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Abstract

This paper considers a widely studied stochastic contrablpm arising from opportunistic spectrum access
(OSA) in a multi-channel system, with the goal of providingi@ifying analytical framework whereby a number
of prior results may be viewed as special cases. Specificalyconsider a single wireless transceiver/user with
access taV channels, each modeled as an iid discrete-time two-statkdMahain. In each time step the user is
allowed to sensé < N channels, and subsequently use uprte< k& channels out of those sensed to be available.
Channel sensing is assumed to be perfect, and for each dha®a each time step the user gets a unit reward.
The user’s objective is to maximize its total discounted werage reward over a finite or infinite horizon. This
problem has previously been studied in various specialscassBudingk = 1 andm = k£ < N, often cast as a
restless bandit problem, with optimality results derivedd myopic policy that seeks to maximize the immediate
one-step reward when the two-state Markov chain model igipely correlated. In this paper we study the general
problem with1 < m < k < N, and derive sufficient conditions under which the myopicigyls optimal for

the finite and infinite horizon reward criteria, respectjvet is shown that these results reduce to those derived
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in prior studies under the corresponding special casesttarglmay be viewed as a set of unifying optimality
conditions. Numerical examples are also presented toiglghthow and why an optimal policy may deviate from

the otherwise-optimal myopic sensing given additionallesgiion opportunities, i.e., whem < k.
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I. INTRODUCTION

We consider the following stochastic control problem: Ehare N uncontrolled, independent and
identically distributed, two-state discrete-time Markavains, with the two states denoted’ “and “0”
respectively, and the transition probabilities giveny 7, j = 0, 1. The system evolves in discrete time.
In each time instance, a user selects exaktlgut of the N processes and is allowed to observe their
states. The user is allowed to receive a unit reward from ags® observed to be in state but the
total reward is limited atn,m < k, at each step. The processes that the user does not select do n
reveal their true states. The objective is to derive a Selestrategy for the user so that its total expected
discounted or average reward over a finite or infinite horis\omaximized. This is a partially observed
MDP (POMDP) problem[]1],[[2] due to the fact that the stateshaf underlying Markov processes are
not fully observed at all times; as a consequence the sydie & perceived by the user is in the form
of a probability distribution, commonly referred to as tinéormation stateor belief stateof the system
[3]. More specifically, this problem is an instance of thetless bandit problem with multiple plays|[4],
[5]. [6].

The above problem abstraction and a number of its variati@e been quite extensively studied
in the past few years in the context of multichannel oppastim spectrum access (OSA), including
[7], [8], [9], [LQ], [L1]. Within this application, each M&ov process represents a wireless channel in
a discrete time setting, whose state transitions reflecamym changes in channel conditions caused by
fading, interference, and so on, with stateenoting a “good” or available state, and statide “bad” or
unavailable state, in which communication may succeed athdéspectively. A user wishing to transmit
must first sense the state of a channel at the beginning ofeadtiep, and can only transmit in that channel
if it is sensed to be in the “good” state. The user cannot sem@e thank channels, nor can it transmit in
more thanm at a time. Such constraints come from both hardware, egnumber of antennas available,
and from performance requirements, e.g., channel senaksg time so stringent delay requirement can
limit the amount of sensing allowed. Finally, if a@llselected channels are in the “bad” state, the user has
to wait till the beginning of the next time step to repeat tb&estion process. While this model captures
some of the essential features of multichannel opportenésicess, it has the following limitations: the
simplicity of the iid two-state channel model, and the implassumption that channel sensing is perfect
and the lack of penalty if the user transmits in a bad chanaeltd imperfect sensing. Nevertheless, this

model allows us to obtain analytical insights into the pewmb] and more importantly, insights into the



more general problem of restless bandits with multiple play

Prior work investigated various special cases of the moddined above, henceforth referred to as
the (k, m) model. Specifically, authors derived sufficient conditidois guaranteeing the optimality of a
greedy/myopic sensing for th@, 1) case, i.e.k = m = 1 with N = 2 in [12], with positively correlated
channel model]7] further proved the performance boundsgreedy/myopic policy for this case (as well
as negatively correlated channels) and [13] proved the $antée (N — 1, N — 1) case, while[[9],[[10]
looked for provably good approximation algorithms for a éamproblem but relaxing the requirement
that all Markov chains are identically distributed. Theuasption of perfect sensing was relaxed [in][14]
with results regarding greedy/myopic sensing’s perforceaimounds. Our own prior work][8] established
the optimality of the greedy policy for th@, 1) case for arbitraryV under the conditiomp; > pg, i.€.,
when a channel’s state transitions are positively comdlatl his result was further generalized [in][11] to
the case ofk, k), i.e., m = k < N with arbitrary N.

In view of the above existing work, the main contribution bistpaper is the study of the more general
(k,m) problem with1 < m < k < N. For this problem we derive sufficient conditions under vahic
the myopic policy is optimal for the finite and infinite horizweward criteria, respectively, for both the
positively correlated and negatively correlated channedieis. Furthermore, we show that they reduce to
those derived in prior studies under the correspondingiapeases, and thus may be viewed as a set of
unifying optimality conditions. Our main results, a set offiient conditions for the optimality of the
myopic policy, are summarized in Talile I, wherec 3 < 1 is the discount factor an® and R are two

constants that depend on parametersind k.

Channel mode| Finite horizon Infinite horizon

P11 = Poi B<R/R p“;pm) <R/R

- 1—(1711 —Ppo1

P11 < Po1 B<R/(R+R) | min{po — pi1, m} <R/R

TABLE |
SUMMARY OF RESULTS

The sufficient condition for the finite horizon problem is @n and is derived using a sample path

argument we first introduced in_[11]. The sufficient conditior the infinite horizon problem is op;;



andpg;, and is based a few bounding techniques and the one-stegtidavprinciple. It should be noted
that similar results from a parallel development have rdgeppeared that address the case of positively
correlated channels over a finite horizon for= 1,k > 1 (in [15]) and for1 <= m <= k (in [16]),
respectively. They correspond to the upper left entry in@dband also rely on the sample path argument
introduced in[[11]. Paper [17] considers the additionaxation to independent but non-identical channels
(positively correlated and over a finite horizon). Howewdue to this generality the results obtained in
are weaker, i.e., their sufficient condition does natuee to that in the special case of IID channels.
By contrast, all sufficient conditions given in Taljle | reduyarecisely to the best known results given in
prior studies in respective special cases, thereby pmoyidi unifying set of conditions.

The remainder of this paper is organized as follows. Sedlibpresents the problem along with
preliminary results. Sectioris Jlll arid IV derive the optiitakonditions for the finite horizon problem
with positively and negatively correlated channels, respely. Section§ V and VI are similarly organized
for the infinite horizon problem. Discussion and related kvare given in Sectiof VIl and Sectidn M|

concludes the paper.

[I. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem formulation

Denote the set of channels By = {1,2,..., N}. The system operates in discrete time 1,2, .... In
each step, the channel state transitionstat, followed by channel sensing at The user is limited to
sensing at most channels each time, thus its observation of the system whadingn decision at time
t is imperfect. A sufficient statistic for optimal decision kivag, or the information state of the system
[3], is given by the conditional probabilities of the stateck channel is in given all past observations
and actions. Since each channel can be in one of two statedenate this information state at tinidoy
w(t) == [wi(t),wa(),...,wn(t)], wherew;(t) is the conditional probability that channglis in statel at
time tH The user’s sensing strategy is denotedmdy = [r(1), 7(2), ..., 7(T)], wheren(t) : w(t) — .,
Q. C § denoting a set o channels.(t) will be referred to as a policy, anl denotes the set of
all admissible policies, whilél denotes the set of all admissikilestep policies. Due to the Markovian
nature of the channel model, future information state iy @function of the current information state
and the current action. It follows that the information staf the system evolves as follows. Giverx)

INote that it is a standard way of turning a POMDP problem inttdassic MDP problem by means of the information state, thenma
implication being that the state space is now uncountable.



and actionr (t), there are three possible state updatesw(l)+ 1) = p;; if ¢ € w(¢) and it is observed in
statel; (2) w;(t+1) = poy if 7 € w(t) and it is observed in state (3) if i € 7w (t) thenw;(t+1) = 7(w;(t)),

wherer(-) : [0,1] — [0, 1] is the updating function defined as
TWw)=w-pn+(1—w) pu, 0<w<1. (1)

If a channel is sensed to be in statand the user decides to use it for transmission, then it gatsta
reward for that time step. The immediate one-step rewarctusthtes and sensing action is denoted

by RE™(©),1 < m < k.

Example 1. The one-step reward of thé, 1) model (sensing > 1 channels but using no more than one

for data transmission) given policy € II is

ERM (@) =1-J[Q-w)1<k<N. 2)

1ET

Example 2. The one-step reward of thé, k) model givenr € 11 is

E[RM @) = w,1<k<N. (3)

1ET
The objective for the finite horizon problem is to maximize tiotal expected discounted reward over

T time steps, with a discount factor< $ < 1, given an initial statev:

T
(P1): T (@) = max E¥[Y 5 RE(@(1) (1) = ]
t=1

The objective for the infinite horizon problem is to maximibe total expected discounted reward (with

0 < B < 1) or the average reward:

(P2): J§(w) = max E”[Zﬂt_lRikg(@(t))lw(l)2@]

mwell

(P3): J™ (@) = max E™[lim — ZRW

well T—)oo

I
&

As we shall see a main technical challenge posed by the defiera) problem is the non-additive
nature of the reward function, see e.gl, (2), as opposecetadtitive reward in the special caSe k) as
shown in [(B), in addition to the usual difficulties in seekstguctural solutions to restless bandit problems.

As in previous works, we will focus on a simple myopic polityat aims at maximizing the immediate,



one-step reward at each time step, and investigate under aghditions this policy is optimal. In the
remainder of this section we present a number of properfieghkeoabove non-additive reward function
and the operation of the myopic policy in the context of theaiyic programming representation of the

above optimization problems.

B. Properties of the expected rewafdR"™ ()]

For convenience of notation, the vectomwill be frequently written agw;,w_;) to emphasize théth
element and the rest of the vector, or(as, - -- ,w;, - ,wy). The first property below suggests that the
order in which these elements appear does not matter. Foret@ison later we will sort them in descending

order.

Proposition 1 (Symmetric) Under any admissible policy, Vi, j € N” andw; = w; we have
E[Rfr’m(wl, ey Wiy ey Wy ey WN)] = E[Rfr’m(wl, ey Wiy ey Wiy ey WN)] (4)

The above property is quite self-evident and its proof isstbmitted.

Proposition 2 (Increasing) For w; > w; we have
E[Ry"™ (w;,w-1)] > E[RE™ (wi, w-s)] - (5)

Proof: If i & 7, then the two sides must be equal because all other elementeseasame. Consider

the case € 7. The immediate one-step reward can be expressed in thevioosequential form:
B[Ry™ (wi,w—i)] = wi - (B[REM™ Hwo)] + 1) + (1 — wi) B[Ry (w-i)] (6)

where 7_; denotes the same set of channelsrirtbut excluding:. This is because since all available
channels generate the same reward, we may consider twdihitiesi of obtaining the total reward: either
channeli is available or not. Under the former, we receive the unitamplus the reward from the
remainingk — 1 channels inr, using up tom — 1 of them; under the latter, the total reward now comes
from the remainingt — 1 channels inm, using up tom of them. Applying [6) to both sides ofl(2), in

order to show the inequality il(2) it suffices to show that

B[Ry w-y)] +1 > BIR M (w-s)] - (7)



Next we show this is true. LeP,_ (/) denote the probability that out éf— 1 channels inr_;, exactly!

are sensed to be good under state/Ne have

B[REI N w )] + 1 = Y P (1) 1+ i P, (I)-(m—1)+1
> mZ_PM(l) A+ P, (m—1)-(m—1) +2P7r (D) - [(m —1) +1]

= B[Ry (w-s)] (8)
[ |
The fact that[(b) is an affine function af; also leads to the next result.
Proposition 3 (Affine). E[R,(f’m) (w)] is an affine function w.rt. each;,Vi € 7, i.e.,
E[Ry™(wi = 2,w)] — E[RY™(w; = y, ws)]
= (z —y) {E[Ry™(w; = 1,w4)] — E[R}™(w; = 0,w-4)]} 9)

C. Dynamic programming representation

Throughout this paper we will consider the genefalm) case, and for simplicity will use?, ()

thereafter instead oRR*™(w) whenever there is no confusion. The optimization probler) (an be
solved using dynamic programming:

Vr(w) = max E[R,(w)] , (10)

mell

Vi(@) = max E[R,(@)]+6- Y [ -w)™

well
l;€{0,1}ienm i€m
: Vt+1(p11[z li]yT(Wj>> -+ Po1 [k - Z lz]) s (11)
e 1ET

where we have adopt the following notation for simplicity:

. p01[£lj']: a Vector[p01,p01, ...,p01] of Iength x.

« pulx]: a vectorpiy, p11, ..., p11] Of lengthz.

In (I1), the state vector iff;,(-) consists of three parts: channelsrdirand sensed to be good (their next

state isp;1); channels inr and sensed to be bad (their next stateyi9; and channels not sensed (their



next state isr(w,)).

D. The myopic/greedy sensing policy

The myopic/greedy sensing policy selects a set of chanoets $0 maximize the one-step immediate
reward. If we sort an information statgt) in descending order such that(¢) > ws(t) > ... > wn(t),
then myopic sensing, denoted hy, is one that selects the firét channels (highest probabilities of
being good), i.eq? = {1,2,...,k} for a descending ordered. Note howeverr? can be applied to an
arbitrarily orderedo; it will simply selects the first: channels. As detailed inl[7],[11] the implementation
of the myopic strategy is particularly simple: it only remps the knowledge of the ordering of the initial
information state and the ordering b1, po1}. Since this feature is repeatedly used in our analysis,
below we elaborate on this to make the paper self-contained.

For the case whepy; > po;, the updating functionr(w) is monotonically non-decreasing, i.e(w;) >
T(we) iIf wy > wy, implying that the ordering of channels not sensed is pveskrThe states of sensed
channels are updated to eithen (if sensed good) op,, (if sensed bad), noting thaty; < 7(x) <
pu, Vo € [0,1]. It follows that we have the following simple implementatiof the myopic policy:
Starting from a descending-ordered list of channels, tHeyeselects the first channels. Upon learning
the sensing outcome, those sensed to be good are placedfairthef the list, those sensed to be bad at
the end of the list, and those not sensed are in the middlesindhiginal order. By the above observation,
this new list is again in descending order, and thus the pa@gain selects the first channels for the
next time step, and the same process is repeated.

For the case witp;; < py; we also have monotonicity but in the opposite direction, #:ev;) > 7(w»)
if w; < wsy. Thus the ordering those not sensed is reversed at each tépeMeanwhilep;; < 7(z) <
po1, Vo € [0, 1]. A similar implementation thus follows: at each time step place the channels sensed
as good to the end of the list, those sensed bad at the frohedist, and those not sensed in the middle
with their ordering reversed. This produces a descendidgred list so that at the next time step the
policy again selects the firét channels.

While both the expected one-step reward and the value fumtre invariant w.r.t. the ordering of the
information state/belief vectay, for simplicity of presentation we will take to be an ordered vector for
the remainder of this paper. Accordingly, the notatian w_;) is used to represent the following ordered

VECLON: (Wi, Wi, + 5 Wim1, Wi, "+ 5 WN)-



1. FINITE HORIZON, p11 > po1
A. Optimality of myopic sensing

We begin by introducing the following two quantities:

R=  max {E[R;(1,w_ ;)] —E[Rw(0,w_)]} (12)

w_i€[po1,p11]F—1

R= min {E[Rrs(1,w_;)] — E[Rra (0, w_;)]} - (13)

w_i€[po1,p11]F-1

R, R can be easily characterized for some commonly used cases examples are shown below.

Example 3. (k,m) = (k,k),1 < k < N In this case we can sense up kochannels and use all those

sensed to be available. The one-step reward undes thusE[R,. (0)] = Y, w; = >+, w;, and thus

iemd

R=R=1
Example 4. (k,m) = (k,1). Since we can use no more than 1 channel, the one-step rewdet @/ is
given byE[R (©)] =1 —[]*,(1 — w;), and thusR = (1 — po1)* ", R = (1 — p11)*

We now present the main result of this section.

Theorem 1 (Optimality of Myopic Sensing) The myopic sensing poliey is optimal for(P1) under the

condition0 < 8 < R/R and for belief statev s. t. py; < w; < p11, Vw; € @.

Remark 1. Note that the condition o@ in the above theorem is not overly restrictive jgs < 7(w;) < pn1
for any w;, implying that even if the initial belieb at time¢ = 1 does not satisfy this condition, the

theorem is applicable starting from tinte= 2.

To prove this theorem, we next introduce a number of lemma&nBT" N-variable functionsV;(-),t =

1,2,---,T, recursively as follows:

Wr(@) = E[Rqz(w)]

Wiw) = E[Rx(@)] +

B ’ Z Q(_; (D> ’ Wt+1 (pll[z ll]? T<Wk+1)7 2 T(MN),p01[]{Z - Z ll])? (14)
1e{0,1}* i=1 i—1

wherel = {l,,--- ,I;}, andq(l; @) := Hle(wﬁi(l —w) ) Lo, 1 € {0, 1)

Remark 2. A few remarks are in order on these functign(-),t =1,2,..., T
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i) If wis in descending order, then applying at timet is myopic. Moreover, the state vector within
Wi.1(+) retains the same descending order. This is becat(sg is increasing inw and p;; >
T(w) > po1 for anyw. Thus ifwy > -+ > wy, thenpyy > wppy > -+ > wy > por. This implies
that selecting the first channels at + 1, i.e., 79 would again be myopic.

i) Whenw is in descending order of its componenkg;(w) is the expected discounted total reward
starting from stateo(t) at timet by following the myopic policy at each time step. This is beea
W,(-) takes on the same recursive form as the value function, arehet time step the myopic
policy is used due to the descending order of the state vestaroted above.

i) Whenw is not in descending ordel);(w) as given above represents the expected discounted total
reward of the following policy: It selects the firstchannels as listed in the vectar at time ¢;
it then orders the next state vector as follows: those chkheapssed to be good are listed first,
followed by those not sensed at all, in their original orderd, followed finally by those sensed to
be bad. This process is then repeated.

iv) Whenj € 79 (1 < j < k), we can also conveniently writé; () in the following form by singling
out component,; and calculating the expected future reward conditionedhlmdutcome of sensing

channely; this expression is frequently used in our proofs:

Wi(@) = E[Rp(wjw_j)] +

Wi+ > e ) Wi (pu) L+ 10, 7(@kia), - (wn), pon[k — Y 1 — 1)) +

1_;€{0,1}+—1 i) i#]
L—w)B- > gl o )W (pud Ll 7(@es1), - 7(wn), por[k = > L)), (15)
I_;€{0,1}k—1 i#] i#]
Wherel__j = {ll, s >lj—17 lj+1, s ,lk}
Key properties of the functiond/;(-),t =1,2,--- ,T are presented below.

Lemma 1 (Monotonicity) W,(@") > W, (@), t = 1,2,...,T, for @ > @, with = denoting component wise

larger than or equal to.
Lemma 2 (Affine). Wy(w),t =1,2,---,T, is an affine function of each elementuaf

Proof: We prove this by induction on ConsiderlVr(w) and an element;. If j ¢ 79, thenWy(w)
is not a function ofw;. If j € 79, thenE[R,, ()] is an affine function ofu; by Propositiori B. In either

case the induction basis is established. Suppose the lerolda for all timest +1,¢4+2,---,T.
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Now consideV;(w), and the casg ¢ 7. By the induction hypothesis, tH&,;,(-) term in [14) is an
affine function ofr(w;), which in turn is a linear inv;. SinceW;(w) only depends om; through this
Wi (+) function, by the definition in[(14), it follows thdl/;(w) is affine inw;.

Consider the casg € 9. In this caseE[R,s ()] and ¢(/;) are both affine functions of; (by
Propositio ® and definition of(-), respectively). Meanwhile th&/;,(-) term in (14) does not depend
onw; asj € m7. ThusW,(w) is again affine inv,. [ ]

The next lemma provides two key inequalities that lead topttoef of the main theorem in this section.

Lemma 3. For p;; > wy > wy > ... > wy > por and forallt = 1,2,--- ,TH , under the condition

B <R/R andz,y we have:

(L1): R+ Wiwn,wi, -y wy-1) = Wiwi, .ooswn) (16)

(L2) Wt(wlw"u(’uj—l?xayau)j-i-% U 7wN) > Wt<w17‘ Wi Y, Tyt W2yt 7wN) . (17)

Proof of Theorenh]1We prove the theorem by induction @n

Induction basisThat =9 is optimal at timel" is obvious due to the increasing property of the expected
one-step reward, Propositioh 2. Assume the myopic potitys optimal for any given state vectar for
timest +1,---,T.

Induction step:Suppose the optimal policy at timeunder statev is 7* # x9. Accordingly, we can
write the state vector ago., w_.), wherew, := {w;,j € 7*} contains the probabilities of those channels
selected byr* andw_, := @w — w,, sorted in descending order, contains those not selected .bgince
the myopic policy is optimal starting from+ 1 by the induction hypothesis, the expected discounted
reward of using policyr* at time ¢ followed by the myopic policy thereafter is essentially egivby
Vi (@) = Wi(@.,w_.), wherew is in descending order. However, by repeated use of L2 in LaBm
sorting one element at a time, we hakg(w) > W;(w.,w_.), contradicting the claim. Therefore the

myopic policy is also optimal at time W

B. Special cases

We next interpret the result obtained above in a number ofispeases.

>The assumption of bounding betweenpo; andpi; is in fact a rather weak one. To see this it is easy to vefify< 7(z) < p11,Vz €
[0, 1]; thus if the initial belief falls betweefpo1, p11] (for example taking the initial belief as the steady stagtritiution S ),
the assumption holds immediately for any
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Case 1:(k,m) = (k, k). As shown earlier in Examplel 3 we ha® = R = 1. Thus in this case the
optimality condition reduces t6¢ < 1 which is always true, i.e., it is not binding.

Case 2:(k,m) = (k,1). As shown earlier in Examplg 4 we hale= (1—p;)*! andR = (1—p;;)* .
It follows that R /R < 1, except for the trivial case qf;; = po;. This means that in the case of sensing
multiple channels while limiting access to one channel,tty@pic policy is not always optimal, and the
optimality condition3 < R /R becomes binding.

Case 3:k = N,m < k. This case is trivial as only a single action is available atheime, which
coincides with the myopic policy wheh = N. It is therefore optimal without requiring any conditions.
Case 4:k = N —1,m < k. It can be shown that in this case the myopic policy is optim#heut any
condition ong or w. The proof follows the same argument used in the precedibgestion. In particular,

we note that the condition of arise from the induction step of proving L2 in Lemia 3. Howeve

can be easily verified that whén= N — 1 this step holds for alb < g < 1.

C. A numerical example

The following numerical example highlights how myopic sagany not be optimal when the sufficient
condition ong is not satisfied.

The example is given by the following parameter valuds:= 5,k = 2,m = 1,5 = 0.8,T =
5,p1 = 0.9, por = 0.1, with an initial information states = {0.99, 0.95,0.9,0.9,0.9}. Denote by, "
the expected reward of sensing myopically (channels oddéte 2}) in each time step, and bl 1{1’3}
the expected reward of sensing channgls 3} at ¢ = 1 followed by sensing myopically thereafter.
Numerically solving the example shows thiat!"* = 3.3279 and W* = 3.3283, thus in this case
myopic sensing is not optimal.

What this counter example shows is that when the top chatimelofe with highest information state)
has a sufficiently high belief, i.e. we have high confidencat ih the next step this channel will be
available, it may make more sense to take this opportunigxpore by updating our belief on a lower
channel (number 3 in this case) rather than selecting thengelsighest channel to further improve our
chance (which is already very high by virtue of the top chéisngate) of getting at least one good
channel in the next time step.

It is worth noting that these counter examples are only foinduch extreme cases, i.e., cases with

information state close to 1, or cases with high and low py;.
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IV. FINITE HORIZON, p11 < po1
A. Optimality of myopic sensing

Theorem 2 (Optimality of Myopic Sensing)The myopic sensing strategy is optimal for (P1) under

the condition0 < 3 < R;fﬁ and for belief stateo s. t. p1; < w; < po1, Vw; € ©.

We will reuse the same set of notations introduced in the c&3g, > py; in this section. To prove
the above theorem, we will similarly need a number of lemnves.begin with a similar definition on

the 7" N-variable functiondV,(-),t =1,2,--- T, recursively as follows.

Wr(w) = E[Rp(@)]

Wi(w) = E[Rq(w)] +

B> qbw) Wip(pol[k = Y L], m(wn), -+ T(wisn).pu[D L) (18)

lefo,1}k i=1 i=1
Remark 3. Compared to the definition given in the previous section, difierence here is in the re-
ordering of the beliefs ifV,.(-), i.e., po:’s followed by7(wy), - -, followed byp;’s. This is because,
as po1 > p11, this re-ordering sorts the belief vector in descendingeardh doing so we can continue to

use the same greedy poliay which selects the first channels.
Lemma 4. W,(w),t = 1,2,--- ,T, is an affine function of each elementcaf

The proofs of the above lemma is essentially the same asrthiheicase op;; > py; (Lemmal2), and

is thus omitted.

Lemma 5. For py; > wi > we > ... > wy > p11 and under the conditiom < R%—ﬁ and x > y, we have

the following inequalities for alt = 1,2, ..., 7"

(L3) 7+Wt(w2,w3,...,w]\;,w1) > Wt(wl,...,wN) (19)
(L4): v+ Wiwn,wi, oy wn_1) = Wi(wr, ..., wn) (20)
(L5) Wt((ﬂl,“' yWi—1, T, Y, Wjy2, - 7wN) 2 Wt(wlfu yWi—1,Y, Ty Wjq2, - 7wN) ) (21)

wherey = &

Proof of Theoreni]2The proof follows essentially the same inductive argumesgduin the proof of

Theorenm L through repeated use of L5 in the preceding lemnthjsathus omittedll
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B. Special cases

Case 1:(k,m) = (k,k). As shown earlier, in this case we ha®= R = 1, and thus the sufficient
condition for the optimality of the myopic policy becomgs< % = % Note that the same condition
B < % was previously proven for the special cdse- 1 in [8].

Case 2:k = N —1,m < k. It can be shown in this case that the myopic policy is optimighout any

condition ong3 and following the same argument used in Section 111-B.

V. INFINITE HORIZON: p11 > po:

In this and the next sections we will consider the infiniteiram problems(P2) and (P3). As shown
in [8], the optimality of a policy unde(P1) is readily extended to its optimality undé@P?2); it is more
complicated for(P3): a policy is optimal for(P3) if it is optimal for (P2) for any0 < 8 < 1. As a result,
while the optimality conditions on the myopic policy we havetained so far applies t(2), the same
cannot be said fo(P3) since these conditions restrict the values the discoundifatcan take. For this
reason, in these two sections we seek alternative sufficiemditions that do not require the restriction
on 3, which will then allow us to first establish the optimality tife myopic policy for(P2) and then

extend it to(P3).

A. One-step deviation

For the rest of this section we will use the notatidi™ (w) defined similarly as in[{14) for the case
of p11 > po1 but with an infinite horizon, i.e., with the recursion {n{1edntinuing indefinitely without

the end at timél". To be specific we have the following recursive equations.

i

WP @) = E[Rn(@)]+ 8-> P& @) Wy (@) (22)

But notice here the real value of the value functions doeslapend on time due to the infinite horizon.

We keep the time index mainly for clarity of later analysis.

Definition 1 (One-step deviation)Consider a policyr? : w — Q, 7¢ # 79. Its one-step deviation
from the myopic policy under information stateis defined as the immediate reward undérplus the
discounted future reward by following/ in future time steps. Formally, the value functionrdf denoted

®In [8] this argument is made specifically for the cdgem) = (1, 1), but it is more generally applicable with a simple extension
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by V%> (w), is given by
V(@) = N+ 8- Ph@|@) - W @) (23)

wherew’ is the descending-ordered information state vector of Wstesn at the next time step under
policy 7¢. If V> (w) > W (w) for somew andt, then we say that? is a profitable one-step deviation.

If such an? cannot be found, then we say there exists no profitable @pedstviation.

Lemma 6 (One-step deviation principle)'he myopic policyr? is optimal for(P2) for any0 < g < 1 if

and only if there exists no profitable one-step deviation.

Proof. (Only if) That there is no one-step profitable deviation issaessary condition for the optimality
of 79 is obvious because otherwise we have found a policy thatngtugher reward than? under some
statew, which contradicts the optimality ofv.

(If) We next show that if there exists a poliay : Q@ — N that has strictly higher discounted reward
thanm? over an infinite horizon, then there exists a one-step pldéitdeviation policy constructed from
7*. Denote the total reward under starting at timet as V;”>, and denote by = V"> — W, By

assumption we have> 0. Define timet* as

m
t* ;= min{t : ﬁt — <

’s (24)

[NNINe

i.e., this is the first time that the total future discountediard of anideal policy (that collects the highest
rewardm in each step) falls below/2. The existence of such i is guaranteed by the finiteness af
and the fact that) < 1. By the above definition, after tim& the reward under either* or 79 cannot
exceede/2, thus the difference in the two rewards after tirfieis no more thare/2. Since the total
difference between the two rewards (starting at time 1) is ¢, the difference between* and 79 up to
and including time* must be at least/2. We thus construct the following policy,™, which follows 7*
up to and including time*, and then switch ter? thereafter, with a total discounted reward denoted by
V,7*°(.). Following the above discussion, we must h&je™ (@) > W (w) for any initial conditionw.
Consider now the policy*. At time t* we compard/;:">°(w) with W2°(w), Y. Note that in this case
Vi (@) = V;¢>°(w) since underr™ at timet* policy * is used followed byrd. If V.7®(@) > W2 (@)
for somew, then we have found a profitable one-step deviation/ 1t (w) < W (w), Yw, then we

modify policy 7" by replacingr* with 79 at time¢*. Again denote this modified policy by™; it follows
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that we continue to have,"> (@) > W(w) for any initial conditionw, since the modified™ has even
higher total discounted rewards than the original

We next examine at* — 1, how V2> (&) compares withHV;>° , () and repeat the above process. Due
to the finiteness of* we are guaranteed to find a profitable one-step deviatiorgtf@rwise it contradicts

the assumption that* is a superior policy tor?. B

Remark 4. The above lemma is not conditioned on the values,; Qfpy;, and is thus reused in the next

section in the cas@; < po:.

B. Optimality of myopic sensing

We begin by introducing a bound on the value function, whihhien used in proving the optimality
condition. Denote := p;; — po; and notice under this section we have> 0; and we will uselt>°(+) to

denotelW>(-),t = 1,2, ... for simplicity.

Lemma 7 (Boundedness)Consider the finite horizon problem (P1) with horizéh For 1 < ¢t < T,

x>y, andA, =R-Y/(6-6)", we have

0 S Wt(wl, ey W1, Ty Wig1, ey (.UN)

- Wt(wlv s W1, Y, Wi, 7WN) < (ZE’ - y) ’ At . (25)
Remark 5. A direct consequence of the above result is the followingrestbn to infinite horizon.

We(wyy e,y oy wn) — W1, ooy Y, o WN)

= %EI;O{Wl(wl, )_Wl(w17--'7y7"'7wN)}
T-1 ) ﬁ
< lim R ZB 0)’ 1_5 5= (@92 (26)

1=

Lemma 8. When{ satisfies the following condition

) _
— 27
5 < R/R, (27)

there is no profitable one-step deviation {#2) for any 0 < 5 < 1.

The above result appears to suggest that the closer the twesya, andpy, the easier it is for the

greedy policy to be optimal (though the two quantitiésand R are also functions of;; andpy;). The
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reason is that for a non-greedy policy to outperform the dygmlicy, the former must have higher future
discounted reward as the latter by definition has higher idhate reward. This, however, is made more
difficult when ¢ is small, as it has the effect of damping the difference betwthe two policies. To
illustrate, consider two information states differing inly one elementy vs. y. The difference in the
immediate reward is a function af-y; however, when propagated to the next time step, the canelpg
elements in the information states beconie) and 7(y), and the difference in the corresponding value
functions is now a function of(x) — 7(y) = §(z — y). Thus if ¢ is sufficiently small, the difference in
future reward will be limited, guaranteeing the optimalitythe greedy policy. The details are shown in

the proof given in the appendix.
Theorem 3. Myopic sensing is optimal fofP2) and (P3) under condition[(27).

Proof. Lemmal8 combined with Lemnid 6 immediately imply that myopmosing is optimal fo(P2).

Since this result holds for any choice @< 5 < 1, the optimality is also true fo(P3). B

C. A numerical study

We next show some numerical results to give a sense of thesrah@ 1, po1) pairs,pi1 > poi1, that
would guarantee the optimality of myopic sensing. Thesaltgesire for the case df, m) = (2,1), i.e.,

while sensing 2 channels we only use 1 for transmission. Fragill we can see whep,; is small (

Fig. 1. Guaranteed optimality region : case with > po1

< 0.5), almost all pairs of(py1, p11) would satisfy the optimality condition. Agy; increases, the choice

of p;; becomes more limited.

VI. INFINITE HORIZON : p11 < poi

In this section we analyze the infinite horizon problems widgatively correlated channels, i.e., with

parameterg,; < po;. The basic idea is same as in the case9f> py;, but the technical details differ;
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as we show later the difficulties arise mainly from the lossmainotonicity of the value functions with
negatively correlated channels.

We start similarly with a lemma regarding the boundednesh®fvalue functions.
Lemma 9. Consider the finite horizon problem (P1) with horizéh andVl < j < N,1 <t < T.

Denotingd := po1 — p11, We have

(..'lf - y) 'ét S Wt(wlv ey W1, T, W1, 7WN)

- Wt(wla ey Wi—1, Y, Wi, 7WN) S (ZE’ - y) : At (28)
whereA,, A; are defined as
1_(6'6)T7t+3 . < 0
ét 1—(B-0)2 n n (29)
0, n = 0.
A, — 1__(5.5)2 n n (30)
R, n=0.

Heren :=R — B (pio —pu1) - R.

Remark 6. For A,, A; whenT goes to infinity we have

Ay = min{%, 0} (31)
A% = max{R — (5-5)-%,@. (32)

We next establish the optimality condition for the case < py;. The argument is similar to that
used for the case;; > po1, I.€., we bound the difference between immediate rewardsfanre rewards

respectively and compare. The detailed proof of this lemsnthuis omitted for brevity.

Lemma 10. Denote byd = py; — p11.- When the pain(p,1, po1) satisfies the following condition

1 _
i — 1<

min{d, 20— 5)} <R/R, (33)
then there is no profitable one-step deviation (B2) for any0 < g < 1.

Theorem 4. Myopic sensing is optimal fofP2) and (P3) when the condition in Lemnall0 is satisfied.

Proof. The proof follows immediately from the one-step deviatiomgiple. &
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A. A numerical study

Here we show similar numerical results on the rangépef, po1) pairs,p11 < po1, that would guarantee

the optimality of myopic sensing according to Lemim& 10. Agae use the case @k, m) = (2,1). This

© Guaranteed optimality region]

Fig. 2. Guaranteed optimality region : case with < po1

picture appears to be a mirror image (w.r.t. the diaggnal= py;) of the earlier one. Whepy; is small
(< 0.5), most pairs of(po1, p11) satisfy our optimality condition. Whepy; increases, the choice of;

becomes more limited.

VII. DISCUSSION

In deriving the set of sufficient conditions we have used tviffeent methods: an induction and
sample path based argument for the finite horizon problemaaset of bounds for the infinite horizon
problems. In addition, the first set of conditions is@nwhile the second set gn; andp,;. The induction
based argument for the finite horizon problem cannot be detdito address the infinite horizon problems;
however, the bounding techniques combined with the oneddgiation principle can be applied to obtain
alternate sufficient conditions for the finite horizon perbl The detail is omitted as the essence of the

method remains the same as we have shown in the infinite mopzublems.

VIIl. CONCLUSION

This paper we considered a widely studied stochastic cobpir@blem arising from opportunistic
spectrum access in a multi-channel system, where a singkdess transceiver/user with accessNo
channels, each modeled as an iid discrete-time two-stat&dMachain. In each time step the user is
allowed to sensé& < N channels, and subsequently use uprte< k£ channels out of those sensed to be
available. This problem has previously been studied inouarispecial cases including = £ = 1 and

m = k < N, it is often cast as a restless bandit problem, with optityaksults derived for a myopic
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policy that seeks to maximize the immediate one-step rewdren the two-state Markov chain model
is positively correlated. We derived sufficient conditiammsder which the myopic policy is optimal for
the finite and infinite horizon reward criteria, respectwet is shown that these results reduce to those
derived in prior studies under the corresponding specsdsaand thus may be viewed as a set of unifying

optimality conditions.
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APPENDIX
A. Proof of Lemm&ll

We prove this by induction on. Denote byo* C @' the subset of components that are strictly larger
in ' than ing, i.e, ot ={w,,i=1,---,N, s. t.w, > w;}.

Induction basisWhent = T', the lemma holds due to the increasing property of the ose-&atpected
reward given in Propositiol 2.

Induction step:Assume the lemma holds fer+ 1, --- , 7', and consider time. There are two cases:

Case 1.0t Naw(m?) = 0. In this case since the elements strictly largewirare not used, the expected
one-step rewards under and underw are the same. The future reward undéris no smaller than that
underw due to the induction hypothesis and the monotonicity Gf, i.e.,T(w;) > 7(w;) for w'. > wj.

Case 2.w™ Nw(w9) # (. Consider somg € w' Nw(w?), and the state vectdtv;, w_;); it differs from

w by only one elemenb;. Using the alternate expression given[inl(15) we have

Wt(w;,w_j)
= E[Rn(w),w_;)] +

Wi > alw) Wi (pn YL+ 1, 7(@ks), o T(wn) pon [k = > L= 1))+

1_;€{0,1}k—1 N i) i#] |
Ri
(1- w;-)ﬁ‘ Z (l—g; w—j) W1 (pua Zl T(Wk+1); - ), poa [k Zl
;{0,131 N i#j 7
R»
> E[Rps(w), w-;)] +
w;B - Z q(l—j;0-) Wt+1(P11[Z L+ 1], (W), -, ), pot [k Zl —1])
I_;€{0,1}k—1 N i#] i#] |
Ri
(1 —wy)B- Z (l—g; w—j) W1 (p Zl T(Wk+1); - ), poa [k Zl
I_;e{0,1}k~1 N i#] i#]
R»

= Wt (@) ) (34)
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where the inequality holds because QE.DRWg(w;,w_j)] > E[Rs(wj,w—;)] by Proposition R, and (2)
w;+ R+ (1 —wj) Ry > wj- Ry + (1 —wj) - Ry sincew; > w; and R, > R, due to the induction
hypothesis. We can now repeat the above process by intruglaciother elemerit € ot Nw(n9), k # j,
and obtain similarly}V; (w,,, w;, w_; ) = Wi(w;,w_;) > W,(@). When all elements im* Nw(w9), k # j

have been exhausted we obt&in(w’) > WW,(@). The induction steps is thus completed.

B. Proof of Lemm&]3

The two inequalities L1 and L2 will be shown together usingiraatuction ont.

Induction basis:Fort = T, L1 holds because in this case

Wr(wn,wi, ...,wn-1) — Wr(wi, ..., wn)

= E[ng (CUN, W1y ooy wN_l)] — E[Rﬂg (wl, ceey CUN)]

IN

E[ng(wN = P11, W1, ...,wN_l)] — E[Rﬂg(wl, .oy WE = Poi, ...,(,UN)]

< E[Rps(wn = pi1, w1, ooy wn-1)] — E[Ruo (wr = po1, w1, -y wny)] <R, (35)

using the increasing property, Propositldn 2, of the exgubcine-step reward. L2 holds &tdue to the
same reason. Assume both L1 and L2 hold for timesl,--- ,T.

Induction stepWe will employ a sample-path argument by calculating thengjtias on the LHS (RHS)
of these two inequalities conditioned on the outcome of isgnspecific channels. Consider first L1. At
time ¢, the LHS selects channefgV.1,--- k£ — 1} while the RHS selects channels,--- ,k}. Thus
the two sides differ only in channel§:, N}. For simplicity we denote by LHS; (resp. RH$ ;) the
value of the LHS (resp. RHS) of L1 conditioned on the reaioreg of channels: and N beingi and 7,
respectively, where, j € {0,1}. Denote byr{ , :={1,2,---,k—1}; this is the common set of channels
sensed by both sides. Also recall the notatiop= {l1,--- ,l;_1}.

Case 1.(k,N) = (“1”, “0"): channelk has state realization “1” and chann®l “0”. In this case we
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have

LHS|1’0 = ﬁ + E[ng (0,&)1, ...,(A)N_l)] + ﬁ . Z Q(l_—k; w—k) .

l_,ke{o,l}k71
k—1 -1
Wt+1(p11[ li], T(Wk) = P11, ,T(WN—l),pm[k - lz])
i=1 i=1
RHS 10 = E[Rw(Lws,..wn)]+8- > qllgwr):
l_,ke{o,l}k71

e
—_

k—1
Wt+1(p11[ li], T(wk) = P11, ,T(WN—l), T(WN) = p01,p01[k —1- Z lz]) . (36)
i=1

1=1

By the definition of R we haveR + E[R.s(0,wi, ...,wn_1)] — E[Rrs (1w, ...,wy)] > 0, thus LHS, o >
RHS); .

Case 2.(k,N) = (“1”, “1”): both channels and N have state realizations “1”. In this case

LHS|171 = ﬁ + E[Rﬂg(l,wl, ...,wN_l)] + 6 . Z q(l__k;w_k) .

I_pe{0,1}k-1
k-1 k-1
Wt+1(p11[z li + 1], 7(wr) = p11, -+ T(Wn-1), por[k — 1 — le])
i=1 1=1
RHS 1 = E[Reo(lLws,own)]+8- > qllpwy)-
l_e{0,1}k~1
k-1 k-1
Wt+1(]911[z i+ 1], 7(wWrt1), -+ T(wn) = puspor [k — 1 — le]) : (37)
i=1 1=1

LHS|, o > RHS|;, because (1R > 0, (2) E[Rs(1,wi,...,wn_1)] = E[Rrs(1,wy, ...,wn)], and (3) by
repeatedly using the induction hypothesis of L2 (succe$simnoving 7(wx) = p1; to the right or down
the ordered list).

Case 3.(k,N) = (“0”, “0"): both channelg: and N have state realizations “0”. We have

LHS|p0 = R +E[Rw(0,w1,...,wn_1)]+ 8" Z q(l_p;w_p) -

I_pe{0,1}k—1
k—1 k—1
Wt+1(p11[z L], 7(wk) = por, -+, T(wn-1), por [k — Z Li])
i=1 i=1
RHSoo = E[Reo(0,wr,own)]+ 8- > qllpiwy)-
i,ke{o,l}k71
k—1 k—1

Wt+1(p11[z Ll T(Wkt1), 5 T(wn-1), T(WN) = o, por[k — Z L) - (38)

i=1 i=1
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Using the induction hypothesis of both L1 and L2 we have

LHS|o0 > E[Rno(0,wr, v+ 8- > qllgiwy)-

I_ kG{O,l}kfl
k—1 k—1
(R + Wit (pnn[Y Ll 7(wi) = por, -+ T(wn—1), pn[k = Y Li]))
i=1 1=1
Z E[ng(o7w17“'7w]\/)] +B Z Q(l_—k;w—k) :
I_ kE{O 1}k71
B k—1
(R + Wi (7(wr) = por, pui Zl T(wrsr), - T(wvor), por [k = > 1))
i=1
Z E[Rﬂg(o7w17“'7w]\/)] +B Z q<l—k7w—k) '
l_,ke{o,l}k71
k-1 k—1
Wt+1(p11[ lz], T(wk+1)> T 77'(WN—1),p01[k - lz’]> T(Wk) = p01)
i=1 i=1
== LHS|0’0 y (39)

where the first inequality is due to the fact thgt) forms a probability distribution angR < R, the
second due to the induction hypothesis of L2, and the thim tduthe induction hypothesis of L1.

Case 4.(k,N) = (“0”, “1”): channelsk and N have state realizations “0” and “1”, respectively. We

have

LHS|071 = ﬁ + E[Rﬂg(l,wl, ...,wN_l)] + 6 . Z q(l__k;w_k) .

1_,€{0,1}k-1
k-1 _
Wt+1(p11[z L+ 1], 7(we) = po1, -+, T(wn=1),Por[k — 1 — Z L)
i=1 =
RHSo: = E[Reo(0,wr,own)]+ 8- > qllpiwy)-
1_,€{0,1}k~1
k—1 k—1

Wt+1(p11[z Ll T(Wkg1), 5 T(wn-1), T(WN) = P, por [k — Z L) - (40)

i=1 i=1
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LHS|p1 > E[Rx(1,wi,...,wn-1)] + 8- Z q(lg;w_y) -

I_,€{0,1}F~1
B k—1 k—1
(R + Wt-l—l(pll[z i+ 1], 7(wr) = por, -+, T(wn—1), por [k — 1 — Z Li]))
i=1 i=1
> E[Rr(0,w1,...,wn)] + B Z q(lk;w_g) -
I_,e{0,1}*
k-1 k—1
Wt+1(p11[z i+ 1], 7(weta)s -+ T(Wn—1), por [k — 1 — Z li], T(wWr) = por)
i=1 i=1
> E[Rr(0,w1,...,wn)] + B Z q(lk;w_p) -
I_,e{0,1}*
k—1 k—1
Wisi(pul[) Ul m(@rt1), -+ T(@n-1), pars por [k — Li])
i=1 i=1
= LHS|oo , (41)

where the first inequality is due to Propositidn 2, the seadue to induction hypothesis of L2 (moving
T(wy) = po1 to the front/left of the list, following by induction hypo#isis of L1 (movingr(wy) = po; to
the end/right of the list), and the third due to the inductitypothesis of L2.

We have now established the induction step of L1, thus pgplih. Next we consider L2 at time
In the case when < k — 1, both z andy are used by both sides, so LHSRHS. In the case when
j > k+1, neither channef nor j + 1 is used. Thus both sides will return the same one-step rewarel
difference between andy propagates to the future reward tefi . (-). However, due to the fact that

7(z) > 7(y), using the induction hypothesis of L2 we conclude LHIRHS.
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It remains to check the cage= k. In this case we single out bothandy:

LHS = E[Rﬂ—g (.T, Wy eeey Wht1y oony WN)]

k—1 k—1
+6{z -y Z Q(Z—k;w—k) 'Wt—i—l(pll[zli"‘1]7p1177(wk+2)7"' ,T(wn), por [k — 1 _Zli])
I_pe{0,1}k—1 k=1 i=1
R1
- k—1 k—1
+(1—-z)-y Z qU-r;w—r)  Wisr(pu[ ) Ul i, 7(wWri2), - 7(wn ), por [k — Z Li])
I_e{0,1} k1 k=1 i=1
R2
B k—1 k—1
+z-(1—y) Z q(l-k; w—r) 'Wt+1(p11[z li + 1], por, T(Wit2), - -+, T(wn), por [k — 1 _Zli])
l_p€{0,1}F~1 k=1 i=1
R3
- k—1 k—1
+(1—2) (1-y) Z q(l-g;w_r) - Wipr(pu[ Y Ll por, T(wWkt2), - -+ s T(wWn ), por[k — Z L))}
1_1€{0,1} k1 k=1 i=1
R4
Similarly,
RHS = E[Rﬂ—g (y, W1y eeey Wy ey wN)]
B k—1 k—1
+6{z -y Z q(l-p;w-r) 'Wt+1(p11[z i+ 1], pus T(wWrt2), - -+ T(wn), por [k — 1 _Zli])
I_pe{0,1}k—1 k=1 i=1
R1
- k—1 k—1
+(1—-z)-y Z q(l—k; w-r) 'Wt+1(p11[z li + 1], por, T(wWrt2), - -+ T(wn), por [k — 1 —le‘])
I_,€{0,1}k-1 k=1 i=1
R3
B k—1 k—1
+z - (1 —y) Z q(lg;w_i) - Wi (pul Y L pin, T(Wks2), - -+ T(wWn), por [k — li])
I_p€{0,1}F-1 k=1 i=1
R2
- k—1 k—1
+(1—z)-(1-y) Z q(l-p;w-g) - Wt-l—l(pll[z lils pors T(Wk+2), - -+ T(wn), por [k — Z L))}
I_e{0,1} k1 k=1 i=1

g

R4
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Thus we have

LHS — RHS = E[R.s (2, w_k)] — E[Rre(y, w_k)] + B(z — y)(R3 — R2)

= (2 = y)(E[Rw(Lw)] —ERm(0,w)) + B —y) D alsws):

Z,ke{o,l}k71
k—1 k—1
<Wt+1(P11[Z i+ 1], pot, T(wita), -+ T(wn), por [k — 1= Y L))
k=1 i=1

—Wt+1(p11[z_: li]7p11, T(wk+2)7 s ,T(wN)7po1[/f - 4_ lz]))

k=1 =1

> (e—y)R+Bx—y) D alwws)-

I_,€{0,1}k-1
k—1 k—1
(Wt—l-l(pOlvpll[Z li + 1]77—(Wk+2)7 T 7T(WN)7]901[7<7 -1 le])
k=1 i=1
k—1 k—1
—Wt+1(P11[Z L], pin, T(wet2), - -+ T(wWn), por [k — Z H))
k=1 i=1
> (z—y)R-Bxz—yR, (42)

where the first inequality is due to the definition®fand the use of the induction hypothesis of L2, and
the second inequality due to the induction hypothesis of THerefore if 3 < R/R, then we will have

LHS > RHS, completing the induction step of L2.

C. Proof of Lemm&l5

The three inequalities L3, L4 and L5 are shown together uamgnduction ory.
Induction basisAt time 7', L3 becomesy+E[R, s (w1, -+ ,wn,w1)] > E[Rze(wy, -+ ,wx)]. This holds

because

E[Rzs(wy, -+ wn)] — E[Rro(wa, - -+, wn,wi)]

IA
=
iy
3
&
I
\.H

: ,WN)] - E[Rﬂg(w2v ety Wet1 = Oawval)]

IA
&
IA

(43)
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Similarly, L4 holds at timel’ because

E[ng(wh e 7WN)] - E[RW9<WN7W17 e 7wN—1)]

IN

E[ng(wh'” y WE = 17 7WN)] _E[RWQ(WN = 07(")17"' 7wN—1)]

- R
< Rﬁm:% (44)

L5 holds atT due to the increasing property (Propositldn 2) of the exgbane-step reward. Assume
L3, L4 and L5 hold for timeg +1,---,T.

Induction step:We will again employ a sample-path argument conditionedhendutcome of sensing
specific channels. Consider first L3. At timethe LHS selects channe{g, 3, --- , k+ 1} while the RHS
selects channel§l, - - - | k}. Thus the two sides differ only in chann€]$, & + 1}.

Case 1.(1,k+ 1) = (“0”, “0”): both channeld andk + 1 have state realization “0”. In this case

LHS|o0 = 7+ E[Rrs (0, wa, - -, Wi, Wet1, -+ Wi, wi)] + B - Z Q(Z—l;w—l)'

l_71€{0,1}k71
k k
Wt (on[k = Y L], m(w1) = por, T(wn), -+, T(wra2), pra [y 1)
i=2 1=2
RHS 0 = E[Rrs (0,00, own)] + 8- Y qll_giw_y)-
1_1€{0,1}k—1
k k
Wis1(po [k — Z L, m(wn), o T(wkr), T(wiesn) = ]9017]?11[2 Li]) (45)
i=2 i=2

By the induction hypothesis of L5 we have LHSRHS.

Case 2.(1,k+1) = (“1”, “0"): channell has state realization “1” and chanriek- 1 “0”. In this case

LHS‘LO =7 -+ E[ng(O,w%wg, ...,Wl)] + ﬁ . Z q(l__l;w_l)~

l_1€{0,1}k~1
K K
W (por [k — Y L], 7(wi1) = pia, 7(@n), ooy T(why2), pra [ 1))
i=2 i=2
RHS)1 0 = B[Ry (Lwa, o) + 8- Y qllogiwo)-
I_1€{0,1}k-1
k K
Witi(por[k — 1 — Z L], T(wn),s e T(Wht1) = ponPll[Z li +1]) (46)

=2 =2
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Sincey = - - R =R+ -7, we have

LHS|1’0 = ﬁ‘i‘ E[ng(O,w%wg, ...,Wl)] + ﬁ . Z q(l__l;w_l) .

[716{0,1}16*1

<7 + Wi (por [k — Z L], T(wi) = pu1, -~-7p11[z H))

2 E[Rﬂg(17w27 ,(A)N)] + B : Z q(l_—l;w—l :
l_71€{0,1}k71
K K
<7 + Wit (i porlk = 1= L], o por [y H))
i=2 i=2
2 E[Rﬂg(17w27 ,(A)N)] + B : Z q(i—l;w—l) ’
l_71€{0,1}k71
K k
W (porlk — 1= "1, oo por, pua[Y L+ 1))
i=2 i=2
= RHS|1,07 (47)

where the first inequality is due to the definition®fand the use of the induction hypothesis of L5 and
the second inequality is due to the induction hypothesis4f L
Case 3. (1,k+1) = (“0”, “1”): channelsl andk + 1 have realizations “0” and “1”, respectively. We

have

LHS|0,1 :’y+]E[R7T9(]-7w27'“7wk7wk+17"'7wN7w1)] +6 Z (J(l_—1§w—1)‘

1_1€{0,1}k—1

k k
Wipi(por[k — 1 — Zli]7 7(w1) = po1, T(wn), s T(wk+2),p11[z I, +1])

=2 i=2

RHS|0,1 :E[ng(o,wg,...,w]v)] —|—ﬁ Z q<Z—1;W—1>'
I_1€{0,1}k-1
k k
Wis1(por[k — Z L], T(WN ), ooy T(Wht1) = P11,P11[Z Li]) (48)
=2 i=2

Since the second part of both LHH$ and RHS, ; are identical, we have LH§, > RHS; using the
definition of y andR.
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Case 4.(1,k+ 1) = (“1”, “1”): both channels have state realization “1”. In this case

LHS‘LI :ry+E[R7Tg(17w27"'7wk7wk+17"'7wN7w1>] _'_B Z q(l_—l;w—l)'
l_71€{0,1}k71
k

Wi (por [k — 1 — Zli]aT(Wl) = pu1, T(WnN), ---,T(wk+1)>P11[Z l; +1])

i=2 =2
RHS ;= B[R (Lws, own)| + 8- Y qll_giw_)-
1_1€{0,1}k—1
k k
Wisi(po[k —1 = Zli], T(WN);s e T(Whet1) = pmpn[Z li +1]) (49)
i=2 i=2

Using a similar method as in Case 2, LHS> RHS}; ; holds because

Y+ Wi (por [k — 1 — Z li], 7(w1) = p11, T(WN), .- T(wk+2),p11[z l; +1])

=2 =2
k

k
>+ Wi (T(wi) = pu, por [k — 1 — Z L], T(WN), s T(wk+2)>p11[z li +1])
i=2

1=2
k

k
> Wi (por[k —1 - Z L], T(wn), o T(Wht2), w1 = P11,P11[Z Li]), (50)

i=2 i=2
using the induction hypothesis of L5 and L4, respectivel.i& thus proven.
L4 can be shown in the same way L3 is proven above, while L5 @ashown in the same way L2

was proven in Lemma] 3; the details are thus omitted.

D. Proof of Lemma&l7

The lower bound is trivial as for finite time horizon problelmetmonotonicity is already proven in
Lemmal3, L2 time uniformly and we know it can be extended toittfi@ite horizon problem by simply
taking the limitation. We prove the upper bound by inductemnt. Before proceeding, we note that by
definition Az =R and A, = ﬁ(l + B(p11 — por) Z;F:_Ot_l g (p11 — p01)i) =R+ B(p11 — Po1)Assi-

At time T there are two cases.

Case 1.5 > k. In this caseW;(wy, ...,wj_1, T, Wjt1, ..., wn) = Wi(wi, ...,wj_1, Y, Wjt1, ..., wn) While
A7 >0, so the inequality holds.

Case 2.5 < k. In this case we have

Wi(wiy oy Wi 1, T, Wit 1, -y WN) — Wi, o w1, ¥, Wign, - wy) < (2 —y) - R=(r—y)  Ar. (51)
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Now suppose the equalities hold for times 1, ..., 7 — 1. Consider time. Again we have two cases.
Case 1.7 > k. In this case the immediate reward does not differ betweenwo belief states as under

both the set of sensed channels is identical; we thus have

Wt(wl, ey W1, Ty W1y veey WN) — Wt(wl, ey Wi, Y, Wi, -y wN)

= - Z q(l;w) - (WtH(pu[Z L]y ooy (), oy por [k — le])

le{0,1}k i=1 i=1

= (z—y)-B-(pu—po1) - D

< (z-y)(A—R) < (z—y)A; . (52)

where the first inequality is due to the induction hypothesis

Case 2.5 < k. In this case we have

Wt(wla sy Wi—1, Ty Wity -y WN) - Wt(wlv sy Wi—1, Y, Wit1, -y WN)

= E[Rng (l’, w—j)] - E[RWQ (y’ w_j)]

+(@—y)-B8- Z q(l—j;0-5) - Wisa (pua | Z L], piis o por [k — 1 — Z Li])

l_,jE{O,l}kfl 1=1,i#] i=1,i#j
B k k
+H(1—2)—(1—-y)) 8- Z q(l—j;w—j) - Wi (pu| Z L], s por, pon [k — 1 — Z li])
I_j€{0,1}k—1 i=L,i#j i=Li#j
< (@=yR+(@—y)-B-(p11—pn) - A
= (z—-y) A;. (53)

This completes the induction step, thus proving the lemma.

E. Proof of Lemm&]8

For a descending-ordered belief vector= (wy, - ,w;, -+ ,wg, -+ ,wj, -+ ,wn), the greedy policy
79 selects the firsk elements/channels. Now consider the followsigpledeviation policyr? that selects

channelsl,---,i — 1,5, +1,--- ,k, wherej > k. In other words,r? differs from 79 in exactly one
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element.w; instead ofw;. The one-step deviation produced by this policy is given by
V3R (w) = W(wi, -+ Wis1, Wy, Wit ** 5 Why Wiy Whi1, "+ 5 WN) (54)

since by the definition ofi’>(-), the RHS operates in exactly the same way as the LHS: it setleetset
of channeld, --- ;i—1,j,i+1,--- , k, followed by selecting greedily thereafter (note the sairtgelected
elements are now descending-ordered).

Ouir first step is to show that under the stated sufficient ¢mmdiwe have

oo
w (wlv"' 7wi—17wj7wi+17"' y Wiy Wiy W41, * * 7WN)

oo
S w (wlv"' y Wi—1, Wiy Wig1, =00y Wy Whet1, 00, Wi—1, Wi, Wip1, - 7WN) ) (55)

i.e., 7¢ is not a profitable one-step deviation. We then use this résidhow that deviations involving
multiple different selections are also not profitable unther same condition, thus proving the lemma.

To show [B)), it suffices to show each of the following chairfiofequalities under the stated condition:

oo
w (wlv"' yWi—1, Wi, Wig1, =y Wk, Wiy W41, " 7WN)

1 0o
(:) w (wlv"' yWi—1, Wig1, ", Wk, Wy, Wiy W41, " 7WN) (56)
(2) 00
< w (wla"' yWi—1, Wig1, ", Wk, Wi, Wy, W41, " 7WN) (57)
1 0o
(:) w (wlv"' y Wi—1, Wiy Wit1, " Wy Wy, W41, " 7WN) (58)
(3) 00
< w (wla"' y Wi—1, Wiy Wit1, " Wiy Whet1, W5, 7WN) (59)
(3)
<
(3) o0
o W (W1, Ty Wi, Why Wi 1yt Wy WE1, W1, Wy Wi, >wN) (60)

Note that in each step above the comparison is between smgtehneighboring pair of elements. More
specifically, there are three cas€ase 1l(equalities labeled (1)) involves switching a pair both ago
the firstk elements in the ordered belief vect@ase 2(inequality labeled (2)) involves switching a pair
at thekth and(k + 1)th positions;Case 3(inequalities labeled (3)) involves switching a pair botltside
the firstk positions. These three cases are shown separately below.

Case 1.When both are within the firgt elements, there is no difference in either the immediaterdsy
(both are selected) or the future rewards, so the equalityshtoivially.

Case 2.For a given belief vector (not necessarily descending edyer = (w1, - - - , Wk, Wet1,* -+, WN)



wherew;, > wi11, We now compare the difference when switching the order éetw, andwy, ;.

[e%S)
W (wl, e W, WEa1, ,(A)N) = E[Rﬂg(u)l, vy W1, WE, Wty ...

k—1
+ Wk Wi Z Q(l_—k;w—k) : Woo(pn[z lj]apn’Pu, ’-’7p01[k
j=1

[,ke{o,l}k71
k—1

7WN)]
—1- le])

k—1

+owe(L=wipn) D> qlekiwoi) - WD Ll e, pors o por [k — 1= 1))

[_x€{0,1}k1 =1
k—1

j=1
k—1

+ (1 —wg) - Wit Z q(l kW) - WOO(PH[Z Ll pans e por[k — 1 — Z i, por)

1_1€{0,1} k1 Jj=1

+ (1 —wg) (1 —wksr) Z q(l_p;w_p) - Woo(pu[z Ll pot, - por [k — 1 — le”apm)

l_7k€{071}k71 .7:1

and by switching we have

J=1
k—1

j=1

Woo(wl, sy W1, Wyt ,(.UN) = E[ng(wl, ey WE—1, WE41, Wi, ...,(.UN)]

k—1 k—1
T Wk Wit Z Q(Z—kQ W_) - Woo(pn[z Ll pi,pins s por [k — 1 — Z Li])
j=1 J=1

l_,ke{o,l}k71
k—1

k—1

+ Wi (1 — wiy1) Z q(l ;W) - Woo(pll[z Ll pin, s por [k — 1 — le],pol)

l_e{0,1}k~1 J=1

J=1
k—1

+ (1 —wg) - wrtt Z q(lg;w_p) - Woo(pn[z I, P11, por, - por [k — 1 — Z 4l)

I_r€{0,1}k~1 J=1

+ (1 —=wp) (I —wigr) Z gl w_g) - Woo(pll[z I}, pot, s por [k — 1 — le],pm)

l_,e{0,1} k1 Jj=1

Taking the difference between the immediate rewards we get

E[ng (wl, ey WEy W1,y -eny wN)] — E[ng (wl, ey WEa 1, WEy «eey LUN)] Z (wk — Wk+1)R

J=1
k—1

j=1

33

(61)
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The difference between the future rewards is given by

k=1 k—1
B (wk — wr+1) Z q(lk;w-p) - (Woo(pu[z L], pi1, por, T(Wk+2), o, T(WN), por [k — 1 — Z L;])
I,e{0,1}F1 j=1 j=1

N
—_

k—1

—W>=(pu[) Ul pi, T(Wis2)s -, T(wn), por [k — 1 — Z i), por))
=1 j=1

—1

k-1
> B (W — Wrt1) Z g w_) - W=y 1], pi1s por, T(weta)s ooy T(wn), por [k — 1 — Z L))
j=1

<
Il
ol

I_r€{0,1}k~1 j=1
k-1 k-1
= W>=pul)_ L], pi1,pors T(Wi+3), -, T(wn), por [k — 1 — le],pm) — (T(Wrk+2) — po1)As)
=1 =1
> =B (Wi — w1 (T(Wra2) — Po1)As (62)

where the first inequality comes from the upper bound giver{2) and the second from repeated
use of the lower bound in Lemmal (7). Thus the total differemceewards by switching is given by
(Wi — Wy1) (R — B(T(wra2) — po1)As). Sincer(wir1) < p11, we have

R

1—p6

d

R — B(T(wrs2) —Po1)Asc > R — B(p11 — po1)

‘z)l

> R—6 >0 (63)

1—

[e9)

under the stated condition on

Remark 7. Note in the special case &= N — 1, the difference in future rewards by switching is zero,
therefore the total difference is always positive withony aufficient condition. This is consistent with

previous results in[[[7] on the optimality of myopic sensing & two channel case.

Case 3.When both elements are outside the fikstswitching w; with w; 1, w; > w;1 results in
no difference in the immediate rewards. Their propagatagioe, ((w;), 7(wir1)), Or (T(wir1), 7(w;))
under switching, show up in the future rewards. As the poestinues, this pair will gradually move
toward the front of the list, and the movement is exactly thima along each sample path with or without
switching. If the pair continues to be outside the fitsthe immediate rewards remains the same. If the
pair both moves into the first, then the comparison of the future rewards fall within Casexamined
above. If the pair moves right into the boundary of the firswith i now at thekth position andi + 1
now at thek + 1th position (or the other way round under the switched cabe)) the comparison falls

under Case 2 examined above. Thus this switching under Casadain not profitable.
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We have therefore shown that there is no profitable singlexeht simple deviation under the stated
sufficient condition. For a deviation? with multiple different elements, a sequence of singleraet
deviation steps can be easily constructed conneeting ¢, with two successive deviations differing in
only one element. The same argument as above can be usedadhstano step can be profitable under

the stated condition, thus proving the lemma.

F. Proof of Lemma&l9

We prove this by induction. At timé&’, whenj < k we have

('I - y) E < WT(wb ey Ly 7WN)

—Wr(wi, ooy ¥y ooy wny) < (x—9y) - R . (64)
Whenj > k, we havelWr(wy, ..., z, ...,wn) — Wp(wy, ..., y, ...,wn) = 0. Also it is easily verified that
Ap <min{R,0},Ar >R . (65)

The induction basis is thus established.
Now assume the lemma holds for times 1,...,7 — 1. Consider time and again the following cases.
Case 1. <k

We have

Wt<w1, ceey I, ...,(UN) - Wt<w1, Y, ...,wN)

= ( = y)(E[Rp(L,w)] = E[Rw (0,0 )]) = (@ —y)- B{ Y alljwy)

llje{o,l}kfl
k k
(Wes1(por[k —1 = Z L], pots T(Wn ), ooy T(Wht1) s P11 | Z Li])
i=1,i#] i=1,i#j
k k
— Weri(por[k — 1 — Z L], T(wn)s oo T(Wht1), p1a | Z L], p))} (66)
i=1,i#] i=1,i#j

Clearly for the immediate rewards we haRe< E[R,+(1,w_;)] — E[R.s(0,w_;)] <R. Now consider
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the future rewards. First note

Wit1(poi[k — 1 — Z L], pors T(WN ),y ooy T(Wht1), P11 Z li])

i=1,i#j i=1,i#j
k k
— Wiri(por[k — 1 — Z L], T(wn),s oo T(Wht1), p1a | Z li], p11)
i=1,i#] i=1,i#j
k k
= Wia(po[k —1 - Z Ll pors T(WN), ooy T(Wht1)s P1a | Z li])
i=1,i#j i=1,i#j
k k
— Wi (por [k — 1 — Z L], T(Wn ), T(WN ), wos T(Wht1), P1a Z li])
i=1,i#] i=1,i#j
k k
+ Wit (por [k — 1 — Z L], T(wn), T(WN ), -os T(Wht1)s P1a Z li])
i=1,i#j i=1,i#j
k k
— Wi (palk = 1= > Ll 7(wn), T(wn-1), T(@n-1), oo T(Wks1), pua[ Y 1)
i=1,i#] i=1,i#]
k k
+ Wi (por[k — 1 — Z Uil T(Wn ) oy T(@ht1)s T(Wht1), P1a Z Li])
i=1,i#j i=1,i#j
k k
— Wit (po[k — 1 — Z Ll T(wn), o T(Wht1)s P1a | Z Li], p11) (67)
i=1,i#] i=1,i#j
Applying the induction hypothesis to each pair of #&,; terms above results in
(@ —y)- B (por — T(wn) + 7(wy) = T(wy-1) +- - —pu) - By
k k
< (z—y)ps {Wt+1(po1[k‘ — 1= > Llpor T(wn)s oo T(@ket) P Y L)
i=1,i#] i=1,i#j
k k
Wi (po[k — 1 — Z L] T(wn), o T(Whtt)s P1a | Z lz‘LPM)}
i=1,i#j i=1,i#j
< (w—y)- B (pn — 7T(wn) +7(wy) = T(Wn-1) + - —pi1) - A (68)

Therefore

(r—y) {R~—- ﬁé'zt—i-l}
< Wilwy, oy oy wn) — Wi(wr,y ooy, oo, W)

< (@-y) {R-B5- A} (69)



If » <0 we have

. . 1— (6'5)T_t+3 1— (6'5)T_t+3 -
R—P0-Ap1 2R —p-0R+po 1—(3-9) = —(3-9)° =4,
1— (5,5)T—t+3 .

g TN

R—-p6-Ay ) <R—-B6-n<R—
If » >0 we have

R—-B6-Dy=R—-pB6-R=n>0

R—B6-DNyy =R

In either case the induction step is completed.

Case 2.j > k. We have

Wi(wiy ooy @y cywn) — Wilwr, ooy Yy oy wn) = - Z q(l; @)
le{0,1}*
k k k k

(Wi (por [k =D L] 7(@), b D L)) = Wesa (o [k =D Ll oo 7(w), oo [ D L)) -

i=1 i=1 i=1 =1

Thus
5 : (ZIZ' - y) 0 'ét—l—l < Wt(wb vy Uy ...,CUN) - Wt(wb Y, '--awN) < 6 : (:E - y) 0 'Zt-i-l

It can be easily verified thah, < 86A,,; and 367, < A,, completing the induction step.
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