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List Decoding for Arbitrarily Varying Broadcast
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Abstract— In this paper, the discrete memoryless arbitrarily
varying broadcast channel (AVBC) with receiver side information
is studied and its random code and deterministic code capacity
regions are derived for the average error criterion. In addition,
it is analyzed for deterministic list codes and it is shown that
the corresponding list capacity region displays a behavior, which
is similar to Ahlswede’s famous dichotomy result for the single-
user arbitrarily varying channel: it either equals the random
code capacity region or otherwise has an empty interior. This
is characterized in terms of list sizes at the receivers and an
appropriate concept of symmetrizability for the AVBC with
receiver side information. The scenario studied here is motivated
by the broadcast phase of bidirectional relaying, where a half-
duplex relay node establishes a bidirectional communication
between two other nodes using a decode-and-forward protocol.
The relay decodes the messages both nodes have sent in the initial
multiple access phase and broadcasts a re-encoded composition
of them in the succeeding broadcast phase. Then, the broadcast
phase corresponds to the AVBC with receiver side information,
which differs from the classical broadcast channel, since both
receivers can exploit their own messages from the previous phase
as side information for decoding.

Index Terms— Broadcast channel with receiver side
information, arbitrarily varying channel (AVC), list decoding,
symmetrizability, capacity region, bidirectional relaying.

I. INTRODUCTION

RECENT research progress shows that relays can signif-
icantly increase the performance of wireless networks.

Since a relay cannot transmit and receive at the same time
and frequency, it needs orthogonal resources for transmission
and reception which can be done more efficiently if bidi-
rectional communication is considered [1]–[4]. In this paper,
we consider bidirectional relaying in a three-node network,
where a relay node establishes a bidirectional communication
between two other nodes. This concept is also known as
two-way relaying.

In this paper, we consider a two-phase decode-and-forward
protocol as shown in Fig. 1. In the initial multiple access
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Fig. 1. Decode-and-forward bidirectional relaying. (a) In the initial multiple
access (MAC) phase, nodes 1 and 2 transmit their messages m1 and m2 with
rates R2 and R1 to the relay node. (b) In the succeeding broadcast (BC) phase,
the relay forwards the messages to the corresponding receiving nodes.

phase, both nodes transmit their messages to the relay node.
Since we assume the relay to decode both messages, we
end up with the classical multiple access channel (MAC),
see [5] and [6]. In the succeeding broadcast phase, it remains
for the relay to broadcast an optimal re-encoded message based
on the network coding idea so that both nodes are able to
decode the other’s message using their own message from
the previous phase as side information. Note that due to the
available side information at the receiving nodes this channel
differs from the classical broadcast channel. To emphasize
this property, this channel is called broadcast channel (BC)
with receiver side information. In the context of bidirectional
relaying, it is also known as bidirectional broadcast channel.
Capacity achieving strategies for perfect channel state infor-
mation at all nodes can be found in [7]–[10] and it is shown
that the achievable rates for both users may differ although
both nodes receive the same codeword of the relay node. This
is an important difference to the XOR coding approach and
the broadcast of a common message and is permitted by the
available side information at the receiving nodes.

Channel uncertainty is an ubiquitous phenomenon in
wireless systems and should be taken into account for the
design of practical systems, see [11] for a short survey about
reliable communication under channel uncertainty. A well
accepted model for channel uncertainty is to assume that all
nodes do not know the exact channel realization, but only
know that this realization belongs to a pre-specified set of
channels. If this realization remains fixed during the whole
transmission of a codeword, this corresponds to the compound
channel [12]–[14].

The variation of the channel from symbol to symbol in
an unknown and arbitrary manner is an additional effect of
channel uncertainty. This is the concept of arbitrarily varying
channels (AVC) [15]–[17]. Interestingly, for AVCs the random
code and deterministic code capacity need not be equal.
In more detail, Ahlswede showed in his famous work [16]
that the AVC displays a dichotomy behavior: the deterministic
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code capacity either equals the random code capacity or else
is zero. Unfortunately, it was not characterized in detail when
the deterministic code capacity is non-zero. Finally, in [18]
and [19] non-symmetrizability was established as a necessary
and sufficient condition for the AVC to have a non-zero deter-
ministic code capacity. Roughly speaking, a symmetrizable
AVC leads to a zero deterministic code capacity, since such
a channel can “emulate” a validate input which makes it
impossible for the decoder to decide on the correct codeword.
The concept of list decoding might help to overcome such
impairments. The corresponding list code capacity is estab-
lished and analyzed in detail in [20] and [21]. Interestingly, it
is shown that the dichotomy behavior is preserved: the list code
capacity either equals the random code capacity or else is zero.
Interestingly, a complete characterization is established using
an appropriate extension of the concept of symmetrizability.
List decoding for AVCs under state constraints is analyzed
in [22] where it is shown that in this case the corresponding
list code capacity can be positive but strictly smaller than the
random code capacity. Rateless coding approaches for AVCs
are presented in [23] and [24].

A. Related Work

There are some first works on the BC with receiver side
information under channel uncertainty. For example, the com-
pound BC with receiver side information is analyzed in [25],
where the corresponding capacity region is derived. The sce-
nario where the channel states are non-causally known at the
encoder is studied in [26]. There, based on the Gelfand-Pinsker
coding strategy for the single-user case [27], an achievable
rate region and an outer bound are established. The capacity
region is only given for the special case where in addition
one receiver knows the channel states. For the general case, a
precise characterization of the capacity region remains open,
which is in contrast to the single-user case [27], [28].

To the best of our knowledge, there are no works for
the BC with receiver side information for arbitrarily varying
channels, but the single-user AVC is extended to several other
multi-user settings. The arbitrarily varying multiple access
channel (AVMAC) is analyzed in [29]–[31]. The random code
and deterministic code capacity regions are established. It is
shown that the latter may have an empty interior which is
completely characterized and analyzed in terms of an appro-
priate concept of symmetrizability [30], [31]. List decoding
for the AVMAC is studied in [32], but only upper and lower
bounds on the required list sizes are given. For the (general)
arbitrarily varying broadcast channel (AVBC) there are only
partial results known until now. An achievable deterministic
code rate region for the AVBC was established in [29] but it
is not further analyzed when its interior is non-empty. On the
other hand, [33] analyzes an achievable deterministic code rate
region of the AVBC in terms of symmetrizability but imposes
the further assumption of degraded message sets. In [34]
achievable rate regions of the AVBC with degraded channels
and non-causal channel state information at the transmitter are
studied. All these works [29], [33], [34] haven in common that
only achievable rate regions are presented but no converse

results or outer bounds on the capacity regions are given.
In addition, they all do not consider list decoding.

B. Contributions and Paper Organization

In this paper, we study the arbitrarily varying broadcast
channel (AVBC) with receiver side information in detail and
completely solve it. The contributions are as follows. We start
in Section II with some information theoretical and combi-
natorial preliminaries, before we introduce the AVBC with
receiver side information in detail in Section III. As a first
step, in Section IV we establish a complete characterization
of the random code capacity region. The proof of achievability
is based on the results for the compound BC with receiver side
information [25] and the robustification technique [35], [36]
adapted to the corresponding communication scenario. In addi-
tion, we also present the weak converse, which then establishes
the random code capacity region.

Subsequently, we consider the AVBC with receiver side
information under list decoding. We show in Section V that the
list capacity region of the AVBC with receiver side information
either equals its random code capacity region or else has an
empty interior. A similar behavior has been observed for the
single-user AVC under list decoding in [21]. In [21] this was
shown “indirectly” by following the approach of Csiszár and
Narayan [19] without making use of the corresponding result
of the random code capacity. However, we follow the approach
of Ahlswede presented for the point-to-point AVC under
deterministic coding [16]. There, it is proved by combining
a deterministic code with a capacity-achieving random code.
This has to be carefully extended as we have to combine a
list code with different list sizes for both receiving nodes with
a corresponding capacity-achieving random code. This has to
be done in such a way that the final concatenated code is still
a valid list code for the BC with receiver side information,
i.e., it has to satisfy the different list sizes at both receiving
nodes and the probabilities of error must behave as wanted.

It remains to characterize when the list capacity region has
an empty interior. Therefore, in Sections VI and VII we use
an appropriate concept of symmetrizability to establish non-
symmetrizability as a necessary and sufficient condition for the
list capacity region to have a non-empty interior. Furthermore,
we present a weak converse that completely establishes the list
capacity region. We end up with a conclusion in Section VIII.

C. Notation

Discrete random variables are denoted by capital letters
and their corresponding realizations and ranges by lower case
letters and script letters respectively; N and R+ denote the
set of non-negative integers and non-negative real numbers;
all logarithms, exponentials, and information quantities are
taken to the base 2; I (·; ·), H (·), and D(·‖·) are the traditional
mutual information, entropy, and (Kullback-Leibler) informa-
tion divergence; W⊗n is the n-th memoryless extension of
the stochastic matrix W , i.e., W⊗n(yn|xn) := ∏n

k=1 W (yk |xk);
EX [·] is the expectation with respect to X ; P(X ) is the set
of all probability distributions on X ; the product distribution
PX ⊗ PY is defined by the product marginal distributions of its
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components PX and PY , i.e., (PX ⊗ PY )(x, y) = PX (x)PY (y)
for all elements x and y from their respective ranges X and Y;
X − Y − Z denotes a Markov chain of random variables X ,
Y , and Z in this order; (·)c denotes the complement of a
set; PL(M) is the set of all subsets of M with cardinality
exactly L; P̂L(M) is the set of all subsets of M with
cardinality at most L; f (n) ∈ o(g(n)) if limn→∞ | g(n)

f (n) | = 0;

f (n) ∈ O(g(n)) if limn→∞ | g(n)
f (n) | < ∞; lhs := rhs means the

value of the right hand side (rhs) is assigned to the left hand
side (lhs); lhs =: rhs is defined accordingly.

II. PRELIMINARIES

In this paper we extensively make use of the concept of
types from Csiszár and Körner [17], which is briefly reviewed
in the following. Let xn = (x1, . . . , xn) ∈ X n be a sequence
of length n and N(a|xn) be the number of indices i such that
xi = a, i = 1, . . . , n. Then the type of a sequence xn ∈ X n is
the distribution Pxn ∈ P(X ) defined by Pxn (a) := 1

n N(a|xn)
for every a ∈ X . The set of all types of sequences in X n is
denoted by P0(n,X ). The notation extends to joint types in a
natural way. For example the joint type of sequences xn ∈ X n

and yn ∈ Yn is the distribution Pxn,yn ∈ P(X × Y) where
Pxn,yn (a, b) = 1

n N(a, b|xn, yn) for every a ∈ X , b ∈ Y ,
where N(a, b|xn, yn) is the number of indices i such that
(xi , yi ) = (a, b), i = 1, . . . , n.

As in [17] we represent, for notational convenience, (joint)
types of sequences of length n by (joint) distributions of
dummy random variables. We suppress the dependency on
the length n when it is clear from the context. For instance,
the random variables X and Y represent a joint type,
i.e., PXY = Pxn,yn for some xn ∈ X n and yn ∈ Yn .
The set of all sequences of type Pxn is denoted by
τX = {xn : xn ∈ X n, Pxn = PX }. Of course, this notation
extends to joint types and sections in a self-explanatory way,
e.g., τXY = {(xn, yn) : xn ∈ X n, yn ∈ Yn, Pxn,yn = PXY } or
τY |X (xn) = {yn : (xn, yn) ∈ τXY }.

Now let X, Y and X ′, Y ′ be two pairs of random variables on
X ×Y with probability mass functions PXY ∈ P(X ×Y) and
PX ′Y ′ ∈ P(X × Y), respectively. For our proof we will need
the following properties of the (Kullback-Leibler) information
divergence [17, p. 7]

D(PXY ‖PX ′Y ′) = D(PX ‖PX ′ )+D(PY |X‖PY ′|X ′ |PX ) (1)

I (X; Y ) = D(PXY ‖PX ⊗ PY )D(PY |X ‖PY |PX ). (2)

Next, we state as facts some few basic bounds on types
which we will need for our proofs, see [17, Sec. 1.2].

Fact 1: The number of possible types of sequences of length
n is a polynomial in n, e.g.,

|P0(n,X )| ≤ (n + 1)|X |

Fact 2: We have

(n + 1)−|X |2nH(X) ≤ |τX | ≤ 2nH(X), if τX 	= ∅
(n + 1)−|X ||Y |2nH(Y |X) ≤ |τY |X (xn)|

≤ 2nH(Y |X), if τY |X (xn) 	= ∅

Fact 3: For any channel W : X → P(Y),
∑

yn∈τY |X (xn)

W⊗n(yn|xn) = W⊗n(τY |X (xn)|xn)

≤ 2−nD(PXY ‖PX ⊗W )

where W⊗n(yn|xn) := ∏n
k=1 W (yk |xk) and PX ⊗ W denotes

the distribution on X × Y with probability mass function
PX (x)W (y|x). Further, see also [21], for some sn ∈ Sn ,

∑

yn∈τY |X S(xn,sn)

W⊗n(yn|xn) = W⊗n(τY |X S(xn, sn)|xn)

≤ 2−nI (Y ;S|X)

which follows immediately from (1) and (2) by

D(PX SY ‖PX S ⊗ W ) = D(PY |X S‖W |PX S)

= I (Y ; S|X) + D(PY |X ‖W |PX )

≥ I (Y ; S|X).

III. BROADCAST CHANNEL WITH RECEIVER

SIDE INFORMATION

In the following we study the broadcast phase of the decode-
and-forward bidirectional relaying protocol, see Fig. 1. Here,
we assume that the relay has successfully decoded the two
messages the two nodes have sent in the previous multiple
access phase. Now, the relay broadcasts an optimal re-encoded
message based on the network coding idea so that both nodes
can decode the intended message using their own message
from the previous phase as side information.

A. Arbitrarily Varying Broadcast Channel With
Receiver Side Information

The transmission is affected by arbitrarily varying channels,
which is modeled with the help of a finite state set S.
Further, let X and Yi , i = 1, 2, be finite input and output
sets. Then, for a fixed state sequence sn ∈ Sn of length
n and input and output sequences xn ∈ X n and yn

i ∈ Yn
i ,

i = 1, 2, the discrete memoryless broadcast channel is given
by W⊗n(yn

1 , yn
2 |xn, sn) := ∏n

k=1 W (y1,k, y2,k |xk, sk).
Definition 1: The discrete memoryless arbitrarily varying

broadcast channel (AVBC) W is the family

W := {
W⊗n : X n × Sn → P(Yn

1 × Yn
2 )

}
n∈N,sn∈Sn .

Since we do not allow any cooperation between the receiv-
ing nodes, it is sufficient to consider the marginal transition
probabilities W⊗n

i (yn
i |xn, sn), i = 1, 2, only. Further, for any

probability distribution q ∈ P(S) we denote the averaged
broadcast channel by

W q(y1, y2|x) :=
∑

s∈S
W (y1, y2|x, s)q(s) (3)

and the corresponding averaged marginal channels by
W 1,q(y1|x) and W 2,q(y2|x).

For the following analysis we need a concept of sym-
metrizability which distinguishes among different degrees of
symmetry. In more detail, we say a channel W̃i (yi |x1, . . . , xt )
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with input alphabet X t and output alphabet Yi is sym-
metric if for every permutation π on {1, 2, . . . , n} we
have W̃i (yi |x1, . . . , xt ) = W̃i (yi |xπ(1), . . . , xπ(t)) for all
x1, . . . , xt ∈ X and yi ∈ Yi . This leads to the following
definition.

Definition 2: For any ti ≥ 1, i = 1, 2, an AVBC is (Yi , ti )-
symmetrizable if there is a channel U : X ti → P(S) such
that

W̃i (yi |x0, x1, . . . , xti ) :=
∑

s∈S
Wi (yi |x0, s)U(s|x1, . . . , xti ) (4)

is symmetric in x0, x1, . . . , xti for all x0, x1, . . . , xti ∈ X
and yi ∈ Yi . For convenience, we take all AVBCs to be
(Yi , 0)-symmetrizable, i = 1, 2.

Intuitively, a (Yi , ti )-symmetrizable channel can be inter-
preted as a channel where the state sequence can emulate ti
replicas of the channel input. Further, from the definition it is
clear that if an AVBC is (Yi , ti )-symmetrizable, then it is also
(Yi , t ′i )-symmetrizable for all 0 ≤ t ′i ≤ ti , i = 1, 2.

Definition 3: The symmetrizability of an AVBC is defined
by the largest integers t1 and t2 such that the channel is
(Y1, t1)-symmetrizable and (Y2, t2)-symmetrizable. This pair
of largest integers is denoted by (T1, T2).

Remark 1: The concept of symmetrizability for the AVBC
introduced above is a natural extension of the one proposed
for the single-user AVC under list decoding in [20] and [21].
Additionally, we call a (Yi , 1)-symmetrizable channel in the
sense of Definition 2 also a Yi -symmetrizable channel accord-
ing to the terminology used for the single-user AVC in [18]
and [19], which does not distinguish among different degrees
of symmetry.

Remark 2: The symmetrizability presented above consists
of two symmetrizability conditions, i.e., one for each marginal
channel. This goes along with intuition that capacity results
for broadcast channels only depend on the marginal channels.
In addition, this is in contrast to the AVMAC, where nec-
essarily a third, joint symmetrizability condition comes into
play [30], [31].

Remark 3: Based on the observation that the symmetriz-
ability depends only on the marginal channels, it is straight-
forward to construct an example for the AVBC with two
different symmetrizabilities based on the example given
in [21, Sec. IV].

B. List Codes

We consider the standard model with a block code of
arbitrary but fixed length n. Let Mi := {1, . . . , Mi,n } be
the message set at node i , i = 1, 2, which is also known
at the relay node. Further, we make use of the abbreviation
M := M1 × M2.

Definition 4: A deterministic (n, M1,n, M2,n , L1, L2)-list
code CW,list of length n with list sizes (L1, L2) for the AVBC
W with receiver side information consists of codewords

xn
m ∈ X n,

one for each message m = (m1, m2), and list decoders at

nodes 1 and 2

L(1) : Yn
1 × M1 → P̂L1(M2),

L(2) : Yn
2 × M2 → P̂L2(M1)

where P̂L1(M2) is the set of all subsets of M2 with car-
dinality at most L1 and similarly P̂L2(M1) is the set of all
subsets of M1 with cardinality at most L2. This means the list
decoder L(i) maps the received output yn

i and its own message
mi into a list of at most Li messages, i = 1, 2.

When xn
m with m = (m1, m2) has been sent, and yn

1 and yn
2

have been received at nodes 1 and 2, the list decoder at node 1
is in error if m2 is not in L(1)(yn

1 , m1). Accordingly, the list
decoder at node 2 is in error if m1 is not in L(2)(yn

2 , m2). This
allows us to define the probabilities of error for given message
m = (m1, m2) and given state sequence sn ∈ Sn as

e(m, sn|CW,list) :=
∑

(yn
1 ,yn

2 ):m2 /∈L(1)(yn
1 ,m1)

∨m1 /∈L(2)(yn
2 ,m2)

W⊗n(
yn

1 , yn
2 |xn

m, sn)
(5)

and the corresponding marginal probabilities of
error at nodes 1 and 2 by e1(m, sn |CW,list) :=∑

yn
1 :m2 /∈L(1)(yn

1 ,m1)
W⊗n

(
yn

1 |xn
m, sn

)
and e2(m, sn |CW,list) :=

∑
yn

2 :m1 /∈L(2)(yn
2 ,m2)

W⊗n
(
yn

2 |xn
m, sn

)
, respectively. Thus, the

average probability of error for state sequence sn ∈ Sn is
given by

ē(sn |CW,list) := 1

|M|
∑

m∈M
e(m, sn|CW,list) (6)

and the corresponding marginal average probability of error
at node i by ēi (sn |CW,list) := 1

|M|
∑

m∈M ei (m, sn |CW,list),
i = 1, 2. Clearly, we always have ē(sn |CW,list) ≤
ē1(sn |CW,list) + ē2(sn |CW,list).

For given 0 < λ(n) < 1, CW,list is called a
(n, M1,n, M2,n , L1, L2, λ

(n))-list code (with average proba-
bility of error λ(n)) for the AVBC W with receiver side
information if

ē(sn |CW,list) ≤ λ(n) for all sn ∈ Sn .

Definition 5: A rate pair (R1, R2) ∈ R
2+ is said to be

list achievable with list sizes L1, L2 for the AVBC W with
receiver side information if for any δ > 0 there exists
an n(δ) ∈ N and a sequence (C(n)

W,list)n∈N of deterministic
(n, M1,n, M2,n , L1, L2, λ

(n))-list codes such that for all n ≥
n(δ) we have1

1

n
log

(
M2,n

L1

)

≥ R1 − δ and
1

n
log

(
M1,n

L2

)

≥ R2 − δ

while

max
sn∈Sn

ē(sn |CW,list) ≤ λ(n)

with λ(n) → 0 as n → ∞. The set of all achievable rate
pairs with list sizes (L1, L2) is the list capacity region of the

1The rate between the relay and receiving node i with list size Li is denoted
by Ri , i = 1, 2. However, the message associated to rate R1 is denoted by
M2,n which is due to the fact that it originates from node 2 and, thus, looks
“swapped.” The same applies to message M1,n at rate R2.
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AVBC W with receiver side information and is denoted by
RW,list(L1, L2).

Remark 4: The definitions above require that we have to
find codes such that the average probability of error goes to
zero as the block length tends to infinity for all possible state
sequences simultaneously. This means the codes are universal
with respect to the state sequence.

Remark 5: For list sizes L1 = L2 = 1 the list code
CW,list as given in Definition 4 reduces to a usual deterministic
(n, M1,n , M2,n)-code CW,det where each decoder maps its
received sequence into exactly one message. The definitions of
a deterministically achievable rate pair and the deterministic
code capacity region RW,det follow accordingly.

C. Outline

In the Section IV we prove the random code capacity
region of the AVBC with receiver side information, where we
allow the relay and the receivers to coordinate their choice of
encoder and decoders. It will be convenient to use this result to
establish the desired list capacity region, which is done in the
following Sections V-VII. Therefore, in Section V we use the
random code capacity result to establish the general behavior
of the list capacity region similarly to Ahlswede’s dichotomy
result for the single-user AVC. Then, in Section VI and VII
we characterize in detail when the list capacity region equals
the random code capacity region and when it has an empty
interior.

IV. RANDOM CODE CAPACITY REGION

In this section, we restrict the list sizes at the receiving
nodes to one and derive the optimal random coding strategy
for the AVBC with receiver side information. Thereby, the
word “random” refers to the fact that the encoder and decoders
are chosen according to a common random experiment whose
outcome has to be known at all nodes in advance. This leads
directly to the following definition.

Definition 6: A random (n, M1,n, M2,n , Z , μ)-code CW,ran
of length n for the AVBC W with receiver side information
is given by a family CW,ran := {C(z) : z ∈ Z} of deterministic
(n, M1,n , M2,n)-codes

C(z) := {(
xn

m(z), D(1)
m2|m1

(z), D(2)
m1|m2

(z)
) :

m1 ∈ M1,n, m2 ∈ M2,n
}

together with a random variable Z ∈ Z distributed according
to μ ∈ P(Z).

Here, it will be convenient to use the notion of decoding
sets to specify the decoding rule. This means that the decoding
sets at nodes 1 and 2 of one deterministic code C(z), z ∈ Z ,
are given by D(1)

m2|m1
(z) ⊆ Yn

1 and D(2)
m1|m2

(z) ⊆ Yn
2 for all

m1 ∈ M1 and m2 ∈ M2. Since C(z) is a deterministic
code (with list sizes one), the decoding sets must be disjoint.
In more detail, for given m1 at node 1 the decoding sets
must satisfy D(1)

m2|m1
(z) ∩ D(1)

m′
2|m1

(z) = ∅ for m′
2 	= m2, and

similarly for given m2 at node 2 the decoding sets must satisfy
D(2)

m1|m2
(z) ∩ D(2)

m′
1|m2

(z) = ∅ for m′
1 	= m1.

The average probability of error of the deterministic code
C(z), z ∈ Z , for state sequence sn ∈ Sn can be written as

ē(sn |C(z))

:= 1

|M|
∑

m∈M
W⊗n(

(D(1)
m2|m1

(z) × D(2)
m1|m2

(z))c|xn
m(z), sn)

and the corresponding marginal probabilities
of error at nodes 1 and 2 as ē1(sn |C(z)) :=

1
|M|

∑
m∈M W⊗n

1 ((D(1)
m2|m1

(z))c|xn
m(z), sn) and ē2(sn |C(z)) :=

1
|M|

∑
m∈M W⊗n

2 ((D(2)
m1|m2

(z))c|xn
m(z), sn). Then, the average

probability of error of the random code CW,ran for state
sequence sn ∈ Sn is given by

ē(sn |CW,ran) := EZ [ē(sn |C(Z))]
and accordingly the corresponding marginal average probabil-
ity of error at node i by ēi (sn |CW,ran) := EZ [ēi (sn|C(Z))],
i = 1, 2. For given 0 < λ(n) < 1, CW,ran is called a
(n, M1,n, M2,n , Z , μ, λ(n))-code (with average probability of
error λ(n)) for the AVBC W with receiver side information if

ē(sn |CW,ran) ≤ λ(n) for all sn ∈ Sn .

Then the definitions of a randomly achievable rate pair and
the random code capacity region RW,ran follow accordingly.

Remark 6: From the definitions of the codes it is clear that
the deterministic code CW,det is a special or degenerated case
of the random code CW,ran. More precisely, CW,det can be
interpreted as a random code that consists of only one deter-
ministic code. Consequently, the deterministic code capacity
region RW,det is contained in the random code capacity region
RW,ran, i.e., RW,det ⊆ RW,ran.

Theorem 1: The random code capacity region RW,ran of
the AVBC W with receiver side information is given by

RW,ran = RW
where

RW :=
⋃

PX ∈P(X )

{
(R1, R2) ∈ R

2+ :

R1 ≤ inf
q∈P(S)

I (X, Y 1,q) (7a)

R2 ≤ inf
q∈P(S)

I (X, Y 2,q)
}

(7b)

with Y i,q is the random variable associated with the output of
the averaged channel W i,q , see also (3).

In the following subsections we give the proof of the random
code capacity region which is mainly based on Ahlswede’s
robustification technique [35], [36].

A. Compound Broadcast Channel With
Receiver Side Information

The first key idea is to exploit results from the compound
BC with receiver side information. Therefore, we construct a
suitable compound broadcast channel by defining the convex
hull of all averaged broadcast channels, see (3), as

W := {
W q(y1, y2|x)

}
q∈P(S)

.
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We observe that W already corresponds to a com-
pound broadcast channel where each probability distribution
q ∈ P(S) parametrizes one element of the compound chan-
nel W. The capacity region of the compound BC with receiver
side information is known and can be found in [25] which is
restated in the following theorem.

Theorem 2 ([25]): The deterministic code capacity region
RW,det of the compound BC W with receiver side information
is given by

RW,det = RW ,

see also (7).
The achievability of the rates specified by RW ,

see (7a) and (7b), is proved by showing the existence of a
deterministic (n, M1,n , M2,n)-code CW,det for the compound
BC W with receiver side information with arbitrarily small
average probability of error. In more detail, in [25] it is shown
that the average probability of error of CW,det can be bounded
from above by

1

|M|
∑

m∈M
W⊗n

q

(
(D(1)

m2|m1
× D(2)

m1|m2
)c|xn

m

) ≤ λ
(n)

W

for all q ∈ P(S)

with λ
(n)

W = λ
(n)

W,1
+ λ

(n)

W,2
where λ

(n)

W,i
is an upper bound on

the marginal average probability of error at node i , i = 1, 2.
More precisely, for n large enough λ

(n)

W,i
is given by

λ
(n)

W,i
= (n + 1)|X ||Yi |2−n cδ2

2 + (n + 1)|X ||Yi |

1 − (n + 1)|X |2−ncδ2 2−n τ
8

where δ, τ , and c are positive constants, see also [25]. Note
that λ

(n)

W,i
decreases exponentially fast for increasing block

length n.
Together with the definition of the averaged broadcast chan-

nel (3) this immediately implies that for CW,det the probability
of a successful transmission over the compound BC W with
receiver side information is bounded from below by

1

|M|
∑

m∈M
W⊗n

q

(
D(1)

m2|m1
× D(2)

m1|m2
|xn

m

)
> 1 − λ

(n)

W

or equivalently by

1

|M|
∑

m∈M

∑

sn∈Sn

W⊗n(
D(1)

m2|m1
× D(2)

m1|m2
|xn

m, sn)
q⊗n(sn)

> 1 − λ
(n)

W (8)

for all q⊗n = ∏n
i=1 q and q ∈ P(S).

B. Robustification

Next, we follow [35], [36] and use the deterministic code
CW,det for the compound BC W with receiver side information
to construct a random code CW,ran for the AVBC W with
receiver side information.

Let Πn be the group of permutations acting on {1, 2, . . . , n}.
For given sequence sn = (s1, . . . , sn) ∈ Sn and permutation
π ∈ Πn : Sn → Sn we denote the permuted sequence

(sπ(1), . . . , sπ(n)) ∈ Sn by π(sn). Further, we denote the
inverse permutation by π−1 so that π−1(π(sn)) = sn .

Theorem 3 (Robustification Technique [36]): Let f :Sn →
[0, 1] be a function such that for some α ∈ (0, 1) the inequality

∑

sn∈Sn

f (sn)q⊗n(sn) > 1 − α for all q ∈ P0(n,S) (9)

is satisfied. Then the inequality

1

n!
∑

π∈Πn

f
(
π(sn)

)
> 1 − (n + 1)|S|α for all sn ∈ Sn

is also satisfied.
Next, we set

f
(
π(sn)

) = 1

|M|
∑

m∈M
W⊗n(

D(1)
m2|m1

× D(2)
m1|m2

|xn
m, π(sn)

)
.

(10)

With π being the identity map, (10) becomes f (sn) =
1

|M|
∑

m∈M W⊗n(D(1)
m2|m1

× D(2)
m1|m2

|xn
m, sn). Now, with this

and α = λ
(n)

W , the condition (9) of Theorem 3 is fulfilled
by (8). Thus, the robustification technique immediately yields
a random (n, M1,n , M2,n,Πn, μ)-code CW,ran for the AVBC
W with receiver side information given by the family

CW,ran = {
(π−1(xn

m), π−1(D(1)
m2|m1

), π−1(D(2)
m1|m2

)) :
m1 ∈ M1, m2 ∈ M2, π ∈ Πn, μ

}
(11)

with μ the uniform distribution on Πn and

π−1(D(1)
m2|m1

) =
⋃

yn
1 ∈D(1)

m2|m1

π−1(yn
1 ),

π−1(D(2)
m1|m2

) =
⋃

yn
2 ∈D(2)

m1|m2

π−1(yn
2 ).

Since Πn is the group of permutations of size n, the cardinality
of Πn is n! so that the random code CW,ran consists of n!
deterministic (n, M1,n , M2,n)-codes.

From the robustification technique follows that the average
probability of error of CW,ran is bounded from above by

ē(sn|CW,ran) ≤ (n + 1)|S|λ(n)

W =: λ
(n)
W,ran for all sn ∈ Sn .

(12)

The way how we constructed the random code CW,ran
from the deterministic code CW,det has the following con-
sequence. All rate pairs achievable for compound BC W
with receiver side information using the deterministic code
CW,det are also achievable for the AVBC W with receiver side
information using the random code CW,ran. Consequently, the
random code CW,ran actually achieves all rate pairs satisfying
(7a) and (7b) as stated in Theorem 1, which proves the
achievability.
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C. Converse

It remains to show that the presented random coding strategy
actually achieves all possible rate pairs so that no other rate
pairs are achievable.

As a first step it is easy to show that the average
probability of error of the random code CW,ran for the
AVBC W with receiver side information equals the aver-
age probability of error of the random code for the AVBC
with receiver side information obtained by taking the con-
vex closure, i.e. considering channels W qn (yn

1 , yn
2 |xn) :=∑

sn∈Sn W⊗n(yn
1 , yn

2 |xn, sn)qn(sn) for all possible qn =∏n
k=1 qk . Hence, the corresponding achievable rates are the

same, see also [17, Lemma 12.3] and [17, Corollary 12.3]
for the corresponding single-user result. Now, it is clear that
restricting qn to be constant for the whole block length, i.e.,
qn = ∏n

k=1 q , can only increase the achievable rates. But
this corresponds to the compound BC W with receiver side
information. Hence, it is clear that for AVBC W with receiver
side information we cannot achieve higher rates as for the
constructed compound BC W with receiver side information
with random codes. The deterministic rates of the compound
channel are given in Theorem 2. As in [37] for the single-
user compound channel, it can be easily shown that for
the compound BC W with receiver side information the
achievable rates for deterministic and random codes are equal.
Since the constructed random code CW,ran for the AVBC W
with receiver side information already achieves these rates, the
converse is proved.

This finishes the proof of Theorem 1 and therewith estab-
lishes the random code capacity region RW,ran of the AVBC
W with receiver side information.

V. LIST CAPACITY REGION

A random coding strategy as constructed in the previous
section requires common randomness between all nodes, since
the encoder and the decoders depend all on the same random
permutation, see (11), which has to be known to all nodes
in advance. If this kind of resource is not available, one is
interested in deterministic (list) strategies.

Theorem 4: The list capacity region RW,list(L1, L2) with
list sizes (L1, L2) of the AVBC W with receiver side infor-
mation with symmetrizability (T1, T2) is

RW,list(L1, L2) = RW if L1 > T1 and L2 > T2.

If Li ≤ Ti , then we have Ri = 0, i = 1, 2. This means we
have interior(RW,list(L1, L2)) = ∅ if and only if L1 ≤ T1 or
L2 ≤ T2.

The result shows that every AVBC with receiver side
information has a characteristic pair of minimum list sizes
(T1+1, T2+1) that enables a successful bidirectional exchange
of both individual messages in the bidirectional relay network
at all rate pairs (R1, R2) ∈ RW . On the other hand, if Li ≤ Ti ,
then we have for the corresponding rate Ri = 0, i = 1, 2. From
this we can deduce the two cases where one list size is greater
than the symmetrizability and the other one smaller or equal.

Corollary 1: If L1 > T1 and L2 ≤ T2, then the list capacity
region RW,list(L1, L2) is given by

R1 ≤ max
PX ∈P(X )

inf
q∈P(S)

I (X; Y 1,q), R2 = 0.

If L1 ≤ T1 and L2 > T2, then the list capacity region
RW,list(L1, L2) is given by

R1 = 0, R2 ≤ max
PX ∈P(X )

inf
q∈P(S)

I (X; Y 2,q).

In addition, we immediately obtain the deterministic code
capacity region RW,det if we restrict the list sizes at the
receiving nodes to one.

Corollary 2: For a non-Y1-symmetrizable and non-Y2-
symmetrizable AVBC W with receiver side information the
deterministic code capacity region RW,det is given by

RW,det = RW .

We have interior(RW,det) = ∅ if and only if the AVBC
W with receiver side information is Y1-symmetrizable or
Y2-symmetrizable.

In the following we give a characterization of the list capac-
ity region which is mainly based on Ahlswede’s elimination
technique [16]. However, the approach in [16] has to be
carefully extended to work for list codes for the BC with
receiver side information, where each receiving node has a
list decoder of different list size.

A. Random Code Reduction

The first step of the elimination technique [16] is the random
code reduction. Here, we construct a new random code by
selecting a relatively small number of deterministic codes from
the original random code using the following lemma suitable
for the BC with receiver side information.

Lemma 1 (Random Code Reduction): As given in (11) let
CW,ran be a random code for the AVBC W with receiver side
information and let λ

(n)
W,ran be an upper bound on the average

probability of error of this code as specified in (12). For any
ε and K 2 that satisfy

ε > 2λ
(n)
W,ran and K 2 >

2

ε
log(|S|n) (13)

there exist K 2 deterministic codes Ci , i = 1, . . . , K 2 such that

1

K 2

K 2
∑

i=1

ē(sn |Ci) < ε for all sn ∈ Sn . (14)

Proof: A random code reduction for the single-user AVC
was first proposed in [16]. Our proof for the AVBC with
receiver side information is inspired by [17, Lemma 12.8]
where a similar result for the single-user AVC in terms of
maximal probability of error is established.

First, from the random code CW,ran we select K 2 indepen-
dent permutations πi ∈ Πn , i = 1, . . . , K 2 according to the
uniform distribution μ, see (11). Each such permutation πi

specifies one deterministic code and is denoted by Ci in the
following. Then, for given state sequence sn ∈ Sn , we have

P

{ 1

K 2

∑

i

ē(sn |Ci ) ≥ ε
}

= P

{
2
∑

i ē(sn|Ci ) ≥ 2K 2ε
}

≤ 2−K 2ε
E

[
2
∑

i ē(sn|Ci )
]

(15)
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where the last step follows from Markov’s inequality. Since
the random variables Ci , i = 1, . . . , K 2 are independent and
identically distributed, we get for the expectation

E

[
2
∑

i ē(sn|Ci )
]

= E

[
2ē(sn|C1)

]K 2

≤ (
1 + E

[
ē(sn |C1)

])K 2

≤ (
1 + λ

(n)
W,ran

)K 2

where we further used the inequality 2x ≤ 1 + x , 0 ≤ x ≤ 1.
This and (15) yield

P

{ 1

K 2

∑

i

ē(sn |Ci ) ≥ ε
}

≤ 2−K 2ε
(
1 + λ

(n)
W,ran

)K 2

≤ 2−K 2(ε−λ
(n)
W,ran).

Finally, with (13) this implies

P

{ 1

K 2

∑

i

ē(sn |Ci ) ≥ ε for all sn ∈ Sn
}

≤ |S|n2−K 2(ε−λ
(n)
W,ran). (16)

This means that there exist a collection of deterministic codes
Ci , i = 1, . . . , K 2 which satisfy (14) proving the lemma.

The random code reduction shows that for any random
code there exists another “reduced” random code which is
uniformly distributed over K 2 deterministic codes with an
average probability of error less than ε under the assumption
that (13) holds.

A direct consequence of Lemma 1 is that for any random
code CW,ran which achieves the random code capacity of
the AVBC W with receiver side information, there exists
another “reduced” random code C̃W,ran which does likewise.
Furthermore, from [16] we know that it is sufficient to select
no more than K 2 = n2 deterministic codes to obtain C̃W,ran
with the desired properties. This can easily be seen in (16)
where the choice K 2 = n2 leads to a code whose probability
of error exceeds ε with a super exponentially small probability
since |S|n grows exponentially in n only.

In more detail, for any ε > 0 and sufficiently large n there
exist n2 deterministic codes

Ci := {(
π−1

i (xn
m), π−1

i (D(1)
m2|m1

), π−1
i (D(2)

m1|m2
)
) :

m1 ∈ M1, m2 ∈ M2
} ∈ CW,ran,

i = 1, . . . , n2, such that

ē(sn |C̃W,ran) = 1

n2

∑

i

ē(sn |Ci ) < ε =: λ̃
(n)
W,ran

for all sn ∈ Sn . (17)

The “reduced” random code C̃W,ran with “exponentially few”
elements is given by

C̃W,ran := {Ci : i = 1, . . . , n2}

where the index i is drawn according to the uniform
distribution on {1, . . . , n2}. Clearly, the “reduced” random
code C̃W,ran also achieves the random code capacity of the
AVBC W with receiver side information.

Fig. 2. Three-phase protocol that achieves the list capacity region
RW,list(L1, L2) of the AVBC W with receiver side information. In the first
two phases, the relay uses list codes for the classical point-to-point AVC to
inform both receiving nodes which random code is used in the following third
phase.

B. Elimination of Randomness

One way to ensure that the decoders are chosen according to
the same random permutation as the encoder, is to inform the
receivers which one is used by the encoder. Consequently, first
the transmitter has to communicate the chosen permutation to
the receivers and then transmits the message according to the
randomly selected code. If the number of all possible codes
could be kept small enough, the transmission of those addi-
tional information would not cause an essential loss in rate.
Inspired by this idea we establish the following behavior of the
list capacity region which is similar to Ahlswede’s dichotomy
result for the single-user AVC. In more detail, we show in
the following that the list capacity region RW,list(L1, L2)
for the AVBC W with receiver side information displays the
following behavior:

RW,list(L1, L2)=RW,ran if interior(RW,list(L1, L2)) 	= ∅.

(18)

Up to now we have constructed a random code with
“exponentially few” elements that achieves the random code
capacity of the AVBC W with receiver side information. The
next step of the elimination technique [16] is the elimination
of randomness. This means that we convert the “reduced”
random code into a list code by adding short prefixes to the
original codewords to inform the decoders which of the n2

deterministic codes is actually used [16], [17]. Clearly, this is
only possible, if the list capacity region RW,list(L1, L2) fulfills
interior(RW,list(L1, L2)) 	= ∅, which means that transmission
at positive rates is possible to both receivers.

We propose a three-phase protocol as depicted in Fig. 2.
Prior to any transmission, the relay chooses an index
i ∈ {1, . . . , n2} uniformly at random for the random code.
In the first two phases of the protocol, the relay uses then
list codes with list sizes L1 and L2 respectively to inform
both receiving nodes which i ∈ {1, . . . , n2} was chosen. This
indicates which out of the n2 deterministic codes will be used
in the third phase. After the two phases, the relay and both
receiving nodes have established common randomness. Thus,
in the third phase, a random code can be used where encoder
and decoders are chosen according to i ∈ {1, . . . , n2}. We have
to ensure that the resources spent in the first two phases to
inform the receiving nodes are negligible so that there is no
loss in overall rate.
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Since interior(RW,list(L1, L2)) 	= ∅, for the first to phases
there exists for sufficiently large n sequences of ordinary list
codes C1

pre and C2
pre with sequences

xkn
i ∈ X kn , xln

i ∈ X ln (19)

of length kn and ln for all i = 1, . . . , n2, respectively, and
ordinary list decoders at nodes 1 and 2

L(1)
1 : Ykn

1 → P̂L1({1, . . . , n2})
L(2)

2 : Y ln
2 → P̂L2({1, . . . , n2})

and average probabilities of error satisfying

max
skn ∈Skn

1

n2

∑

i∈{1,...,n2}

∑

ykn
1 :i /∈L(1)

1 (ykn
1 )

W kn
1 (ykn

1 |xkn
i , skn ) ≤ λ(kn )

pre

(20a)

max
sln ∈S ln

1

n2

∑

i∈{1,...,n2}

∑

yln
2 :i /∈L(2)

2 (yln
2 )

Wln
2 (yln

2 |xln
i , sln ) ≤ λ(ln )

pre .

(20b)

Then to transmit the message m = (m1, m2) ∈ M having
i ∈ {1, . . . , n2} available, the relay transmit the concatenated
codeword

xkn+ln+n
m (i) = (

xkn
i , xln

i , π−1
i (xn

m)
)

(21)

where xkn
i and xln

i are codewords of the corresponding single-
user list codes, see (19) to inform the receiving nodes about
i ∈ {1, . . . , n2}. As the amount is polynomial in n, we
have kn, ln of order O(log n) so that kn

n , ln
n → 0 as n → ∞.

The signals ykn+ln+n
1 and ykn+ln+n

2 are received by nodes 1
and 2 which use list decoders of sizes L1 and L2 respectively
to obtain a list of possible realizations i ∈ {1, . . . , n2} from
the first and second phase respectively. Based on these lists,
the receiving nodes create list decoders for the message
m = (m1, m2) ∈ M transmitted in the third phase, i.e.,

L(1)
3 (yn

1 ) = {
m2 : ∃ i ∈ L(1)

1 (ykn
1 ) and yn

1 ∈ π−1
i (D(1)

m2|m1
)
}

L(2)
3 (yn

2 ) = {
m1 : ∃ i ∈ L(2)

2 (yln
2 ) and yn

2 ∈ π−1
i (D(2)

m1|m2
)
}
.

Thus, for any ykn+ln+n
1 let i1, i2, . . . , iL ′

1
with L ′

1 ≤ L1 the list

L(1)
1 (ykn

1 ) = {i1, i2, . . . , iL ′
1
}, the constructed final list decoder

L(1)(ykn+ln+n
1 ) = (L(1)

1 (ykn
1 ),L(1)

3 (yn
1 )

)

= {
(i, m2) : i ∈ {i1, . . . , iL ′

1
} and

yn
1 ∈ π−1

i (D(1)
m2|m1

)
}

defines a valid list decoder for receiving node 1 with list size
not greater than L1 as required in Definition 4. The list decoder
L(2) at receiving node 2 with list size not greater than L2 is
defined accordingly.

Next, we want to show that the error probabilities of the final
concatenated list code CW,list are small as well. We present the
analysis for receiving node 1, the other follows accordingly.

We define

ē(skn+ln+n |CW,list) = 1

n2

1

|M|
∑

i∈{1,...,n2}

∑

m∈M
×

∑

ykn+ln+n
1 :

(i,m2)/∈L(1)(ykn+ln+n
1 )

W kn+ln+n
1

(
ykn+ln+n

1 |xkn+ln+n
m (i), skn+ln+n) (22)

and have to show that

max
skn+ln+n∈Skn+ln+n

ē(skn+ln+n |CW,list) ≤ λ(n), (23)

see Definition 5.
Now, if (i, m2) /∈ L(1)(ykn+ln+n

1 ), then either a) i /∈
L(1)

1 (ykn
1 ) or b) i ∈ L(1)

1 (ykn
1 ) and we have yn

1 /∈ π−1
j (D(1)

m2|m1
)

for all j ∈ L(1)
1 (ykn

1 ). Accordingly, we define the error events

E1(i) := {
ykn+ln+n

1 : i /∈ L(1)
1 (ykn

1 )
}

E2(i, m2) := {
ykn+ln+n

1 : i ∈ L(1)
1 (ykn

1 ) and ∀ j ∈ L(1)
1 (ykn

1 )

we have yn
1 /∈ π−1

j (D(1)
m2|m1

)
}

so that
{

ykn+ln+n
1 : (i, m2) /∈ L(1)(ykn+ln+n

1 )
} ⊂ E1(i) ∪ E2(i, m2).

With this, the average probability of error in (22) can be
bounded from above by

ē(skn+ln+n |CW,list)

≤ 1

n2

1

|M|
∑

i∈{1,...,n2}

∑

m∈M

×
( ∑

ykn+ln+n
1 ∈E1(i)

W kn+ln+n
1

(
ykn+ln+n

1 |xkn+ln+n
m (i), skn+ln+n)

+
∑

ykn+ln+n
1 ∈E2(i,m2)

W kn +ln+n
1

(
ykn+ln+n

1 |xkn+ln+n
m (i), skn+ln+n)

)

where we bound both terms individually. For the first term we
observe that

∑

skn+ln+n∈E1(i)

W kn+ln+n
1

(
ykn+ln+n

1 |xkn+ln+n
m (i), skn+ln+n)

=
∑

ykn
1 :i /∈L(1)

1 (ykn
1 )

W kn
1

(
ykn

1 |xkn
i , skn

)

where the equality follows from the concatenated structure of
the codewords (21) and the fact that the error event E1(i) only
depends on the first part. Thus, by (20a) we end up with

1

n2

1

|M|
∑

i∈{1,...,n2}

∑

m∈M

∑

i /∈L(1)
1 (ykn

1 )

W kn
1

(
ykn

1 |xkn
i , skn

)

= 1

n2

∑

i∈{1,...,n2}
W kn

1

(
ykn

1 |xkn
i , skn

) ≤ λ(kn )
pre .

For the second event we observe that if ykn+ln+n
1 ∈ E2(i, m2),

then we have i ∈ L(1)
1 (ykn

1 ) and yn
1 /∈ π−1

i (D(1)
m2|m1

) so that

E2(i, m2)⊂
{

ykn+ln+n
1 : i ∈ L(1)

1 (ykn
1 ) and yn

1 /∈ π−1
i (D(1)

m2|m1
)
}
.
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With this we obtain for the second term
∑

ykn+ln+n
1 ∈E2(i,m2)

W kn +ln+n
1

(
ykn+ln+n

1 |xkn+ln+n
m (i), skn+ln+n)

≤
∑

ykn+ln+n
1 :i∈L(1)

1 (ykn
1 )

and yn
1 /∈π−1

i (D(1)
m2|m1

)

W kn+ln+n
1

(
ykn+ln+n

1 |xkn+ln+n
m (i), skn+ln+n)

≤
∑

yn
1 :yn

1 /∈π−1
i (D(1)

m2|m1
)

W n
1

(
yn

1 |π−1
i (xn

m), sn)

= W n
1

(
(π−1

i (D(1)
m2|m1

))c|π−1
i (xn

m), sn)

where the last inequality follows from the concatenated struc-
ture of the codewords (21) and the last equality from the
definition of the decoding sets of random codes. Thus,

1

n2

1

|M|
∑

i∈{1,...,n2}

∑

m∈M
W n

1

(
(π−1

i (D(1)
m2|m1

))c|π−1
i (xn

m), sn)

≤ λ̃
(n)
W,ran

since it is a “good” random code according to Definition 6.
Since λ̃

(n)
W,ran and λ

(kn )
pre become arbitrary small, the final error

(23) is small as well establishing the desired behavior of the
error probability.

Moreover, the rate of the final list code CW,list from the
relay node to node 1 is given by

1

kn + ln + n
log

(
2nM2,n

L1 L2

)

= 1

kn + ln + n

(

log M2,n + log

(
n

L1

)

+ log

(
n

L2

))

= 1
kn+ln

n + 1

1

n
log M2,n

+ 1

1 + n
kn+ln

1

kn + ln

(

log

(
n

L1

)

+ log

(
n

L2

))

−→
n→∞ R1.

since 1
kn+ln

n +1
→ 1 and 1

1+ n
kn+ln

→ 0 as n → ∞ and

1
n log M2,n = R1. Similarly, we get 1

kn+ln+n log(
2nM1,n
L1 L2

) → R2
for the rate from the relay node to node 2. This shows that the
overall rate of the final list code is only negligibly affected by
the addition of the prefixes.

Consequently, all rate pairs achievable with the ran-
dom code CW,ran are also achievable with the list code
CW,list with arbitrarily small average probability of error if
interior(RW,list(L1, L2)) 	= ∅ as stated in (18).

Remark 7: Due to the product structure of CW,list this code
is a special case of a list code for the AVBC W with receiver
side information, see Definition 4, and consequently, CW,list
might not achieve the maximal achievable rates. But the
converse in Section VII-D shows that CW,list actually achieves
all possible rate pairs so that this product structure is already
optimal.

VI. SYMMETRIZABILITY

Already Blackwell, Breiman, and Thomasian observed that
under certain conditions the deterministic code capacity of the

single-user AVC is zero [15]. Based on an idea of Ericson [18],
Csiszár and Narayan showed that non-symmetrizability is a
necessary condition for the single-user AVC to have a non-
zero capacity [19]. Independently, Blinovsky, Narayan, and
Pinsker [20] and Hughes [21] extended this idea to the case
of list decoding.

Here, we want to establish similar results for the AVBC with
receiver side information. For this purpose we use the concept
of symmetrizability as introduced in Section III-A and define
the maximum single-user rates as

Ri,max := max
PX ∈P(X )

inf
q∈P(S)

I (X, Y i,q ), i = 1, 2.

The following theorem relates the symmetrizability and the
maximum single-user rates.

Theorem 5: If Ri,max = 0, then the AVBC W with receiver
side information is (Yi , ti )-symmetrizable for all ti ≥ 1, i =
1, 2. If Ri,max > 0, then any (Yi , ti )-symmetrizable AVBC W
with receiver side information satisfies

ti ≤ log(min{|Yi |, |S|})
Ri,max

(24)

Proof: The proof can be found in Appendix A.
It follows that for any AVBC with receiver side information,

whose random code capacity region has a non-empty interior,
the symmetrizability is always finite. With the result in Theo-
rem 4 about the list capacity region, this implies that the list
sizes at the receiving nodes are also finite. The next lemma
presents a lower bound on the average probability of error in
a similar way as in [21] for the single-user case.

Lemma 2: Let (T1, T2) be the symmetrizability of an AVBC
W with receiver side information. Then any list code CW,list of
block length n with M1,n M2,n messages and L1 ≤ T1 satisfies

max
sn∈Sn

ē1(s
n |CW,list) ≥

(

1 − L1

K1 + 1

) (
M2,n − K1

M2,n

)

where K1 = min{M2,n −1, T1}. Similarly, any list code CW,list
of block length n with M1,n M2,n messages and L2 ≤ T2
satisfies

max
sn∈Sn

ē2(s
n |CW,list) ≥

(

1 − L2

K2 + 1

) (
M1,n − K2

M1,n

)

where K2 = min{M1,n − 1, T2}.
Proof: The proof can be found in Appendix B.

The lemma indicates when the interior of the list capac-
ity region of the AVBC W with receiver side information
will be empty. In more detail, if Li ≤ Ti , i = 1, 2,
then maxsn∈Sn ēi (sn |CW,list) > 0, i = 1, 2, which results
in interior(RW,list(L1, L2)) = ∅. Consequently, Li > Ti ,
i = 1, 2 is a necessary condition for RW,list(L1, L2) =
RW,ran. In other words, for fixed list sizes (L1, L2), non-
(Y1, L1)-symmetrizability and non-(Y2, L2)-symmetrizability
is necessary for RW,list(L1, L2) = RW,ran.

VII. ACHIEVING POSITIVE RATES

In this section, we present a coding strategy that achieves
the desired rates as specified in Theorem 4 if Li > Ti , i = 1, 2.
Moreover, this immediately shows that Li > Ti , i = 1, 2, is
also a sufficient condition for interior(RW,list(L1, L2)) 	= ∅.
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The coding strategy in the following is based on [21] where
a similar strategy is presented for the single-user case.

A. Coding Strategy

To achieve positive rates we need a suitable set of code-
words xn

m1,m2
, m1 = 1, . . . , M1,n , m2 = 1, . . . , M2,n , with

properties as stated in the following lemma.
Lemma 3: For any L1 ≥ 1, L2 ≥ 1, ε > 0,

n ≥ max{n0(ε, L1), n0(ε, L2)}, M1,n ≥ L22nε , M2,n ≥
L12nε , and given type PX , there exist codewords xn

m1,m2
∈ X n ,

m1 = 1, . . . , M1,n , m2 = 1, . . . , M2,n , each of type PX , such
that for every xn ∈ X n , sn ∈ Sn , and every joint type PX X L1 S
with X L1 = X1, X2, . . . , X L1 we have for each m1 ∈ M1

∣
∣
{
m′

2 : (xn, xn
m1,m′

2
, sn) ∈ τX Xk S

}∣
∣

≤ 2n(|R1−I (Xk ;X S)|++ε) (25a)
1

M2,n

∣
∣
{
m2 : (xn

m1,m2
, sn) ∈ τX S

}∣
∣

≤ 2−n ε
2 if I (X; S) ≥ ε (25b)

1

M2,n

∣
∣
{
m2 : (xn

m1,m2
, xn

m1,m′
2
, sn) ∈ τX Xk S

for some m′
2 	= m2

}∣
∣ ≤ 2−n ε

2

if I (X; Xk S) − |R1 − I (Xk; S)|+ ≥ ε (25c)

for k = 1, . . . , L1. Moreover, if R1 < mink I (Xk ; S), then
xn

m1,m2
, m1 = 1, . . . , M1,n , m2 = 1, . . . , M2,n , further satisfy

∣
∣
{J ∈ PL1(M2) : (xn, xn

m1,J , sn) ∈ τX X L1 S

}∣
∣ ≤ 2nε (25d)

1

M2,n

∣
∣
{
m2 : (xn

m1,m2
, xn

m1,J , sn) ∈ τX X L1 S

for some J ∈ PL1(M2\{m2})
}∣
∣ ≤ 2−n ε

2

if I (X; X L1 S) ≥ ε (25e)

with J = { j1, . . . , jL1} ∈ PL1(M2) and xn
m1,J denotes the

ordered L1-tuple (xn
m1, j1

, xn
m1, j2

, ...xn
m1, jL1

) where the indices
are ordered as j1 < j2 < · · · < jL1. Similarly, for every
xn ∈ X n , sn ∈ Sn , and every joint type PX X L2 S we have for
each m2 ∈ M2

∣
∣
{
m′

1 : (xn, xn
m′

1,m2
, sn) ∈ τX Xk S

}∣
∣

≤ 2n(|R2−I (Xk ;X S)|++ε) (25f)
1

M1,n

∣
∣
{
m1 : (xn

m1,m2
, sn) ∈ τX S

}∣
∣

≤ 2−n ε
2 if I (X; S) ≥ ε (25g)

1

M1,n

∣
∣
{
m1 : (xn

m1,m2
, xn

m′
1,m2

, sn) ∈ τX Xk S

for some m′
1 	= m1

}∣
∣ ≤ 2−n ε

2

if I (X; Xk S) − |R2 − I (Xk; S)|+ ≥ ε (25h)

for k = 1, . . . , L2. Moreover, if R2 < mink I (Xk; S),
then xn

m1,m2
, m1 = 1, . . . , M1,n , m2 = 1, . . . , M2,n , further

satisfy
∣
∣
{J ′ ∈ PL2(M1) : (xn, xn

J ′,m2
, sn) ∈ τX X L2 S

}∣
∣ ≤ 2nε (25i)

1

M1,n

∣
∣
{
m1 : (xn

m1,m2
, xn

J ′,m2
, sn) ∈ τX X L2 S

for some J ′ ∈ PL2(M1\{m1})
}∣
∣ ≤ 2−n ε

2

if I (X; X L2 S) ≥ ε (25j)

with J ′ = { j ′
1, . . . , j ′

L2
} ∈ PL2(M1) and xn

J ′,m2
denotes

the ordered L2-tuple (xn
j ′
1,m2

, xn
j ′
2,m2

, . . . , xn
j ′
L2

,m2
) where the

indices are ordered as j ′
1 < j ′

2 < · · · < j ′
L2

.
Sketch of Proof: We have to show that M1,n M2,n with

M1,n = 2nR2 and M2,n = 2nR1 randomly selected codewords
will possess, with probability arbitrarily close to one, the
properties (25a)-(25j). Basically, the desired properties follow
from [21]. For each m1 ∈ M1 the proof technique of
[21, Lemma 1] establishes the properties (25a)-(25e) and,
similarly, again for each m2 ∈ M2 the proof technique of
[21, Lemma 1] establishes the properties (25f)-(25j). The
details are omitted for brevity.

The proof of the lemma shows that these good codewords
are obtained by randomly selecting codewords from the set
of sequences of a fixed type. The collection of selected
codewords will possess the desired properties with probability
arbitrarily close to 1.

B. Decoding Strategy

A crucial part is to define suitable decoding rules at the
receiving nodes 1 and 2. For the single-user AVC with list
size one Csiszár and Narayan use in [19] a generalized diver-
gence typicality decoder based on an idea of Dobrushin and
Stambler [38] which decides on the basis of a joint typicality
test together with a threshold test using empirical mutual
information quantities. Blinovsky et. al. [20] and Hughes
[21] use a generalization of the above mentioned decoder
that is modified to apply to greater list sizes. We follow
their approach and define for this purpose a family of joint
distributions PX SYi of random variables X , S, and Yi with
values in X , S, and Yi , respectively, by

Dηi := {
PX SYi : D(PX SYi ‖PX ⊗ PS ⊗ Wi ) ≤ ηi

}
, i = 1, 2,

with ηi ≥ 0 and where PX ⊗ PS ⊗ Wi denotes a joint
distribution on X × S × Yi with probability mass function
PX (x)PS(s)Wi (yi |x, s). In particular, we have PX SYi ∈ D0 if
and only if

PX SYi (x, s, yi ) = PX (x)PS(s)Wi (yi |x, s).

With this we are able to define the decoding rule at node 1
for list size L1 as follows.

Definition 7: For given codewords xn
m1,m2

∈ τX , m1 =
1, . . . , M1,n, 1, m2 = 1, . . . , M2,n , and (small) η1 > 0 the
decoding rule L(1) : Yn

1 × M1 → P̂L1(M2) at node 1 is
defined as follows: we have m2 ∈ L(1)(yn

1 , m1) if and only if
i) there exists an sn ∈ Sn such that

Pxn
m1,m2

,sn,yn
1

∈ Dη1
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ii) for each choice of L1 other distinct codewords
xn

m1, j1
, . . . , xn

m1, jL1
, where each satisfies

Pxn
m1, ji

,sn
i ,yn

1
∈ Dη1 1 ≤ i ≤ L1

for some sn
i ∈ Sn , we have

I (XY1; X L1 |S) ≤ η1

where X L1 = X1, X2, . . . , X L1 and PX X L1 SY1
is the joint

type of (xn
m1,m2

, xn
m1, j1

, . . . , xn
m1, jL1

, sn, yn
1 ).

The decoding rule L(2) : Yn
2 ×M2 → P̂L2(M1) at node 2

with list size L2 is defined accordingly with (small) constant
η2 > 0. To establish the list capacity region for Li > Ti ,
i = 1, 2 (see Theorem 4), we have to ensure that the decoding
rule as specified in Definition 7 is well defined. This means
that the decoding rule satisfy the given constraints on the
list sizes, i.e., |L(1)(yn

1 , m1)| ≤ L1 for all m1 ∈ M1 and
|L(2)(yn

2 , m2)| ≤ L2 for all m2 ∈ M2. We show that the
decoding rule already satisfies |L(i)(yn

i , mi )| ≤ Ti + 1 for all
yn

i ∈ Yn
i and mi ∈ Mi , i = 1, 2, which is clearly sufficient.

Here is where the symmetrizability conditions come in.
Lemma 4: Let β > 0, then for a sufficiently small ηi ,

i = 1, 2, no ensemble X Ti +2, STi +2, Yi can simultaneously
satisfy

min
x

PX (x) ≥ β

and

PXk = P, PXk SkYi ∈ Dηi

I (XkYi ; X Ti +2
k |Sk) ≤ ηi 1 ≤ k ≤ Ti + 2 (26)

with X Ti +2
k = X1, . . . , Xk−1, Xk+1, . . . , XTi +2.

Proof: The proof can be found in [21, Lemma 2].

C. Positive Rates

So far we defined coding and decoding rules. Next, we show
that this strategy is sufficient to achieve the desired rates if the
list sizes are great enough, which means Li > Ti , i = 1, 2.
Clearly, it suffices to show this for Lk = Tk + 1, since any
rate pair achievable with these list sizes is also achievable with
greater list sizes.

Lemma 5: Let Li = Ti + 1, i = 1, 2, and β > 0, δ > 0.
For any type PX satisfying minx PX (x) ≥ β, there exists
a list code CW,list of block length n ≥ n2 with list sizes
(L1, L2) and codewords xn

m1,m2
∈ τX , m1 = 1, . . . , M1,n ,

m2 = 1, . . . , M2,n , such that

R1 > inf
q∈P(S)

I (X, Y 1,q) − δ, R2 > inf
q∈P(S)

I (X, Y 2,q) − δ,

while
max

sn∈Sn
ēi (s

n |CW,list) < 2−nγi , i = 1, 2, (27)

where n2 and γi > 0 depend only on β, δ, and the AVBC W
with receiver side information.

Proof: The proof follows [21, Lemma 3] where a similar
result is shown for the single-user AVC. Let xn

m1,m2
∈ τX ,

m1 = 1, . . . , M1,n , m2 = 1, . . . , M2,n , be codewords with
properties as specified in Lemma 3 and R1 = 1

n log(
M2,n
L1

) and

R2 = 1
n log(

M1,n
L2

). Let the list decoders L(1) and L(2) be as
given in Definition 7. By Lemma 4 we can choose η1 and η2
small enough to ensure that |L(i)(yn

i , mi )| ≤ Ti + 1 for all
yn

i ∈ Yn
i and mi ∈ Mi , i = 1, 2. Now, we have to show that

(27) is satisfied, i.e., the decoding error at the receiving nodes
vanishes. With the properties of the codewords, see Lemma 3,
and the decoding rule, see Definition 7 and Lemma 4, this
can be shown analogously to [21, Lemma 3], where a similar
result is shown for the single-user case. We omit the details
for brevity.

D. Converse

To complete the proof of Theorem 4 it remains to show
that the presented strategy actually achieves all possible rate
pairs so that no other rate pairs are achievable. For Li ≤ Ti

the converse part is already established by Lemma 2, since
it shows that for Li ≤ Ti no positive rates are achievable.
Consequently, it remains to consider the case Li > Ti ,
i = 1, 2. To avoid trivialities we further assume L1 ≤ M2,n

and L2 ≤ M1,n . We need a version of Fano’s lemma for list
decoding.

Lemma 6: Let U be a random variable with values in
M := {1, . . . , M} and V a random variable with values in
P̂L(M), i.e., the set of all subsets of M that contains at most
L elements. Then

H (U |V ) ≤ h
(
P{U /∈ V }) + log L + P{U /∈ V } log

( M

L
− 1

)

with h(·) the binary entropy.
Proof: The proof can be found in [39].

To prove the converse we have to show that any given
sequence of (n, M1,n , M2,n , L1, L2, λ

(n))-list codes with list
sizes Li > Ti , i = 1, 2, and λ(n) → 0 must satisfy

R2 = 1

n
log

(
M1,n

L2

)

≤ inf
q∈P(S)

I (X, Y 2,q) + o(1) (28a)

R1 = 1

n
log

(
M2,n

L1

)

≤ inf
q∈P(S)

I (X, Y 1,q) + o(1) (28b)

for joint probability distributions {PX (x)W q(y1, y2|x)}q∈P(S).
As a first step it is easy to show that any list code that is a

good code for an AVBC with receiver side information is also
a good code for an appropriately constructed compound BC
with receiver side information. In more detail, let CW,list be
a (n, M1,n, M2,n , L1, L2, λ

(n))-list code for an AVBC W with
receiver side information with average probability of error at
node i , i = 1, 2,

ēi (s
n |CW,list) ≤ λ(n) for all sn ∈ Sn . (29)

Since (29) holds for all sn ∈ Sn , it immediately follows that
the same is also true for any affine combination, i.e.,
∑

sn∈Sn

ēi (s
n |CW,list)q

⊗n(sn) ≤ λ(n) for all q ∈ P(S). (30)

With the definition of the probability of error, see (5) and (6),
for receiving node 1 Equation (30) reads as

∑

sn∈Sn

1

|M|
∑

yn
1 :m2 /∈L(1)(yn

1 ,m1)

W⊗n
1 (yn

1 |xn
m, sn)q⊗n(sn) ≤ λ(n)

for all q ∈ P(S)
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or equivalently with the definition of an averaged broadcast
channel, see (3), as

1

|M|
∑

yn
1 :m2 /∈L(1)(yn

1 ,m1)

W
⊗n
1,q(yn

1 |xn
m) ≤ λ(n)

for all q ∈ P(S). (31)

The same arguments leads for receiving node 2 to
1

|M|
∑

yn
2 :m1 /∈L(2)(yn

2 ,m2)
W

⊗n
2,q(yn

2 |xn
m) ≤ λ(n) for all q ∈ P(S).

Since (31) holds for all q ∈ P(S), the list code CW,list is also a
good code for the compound BC W = {W q(y1, y2|x)}q∈P(S).
Consequently for the AVBC W with receiver side information
we cannot achieve higher rates as for the constructed com-
pound BC W with receiver side information. Therefore, to
establish the converse result for the AVBC W , it remains to
show that the rates for the compound BBC W are already
bounded from above by (28).

Furthermore, it is sufficient to show that for a specific
q ∈ P(S) the rates are bounded by

R1 ≤ I (X, Y 1,q)+o(1) and R2 ≤ I (X, Y 2,q)+o(1). (32)

Since for the compound BC W with receiver side information
the rates have to satisfy (32) for all possible q ∈ P(S), the
rates are immediately bounded by the corresponding infima
infq∈P(S) I (X, Y 1,q) + o(1) and infq∈P(S) I (X, Y 2,q) + o(1).

Now we are in the position to prove (32). Let CW,list be
any (n, M1,n, M2,n , L1, L2, λ

(n))-list code with

1

|M1|
∑

m1∈M1

1

|M2|
∑

m2∈M2

∑

yn
1 :m2 /∈L(1)(yn

1 ,m1)

×W
⊗n
1,q(yn

1 |xn
m1,m2

) ≤ λ
(n)
1 ,

1

|M2|
∑

m2∈M2

1

|M1|
∑

m1∈M1

∑

yn
2 :m1 /∈L(2)(yn

2 ,m2)

×W
⊗n
2,q(yn

2 |xn
m1,m2

) ≤ λ
(n)
2 .

Let us consider random variables Ui , Xn , Y n
i , i = 1, 2, with

values in Mi , X n , Yn
i , i = 1, 2, respectively, and with

P{U1 = m1, U2 = m2, Xn = xn, Y n
1 = yn

1 , Y n
2 = yn

2 }
= 1

|M1||M2| p(xn
m1,m2

|m1, m2)W
⊗n
q (yn

1 , yn
2 |xn

m1,m2
)

= 1

|M1||M2| p(xn
m1,m2

|m1, m2)

× W
⊗n
1,q(yn

1 |xn
m1,m2

)W
⊗n
2,q(yn

2 |xn
m1,m2

),

where p(xn
m1,m2

|m1, m2) = 1 if xn
m1,m2

is the codeword
corresponding to m = (m1, m2) or is equal to 0 else. Further,
let V1 and V2 be random variables with values in P̂L1(M2)

and P̂L2(M1), respectively, and set V1 := L(1)(Y n
1 , U1) and

V2 := L(2)(Y n
2 , U2).

By definition

P{U2 /∈ V1} =
∑

m2∈M2

P{U2 = m2, m2 /∈ L(1)(Y n
1 , m1)}

= 1

|M|
∑

m∈M

∑

xn
m1,m2

∈X n

∑

yn
1 :m2 /∈L(1)(yn

1 ,m1)

×p(xn
m1,m2

|m1, m2)W
⊗n
1,q(yn

1 |xn
m1,m2

)

= 1

|M|
∑

m∈M

∑

yn
1 :m2 /∈L(1)(yn

1 ,m1)

W
⊗n
1,q(yn

1 |xn
m1,m2

)

= 1

|M1|
∑

m1∈M1

1

|M2|
∑

m2∈M2

∑

yn
1 :m2 /∈L(1)(yn

1 ,m1)

×W
⊗n
1,q(yn

1 |xn
m1,m2

)

≤ λ
(n)
1 .

By averaging separately over all m1 ∈ M1 and all m2 ∈ M2
we see that there exists for each block length n a fixed m∗

1 ∈
M1 such that

1

|M2|
∑

m2∈M2

∑

yn
1 :m2 /∈L(1)(yn

1 ,m∗
1)

W
⊗n
1,q(yn

1 |xn
m∗

1,m2
) ≤ λ

(n)
1

is fulfilled. Then U2 − Xn − Y n
1 − V1(m∗

1, q) forms a Markov
chain and we are in the same position as in the single-user
case with a single-user list code. We want to emphasize that
the random variable V1(m∗

1, q) clearly depends on the specific
m∗

1 ∈ M1 and q ∈ P(S) but for the sake of brevity we write
V1 for V1(m∗

1, q) in the following. We get

log M2,n = H (U2) = H (U2|V1) + I (U2; V1)

≤ H (U2|V1) + I (Xn; Y n
1 )

≤ h
(
P{U2 /∈ V1}

) + log L1

+P{U2 /∈ V1} log
( M2,n

L1

)
+ I (Xn; Y n

1 )

≤ h
(
P{U2 /∈ V1}

) + log L1

+P{U2 /∈ V1} log
( M2,n

L1

)
+

n∑

k=1

I (Xk ; Y1,k) (33)

where the equality and inequalities follow from the definition
of mutual information, the data processing inequality, Lemma
6 with L(1) : Yn

1 × M1 → P̂L1(M2), and the memoryless
property of the channel. We can rewrite the mutual information
term on the right hand side of (33), see Section II, as

log M2,n ≤ h
(
P{U2 /∈ V1}

) + log L1

+P{U2 /∈ V1} log
( M2,n

L1

)
+

n∑

k=1

I (Xk , Y 1,q)

≤ h
(
P{U2 /∈ V1}

) + log L1

+P{U2 /∈ V1} log
( M2,n

L1

)
+ nI (X, Y 1,q) (34)

where the last inequality follows from the concavity of mutual
information and PX := 1

n

∑n
k=1 PXk . We note that due to the

continuity of the mutual information and the compactness of
the set of probability distributions, the dependency of PX on
the block length n vanishes asymptotically.
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Rearranging the terms in (33) and dividing by n leads to

(
1 − P{U2 /∈ V1}

)1

n
log

( M2,n

L1

)
≤ 1

n
h
(
P{U2 /∈ V1}

)

+I (X, Y 1,q)

or

(
1 − λ

(n)
1

) 1

n
log

( M2,n

L1

)
≤ 1

n
h
(
λ

(n)
1

) + I (X, Y 1,q). (35)

The same arguments lead for receiving node 2 to (1 − λ
(n)
2 )

1
n log(

M1,n
L2

) ≤ 1
n h(λ

(n)
2 ) + I (X, Y 2,q). Finally, (32) and there-

with the converse follow readily from this and (35).

VIII. CONCLUSION

In this paper we studied the arbitrarily varying broadcast
channel (AVBC) with receiver side information and com-
pletely solved it by characterizing the capacity regions for
random, deterministic, and list codes. Similar to Ahlswede’s
result for the single-user AVC, it is shown that the AVBC
with receiver side information under list decoding displays
a dichotomy behavior: the list capacity region either equals
the random code capacity region or else has an empty-
interior. A generalized notion of symmetrizability, which dis-
tinguishes among different degrees of symmetry, allowed us
to completely characterize when the capacity has a non-empty
interior. In particular, if the list size of a receiver is greater than
the corresponding symmetrizability, transmission at random
code rates is possible. Moreover, the symmetrizability is shown
to be always finite so that sufficient list sizes are also always
finite.

A complete understanding of (multi-user) scenarios under
arbitrarily varying channels is the indispensable basis for
further investigations. As an example, the concept of arbi-
trarily varying channels is a suitable model to analyze secure
communication in scenarios, where non-legitimate wiretappers
are active in the sense that they can influence or control the
channel of the legitimate users. Such adversaries may have
different possible strategies; they can try to eavesdrop the
confidential communication or can try to jam the channel of
the legitimate users. Especially in the latter case, a complete
characterization of the capacity of an AVC is needed to decide
under which conditions the adversary can successfully jam the
channel and how the legitimate users can overcome this.

APPENDIX

A. Proof of Theorem 5

We follow [21, Th. 1] where a similar result for
the single-user AVC is proved. We start with the trivial
case where Ri,max = 0, i = 1, 2, which implies that
infq∈P(S) I (X, Y i,q ) = 0 for every PX ∈ P(X ). If PX (x) > 0
for all x ∈ X , this implies the existence of a distribution
PX SYi = PX ⊗ PS ⊗ Wi such that the input X and the output
Yi are independent, which means

∑

s

Wi (yi |x, s)PS(s) = PYi (yi ).

Now, for any ti ≥ 1 we set

U(s|x1, . . . , xti ) := PS(s)

for all s, x1, . . . , xti to obtain a channel which is symmetric
in x, x1, . . . , xti , see also (4). This implies immediately that
the AVBC W with receiver side information is (Yi , ti )-
symmetrizable for all ti ≥ 1, i = 1, 2.

Next, we assume that Ri,max > 0 and that the AVBC W
with receiver side information is (Yi , ti )-symmetrizable and
further infq∈P(S) I (PX , W i,q ) > 0, i = 1, 2. Consequently,
there is a channel U : X ti → P(S) such that

W̃i (yi |x1, . . . , xti+1) :=
∑

s

Wi (yi |x1, s)U(s|x2, . . . , xti+1)

(36)

is symmetric in x1, . . . , xti+1. Let Xti+1 = X1, . . . , Xti+1
be a sequence of independent random variables each with
distribution PX . Further, denote the output of the auxiliary
channel U by S′ corresponding to the input X2, . . . , Xti+1,
and the output of the channel Wi by Y ′

i for the inputs X1
and S′. As in [21] for the single-user AVC we observe that
Xti+1 − X1S′ − Y ′

i forms a Markov chain, so that the Data
Processing Inequality [17, Lemma 3.11] gives

I (X1 S′; Y ′
i ) ≥ I (Xti +1; Y ′

i )

≥
ti+1∑

k=1

I (Xk ; Y ′
i )

= (ti + 1)I (X1; Y ′
i )

where the second inequality follows from the independence
of X1, . . . , Xti+1 and the non-negativity of the (conditional)
mutual information and the last equality from PXkY ′

i
= PX1Y ′

i
,

which is a consequence of the symmetry of W̃i , see (36). If
we subtract I (X1; Y ′

i ) from both sides, having I (X1; Y ′
i ) ≥

infq∈P(S) I (X, Y i,q ) > 0 in mind, we get

ti ≤ I (S′; Y ′
i |X1)

I (X1; Y ′
i )

≤ max
PX SYi :PX SYi =PX ⊗PS⊗Wi

for some S

I (S; Yi |X)

I (X; Yi )
.

Clearly, this holds for all PX so that we finally obtain

ti ≤ min
PX

max
PX SYi :PX SYi =PX ⊗PS⊗Wi

for some S

I (S; Yi |X)

I (X; Yi )

≤ log(min{|S||Yi |})
Ri,max

which proves (24).

B. Proof of Lemma 2

The lemma follows immediately from Hughes
[21, Lemma 4], who proves a similar result for the
single-user AVC. But for completeness we present the proof
in the following. We carry out the analysis for receiving
node 1, then the analysis for node 2 follows accordingly.
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First, we observe that it suffices to consider K1 ≥ 1, since
otherwise there is nothing to prove. We consider any list code
CW,list with codewords xn

m1,m2
= (xm1,m2,1, . . . , xm1,m2,n) ∈

X n , m1 = 1, . . . , M1,n , m2 = 1, . . . , M2,n , and a list decoder
at node 1 with list size L1 ≤ T1. Since K1 ≤ T1, the AVBC
W with receiver side information is (Y1, K1)-symmetrizable
so that there exists a channel U : X K1 → P(S) such that

∑

s∈S
W1(y1|x1, s)U(s|x2, . . . , xK1+1)

is symmetric in x1, . . . , xK1+1, see also (4).
Then for each m1 ∈ M1 the following holds. For any set

J = { j1, . . . , jK1} ∈ PK1(M2) of K1 messages, let Sn
m1,J =

(Sm1,J ,1, . . . , Sm1,J ,n) ∈ Sn be a random state sequence with

P{Sm1,J ,k = s} = U(s|xm1, j1,k, . . . , xm1, jK1 ,k)

for all k = 1, 2, . . . , n. For any i ∈ M2 and any J ∈
PK1(M2) as defined above it follows that

E[W n
1 (yn

1 |xn
m1,i

, Sn
m1,J )] =

n∏

k=1

E[W1(y1,k|xm1,i,k , Sm1,J ,k)]

=
n∏

k=1

∑

s∈S
W1(y1,k|xm1,i,k , s)P{Sm1,J ,k = s}

=
n∏

k=1

∑

s∈S
W1(y1,k|xm1,i,k , s)U(s|xm1, j1,k, . . . , xm1, jK1 ,k)

=
∑

sn∈Sn

W n
1 (yn

1 |xn
m1,i , sn)Un(sn|xn

m1, j1, . . . , xn
m1, jK1

)

is symmetric in i, j1, . . . , jK1 . Consequently, for any
J ′ ∈ PK1+1(M2) and any fixed i0 ∈ J ′, we have

E[W n
1 (yn

1 |xn
m1,i , Sn

m1,J ′\{i})] = E[W n
1 (yn

1 |xn
m1,i0 , Sn

m1,J ′\{i0})]

for all i ∈ J ′. Since the list size of the list decoder at node 1
is L1, the received yn

1 can be decoded in at most L1 ways so
that it follows for the probability of error that

∑

i∈J ′
E[e1((m1, i), Sn

m1,J ′\{i}|CW,list)]

=
∑

i∈J ′

⎛

⎝1 −
∑

yn
1 :i∈L(1)(yn

1 ,m1)

E[W n
1 (yn

1 |xn
m1,i , Sn

m1,J ′\{i})]
⎞

⎠

= K1 + 1 −
∑

i∈J ′

∑

yn
1 :i∈L(1)(yn

1 ,m1)

E[W n
1 (yn

1 |xn
m1,i0 , Sn

m1,J ′\{i0})]

≥ K1 + 1 − L1

∑

yn
1 ∈Yn

1

E[W n
1 (yn

1 |xn
m1,i0 , Sn

m1,J ′\{i0})]

= K1 + 1 − L1,

with L(1)(yn
1 , m1) the list decoder for received output yn

1
and own message m1. For a fixed m1 ∈ {1, . . . , M1,n} this

leads to

1

|PK1(M2)|
∑

J ∈PK1 (M2)

E[ē1(Sn
m1,J |CW,list)]

= 1

M1,n M2,n |PK1(M2)|
∑

J ∈PK1 (M2)

M1,n∑

m′
1=1

M2,n∑

m′
2=1

× E[e1((m
′
1, m′

2), Sn
m1,J |CW,list)]

≥ 1

M1,n M2,n
(M2,n

K1

)

M1,n∑

m′
1=1

∑

J ′∈PK1+1(M2)

∑

m′
2∈J ′

× E[e1((m
′
1, m′

2), Sn
m1,J ′\{m′

2}|CW,list)]

≥ 1

M1,n

M1,n∑

m′
1=1

( M2,n
K1+1

)
(K1 + 1 − L1)

M2,n
(M2,n

K1

)

=
(

1 − L1

K1 + 1

) (
M2,n − K1

M2,n

)

.

Thus, we obtain for the average probability of error

1

M1,n |PK1(M2)|
M1,n∑

m1=1

∑

J ∈PK1 (M2)

E[ē1(Sn
m1,J |CW,list)]

= 1

M1,n

M1,n∑

m1=1

⎛

⎝ 1

|PK1(M2)|
∑

J ∈PK1 (M2)

E[ē1(Sn
m1,J |CW,list)]

⎞

⎠

≥ 1

M1,n

M1,n∑

m1=1

(

1 − L1

K1 + 1

) (
M2,n − K1

M2,n

)

=
(

1 − L1

K1 + 1

) (
M2,n − K1

M2,n

)

,

which implies the existence of at least one m1 ∈ M2 and
J ∈ PK1(M2) with

E[ē1(Sn
m1,J |CW,list)] ≥

(

1 − L1

K1 + 1

) (
M2,n − K1

M2,n

)

.

Consequently, there is a realization sn of Sn
m1,J with

ē1(sn |CW,list) ≥
(

1 − L1
K1+1

) (
M2,n−K1

M2,n

)
which finally implies

max
sn∈Sn

ē1(s
n |CW,list) ≥

(

1 − L1

K1 + 1

) (
M2,n − K1

M2,n

)

so that the first part of the lemma is proved. Clearly, the
analysis for node 2 follows accordingly using the same argu-
mentation.
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