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Communication With Disturbance Constraints
Bernd Bandemer, Member, IEEE and Abbas El Gamal, Fellow, IEEE

Abstract— Motivated by the broadcast view of the interference
channel, the new problem of communication with disturbance
constraints is formulated. The rate–disturbance region is estab-
lished for the single constraint case and the optimal encoding
scheme turns out to be the same as the Han–Kobayashi scheme
for the two user-pair interference channel. This result is extended
to the Gaussian vector (multiple-input and multiple-output) case.
For the case of communication with two disturbance constraints,
inner and outer bounds on the rate–disturbance region for
a deterministic model are established. The inner bound is
achieved by an encoding scheme that involves rate splitting,
Marton coding, and superposition coding, and is shown to be
optimal in several nontrivial cases. This encoding scheme can be
readily applied to discrete memoryless interference channels and
motivates a natural extension of the Han–Kobayashi scheme to
more than two user pairs.

Index Terms— Capacity with constraints, interference channel,
broadcast channel, wiretap channel, network information theory.

I. INTRODUCTION

ALICE wishes to communicate a message to Bob while
causing the least disturbance to nearby Dick, Diane,

and Diego, who are not interested in the communication
from Alice. Assume a discrete memoryless broadcast channel
p(y, z1, . . . , zK |x) between Alice X , Bob Y , and their preoc-
cupied friends Z1, . . . , Z K as depicted in Fig. 1. We measure
the disturbance at side receiver Z j by the amount of undesired
information rate (1/n) I (Xn; Zn

j ) originating from the sender
X , and require this rate not to exceed Rd, j in the limit. The
problem is to determine the optimal trade-off between the
message communication rate R and the disturbance rates Rd, j .

This communication with disturbance constraints problem
is motivated by the broadcast side of the interference channel
in which each sender wishes to communicate a message
only to one of the receivers while causing the least distur-
bance to the other receivers. However, in this paper, which
is an extended version of [1], we focus on studying the
problem of communication with disturbance constraints itself.
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Fig. 1. Communication system with disturbance constraints.

The application of the coding scheme developed in this paper
to deterministic interference channels with more than two user
pairs is discussed in [2].

For a single disturbance constraint, we show that the optimal
encoding scheme is rate splitting and superposition coding,
which is the same as the Han–Kobayashi scheme for the
two user-pair interference channel [3], [4]. This motivates
us to study communication with more than one disturbance
constraint with the hope of finding good coding schemes
for interference channels with more than two user pairs.
To this end, we establish inner and outer bounds on the rate–
disturbance region for the deterministic channel model with
two disturbance constraints that are tight in some nontrivial
special cases. In the following section we provide needed
definitions and present an extended summary of our results.
The proofs are presented in subsequent sections, with some
parts deferred to the Appendix.

II. DEFINITIONS AND MAIN RESULTS

Consider the discrete memoryless communication system
with K disturbance constraints (henceforth referred to as
DMC-K -DC) depicted in Fig. 1. The channel consists of K +2
finite alphabets X , Y , Z j , j ∈ [1 : K ], and a collection of
conditional pmfs p(y, z1, . . . , zK |x). A (2nR, n) code for the
DMC-K -DC consists of the message set [1 :2nR], an encoding
function xn : [1 : 2nR] → X n , and a decoding function
m̂ : Yn → [1 : 2nR]. We assume that the message M is
uniformly distributed over [1 : 2nR]. A rate–disturbance tuple
(R, Rd,1, . . . , Rd,K ) ∈ R

K+1+ is achievable for the DMC-K -
DC if there exists a sequence of (2nR , n) codes such that

lim
n→∞ P{M̂ �= M} = 0,

lim sup
n→∞

(1/n) I (Xn; Zn
j ) ≤ Rd, j , j ∈ [1 : K ]. (1)

The rate–disturbance region R of the DMC-K -DC is the
closure of the set of all achievable tuples (R, Rd,1, . . . , Rd,K ).

Remark 1: Like the message rate R, the disturbance rates
Rd, j , for j ∈ [1 : K ], are measured in units of bits per channel
use. (We use logarithms of base 2 throughout.)
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Remark 2: The measure of disturbance (1/n) I (Xn; Zn
j )

can be expanded as (1/n) H (Zn
j ) − (1/n) H (Zn

j | Xn). The
first term is the entropy rate of the received signal Z j and is
caused by both the transmission itself and by noise inherent
to the channel. Subtracting the second term separates out
the noise part. (For channels with additive white noise, e.g.,
the Gaussian case, the second term is exactly the differential
entropy of each noise sample.)

Remark 3: Our results remain essentially the same
if disturbance is measured by (1/n) H (Zn

j ) instead of
(1/n) I (Xn; Zn

j ), in the sense that the optimal coding schemes
and converse proof techniques are unchanged. The rate–
disturbance region, however, would need to be appropriately
transformed. If the channel is deterministic, the two distur-
bance measures coincide.

Remark 4: The disturbance constraint in (1) is reminiscent
of the information leakage rate constraint for the wiretap
channel [5], [6], namely

lim sup
n→∞

(1/n) I (M; Zn
j ) ≤ Rleak, j , j ∈ [1 : K ]. (2)

Note that by the data processing inequality, I (M; Zn
j ) ≤

I (Xn; Zn
j ), hence the disturbance constraint is more restrictive

than the leakage constraint. Consequently, the rate–disturbance
region of a channel p(y, z1, . . . , zK |x) is contained in its rate–
leakage region, if the right-hand side values of the constraints
remain constant, Rleak, j = Rd, j for j ∈ [1 : K ]. However,
replacing the leakage rate constraint (2) with the disturbance
rate constraint (1) significantly changes the optimal coding
scheme. In the wiretap channel, the key component of the
optimal encoding scheme is randomized encoding, which helps
control the leakage rate (1/n) I (M; Zn

j ). Such randomization
reduces the achievable transmission rate for a given distur-
bance constraint, hence is not desirable in our setting.

The rate–disturbance region is not known in general. In this
paper we establish the following results.

A. Rate–Disturbance Region for a Single
Disturbance Constraint

Consider the case with a single disturbance constraint, i.e.,
K = 1, and relabel Z1 as Z and Rd,1 as Rd. We fully
characterize the rate–disturbance region for this case.

Theorem 1: The rate–disturbance region R of the DMC-1-
DC is the set of rate pairs (R, Rd) such that

R ≤ I (X; Y ),

Rd ≥ I (X; Z | U),

R − Rd ≤ I (X; Y | U) − I (X; Z | U),

for some pmf p(u, x) with |U | ≤ |X | + 1.
Let R(U, X) be the rate region defined by the rate con-

straints in the theorem for a fixed joint pmf (U, X) ∼ p(u, x).
This rate region is illustrated in Fig. 2. The rate–disturbance
region is simply the union of these regions over all p(u, x) and
is convex without the need for a time-sharing random variable.

The proof of Theorem 1 is given in Subsections III-A
and III-B. Achievability is established using rate splitting
and superposition coding. Receiver Y decodes the satellite

Fig. 2. Example of R(U, X), the constituent region of R.

Fig. 3. Injective deterministic interference channel with two user pairs.

codeword while receiver Z distinguishes only the cloud center.
Note that this encoding scheme is identical to each transmit-
ter’s operation in the Han–Kobayashi scheme for the two user-
pair interference channel [3], [4].

We now consider three interesting special cases.
1) Deterministic Channel: Assume that Y and Z are deter-

ministic functions of X . We show that the rate–disturbance
region in Theorem 1 reduces to the following.

Corollary 1: The rate–disturbance region for the determin-
istic channel with one disturbance constraint is the set of rate
pairs (R, Rd) such that

R ≤ H (Y ),

R − Rd ≤ H (Y | Z),

for some pmf p(x).
Clearly, this region is convex. Alternatively, the region can

be written as the set of rate pairs (R, Rd) such that

R ≤ H (Y | Q),

Rd ≥ I (Y ; Z | Q),

for some joint pmf p(q, x) with |Q| ≤ 2. Corollary 1 and
the alternative description of the region are established by
substituting U = Z in the region of Theorem 1 and simplifying
the resulting region as detailed in Subsection III-C.

Remark 5: Consider the injective deterministic interference
channel with two user pairs depicted in Fig. 3. Here, gi j is a
function that models the link from transmitter i to receiver j ,
for i, j ∈ {1, 2}. The combining functions f j are assumed
to be injective in each argument. This setting is a special
case of the channel investigated in [7]. This can be seen by
merging g11 and f1 of Fig. 3 into a function f ′

1 that maps
(X1, Z2) to Y1. Likewise, define the function f ′

2 as the merger
of g22 and f2. The modified combining functions f ′

1 and f ′
2 are
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Fig. 4. Deterministic example with one disturbance constraint. (a) Channel
block diagram. (b) Rate–disturbance region.

injective in Z2 and Z1, respectively, and therefore satisfy the
assumptions in [7]. It follows that the Han–Kobayashi scheme
where the transmitters use superposition codebooks generated
according to p(z1) p(x1|z1) and p(z2) p(x2|z2) achieves the
capacity region of the channel in Fig. 3.

On the other hand, Corollary 1 shows that the same encod-
ing scheme achieves the disturbance-constrained capacity for
the channels X1 → (Y ′

1, Z1) and X2 → (Y ′
2, Z2), shown

as dashed boxes in Fig. 3. Here, Y ′
1 and Y ′

2 are the desired
receivers, and Z1 and Z2 are the side receivers associated with
disturbance constraints. Note that decodability of the desired
messages at receivers Y1 and Y2 in the interference channel
certainly implies decodability at Y ′

1 and Y ′
2 in the channels

with disturbance constraint, respectively.
Example 1: Consider the deterministic channel depicted in

Fig. 4(a) and its rate–disturbance region in Fig. 4(b). Note
that rates R ≤ 1 can be achieved with zero disturbance
rate by restricting the transmission to input symbols {0, 1}
(or {2, 3}), which map to different symbols at Y , but are
indistinguishable at Z . On the other hand, for sufficiently
large Rd, the disturbance constraint becomes inactive and
R is bounded only by the unconstrained capacity log(3).
In addition to the optimal region achieved by superposition
coding, the figure also shows the strictly suboptimal region
achieved by simple non-layered random codes (i.e., single-
user codebooks).

2) Gaussian Channel: Consider the problem of communica-
tion with one disturbance constraint for the Gaussian channel

Y = X + W1,

Z = X + W2,

where the noise is W1 ∼ N (0, 1) and W2 ∼ N (0, N).
Assume an average power constraint P on the transmitted
signal X .

The case N ≤ 1 is quite straightforward. Since Y is a
degraded version of Z , the disturbance rate is the same as
the data rate R, and the rate-disturbance region is the set of
rate pairs (R, Rd) such that

R ≤ C(P),

Rd ≥ R,

where C(x) = (1/2) log(1 + x) for x ≥ 0.
If N > 1, Z is a degraded version of Y , and the rate–

disturbance region reduces to the following.
Corollary 2: The rate–disturbance region of the Gaussian

channel with parameters P > 0 and N > 1 is the set of rate
pairs (R, Rd) such that

R ≤ C(αP),

Rd ≥ C(αP/N),

for some α ∈ [0, 1].
Achievability is proved by using Gaussian codes with power

αP . The converse follows by defining α� ∈ [0, 1] such that
R = C(α� P) and applying the vector entropy power inequality
to Zn = Y n + W̃ n

2 , where W̃2 ∼ N (0, N − 1) is the excess
noise. The details are given in Subsection III-D. Note that this
is a degenerate form of the Han–Kobayashi scheme because
the constraint from the multiple access side of the interference
channel is not taken into consideration.

3) Vector Gaussian Channel: Now consider the vector
Gaussian channel with one disturbance constraint

Y = X + W1,

Z = X + W2,

where X ∈ R
n and the noise is W1 ∼ N (0, K1) and

W2 ∼ N (0, K2) for some positive semidefinite covariance
matrices K1, K2 ∈ R

n×n . Assume an average transmit
power constraint tr(Kx) ≤ P , where Kx = E(X XT) is
the covariance matrix of X . This case is not degraded in
general.

Theorem 2: The rate–disturbance region of the Gaussian
vector channel with parameters P , K1, and K2 is the convex
hull of the set of pairs (R, Rd) such that

R ≤ 1
2 log

|Ku + Kv + K1|
|K1| ,

R − Rd ≤ 1
2 log

|Kv + K1|
|Kv + K2|

|K2|
|K1| ,

Rd ≥ 1
2 log

|Kv + K2|
|K2| .

for some positive semidefinite matrices Ku, Kv ∈ R
n×n with

tr(Ku + Kv ) ≤ P .
Achievability of this rate–disturbance region follows by

applying Theorem 1. Using the discretization procedure in [8],
it can be shown that the theorem continues to hold with
the power constraint additionally applied to the set of per-
missible input distributions. The claimed region then follows
by considering the special case where the input distribution
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Fig. 5. Region R(U, X) for Theorem 3. Each face is annotated by the
inequality that defines it.

p(u, x) is jointly Gaussian. To prove the converse, we use
an extremal inequality in [9] to show that Gaussian input
distributions are sufficient. The details of the proof are given in
Subsection III-E.

B. Inner and Outer Bounds for the Deterministic Channel
With Two Disturbance Constraints

The correspondence between optimal encoding for the chan-
nel with one disturbance constraint and the Han–Kobayashi
scheme for the interference channel with two user pairs
suggests that the optimal coding scheme for K disturbance
constraints may provide an efficient (if not optimal) scheme
for the interference channel with K + 1 user pairs. This
is particularly the case for extensions of the two user-
pair injective deterministic interference channel for which
Han–Kobayashi is optimal [7] (see Remark 5). As such,
we restrict our attention to the deterministic version of the
DMC-2-DC in which the channel outputs Y , Z1, and Z2 are
arbitrary deterministic functions of the channel input X .

First, we establish the following inner bound on the
rate–disturbance region.

Theorem 3 (Inner Bound): The rate–disturbance region R
of the deterministic channel with two disturbance constraints
is inner-bounded by the set of rate triples (R, Rd,1, Rd,2) such
that

R < H (Y ), (3)

Rd,1 + Rd,2 > I (Z1; Z2 | U), (4)

R − Rd,1 < H (Y | Z1, U), (5)

R − Rd,2 < H (Y | Z2, U), (6)

R − Rd,1 − Rd,2 < H (Y | Z1, Z2, U) − I (Z1; Z2 | U), (7)

2R − Rd,1 − Rd,2 < H (Y | Z1, Z2, U) + H (Y | U)

−I (Z1; Z2 | U), (8)

for some pmf p(u, x).
The inner bound is convex. The expression I (Z1; Z2 | U)

appears in three of the inequalities. As in Marton coding for
the 2-receiver broadcast channel with a common message,
it is the penalty incurred in encoding independent messages
via dependent sequences. The region R(U, X) defined by the
inequalities in the theorem for a fixed p(u, x) is illustrated
in Fig. 5.

Remark 6: The right-hand side of condition (8) can be
equivalently expressed as

H (Y | Z1, Z2, U) + H (Y | U) − I (Z1; Z2 | U)

= H (Y | Z1, U) + H (Y | Z2, U) − I (Z1; Z2 | U, Y ),

This shows that the condition is stricter than the sum of
conditions (5) and (6).

The encoding scheme for Theorem 3 involves rate splitting,
Marton coding, and superposition coding. The message is split
into four parts. Three of these parts are encoded as in Marton
coding for the broadcast channel with a common message,
with auxiliary random variables chosen according to U and
the channel outputs Z1 and Z2. The fourth message part
is encoded using superposition coding. The analysis of the
probability of error, however, is complicated by the fact that
receiver Y wishes to decode all parts of the message as detailed
in Subsection IV-A. Receivers Z1 and Z2 each observe a
satellite codeword from a superposition codebook.

Remark 7: The encoding scheme underlying the inner
bound of Theorem 3 can be readily extended to the general
(non-deterministic) DMC-2-DC.

To complement the inner bound, we establish the following
outer bound on the rate–disturbance region of the deterministic
channel with two disturbance constraints.

Theorem 4 (Outer Bound): If a rate triple (R, Rd,1, Rd,2) is
achievable for the deterministic channel with two disturbance
constraints, then it must satisfy the conditions

R ≤ H (Y | Q),

Rd,1 ≥ I (Y ; Z1 | Q),

Rd,2 ≥ I (Y ; Z2 | Q),

for some pmf p(q, x) with |Q| ≤ 3.
The proof of this outer bound is given in Subsection IV-B.

Note that this outer bound is very similar in form to the
alternative description of Corollary 1 for the single-constraint
deterministic case.

The inner bound in Theorem 3 and the outer bound in
Theorem 4 coincide in some special cases. To discuss these,
we introduce the following notation. Since all channel outputs
are functions of X , they can be equivalently thought of as
set partitions of the input alphabet X . Set partitions form
a partially ordered set (poset) under the refinement relation.
Since this poset is a complete lattice [10], the following
concepts are well-defined. For two set partitions (functions)
f and g, let f � g denote that f is a refinement of
g (equivalently, g is degraded with respect to f ), let f ∧ g
be the intersection of the two set partitions (the function
that returns both f and g), and let f ∨ g denote the
finest set partition of which both f and g are refinements
(the Gács–Körner–Witsenhausen common part of f and g,
see [11], [12]).

The inner bound of Theorem 3 coincides with the outer
bound of Theorem 4 if Z1 or Z2 is a degraded version of
Y ∧ (Z1 ∨ Z2), i.e., if the output Y together with the common
part of Z1 and Z2 determine Z1 or Z2 completely.

Theorem 5: The rate–disturbance region R of the determin-
istic channel with two disturbance constraints is given by the
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Fig. 6. Deterministic channel with two disturbance constraints.

outer bound of Theorem 4 if

Y ∧ (Z1 ∨ Z2) � Z1, or

Y ∧ (Z1 ∨ Z2) � Z2.
The theorem is proved by specializing Theorem 3 as

detailed in Subsection IV-C. In the case where Z1 or Z2 is a
degraded version of Y alone, achievability follows by setting
U = ∅ in Theorem 3. Otherwise, we let U = Z1 ∨ Z2. This
is intuitive, since U corresponds to the common-message step
in the Marton encoding scheme.

Example 2: Consider the deterministic channel depicted in
Fig. 6. The desired receiver output Y is a refinement of
both side receiver outputs Z1 and Z2, and hence, Theorem 5
applies. Fig. 7(a) depicts the rate–disturbance region, numeri-
cally approximated by evaluating each grid point in a regular
grid over the distributions p(x) and subsequently taking the
convex hull. Fig. 7(b) contrasts the single-constraint case
(where Rd,2 is set to infinity, and thus inactive) with the case
where both side receivers are under the same disturbance rate
constraint (Rd,1 = Rd,2). As expected, imposing an additional
disturbance constraint can significantly reduce the achievable
message rate. Finally, Fig. 7(c) illustrates the trade-off between
the disturbance rates Rd,1 and Rd,2 at the two side receivers,
for a fixed data rate R.

We conclude this section by considering another case in
which we can fully characterize the rate–disturbance region
of the deterministic channel with two disturbance constraints.
If Z1 is a degraded version of Z2 (or vice versa), the region
R of Theorem 3 is optimal and simplifies to the following.

Corollary 3: The rate–disturbance region R of the deter-
ministic channel with two disturbance constraints with Z1 �
Z2 or Z2 � Z1 is the set of rate triples (R, Rd,1, Rd,2) such
that

R ≤ H (Y ),

R − Rd,1 ≤ H (Y | Z1),

R − Rd,2 ≤ H (Y | Z2).

for some pmf p(x).
Achievability follows as a special case of Theorem 3. The

encoding scheme carefully avoids introducing an ordering
between the side receiver signals Z1 and Z2, but such ordering
is naturally given by the channel here. Consequently, the
corollary follows by setting the auxiliary U equal to the output
at the degraded side receiver. This turns the encoding scheme
into superposition coding with three layers. The details are
given in Subsection IV-D.

Fig. 7. Rate–disturbance region for Example 2. (a) Rate–disturbance region.
(b) Single disturbance constraint (Rd,1 = Rd, Rd,2 = ∞) and symmetric
disturbance constraint (Rd,1 = Rd,2 = Rd). (c) Contour lines of the rate–
disturbance region at constant rate R.

Note that the region of Corollary 3 is akin to the deter-
ministic case with one disturbance constraint in Corollary 1.
In both cases, the side receiver signals need not be degraded
with respect to Y .

III. PROOFS FOR A SINGLE DISTURBANCE CONSTRAINT

A. Achievability Proof of Theorem 1

Codebook Generation: Fix a pmf p(u, x).

1) Split the message M into two independent messages M0
and M1 with rates R0 and R1, respectively. Hence R =
R0 + R1.

2) For each m0 ∈ [1 : 2nR0 ], independently generate a
sequence un(m0) according to

∏n
i=1 p(ui).

3) For each (m0, m1) ∈ [1 : 2nR0 ] × [1 : 2nR1 ], inde-
pendently generate a sequence xn(m0, m1) according to∏n

i=1 p(xi | ui (m0)).
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Encoding: To send message m = (m0, m1), transmit
xn(m0, m1).

Decoding: Upon receiving yn , find the unique (m̂0, m̂1)

such that (un(m̂0), xn(m̂0, m̂1), yn) ∈ T (n)
ε (U, X, Y ).

Analysis of the Probability of Error: We are using a
superposition code over the channel from X to Y . Using
the law of large numbers and the packing lemma in [8], it
can be shown that the probability of error tends to zero as
n → ∞ if

R1 < I (X; Y | U) − δ(ε), (9)

R0 + R1 < I (X; Y ) − δ(ε). (10)

Analysis of Disturbance Rate: We analyze the disturbance
rate averaged over codebooks C.

I (Xn; Zn | C) ≤ H (Zn, M0 | C) − H (Zn | Xn, C)

= H (M0) + H (Zn | M0, C) − H (Zn | Xn)

(a)≤ n R0 + H (Zn | Un) − nH (Z | X)

≤ n R0 + nH (Z | U) − nH (Z | X, U)

= n R0 + nI (X; Z | U)

≤ n Rd, (11)

where (a) follows since Un is a function of the codebook C
and M0. Substituting R = R0 + R1 and using Fourier–Motzkin
elimination on inequalities (9), (10), and (11) yields the desired
(R, Rd) region.

To complete the achievability proof, it remains to show that
there exists a sequence of codes that satisfies both the prob-
ability of error and the disturbance constraint criteria. More
generally, the random coding argument needs to be extended
to the case with two simultaneous objectives. This extension
is straightforward as long as one of the objective functions is
non-negative and tends to zero. Then, the Markov inequality
implies that a very large fraction of the code sequences
satisfies this objective, hence there must be a sequence among
them that additionally satisfies the second objective. The argu-
ment is detailed in Appendix A. This concludes the proof of
achievability.

B. Converse of Theorem 1

Consider a sequence of codes with P(n)
e → 0 as n → ∞

and the joint pmf that it induces on (M, Xn , Y n, Zn) assuming
M ∼ Unif[1 : 2nR]. Define the time-sharing random variable
Q ∼ Unif[1 : n], independent of everything else. We use
the identification U = (Q, Y n

Q+1, Z Q−1), and let X = X Q ,
Y = YQ , and Z = Z Q . Note that (X, Y, Z) is consistent with
the channel. Then

R ≤ I (X; Y ) + εn,

as in the converse proof for point-to-point channel capacity,
which uses the same identifications of random variables.

On the other hand,

n Rd ≥ I (Xn; Zn)

= H (Zn) − H (Zn | Xn)

=
n∑

i=1

(
H (Zi | Zi−1) − H (Zi | Xi )

)

≥
n∑

i=1

H (Zi | Zi−1, Y n
i+1) − nH (Z | X)

= nH (Z | U) − nH (Z | X, U)

= nI (X; Z | U).

Finally,

n(Rd − R)

≥ I (Xn; Zn) − n R
(a)≥ H (Zn) − H (Zn | Xn) − I (M; Y n) − nεn

(b)=
n∑

i=1

(
H (Zi | Zi−1)− I (M; Yi | Y n

i+1)
)
−nH (Z | X)−nεn

=
n∑

i=1

(
H (Zi | Zi−1, Y n

i+1) + I (Y n
i+1; Zi | Zi−1)

−H (Yi | Y n
i+1)+H (Yi | M, Y n

i+1)
)
−nH (Z | X)−nεn

(c)=
n∑

i=1

(
H (Zi | Zi−1, Y n

i+1) + I (Yi ; Zi−1 | Y n
i+1)

− H (Yi | Y n
i+1) + H (Yi | Xi )

)
− nH (Z | X) − nεn

=
n∑

i=1

(
H (Zi | Zi−1, Y n

i+1) − H (Yi | Zi−1, Y n
i+1)

+ H (Yi | Xi , Zi−1, Y n
i+1)

)
− nH (Z | X) − nεn

=
n∑

i=1

(
H (Zi | Zi−1, Y n

i+1) − I (Xi ; Yi | Zi−1, Y n
i+1)

)

− nH (Z | X) − nεn
(d)= nH (Z | U) − nI (X; Y | U) − nH (Z | X, U) − nεn

= nI (X; Z | U) − I (X; Y | U) − nεn,

where (a) uses Fano’s inequality, (b) single-letterizes the noise
term H (Zn | Xn) with equality due to memorylessness of the
channel, (c) applies Csiszár’s sum identity to the second term
and channel memorylessness to the fourth term, and (d) uses
the previous definitions of auxiliary random variables. Finally,
the cardinality bound on U is established using the convex
cover method in [8].

C. Proof of Corollary 1

Using the deterministic nature of the channel, the region in
Theorem 1 reduces to the set of rate pairs (R, Rd) such that

R ≤ H (Y ), (12)

Rd ≥ H (Z | U), (13)

Rd ≥ R + H (Z | U) − H (Y | U), (14)



4494 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

for some pmf p(u, x). Now fixing a rate R and a pmf p(x) and
varying p(u|x) to minimize Rd, the right hand sides of (13)
and (14) are lower bounded by

H (Z | U) ≥ 0,

and

R + H (Z | U) − H (Y | U)

= R + H (Z | U) − H (Y, Z | U) + H (Z | Y, U)

= R − H (Y | Z , U) + H (Z | Y, U)

≥ R − H (Y | Z).

Note that the particular choice U = Z simultaneously achieves
both lower bounds with equality and is therefore sufficient.
The rate–disturbance region thus reduces to Corollary 1.

For a fixed pmf p(x), this region has exactly two relevant
corner points: P1 = (H (Y |Z), 0) and P2 = (H (Y ), I (Y ; Z)).
As we vary p(x), there is one corner point P1 that dominates
all other P1 points. The pmf p(x) for this dominant P1 can
be constructed by maximizing H (Y |Z) as follows. For each
z ∈ Z , define Yz ⊆ Y to be the set of symbols y that are
compatible with z, i.e., that can occur simultaneously with z as
channel outputs. Let z� be one of the symbols z that maximize
|Yz |. For each element of Yz� , choose exactly one x that is
compatible with it and z�. Finally, place equal probability
mass on each of the chosen x values, and zero mass on
all others. This pmf on X yields the dominant corner point
P1, namely (log(|Yz� |), 0). Moreover, for this distribution, P2
coincides with P1. Therefore, the net contribution (modulo
convexification) of each pmf p(x) to the rate–disturbance
region amounts to its corner point P2. This implies the
alternative description of the region. Lastly, the cardinality
bound on Q in the alternative description follows from the
convex cover method in [8].

D. Proof of Corollary 2

Achievability is straightforward using a random Gaussian
codebook with power control, and upper-bounding the distur-
bance rate at receiver Z by white Gaussian noise. The converse
can be seen as follows. Clearly, R ≤ C(P). Let α� ∈ [0, 1] be
such that R = C(α� P). Then

n C(α� P) = n R ≤ I (Xn; Y n) + nεn

= h(Y n) − h(Y n | Xn) + nεn,

and therefore,

h(Y n) ≥ n
2 log(2πe) + n C(α� P) − nεn

= n
2 log

(
2πe(1 + α� P)

) − nεn

Since N < 1, we can write the physically degraded form of
the channel as Y = X + W1, Z = Y + W̃2, where W̃2 ∼
N (0, N − 1) is the excess noise that receiver Z experiences
in addition to receiver Y . Applying the vector entropy power
inequality to Zn = Y n + W̃ n

2 , we conclude

1
n h(Zn) ≥ 1

2 log
(

2
2
n h(Y n) + 2

2
n h(W̃ n

2 )
)

≥ 1
2 log

(
2−2εn · 2πe(1 + α� P) + 2πe(N − 1)

)

≥ 1
2 log

(
2πe(N + α� P)

) − εn,

and finally,

Rd ≥ 1
n I (Xn; Zn)

= 1
n h(Zn) − 1

2 log(2πeN)

≥ C(α� P/N) − εn.

E. Proof of Theorem 2

Recall the shape of R(U, X) depicted in Fig. 2. The
coordinates of the corner points A and B are given by

A(U, X) : R = h(X + W1) − h(W1), (15)

Rd = h(X + W2 | U) + h(X + W1)

− h(X + W1 | U) − h(W2), (16)

B(U, X) : R = h(X + W1 | U) − h(W1), (17)

Rd = h(X + W2 | U) − h(W2). (18)

Proof of Achievability: We specialize Theorem 1. Consider
the specific p(u, x) constructed as follows. For given positive
semidefinite matrices Ku, Kv ∈ R

n×n with tr(Ku + Kv ) ≤ P ,
let

U ∼ N (0, Ku),

V ∼ N (0, Kv ),

X = U + V ,

where U and V are independent. Then, the terms in Theorem 1
evaluate to

I (X; Y ) = h(Y ) − h(W1) = 1
2 log

|Ku + Kv + K1|
|K1| ,

I (X; Y | U) = h(Y | U) − h(W1) = 1
2 log

|Kv + K1|
|K1| ,

I (X; Z | U) = h(Z | U) − h(W2) = 1
2 log

|Kv + K2|
|K2| .

Simplifying the right hand sides and introducing time-sharing
leads to the desired result.

For completeness, the coordinates of A and B for given
matrices Ku , Kv are

A(Ku, Kv ) : R = 1
2 log

|Ku + Kv + K1|
|K1| , (19)

Rd = 1
2 log

|Kv + K2|
|K2|

|Ku + Kv + K1|
|Kv + K1| , (20)

B(Ku, Kv ) : R = 1
2 log

|Kv + K1|
|K1| , (21)

Rd = 1
2 log

|Kv + K2|
|K2| . (22)

The constituent region R(U, X) for fixed Ku and Kv is
depicted in Fig. 8. �

Proof of Converse: The converse proof of Theorem 1
continues to hold and we only need to show that Gaussian
input distributions are sufficient. We proceed as follows. Since
the rate–disturbance region is convex, its boundary can be fully
characterized by maximizing R−λRd for each λ > 0. We write

R − λRd ≤ max
(R,Rd)∈R

{R − λRd}
= max

(U,X)
max

(R,Rd)∈R(U,X)
{R − λRd} ,
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Fig. 8. Constituent region for Gaussian superposition codebook with
parameters Ku and Kv .

where the outer optimization is over the joint distribution of
(U, X) and the inner optimization is over the region achieved
by that distribution. The inner optimization can be solved
explicitly as follows. For ease of presentation, assume for the
moment that the power constraint is of the form Kx � S for
some positive semidefinite matrix S. (That is, valid Kx are
precisely those that result in the matrix S − Kx being positive
semidefinite.)

First, consider λ ≤ 1. For any distribution (U, X) ∼
p(u, x), point A(U, X) achieves a value of the inner optimiza-
tion at least as large as point B(U, X), or any point on the
line between them. Using the coordinates of A(U, X) in (15)
and (16), we can write

R − λRd

≤ max
(U,X)

{λ (h(X + W1 | U) − h(X + W2 | U))

+ (1 − λ)h(X + W1) − h(W1) + λh(W2)}
(a)≤ λ · max

(U,X)
{h(X + W1 | U) − h(X + W2 | U)}
+(1−λ) · max

(U,X)
{h(X +W1)}−h(W1)+λh(W2)

(b)≤ λ · max
Kx�S

{
1
2 log

|Kx + K1|
|Kx + K2|

}

+(1 − λ) · max
Kx�S

{ 1
2 log

(
(2πe)n|Kx + K1|

)}

− 1
2 log

(
(2πe)n|K1|

) + λ
2 log

(
(2πe)n|K2|

)
.

In (a), the two maximizations are taken independently.
In step (b), the first maximization is achieved by a Gaussian
X that is independent of U , due to a theorem proved by
Liu and Viswanath [9, Th. 8]. The optimization is now only
over covariances matrices. Let K � be an optimizer of this first
maximization. The second maximization is also achieved by
a Gaussian X , and is optimized by Kx = S since f (Kx) =
|Kx + K1| is matrix monotone. It follows that

R − λRd ≤ λ
2 log

|K � + K1|
|K � + K2| + 1−λ

2 log
(
(2πe)n|S + K1|

)

− 1
2 log

(
(2πe)n|K1|

) + λ
2 log

(
(2πe)n|K2|

)

= 1
2 log

|S + K1|
|K1| − λ

2 log
|K � + K2|
|K � + K1|

|S + K1|
|K2| .

But this upper bound is achieved with equality by Gaussian
superposition codebooks, namely through the point A(Ku, Kv )
as specified by equations (19) and (20), with Ku = S − K �

and Kv = K �.
Now, consider λ > 1. The argument proceeds analogously

to the previous case. For completeness’ sake, the details are as
follows. We can write the inner optimization explicitly using
the coordinates of B(U, X) in (17) and (18) as

R − λRd ≤ max
(U,X)

{h(X + W1 | U) − λh(X + W2 | U)}
+ λh(W2) − h(W1)

(a)≤ max
Kx�S

{ 1
2 log

(
(2πe)n|Kx + K1|

)

− λ
2 log

(
(2πe)n|Kx + K2|

)}

+λ
2 log

(
(2πe)n|K2|

) − 1
2 log

(
(2πe)n|K1|

)
.

The optimum in (a) is achieved by a Gaussian X (independent
of U ) by virtue of [9, Th. 8], while the other two terms
are independent of the optimization variable. Let K � be an
optimizer. Then

R − λRd ≤ 1
2 log

|K � + K1|
|K1| − λ

2 log
|K � + K2|

|K2| .

This upper bound is achieved with equality by Gaussian
superposition codebooks through the point B(Ku, Kv ) as given
by equations (21) and (22) with Ku = 0 and Kv = K �. This is
a power control strategy, similar to the scalar Gaussian case.

We have thus shown that under a power constraint Kx � S,
Gaussian superposition codes are optimal. The conclusion
extends to the sum power constraint tr(Kx) ≤ P by observing
that

{Kx : tr(Kx ) ≤ P} =
⋃

S: S�0
tr(S)≤P

{Kx : Kx � S}.

In other words, the sum power constraint can be expressed
as a union of constraints of the type Kx � S, for each of
which Gaussian superposition codes are optimal. Therefore, a
Gaussian superposition code must be optimal overall. �

IV. PROOFS FOR TWO DISTURBANCE CONSTRAINTS

A. Proof of Theorem 3

Codebook Generation: Fix a pmf p(u, x). Split the rate as
R = R0 + R1 + R2 + R3. Define the auxiliary rates R̃1 ≥ R1
and R̃2 ≥ R2, let ε′ > 0, and define the set partitions

[1 :2nR̃1] = L1(1) ∪ · · · ∪ L1(2
nR1),

[1 :2nR̃2] = L2(1) ∪ · · · ∪ L2(2nR2),

where L1(·) and L2(·) are indexed sets of size 2n(R̃1−R1) and
2n(R̃2−R2), respectively.

1) For each m0 ∈ [1 :2nR0], generate un(m0) according to∏n
i=1 p(ui ).

2) For each l1 ∈ [1 :2nR̃1], generate zn
1(m0, l1) according to

∏n
i=1 p(z1i | ui (m0)). Likewise, for each l2 ∈ [1 :2nR̃2],

generate zn
2(m0, l2) according to

∏n
i=1 p(z2i | ui(m0)).

3) For each (m0, m1, m2), let S(m0, m1, m2) be the
set of all pairs (l1, l2) from the product set
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TABLE I

MESSAGE SUBSETS FOR DECODING ERROR EVENTS

L1(m1) × L2(m2) such that (zn
1(m0, l1), zn

2(m0, l2)) ∈
T (n)

ε′ (Z1, Z2 | un(m0)).
4) For each (m0, l1, l2) and m3 ∈ [1 : 2nR3 ], generate

xn(m0, l1, l2, m3) according to

n∏

i=1

p(xi | ui (m0), z1i (l1), z2i (l2))

if (l1, l2) ∈ S(m0, m1, m2). Otherwise, we draw from
Unif(X n).

5) Choose (l(m0,m1,m2)
1 , l(m0,m1,m2)

2 ) uniformly from
S(m0, m1, m2). If S(m0, m1, m2) is empty, choose
(1, 1).

Encoding: To send message m = (m0, m1, m2, m3), trans-
mit the sequence

xn(m0, l(m0,m1,m2)
1 , l(m0,m1,m2)

2 , m3).

Decoding: Let ε > ε′. Upon receiving yn , define the tuple

T (m0, m1, m2, m3)

=
(

un(m0), zn
1(m0, l(m0,m1,m2)

1 ), zn
2(m0, l(m0,m1,m2)

2 ),

xn(m0, l(m0,m1,m2)
1 , l(m0,m1,m2)

2 , m3), yn
)

Declare that m̂ = (m̂0, m̂1, m̂2, m̂3) has been sent if it is the
unique message such that

T (m̂0, m̂1, m̂2, m̂3) ∈ T (n)
ε (U, Z1, Z2, X, Y ).

Analysis of the Probability of Error: Without loss of gen-
erality, assume that m0 = m1 = m2 = m3 = 1 is transmitted.
Define the following events.

Ee1 : S(1, 1, 1) is empty,

Ee2 : S(1, 1, 1) contains two distinct pairs with

equal first or second component,

Ei : {T (m0, m1, m2, m3) ∈ T (n)
ε (U, Z1, Z2, X, Y ) for

some (m0, m1, m2, m3) ∈ Mi }, i ∈ {0, . . . , 5},
where the message subsets Mi are specified in Table I.
Defining the “encoding error” event Ee = Ee1 ∪ Ee2 and the
“decoding error” event Ed = Ec

0 ∪ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5, the
probability of error can be upper-bounded as

P(E) ≤ P(Ee ∪ Ed) ≤ P(Ee) + P(Ed | Ec
e ).

The motivation for introducing Ee2 as an “error” is to simplify
the analysis of the second probability term.

We bound P(Ee) by the following lemma. Let r1 = R̃1 − R1
and r2 = R̃2 − R2.

Lemma 1: P(Ee) → 0 as n → ∞ if

r1 + r2 > I (Z1; Z1 | U) + δ(ε′), (23)

r1/2 + r2 < I (Z1; Z2 | U) − δ(ε′), (24)

r1 + r2/2 < I (Z1; Z2 | U) − δ(ε′). (25)
Proof Sketch: First, consider Ee1. As in the proof of Marton’s

inner bound for the broadcast channel, the mutual covering
lemma [8] implies P(Ee1) → 0 as n → ∞ if (23) holds.

Now consider Ee2, for which we need to control the number
of typical pairs that can occur in the same “row” or “column”
of the product set L1(m1) × L2(m2), i.e., for the same l1 or
l2 coordinate. The probability P(Ee2) tends to zero provided
that (24) and (25) hold.

This is akin to the birthday problem [13], where k samples
are drawn uniformly and independently from [1 : N], and the
interest is in samples that have the same value (collisions). It
is well-known that for the probability of collision to be pc, the
number of samples required is roughly k ≈ √−2N ln(1 − pc),
which scales with

√
N . In our case, the number of samples

is the cardinality of the set S(m0, m1, m2), which is roughly
k = 2n(r1+r2−I (Z1;Z2 | U )). The samples are categorized into
N1 = 2nr1 and N2 = 2nr2 classes along rows and columns,
respectively. To achieve a probability of collision pc → 0
along both dimensions, we need k � min{√N1,

√
N2}, which

yields exactly the conditions (24) and (25).
A rigorous proof is given in Appendix B. �
We bound the probability P(Ed | Ec

e ) by the following
lemma.

Lemma 2: P(Ed | Ec
e ) → 0 as n → ∞ if the conditions of

Lemma 1 hold, and

R3 < H (Y | Z1, Z2, U) − δ(ε), (26)

R̃1+ R3 < H (Y | Z2, U)+ I (Z1; Z2 | U)−δ(ε),

(27)

R̃2+ R3 < H (Y | Z1, U)+ I (Z1; Z2 | U)−δ(ε),

(28)

R̃1 + R̃2 + R3 < H (Y | U) + I (Z1; Z2 | U) − δ(ε), (29)

R0+ R̃1+ R̃2+ R3 < H (Y )+ I (Z1; Z2 | U)−δ(ε). (30)
Proof Sketch: The events of which Ed is composed are

illustrated in Fig. 9, which also depicts the structure of the
codebook for m0 = 1. The product sets L1(m1)×L2(m2), for
each (m1, m2), are represented by shaded squares. In each
product set, the sequence pair selected in step 5 of the
codebook generation procedure is shown with its superposed
xn codewords, as created in step 4. The correct codeword
xn(1, l(1,1,1)

1 , l(1,1,1)
2 , 1) is shown as a white circle which is

connected to the received sequence yn . The codewords that
may be mistakenly detected at the receiver are shown as black
circles. The product sets associated with decoding error events
E1, E2, E3, and E4 are labeled 1, 2, 3, and 4, respectively.

We bound the probability of each sub-event of Ed. First, note
that by the conditional typicality lemma in [8], P(Ec

0) → 0 as
n → ∞ (this relies on ε′ < ε). The probabilities of the events
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Fig. 9. Illustration of decoding error events, for m0 = 1.

E1 through E5 conditioned on Ec
e tend to zero as n → ∞ under

conditions (26) through (30), correspondingly.
The events E2 and E3 require the most careful analysis, since

the true codeword xn(1, l(1,1,1)
1 , l(1,1,1)

2 , 1) and the codewords
with which it may be confused can be statistically dependent
by sharing the same zn

1 or zn
2 sequence (see dashed line and

circles on it in Fig. 9). Moreover, even when the chosen
pairs in two different product sets do not share one of
the two coordinates (see, for example, the chosen pairs for
(m1, m2) = (1, 1) and (2, 1) in Fig. 9), statistical dependence
could potentially occur. This can be caused by the selection
procedure in step 5 of codebook generation, since the indices
(l(m0,m1,m2)

1 , l(m0,m1,m2)
2 ) statistically depend on all sequences

in the product set. We use the following lemma to show that
the event Ec

e2 prevents this dependence leakage from occurring.
Lemma 3 (Independence Lemma): Consider a finite set A

and a subset A′ ⊂ A. Let pA be an arbitrary pmf over A.
Let the random vector An be distributed proportionally to the
product distribution

∏n
l=1 pA(al), restricted to the support set

{an : ak ∈ A′ for some k}. Let I be drawn uniformly from
{i : Ai ∈ A′}. Let J = I + 1, if I < n, and J = 1 otherwise.
Then, the random variables AI and AJ are independent.

A proof is provided in Appendix C. The application of the
lemma is what distinguishes this analysis from the conven-
tional Marton inner bound for broadcast channels [14], [15].
There, analysis of the selection procedure can be altogether
avoided since each receiver decodes only one of the two
coordinates.

A detailed proof for the event E3 is given in Appendix D,
the other events follow likewise. �

Analysis of Disturbance Rate: When viewed by receiver
Z1, the codeword for message m = (m0, m1, m2, m3) appears
as zn

1(m0, l(m0,m1,m2)
1 ). We can pessimistically assume that

all sequences zn
1(m0, l1) as created in step 2 of codebook

generation can be seen at the receiver for some message m.
Therefore, the number of possible sequences at Z1, and thus its
disturbance rate, is upper-bounded by H (Zn

1) ≤ n(R0 + R̃1).
Applying the same argument for Z2, the proposed scheme

achieves

R0 + R̃1 ≤ Rd,1, (31)

R0 + R̃2 ≤ Rd,2. (32)

Conclusion of the Proof: Collecting inequalities (23)
through (32), recalling R = R0 + R1 + R2 + R3, and using the
Fourier–Motzkin procedure to eliminate R0, R1, R2, and R3
leads to the (R, Rd,1, Rd,2) region claimed in the theorem.

Finally, the statement of Remark 6 follows from

−I (Z1; Z2 | U) + I (Z1; Z2 | U, Y )

= −H (Z2 | U) + H (Z2 | U, Z1) + H (Z2 | U, Y )

−H (Z2 | U, Y, Z1)

= −I (Y ; Z2 | U) + I (Y ; Z2 | U, Z1),

which leads to the equality

H (Y | Z1, Z2, U) + H (Y | U) − I (Z1; Z2 | U)

+I (Z1; Z2 | U, Y )

= H (Y | Z1, Z2, U) + H (Y | U) − I (Y ; Z2 | U)

+I (Y ; Z2 | U, Z1)

= H (Y | Z1, U) + H (Y | Z2, U).

B. Proof of Theorem 4

First, consider

n R ≤ I (Xn; Y n) + nεn

=
n∑

i=1

I (Xn; Yi | Y i−1) + nεn

=
n∑

i=1

I (Xi ; Yi | Y i−1) + nεn

= nI (X; Y | Q)

= nH (Y | Q).

Furthermore,

n Rd,1 ≥ I (Xn; Zn
1 )

≥ I (Y n; Zn
1 )

=
n∑

i=1

I (Yi ; Zn
1 | Y i−1)

≥
n∑

i=1

I (Yi ; Z1i | Y i−1)

= nI (Y ; Z1 | Q),

where Y = YT , Z1 = Z1T , and Q = (Y T −1, T ) with T ∼
Unif[1 :n]. The same argument leads to

n Rd,2 ≥ nI (Y ; Z2 | Q),

with the same random variable identifications, and the addi-
tional Z2 = Z2T . Finally, the cardinality bound on Q follows
from the convex cover method in [8].
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Fig. 10. Constituent region for Corollary 4, for a fixed p(u, x). Each face
is annotated by the inequality that defines it. For comparison, the constituent
region of Theorem 3 is shown with dashed lines (see Fig. 5).

C. Proof of Theorem 5

First, we specialize Theorem 3 as follows.
Corollary 4: The rate–disturbance region R of the deter-

ministic channel with two disturbance constraints is inner-
bounded by the set of rate triples (R, Rd,1, Rd,2) such that

R < H (Y ), (33)

Rd,1 > I (Y ; Z1, U), (34)

Rd,2 > I (Y ; Z2, U), (35)

Rd,1 + Rd,2 > I (Y ; Z1, Z2, U)+ I (Y ; U)+ I (Z1; Z2 | U)

= I (Y ; Z1, U) + I (Y ; Z2, U)

+I (Z1; Z2 | U, Y ), (36)

for some pmf p(u, x).
The two equivalent expressions in (36) originate from

Remark 6. An example of the constituent regions of Corol-
lary 4 for fixed p(u, x) is depicted in Fig. 10. The figure also
illustrates how the corollary follows from Theorem 3: Each
constituent region of the corollary is a strict subset of the
constituent region of the theorem, for the same p(u, x).

Proof of Corollary 4: In Theorem 3, consider the case
where (3) is met with equality, i.e., R = H (Y ). This yields a
subset region which is still achievable. It simplifies to

Rd,1 + Rd,2 > I (Z1; Z2 | U), (37)

Rd,1 > I (Y ; Z1, U), (38)

Rd,2 > I (Y ; Z2, U), (39)

Rd,1 + Rd,2 > I (Y ; Z1, Z2, U) + I (Z1; Z2 | U), (40)

Rd,1 + Rd,2 > I (Y ; Z1, Z2, U)+ I (Y ; U)+ I (Z1; Z2 | U)

= I (Y ; Z1, U)+ I (Y ; Z2, U)+ I (Z1; Z2 | U, Y ).

(41)

Clearly, conditions (37) and (40) are dominated by inequal-
ity (41), and the desired result follows. �

Proof of Achievability for Theorem 5: We further specialize
Corollary 4. We choose U = Z1 ∨ Z2, i.e., the common part
of Z1 and Z2. This implies that condition (36) can be omitted,
since I (Z1; Z2 | U, Y ) = 0 for all p(u, x) by assumption.
Furthermore, U can be dropped from conditions (34) and (35)

by virtue of being a function of Z1 and Z2. We conclude that

R < H (Y ), (42)

Rd,1 > I (Y ; Z1), (43)

Rd,2 > I (Y ; Z2), (44)

is achievable for all p(x). Adding a time-sharing random
variable Q completes the proof.

Note that in the special case where Y � Z1 or Y � Z2, the
same conclusion holds with the choice U = ∅. �

D. Proof of Corollary 3

Proof of Achievability: We prove the result for Z1 � Z2, the
other case follows by symmetry. We specialize the achievable
region of Theorem 3 by choosing U = Z2. The rate–
disturbance constraints are

R < H (Y ), (45)

Rd,1 + Rd,2 > 0, (46)

R − Rd,1 < H (Y | Z1), (47)

R − Rd,2 < H (Y | Z2), (48)

R − Rd,1 − Rd,2 < H (Y | Z1), (49)

2R − Rd,1 − Rd,2 < H (Y | Z1) + H (Y | Z2). (50)

Clearly, (46) is vacuous. Furthermore, (49) is dominated
by (47), and (50) is dominated by the sum of (47) and (48).
This completes the proof. �

Proof of Converse: The first inequality follows from Fano’s
inequality as

n R ≤ I (Xn; Y n) + nεn

= H (Y n) + nεn

≤ nH (Y ) + nεn,

where Y = YQ and Q ∼ Unif[1 :n]. The other two inequalities
follow as

n(R − Rd,1) ≤ n R − I (Xn; Zn
1 )

≤ H (Y n) − H (Zn
1) + nεn

≤ H (Y n, Zn
1 ) − H (Zn

1) + nεn

= H (Y n | Zn
1 ) + nεn

≤ nH (Y | Z1) + nεn,

with Z1 = Z1Q , and likewise for n(R − Rd,2).
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APPENDIX

A. The Random Coding Argument for Two Figures of Merit

Consider a random sequence of codebooks (C(n)). With
each codebook c, we associate a probability of error Pe(c)
and a secondary figure of merit F(c) ≥ 0. Then we have the
following.

Lemma 4: If

E[Pe(C(n))] ≤ γn,

E[F(C(n))] ≤ Fn,

where limn→∞ γn = 0, then for sufficiently large n, there
exists a particular code C(n) that satisfies

Pe(C(n)) ≤ ζn, (51)

F(C(n)) ≤ (1 + ξn)Fn, (52)

where ζn, ξn → 0 as n → ∞.
Proof of Lemma 4: By Markov’s inequality,

P{Pe(C(n)) < γ
1/2
n } ≥ 1 − γ

1/2
n ,

P{F(C(n)) < (1 + γ
1/3
n )Fn} ≥ 1 − 1/(1 + γ

1/3
n ).

Note that for any jointly distributed binary random variables A
and B , P(A)+P(B) > 1 implies P(A, B) > 0. For sufficiently
large n,

γ
1/2
n + 1/(1 + γ

1/3
n ) < 1,

and thus,

P{Pe(C(n)) < γ
1/2
n , F(C(n)) < (1 + γ

1/3
n )Fn} > 0.

Hence a particular code C(n) must exist that satisfies (51)
and (52), where ζn = γ

1/2
n and ξn = γ

1/3
n . �

B. Proof of Lemma 1

The product bin (m1, m2) = (1, 1) for m0 = 1 contains
lm sequence pairs, where l = 2nr1 and m = 2nr2 . Each
pair (Zn

1 (1, l1), Zn
2 (1, l2)), for l1 ∈ [1 : l] and l2 ∈ [1 : m],

has probability p
.= 2−nI (Z1;Z2 | U ) to be jointly typical. Now

fix one coordinate, say l1 = 1. The corresponding “row” of
the bin contains m sequences Zn

2 (1, l2), each of which has
an independent probability of p to be jointly typical with
Zn

1 (1, 1). Let K be the total number of typical sequences in
this row. Then

P{K = 0} = (1 − p)m,

P{K = 1} = mp(1 − p)m−1,

P{K ≥ 2} = 1 − (1 − p + mp) (1 − p)m−1
︸ ︷︷ ︸
≥1−(m−1)p

≤ m2 p2.

We have thus upper-bounded the probability to encounter
two or more typical pairs in a single row. Consequently, the
probability of two or more typical pairs occurring in any row
is upper bounded by lm2 p2. Substituting definitions leads to
the desired inequality. The same argument can be made for
columns of the bin.

C. Proof of Independence Lemma (Lemma 3)

For ease of notation, define the specialized modulo operator
�x� as x +1 if x < n and as 1 if x = n, the indicator function
1A′(a) = 1 if a ∈ A′ and 0 otherwise, and the shorthand
notations Y = AI and Z = AJ . Notice that

p(an) =
{

1
c

∏n
l=1 pA(al) if ak ∈ A′ for some k ∈ [1 :n]

0 otherwise,

where c is a normalization constant, the exact value of which
is not relevant. Further,

p(i | an) =
{

1∑n
k=1 1A′ (ak)

if ai ∈ A′

0 otherwise.

The joint distribution of (An, I, J, Y, Z) is then

p(an, i, j, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

p(an)∑n
k=1 1A′ (ak)

if ai ∈ A′, ai = y,

a j = z, and j = �i + 1�

0 otherwise.

Partially marginalizing, it follows that

p(y, z) =
n∑

i=1

∑

an : ai ∈A′
ai=y

a�i+1�=z

p(an)
∑n

k=1 1A′(ak)
.

It is clear that p(y, z) = p(y) p(z) = 0 if y /∈ A′. On the
other hand, for y ∈ A′, we have

p(y, z) =
n∑

i=1

∑

an : ai=y
a�i+1�=z

∏n
l=1 pA(al)

c
∑n

k=1 1A′ (ak)
.

The fraction under the sum is invariant under permutations of
an . Therefore,

p(y, z) = 1

c

n∑

i=1

∑

an: a1=y
a2=z

∏n
l=1 pA(al)

∑n
k=1 1A′(ak)

= n

c

∑

an=(y,z,an
3 )

∏n
l=1 pA(al)

∑n
k=1 1A′(ak)

= n pA(y) pA(z)

c

∑

an
3∈An−2

∏n
l=3 pA(al)

1+1A′ (z)+∑n
k=3 1A′(ak)

,

where an
3 are the last n − 2 components of an . Observe that

p(y, z) separates into a function of z and a function of y.
Independence is thus established.

D. Proof of Lemma 2, Exemplified for E3

We analyze the probability of E3 as follows.

E3 = {(
Un(1), Zn

1 (1, L(1,1,m2)
1 ), Zn

2 (1, L(1,1,m2)
2 ),

Xn(1, L(1,1,m2)
1 , L(1,1,m2)

2 , m3), Y n) ∈ T (n)
ε ,

for some m2 �= 1, m3
}

⊆ {(
Un(1), Zn

1 (1, L(1,1,m2)
1 ), Zn

2 (1, l2),

Xn(1, L(1,1,m2)
1 , l2, m3), Y n) ∈ T (n)

ε ,

for some m2 �= 1, m3, l2 /∈ L2(1)
}
,
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Define the event Eeq = {L(1,1,m2)
1 = L(1,1,1)

1 }, which allows us
to write P(E3 | Ec

e ) = P(E3 ∩ Eeq | Ec
e ) + P(E3 ∩ Ec

eq | Ec
e ). We

consider both terms separately.

E3 ∩ Eeq ⊆ {(
Un(1), Zn

1 (1, L(1,1,1)
1 ), Zn

2 (1, l2),

Xn(1, L(1,1,1)
1 , l2, m3), Y n) ∈ T (n)

ε ,

for some l2 /∈ L2(1), m3
}
.

Thus,

P(E3 ∩ Eeq | Ec
e )

≤
∑

(un,zn
1 ,yn)∈T (n)

ε

P
{
Un(1) = un, Zn

1 (1, L(1,1,1)
1 ) = zn

1,

Y n = yn | Ec
e

}

·
∑

l2 /∈L2(1)

2nR3∑

m3=1

P
{
(un, zn

1 , Zn
2 (1, l2),

Xn(1, L(1,1,1)
1 , l2, m3), yn) ∈ T (n)

ε | Ec
e

}

≤ 2n(R̃2+R3) P�,

where P� is shorthand for the last P{·} expression. Continue
with

P�=
∑

(zn
2,xn)∈T (n)

ε (
Z2,X | un,zn

1,yn)

P
{

Zn
2 (1, l2)= zn

2 , Xn(1, L(1,1,1)
1 , l2, m3)= xn |

Un(1) = un, Zn
1 (1, L(1,1,1)

1 ) = zn
1 ,

Y n = yn, Ec
e

}

(a)=
∑

(zn
2,xn)∈T (n)

ε (
Z2,X | un,zn

1 ,yn)
︸ ︷︷ ︸
.= 2nH (X,Z2|Z1,Y,U)

p(zn
2 | un)

︸ ︷︷ ︸
.= 2−nH (Z2|U)

p(xn | zn
1, zn

2, un)
︸ ︷︷ ︸
.= 2−nH (X |Z1,Z2 ,U)

≤ 2n(H(X,Z2|Z1,Y,U )−H(Z2|U )−H(X |Z1,Z2,U )+δ(ε))

= 2n(−H(Y |Z1,U )−I (Z1;Z2|U )+δ(ε)).

In step (a), we have used the fact that l2 /∈ L2(1), and
therefore, Zn

2 (1, l2) relates to a product set other than the first
one. It is independent of the conditions Y n = yn and Ec

e , both
of which relate only to the product set (1, 1) for m0 = 1. A
similar argument applies to the second term.

Substituting back in the previous chain of inequalities
implies that P(E3 ∩Eeq | Ec

e ) → 0 as n → ∞ if inequality (28)
holds.

Next, consider

E3 ∩ Ec
eq ⊆ {(

Un(1), Zn
1 (1, l1), Zn

2 (1, l2), Xn(1, l1, l2, m3),

Y n) ∈ T (n)
ε , for some l1 ∈ L1(1) \ {L(1,1,1)

1 },
l2 /∈ L2(1), m3

}

= {(
Un(1), Zn

1 (1, L(1,1,1)
1 + l1), Zn

2 (1, l2),

Xn(1, L(1,1,1)
1 + l1, l2, m3), Y n) ∈ T (n)

ε ,

for some l1 �= 0, l2 /∈ L2(1), m3
}
,

where the index l1 in the last line can take values between 1
and |L1(1)| − 1, and the addition L(1,1,1)

1 + l1 in the index is

understood modulo the set L1(1). We argue

P(E3 ∩ Ec
eq | Ec

e )

≤
∑

(un,yn)∈T (n)
ε

P
{
Un(1) = un, Y n = yn | Ec

e

} ∑

l1 �=0

∑

l2 /∈L2(1)

2nR3∑

m3=1

P
{
(un, Zn

1 (1, L(1,1,1)
1 + l1), Zn

2 (1, l2),

Xn(1, L(1,1,1)
1 + l1, l2, m3), yn) ∈ T (n)

ε |
Un(1) = un, Y n = yn, Ec

e

}

≤ 2n(R̃1−R1+R̃2+R3) P��,

where P�� represents the last P{·} expression. Continue with

P�� (a)=
∑

(zn
1,zn

2 ,xn)∈T (n)
ε

(Z1,Z2,X | un,yn)

P
{

Zn
1 (1, L(1,1,1)

1 +1)= zn
1, Zn

2 (1, l2)= zn
2 ,

Xn(1, L(1,1,1)
1 + 1, l2, m3) = xn |

Un(1) = un, Y n = yn, Ec
e

}

=
∑

(zn
1 ,zn

2 ,xn)∈T (n)
ε (

Z1,Z2,X | un,yn)

∑

zn
2 (l′2), for

all l′2∈L2(1)

P
{

Zn
2 (1, l ′2) = zn

2(l ′2)

for all l ′2 ∈ L2(1) |
Un(1) = un,

Y n = yn, Ec
e

}

· P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1, Zn

2 (1, l2) = zn
2,

Xn(1, L(1,1,1)
1 + 1, l2, m3) = xn |

Un(1) = un, Y n = yn, Zn
2 (1, l ′2) = zn

2(l ′2)
for all l ′2 ∈ L2(1), Ec

e

}
, (53)

where in (a), we are allowed to set l1 = 1 without loss
of generality due to symmetry. The index L(1,1,1)

1 + 1 is
representative for all indices that are not selected in step 5
of the codebook generation procedure. We decompose the last
probability term as

P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un, Y n = yn,

Zn
2 (1, l ′2) = zn

2(l ′2) for all l ′2 ∈ L2(1), Ec
e

}

P
{

Zn
2 (1, l2) = zn

2 | Un(1) = un, Y n = yn,

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1,

Zn
2 (1, l ′2) = zn

2(l ′2) for all l ′2 ∈ L2(1), Ec
e

}

P
{

Xn(1, L(1,1,1)
1 + 1, l2, m3) = xn | Un(1) = un,

Y n = yn, Zn
1 (1, L(1,1,1)

1 + 1) = zn
1,

Zn
2 (1, l ′2) = zn

2(l ′2) for all l ′2 ∈ L2(1),

Zn
2 (1, l2) = zn

2, Ec
e

}
, (54)

and consider each factor separately. To analyze the first factor,
note that

Zn
1 (1, L(1,1,1)

1 + 1)

− (
Un(1), Zn

2 (1, l ′2) for all l ′2 ∈ L2(1), Ec
e , Zn

1 (1, L(1,1,1)
1 )

)

− Y n (55)

forms a Markov chain by codebook construction. Since Ee
includes the event Ee2, the middle term of the chain uniquely
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determines Zn
2 (1, L(1,1,1)

2 ) on which the transmitted codeword
is conditioned. Further,

Zn
1 (1, L(1,1,1)

1 + 1)

− (
Un(1), Zn

2 (1, l ′2) for all l ′2 ∈ L2(1), Ec
e

)

− Zn
1 (1, L(1,1,1)

1 ) (56)

forms another Markov chain. This follows from Lemma 3,
where the left and right term in the chain play the role of
AJ and AI , respectively, and the middle term in the chain
determines the set A′ as

T � =
⋃

l′2∈L2(1)

T (n)
ε′ (Z1 | un, zn

2(l ′2)). (57)

Since the event Ee includes Ee2, it is ensured that I is drawn
uniformly, as required by the lemma.

It is straightforward to verify that if A − (B, C) − D and
A − B − C form Markov chains, then so does A − B − D.
Hence, (55) and (56) imply the Markov chain

Zn
1 (1, L(1,1,1)

1 + 1)

− (
Un(1), Zn

2 (1, l ′2) for all l ′2 ∈ L2(1), Ec
e

)

− Y n,

and the conditioning on Y n = yn in the first factor of (54)
can be omitted. We are left with

P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un,

Zn
2 (1, l ′2) = zn

2(l ′2) for all l ′2 ∈ L2(1), Ec
e︸ ︷︷ ︸

Econd

}
.

To simplify further, consider the conditional joint distribution
of all sequences Zn

1 (1, L(1,1,1)
1 + k) for k ∈ [0 : |L1(1)| − 1]

given Un(1) = un . The effect of additionally conditioning
on Econd relates to the typical sets T (n)

ε′ (Z1 | un, zn
2(l ′2)) for

l ′2 ∈ L2(1), and imposes that (a) the k = 0 sequence
is in one of the typical sets, (b) no sequence is in more
than one of the typical sets, and (c) none of typical sets
contains more than one sequence. The latter two are exclusion
constraints. We are interested in the marginal with respect to
the k = 1 sequence, i.e., Zn

1 (1, L(1,1,1)
1 +1). If zn

1 ∈ T �, where
T � is the union of the typical sets as defined in (57), we
have

P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un, Econd

}

≤ P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un}, (58)

that is, conditioning on Econd makes it less probable for
Zn

1 (1, L(1,1,1)
1 + 1) to be within T � due to the exclusion

constraints with respect to the subsets of T �.
On the other hand, if zn

1 /∈ T �, we have

P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un, Econd

}

(a)≤ P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un,

Zn
1 (1, L(1,1,1)

1 + 1) /∈ T �
}

≤ P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un

}

P
{

Zn
1 (1, L(1,1,1)

1 + 1) /∈ T � | Un(1) = un
} , (59)

where in step (a), we have pessimistically assumed that
Econd excludes Zn

1 (1, L(1,1,1)
1 + 1) from the entire set T �.

To bound (58) and (59) further, we need the following lemma,
which is proved at the end of the section.

Lemma 5: For any Z̃n
1 ⊆ Zn

1 , if the conditions in Lemma 1
hold, then

lim
n→∞ P{Zn

1 (1, L(1,1,1)
1 + 1) ∈ Z̃n

1 | Un
1 (1) = un}

= P{Zn
1 (1, 1) ∈ Z̃n

1 | Un
1 (1) = un}.

The lemma states that the distribution of a nonselected Zn
1

sequence tends to the distribution of a sequence before the
selection process. Applying the lemma to the right-hand side
in (58) and the numerator in (59) immediately yields

P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un}

(a)≤ P
{

Zn
1 (1, 1) = zn

1 | Un(1) = un} + εn
.= 2−nH(Z1 | U ),

where in (a), εn → 0 as n → ∞. Applying the lemma to the
denominator of (59) yields

P
{

Zn
1 (1, L(1,1,1)

1 + 1) /∈ T � | Un(1) = un}

≥ 1 − P
{

Zn
1 (1, 1) ∈ T � | Un(1) = un} − εn

(a)≥ 1 − |T �| · 2n(−H(Z1 | U )+δ(ε′)) − εn
(b)≥ 1 − 2n(R̃2−R2−I (Z1;Z2 | U )+2δ(ε′)) − εn
(c)−→ 1 as n → ∞,

where (a) follows from T � ⊆ T (n)
ε′ (Z1 | un), (b) uses

|T �| ≤ |L2(1)| · 2n(H(Z1 | U,Z2)+δ(ε′))

= 2n(R̃2−R2+H(Z1 | U,Z2)+δ(ε′)),

and (c) relies on the conditions of Lemma 1, which ensure
that R̃2 − R2 < I (Z1; Z2 | U). Substituting into (58) and (59),
we conclude that for all zn

1,

P
{

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1 | Un(1) = un, Econd

}

≤ 2−n(H(Z1 | U )−δ(ε′)),

where δ(ε′) → 0 as n → ∞ and thus, we have bounded the
first factor in (54).

The second factor in (54) simplifies as

P
{

Zn
2 (1, l2) = zn

2 | Un(1) = un, Y n = yn,

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1, Ec

e

}

(a)= P
{

Zn
2 (1, l2) = zn

2 | Un(1) = un}

.= 2−nH(Z2|U ),

where (a) follows from l2 /∈ L2(1) and the fact that the
conditions Y n = yn , Zn

1 (1, L(1,1,1)
1 + 1) = zn

1, and Ec
e relate

only to the product set L1(1) × L2(1) for m0 = 1.
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Similarly, the third factor in (54) evaluates to

P
{

Xn(1, L(1,1,1)
1 + 1, l2, m3) = xn | Un(1) = un, Y n = yn,

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1, Zn

2 (1, l2) = zn
2, Ec

e

}

= P
{

Xn(1, L(1,1,1)
1 + 1, l2, m3) = xn | Un(1) = un,

Zn
1 (1, L(1,1,1)

1 + 1) = zn
1, Zn

2 (1, l2) = zn
2

}

.= 2−nH(X |Z1,Z2,U ).

Substituting the bounds for the three factors in (54) back
into (53), and noting that

|T (n)
ε (Z1, Z2, X | un, yn)| .= 2nH(X,Z1,Z2|Y,U ),

we conclude

P�� ≤ 2n(H(X,Z1,Z2|Y,U )−H(Z1|U )−H(Z2|U )−H(X |Z1,Z2,U )+δ(ε))

= 2n(−H(Y |U )−I (Z1;Z2|U )+δ(ε)).

Finally, this implies that P(E3 ∩ Ec
eq | Ec

e ) → 0 as n → ∞ if

R̃1 − R1 + R̃2 + R3 ≤ H (Y |U) + I (Z1; Z2|U) − δ(ε).

But this condition is an implication of (29) which stems from
analyzing E4, and may thus be omitted.

To complete the proof, it remains to show Lemma 5.
Proof of Lemma 5: We express the term on the right hand

side as follows.

P{Zn
1 (1, 1) ∈ Z̃n

1 | Un
1 (1) = un}

=
∑

l�1∈L1(1)

P{L(1,1,1)
1 = l�1, Zn

1 (1, 1) ∈ Z̃n
1 | Un

1 (1) = un}

= 1

|L1(1)|
∑

l�1∈L1(1)

P{Zn
1 (1, 1) ∈ Z̃n

1 | Un
1 (1) = un,

L(1,1,1)
1 = l�1}

(a)= 1
|L1(1)| P{Zn

1 (1, L(1,1,1)
1 ) ∈ Z̃n

1 | Un
1 (1) = un}

+ |L1(1)|−1
|L1(1)| P{Zn

1 (1, L(1,1,1)
1 + 1) ∈ Z̃n

1 | Un
1 (1) = un},

where (a) follows from symmetry, which implies that
P{Zn

1 (1, L(1,1,1)
1 + k) ∈ Z̃n

1 | Un
1 (1) = un} for k �= 0 is

independent of k.
Hence,

P{Zn
1 (1, L(1,1,1)

1 + 1) ∈ Z̃n
1 | Un

1 (1) = un}
≤ |L1(1)|

|L1(1)|−1 P{Zn
1 (1, 1) ∈ Z̃n

1 | Un
1 (1) = un},

P{Zn
1 (1, L(1,1,1)

1 + 1) ∈ Z̃n
1 | Un

1 (1) = un}
≥ |L1(1)|

|L1(1)|−1 P{Zn
1 (1, 1) ∈ Z̃n

1 | Un
1 (1) = un} − 1

|L1(1)|−1 ,

Recall that |L1(1)| = 2n(R̃1−R1), and therefore, by the condi-
tions of Lemma 1, |L1(1)| → ∞ as n → ∞. This completes
the proof of the lemma.
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