
ar
X

iv
:1

30
9.

36
92

v1
  [

cs
.IT

]  
14

 S
ep

 2
01

3
1

Sufficient Conditions on the Optimality of Myopic

Sensing in Opportunistic Channel Access:
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Abstract

This paper considers a widely studied stochastic control problem arising from opportunistic spectrum access

(OSA) in a multi-channel system, with the goal of providing aunifying analytical framework whereby a number

of prior results may be viewed as special cases. Specifically, we consider a single wireless transceiver/user with

access toN channels, each modeled as an iid discrete-time two-state Markov chain. In each time step the user is

allowed to sensek ≤ N channels, and subsequently use up tom ≤ k channels out of those sensed to be available.

Channel sensing is assumed to be perfect, and for each channel use in each time step the user gets a unit reward.

The user’s objective is to maximize its total discounted or average reward over a finite or infinite horizon. This

problem has previously been studied in various special cases includingk = 1 andm = k ≤ N , often cast as a

restless bandit problem, with optimality results derived for a myopic policy that seeks to maximize the immediate

one-step reward when the two-state Markov chain model is positively correlated. In this paper we study the general

problem with1 ≤ m ≤ k ≤ N , and derive sufficient conditions under which the myopic policy is optimal for

the finite and infinite horizon reward criteria, respectively. It is shown that these results reduce to those derived

in prior studies under the corresponding special cases, andthus may be viewed as a set of unifying optimality

conditions. Numerical examples are also presented to highlight how and why an optimal policy may deviate from

the otherwise-optimal myopic sensing given additional exploration opportunities, i.e., whenm < k.
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I. INTRODUCTION

We consider the following stochastic control problem: There areN uncontrolled, independent and

identically distributed, two-state discrete-time Markovchains, with the two states denoted “1” and “0”

respectively, and the transition probabilities given bypij , i, j = 0, 1. The system evolves in discrete time.

In each time instance, a user selects exactlyk out of theN processes and is allowed to observe their

states. The user is allowed to receive a unit reward from a process observed to be in state1, but the

total reward is limited atm,m ≤ k, at each step. The processes that the user does not select do not

reveal their true states. The objective is to derive a selection strategy for the user so that its total expected

discounted or average reward over a finite or infinite horizonis maximized. This is a partially observed

MDP (POMDP) problem [1], [2] due to the fact that the states ofthe underlying Markov processes are

not fully observed at all times; as a consequence the system state as perceived by the user is in the form

of a probability distribution, commonly referred to as theinformation stateor belief stateof the system

[3]. More specifically, this problem is an instance of the restless bandit problem with multiple plays [4],

[5], [6].

The above problem abstraction and a number of its variationshave been quite extensively studied

in the past few years in the context of multichannel opportunistic spectrum access (OSA), including

[7], [8], [9], [10], [11]. Within this application, each Markov process represents a wireless channel in

a discrete time setting, whose state transitions reflect dynamic changes in channel conditions caused by

fading, interference, and so on, with state1 denoting a “good” or available state, and state0 the “bad” or

unavailable state, in which communication may succeed and fail, respectively. A user wishing to transmit

must first sense the state of a channel at the beginning of a time step, and can only transmit in that channel

if it is sensed to be in the “good” state. The user cannot sensemore thank channels, nor can it transmit in

more thanm at a time. Such constraints come from both hardware, e.g., the number of antennas available,

and from performance requirements, e.g., channel sensing takes time so stringent delay requirement can

limit the amount of sensing allowed. Finally, if allk selected channels are in the “bad” state, the user has

to wait till the beginning of the next time step to repeat the selection process. While this model captures

some of the essential features of multichannel opportunistic access, it has the following limitations: the

simplicity of the iid two-state channel model, and the implicit assumption that channel sensing is perfect

and the lack of penalty if the user transmits in a bad channel due to imperfect sensing. Nevertheless, this

model allows us to obtain analytical insights into the problem, and more importantly, insights into the
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more general problem of restless bandits with multiple plays.

Prior work investigated various special cases of the model outlined above, henceforth referred to as

the (k,m) model. Specifically, authors derived sufficient conditionsfor guaranteeing the optimality of a

greedy/myopic sensing for the(1, 1) case, i.e.,k = m = 1 with N = 2 in [12], with positively correlated

channel model. [7] further proved the performance bounds ofa greedy/myopic policy for this case (as well

as negatively correlated channels) and [13] proved the samefor the (N − 1, N − 1) case, while [9], [10]

looked for provably good approximation algorithms for a similar problem but relaxing the requirement

that all Markov chains are identically distributed. The assumption of perfect sensing was relaxed in [14]

with results regarding greedy/myopic sensing’s performance bounds. Our own prior work [8] established

the optimality of the greedy policy for the(1, 1) case for arbitraryN under the conditionp11 ≥ p01, i.e.,

when a channel’s state transitions are positively correlated. This result was further generalized in [11] to

the case of(k, k), i.e.,m = k ≤ N with arbitraryN .

In view of the above existing work, the main contribution of this paper is the study of the more general

(k,m) problem with1 ≤ m ≤ k ≤ N . For this problem we derive sufficient conditions under which

the myopic policy is optimal for the finite and infinite horizon reward criteria, respectively, for both the

positively correlated and negatively correlated channel models. Furthermore, we show that they reduce to

those derived in prior studies under the corresponding special cases, and thus may be viewed as a set of

unifying optimality conditions. Our main results, a set of sufficient conditions for the optimality of the

myopic policy, are summarized in Table I, where0 < β < 1 is the discount factor andR andR are two

constants that depend on parametersm andk.

Channel model Finite horizon Infinite horizon

p11 ≥ p01 β ≤ R/R p11−p01
1−(p11−p01)

< R/R

p11 < p01 β ≤ R/(R+R) min{p01 − p11,
1

2(p00+p11)
} ≤ R/R

TABLE I
SUMMARY OF RESULTS

The sufficient condition for the finite horizon problem is onβ, and is derived using a sample path

argument we first introduced in [11]. The sufficient condition for the infinite horizon problem is onp11
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andp01, and is based a few bounding techniques and the one-step deviation principle. It should be noted

that similar results from a parallel development have recently appeared that address the case of positively

correlated channels over a finite horizon form = 1, k > 1 (in [15]) and for 1 <= m <= k (in [16]),

respectively. They correspond to the upper left entry in Table I, and also rely on the sample path argument

introduced in [11]. Paper [17] considers the additional relaxation to independent but non-identical channels

(positively correlated and over a finite horizon). However,due to this generality the results obtained in

[17] are weaker, i.e., their sufficient condition does not reduce to that in the special case of IID channels.

By contrast, all sufficient conditions given in Table I reduce precisely to the best known results given in

prior studies in respective special cases, thereby providing a unifying set of conditions.

The remainder of this paper is organized as follows. SectionII presents the problem along with

preliminary results. Sections III and IV derive the optimality conditions for the finite horizon problem

with positively and negatively correlated channels, respectively. Sections V and VI are similarly organized

for the infinite horizon problem. Discussion and related work are given in Section VII and Section VIII

concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation

Denote the set of channels byN = {1, 2, ..., N}. The system operates in discrete timet = 1, 2, .... In

each stept, the channel state transitions att−, followed by channel sensing att. The user is limited to

sensing at mostk channels each time, thus its observation of the system when making decision at time

t is imperfect. A sufficient statistic for optimal decision making, or the information state of the system

[3], is given by the conditional probabilities of the state each channel is in given all past observations

and actions. Since each channel can be in one of two states, wedenote this information state at timet by

ω̄(t) := [ω1(t), ω2(t), ..., ωN(t)], whereωi(t) is the conditional probability that channeli is in state1 at

time t1. The user’s sensing strategy is denoted byπ
1:T = [π(1), π(2), ..., π(T )], whereπ(t) : ω(t) → Ωk,

Ωk ⊂ Ω denoting a set ofk channels.π(t) will be referred to as a policy, andΠ denotes the set of

all admissible policies, whilēΠ denotes the set of all admissibleT -step policies. Due to the Markovian

nature of the channel model, future information state is only a function of the current information state

and the current action. It follows that the information state of the system evolves as follows. Givenω̄(t)

1Note that it is a standard way of turning a POMDP problem into aclassic MDP problem by means of the information state, the main
implication being that the state space is now uncountable.
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and actionπ(t), there are three possible state updates: (1)ωi(t+1) = p11 if i ∈ π(t) and it is observed in

state1; (2) ωi(t+1) = p01 if i ∈ π(t) and it is observed in state0; (3) if i 6∈ π(t) thenωi(t+1) = τ(ωi(t)),

whereτ(·) : [0, 1] → [0, 1] is the updating function defined as

τ(ω) = ω · p11 + (1− ω) · p01, 0 ≤ ω ≤ 1 . (1)

If a channel is sensed to be in state1 and the user decides to use it for transmission, then it gets aunit

reward for that time step. The immediate one-step reward under stateω̄ and sensing actionπ is denoted

by Rk,m
π (ω̄), 1 ≤ m ≤ k.

Example 1. The one-step reward of the(k, 1) model (sensingk ≥ 1 channels but using no more than one

for data transmission) given policyπ ∈ Π is

E[Rk,1
π (ω̄)] = 1−

∏

i∈π

(1− ωi), 1 ≤ k ≤ N . (2)

Example 2. The one-step reward of the(k, k) model givenπ ∈ Π is

E[Rk,k
π (ω̄)] =

∑

i∈π

ωi, 1 ≤ k ≤ N . (3)

The objective for the finite horizon problem is to maximize the total expected discounted reward over

T time steps, with a discount factor0 < β ≤ 1, given an initial statēω:

(P1): J π

T (ω̄) = max
π∈Π

E
π[

T∑

t=1

βt−1Rk,m

π(t)(ω̄(t))|ω(1) = ω]

The objective for the infinite horizon problem is to maximizethe total expected discounted reward (with

0 < β < 1) or the average reward:

(P2): J π

β (ω̄) = max
π∈Π

E
π[

∞∑

t=1

βt−1Rk,m

π(t)(ω̄(t))|ω̄(1) = ω̄]

(P3): J π

∞(ω̄) = max
π∈Π

E
π[ lim

T→∞

1

T
·

T∑

t=1

Rk,m

π(t)(ω̄(t))|ω̄(1) = ω̄]

As we shall see a main technical challenge posed by the general (k,m) problem is the non-additive

nature of the reward function, see e.g., (2), as opposed to the additive reward in the special case(k, k) as

shown in (3), in addition to the usual difficulties in seekingstructural solutions to restless bandit problems.

As in previous works, we will focus on a simple myopic policy that aims at maximizing the immediate,
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one-step reward at each time step, and investigate under what conditions this policy is optimal. In the

remainder of this section we present a number of properties of the above non-additive reward function

and the operation of the myopic policy in the context of the dynamic programming representation of the

above optimization problems.

B. Properties of the expected rewardE[Rk,m
π (ω̄)]

For convenience of notation, the vectorω will be frequently written as(ωi, ω−i) to emphasize thei-th

element and the rest of the vector, or as(ω1, · · · , ωi, · · · , ωN). The first property below suggests that the

order in which these elements appear does not matter. For this reason later we will sort them in descending

order.

Proposition 1 (Symmetric). Under any admissible policyπ, ∀i, j ∈ N andωi = ωj we have

E[Rk,m
π (ω1, ..., ωi, ..., ωj, ..., ωN)] = E[Rk,m

π (ω1, ..., ωj, ..., ωi, ..., ωN)] . (4)

The above property is quite self-evident and its proof is thus omitted.

Proposition 2 (Increasing). For ω
′

i > ωi we have

E[Rk,m
π (ω

′

i, ω−i)] ≥ E[Rk,m
π (ωi, ω−i)] . (5)

Proof: If i 6∈ π, then the two sides must be equal because all other elements are the same. Consider

the casei ∈ π. The immediate one-step reward can be expressed in the following sequential form:

E[Rk,m
π (ωi, ω−i)] = ωi · (E[Rk−1,m−1

π−i
(ω−i)] + 1) + (1− ωi)E[Rk−1,m

π−i
(ω−i)] , (6)

where π−i denotes the same set of channels inπ but excludingi. This is because since all available

channels generate the same reward, we may consider two possibilities of obtaining the total reward: either

channeli is available or not. Under the former, we receive the unit reward plus the reward from the

remainingk − 1 channels inπ, using up tom− 1 of them; under the latter, the total reward now comes

from the remainingk − 1 channels inπ, using up tom of them. Applying (6) to both sides of (2), in

order to show the inequality in (2) it suffices to show that

E[Rk−1,m−1
π−i

(ω−i)] + 1 > E[Rk−1,m
π−i

(ω−i)] . (7)
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Next we show this is true. LetPπ−i
(l) denote the probability that out ofk − 1 channels inπ−i, exactlyl

are sensed to be good under stateω. We have

E[Rk−1,m−1
π−i

(ω−i)] + 1 =
m−2∑

l=0

Pπ−i
(l) · l +

k−1∑

l=m−1

Pπ−i
(l) · (m− 1) + 1

>
m−2∑

l=0

Pπ−i
(l) · l + Pπ−i

(m− 1) · (m− 1) +
k−1∑

l=m

Pπ−i
(l) · [(m− 1) + 1]

=
m−2∑

l=0

Pπ−i
(l) · l + Pπ−i

(m− 1) · (m− 1) +
k−1∑

l=m

Pπ−i
(l) ·m

= E[Rk−1,m
π−i

(ω−i)] . (8)

The fact that (6) is an affine function ofωi also leads to the next result.

Proposition 3 (Affine). E[R(k,m)
π (ω̄)] is an affine function w.r.t. eachωi, ∀i ∈ π, i.e.,

E[Rk,m
π (ωi = x, ω−i)]− E[Rk,m

π (ωi = y, ω−i)]

= (x− y) · {E[Rk,m
π (ωi = 1, ω−i)]− E[Rk,m

π (ωi = 0, ω−i)]} (9)

C. Dynamic programming representation

Throughout this paper we will consider the general(k,m) case, and for simplicity will useRπ(ω̄)

thereafter instead ofRk,m
π (ω̄) whenever there is no confusion. The optimization problem (P1) can be

solved using dynamic programming:

VT (ω̄) = max
π∈Π

E[Rπ(ω̄)] , (10)

Vt(ω̄) = max
π∈Π

E[Rπ(ω̄)] + β ·
∑

li∈{0,1},i∈π

∏

i∈π

(ωli
i (1− ωi)

1−li)

· Vt+1(p11[
∑

i∈π

li], τ(ωj), .., p01[k −
∑

i∈π

li]) , (11)

where we have adopt the following notation for simplicity:

• p01[x]: a vector[p01, p01, ..., p01] of lengthx.

• p11[x]: a vector[p11, p11, ..., p11] of lengthx.

In (11), the state vector inVt+1(·) consists of three parts: channels inπ and sensed to be good (their next

state isp11); channels inπ and sensed to be bad (their next state isp01); and channels not sensed (their
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next state isτ(ωj)).

D. The myopic/greedy sensing policy

The myopic/greedy sensing policy selects a set of channels so as to maximize the one-step immediate

reward. If we sort an information statēω(t) in descending order such thatω1(t) ≥ ω2(t) ≥ ... ≥ ωN(t),

then myopic sensing, denoted byπg, is one that selects the firstk channels (highest probabilities of

being good), i.e,πg = {1, 2, ..., k} for a descending orderedω. Note howeverπg can be applied to an

arbitrarily orderedω; it will simply selects the firstk channels. As detailed in [7], [11] the implementation

of the myopic strategy is particularly simple: it only requires the knowledge of the ordering of the initial

information state and the ordering of{p11, p01}. Since this feature is repeatedly used in our analysis,

below we elaborate on this to make the paper self-contained.

For the case whenp11 ≥ p01, the updating functionτ(ω) is monotonically non-decreasing, i.e.,τ(ω1) ≥

τ(ω2) if ω1 ≥ ω2, implying that the ordering of channels not sensed is preserved. The states of sensed

channels are updated to eitherp11 (if sensed good) orp01 (if sensed bad), noting thatp01 ≤ τ(x) ≤

p11, ∀x ∈ [0, 1]. It follows that we have the following simple implementation of the myopic policy:

Starting from a descending-ordered list of channels, the policy selects the firstk channels. Upon learning

the sensing outcome, those sensed to be good are placed at thefront of the list, those sensed to be bad at

the end of the list, and those not sensed are in the middle in their original order. By the above observation,

this new list is again in descending order, and thus the policy again selects the firstk channels for the

next time step, and the same process is repeated.

For the case withp11 < p01 we also have monotonicity but in the opposite direction, i.e., τ(ω1) ≥ τ(ω2)

if ω1 ≤ ω2. Thus the ordering those not sensed is reversed at each time step. Meanwhilep11 ≤ τ(x) ≤

p01, ∀x ∈ [0, 1]. A similar implementation thus follows: at each time step weplace the channels sensed

as good to the end of the list, those sensed bad at the front of the list, and those not sensed in the middle

with their ordering reversed. This produces a descending ordered list so that at the next time step the

policy again selects the firstk channels.

While both the expected one-step reward and the value functions are invariant w.r.t. the ordering of the

information state/belief vectorω, for simplicity of presentation we will takeω to be an ordered vector for

the remainder of this paper. Accordingly, the notation(ωi, ω−i) is used to represent the following ordered

vector: (ωi, ω1, · · · , ωi−1, ωi+1, · · · , ωN).
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III. F INITE HORIZON, p11 ≥ p01

A. Optimality of myopic sensing

We begin by introducing the following two quantities:

R = max
ω−i∈[p01,p11]k−1

{E[Rπg(1, ω−i)]− E[Rπg (0, ω−i)]} (12)

R = min
ω−i∈[p01,p11]k−1

{E[Rπg(1, ω−i)]− E[Rπg(0, ω−i)]} . (13)

R,R can be easily characterized for some commonly used cases; some examples are shown below.

Example 3. (k,m) = (k, k), 1 ≤ k ≤ N In this case we can sense up tok channels and use all those

sensed to be available. The one-step reward underπg is thusE[Rπg(ω̄)] =
∑

i∈πg ωi =
∑k

i=1 ωi, and thus

R = R = 1.

Example 4. (k,m) = (k, 1). Since we can use no more than 1 channel, the one-step reward under πg is

given byE[Rπg(ω̄)] = 1−
∏k

i=1(1− ωi), and thusR = (1− p01)
k−1,R = (1− p11)

k−1.

We now present the main result of this section.

Theorem 1 (Optimality of Myopic Sensing). The myopic sensing policyπg is optimal for(P1) under the

condition0 ≤ β ≤ R/R and for belief statēω s. t. p01 ≤ ωi ≤ p11, ∀ωi ∈ ω̄.

Remark 1. Note that the condition on̄ω in the above theorem is not overly restrictive, asp01 ≤ τ(ωi) ≤ p11

for any ωi, implying that even if the initial belief̄ω at time t = 1 does not satisfy this condition, the

theorem is applicable starting from timet = 2.

To prove this theorem, we next introduce a number of lemmas. DefineT N-variable functionsWt(·), t =

1, 2, · · · , T , recursively as follows:

WT (ω̄) = E[Rπg(ω̄)]

Wt(ω̄) = E[Rπg(ω̄)] +

β ·
∑

l̄∈{0,1}k

q(l̄; ω̄) ·Wt+1(p11[

k∑

i=1

li], τ(ωk+1), .., τ(ωN), p01[k −
k∑

i=1

li]), (14)

where l̄ = {l1, · · · , lk}, andq(l̄; ω̄) :=
∏k

i=1(ω
li
i (1− ωi)

1−li), l1, l2, ..., lk ∈ {0, 1}.

Remark 2. A few remarks are in order on these functionWt(·), t = 1, 2, ..., T :
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i) If ω̄ is in descending order, then applyingπg at timet is myopic. Moreover, the state vector within

Wt+1(·) retains the same descending order. This is becauseτ(ω) is increasing inω and p11 ≥

τ(ω) ≥ p01 for any ω. Thus ifωk+1 ≥ · · · ≥ ωN , thenp11 ≥ ωk+1 ≥ · · · ≥ ωN ≥ p01. This implies

that selecting the firstk channels att+ 1, i.e., πg would again be myopic.

ii) Whenω̄ is in descending order of its components,Wt(ω̄) is the expected discounted total reward

starting from statēω(t) at timet by following the myopic policy at each time step. This is because

Wt(·) takes on the same recursive form as the value function, and ateach time step the myopic

policy is used due to the descending order of the state vectoras noted above.

iii) Whenω̄ is not in descending order,Wt(ω̄) as given above represents the expected discounted total

reward of the following policy: It selects the firstk channels as listed in the vector̄ω at time t;

it then orders the next state vector as follows: those channel sensed to be good are listed first,

followed by those not sensed at all, in their original order in ω̄, followed finally by those sensed to

be bad. This process is then repeated.

iv) Whenj ∈ πg (1 ≤ j ≤ k), we can also conveniently writeWt(ω̄) in the following form by singling

out componentωj and calculating the expected future reward conditioned on the outcome of sensing

channelj; this expression is frequently used in our proofs:

Wt(ω̄) = E[Rπg(ωj, ω−j)] +

ωjβ ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)Wt+1(p11[
∑

i 6=j

li + 1], τ(ωk+1), .., τ(ωN), p01[k −
∑

i 6=j

li − 1]) +

(1− ωj)β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j;ω−j)Wt+1(p11[
∑

i 6=j

li], τ(ωk+1), .., τ(ωN), p01[k −
∑

i 6=j

li]), (15)

where l̄−j = {l1, · · · , lj−1, lj+1, · · · , lk}.

Key properties of the functionsWt(·), t = 1, 2, · · · , T are presented below.

Lemma 1 (Monotonicity). Wt(ω̄
′

) ≥ Wt(ω̄), t = 1, 2, ..., T , for ω̄
′

� ω̄, with � denoting component wise

larger than or equal to.

Lemma 2 (Affine). Wt(ω̄), t = 1, 2, · · · , T , is an affine function of each element ofω̄.

Proof: We prove this by induction ont. ConsiderWT (ω̄) and an elementωj. If j /∈ πg, thenWT (ω̄)

is not a function ofωj. If j ∈ πg, thenE[Rπg(ω̄)] is an affine function ofωj by Proposition 9. In either

case the induction basis is established. Suppose the lemma holds for all timest + 1, t+ 2, · · · , T .
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Now considerWt(ω̄), and the casej /∈ πg. By the induction hypothesis, theWt+1(·) term in (14) is an

affine function ofτ(ωj), which in turn is a linear inωj. SinceWt(ω̄) only depends onωj through this

Wt+1(·) function, by the definition in (14), it follows thatWt(ω̄) is affine inωj.

Consider the casej ∈ πg. In this caseE[Rπg(ω̄)] and q(l̄; ω̄) are both affine functions ofωj (by

Proposition 9 and definition ofq(·), respectively). Meanwhile theWt+1(·) term in (14) does not depend

on ωj asj ∈ πg. ThusWt(ω̄) is again affine inωi.

The next lemma provides two key inequalities that lead to theproof of the main theorem in this section.

Lemma 3. For p11 ≥ ω1 ≥ ω2 ≥ ... ≥ ωN ≥ p01 and for all t = 1, 2, · · · , T 2 , under the condition

β ≤ R/R and x, y we have:

(L1): R+Wt(ωN , ω1, ..., ωN−1) ≥ Wt(ω1, ..., ωN) , (16)

(L2): Wt(ω1, ..., ωj−1, x, y, ωj+2, · · · , ωN) ≥ Wt(ω1, · · · , ωj−1, y, x, · · · , ωj+2, · · · , ωN) . (17)

Proof of Theorem 1:We prove the theorem by induction ont.

Induction basis:Thatπg is optimal at timeT is obvious due to the increasing property of the expected

one-step reward, Proposition 2. Assume the myopic policyπg is optimal for any given state vectorω for

times t+ 1, · · · , T .

Induction step:Suppose the optimal policy at timet under statēω is π∗ 6= πg. Accordingly, we can

write the state vector as(ω̄∗, ω̄−∗), whereω̄∗ := {ωj, j ∈ π∗} contains the probabilities of those channels

selected byπ∗ and ω̄−∗ := ω̄ − ω̄∗, sorted in descending order, contains those not selected byπ∗. Since

the myopic policy is optimal starting fromt + 1 by the induction hypothesis, the expected discounted

reward of using policyπ∗ at time t followed by the myopic policy thereafter is essentially given by

V π∗

t (ω̄) = Wt(ω̄∗, ω̄−∗), whereω̄ is in descending order. However, by repeated use of L2 in Lemma 3,

sorting one element at a time, we haveWt(ω̄) ≥ Wt(ω̄∗, ω̄−∗), contradicting the claim. Therefore the

myopic policy is also optimal at timet. �

B. Special cases

We next interpret the result obtained above in a number of special cases.

2The assumption of boundinḡω betweenp01 andp11 is in fact a rather weak one. To see this it is easy to verifyp01 ≤ τ (x) ≤ p11,∀x ∈
[0, 1]; thus if the initial belief falls between[p01, p11] (for example taking the initial belief as the steady state distribution p01

p01+p11
, p11
p01+p11

),
the assumption holds immediately for anyt.
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Case 1: (k,m) = (k, k). As shown earlier in Example 3 we haveR = R = 1. Thus in this case the

optimality condition reduces toβ ≤ 1 which is always true, i.e., it is not binding.

Case 2:(k,m) = (k, 1). As shown earlier in Example 4 we haveR = (1−p01)
k−1 andR = (1−p11)

k−1.

It follows thatR/R < 1, except for the trivial case ofp11 = p01. This means that in the case of sensing

multiple channels while limiting access to one channel, themyopic policy is not always optimal, and the

optimality conditionβ ≤ R/R becomes binding.

Case 3:k = N,m ≤ k. This case is trivial as only a single action is available at each time, which

coincides with the myopic policy whenk = N . It is therefore optimal without requiring any conditions.

Case 4:k = N − 1, m ≤ k. It can be shown that in this case the myopic policy is optimal without any

condition onβ or ω̄. The proof follows the same argument used in the preceding subsection. In particular,

we note that the condition onβ arise from the induction step of proving L2 in Lemma 3. However, it

can be easily verified that whenk = N − 1 this step holds for all0 ≤ β ≤ 1.

C. A numerical example

The following numerical example highlights how myopic sensing my not be optimal when the sufficient

condition onβ is not satisfied.

The example is given by the following parameter values:N = 5, k = 2, m = 1, β = 0.8, T =

5, p11 = 0.9, p01 = 0.1, with an initial information states̄ω = {0.99, 0.95, 0.9, 0.9, 0.9}. Denote byW {1,2}
1

the expected reward of sensing myopically (channels ordered {1, 2}) in each time step, and byW {1,3}
1

the expected reward of sensing channels{1, 3} at t = 1 followed by sensing myopically thereafter.

Numerically solving the example shows thatW
{1,2}
1 = 3.3279 and W

{1,3}
1 = 3.3283, thus in this case

myopic sensing is not optimal.

What this counter example shows is that when the top channel (the one with highest information state)

has a sufficiently high belief, i.e. we have high confidence that in the next step this channel will be

available, it may make more sense to take this opportunity toexploreby updating our belief on a lower

channel (number 3 in this case) rather than selecting the second highest channel to further improve our

chance (which is already very high by virtue of the top channel’s state) of getting at least one good

channel in the next time step.

It is worth noting that these counter examples are only foundin such extreme cases, i.e., cases with

information state close to 1, or cases with highp11 and lowp01.
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IV. FINITE HORIZON, p11 < p01

A. Optimality of myopic sensing

Theorem 2 (Optimality of Myopic Sensing). The myopic sensing strategyπg is optimal for (P1) under

the condition0 ≤ β ≤ R

R+R
and for belief statēω s. t. p11 ≤ ωi ≤ p01, ∀ωi ∈ ω̄.

We will reuse the same set of notations introduced in the caseof p11 ≥ p01 in this section. To prove

the above theorem, we will similarly need a number of lemmas.We begin with a similar definition on

the T N-variable functionsWt(·), t = 1, 2, · · · , T , recursively as follows.

WT (ω̄) = E[Rπg (ω̄)]

Wt(ω̄) = E[Rπg (ω̄)] +

β ·
∑

l̄∈{0,1}k

q(l̄; ω̄) ·Wt+1(p01[k −
k∑

i=1

li], τ(ωN), · · · , τ(ωk+1), p11[

k∑

i=1

li]) (18)

Remark 3. Compared to the definition given in the previous section, thedifference here is in the re-

ordering of the beliefs inWt+1(·), i.e., p01’s followed byτ(ωN ), · · · , followed byp11’s. This is because,

as p01 > p11, this re-ordering sorts the belief vector in descending order. In doing so we can continue to

use the same greedy policyπg which selects the firstk channels.

Lemma 4. Wt(ω̄), t = 1, 2, · · · , T , is an affine function of each element ofω̄.

The proofs of the above lemma is essentially the same as that in the case ofp11 ≥ p01 (Lemma 2), and

is thus omitted.

Lemma 5. For p01 ≥ ω1 ≥ ω2 ≥ ... ≥ ωN ≥ p11 and under the conditionβ ≤ R

R+R
and x ≥ y, we have

the following inequalities for allt = 1, 2, ..., T :

(L3): γ +Wt(ω2, ω3, ..., ωN , ω1) ≥ Wt(ω1, ..., ωN) (19)

(L4): γ +Wt(ωN , ω1, ..., ωN−1) ≥ Wt(ω1, ..., ωN) (20)

(L5): Wt(ω1, · · · , ωj−1, x, y, ωj+2, · · · , ωN) ≥ Wt(ω1, · · · , ωj−1, y, x, ωj+2, · · · , ωN) , (21)

whereγ = R
1−β

.

Proof of Theorem 2:The proof follows essentially the same inductive argument used in the proof of

Theorem 1 through repeated use of L5 in the preceding lemma, and is thus omitted.�
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B. Special cases

Case 1:(k,m) = (k, k). As shown earlier, in this case we haveR = R = 1, and thus the sufficient

condition for the optimality of the myopic policy becomesβ ≤ R

R+R
= 1

2
. Note that the same condition

β ≤ 1
2

was previously proven for the special casek = 1 in [8].

Case 2:k = N − 1, m ≤ k. It can be shown in this case that the myopic policy is optimalwithout any

condition onβ and ω̄ following the same argument used in Section III-B.

V. INFINITE HORIZON: p11 ≥ p01

In this and the next sections we will consider the infinite horizon problems(P2) and (P3). As shown

in [8], the optimality of a policy under(P1) is readily extended to its optimality under(P2); it is more

complicated for(P3): a policy is optimal for(P3) if it is optimal for (P2) for any0 < β < 13. As a result,

while the optimality conditions on the myopic policy we haveobtained so far applies to(P2), the same

cannot be said for(P3) since these conditions restrict the values the discount factor β can take. For this

reason, in these two sections we seek alternative sufficientconditions that do not require the restriction

on β, which will then allow us to first establish the optimality ofthe myopic policy for(P2) and then

extend it to(P3).

A. One-step deviation

For the rest of this section we will use the notationW∞(ω̄) defined similarly as in (14) for the case

of p11 ≥ p01 but with an infinite horizon, i.e., with the recursion in (14)continuing indefinitely without

the end at timeT . To be specific we have the following recursive equations.

W∞
t (ω̄) = E[Rπg(ω̄)] + β ·

∑

Pg(ω̄
′

|ω̄) ·W∞
t+1(ω̄

′

) , (22)

But notice here the real value of the value functions does notdepend on timet due to the infinite horizon.

We keep the time index mainly for clarity of later analysis.

Definition 1 (One-step deviation). Consider a policyπd : ω → Ωk, πd 6= πg. Its one-step deviation

from the myopic policy under information stateω is defined as the immediate reward underπd plus the

discounted future reward by followingπg in future time steps. Formally, the value function ofπd, denoted

3In [8] this argument is made specifically for the case(k,m) = (1, 1), but it is more generally applicable with a simple extension.
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by V d,∞
t (ω), is given by

V d,∞
t (ω̄) = E[Rπd(ω̄)] + β ·

∑

Pd(ω̄
′

|ω̄) ·W∞
t (ω̄

′

) , (23)

whereω
′

is the descending-ordered information state vector of the system at the next time step under

policy πd. If V d,∞
t (ω) > W∞

t (ω) for someω and t, then we say thatπd is a profitable one-step deviation.

If such aπd cannot be found, then we say there exists no profitable one-step deviation.

Lemma 6 (One-step deviation principle). The myopic policyπg is optimal for (P2) for any 0 < β < 1 if

and only if there exists no profitable one-step deviation.

Proof. (Only if) That there is no one-step profitable deviation is a necessary condition for the optimality

of πg is obvious because otherwise we have found a policy that returns higher reward thanπg under some

stateω, which contradicts the optimality ofπg.

(If) We next show that if there exists a policyπ∗ : Ω → Nk that has strictly higher discounted reward

thanπg over an infinite horizon, then there exists a one-step profitable deviation policy constructed from

π∗. Denote the total reward underπ∗ starting at timet as V ∗,∞
t , and denote byǫ = V ∗,∞

1 − W∞
1 . By

assumption we haveǫ > 0. Define timet∗ as

t∗ := min{t : βt ·
m

1− β
≤

ǫ

2
} , (24)

i.e., this is the first time that the total future discounted reward of anideal policy (that collects the highest

rewardm in each step) falls belowǫ/2. The existence of such at∗ is guaranteed by the finiteness ofm

and the fact thatβ < 1. By the above definition, after timet∗ the reward under eitherπ∗ or πg cannot

exceedǫ/2, thus the difference in the two rewards after timet∗ is no more thanǫ/2. Since the total

difference between the two rewards (starting at timet = 1) is ǫ, the difference betweenπ∗ andπg up to

and including timet∗ must be at leastǫ/2. We thus construct the following policy,π+, which followsπ∗

up to and including timet∗, and then switch toπg thereafter, with a total discounted reward denoted by

V +,∞
1 (·). Following the above discussion, we must haveV +,∞

1 (ω̄) > W∞
1 (ω̄) for any initial conditionω.

Consider now the policyπ+. At time t∗ we compareV +,∞
t∗ (ω̄) with W∞

t∗ (ω̄), ∀ω̄. Note that in this case

V +,∞
t∗ (ω̄) = V ∗,∞

t∗ (ω̄) since underπ+ at timet∗ policy π∗ is used followed byπg. If V +,∞
t∗ (ω̄) > W∞

t∗ (ω̄)

for someω̄, then we have found a profitable one-step deviation. IfV +,∞
t∗ (ω) ≤ W∞

t∗ (ω), ∀ω, then we

modify policy π+ by replacingπ∗ with πg at timet∗. Again denote this modified policy byπ+; it follows
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that we continue to haveV +,∞
1 (ω̄) > W∞

1 (ω̄) for any initial conditionω̄, since the modifiedπ+ has even

higher total discounted rewards than the originalπ+.

We next examine att∗ − 1, how V ∗,∞
t∗−1(ω̄) compares withW∞

t∗−1(ω̄) and repeat the above process. Due

to the finiteness oft∗ we are guaranteed to find a profitable one-step deviation, forotherwise it contradicts

the assumption thatπ∗ is a superior policy toπg. �

Remark 4. The above lemma is not conditioned on the values ofp11, p01, and is thus reused in the next

section in the casep11 < p01.

B. Optimality of myopic sensing

We begin by introducing a bound on the value function, which is then used in proving the optimality

condition. Denoteδ := p11 − p01 and notice under this section we haveδ ≥ 0; and we will useW∞(·) to

denoteW∞
t (·), t = 1, 2, ... for simplicity.

Lemma 7 (Boundedness). Consider the finite horizon problem (P1) with horizonT . For 1 ≤ t ≤ T ,

x ≥ y, and∆t = R ·
∑T−t

i=0 (β · δ)i, we have

0 ≤ Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN)

− Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN) ≤ (x− y) ·∆t . (25)

Remark 5. A direct consequence of the above result is the following extension to infinite horizon.

W∞(ω1, ..., x, ..., ωN)−W∞(ω1, ..., y, ...ωN)

= lim
T→∞

{W1(ω1, ..., x, ..., ωN)−W1(ω1, ..., y, ..., ωN)}

≤ lim
T→∞

R ·
T−1∑

i=0

(β · δ)i =
(x− y) · R

1− β · δ
= (x− y)∆∞ . (26)

Lemma 8. Whenδ satisfies the following condition

δ

1− δ
< R/R, (27)

there is no profitable one-step deviation for(P2) for any 0 < β < 1.

The above result appears to suggest that the closer the two valuesp11 andp01, the easier it is for the

greedy policy to be optimal (though the two quantitiesR andR are also functions ofp11 andp01). The
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reason is that for a non-greedy policy to outperform the greedy policy, the former must have higher future

discounted reward as the latter by definition has higher immediate reward. This, however, is made more

difficult when δ is small, as it has the effect of damping the difference between the two policies. To

illustrate, consider two information states differing in only one element,x vs. y. The difference in the

immediate reward is a function ofx−y; however, when propagated to the next time step, the corresponding

elements in the information states becomeτ(x) and τ(y), and the difference in the corresponding value

functions is now a function ofτ(x) − τ(y) = δ(x − y). Thus if δ is sufficiently small, the difference in

future reward will be limited, guaranteeing the optimalityof the greedy policy. The details are shown in

the proof given in the appendix.

Theorem 3. Myopic sensing is optimal for(P2) and (P3) under condition (27).

Proof. Lemma 8 combined with Lemma 6 immediately imply that myopic sensing is optimal for(P2).

Since this result holds for any choice of0 < β < 1, the optimality is also true for(P3). �

C. A numerical study

We next show some numerical results to give a sense of the range of (p11, p01) pairs,p11 ≥ p01, that

would guarantee the optimality of myopic sensing. These results are for the case of(k,m) = (2, 1), i.e.,

while sensing 2 channels we only use 1 for transmission. FromFig.1 we can see whenp11 is small (
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Fig. 1. Guaranteed optimality region : case withp11 ≥ p01

< 0.5), almost all pairs of(p01, p11) would satisfy the optimality condition. Asp01 increases, the choice

of p11 becomes more limited.

VI. I NFINITE HORIZON : p11 < p01

In this section we analyze the infinite horizon problems withnegatively correlated channels, i.e., with

parametersp11 < p01. The basic idea is same as in the case ofp11 ≥ p01, but the technical details differ;
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as we show later the difficulties arise mainly from the loss ofmonotonicity of the value functions with

negatively correlated channels.

We start similarly with a lemma regarding the boundedness ofthe value functions.

Lemma 9. Consider the finite horizon problem (P1) with horizonT , and ∀1 ≤ j ≤ N, 1 ≤ t ≤ T .

Denotingδ := p01 − p11, we have

(x− y) ·∆t ≤ Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN)

−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN) ≤ (x− y) ·∆t (28)

where∆t,∆t are defined as

∆t =







1−(β·δ)T−t+3

1−(β·δ)2
· η, η < 0

0, η ≥ 0.
(29)

∆t =







R− 1−(β·δ)T−t+3

1−(β·δ)2
· η, η < 0

R, η ≥ 0.
(30)

Here η := R− β · (p10 − p11) · R.

Remark 6. For ∆1,∆1 whenT goes to infinity we have

∆∞
1 = min{

η

1− (β · δ)2
, 0} (31)

∆
∞

1 = max{R− (β · δ) ·
η

1− (β · δ)2
,R} . (32)

We next establish the optimality condition for the casep11 < p01. The argument is similar to that

used for the casep11 ≥ p01, i.e., we bound the difference between immediate rewards and future rewards

respectively and compare. The detailed proof of this lemma is thus omitted for brevity.

Lemma 10. Denote byδ = p01 − p11. When the pair(p11, p01) satisfies the following condition

min{δ,
1

2(1− δ)
} ≤ R/R , (33)

then there is no profitable one-step deviation for(P2) for any 0 < β < 1.

Theorem 4. Myopic sensing is optimal for(P2) and (P3) when the condition in Lemma 10 is satisfied.

Proof. The proof follows immediately from the one-step deviation principle. �
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A. A numerical study

Here we show similar numerical results on the range of(p11, p01) pairs,p11 < p01, that would guarantee

the optimality of myopic sensing according to Lemma 10. Again we use the case of(k,m) = (2, 1). This
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Fig. 2. Guaranteed optimality region : case withp11 < p01

picture appears to be a mirror image (w.r.t. the diagonalp11 = p01) of the earlier one. Whenp01 is small

(< 0.5), most pairs of(p01, p11) satisfy our optimality condition. Whenp01 increases, the choice ofp11

becomes more limited.

VII. D ISCUSSION

In deriving the set of sufficient conditions we have used two different methods: an induction and

sample path based argument for the finite horizon problem anda set of bounds for the infinite horizon

problems. In addition, the first set of conditions is onβ, while the second set onp11 andp01. The induction

based argument for the finite horizon problem cannot be extended to address the infinite horizon problems;

however, the bounding techniques combined with the one-step deviation principle can be applied to obtain

alternate sufficient conditions for the finite horizon problem. The detail is omitted as the essence of the

method remains the same as we have shown in the infinite horizon problems.

VIII. C ONCLUSION

This paper we considered a widely studied stochastic control problem arising from opportunistic

spectrum access in a multi-channel system, where a single wireless transceiver/user with access toN

channels, each modeled as an iid discrete-time two-state Markov chain. In each time step the user is

allowed to sensek ≤ N channels, and subsequently use up tom ≤ k channels out of those sensed to be

available. This problem has previously been studied in various special cases includingm = k = 1 and

m = k ≤ N ; it is often cast as a restless bandit problem, with optimality results derived for a myopic
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policy that seeks to maximize the immediate one-step rewardwhen the two-state Markov chain model

is positively correlated. We derived sufficient conditionsunder which the myopic policy is optimal for

the finite and infinite horizon reward criteria, respectively. It is shown that these results reduce to those

derived in prior studies under the corresponding special cases, and thus may be viewed as a set of unifying

optimality conditions.
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APPENDIX

A. Proof of Lemma 1

We prove this by induction ont. Denote byω̄+ ⊂ ω̄
′

the subset of components that are strictly larger

in ω̄′ than in ω̄, i.e., ω̄+ = {ω
′

i, i = 1, · · · , N, s. t.ω
′

i > ωi}.

Induction basis:Whent = T , the lemma holds due to the increasing property of the one-step expected

reward given in Proposition 2.

Induction step:Assume the lemma holds fort + 1, · · · , T , and consider timet. There are two cases:

Case 1.ω̄+ ∩ ω̄(πg) = ∅. In this case since the elements strictly larger inω
′

are not used, the expected

one-step rewards under̄ω
′

and under̄ω are the same. The future reward underω̄
′

is no smaller than that

underω̄ due to the induction hypothesis and the monotonicity ofτ(·), i.e., τ(ω
′

j) > τ(ωj) for ω
′

j > ωj.

Case 2.ω̄+ ∩ ω̄(πg) 6= ∅. Consider somej ∈ ω̄+∩ ω̄(πg), and the state vector(ω
′

j, ω−j); it differs from

ω by only one elementω
′

j. Using the alternate expression given in (15) we have

Wt(ω
′

j , ω−j)

= E[Rπg(ω
′

j, ω−j)] +

ω
′

jβ ·
∑

l̄−j∈{0,1}k−1

q(l̄−j;ω−j)Wt+1(p11[
∑

i 6=j

li + 1], τ(ωk+1), .., τ(ωN), p01[k −
∑

i 6=j

li − 1])

︸ ︷︷ ︸

R1

+

(1− ω
′

j)β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)Wt+1(p11[
∑

i 6=j

li], τ(ωk+1), .., τ(ωN), p01[k −
∑

i 6=j

li])

︸ ︷︷ ︸

R2

≥ E[Rπg(ωj, ω−j)] +

ωjβ ·
∑

l̄−j∈{0,1}k−1

q(l̄−j;ω−j)Wt+1(p11[
∑

i 6=j

li + 1], τ(ωk+1), .., τ(ωN), p01[k −
∑

i 6=j

li − 1])

︸ ︷︷ ︸

R1

+

(1− ωj)β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j)Wt+1(p11[
∑

i 6=j

li], τ(ωk+1), .., τ(ωN), p01[k −
∑

i 6=j

li])

︸ ︷︷ ︸

R2

= Wt(ω̄) , (34)
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where the inequality holds because (1)E[Rπg(ω
′

j, ω−j)] ≥ E[Rπg(ωj , ω−j)] by Proposition 2, and (2)

ω
′

j · R1 + (1 − ω
′

j) · R2 ≥ ωj · R1 + (1 − ωj) · R2 sinceω
′

j > ωj and R1 ≥ R2 due to the induction

hypothesis. We can now repeat the above process by introducing another elementk ∈ ω̄+ ∩ ω̄(πg), k 6= j,

and obtain similarly,Wt(ω
′

k, ω
′

j, ω−j,−k) ≥ Wt(ω
′

j, ω−j) ≥ Wt(ω̄). When all elements in̄ω+∩ ω̄(πg), k 6= j

have been exhausted we obtainWt(ω̄
′

) ≥ Wt(ω̄). The induction steps is thus completed.

B. Proof of Lemma 3

The two inequalities L1 and L2 will be shown together using aninduction ont.

Induction basis:For t = T , L1 holds because in this case

WT (ωN , ω1, ..., ωN−1)−WT (ω1, ..., ωN)

= E[Rπg(ωN , ω1, ..., ωN−1)]− E[Rπg(ω1, ..., ωN)]

≤ E[Rπg(ωN = p11, ω1, ..., ωN−1)]−E[Rπg(ω1, ..., ωk = p01, ..., ωN)]

≤ E[Rπg(ωN = p11, ω1, ..., ωN−1)]−E[Rπg(ωk = p01, ω1, ..., ωN)] ≤ R , (35)

using the increasing property, Proposition 2, of the expected one-step reward. L2 holds atT due to the

same reason. Assume both L1 and L2 hold for timest+ 1, · · · , T .

Induction step:We will employ a sample-path argument by calculating the quantities on the LHS (RHS)

of these two inequalities conditioned on the outcome of sensing specific channels. Consider first L1. At

time t, the LHS selects channels{N, 1, · · · , k − 1} while the RHS selects channels{1, · · · , k}. Thus

the two sides differ only in channels{k,N}. For simplicity we denote by LHS|i,j (resp. RHS|i,j) the

value of the LHS (resp. RHS) of L1 conditioned on the realizations of channelsk andN being i and j,

respectively, wherei, j ∈ {0, 1}. Denote byπg
k−1 := {1, 2, · · · , k−1}; this is the common set of channels

sensed by both sides. Also recall the notationl̄−k = {l1, · · · , lk−1}.

Case 1.(k,N) = (“1′′, “0′′): channelk has state realization “1” and channelN “0”. In this case we
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have

LHS|1,0 = R+ E[Rπg(0, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[
k−1∑

i=1

li], τ(ωk) = p11, · · · , τ(ωN−1), p01[k −
k−1∑

i=1

li])

RHS|1,0 = E[Rπg(1, ω2, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li], τ(ωk) = p11, · · · , τ(ωN−1), τ(ωN) = p01, p01[k − 1−
k−1∑

i=1

li]) . (36)

By the definition ofR we haveR+ E[Rπg(0, ω1, ..., ωN−1)]− E[Rπg(1, ω2, ..., ωN)] ≥ 0, thus LHS|1,0 ≥

RHS|1,0.

Case 2.(k,N) = (“1′′, “1′′): both channelsk andN have state realizations “1”. In this case

LHS|1,1 = R+ E[Rπg(1, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li + 1], τ(ωk) = p11, · · · , τ(ωN−1), p01[k − 1−
k−1∑

i=1

li])

RHS|1,1 = E[Rπg(1, ω2, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li + 1], τ(ωk+1), · · · , τ(ωN) = p11, p01[k − 1−
k−1∑

i=1

li]) . (37)

LHS|1,0 ≥ RHS|1,0 because (1)R ≥ 0, (2) E[Rπg(1, ω1, ..., ωN−1)] = E[Rπg(1, ω2, ..., ωN)], and (3) by

repeatedly using the induction hypothesis of L2 (successively moving τ(ωk) = p11 to the right or down

the ordered list).

Case 3.(k,N) = (“0′′, “0′′): both channelsk andN have state realizations “0”. We have

LHS|0,0 = R+ E[Rπg(0, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li], τ(ωk) = p01, · · · , τ(ωN−1), p01[k −
k−1∑

i=1

li])

RHS|0,0 = E[Rπg(0, ω1, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li], τ(ωk+1), · · · , τ(ωN−1), τ(ωN) = p01, p01[k −
k−1∑

i=1

li]) . (38)
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Using the induction hypothesis of both L1 and L2 we have

LHS|0,0 ≥ E[Rπg(0, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(R+Wt+1(p11[
k−1∑

i=1

li], τ(ωk) = p01, · · · , τ(ωN−1), p01[k −
k−1∑

i=1

li]))

≥ E[Rπg(0, ω1, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(R+Wt+1(τ(ωk) = p01, p11[

k−1∑

i=1

li], τ(ωk+1), · · · , τ(ωN−1), p01[k −
k−1∑

i=1

li]))

≥ E[Rπg(0, ω1, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li], τ(ωk+1), · · · , τ(ωN−1), p01[k −
k−1∑

i=1

li], τ(ωk) = p01)

= LHS|0,0 , (39)

where the first inequality is due to the fact thatq(·) forms a probability distribution andβR < R, the

second due to the induction hypothesis of L2, and the third due to the induction hypothesis of L1.

Case 4.(k,N) = (“0′′, “1′′): channelsk andN have state realizations “0” and “1”, respectively. We

have

LHS|0,1 = R+ E[Rπg(1, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li + 1], τ(ωk) = p01, · · · , τ(ωN−1), p01[k − 1−
k−1∑

i=1

li])

RHS|0,1 = E[Rπg(0, ω1, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

Wt+1(p11[

k−1∑

i=1

li], τ(ωk+1), · · · , τ(ωN−1), τ(ωN) = p11, p01[k −
k−1∑

i=1

li]) . (40)
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LHS|0,1 ≥ E[Rπg(1, ω1, ..., ωN−1)] + β ·
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(R+Wt+1(p11[

k−1∑

i=1

li + 1], τ(ωk) = p01, · · · , τ(ωN−1), p01[k − 1−
k−1∑

i=1

li]))

≥ E[Rπg(0, ω1, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k

q(l̄−k;ω−k) ·

Wt+1(p11[
k−1∑

i=1

li + 1], τ(ωk+1), · · · , τ(ωN−1), p01[k − 1−
k−1∑

i=1

li], τ(ωk) = p01)

≥ E[Rπg(0, ω1, ..., ωN)] + β ·
∑

l̄−k∈{0,1}k

q(l̄−k;ω−k) ·

Wt+1(p11[
k−1∑

i=1

li], τ(ωk+1), · · · , τ(ωN−1), p11, p01[k −
k−1∑

i=1

li])

= LHS|0,0 , (41)

where the first inequality is due to Proposition 2, the seconddue to induction hypothesis of L2 (moving

τ(ωk) = p01 to the front/left of the list, following by induction hypothesis of L1 (movingτ(ωk) = p01 to

the end/right of the list), and the third due to the inductionhypothesis of L2.

We have now established the induction step of L1, thus proving L1. Next we consider L2 at timet.

In the case whenj ≤ k − 1, both x and y are used by both sides, so LHS= RHS. In the case when

j ≥ k+1, neither channelj nor j+1 is used. Thus both sides will return the same one-step reward. The

difference betweenx andy propagates to the future reward termWt+1(·). However, due to the fact that

τ(x) ≥ τ(y), using the induction hypothesis of L2 we conclude LHS≥ RHS.
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It remains to check the casej = k. In this case we single out bothx andy:

LHS = E[Rπg(x, ω1, ..., ωk+1, ..., ωN)]

+β{x · y
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[
k−1∑

k=1

li + 1], p11, τ(ωk+2), · · · , τ(ωN), p01[k − 1−
k−1∑

i=1

li])

︸ ︷︷ ︸

R1

+(1− x) · y
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[
k−1∑

k=1

li], p11, τ(ωk+2), · · · , τ(ωN), p01[k −
k−1∑

i=1

li])

︸ ︷︷ ︸

R2

+x · (1− y)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[
k−1∑

k=1

li + 1], p01, τ(ωk+2), · · · , τ(ωN), p01[k − 1−
k−1∑

i=1

li])

︸ ︷︷ ︸

R3

+(1− x) · (1− y)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑

k=1

li], p01, τ(ωk+2), · · · , τ(ωN), p01[k −
k−1∑

i=1

li])

︸ ︷︷ ︸

R4

}

Similarly,

RHS= E[Rπg(y, ω1, ..., ωk, ..., ωN)]

+β{x · y
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[
k−1∑

k=1

li + 1], p11, τ(ωk+2), · · · , τ(ωN), p01[k − 1−
k−1∑

i=1

li])

︸ ︷︷ ︸

R1

+(1− x) · y
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[
k−1∑

k=1

li + 1], p01, τ(ωk+2), · · · , τ(ωN), p01[k − 1−
k−1∑

i=1

li])

︸ ︷︷ ︸

R3

+x · (1− y)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[
k−1∑

k=1

li], p11, τ(ωk+2), · · · , τ(ωN), p01[k −
k−1∑

i=1

li])

︸ ︷︷ ︸

R2

+(1− x) · (1− y)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·Wt+1(p11[

k−1∑

k=1

li], p01, τ(ωk+2), · · · , τ(ωN), p01[k −
k−1∑

i=1

li])

︸ ︷︷ ︸

R4

}
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Thus we have

LHS− RHS= E[Rπg(x, ω−k)]− E[Rπg(y, ω−k)] + β(x− y)(R3−R2)

= (x− y)(E[Rπg(1, ω−k)]− E[Rπg(0, ω−k)]) + β(x− y)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(

Wt+1(p11[
k−1∑

k=1

li + 1], p01, τ(ωk+2), · · · , τ(ωN), p01[k − 1−
k−1∑

i=1

li])

−Wt+1(p11[
k−1∑

k=1

li], p11, τ(ωk+2), · · · , τ(ωN), p01[k −
k−1∑

i=1

li])

)

≥ (x− y)R+ β(x− y)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·

(

Wt+1(p01, p11[
k−1∑

k=1

li + 1], τ(ωk+2), · · · , τ(ωN), p01[k − 1−
k−1∑

i=1

li])

−Wt+1(p11[
k−1∑

k=1

li], p11, τ(ωk+2), · · · , τ(ωN), p01[k −
k−1∑

i=1

li])

)

≥ (x− y)R− β(x− y)R , (42)

where the first inequality is due to the definition ofR and the use of the induction hypothesis of L2, and

the second inequality due to the induction hypothesis of L1.Therefore ifβ ≤ R/R, then we will have

LHS ≥ RHS, completing the induction step of L2.

C. Proof of Lemma 5

The three inequalities L3, L4 and L5 are shown together usingan induction ont.

Induction basis:At time T , L3 becomesγ+E[Rπg(ω1, · · · , ωN , ω1)] ≥ E[Rπg(ω1, · · · , ωN)]. This holds

because

E[Rπg(ω1, · · · , ωN)]− E[Rπg(ω2, · · · , ωN , ω1)]

≤ E[Rπg(ω1 = 1, · · · , ωN)]− E[Rπg(ω2, · · · , ωk+1 = 0, ωN , ω1)]

≤ R ≤
R

1− β
= γ. (43)



28

Similarly, L4 holds at timeT because

E[Rπg(ω1, · · · , ωN)]− E[Rπg(ωN , ω1, · · · , ωN−1)]

≤ E[Rπg(ω1, · · · , ωk = 1, · · · , ωN)]− E[Rπg(ωN = 0, ω1, · · · , ωN−1)]

≤ R ≤
R

1− β
= γ. (44)

L5 holds atT due to the increasing property (Proposition 2) of the expected one-step reward. Assume

L3, L4 and L5 hold for timest+ 1, · · · , T .

Induction step:We will again employ a sample-path argument conditioned on the outcome of sensing

specific channels. Consider first L3. At timet, the LHS selects channels{2, 3, · · · , k+1} while the RHS

selects channels{1, · · · , k}. Thus the two sides differ only in channels{1, k + 1}.

Case 1.(1, k + 1) = (“0′′, “0′′): both channels1 andk + 1 have state realization “0”. In this case

LHS|0,0 = γ + E[Rπg(0, ω2, · · · , ωk, ωk+1, · · · , ωN , ω1)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k −
k∑

i=2

li], τ(ω1) = p01, τ(ωN), · · · , τ(ωk+2), p11[

k∑

i=2

li])

RHS|0,0 = E[Rπg(0, ω2, ..., ωN)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k −
k∑

i=2

li], τ(ωN), · · · , τ(ωk+1), τ(ωk+1) = p01, p11[

k∑

i=2

li]) (45)

By the induction hypothesis of L5 we have LHS≥ RHS.

Case 2.(1, k+ 1) = (“1′′, “0′′): channel1 has state realization “1” and channelk+1 “0”. In this case

LHS|1,0 = γ + E[Rπg(0, ω2, ω3, ..., ω1)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k −
k∑

i=2

li], τ(ω1) = p11, τ(ωN ), ..., τ(ωk+2), p11[
k∑

i=2

li])

RHS|1,0 = E[Rπg(1, ω2, ..., ωN)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k − 1−
k∑

i=2

li], τ(ωN), ..., τ(ωk+1) = p01, p11[

k∑

i=2

li + 1]) (46)
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Sinceγ = 1
1−β

· R = R+ β · γ, we have

LHS|1,0 = R+ E[Rπg(0, ω2, ω3, ..., ω1)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·

(

γ +Wt+1(p01[k −
k∑

i=2

li], τ(ω1) = p11, ..., p11[
k∑

i=2

li])

)

≥ E[Rπg(1, ω2, ..., ωN)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·

(

γ +Wt+1(p11, p01[k − 1−
k∑

i=2

li], ..., p01, p11[

k∑

i=2

li])

)

≥ E[Rπg(1, ω2, ..., ωN)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1) ·

Wt+1(p01[k − 1−
k∑

i=2

li], ..., p01, p11[

k∑

i=2

li + 1])

= RHS|1,0, (47)

where the first inequality is due to the definition ofR and the use of the induction hypothesis of L5 and

the second inequality is due to the induction hypothesis of L4.

Case 3. (1, k + 1) = (“0′′, “1′′): channels1 andk + 1 have realizations “0” and “1”, respectively. We

have

LHS|0,1 = γ + E[Rπg(1, ω2, ..., ωk, ωk+1, ..., ωN , ω1)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k − 1−
k∑

i=2

li], τ(ω1) = p01, τ(ωN), ..., τ(ωk+2), p11[

k∑

i=2

li + 1])

RHS|0,1 = E[Rπg(0, ω2, ..., ωN)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k −
k∑

i=2

li], τ(ωN), ..., τ(ωk+1) = p11, p11[

k∑

i=2

li]) (48)

Since the second part of both LHS|0,1 and RHS|0,1 are identical, we have LHS|0,1 ≥ RHS|0,1 using the

definition of γ andR.
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Case 4.(1, k + 1) = (“1′′, “1′′): both channels have state realization “1”. In this case

LHS|1,1 = γ + E[Rπg(1, ω2, ..., ωk, ωk+1, ..., ωN , ω1)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k − 1−
k∑

i=2

li], τ(ω1) = p11, τ(ωN), ..., τ(ωk+1), p11[
k∑

i=2

li + 1])

RHS|1,1 = E[Rπg(1, ω2, ..., ωN)] + β ·
∑

l̄−1∈{0,1}k−1

q(l̄−1;ω−1)·

Wt+1(p01[k − 1−
k∑

i=2

li], τ(ωN), ..., τ(ωk+1) = p11, p11[
k∑

i=2

li + 1]) (49)

Using a similar method as in Case 2, LHS|1,1 ≥ RHS|1,1 holds because

γ +Wt+1(p01[k − 1−
k∑

i=2

li], τ(ω1) = p11, τ(ωN), ..., τ(ωk+2), p11[
k∑

i=2

li + 1])

≥ γ +Wt+1(τ(ω1) = p11, p01[k − 1−
k∑

i=2

li], τ(ωN), ..., τ(ωk+2), p11[

k∑

i=2

li + 1])

≥ Wt+1(p01[k − 1−
k∑

i=2

li], τ(ωN), ..., τ(ωk+2), ω1 = p11, p11[

k∑

i=2

li]), (50)

using the induction hypothesis of L5 and L4, respectively. L3 is thus proven.

L4 can be shown in the same way L3 is proven above, while L5 can be shown in the same way L2

was proven in Lemma 3; the details are thus omitted.

D. Proof of Lemma 7

The lower bound is trivial as for finite time horizon problem the monotonicity is already proven in

Lemma 3, L2 time uniformly and we know it can be extended to theinfinite horizon problem by simply

taking the limitation. We prove the upper bound by inductionon t. Before proceeding, we note that by

definition∆T = R and∆t = R(1 + β(p11 − p01)
∑T−t−1

i=0 βi · (p11 − p01)
i) = R+ β(p11 − p01)∆t+1.

At time T there are two cases.

Case 1.j > k. In this caseWt(ω1, ..., ωj−1, x, ωj+1, ..., ωN) = Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN) while

∆T ≥ 0, so the inequality holds.

Case 2.j ≤ k. In this case we have

Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN)−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN) ≤ (x− y) · R = (x− y) ·∆T . (51)



31

Now suppose the equalities hold for timest+ 1, ..., T − 1. Consider timet. Again we have two cases.

Case 1.j > k. In this case the immediate reward does not differ between the two belief states as under

both the set of sensed channels is identical; we thus have

Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN)−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN)

= β ·
∑

l̄∈{0,1}k

q(l̄;ω) ·

(

Wt+1(p11[

k∑

i=1

li], ..., τ(x), ..., p01[k −
k∑

i=1

li])

− Wt+1(p11[

k∑

i=1

li], ..., τ(y), ..., p01[k −
k∑

i=1

li])

)

≤ β · (τ(x)− τ(y)) ·∆t+1

= (x− y) · β · (p11 − p01) ·∆t+1

≤ (x− y)(∆t −R) ≤ (x− y)∆t . (52)

where the first inequality is due to the induction hypothesis.

Case 2.j ≤ k. In this case we have

Wt(ω1, ..., ωj−1, x, ωj+1, ..., ωN)−Wt(ω1, ..., ωj−1, y, ωj+1, ..., ωN)

= E[Rπg
(x, ω−j)]− E[Rπg

(y, ω−j)]

+(x− y) · β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j ;ω−j) ·Wt+1(p11[
k∑

i=1,i 6=j

li], p11, ..., p01[k − 1−
k∑

i=1,i 6=j

li])

+((1− x)− (1− y)) · β ·
∑

l̄−j∈{0,1}k−1

q(l̄−j;ω−j) ·Wt+1(p11[
k∑

i=1,i 6=j

li], ..., p01, p01[k − 1−
k∑

i=1,i 6=j

li])

≤ (x− y)R+ (x− y) · β · (p11 − p01) ·∆t+1

= (x− y) ·∆t . (53)

This completes the induction step, thus proving the lemma.

E. Proof of Lemma 8

For a descending-ordered belief vectorω = (ω1, · · · , ωi, · · · , ωk, · · · , ωj, · · · , ωN), the greedy policy

πg selects the firstk elements/channels. Now consider the followingsimpledeviation policyπd that selects

channels1, · · · , i − 1, j, i + 1, · · · , k, wherej > k. In other words,πd differs from πg in exactly one
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element:ωj instead ofωi. The one-step deviation produced by this policy is given by

V d,∞(ω) = W∞(ω1, · · · , ωi−1, ωj, ωi+1, · · · , ωk, ωi, ωk+1, · · · , ωN) (54)

since by the definition ofW∞(·), the RHS operates in exactly the same way as the LHS: it selects the set

of channels1, · · · , i−1, j, i+1, · · · , k, followed by selecting greedily thereafter (note the set ofunselected

elements are now descending-ordered).

Our first step is to show that under the stated sufficient condition, we have

W∞(ω1, · · · , ωi−1, ωj, ωi+1, · · · , ωk, ωi, ωk+1, · · · , ωN)

≤ W∞(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk, ωk+1, · · · , ωj−1, ωj, ωj+1, · · · , ωN) , (55)

i.e., πd is not a profitable one-step deviation. We then use this result to show that deviations involving

multiple different selections are also not profitable underthe same condition, thus proving the lemma.

To show (55), it suffices to show each of the following chain of(in)equalities under the stated condition:

W∞(ω1, · · · , ωi−1, ωj, ωi+1, · · · , ωk, ωi, ωk+1, · · · , ωN)

(1)
= W∞(ω1, · · · , ωi−1, ωi+1, · · · , ωk, ωj, ωi, ωk+1, · · · , ωN) (56)

(2)
≤ W∞(ω1, · · · , ωi−1, ωi+1, · · · , ωk, ωi, ωj, ωk+1, · · · , ωN) (57)

(1)
= W∞(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk, ωj, ωk+1, · · · , ωN) (58)

(3)
≤ W∞(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk, ωk+1, ωj, · · · , ωN) (59)

(3)
≤ ...

(3)
≤ W∞(ω1, · · · , ωi−1, ωi, ωi+1, · · · , ωk, ωk+1, · · · , ωj−1, ωj, ωj+1, · · · , ωN) (60)

Note that in each step above the comparison is between switching a neighboring pair of elements. More

specifically, there are three cases:Case 1(equalities labeled (1)) involves switching a pair both among

the firstk elements in the ordered belief vector;Case 2(inequality labeled (2)) involves switching a pair

at thekth and(k+1)th positions;Case 3(inequalities labeled (3)) involves switching a pair both outside

the firstk positions. These three cases are shown separately below.

Case 1.When both are within the firstk elements, there is no difference in either the immediate rewards

(both are selected) or the future rewards, so the equality holds trivially.

Case 2.For a given belief vector (not necessarily descending ordered)ω = (ω1, · · · , ωk, ωk+1, · · · , ωN)
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whereωk ≥ ωk+1, we now compare the difference when switching the order betweenωk andωk+1.

W∞(ω1, · · · , ωk, ωk+1, · · · , ωN) = E[Rπg(ω1, ..., ωk−1, ωk, ωk+1, ..., ωN)]

+ ωk · ωk+1

∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj ], p11, p11, ..., p01[k − 1−
k−1∑

j=1

lj ])

+ ωk · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj], p11, p01, ..., p01[k − 1−
k−1∑

j=1

lj])

+ (1− ωk) · ωk+1

∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj], p11, ..., p01[k − 1−
k−1∑

j=1

lj ], p01)

+ (1− ωk) · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj ]], p01, ..., p01[k − 1−
k−1∑

j=1

lj]], p01)

and by switching we have

W∞(ω1, · · · , ωk+1, ωk, · · · , ωN) = E[Rπg(ω1, ..., ωk−1, ωk+1, ωk, ..., ωN)]

+ ωk · ωk+1

∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj], p11, p11, ..., p01[k − 1−
k−1∑

j=1

lj ])

+ ωk · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj ], p11, ..., p01[k − 1−
k−1∑

j=1

lj ], p01)

+ (1− ωk) · ωk+1

∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj ], p11, p01, ..., p01[k − 1−
k−1∑

j=1

lj])

+ (1− ωk) · (1− ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) ·W
∞(p11[

k−1∑

j=1

lj ], p01, ..., p01[k − 1−
k−1∑

j=1

lj], p01)

Taking the difference between the immediate rewards we get

E[Rπg(ω1, ..., ωk, ωk+1, ..., ωN)]− E[Rπg(ω1, ..., ωk+1, ωk, ..., ωN)] ≥ (ωk − ωk+1)R . (61)
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The difference between the future rewards is given by

β · (ωk − ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) · (W
∞(p11[

k−1∑

j=1

lj ], p11, p01, τ(ωk+2), ..., τ(ωN), p01[k − 1−
k−1∑

j=1

lj])

−W∞(p11[

k−1∑

j=1

lj], p11, τ(ωk+2), ..., τ(ωN), p01[k − 1−
k−1∑

j=1

lj], p01))

≥ β · (ωk − ωk+1)
∑

l̄−k∈{0,1}k−1

q(l̄−k;ω−k) · (W
∞(p11[

k−1∑

j=1

lj ], p11, p01, τ(ωk+2), ..., τ(ωN), p01[k − 1−
k−1∑

j=1

lj])

−W∞(p11[

k−1∑

j=1

lj], p11, p01, τ(ωk+3), ..., τ(ωN), p01[k − 1−
k−1∑

j=1

lj ], p01)− (τ(ωk+2)− p01)∆∞)

≥ −β · (ωk − ωk+1)(τ(ωk+2)− p01)∆∞ (62)

where the first inequality comes from the upper bound given in(26) and the second from repeated

use of the lower bound in Lemma (7). Thus the total differencein rewards by switching is given by

(ωk − ωk+1)(R− β(τ(ωk+2)− p01)∆∞). Sinceτ(ωk+1) ≤ p11, we have

R− β(τ(ωk+2)− p01)∆∞ ≥ R− β(p11 − p01)
R

1− βδ

≥ R− δ
R

1− δ
≥ 0 (63)

under the stated condition onδ.

Remark 7. Note in the special case ofk = N − 1, the difference in future rewards by switching is zero,

therefore the total difference is always positive without any sufficient condition. This is consistent with

previous results in [7] on the optimality of myopic sensing for a two channel case.

Case 3.When both elements are outside the firstk, switching ωi with ωi+1, ωi ≥ ωi+1 results in

no difference in the immediate rewards. Their propagated version, (τ(ωi), τ(ωi+1)), or (τ(ωi+1), τ(ωi))

under switching, show up in the future rewards. As the process continues, this pair will gradually move

toward the front of the list, and the movement is exactly the same along each sample path with or without

switching. If the pair continues to be outside the firstk, the immediate rewards remains the same. If the

pair both moves into the firstk, then the comparison of the future rewards fall within Case 1examined

above. If the pair moves right into the boundary of the firstk, with i now at thekth position andi + 1

now at thek + 1th position (or the other way round under the switched case),then the comparison falls

under Case 2 examined above. Thus this switching under Case 3is again not profitable.
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We have therefore shown that there is no profitable single-element simple deviation under the stated

sufficient condition. For a deviationπd with multiple different elements, a sequence of single-element

deviation steps can be easily constructed connectingπg to πd, with two successive deviations differing in

only one element. The same argument as above can be used to show that no step can be profitable under

the stated condition, thus proving the lemma.

F. Proof of Lemma 9

We prove this by induction. At timeT , whenj ≤ k we have

(x− y) · R ≤ WT (ω1, ..., x, ..., ωN)

−WT (ω1, ..., y, ..., ωN) ≤ (x− y) · R . (64)

When j > k, we haveWT (ω1, ..., x, ..., ωN)−WT (ω1, ..., y, ..., ωN) = 0. Also it is easily verified that

∆T ≤ min{R, 0},∆T ≥ R . (65)

The induction basis is thus established.

Now assume the lemma holds for timest+1, ..., T − 1. Consider timet and again the following cases.

Case 1.j ≤ k

We have

Wt(ω1, ..., x, ..., ωN)−Wt(ω1, ..., y, ..., ωN)

= (x− y)(E[Rπg(1, ω−j)]− E[Rπg(0, ω−j)])− (x− y) · β{
∑

l̄−j∈{0,1}k−1

q(l̄−j;ω−j)

(Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], p01, τ(ωN), ..., τ(ωk+1), p11[
k∑

i=1,i 6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN ), ..., τ(ωk+1), p11[
k∑

i=1,i 6=j

li], p11))} (66)

Clearly for the immediate rewards we haveR ≤ E[Rπg(1, ω−j)]− E[Rπg(0, ω−j)] ≤ R. Now consider
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the future rewards. First note

Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], p01, τ(ωN), ..., τ(ωk+1), p11[

k∑

i=1,i 6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN ), ..., τ(ωk+1), p11[

k∑

i=1,i 6=j

li], p11)

= Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], p01, τ(ωN), ..., τ(ωk+1), p11[

k∑

i=1,i 6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN ), τ(ωN), ..., τ(ωk+1), p11[

k∑

i=1,i 6=j

li])

+Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN), τ(ωN), ..., τ(ωk+1), p11[

k∑

i=1,i 6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN ), τ(ωN−1), τ(ωN−1), ..., τ(ωk+1), p11[
k∑

i=1,i 6=j

li])

· · ·

+Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN), ..., τ(ωk+1), τ(ωk+1), p11[

k∑

i=1,i 6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN ), ..., τ(ωk+1), p11[

k∑

i=1,i 6=j

li], p11) (67)

Applying the induction hypothesis to each pair of theWt+1 terms above results in

(x− y) · β · (p01 − τ(ωN) + τ(ωN )− τ(ωN−1) + · · · − p11) ·∆t+1

≤ (x− y)β

{

Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], p01, τ(ωN), ..., τ(ωk+1), p11[

k∑

i=1,i 6=j

li])

−Wt+1(p01[k − 1−
k∑

i=1,i 6=j

li], τ(ωN), ..., τ(ωk+1), p11[
k∑

i=1,i 6=j

li], p11)

}

≤ (x− y) · β · (p01 − τ(ωN) + τ(ωN )− τ(ωN−1) + · · · − p11) ·∆t+1 (68)

Therefore

(x− y) · {R − βδ ·∆t+1}

≤ Wt(ω1, ..., x, ..., ωN)−Wt(ω1, ..., y, ..., ωN)

≤ (x− y) · {R − βδ ·∆t+1} (69)
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If η < 0 we have

R− βδ ·∆t+1 ≥ R− β · δR+ βδ
1− (β · δ)T−t+3

1− (β · δ)2
· η ≥

1− (β · δ)T−t+3

1− (β · δ)2
· η = ∆t (70)

R− βδ ·∆t+1 ≤ R− βδ · η ≤ R−
1− (β · δ)T−t+3

1− (β · δ)2
· η = ∆t (71)

If η ≥ 0 we have

R− βδ ·∆t+1 = R− βδ · R = η ≥ 0 (72)

R− βδ ·∆t+1 = R (73)

In either case the induction step is completed.

Case 2.j > k. We have

Wt(ω1, ..., x, ..., ωN)−Wt(ω1, ..., y, ..., ωN) = β ·
∑

l̄∈{0,1}k

q(l̄; ω̄)

· (Wt+1(p01[k −
k∑

i=1

li], ..., τ(x), ..., p11[

k∑

i=1

li])−Wt+1(p01[k −
k∑

i=1

li], ..., τ(y), ..., p11[

k∑

i=1

li])) . (74)

Thus

β · (x− y) · δ ·∆t+1 ≤ Wt(ω1, ..., x, ..., ωN)−Wt(ω1, ..., y, ..., ωN) ≤ β · (x− y) · δ ·∆t+1 (75)

It can be easily verified that∆t ≤ βδ∆t+1 andβδ∆t+1 ≤ ∆t, completing the induction step.
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