HY,) ™ Hoy H,) +

Cia + Cy

—
S]
N

= (min{Nl,(Ml —N2)++M2}+min{N2,(M2 —N1)++M1}+

Bia + Ba1)log SNR + o(log SNR )), (139)

where (a) follows from Lemma 7 and Lemma 8. Now, dividing both sides by log SNR, we obtain (25).
(7)—(26): Consider bound (7) in R,, we have

log det <]N1 + p11H11H1T1 - P11,012H11HIQ (IN2 + p12H12HIQ> _1H12H1Tl) +
log det (INQ + pooHon HY, + P12H12HIQ> + Chz

= logdet(In, + pHy iy — ppHi Hly(In, + p* HipHly) ™ Hyo Hy ) +
log det(In, + pHaoHYy + pHyioHiy) + Cis

= (min{ Ny, (M; — N2)+} + min{ Ny, My + My} + B12)log SNR + o(log SNR ), (140)

where (a) follows from Lemma 7 and Lemma 9. Now, dividing both sides by log SNR, we obtain (26).
(8)—(27): This is obtained similarly to the previous bound by exchanging 1 and 2 in the indices.

(9)—(28): Consider bound (9) in R, using Lemma 7 we have

\/,011H11 P21 Hoy
logdet | In,4+n, + e Hiy praH) + (/P21 HYy /P2 HY)
\/;012]‘]12 \/022H22
Hyy Hyy
= logdet | In,1n, +p [HlTl HIQ] +p [Hle H§2]
Hi, Hy,

= min{N; + Ny, M; + M>}ogSNR + o(log SNR ). (141)
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(10)—(29): Consider bound bound (10) in R,, we have

1
log det <IN1 + P11H11HL - ;011/)12H11H1T2 (IN2 + p12H12H1Tg) H12H1Tl) +

log det <IN2 + pooHoo HYy + proHisHYy — paspor Hao H3, <IN1 + p21H21H£1> _1H21H§2) +
log det (IN1 + puHy H | + plemHgl) + Chg + Cx

= logdetlogdet(Iy, + pHy H}; — pHy Hiy(In, + pHyoHly) 7 pHin HY,) +
log det(Iy, + pHas Hly + pHioHly — pHao HY (I, 4+ pHo  H)) " pHo H,) +

log det(Iy, + pHy H]| + pHy HY,) + Bra + o

—
S
N

min{Ng, (M2 — N1)+ + Ml} + min{Nl, (Ml — N2)+} +

min{ Ny, My + Ms} + Pia + Box, (142)

where (a) is obtained from Lemma 7 and Lemma 8. Now, dividing both sides by log SNR, we obtain
(29).

(11)—(30): This is obtained similarly to the previous bound by exchanging 1 and 2 in the indices.
(12)—(31): Consider bound (12) in R,, we have

\/022H22 _
logdet | In,4n, + (Ingy — proH3y (Iny + por Hot HY) ™ Hot ) [\/poa HYy \/pon Hy |

\/P21H21

\/P12H12
[\/012H1TQ \/Plle + log det <[N1 + pllHllHirl + P21H21H1Tz) + Oy

VPeuHi
Ha f ! ot
= logdet | Iny4n, +p (Ing, — pHy (In, + pHy Hyy) H21)[H22 Hzl]
Hy,
Hi t ot t t
+p [Hi, Hj;] | + logdet <IN1 +pH Hj + PH21H12> + Oy
Hyy

= (m1n{N1 + NQ, Ml} + min{Nl, M1 + Mg} + 521)10g SNR

+o(log SNR ). (143)

(13)—(32): This is obtained similarly to the previous bound by exchanging 1 and 2 in the indices.

Combining the above results we obtain Theorem 2 results.
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APPENDIX D
PROOF OF THEOREM 3

In this section, we will find the limit of R,/log SNR as SNR — oo to get the result stated in Theorem
3 when Cj; ~ SNR” pi; ~ SNR for i = j and p;; ~ SNR® for i # j where 12, 21 € RT.

This follows from Theorem 1 since the capacity region is inner and outer- bounded by R, with constant
gaps which would vanish for the DoF. Before going over each of the above terms and finding their high

SNR limit. We first give some lemmas that will be used for the proof.

Lemma 10 ( [4]). Let H, € CM*M [, ¢ CM*M " and H;, € CM*M pe k full rank channel matrices.

Then, the following holds

log det (I 4+ p® HiH] + p** HyHy + ... + p™ H,HY)

= max{ay, g, ..., ax f Mlog p + o(log p). (144)

Lemma 11 ( [23]). Let H;; € C™*M and H;; € CM*M be two channel matrices with each entry
independently chosen from CN(0,1). Then, the following holds with probability 1 (over the randomness

of channel matrices).

log det(I; + pH,;iHiTi — \/pp"‘HmH:j(IM + PaHiniTj)_l\/ PPaHinz‘Ti)

= (1 — )" Mlog p + o(log p). (145)

Lemma 12. Let H;; € CM*M and H;; € CM*M pe two channel matrices with each entry independently
chosen from CN(0,1). Then, the following holds with probability 1 (over the randomness of channel

matrices).

-1
log det(In; + p*Hy Hl; — /pp* Hiy H(In, + pHi HE) /pp* Hy HY)

= (o — 1)" Mlog p + o(log p). (146)

Proof: The proof is similar to that of given in [23]. [ |
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Lemma 13. Let H € CM*M pe g full rank channel matrix. Then, the following holds

Ing — pH'(Ing + pHHY) ' H

= (Iy+pH'H)™! (147)
Proof: Let B 2 I, + pH'H. Thus,
In — pH'(BY)'H = (B)™! (148)
Since B is invertible, it is enough to show that
B — pHY(BY'HB = I, (149)
which is equivalent to showing
pH' (BY'HB = pH'H (150)

So it is enough to prove (B")"'HB = H. Or, HB = BTH, which holds since B = Iy + pH'H. [ |
Now we find the high SNR limits of the bounds in (4)-(13) leading to Theorem 3.
(4)—(41): Consider bound (4) in R,, we have

log det(Iy; + pHyy HI,) + min{log det(Ip, + p*HyoHly — p*t Hyp HI

(Ing + pHy Hy) " Hy HY), O )

—

@ (M + min{(a — 1)*M, B})log SNR + o(log SNR )), (151)

where (a) follows from Lemma 10 and Lemma 12. Now, dividing both sides by log SNR, we obtain (41).
(5)—(42): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.
(6)—(43): Consider bound (6) in R,, we have

log det(Ins + pHy Hiy + p*Hor HY, — pot Hy Hiy (Ing + p*HyoHiy) " Hy HY)) +
log det(Ins + pHoo Hly + p* HyoHiy — pot Hon HY (I, + p*Hoy Hi,) ™' Hoy HL) +

Cio + Cy

—~

a

= (2M max{(1 — o)™, a} + 28)log SNR + o(log SNR )), (152)

~
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where (a) follows from Lemma 10 and Lemma 11. Now, dividing both sides by log SNR, we obtain (43).
(7)—(44): Consider bound (7) in R,, we have

log det(Iy + pHy HI, — p* P Hy Hi,(Ing + p®HioHL) ' Hip HY) +

log det(Iy + pHap HYy + p*HinHY,) + Cha

© (1 —a)™M + M max{1,a} + 8)log SNR + o(log SNR )), (153)

N

where (a) follows from Lemma 10 and Lemma 12. Now, dividing both sides by log SNR, we obtain (44).
(8)—(44): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices which gives
the same bound as the last one.

(9)—(45): Consider bound (9) in R,, we have

log det IQM +

\/ﬁHn \/,O_O‘Hzl
Vol V| +
\/[FHH \/5H22

a+1l

IM"‘[)HHHL +paH21H;fl p 2 H11H12—|—pa+1H21H22
P leH 11 +Pa+1H22H21 Iy +,0H22H22 +PQH12H12

\VPrHE, /pH,|

= logdet

= logdet(Iy + pHy Hiy + p®Hoy HY,) + log det(Iny + pHoo HY, + p*Hyo Hiy —

(P H12H 11 "’P H22H21)(IM +PH11H 1nte H21H21)
(p"F HuHiy + p"% HaH}))

= logdet(Iy + pHy H| + p*Hy HJ)) + log det(Iy; + pHao Hly + p*Hio HY, —
p* T (HioHy + HypHY ) (Ing + pHy HY, + p* Hy HY, )™ (Hyy HY, + Hy H))

= (2M max{1l,a})logSNR + o(logSNR ), (154)

where (a) is obtained from Lemma 3. Now, dividing both sides by log SNR, we obtain (45).
(10)—(46): Consider bound (10) in R,, we have

log det log det(Iy; + pHy Hi, — p*t Hy Hiy (I, + p® HioH,) " Hio HY)) +
log det(Ins + pHoo Hly + p*Hyo Hiy — pot Hog H, (In, + p* Hoy Hi,) ™' Hoy HLL) +

log det(Ins + pHy HY, + p*Ho  HY,) + Cig + Cay

—~

) (M max{(1—a)*,a}+ (1 —a)"™M + M max{1,a} + 283)log SNR + o(logSNR ), (155)
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where (a) is obtained from Lemma 10, Lemma 10 and Lemma 11. Now, dividing both sides by log SNR,
we obtain (46).

(11)—(47): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.
(12)—(48): Consider bound (12) in R,, we have

pHx o o -1
ogdet | Lo+ | V7 (IM — pHI, <1N1 +p Hmﬂgl) Hzl) [\prJQ \/_pO‘HQTl}
i VPp*Hyy
VPiHi | r
NI \/EHL] + log det ([M 4 pH L HI, + paHmHIQ) + Oy
\/ﬁHn )
a pHao -1
@ ogdet |1+ | V7 (IM v paHQTlHQl) [ﬁng \/paHgl]
| Vo H2
VPrHp |7
Vo HT, \/5}1}1] + log det <IM + pHpHY,| + paHmHng) + Cy
VoH |

—~
=

= (M max{l,a}+ 8)logSNR + o (log SNR) + log det
L + pHao(Ing + p* HY Hoy ) HY, + p" HioHly  p™5 (Hao(Ing + p®H, Hoy) " HY, + HyoH,)
P (Hor(Ing + pHy Hoy )" H3, + Hi Hly) Iy + pHi HYy + p®Hoy (Ing + p Hiy Hoy )~ HY,
= (M max{l,a} + B)logSNR + o(log SNR) + log det(I5; + pHHHL +
p*Hoy (Ins + p*HY, Hay) ™' HY,) + log det(Iy + pHoo(Ins + p® Hyy Hy )™ Hi, + p* HigHly —
(p°% (Haz(Ing + p® Hyy Hot )"V HY, + HioHY)) (I + pHyHY + p® Ho (Ing + p® Hyy Hoy) ™V HY) ™!
(p°% (Har(Ing + p* Hyy Hy) )™ HY, + Hy Hl,)))
= (M + Mmax{1,a} + 8)log SNR + log det(Ins + pHao(Ins + p*Hi, Hoy) " Hi, + p* Hyo HY, —
p* N (Haa(Ins + p*Hiy Hon) ™ HYy + HioH{)) (I + pHi HYy + p*Hoy (Ing + p™ Hiy Hoy) ™ HY, )™

(Hoy(Ing + p* H3, Hy) ™ Hiy + Hiy Hl,)) + o(log SNR)
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(M + M max{1,a} + 8)log SNR + log det(In; + pHoo(Ins + p® Hi Hoy ) HY, + p*Hio H,
—p" " Hyo Hy (In + pHyy HYy + p® Hoy (Ing + p*Hiy Hyy) ™ HY )™ Hy H,

—p™ Hoy(Ing + p™ HY, Hoy) ™ H, (Ing + pHyy HYy + p* Hoy (Ing + p* Hiy Hoy )™ HY,) ™ Hyy HY,
—p* M Hyo HY, (Ing + pHu Hy + p* Hoy (Ing + p™ HY Hoy) ™ H3,) ™ Hoy (Tng + p® HY, Hoy )™ H,
—p" " Hoo(Ing + p*Hiy Hon) ™ Hi (Ing + pHit HYy + p* Hot (Ing + p*HYy Hyy) ™ HY, )™ Hoy

(Ins + p* Hi Hy )" Hi,) + o(log SNR)

(M + M max{1,a} + 5)log SNR + log det(Iy; + pHoo(Iyr + po“l-]nggl)_ng2 + paH12H1T2
—p" T HyoHY\ (Ins + pH11HYy + p” Ha1(Ing + p* H3y Hy )~ H3,) ™' Hiy Hy) + o(log SNR)

(M + M max{1,a} + 8)log SNR + log det(Iy; + pHao(Ins + p®Hi Hoy )" HY, + p*Hy, HY,
—p  HioHYy (Ing + pHu Hy + (07" HY, ™ (Ing + p Hiy Hon) Hyy ) ™)™ Hyy Hly) + o(log SNR)
(M + M max{1,a} + 8)log SNR + log det(Ip; + pHao(Ins + p®Hi Hoy )" HY, + p*Hyo HY,
—p M HipHYy (Ing + pHu HYy + (07" Bl Hy' + L) ™) " Hy H}) + o(log SNR)

(M + M max{1,a} + 8)log SNR + logdet(Ip; + pHao(Ins + p*Hi Hyy )" HY, +

p* Hio(Ing — pHy (Ins + pHuHy + (0B, H' + L) ™) Hin) Hly) + o(log SNR)

(M + M max{1,a} + 8)log SNR + log det(Iy; + pHao(Ins + p*Hi, Hay) " HY, +

p*Ha(Lnr — (07 Hyy (Ing + pHuHYy + (0 HYy Hy' + L) ™) Hl, )7 Hly) + o(log SNR)
(M + M max{1,a} + 8)log SNR + log det(In; 4+ pHao(Ins + p* HY, Hoy )" HY, +
p*Hio(p " Hy (Ing + pHi HY; + (P_QH;_IH; + IM)_1>H1T1_1 —In)

(P~ Hiy (I + pHu HYy + (o7 HYy Hy' + L) ™ H], )7 H,) + o(log SNR)

(M + M max{1,a} + B)log SNR + logdet(Iy + pHao(Ips + pO‘H;rngl)_lH§2 +

P Hya(p™ " Hy (Lng + pHu HYy + (07 HY, Hy 4 L)) HY = p7 Hy (pHy HY ) H, )
(p7 Hyy (L + pHuHY + (07 Yy Hy' + L) ) H{, ) ' Hl,) + o(log SNR)

(M + M max{1,a} + 8)log SNR + log det(In; + pHao(Ins + p®Hi, Hoy )" HY, +

P His(p™ iy (I + (p By, H + L) ™ H] )

-1 -1
(p™"Hiy (Ing + pHyi HY + (07" Hyy Hy' + L) " H{y )7 HYy) + o(log SNR)
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= (M + M max{1,a}+ 8)logSNR + M max{(1 —a)",a — 1}log SNR + o(log SNR)

= (Mmax{(2 —a)",a} + Mmax{1l,a} + 8)log SNR + o(log SNR), (156)

where (a) is obtained from Lemma 13, () is obtained from Lemma 10, (c) is obtained from Lemma 3,

(d) is because the three eliminated sentences have a constant upper bounds and (e) follows from the fact

that Iy — X' = (X — L)X~ where X = p~ ' H'(Ins + pHy H, + (p°H},  Hy' + L)~ H,

-1

Now, dividing both sides by log SNR, we obtain (48).

(13)—(49): This is obtained similarly to the last bound by exchanging 1 and 2 in the indices.

Combining the above results we obtain Theorem 3 results.
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