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Zero-Delay Sequential Transmission of Markov
Sources over Burst Erasure Channels

Farrokh Etezadi, Ashish Khisti and Mitchell Trott

Abstract—A setup involving zero-delay sequential transmission the intra-coded frames limit the amount of error propagatio
of a vector Markov source over a burst erasure channel is stuiéd.  Other techniques including forward error correction co@s
A sequence of source vectors is compressed in a causal fashai leaky DPCM [3] and distributed video coding [4] can also be

the encoder, and the resulting output is transmitted over a brst d to trade off the t . te with i
erasure channel. The destination is required to reconstruceach US€C f0 trade Ol (he tranSmission rate with error propagall

source vector with zero-delay, but those source sequencémtare  Despite this, such a tradeoff is not well understood even in
observed either during the burst erasure, or in the interval of the case of a single isolated packet lass [5].
length W following the burst erasure need not be reconstructed. In this paper we study the information theoretic tradeoff be
The minimum achievable compression rate is called_the rate- wwveen the transmission rate and error propagation in a simpl
recovery function. We assume that each source vector is sartegl h | del. W that the ch lintrsd
i.i.d. across the spatial dimension and from a stationary, fit- sou_rce-c annel model. Wwe assume _a ef: annel intreduce
order Markov process across the temporal dimension. an isolated erasure burst of a certain maximum length, say
For discrete sources the case of lossless recovery is coesit, B. The encoder observes a sequence of vector sources and
and upper and lower bounds on the rate-recovery function are compresses them in a causal fashion. The decoder is required
established. Both these bounds can be expressed as the rate f 1 yaconstruct each source vector with zero delay, excestth
predictive coding, plus a term that decreases at least inveely that occur during the error propagation window. The decoder
with the recovery window length W. For Gauss-Markov sources 9 propag :
and a quadratic distortion measure, upper and lower bounds o~ ¢an declare don't-carefor all the source sequences that occur
the minimum rate are established whenW = 0. These bounds in this window. We assume that is period spans the duration of
are shown to coincide in the high resolution limit. Finally another  the erasure burst, as well an interval of lengithimmediately
setup involving i.i.d. Gaussian sources is studied and theate- following it. We study the minimum rate requirel(B, W)
recovery function is completely characterized in this case D : T
and define it as theate-recovery function
Index Terms—Joint Source-Channel Coding, Distributed  \We first consider the case of discrete sources and lossless
Source Coding, Gauss-Markov Sources, Kalman Filter, Burst yqconstryction and establish upper and lower bounds on the
Erasure Channels, Multi-terminal Information Theory, Rate- ..
distortion Theory. minimum rate. Both these bounds can be expressed as the
rate of the predictive coding scheme, plus an additional
term that decreases at-least Hgs)/(W + 1) where H(s)
|. INTRODUCTION denotes the entropy of the source symbol. Our lower bound

Eal-time streaming applications require both the sequéﬁ- obtained_ through connection to a certain .mu!ti-termingl

R tial compression, and playback of multimedia frame20urce coding problem t_hat captures the ten3|_on in e.ncod|ng
under strict latency constraints. Linear predictive téghas @ Source sequence during the error-propagation period, and
such as DPCM have long been used to exploit the Sou&gts!de it. The upper bound is based on a natural random-
memory in such systems. However predictive coding schenfd8ning scheme. We also consider the case of Gauss-Markov
also exhibit a significant level of error propagation in th&ources and a quadratic distortion measure. We again isstabl
presence of packet loss€s [1]. In practice one must develgpPer and lower bounds on the minimum rate wh€n= 0,
transmission schemes that satisfy both the real-time cingg  1-€-» When instantaneous recovery following the burst s
and are robust to channel errors. is imposed. We observe that our upper and lower bounds

There exists an inherent tradeoff between the underlyifgincide in the high resolution limit, thus establishing th
transmission-rateand the error-propagationat the receiver 'ate-recovery function in this regime. Finally we consiger
in all video streaming applications. Commonly used videdifferent setup involving i.i.d. Gaussian sources, andecp
compression formats such as H.264/MPEG and HEVC usd®§OVery constraint, and obtain an exact characterizafigme
combination of intra-coded and predictively-coded frartes rate-recovery function in this special case. Many of oguites
limit the amount of error propagation. The predictivelyded also naturally extend to the case when the channel intraduce

frames are used to improve the compression efficiency waer83ultiple erasure bursts. _ _
The remainder of the paper is organized as follows. We
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consider the case of Gauss-Markov source with a quadratigtput. A robust extension of the predictive coding scheme
distortion constraint. Sectioh_1X studies another setup iis proposed and shown to achieve the minimum sum-rate.
volving independent Gaussian sources and a sliding windé¥owever this setup does not capture the effect of packet$oss
recovery constraint, where an exact characterization ef thver a channel, where the destination has access to all the
minimum rate is obtained. Conclusions appear in Se¢fibn Xwon erased symbols. To our knowledge, only reference [3]
Notations. Throughout this paper we represent the Ewconsiders the setting of sequential coding over a random
clidean norm operator by - || and the expectation operatompacket erasure channel. The source is assumed to be Gaussian
by E[-]. The notation Yog” is used for the binary logarithm, spatially i.i.d. and temporally autoregressive. A clastirear
and rates are expressed in bits. The operatidQs andi(.) predictive coding schemes is studied and an optimal scheme
denote the entropy and the differential entropy, respelstiv within this class, with respect to the excess distortioionaet-
The “slanted sans serif” ford and the normal font. repre- ric is proposed. Our proposed coding scheme is qualitgtivel
sent random variables and their realizations respectiélg different from [3], [13] and involves a random binning based

notationaj’ = {a; 1,...,a;»} represents a length-sequence approach, which is inherently robust to the side-infororati
of symbols at timei. The notation[f]! for i < j represents at the decoder.
fi, fiv1, ..., £ In other related works, the joint source-channel coding of a

vector Gaussian source over a vector Gaussian channel with
zero reconstruction delay has also been extensively studie
While optimal analog mappings are not known in general,
Problems involving real-time coding and compression haee number of interesting approaches have been proposed in
been studied from many different perspectives in relatedg. [14], [15] and related references. Reference [16]issud
literature. The compression of a Markov source, with zetbe problem of sequential coding of the scalar Gaussiarceour
encoding and decoding delays, was studied in an early workdwyer a channel with random erasures. [n [5], the authors
Witsenhauseri [6]. In this setup, the encoder must sequlgntiZonsider a joint source-channel coding setup and prope@se th
compress a (scalar) Markov source and transmit it over al idese of distributed source coding to compensate the effect of
channel. The decoder must reconstruct the source symbeiannel losses. However no optimality results are preddate
with zero-delay and under an average distortion constrintthe proposed scheme. Sequential random binning techniques
was shown in[[6] that for &-th order Markov source model, for streaming scenarios have been proposed inle.g. [17], [18
an encoding rule that only depends on khmost recent source and the references therein.
symbols, and the decoder’s memory, is sufficient to achieget To the best of our knowledge, there has been no prior work
optimal rate. Similar structural results have been obthinea that studies an information theoretic tradeoff betweeirerr
number of followup works, see e.d.][7] and references therepropagation and compression efficiency in real-time stiagm
The authors in[[8] considered real-time communication afystems.
a memoryless source over memoryless channels, with or
without the presence of unit-delay feedback. The encoding [1l. PROBLEM STATEMENT
and decoding is sequential with a fixed finite lookahead at|n this section we introduce our source and channel models
the encoder. The authors propose conditions under whighd the associated definition of the rate-recovery function
symbol-by-symbol encoding and decoding, without lookahea We assume that the communication spans the interval
is optimal and more generally characterize the optimal deco ; ¢ [~1, L]. At each timei, a source vectofs!} is sampled,
as a solution to a dynamic programming problem. whose symbols are drawn independently across the spatial
In another line of work, the problem of sequential codingimension, and from a first-order Markov chain across the
of correlated vector sources in a multi-terminal sourceirn@d temporal dimension, i.e.,
framework was introduced by Viswanathan and Bergér [9].

Il. RELATED WORKS

In this setup, a set of correlated sources must be sequgntial Pr( s;" =57 | si'1 = s{" 1, ;"9 =5; 9,...,5"] = ")

compressed by the encoder, whereas the decoder at each stage n '

is required to reconstruct the corresponding source seguen =[] pi(sinlsiog), 0<i<L. (1)
k=1

given all the encoder outputs up to that time. It is noted jn [9
that the correlated source sequences can model conseculive underlying random variable§s;} constitute a time-
video frames and each stage at the decoder maps to sequemiariant, stationary and a first-order Markov chain with a
reconstruction of a particular source frame. This setupnis aommon marginal distribution denoted by(-) over an al-
extension of the well-known successive refinement problephabetS. The sequence™, is sampled i.i.d. fromps(-) and

in source coding[[10]. In followup works, in reference [11}evealed to both the encoder and decoder before the st of t
the authors consider the case where the encoders at each tioramunication. It plays the role of a synchronization frame
have access to previous encoder outputs rather than pseviouA rate-R encoder computes an indéx< [1,2"%] at time
source frames. Referende [12] considers an extension whégraccording to an encoding function

the encoders and decoders can introduce non-zero deldys. Al n n n .

these works assume ideal channel conditions. Referénge [13 fi = Fi ("1, 805087) 0<isfL. 2)
considers an extension df|[9] where at any given stage tNete that the encoder ifi](2) is a causal function of the source
decoder has either all the previous outputs, or only theemtessequences. Anemorylessencoder satisfiess; (1) = F;(s")

(2
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Fig. 1: Problem Setup: The encoder outputs a function of all the past source sequences. The chanttetiirces a burst
erasure of length up t&. The decoder producég upon observing the channel outputs up to timés indicated, the decoder
is not required to produce those source sequences that seeveld either during the burst erasure, or a periodd/afollowing

it. The first sequence, is a synchronization frame available to both the source astirhtion.

i.e., the encoder does not use the knowledge of the past TABLE I: Summary of notation used in the paper.
sequences. Naturally a memoryless encoder is very régrict
and we will only use it to establish some special results.

The channel takes eac¢has input and either outpugs = f; Source Symbol s
or an erasure symbol i.eg; = . We consider the class of Source Source Reproduction S

.. L. Parameters Temporal Correlation Coefficient
burst erasure channels. For some particglar0, it introduces of Gauss-Markov Source Model p
a burst erasure such thgt= xfori € {j,j+1,...,j+B' -1} Channel Input 7
andg = f otherwise i.e. Channel Channel Output g
gi =i ’ Parameters Maximum Burst Length B
. .. . , Guard Length between Consecutive BurstsL
D R € [jvj +1,...,0+B = 1] 3 Length of Source Sequences n

8i = 3 System

fi, elSe Parameters Communication Duration L
Recovery Window Length W
I Performance Rate R
where the burst lengtlB’ is upper bounded bys. Metrics Average Distorion -

Upon observing the sequendg;}>o, the decoder is re-
quired to reconstruct each source sequence with zero delay
ie.,
R . _ . , rate-recovenyfunction. In this paper, we will focus on infinite-
5' =Gil(go. 81,---,8i,"1), ¢ {j,-... i+ B +W =1} horizon caseR(B, W) = lims— R.(B, W), which will be
(4)  called the rate-recovery function for simplicity.

where s denotes the reconstruction sequence amténotes 2) Lossy Rate-Recovery FunctioW/e also consider the
case where reconstruction ifil (4) is required to satisfy an

the time at which burst erasure starts[ih (3). The destinasio : i !
not required to produce the source vectors that appear eitferage distortion constraint:
during the burst erasure or in the period of lengthfollowing

it. We call this period the error propagation window. Hig. 1 limsup £
provides a schematic of the causal encodér (2), the channel nreo
model [3), and the decodéd (4).

% > d(six, gi,k)] <D (5)
k=1

for some distortion measur¢ : R? — [0,00). The rateR

is feasible if a sequence of encoding and decoding functions
A. Rate-Recovery Function exists that satisfies the average distortion constrairg. M-
inaum feasible rateR.(B, W, D), is thelossy rate-recovery
Punction The study of lossy rate-recovery function for the

lossy reconstruction constraints. eneral case appears to be quite challenging. In this paper
1) Lossless Rate-Recovery Functidie first consider the g . bp q . ging pap
) : ; we will focus on the class of Gaussian-Markov sources, with
case when the reconstruction [d (4) is required to be lossles - . . . N2
oo uadratic distortion measure, ids, 5) = (s —5)“, where the
We assume that the source alphabet is discrete and the gntr 19

. ) L . alysis simplifies. We will again focus on infinite-horizon
H(s) is finite. A rat_eRg(B, w) |s_feaS|bIe_|f there exists a case,R(B, W, D) — limz_,.. R(B, W, D) which we simply
sequence of encoding and decoding functions and a sequenge rate-recovery function. Talfle | summarizes thei
e, that approaches zero as— oo such thatPr(s* # §7') < '

: — used throughout the paper.
en for all source sequences reconstructed aglin (4). We seesk g pap

the minimum feasible rat&. (B, W), which is thelossless Remark 1. Note that our proposed setup only considers a

We define the rate-recovery function under lossless a



single burst erasure during the entire duration of communsources. Profi.] 1 presents a lower bound, whereas Brop. 2 and
cation. When we consider lossless recovery at the destimatProp.[3 present upper bounds on lossy rate-recovery functio
our results immediately extend to channels involving mulfior the single and multiple burst erasure channel models
ple burst erasures with a certain guard interval separatingespectively. Our bounds coincide in the high resolutiomtli
consecutive bursts. When we consider Gauss-Markov sourassstated in Corollarfy]3. Finally Sectibn IV-C treats anothe
with a quadratic distortion measure, we will explicitly &t setup involving independent Gaussian sources, with anglidi
the channel with multiple burst erasures and compare theindow recovery constraint, and establishes the assaciate
achievable rates with that of a single burst erasure channelate-recovery function.

B. Practical Motivation A. Lossless Rate-Recovery Function

Note that our setup assumes that the size of both thBeorem 1. (Lossless Rate-Recovery Function) For the sta-
source frames and channel packets is sufficiently large. tiRnary, first-order Markov, discrete source process, thsst
relevant application for the proposed setup is video stiegm less rate-recovery function satisfies the following upped a
Video frames are generated at a rate of approximately 60 i@ver bounds:R™ (B, W) < R(B,W) < R*(B,W), where
and each frame typically contains several hundred thousand N 1
pixels. The inter-frame interval is thus, ~ 17 ms. Suppose 1t (B, W)=H(si|s0) + W—HI(SB§SB+1|50)v (6)
that the underlying broadband communication channel has a 1
bandwidth of W, = 2.5 MHz. Then in the interval ofA, R™(B,W)=H(si|s) + W+1I(SB5SB+W+1|50)~ (@)
the number of symbols transmitted using ideal synchronous 0
modulation isN = 2A;W, = 84,000. Thus the block length
between successive frames is sufficiently long that capacit Notice that the upper and lower boun(s (6) ddd (7) coincide
achieving codes could be used and the erasure model #dW = 0 and W — oo, yielding the rate-recovery function
large packet sizes is justified. The assumption of spatiay in these cases. We can interpret the tefhts:|sp) as the
frames could reasonably approximate the videnovation amount of uncertainty is; when the past sources are perfectly
processgenerated by applying suitable transform on origin&nown. This term is equivalent to the rate associated wiglid
video frames. Such models have been also used in earfeedictive coding in absence of any erasures. The secomd ter
works e.g.,[3], 9], [11]-18]. in both [6) and[{I7) is the additional penalty that arises due

Possible applications of the burst loss model considert the recovery constraint following a burst erasure. Notic
in our setup include fading wireless channels and congestiiat this term decreases at-leastfdss)/(W + 1), thus the
in wired networks. We note that the present paper does mgnalty decreases as we increase the recovery periodote
consider a statistical channel model but instead considerghat the mutual information term associated with the lower
worst case channel model. As mentioned before even thet effeeund is(sp; sp4w+1|s0) while that in the upper bound is
of such a single burst loss has not been well understood/itss; se+1/s)- Intuitively this difference arises because in the
the video streaming setup and therefore our proposed sel@yer bound we only consider the reconstructionspf v, ,
is a natural starting point. Furthermore while the staigti following an erasure bust ifi, B] while, as explained below in
models are used to capture the typical behaviour of chanfirollary[l the upper bound involves a binning based scheme
errors, the atypical behaviour is often modelled (see {18, that reconstructs all sequences;,;,...,sp ;) at time
Sec. 6.10]) using a worst-case approach. Therefore in lov= B + W + 1.
latency applications where the local channel dynamics areA proof of Theorenill is provided in Sectiéd V. The lower
relevant such models are often used (see €.gl, [20]-[23)pund involves a connection to a multi-terminal source egdi
Finally we note that earlier works (see e.@l, [3]) that cdesi problem. This model captures the different requirements im
statistical channel models, also ultimately simplify tiystem posed on the encoder output following a burst erasure and in
by analyzing the effect of each burst erasure separatelytite steady state. The following Corollary provides an akés
steady state. expression for the achievable rate and makes the connection

to the binning technique explicit.

IV. MAIN RESULTS Corollary 1. The upper bound in6) is equivalent to the
We summarize the main results of this paper. We notellowing expression
in advance that throughout the paper, the upper bound on
ion indi i RT(B,W) = H(s s ...,S |so).- (8)

the rate-recovery function indicates the rate achievall@ b 3 Wl B+1; SB+25 - - - s SB+W+1]50
proposed coding scheme and the lower bound corresponds to

L ! O
a necessary condition that the rate-recovery function ¢f an
feasible coding scheme has to satisfy. Sedfion JV-A trdags t The proof of Corollary[1l is provided in Appendix] A.
lossless rate-recovery function and presents lower ané@rupj/e make several remarks. First, the entropy term[ih (8)
bounds in Theorern] 1. Corollafy 2 presents the lossless rate-equivalent to the sum-rate constraint associated wigh th
recovery function for a special case of symmetric sourceSlepian-Wolf coding scheme in simultaneously recovering
when restricted to memoryless encoders. SedtionlIV-Bdredtsi; 1,55 o, - -, Sp w41} Whensy is known. Note that due
the lossy rate-recovery function for the class of Gausskishar to the stationarity of the source process, the rate exessi




@) suffices for recovering from any burst erasure of lengthistortion measurel(s;,s;) = (s; — 5;)> between the source
up to B, spanning an arbitrary interval. Second, note thaymbols; and its reconstructios;. In this paper we focus
in @ we amortize over a window of length” + 1 as on the special case ¥ = 0, where the reconstruction must
{sBy1s---»Sprw41s are recovered simultaneously at timéegin immediately after the burst erasure. We briefly remark
t = B+ W +1. Note that this is the maximum window lengthabout the case whel” > 0 at the end of Sectioh VIIB.
over which we can amortize due to the decoding constrairts stated before unlike the lossless case, the results dsau
Third, the results in Theorefd 1 immediately apply when thdarkov sources for single burst erasure channels do noilyead
channel introduces multiple bursts with a guard spacingt of @xtend to the multiple burst erasures case. Therefore,ea¢ tr
leastW + 1. This property arises due to the Markov naturthe two cases separately.
of the source. Given a source sequence at timell the 1) Channels with Single Burst Erasurdn this channel
future source sequencégs;’};~; are independent of the pastmodel, as stated ifi}(3), we assume that the channel can intro-
{s"'}+<: when conditioned onrs]. Thus when a particular duce a single burst erasure of length upBaluring the trans-
source sequence is reconstructed at the destination, tbelele mission period. Defindigy.se(B, D) = R(B,W =0, D) as
becomes oblivious to past erasures. Finally, while thelt®suthe lossy rate-recovery function of Gauss-Markov sourdés w
in Theorentl are stated for the rate-recovery function omer aingle burst erasure channel model.
infinite horizon, upon examining the proof of Theoréin 1, i
can be verified that both the upper and lower bounds hold
the finite horizon case, i.€2.(B,W), whenL > B+ W.

A symmetricsource is defined as a Markov source such th
the underlying Markov chain is also reversible i.e., thed@n

0|:oposition 1 (Lower Bound-Single Burst)The lossy rate-
recovery function of the Gauss-Markov source for singlesbur
fasure channel model whéiv = 0 satisfies

Remse(B, D) > Rgy.se B, D) £

. . d .
variables satisfysy, ..., s) = (s, ..., sy), where the equality
is in the sense of distribution [24]. Of particular interestus L oo [ PP2H1- p2 B + VA (12)
is the following property satisfied for ea¢h 2 2D
Psii1,se (Saa Sb) = Ps;_1,s¢ (Sm Sb)a Vsa, 8y € S (9) where A £ (Dp2 +1- p2(3+1))2 — 4Dp2(1 — pQB). O

i.e., we can “exchange” the source pdis}, ,s;") with The proof of Prop[]l is presented in Section VII-A. The
(sf1,st) without affecting the joint distribution. An exam- proof considers the recovery of a source sequeficgiven a
ple of a symmetric source is the binary symmetric sourcburst erasure in the intervill- B, ¢ —1] and extends the lower
s{ = sit, @ z', where {z'},>¢ is an i.i.d. binary source bounding technique in Theordm 1 to incorporate the distorti
process (in both temporal and spatial dimensions) with tkenstraint.

marginal distributionPr(z; ; = 0) = p, the marginal distribu-
tionPr(s;; = 0) =Pr(s;; = 1) = % and® denotes modulo-2
addition.

Proposition 2 (Upper Bound-Single Burst)The lossy rate-
recovery function of the Gauss-Markov source for singlesbur
erasure channel model whéi#ir = 0 satisfies

Corollary 2. For the class of symmetric Markov sources that . B

satisfy(@), the lossless rate-recovery function when restricted Romse(B, D) < Réy.se(B, D) £ I(s;; w|5-5)  (13)

to the class of memoryless encoders ie= F;(s!"), is given whereu, 2 s, + z, and z is sampled i.i.d. from\/(0, 02).

by AlSO 3 5 2 55+ e ande ~ N (0,5(02)/(1 - S(02)))
ith
R(B,W) = W+1H(SB+1aSB+2a---75B+W+1|50)- (o) "
A
o X@)=
1 1—p?
The proof of CorollanR2 is presented in Section VI. The=+/(1 — 02)2(1 — p2)2 + 402(1 — p2) + Tp(l —0?),
converse is obtained by again using a multi-terminal source (14)

coding problem, but obtaining a tighter bound by exploiting _
the memoryless property of the encoders and the symmetfidndependent of all other random variables. The test ck&nn

structure [(D). noiseo? > 0 is chosen to satisfy
= ! - <D 15
B. Gauss-Markov Sources oz . 21—y =7 (15)

- 1 7 . . . . .
_ We study_t_he lossy rate-recovery functu_)n Whéa_i} _This is equivalent tor? satisfying
is sampled i.i.d. from a zero-mean Gaussian distribution,

N(0,02), along the spatial dimension and forms a first-order E (st —5)%] <D, (16)

Markov chain across the temporal dimension i.e., A o )
wheres,; denotes the minimum mean square estimate (MMSE)

Si = pSi—1 + n; (11) of s, from {3;_p5, u;}. O

wherep € (0,1) and n; ~ N(0,02(1 — p?)). Without loss  The following alternative rate expression for the achiéeab
of generality we assume? = 1. We consider the quadraticrate in Prop[R, provides a more explicit interpretation o t
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Fig. 2: Lower and upper bounds of lossy rate-recoveryFig. 3: Lower and upper bounds of lossy rate-recovery
function Rem-se(B, D) versusp for D = 0.2, D = 0.3 function Rgm.se(B, D) versusD for p = 0.9, p = 0.7

andB=1, B=2. andB=1, B=2.
coding scheme. Proposition 3 (Upper Bound—Multiple Bursts) The lossy
N ) B rate-recovery functionRem-me(L, B, D) for Gauss-Markov
Remse(B, D) = lim (s uef[ulo™" ") (17)  sources over the multiple burst erasures channel satisffies t

. . ) following upper bound:
where the random variablag are obtained using the same

test channel in Progd.] 2. Notice that the test channel noise + A
Remve(L, B, D) < Rt (L, B, D) 2
o > 0 is chosen to satisfyZ [(s, — 5)%] < D where § o ) ol ’ ) B
denotes the MMSE of; from {[u]5 57!, 1} in steady state, I(ut; stlSt-1-, [u; =17 p41)  (19)
i.e.t — oo. Notice that[(1l7) is based on a quantize and binning,

; o . eres,_r_p=s_r_p+e, wheree ~ N (0,D/(1 — D)).
scheme when the receiver has side information sequen t-L=B = L8 (0, D/( )

o for anyi, u; £ s; + z and z is sampled i.i.d. from

{uf,...,u" 5_,}. The proof of Prop[]2 which is presente 0.2) and th ise in the test ch 0 satisfi
in Sectior VII-B also involves establishing that the worase N(0,07) and the noise in the test channef, > 0 satisfies
erasure pattern during the recovery &f spans the interval E (st — gt)Q] <D (20)

[t — B —1,t — 1]. The proof is considerably more involved
as the reconstruction sequended'} do not form a Markov and 5, denotes the MMSE estimate o8 from
chain. {Si—r—p, (Ui "7 " poq ue} O

As we will show subsequently, the upper and lower bounds.l_he proof of Prop[13 presented in SectBAVII-C is again

in Prop.[1 and Progd.]2 coincide in the high resolution limit, : o . ,
. ; ased on quantize-and-binning technique and involvesachar
Numerical evaluations suggest that the bounds are close foOr.

. ; terizing the worst-case erasure pattern by the channek Not
a wide range Of. parameters. Fig. 2 and Fig. 3 illustrate SO%Ro that the rate expression [n}19) depends on the minimum
sample comparison plots.

) ; guard spacingl, the maximum burst erasure lengih and
. d2) ﬁ}hannels V\r']'th '\Qﬁlt'plﬁ Burlst Era_SltJrejNe alsolt.ccl)er;-b distortion D, but is not a function of time indek as the test
sider Ine case where the channel can introduce mullipi& By, e js time invariant and the source process is stagiona

erasures, each of length no greater tharand with a guard An expression for computing? is provided in SectioRVILT.
interval of length at-least separating consecutive bursts. Th%VhiIe we do not provide a Ivaer bound fétgume(L, B, D)

encoder is defined as ifl(2). _We again only consider the C3W& remark that the lower bound in Prap. 1 also applies to the
when W = 0. Upon observing the sequendg;}i>o, the -

. ) multiple burst erasures setup.
decoder is required to reconstruct each source sequenie W|t|:ig_[Z provides numerical evaluation of the achievable rate

zero delay, i.e., for different values ofL. We note that even fol. as small

§" = Gilgo,g1,...,gi,s",), Wheneverg; £«  (18) S 4, the achievable rate in Prqﬁl 3is virtua!ly idgptical to

the rate for single burst erasure in Prob. 2. This strikirfght

such that the reconstructed source sequeficsatisfies an convergence to the single burst erasure rate appears due to
average mean square distortion Bf The destination is not the exponential decay in the correlation coefficient betwee
required to produce the source vectors that appear duripg &urce samples as time-lag increases.
of the burst erasures. The ra L, B, D) is feasible if a se-  3) High Resolution RegimeFor both the single and multi-
quence of encoding and decoding functions exists thaffigastis ple burst erasures models, the upper and lower bounds on loss
the average distortion constraint. The minimum feasibte rarate-recovery function fol¥ = 0 denoted byR(L, B, D)
Rem-me(L, B, D), is the lossy rate-recovery function. coincide in the high resolution limit as stated below.
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Fig. 4: Achievable rates for multiple burst erasures modeldifferent values of guard length separating burst erasures
comparing to single burst erasure. Agyrows, the rate approaches the single erasure case. Theowed for single erasure
case is also plotted for comparisoB E 1).

that only makes use of the most recently available sequence

 ~ ~ Single Erasure Burst, Upper Bound at the decodel [25]. The rate of this scheme is given by:
1.8 Naive Wyner-Ziv B
i A
—e— Single Erasure Burst, Lower Bound | RNWZ(B, D) S I(St; uy | Uthfl) (22)

where for eachi, u; = s; + z; and z; ~ N(0,02) and o2
satisfies the following distortion constraint

El(ss — &)’ <D (23)

Rate Bits/Symbol

wheres; is the MMSE estimate of; from {u:—p_1, u:}.

Fig. [ reveals that while the rate if_{22) is near optimal
in the high resolution limit, it is in general sub-optimal erh
compared to the rates i (19) when= 0.9. As we decrease
p, the performance loss associated with this scheme appears
to reduce.

63. Gaussian Sources with Sliding Window Recovery Con-

Fig. 5: A comparison of achievable rates for the Gauss-Markg’™
straints

source B =1).
In this section we consider a specialized source model and
distortion constraint, where it is possible to improve uploa

Corollary 3. In the high resolution limit, the Gauss-MarkovPinning based upper bound. Our proposed scheme attains the

lossy rate-recovery function satisfies the following: rate-recovery function for this special case and is thusrt
This example illustrates that the binning based scheme ean b

sub-optimal in general.

1) Source ModelWe consider a sequence of i.i.d. Gaussian
source sequences i.e., at time* is sampled i.i.d. according
to a zero mean unit variance Gaussian distributhd(0, 1),

The proof of Corollary(B is presented in Sectim””ndgpendent of the past sources. At each time we associate an
It is based on evaluating the asymptotic behaviour of tifixiliary source
lower bound in[(IR) and the upper bound in Pridp. 3, in high
resolution regime. Notice that the rate expressiof_in (2Esd
not depend on the guard separatibn The intuition behind which is a collection of the pagt” + 1 source sequences. Note
this is as follows. In the high resolution regime, the outpubatt? constitutes a first-order Markov chain. We will define
of the test channel, i.ai;, becomes very close to the original reconstruction constraint with the sequenge
sources;. Therefore the Markov property of the original source 2) Encoder: The (causal) encoder at timegenerates an
is approximately satisfied by these auxiliary random vaeisb output given byf, = F;(s",,...,s") € [1,2"%].
and hence the past sequences are not required. The rat in (28) Channel Model: The channel can introduce a burst
can also be approached byNaive Wyner-Zivcoding scheme erasure of length up t® in an arbitrary intervalj, j+ B —1].

1 1— p2(B+1)

wherelimp_,o o(D) = 0. O

t) = (s" sy ... S k) (24)

(3



73 g2 gl § tme d; < 1, the lossy rate-recovery function is given by

o o o) )
TR Ten T T R(B,W,d) = 7 log (d0>+
0\2 * 1 min{ K—W,B} 1 1
Si—1
’ “log (—— ). (25
,,?EQ ,,,,,,,,,,, Si-z W+1 ; 2 g<dW+k) (23)
{8i}ag g
§i—1}a, The proof of Theoreni]2 is provided in Sectibnl IX. The
i 2tay coding scheme for the proposed model involves using a suc-

cessive refinement codebook for each sequefide produce
Fig. 6: Schematic of the Gaussian sources with sliding windoB + 1 layers and carefully assigning the sequence of layered
recovery constraints forX = 2. The sources;, drawn as codewords to each channel packet. A simple quantize and
white circles, are independent sources ands defined as binning scheme in general does not achieve the rate-regover
a collection of K + 1 = 3 most recent sources. The sourcéunction in Theoreni]2. A numerical comparison of the lossy
symbols along the diagonal lines are the same. The decogste-recovery function with other schemes is presented in
at time ¢ recoverss;, s;,_1 ands;_o within distortionsdy, di  SectionIX.
andd,, respectively wherdy < d; < ds. In figure the colour ~ This completes the statement of the main results in this
density of the circle represents the amount of reconstmctipaper.

distortion.
V. GENERAL UPPER ANDLOWERBOUNDS ONLOSSLESS

RATE-RECOVERY FUNCTION
In this section we present the proof of Theorén 1. In
4) Decoder: At time i the decoder is interested in re-particular, we show that the rate-recovery function saissfi
producing a collection of pasKk + 1 source within a the following lower bound.

distortion vectord = (do,ds1, - ,dk) i.e., at time: the

decoder is interested in reconstructi(iy, ..., s" ) where R > R™(B,W) = H(si|s) + 71(sB, Sp+w+10)-
E[||s™, —5",|[*)] < nd; must be satisfied fot € [0, K].

We assume throughout that < d; < ... < dx which (26)

corresponds to the requirement that the more recent souvwdsch is inspired by a connection to a multi-terminal source

sequences must be reconstructed with a smaller average disling problem introduced in Sectidn V-A. Based on this

tortion. connection, the proof of the lower bound in general form in

(28) is presented in Sectign V-B. Then by proposing a coding
scheme based on random binning, we show in Sefiod V-C
that the following rate is achievable.

In Fig.[d, the source symbols are shown as white circles.
The symbolst; andt; are also illustrated fod = 2. The
different shading for the sub-symbols 3 corresponds to
different distortion constraints. R>RY(B,W) = H(s|s0)

1
+ Wt 1I(SB75B+1|50)- (27)
If a burst erasure spans the interjalj+ B—1], the decoder
is not required to output a reproduction of the sequenges A, Connection to Multi-terminal Source Coding Problem

forie[jj+B+W —1]. We first present a multi-terminal source coding setup which
The lossy rate-recovery functiodenoted byRR(B,W,d) is captures the tension inherent in the streaming setup. Wesfoc
the minimum rate required to satisfy these constraints. on the special case wheB = 1 and W = 1. At any

given time; the encoder outpufy must satisfy two objectives
Remark 2. One motivation for considering the above setup isimultaneously: 1) ifj is outside the error propagation period
that the decoder might be interested in computing a functithen the decoder should use and the past sequences to
of the lastK” + 1 source sequences at each time e.g.,= reconstructsy, 2) if j is within the recovery period thef
ZK o@’si—;. A robust coding scheme, when the coefficiemust only help in the recovery of a future source sequence.
a Is not known to the encoder is to communicatte; with Fig.[4 illustrates the multi-terminal source coding praoble

distortion d; at time+ to the decoder. with one encoder and two decoders that captures these con-
straints. The sequencés}, s?, ;) are revealed to the encoder

Theorem 2. For the proposed Gaussian source model with and produces outpuf$ and f7+1 Decoderl needs to recover

non-decreasing distortion vectat = (do,...,dx) with 0 < s? given f; ands?_; while decoder2 needs to recoves?,

glvens ' , and (fj, fi+1). Thus decodet corresponds to the
steady state of the system when there is no loss while decoder
2 corresponds to the recovery immediately after an erasure
1n this section it is sufficient to assume that any source eecgi with a WhenB =1landW = 1. We note in advance that the multi-
time indexj < —1 is a constant sequence. terminal source coding setup does not directly correspond t



to decoder 1 in[(31) has? ; in the conditioning. We claim

5;_171 that R, = H(5j|5j+155j71) and RQ = H(Sj+1|sj.72). are
achievable. The encoder can achiéeby random binning of
fi Decode an sources with {s? ,,s?,,} as decoder 1's side information
TSt ! ! and achieveR, by random binning of source?, ; with
(. Encode s*, as decoder 2's side information. Thus revealing the
£ additional side information 0§} , to decoder 1, makes the
Jj+1 Decode en . . J
5 41 link connectingf; to decoder 2 unnecessary.
Also note that the setup in Fif] 7 reduces to the source
Sio coding problem in[[26] if we ses!' , = ¢. It is also a suc-
cessive refinement source coding problem with differeng sid

Fig. 7: Multi-terminal problem setup associated with ouftformation at the decoders and special distortion comsga
proposed streaming setup whéii = B = 1. The erasure at each of the decoders. However to the best of our knowledge

at timet = j — 1 leads to two virtual decoders with differenithe multi-terminal problem in Fid.]7 has not been addressed i
side information as shown. the literature nor has the connection to our proposed strgpm
setup been considered in earlier works.
In the streaming setup, the symmetric rate ife.,= Ry =

. o o o _ R is of interest. Setting this in (B4) we obtain:
providing genie-aided side information in the streaminyige

In particular this setup does not account for the fact that th R > lH(sl|so, s) + EH(53|50)_ (35)
encoder has access to all previous source sequences and the 2 2

decoders have access to past channel outputs. Neverttiedess It can be easily shown that the expression[in (35) and the
main steps of the lower bound developed in the multi-terinindght hand side of the general lower bound [0 (7) Br=
setup are then generalized rather naturally in the formadfpr W = 1 are the equivalent using a simple calculation.

of the lower bound in the next sub-section.

For the above multi-terminal problem, we establish a IowerRi (B=1W=1)

bound on the sum rate as follows: — H(si|s0) + 11(51. 55/50)
2 b
n(Rl +R2) 1 1
= H(s1|so) + =H(s3|sg) — = H(s3|so, s
> H(f;, f11) 1<1lo> 5 (13|o> 5 (13|0 1)
= H{f, frlsis) = §H(51752|50) + §H(53|50) - §H(53|51) (36)

= H(fj, fiv1,571115]2) — H(sj'111f}, f41,512)

1 1 1 1
n n n n = _H(52|SO) + _H(Sl|50752) + _H(S3|SO) - _H(53|51)
= H(fj,s}411s; ) + H(fialfj, 579, 541) 2 2 2 2

n n (37)
_H(Sj+1|f}’ 6+175j72) (28) 1 1

> H(fj, sl |si ) — nen 29) = 5 (sils0.s2) + 5 H(sslso) (38)
= H(sj1sj2) + H(fj[s}4 1,57 2) — ney where the first term in[{36) follows from the Markov Chain
> H(s}' s} o) +H(fj|s} 1,57 1,5} 2) — nen (30) propertysy — s — s2, the last term in[(36) follows from the
> H(SPy|s7 o)+ H(sP|sP 1,87 1,87 y) — 2ne,  (31) Markov Chain property; — so — 53 a_nd (38) follows fr_om

" In o n the fact that the source model is stationary, thus the firdt an
= H(sjy1lsj2) +H (s} |5}, 57-1) — 2nen (32) last term in [(3V) are the same.
= nH(s3|so) + nH(s1|s2,5) — 2ne, (33)  As noted before the above proof does not directly apply to

where [28) follows from the chain rule of entrogy.129) fol® the streaming setup as it does not take into account that the
from the fact thas”, , must be recovered froff¥;, f;11, s™_,} decoders have access to all the past encoder outputs, and tha

at decode® hence Fano's inequality applies afid](30) followthe encoo_ler has access to all the past source sequences. We
from the fact that conditioning reduces entropy. Eq.] (3 ext p_rowde_g formal proo_f of the lower bound that shows
follows from Fano’s inequality applied to decodeand [32) that this additional information does not help.

follows from the Markov chain associated with the source

process. Finally[(33) follows from the fact that the sourcB. Lower Bound on Lossless Rate-Recovery Function

process is memoryless. Dividing throughout®yn @33) and
takingn — oo yields

R+ Ry > H(51|So,52)+H(S3|SQ). (34)

For any sequence df, 2"%) codes we show that there is
a sequence,, that vanishes aa — oo such that

R > H(51|50) + —
Tightness of Lower Bound: As a side remark, we note that W+1

the sum-rate lower bound i (34) can be achieved if DecoderWe consider that a burst erasure of lengthspans the

1 is further revealed?, ;. Note that the lower bound_(B4)interval [t — B — W,t — W — 1] for somet > B + W. It

also applies in this case since the Fano’s Inequality aghplisuffices to lower bound the rate for this erasure pattern. By

I(sp+w+1;5B|50) — €n- (39)
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considering the intervdk — W, t], following the burst erasure available at the decoder and exploit the fact that conditign
we have the following. reduces the entropy. This step in deriving the lower boungd ma
¢ not be necessarily tight, however it is the best lower bound
(W +1)nk > H([f]i—W) Bw1 we have for the general problem. Aldo [49) follows from the
> H([fli_wllfl; """ s"1)  (40) fact that according to the problem setys v ,...,s" }
where [@D) follows from the fact that conditioning reduce®Ust be decoded \iVI]leﬁil and all the channel codewords
the entropy. By definition, the source sequemsgemust be before timet, i.e. [f];”", are available at the decoder, Hence

recovered from{[f]5" 2=~ [f]._,,,s",} Applying Fano’s Fano's inequality again applies. The expression abjovee([50)
inequality we have that T follows from conditioning reduces entropy. EG.50) follow
from the fact that
H( [l 27 [l st) <new. (41)

(s, [ﬂéﬁw*l) = sitwo1 = (Stw,--521). (83)
Therefore we have
Eq. (51) and[(52) follow from memoryless and stationarity of

H([fli_w | [Flg PV s) the source sequences. Combiningl (43)] (47) (52) we have
= H(s{", [fli_w | [FI6 P71 sm) that
- H(S?|[f]67B7W71’ [f]ifwv sﬁl) (42)

© H( | [FI BT g H ([P | (270 870) 2 nH (sp ko) +
> H(s{ | [f] ,$"1) n(W + 1)H (s1|s0) — nH (spyw1ls8) — (W + 1)ne,
t n t—B—-W-1 _n
+ H([fli—w | st [f], ,$™1) — nep. (43) (54)
where [42) and the first two terms df_{43) follow from theFinally from (54) and[(4D) we have that,

application of chain rule and the last term [n](43) follows
form (@3). Now we bound each of the two terms[](43). Firgtlt = nH (s1|so)+

. n
we note that: w1 H(sBrwelso) — H(sprwalsp) — (W +1)en]
H(sP|[f]5 P~V smy) =nH(si|sp)+
> n t—B—-W-—-1 _n n n
> H(SZHZ]O S St p_w—1,5"1) (44) T [H (sp+w+1]5) — H(sp+w+1]58,50) — (W + 1en]
= H(s{'|si" p_w_1) (45) n
G e (46) = nH(also) gl (onawiisnlso) =nen - (39)
= nH(sp1w+1ls0), (47)  where the second step above follows from the Markov con-
where [4%) follows from the fact that conditioning reducedition ss — sg — spiwi1. As we taken — oo we
entropy and[(d5) follows from the Markov relation recover [(3B). This completes the proof of the lower bound
. BeWo1 . B in Theoren{1L.
(s%1,[flo ) = Sip_w_1 =S We remark that the derived lower bound holds for any

Eq. (d8) and[{47) follow from the stationary and memoryles8 + W. Therefore, the lower bound (89) on lossless rate-
source model. recovery function also holds for finite-horizon rate-reey

Furthermore the second term [M[43) can be lower boundtiction wheneverl > B + W.

using the following series of inequalities. Finally we note that in our setup we are assuming a peak
. et BWl rate constraint orf;. If we assume the average rate constraint
H ([f]t—W | s, [f]o 55—1) across; the lower bound still applies with minor modifications
> H ([flizy | st [F5 V1 s™y) (48) in the proof.
= H([f]fS:Il/VasZiWw-'7szlfl|sglv[f]67W7lasﬁl) .
_H (S?_W _’S?_I‘S% [f]t0—17sfl) C. Upper BOl-,Ind on Lossle-ss Rate-R-ecove-r.y Function
>H ([f]i:%/V’ DN R [f]é—W—l’Sﬁl) — Wne,, In this section we establish the achievability Bf (B, W)

(49) in Theorentll using a binning based scheme. At each time the
encoding functior; in (@) is the bin-index of a Slepian-Wolf

n n n t—W-—-1 _n
> H (s w-- - sia|st [l s%y) = Wnen, codebook([277],[[28]. Following a burst erasurefjnj 4+ B —1],
> H (5! oy, st lst [l stw_1,8"1) — Wne, the decoder collect§, 5, . . ., f; w5 and attempts to jointly
= H (/" y, Sti1s - St st siw—1) — Wne,, (50) recover all the underlying sourcesfat= j + W + B. Using
Corollary[] it suffices to show that
=nH(s41,5812,---,5B+w|SB, SByw+1) — Wne, (51) v
1
=nH(spt1,58+2,---,SB+W, SB+W+1|5B) Rt = W+lH(SB+17---75B+W+1|50)+5 (56)

— nH(sB+W+1|sB) — Wnsn

is achievable for any arbitrary > 0.
= n(W + 1)H(s1|s0) — nH (spiw1lss) — Wnen  (52) y J

We use a codebooK which is generated by randomly
Note that in [(4B), in order to lower bound the entropy ternpartitioning the set of all typical sequencédd’(s) into gni*

we reveal the codewords]!~ ¥~} which is not originally bins. The partitions are revealed to the decoder ahead ef tim
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Upon observings!" the encoder declares an errorsjff ¢ denoted byPF("), can be bounded as follows.

T (s). Otherwise it finds the bin to whick® belongs to and =1
sends thg correspondlng bin indéxWe separately conS|derpF(n) < ZP(SHEOEM L Eel)+
two possible scenarios at the decoder. =0
First suppose that the sequensg, has already been PEiiprwil€o,. ., E5-1)+
recovered. Then the destination attempts to receyefrom L
(f;,s1). This succeeds with high probability iz* > P(&l€o,....Ei—1,Eivmr ey Ee
H(s1|s0), which is guaranteed vid (b6). If we define prob- k_j+;w+2( o b SR e-1)

ability of the error event; = {3 # s} conditioned on the (64)
t ﬁn ,.. .Ei_, f” n n n n
correct recovery o i1 l.e 1, as Tollows _ (ﬁ _B _ W)Pe(,l) +Pe(,2) < EPE(J) n P€(72) (65)
Pe(ﬁ) 2 P(&|Ei1) (57) wherePe(ﬁ) and Pe(g) are defined in[(37) and (62). Eq. (65)
follows from the fact that, because of the Markov property
then for the rates satisfyingt > H(s|sy) and in particular of the source model, all the terms in the first and the last

for Rt in (B8), it is guaranteed that summation in[(€4) are the same and equaPﬁ_ﬁ).
According to [58) and(83), for any rate satisfyingl(56) and
lim Pe(q) —0. (58) for any L, n((r:l?r! be chosen large enough such that the upper
n—oo 7 bound onF:"™ in (65) approaches zero. Thus the decoder

fails with vanishing probability for any fixed. This in turn

Next consider the case whesg is the first sequence 10 o piishes the upper bound &4B, W), whenZ — co. This
be recovered after the burst erasure. In particular thet buéampletes the justification of the upper bound

erasure spans the interv@l— B’ — W,i — W — 1] for some
B’ < B. The decoder thus has accesssog,_y;,_,, before VI, SYMMETRIC SOURCES PROOF OFCOROLLARY [2

the start of the burst erasure. Upon receivingy , ... fi the |, is section we establish that the lossless rate-regover
destination simultaneously attempts to recoegry,, .-, s')  function for symmetric Markov sources restricted to clags o
given (_sz_?l_B_,_W_l, ficw,...,f). This succeeds with high memoryless encoders is given by
probability if, 1
. R(B,W) = W—_HH(SBH, ooy SBrw1[S0)- (66)
(W +1)nR = Z H(f;) (59) The achievability follows from Theorefd 1 and Corollady 1.
=i W We thus only need to prove the converse to improve upon the
>nH(si—w,...,Silsi—cpr—w-1) (60) general lower bound ifX7). The lower bound for the special

case wherlV = 0 follows directly from [T) and thus we only
need to show the lower bound fo&¥ > 1. For simplicity in
exposition we illustrate the case whéin = 1. Then we need
to show that

=nH(sp/+1,.--,5B'+W+1[%) (61)

where [€61) follows from the fact that the sequence of vaesbl
s; is a stationary process. Whenevgt < B it immediately

follows that [61) is also guaranteed By (56). DefiR; f;) as R(B,W =1) >
the probability of error irs given(s 5y _1, ficw, ..., ),

H(spy1,5B+2|%) (67)

N~

The proof for general > 1 will follow along similar lines

€. and will be sketched thereafter.
(n) a - 62 Assume that a burst erasure spans time indices
Pey = P(Eil€i-p-w-1). (62) j—B,...,j— 1. The decoder must recover
For rate satisfying[{81), which is satisfied throu@hl (56)isit $h1 =Gjn ([ﬂ%fol, fi fj+17521) : (68)

guaranteed that Furthermore if there is no erasure until timiehen

lim P = 0. (63) 51 = G, (11,5, (69)

n—oo
must hold. Our aim is to establish the following lower bound
Analysis of the Streaming Decoder:As described in on the sum-rate.
problem setup, the decoder is interested in recovering all 9R> Hisiiils:) + H(s:ls: 70
the source sequences outside the error propagation window = H(sjsals) + (SJEJ*B*)' (70)
with vanishing probability of error. Assume a communicatioThe lower bound[{87) then follows since

duration of£ and a single burst erasure of length: B’ < B 1

spanning the intervalj,j + B’ — 1], for 0 < j < L. The R > 5(H(sjt1ls;) + H(sjlsj-p-1))

decoder fails if at least one source sequences outsiderre er 1

propagation window is erroneously recovered, §/e# s for = 5 (H(sjr1lsy, sj-p-1) + H(sjlsj-p-1)) (71)
somei € [0,j —1]U [j + B’ + W +1, L]. For this particular = 1H(Sj+17 silsj-B-1) = 1H(SBJrl, sp+2(s0),  (72)

channel erasure pattern, the probability of decoder'sifajl 2 2
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n
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§n Encoder fir1 Decode 3 §n Encoder fi1 Decode an

j+1 j+1 G4+1 j+1 25+l 141 j+1 J+1
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Fig. 8: Connection between the streaming problem and thei-teaninal source coding problem. The setup on the right is
identical to the setup on the left, except with the side imfation sequencs;]’; replaced withs?, ;. However the rate region
for both problems are identical for symmetric Markov sostce

where [71) follows from the Markov chain propesty. 5_; — such that

s; — s;11, and the last step il (¥2) follows from stationarity o , on n  m

ojf the Jsource model. v # 57) < Pr(E) # 55) (77)
To establish[{70) we make a connection to a multi-terminal Pr(siy # sjy1) < Pr(8fyy # sjhq). (78)

source coding problem in Fig] 8(a). We accomplish this in 0

several steps as outlined below. o )
Proof: Assume that the extra side-informatios$ ;

is revealed to the decoder Now define the maximum a

A. Multi-Terminal S Codi
uiti-ferminal source Loding ﬁostenon probability (MAP) decoder as follow.

Consider the multi-terminal source coding problem wit
side information illustrated in Figl 8(a). In this setuprinare 55 = G, ([}, s"1,s] 1) £ argmax (s (19, 8715 57-1)
four source sequences drawn i.i.d. from a joint distributio g

(79)
p(sﬁl,sj,sj 1,Sj-p-1)- The two source sequences and

', are revealed to the encodersaindj + 1 respectively and where we dropped the subscript in conditional probability
the two sources}' ; ands;' ; , are revealed to the decoderglensity for sake of simplicity. It is known that the MAP de-
jandj+1 reSpecnver The encoders operate independen@gder is optimal and minimizes the decoding error probigbili
and compress the source sequenceg;tand f;;, at rates therefore

R; and R; 1, respectively. Decodej has access t6f;, s ;) Pr(zn " < p 80
while decoderj + 1 has access t0f, fj41,s__;). The two 1(sf #s7') < Pr(s}’ #s7') (80)
decoders are required to reconstruct Also note that
50 =Gj(f,s11) 73) =Gl s ,) = argmax p(S0 [T, 5™ s )

§' 1 =G (f, fir1, 50 1) (74) ; o1

respectively such thadbr(s]* # 5') < e, fori = {j,j +1}. _ argmax p(sIFst ) (82)
Note that the multi-terminal source coding setup in Elg) 8(a

is similar to the setup in Fi§] 7, except that the encodersado n A Qj(fj, ) (83)

cooperate and; = F;(s"), due to the memoryless property.

We exploit this property to directly show that a lower boun}ﬁlhere [8P) follows form the following Markov property.

on the multi-terminal source coding setup in Hig. 8(a) also ([f]é 1,571) — (f;,s" 1) — s (84)

constitutes a lower bound on the rate of the original stragmi ! !

problem. It can be shown through similar steps that the decoder defined

in (Z8) exists with the error probability satisfying_{78)hi$§

Lemma 1. For the class of memoryless encoding funCt'OnEompletes the proof. -

le. f; = F;(sj), the decodmg functions? = G;([flo, 1) The conditions in[(75) and (V6) show that any rate that is

ands, | = gJ+1([ I f_ fi+1,s%;) can be replaced by the achievable in the streaming problem in Figy. 1 is also achieve

following decoding functions in the multi-terminal source coding setup in Fig. 8(a). Henc
g;} _ Qj(f-, Sn ) (75) a lower bound to this source network also constitutes a lower

o N bound to the original problem. In the next section we find a
51 = Gi(f. fir, 870, (76)  Jower bound on the rate for the setup in Fig. 8(a).
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B. Lower Bound for Multi-terminal Source Coding ProblemRemark 3. One way to interpret the lower bound ®9) is

In this section, we establish a lower bound on the surRY observing that the decodgr+ 1 in Fig. [@(b) is able to
rate of the multi-terminal source coding setup in Fiy. 8(dfcover not onlysy,, but alsosj. In particular, the decoder
ie., R > LH(spi1,sp12|5). To this end, we observe the] *+ 1 first recoverss?, ;. Then, similar to decodey, it also

equivalence between the setup in Fi§. 8(a) and [Fig. 8(b) 'overss; from f; and si,, as side information. Hence, by
stated below. only considering decodei+ 1 and following standard source

. . coding argument, the lower bound on the sum-rate satisfies
Lemma 2. The set of all achievable rate-paif&R;, R;+1) @9).

for the problem in Fig[18(a) is identical to the set of all

achievable rate-pairs for the problem in Figl 8(b) where the

side !nfo_rmatlon _sequenczgl1 at decoder 1 is replaced byC_ Extension to ArbitraryV’ > 1
the side information sequencg, ;.
To extend the result for arbitraryy’, we use the following

The proof of Lemmdl2 follows by observing that the ca-
P dl y g sult which is a natural generalization of Lemima 1.

pacity region for the problem in Fi§] 8(a) depends on thetjoiﬁe
distribution p(s;, sj+1,5;-1,5;-p-1) only via the marginal | emma 3. Consider memoryless encoding functiofs =
distributionsp(s;, sj—1) and p(sj+1,s;,sj-p-1). Indeed the 7, (sn) for k € {j,...,j+W}. Any set of decoding functions
decoding error at decodg¢mdepends on the former whereas the
decoding error at decodgr+ 1 depends on the latter. When  gn _ g ([£]k sn)) ke{j....j+W—1}  (90)
the source is symmetric, the joint distribution;, s;_1) and . B fiB-1 it W o1
p(sj,sj+1) are identical and thus exchangisfy ; with s7', ; sivw = Giww ([flo T sM) (91)
does not change the error probability at decofland leaves
the functions at all other terminals unchanged. The form&f"
proof is straightforward and will be omitted. -
Thus it suffices to lower bound the achievable sum-rate for S = & (f St—1) kefj...j+W-1} (92)
the problem in Figl38(b). First note that ' w = Girw (sl gy, [FI7T) (93)

nRj1 = H(fj11)
> I(fj15 8741157 p1. )
= H(sj4lsip-1: 1) = H(sja|S}- g1y fj+1) Pr(S #s) <P #s')  j<I<j+W.  (94)
> H(sj’-‘+1|sj’-‘7371, fi) — ney (85)

be replaced by a new set of decoding functions as

where

O
where [[8b) follows by applying Fano’s inequality for de-

coderj + 1 in Fig. [8(b) sinces’,, can be recovered from The proof is an immediate extension of Lemia 1 and is
(s p_1:fj: fi+1). To boundR; excluded here. The lemma suggests a natural multi-terminal
problem for establishing the lower bound withi+1 encoders

nk; = H(f;) and decoders. For concreteness we discuss the case when
> I(fj;s)' s p_1) W = 2. Consider three encoders {j,j+1,j+2}. Encoder

n|n n|n n iti i nRy
= H(s"|s? p_y) — H(sP|s! 51, ;) t observess* and compresses it into an indéxe [1,2"].

sp, for t € {j,7 + 1} are revealed to the corresponding
decoders ands?’ ;_; is revealed to the decoder + 2.

+ H(s}lsfp-1,5]+1,fj) = nen (86) Using an argument analogous to Lemfra 2 the rate region
=nH(sj|sj-p-1) — 1(s}'; 8] 11s]-p_1,fj) — nen is equivalent to the case whesf,, and s},, are instead
revealed to decoders and j + 1 respectively. For this new
setup we can argue that decoger 2 can always reconstruct
(s}, sih1,Sihe) given (s gy, f, fi41, fi12). In particular,
=nH(sj|sj-p-1) — H(S,?+1|5?_B_1a f;) following the same argument in Remark 3, the decgder2

+nH(sj41ls;) — nen (87) first recoverss,,, then using{f;;1,s?,,} recoverss”, , and

finally using {f;,s?,,} recoverss?. And hence if we only

where [86) follows by applying Fano's inequality for decode;qiqer decodei+ 2 with side informations™ the sum-
Jj in Fig. [B(b) sinces can be recovered fronis, ,,f;) J=B-1

rate must satisfy:
and henceH (s}|s} 5 _1,s}y1,fj)) < ne, holds and [(87) Y

follows from the Markov relatiors?, ; — s — (f;, s ).

. +1 73 3%j-B-1 3R=Rj+ Rjs1+ Rjro > H(sj,Sj11,5512|S;-B_1)-
By summing [85) and{87) and using; = R;+, = R, we i+ Rjy1 + Rjro > H(sj, Sj41,Sj+2/5j-B 1)(95)
have

> nH(sjlsj—p-1) — H(S,ﬂs}l—B—la f;)

=nH(sj|sj-p-1) — H(S;L+1|537'1371a f;)

+ H(S;l+l|5;;3717 ;s fj) —ney

R;+ Rjy1 > H(sjy1ls;) + H(sj|si—5_1) (88) Using LemmalB forW = 2 it follows that t_h_e proposeo!
— H(s;, 550105 5-1). (89) lower bound also continues to hold for the original streagnin
9123 +11%-B-1 problem. This completes the proof. The extension to any
which is equivalent to[(70). arbitrary W is completely analogous.
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VIl. L 0SSYRATE-RECOVERY FORGAUSS-MARKOV Lemma 4. For anyk > 0

SOURCES ore(l 2) 9 \ K
We establish lower and upper bounds on the lossy rate- PGS > 7;;7_@ (1 - <2p2_R) ) (102)
recovery function of Gauss-Markov sources when an imme- P

diate recovery following the burst erasure is required, i.e. O
W = 0. For the single burst erasure case, the proof of the . ) )
lower bound in Profi]1 is presented in Secfion VII-A whereas UPon substituting [{I02)L (101), arid {98) info](97) we abtai
the proof of the upper bound in Prop] 2 is presented FHat for eachi > B +1

Section[VI[-B. The proof of Prod.]3 for the multiple burst

erasures case is presented in Sedtion YII-C. Finally thefpro 2B+1) (1 _ 2 2\ i—B-1
: : 1 p (1—-p7) P
of Corollary[3, which establishes the lossy rate-recovanct R> B log W 1- 2R
tion in the high resolution regime is presented in Sediiofl] VI P
1— p2(B+1)
+ 7] (103)
A. Lower Bound: Single Burst Erasure D
Consider any rat& code that satisfies an average distortioelecting the largest value af i.e. £, yields the tightest
of D as stated in[{5). For each> 0 we have lower bound. As mentioned earlier, we are interested inibefin
horizon whenZ — oo, which yields the tightest lower bound,
nR > H(f;) ‘ we have
> H(fi|[f]lo—é—1’521) | (96) P 110 p2BH(1 — p2) . 1 — p2(B+D) 104)
= I(sP A1y BN sm) + HGIS, [Flo B0 s™y) =518 "pEem — 2 D

> h(s{|[Flo P71 s) = h(sP I [l P71 s™))  (97)  Rearranging[{104) we have that
where [96) follows from the fact that conditioning redudes t 4R _ (Dp? +1 — p>(BH)22R 4 p2(1 — p2B) > ¢
entropy. (105)
We now present an upper bound for the second term and
a lower bound for the first term ifi.{P7). We first establish an Since [I0b) is a quadratic equationd#*, it can be easily
upper bound for the second term[n97). Suppose that the bisi@lved. Keeping the root that yields > 0 results in the lower
erasure occurs in the intenial— B, i — 1]. The reconstruction bound in [I2) in Prod.]1. This completes the proof.

SN 4 1—B—1 n
sequence;” must be a function off, [f]g ;s%1). ThUS  Remark 4. Upon examining the proof of the lower bound of
we have Prop.[, we note that it applies to any source process that
satisfies(I1) and where the additive noise is i.i./(0,1 —
h(sH |l Bt, f,s™)) = h(sl — &7 | [F]5 51, f, ™)) p%). We do not use the fact that the source process is itself a
n Gaussian process.
< h(s" —5")

(98) B. Coding Scheme: Single Burst Erasure

where the last step uses the fact that the expected averagkhe achievable rate is based on quantization and binning.
distortion between!* ands! is no greater tha, and applies For eachi > 0, we consider the test channel
standard arguments [29, Ch. 13].
To lower bound the first term if (D7), we successively use Ui = Si + Zi, (106)
the Gauss-Markov relation (IL1) to express: wherez; ~ N(0,02) is independent Gaussian noise. At time
5= pB s p 1+ (99) ; we sample a t;)tal o (I (uissi)+e) codeword sequences i.i.d.
rom A/ (0,1 + oZ). The codebook at each time is partitioned
for eachi > B andn ~ N(0,1 — p*(B+1D) is independent of into 2"# bins. The encoder finds the codeword sequesjte
s;_p—1. Using the Entropy Power Inequality [29] we have typical with the source sequensi and transmits the bin index
e my f; assigned tas!.
2 sl s) > The decoder, upon receivinf attempts to decode! at
Q2 h(P S I | g2 h(i) (100) time 4, using all the previously recovered codewor{:iz;?_ :
0<j<i—1,g; # «} and the source sequens®, as side

This further reduces to information. The reconstruction sequerieis the minimum
_ mean square error (MMSE) estimate «¥f given u}* and the

h(sp | [Fl P70 sm) > past sequences. The coding scheme presented here is based on
glog (pz(BH)Q%h(sgLB,l\[f];‘;Bfl,sﬁl)+2W6(1_p2(3+1)) ~ binning, similar to lossless case discussed in Settion Vke.

main difference in the analysis is that, unlike the losstesse,
(101) neither the recovered sequenags nor reconstructed source

It remains to lower bound the entropy term in the right hansequences! inherit the Markov property of the original

side of [I01). We show the following in AppendiX B. source sequence$. Therefore, unlike the lossless case, the
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wherec?(-) and 5,(-) are defined in(I08) and (107) respec-
0

Lemma [5: tively.
Connection to Gaussian Many-help-ong
Source Coding Problem. Proof: Consider the decoder at any time> 0 outside the
l error propagation window. Assume that a single burst eeasur
of length B’ € [0, B] spans the intervdt — B’ — k,t — k — 1]
Lemma[&: for somek € [0, — B'] i.e.,

Worst-case Characterization of Burs
Erasure and Steady State Analysis.

*, je{t—-B —k,....t—k-1
l & = {f | { ' (112)
Lemmal[7 and Sectior VII-B2: i, else

Rate Evaluation

Fig. 9: Flowchart summarizing the proof steps of Pidp. 2.The schematic of the erasure channel is illustrated in[Fg. 1
Notice thatk = 0 represents the case of the most recent
burst erasure spanning the interval- B’ — 1,¢ — 1]. The
decoder is interested in first successfully recoverifigand

= then reconstructings;* within distortion D by performing
v \ v \ v \ v * \ * \ * \ * \\/ \ v \ v \ v \ \/\ MMSE estimation ofsi* from all the previously recovered
l l sequences; wherei < ¢ andg; # . The decoder succeeds

1 —B'—k ko1 ¢ with high probability if the rate constraint satisfiés (L{S¢e

) _ } e.g., [30]) and the distortion constraint satisfies {110hdse
Fig. 10: Schematic of single burst erasure channel mod@. Tkynstraints hold for all the possible triplets, B', k), the

channel inputs in the intervél— B’ —k, t —k—1] is erased for gecoder is guaranteed to succeed in reproducing any source
some0 < B’ < B andk € [0,t — B’]. The rest are available sequence within desired distortidn.

at the decoder, as shown by check mark in the figure. _ _ _
Finally in the streaming setup, we can follow the argument

similar to that in Sectiorl_V-C to argue that the decoder
. succeeds in the entire horizon df provided we select the
decoder does not reset following a burst erasure, once Ygrce length: to be sufficiently large. The formal proof is
error propagation is completed. Since the effect of a burstitted here. -

erasure persists throughout, the analysis of achievaldeisa . .
P g y As a result of Lemmal5, in order to compute the achievable

significantly more involved. .
Fig. [@ summarizes the main steps in proving Pidp. 2. [gte, we need to character.lzg the worst case valu@is lbfB’)
fpat simultaneously maximize\(k, B) and vy (k, B). We

particular, in Lemmals, we first derive necessary paramet I

rate constraints associated with every possible erastierpa present such a characterization next.
Second, through the Lemrhé 6, we characterize the the Worl?é'mma 6. The functions\;(k, B) and :(k, B) satisfy the
case erasure pattern that dominates the rate and distorp&%wing properties: ’ ’

constraints. Finally in Lemm&]7 and Sectibn VI[IB2, we

evaluate the achievable rate to complete the proof of Piop. 21) Forall t > B' andk € [0,t—B'], \i(k, B') < \(0, B')

1) Analysis of Achievable RateGiven a collection of and v,(k, B') < ~(0,B'), i.e. the worst-case erasure
random variables), we let the MMSE estimate (_)fi be pattern contains the burst erasure in the interyal—
denoted b)_éi(v), and its associated estimation error is denoted B,t—1].
by o?(V), i.e., 2) Forall t > Band0 < B’ < B, \(0,B') < (0, B)

s(V)=Els; | V] (107) and %(Q,B’) < %(0,_3), i.e. the worse-case erasure
o2(V) = El(si — §i(V))2]. (108) pattern includes maximum burst length.

3) For a fixed B, the functions\;(0, B) and v(0, B) are
We begin with a parametric characterization of the achiev-  both increasing with respect to, for ¢ > B, i.e. the
able rate. worse-case erasure pattern happens in steady state (i.e.,
t — oo) of the system.
4) Forallt < B,0 < B <tandk € [0,t — B,
Ai(k, B") < Ap(0,B) and ~;(k, B") < v5(0,B) i.e.,
R > N(k,B') 2 I(s;;up | [ully P 751 [u]t=),s.1), (109) the burst erasure spannirig, B— 1] dominates all burst
erasures that terminate before tini¢ — 1.

Lemma 5. A rate-distortion pair(R, D) is achievable, if for
everyt > 0, B’ € [0,B] andk € [0,t — B’] we have

and the test-channdl08) satisfies

. Bk 2 O
sl B) 2 B (5= sdlaly ™ o) |
9 B k1 1t Proof: Before establishing the proof, we state two in-
= i ([ulo Uik s-1) < D (110) equalities which are established in Appendik C. For each



16

__ can just ignore some of the symbols received over the channel

o= S0 - S S S S - S (S g any rate achieved with the longest burst is also actlieve
‘ ‘ ‘ ‘ ‘ | for the shorter burst. The formal justification is as followsr
IUO ut—B'—k—lHut—B/—kH szk‘ lut—k+1 U1 ‘ 'u,, any B' < B we have,
Fig. 11: Replaci b i the estimate of (0, B') = I(si; [l ", 5-1)
ig. 11: Replacings;_ g/ by v, improves the estimate o B
5 and . o t = Wl 5 0) ~ luls) (118)
= h(u|[ulg P [uliZg Y sn) — luds)
< h(ul[u]y P so0) — P(uelsi) (119)
k€ [1:t— B'] we have that: = I(st; ug|[u]57 571 s20) (120)
e [l 7 1: brs1) = A (0, B) (121)
< hue| [l R (Ul Tk 501), (112) where [IIB) and[{120) follows from the Markov chain
_ ropert
B(sil [l =R [l 501) Property
< h(sel[uls B R [u)t s 5o1)- (113) u— s — {uly 7" s}, jEL{B, B} (122)

The above inequalities state that the conditional difféaén and [119) follows from the fact that conditioning reduces

entropy ofu; ands, is reduced if the variable,_z/_y, is re- differential entropy. In a similar fashion the inequality

placed byw,_, in the conditioning and the remaining variables:(0, B') < (0, B) follows from the fact that the estimation

remain unchanged. Fig. 111 provides a schematic interfwataterror can only be reduced by having more observations.

of the above inequalities. The proof in Appendik C exploits 3) We show that both\ (0, B) and~;(0, B) are increasing

the specific structure of the Gaussian test charinel (106) dHactions with respect te. Intuitively ast increases the effect

Gaussian sources to establish these inequalities. of havings_; at the decoder vanishes and hence the required
In the remainder of the proof, we establish each of the fol@te increases. Consider

properties separately.

1) We show that both; (k, B') and~;(k, B') are decreasing Aei1 (0, B) = I(sey; ”t“'[ o %ss-1)
functions ofk for k € [1:t — B/]. = h(ugia|[u]g” 571) h(uts1lsi+1)

= h(uga|[u]g 7 5-1) = h(uilse) (123)

Ae(k, B') = I(sy; u|[u]l B 51 [u)i=) s0) > h(ug|[ulg™? 571750) h(uelst)  (124)

= h(ue [l P [y 5o0) — h(us:) = h(ur [l s0) = hlualst) (125)

< s [ 5o0) = blurls) = henllly* 5o0) —hluls) - (126)

(114) = I(se; ue|[u] %7 s20)

= I(sp; uel[u)5 5 5, (W) Tk son) = (0, B) (127)

=X(k—1,B) (115) where [12B) and{126) follow from time-invariant property o

he source model and the test channel, [124) follows from the
act that conditioning reduces differential entropy ah@3)L
uses the following Markov chain property

{0,513 = {[u)i P, 50} = vry1 (128)

where [II#) follows from using(112). In a similar fashio
since

ik, B) = of (1l 5 [t r51)

is the MMSE estimation error of s, given

—-B'— Similarly,
([U]é Bk, [U]i_kﬂ,s_l), we have

1 t
%log(%e.%(kz,B’)) h(si[ull P 1 [ty 500) prstre 0B >Z:::$z Z::::,ls)l)
< h(se|uly B F [U]gkarle*l)llG = h(s|[u)8, us1,50)  (129)
1 (110 = h(sel[uls " u,so0)
=3 log (2me - v¢(k — 1, B")) (117) 1 1og(27re (0. B)) (130)

where [1IB) follows from using[{I13). Sincg(z) =
%log(zwex) is a monotonically increasing function it follows
that~;(k, B') < v(k — 1, B'). By recursively applying[(115) s 1 t—B sl s 131
and [II7) untilk = 1, the proof of property (1) is complete. Lo, 51} = {[ula™, ter, S0} = st (131)

2) We next show that the worst case erasure pattern aBimce [(12F) and[{130) hold for evety > B the proof of
has the longest burst. This follows intuitively since thealer property (3) is complete.

where [12D) follows from the followmg Markov chain propert
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4) Note that fort < B we have0 < B’ <t and thus we [ |

can write We conclude thal'(B, 02) = D, the rateRgy,.ge(B, D) =
/\t(k,Bl) < /\t((),B/) (132) A(B,O'g) is achievable.
< A\ (0,1) (133) 2) Numerical Evaluation: We derive an expression for
= numerically evaluating the noise varianggin (I08) and also
= h(u]s-1) = h(usls;) establish[(IB) and (16).
= h(u|s-1) — h(up|sp) To this end it is helpful to consider the following single-
= h(uglsp_i—1) — h(ug|sp) variable discrete-time Kalman filter fare [0,z — B — 1],
<h s1)—h s 134
< h(upls-1) — h(ug|sB) (134) 5 = psiy + 1, s~ N(0,1— p?) (147)
= \5(0,B) (135) )
u; = s; + z;, z; ~ N(0,07). (148)

where [13R) follows from part 1 of the lemm&,(133) is based

on the fact that the worse-case erasure pattern contains M@ste thats; can be viewed as the state of the system updated
possible erasures and follows from the similar steps usedgBcording a Gauss-Markov model andas the output of the
deriving (121) and using the fact that if < B, the burst system at each timé which is a noisy version of the stase
erasure length is at most Eq. [134) follows from the fact Consider the system in steady state t.es co. The MMSE
that whenever < B the relations_, — sg_;—1 — up holds estimation error of,_ 5 givenall the previous outputs up to

sincet < B is assumed. In a similar fashion we can show thghe: - B _ 1 ie. [u]; P~ is expressed as (see, e.gl, 1[31,
vt(k, B') < v5(0, B). Example V.B.2]):

This completes the proof of lemna 6. ]

Following the four parts of Lemm@l 6, it follows that thez(gz) 2 fim o2 B([U]E;Bfl) (149)
worst-case erasure pattern happens at steady state-.ex Zl t—o0 L
when there is a burst of length which spangt — B,t — 1]. _ oo 22 31 2 — P 2
According to this and Lemnid 5, any p&iR, D) is achievable 2\/(1 P =P+ Aozl =p%) + 2 (1 (1;6))
if

R > lim X\(0, B)
t—o00

(136) Also using the orthogonality principle for MMSE estimation

D> lim 4:(0, B) (137) e have
Lemma 7. Consideru; = s; + z and suppose the noise Wy P = & ([ulsP™Y) = siop — s (151)
varianceo? satisfies
1(B,0?) 2 thm B {(St B §t([u]6_B_1, ut))z] (138) Thus we can express
—00
= lim of (Wl B w) < D. (139) si-p = S-p(uy P +e (152)
—00
The following rate is achievable: where the noiseé ~ N(0,% (¢2)) is independent of the
R=A(B,o2) £ lim I(s; ug|[u]f B ). (140) observation sefu]i"”~'. Equivalently we can express (see
e.g. [32))
O
Proof: It suffices to show that any test channel satisfying $—p((uy P ) =as_p+é (153)
(I39) also implies[(137) and any rate satisfyihg {140) iempli
(136). These relations can be established in a straighiarwwhere
manner as shown below.
a21-3(02) (154)

R=A(B,02) = lim I(s;; u[u]g"~")
—00

= Jim (Bl ") = har]s0) ande ~ ' (0, 5 (o%) (1 -

Thus we have

¥ (02))) is independent of;_ 5.

z

(141)

> lim (R(uellulg P~ s21) = h(ust))
(142) A(B,o?) = lim I(sp; u|[ulg™ ")
= A A0, B) (143) = lim I(ss: s (b))
and = lim I(St; Ut|0~é5th + é)
D>T(B,0%) = lm E[(s — &(uli "~ w)’| (144) e
= PR T i S ¢ >t %o ot = tli}m I(st; ue|si—p +e)
. . _B— 2 >
> lim E [(st —&([uly P u o)) = I(s;; u|5_B) (155)
(145) -
. here we have used 53) and
=1 0,B 146) W . )
Hm 70, B) (146) e~ N(0,% (62) /(1 - % (02))). This establishes [(13)
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in Prop.[2. In a similar manner, L = L 2
Ll vl fels] v [ ] [« ]x] /]

I'(B,o2) = }320 o7 ([ulg 7", up) l ©) (1) @ (3) @ ) 6) (8 (9)10) (13)(14)(15)

= thm Gt2 (gth([U]é_B_l)v ut) o 3

— 00
* —

= lim 0152 (dst—B + é7 ) Ut) (@ Q18(13) - {07 1,2,3,4,5,6,8,9,10,13, 14, 15}
t—00 B L B L B L B

= lim o}(s;—p + e, uy) Bl Bl A [ [ B [ o] [ v
t_;)f l 1) (3) (4) (5) (8) (9) (10) (13)(14)(15)

= Ut (St,B, Ut) (156) S, S,

which established (16). Furthermore since (b) Qe ={0.3.4,5.8.9, 10,13, 14, 15}
18 — 7y Ty Uy Oy ’ ) ’
_ B =
St = pUS—p N (157) Fig. 12: Schematic of the erasure patterns in Leniina 9 for
wheren ~ N(0,1 — p?8), t =18, L = 3 and B = 2. Fig.[12& illustratesQ2} () in part 1
SN of Lemma[®. The non-erased symbols are denoted by check-
[(B,o;) = 0 (3B, ur) . (158)  marks. Fig[I2b illustrateQ; as stated in part 2 of Lemna 9.
1 1 B

o T T PP (1 - 5(o2)
where [I5D) follows from the application of MMSE estimatofnd the distortion constraint satisfies
and using[(157)[(152) and the definition of the test charmel i 0N 2 E . 2
(I08). Thus the noise? in the test channel {I06) is obtained 7(8) [(st i (ugy, Ut 5-1)) }
by setting =0} (ug,,u,5.1) <D (165)

(159)

['(B,o?) = D. (160) for eacht > 0 and each feasible se®;. Thus we are
again required to characterize tli& for each value oft

corresponding to the worst-case erasure pattern. Thenviolp
Remark 5. WhenW > 0, the generalization of Lemnid 6two lemmas are useful towards this end.

appears to involve a rate-region corresponding to the Berge ) i
Tung inner bound[33] and the analysis is considerably mofgEmma 8. Consider the two setsl, B C N each of size
involved. Furthermore hybrid schemes involving predetiy’ 25 4 = {a1:az2,--ar}, B = {b1,bz, -~ b} such that
coding and binning may lead to an improved performance= @1 < a2 < - < ar andl < by < by <.-- < b, and
over the binning-only scheme. Thus the scope of this problé¥h @Y @ € {1,...,7}, a; < b;. Then the test chann¢106)
is well beyond the results in this paper. satisfies the following:

This completes the proof of Projl. 2.

. . ) h(stlua,s-1) > h(silug,s—1), Vt>b, (166)
C. Coding Scheme: Multiple Burst Erasures with Guard In-
h(uglua,s—1) > h(u|ug,s—1), VYt >b,. (167)
tervals
We study the achievable rate using the quantize and binning O

scheme with test channél (106) when the channel introduce
multiple burst erasures each of length no greater tian
and with a guard interval of at-leadt symbols separating Lemma 9. Assume that at time, gz = f, and letQ; be as
consecutive burst erasures. While the coding scheme is thedined in(161) .

same as the single burst erasure channel model and is based Among all feasible set§), of size || = 6, A\ ()

on quantize and binning and MMSE estimation at the decoder, and 7:(;) are maximized by a sé¥: () where all the
characterizing the worst case erasure pattern of the chenne  erasures happen in the closest possible locations to time
main challenge and requires some additional steps.

t.
1) Analysis of Achievable Rat&Ve introduce the following 2 For each fixed, both\ (€2} (6)) and~.(Q2; (6)) are max-

The proof of Lemma&]8 is available in Appendi¥ D.

notation in our analysis. L&®; denote the set of time indices imized by the minimum possible valugloEquivalently,
up to timet¢ — 1 when the channel packets are not erased i.e.,  the maximizing set, denoted b), corresponds to the
O ={i:0<i<t—1,g #x} (161) erasure pattern with maximgm num_ber of erasures.
] 3) Both A\:(€2y) and v (€2;) are increasing functions with
and let us define respect tot.
sqo = {s;: i €0}, (162) O
ug = {u; 1i € Q}. (163) The proof of Lemmd19 is presented in Appenflik E. We

Given the erasure sequen€l, and giveng, = f,, the Present an example in Fif. 112 to illustrate Lemfja 9. We
decoder can reconstruef* provided that the test channel is2ssumet = 18. The total number of possible erasures up
selected such that the rate satisfies (see &.d., [30]) to time ¢ = 18 is restricted to be5, or equivalently the

A number of non-erased packetsfis= 13 in Fig[12a. The set
R > X(Q) = I(si; uelue,; 5-1)- (164) Q35(13) indicates the set of non-erased indices associated with
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the worst case erasure pattern. Based on part 2 of Ldmhma 9, VIIl. HIGH RESOLUTIONASYMPTOTIC
Fig.[12B shows the worst case erasure pattern for time 8,
which includes the maximum possible erasures.

Following the three steps in Lemrha 9 a rate-distortion pal
(R, D) is achievable if

We investigate the behavior of the lossy rate-recovery
fl'mctlons for Gauss-Markov sources for single and multi-
ple burst erasure channel models, iBgm-se(B,D) and
RGM_ME(L B, D), in the high resolution regime and establish

R > lim A(€) (168) Corollary[3. The following inequalities can be readily Vieril.
D>l Qr 169
= i () (169 Row.se(B; D) < Rem-se(B, D) <
:;]erggs éo.iAeny test channel noise? satisfying(19) and (20) Romme(L, B, D) < Rbyue(L, B.D) (179)
R > (s w3 u)i—B1 170y The first anq the Ia§t inequalities in (179) are by definiFioda
- (25t~ b5~ Bt,[B]f L-5+1) (170) the second inequality follows from the fact that the ratei@ch
D >0y (St—r—B, [Ul;_L g1, ut) (171)  aple for multiple erasure model is also achievable for gingl
wheres; 1 _p=s_1_p+ e, wheree ~ N(0,D/(1 — D)), burst erasure as the decoder can simply ignore the available
also satisfieq168) and (I69). codewords in reconstructing the source sequences. Acaprdi
Proof: See AppendikF . to (I79), it suffices to characterize the high resolutionitliof
. ) : R¢, B,D dRE L, B, D) in Prop. dP 3
This completes the proof of Prép 3. recélg_gggivély) and Rgy.ve (L, B, D) in Prop.[1 and Prof.]
2) Numerical Evaluation:We derive the expression for nu- For the lower bound note that 48 — 0 the expression for

merically evaluating-2. To this end, first note that the estima-

tion error of estimating,,_p_1 from {&,_._p, [ul;_7 "5, A in (12) satisfies
can be computed as foIIows.B AL (Dp2+1—p2(3+1))2—4Dp2(1—sz) = (1_p2(3+1))2.
2\ A 2 = t—B—1
GZ =0 — D — St—L— Y u — L — . . . .
(o) ) e (- [ul BJF;) 1 . Upon direct substitution i (12) we have that
=F [st—B—l} —F [st—B—l U] (E [U U]) E [St_B_1U }
(172) . _ 1 1 — p2(B+1)
lim  Rgy.se(B, D) — s log | ———— =0, (180)
=1—A(Ax)1AT (173) D=0 2 D
where we define as required.
UL [u u U s } To establish the upper bound note that according to Piop. 3
= |Ut—B—1 t—B—2 .- t—L—B+1 St—L—B we can write
and (.)” denotes the transpose operation. Also note that
and A, can be computed as follows. Révme(L, B, D)
Ay =1,p, 0%, p" ) @74) =I(ssulSer-p. [UliZ7 540
1+ 02 p v pb2 prt—1 = h(st|3—r-B; [U]fg:f:éprl) — h(st|5—1—B, [U]iif:éprp ut)
1+ 2 L—3 L—2 B o 1
p o’ p p = h(se|—r—p, (U P "5 1) — 5 log(2meD) (181)
Ay = : : : : (175)
pl—2 pl=3 . 14 o2 p where the last term follows from the definition §f_;_ g in
o=l plm2 L p 14+ 25 Prop.[3. Also we have
According to [I71L) we can write h(se|si—p_1) < h(si|3—1—p, [“ﬁ:LB:EH) < h(si|ur—p_1)
D=0}Gr 5, Wi F by th) (176) (182)
=0} (5t-B-1(5t—L-B, (U], _pi1)s Ut where the left hand side inequality i ollows from the
{ (St-p-1( (W) =F ), ue) here the left hand sid lity in-(182) follows from th
1 1 -1 following Markov property,
=2 T T 2B —g02) S . -B-1
# # {5~r—B, [U]t—L—B+1} — St—-B-1 St (183)

Therefore by solving[(177) the expression fof can be
obtained. Finally the achievable rate is computed as: and the fact that conditioning reduces the differentiatamy.
_ _B_ Also, the right hand side inequality ib (182) follows froneth
+ _ ) t—B—1
Rewme(L: B, D) = I(st; thst—r—p. [ul, L~ p11) latter fact. By computing the upper and lower bound$in182)

= h(s|5-1-B, [U]ﬁifiéﬂ) — h(st|S—1—p, [U]"F " F B+1> Ut) we have
1
_ . . t—B—1
=h (5t|5t—B—1(5t—L—Ba [u]t—L—B-l-l)) ) log(2meD) llog (27Te(1 _ p2(3+1))) <
1 2(B+1) 2 L N B
=5 log (27T€ (1 —p (1- n(oz)))) D) log(2meD) h(st|$—1_p. [U]i_f_}g.ﬂ) <

L (1= p?BH (A —g(a2)) 1 p* B
=1 = . 178 =1 2 1—-—- 184
505 A 78) jios (2ne (1- 5 )) s
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Now note that A. Sufficiency of{ = B+ W
In our analysis we only consider the cake= B + W.

2(a t—B—1 2
D > 0 (8-, [ul;_p py1- ) = 07 (Ur, St-1) (185) The coding scheme can be easily extended to a gehé
(1 1 -t follows. If K < B + W, we can assume that the decoder,
o o—_g 1—p2 ) instead of recovering the souree= (s;,s;_1,...,5_x)’ at

(186) time ¢ within distortiond, aims to recover the sourdg =
(si,...,si_g+)T within distortiond’ where K’ = B + W and
which equivalently shows that iD — 0 we have that? — 0. _
By computing the limit of the upper and lower boundsin (184) J - {dj for j € {0,1,.., K} (189)
asD — 0, we can see that / 1 forje{K+1,.., K},

lim {h(5t|§t7LfB7 [U]E:LB:EH) and thus this casells a s.peC|aI casekof B + V. Note that
D—0 layersK +1, ..., K’ require zero rate as the source sequences
1 have unit variance.
—21 (2 1 — p2(B+D ) =0 187
9 %8 me(l=p ) (187) If K>B+W, for eachj € {B+ W +1,...,K} the

) _ decoder is required to reconstrugt ; within distortion d;.

Finally (I187) and[(181) results in However we note the rate associated with these layers is
) | 2B+ again zero. In particular Ehere are two possibilities dyitine
lim {RgM—ME(Lv B,D) — =log <p7>} =0 recovery at timei. Either,t_, or,t] , ., _, are guaranteed
b=0 2 D to have been reconstructed. In the former cgge; }a,_, i
(188 available from timei — 1 andd;—; < d;. In the latter case

igln—j}df*W*B* is available from timej — B — W — 1 and
againd;_w_p—1 < d;. Thus the reconstruction of any layer
j > B+ W does not require any additional rate and it again
suffices to assum& = B + W.

as required. Equationk_(180), (188) ahd (179) establidhes
results of Corollary .

IX. INDEPENDENTGAUSSIAN SOURCES WITHSLIDING
WINDOW RECOVERY. PROOF OFTHEOREM[Z| B. Coding Scheme

In this section we study the memoryless Gaussian sourcel "foughout our analysis, we assume the source sequences

model discussed in Sectig I¥-C. The source sequences &fg Of lengthn - where bothn and: will be assumed to be
drawn i.i.d. both in spatial and temporal dimension acaugdi arbitrarily large. The block diagram of the scheme is shown

to a unit-variance, zero-mean, Gaussian distribufi6fo, 1). in Fig. [13. We partitions!” into  blocks each consisting

The rateR causal encoder sequentially compresses the souffe? Symbols(si');. We then apply a successive refinement
sequences and sends the codewords through the burst eradgg@tization cgdebook to each such block t eneBaHel
channel. The channel erases a single burst of maximum lenftfices({mi ;}j_o), as discussed in sectipn IX-B1. Thereafter

B and perfectly reveals the rest of the packets to the decodBFSe indices are carefully rearranged in time to genéeaje
The decoder at each timereconstructsi + 1 past source @S discussed in Section IX-B2. At each time we thus have a

rre | . ;
sequences, i.6s7,s!" ;. ...,s" ,-) within a vector distortion '€ngthr sequence; = {(c;)i, ..., (c;).} We transmit the bin

r : :
measured — ((}O: o 7’dK)- More recent source sequence?dex of each sequence over the channel as in Sectioh V-C.

are required to be reconstructed within less distortiom, i/t the receiver the sequens is first reconstructed by the

do < dy < ... < dg. The decoder however is not interested’er d_ecoder. Thereafter upon rearranging the refinement
in reconstructing the source sequences during the errpapro/@/€rs in each packet, the required reconstruction segsenc
gation window, i.e. during the burst erasure and a window 8f¢ Produced. We provide the details of the encoding and
length I after the burst erasure ends. decoding below. _

For this setup, we establish the rate-recovery functiotredta 1) 'Su_ccessw_e_ Refinement (SR) EnCOdB"_E encoder at
in Theoreni®. We do this by presenting the coding scher{@€ ¢, first partitions the source sequensi€ into r source
in Section[IX-B and the converse in Sectipn IX-C. We alsgeduencess;'), & [1,r]. As shown in FigLI4, we encode
study some baseline schemes and compare their performaer%,%h source signals}’); using a (B + 1)-layer successive
with the rate-recovery function at the end of this section. re memt_ant_codebook [_'I'Ol' [35] to generaé+1) codewords

whose indices are given by(m; o), (mi1)i,...,(mig)i}

Remark 6. Our coding scheme in this section builds upowhere(m; ;); € {1,2,...,2"%} for j € {0,1,..., B} and
the technique introduced in_[34] for lossless recovery of
deterministic sources. The example involving determnist
sources in[[34] established that the lower bound in Thedréem 1 Rj =
can be attained for a certain class of deterministic sources
The binning based scheme is suboptimal in general. The
present paper does T]Ot include this example, but the reader I2The notation {3 }; indicates the reconstruction &f* within average
encouraged to see [34]. distortion d. ’

log(2&£)  for j =0
log(DE<2)  for j € {1,2,...,B—1} (190)

log(-——) forj =B,

dw+B

N[ D= N[
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Fig. 13: Schematic of encoder and decoder for i.i.d. Ganssith sliding window recovery constraint. SR and LR ind&at
successive refinement and layer rearrangement (Se€ficBdl IXnd[TX-B2), respectively.

777777777777777777777777 \ with different layers to produce an auxiliary set of sequenc

| mi B Mg ! .
| En%ode ; De;odeﬂ (87 ap e as follow§.
I

| ! M;

: B-1 Mip-1 1 . ’L.,O

| Egc_otje g : D;c_omlje H{S;L}dsm’fl Mifl.,l

| 1 a | M;_
N | c; 2| Mi—22 (193)
Sy ! .

! I

| M,

| En010d9 s HYL ‘ DeClOder*) {ézl}dwﬂ MiiB"B

; - Mo | In the definition of [Z98) we note thal/; , consists of all

| Encod " {——— Decod 5 ! . . !

e = {8 the refinement layers associated with the source sequence at

R T T T TP time 4. It can be viewed as the “innovation symbol” since it
Fig. 14: (B + 1)-layer coding scheme based on successiig independent of all past symbols. It results in a distortid
refinement (SR). Note that for ea¢he [0, B], m; . is of rate do. The symbolM/;_ ; consists of all refinement layers of the
Ry, and M, . is of rate R;.. The dashed box represents the SRource sequence at tinie- 1, except the last layer and results
code. in a distortion ofd; . Recall thatM;_; 1 C M;_1 0. In a similar
fashionM,_ g  is associated with the source sequence at time
1 — B and results in a distortion ofg. Fig.[I3 illustrates a
schematic of these auxiliary codewords.
Note that as shown in Fid. 14 the encoder at each time
(M) Y (M) (mip)} (191) generates independent auxiliary codewords; )1, o (ci)r-
i ’ ’ Let ¢! be the set of allr codewords. In the final step,
for reproduction and the associated rate with layés given the encoder generatés the bin index associated with the

The j-th layer uses indices

by: codewordsc] and transmit this through the channel. The bin
B = L L ) indices are randomly and independently assigned to all the
R; = Z%:o {31@ = 3 log(3;) for j =0 codewords beforehand and are revealed to both encoder and
dohej B = %1og(#ﬂ_) for j € {1,2,..., B}, decoder.

(192) 3) Decoding and Rate Analysisio analyze the decoding
process, first consider the simple case where the actuat code
words ¢! defined in [[I98), and not the assigned bin indices,
are transmitted through the channel. In this case, whenever
the channel packet is not erased by the channel, the decoder
has access to the codewords According to the problem
setup, at anytime outside the error propagation window,

and the corresponding distortion associated with layegquals
do for j =0 anddw; for j € {1,2,...,B}.

From Fig.[14 it is clear that for anyandj € {0, ..., B},
the j-th layer M; ; is a subset ofi — 1-th layer M; ;_,, i.e.
M; ; € M; ;1.

2) Layer Rearrangement (LR) and Binningn this stage
the encoder rearranges the outputs of the SR blocks assiciat3we suppress the indexin (I37) for compactness.
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ci—w Ci—W+1
l M;_w,o0 ‘ lMi—W+1,O 77777
M;_w_22 M;_w_1,2

Fig. 15: Schematic of the auxiliary codewords definedin Jj198e codewords are temporally correlated in a diagonahfor
depicted using ellipses. In particular, as shown in Eig. ¥4, ; ; C M,_; ;.. Based on this diagonal correlation structure,
the codewords depicted in the boxes are sufficient to knowhallcodewords .

M;_B_2,B M;_B_1,B M;_B.B

when the decoder is interested in reconstructing the algirThe encoder, upon observirg, only transmits its bin index
source sequences, it has access to the past 1 channel f; through the channel. We next describe the decoder and
packets, i.e.(fi_w,...,fi_1,f). Therefore, the codewordscompute the minimum rate required to reconstrjct
(ci,ci_4,...,cl_y,) are known to the decoder. Now consider

the following claim. Outside the error propagation window, one of the following
Claim 1. The decoder at each timeis able to reconstruct C@S€s can happen as discussed below. We claim that in either

the source sequences within required distortion vectoitiiee CS€ the decoder is able to reconstiejcas follows.
the sequence&!, c ., Cl_y) or (Er7, cr) is available.
[l

(] z 1

Proof: Fig. shows a schematic of the code- ¢ In the first case, the decoder has already recovefed
words. First conS|der the case whefe,c! |,...,c/ and attempts to recovef given(f;, ci_,). This succeeds
is known. According to [{I93) the decoder also knows With high probability if
(Mo, MI_10,..., M y,). Therefore, according to SR
structure depicted in Fig.[[l4, the source sequences
(sPr, sy, ..., s"y,) are each known within distortiod,.
This satisfies the original distortion constraint és < d
for eachk € {1,...,W}. In addition, sincec;_w is known,

according to[(193 , M e, MY s

is knowngandﬂgcg(rdﬁgvgo 1SlR strucV}/urQeQdeplcted w?[E%BL the nk > Hieilei-) (195)
source sequences! 1,y o,-- -, y) are known = H(Mi,0, Mi—1.1, .-, Mi—p plci-1) (196)
within distortion (dw+1,dw+2, . ,dB-i-W) which satisfies = H(Mi,Ov Mi—l,l, . aMi—B,B|Mi—1,07 Mi_2_’1, ey
the distortion (_:onstra_int. Noyv consider the case WH@'L_Q _ ..M;_pp_1,Mi_p_1) (197)
andc] are available, i.et]”, is already reconstructed within — H(M.o) (198)
the required distortion vector, the decoder is able to rstant "

t? from t77, and c!. In particular, from M the source =nlt (199)

sequence!” is reconstructed within distortiod,. Also re-
construction ok}*", within distortiondy,_, is already available
from t; for k € [1,B + W] which satisfies the distortion
constraint asi,_, < dy. [ |
Thus we have shown that if actual codewokdsdefined

in (I93) are transmitted the required distortion constsaare
satisfied. It can be verified frorh (193) add (1.92) that the rate
associated with the] is given by

Re = Z Ry, = log

2= () e

Thus compared to the achievable rdte] (25) in Thedrbm 2 wes
are missing the factor o{,vl—H in the second term. To reduce
the rate, note that, as shown in Hig] 15 and based on definition
of the auxiliary codewords in_(193), there is a strong terapor
correlation among the consecutive codewords. We therefore
bin the set of all sequences into 2" bins as in Section VAC.

) (194)

where we use[{193) il (IP6) and (197), and the fact
that layer;j is a subset of layej — 1 i.e., M;_;; C
M;_; j—1 in (198). Thus the reconstruction of follows

since the choice of (25) satisfids (199). Thus according
to the second part of Claify] 1, the decoder is able to
reconstruct?".

In the second case we assume that the decoder has not
yet successfully reconstructegf_; but is required to
reconstructc]. In this casec] is the first sequence to

be recovered following the end of the error propagation
window. Our proposed decoder usgs f;—1, ..., fi—w)

to simultaneously reconstru¢t!, ..., c]_y,). This suc-
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ceeds with high probability provided: (208). Consider
H([fliw [l s™y)

n(W +1)R
= I([F iy tPIFlG 7 sty )+
> H(ci-w,Ciwt1,---,Ci) H(AE o [ B71, n) (206)
= H(ci-w, M;- W+107Mi7W+2,Oa---aMi,0) (200) N O BoWl e N
= h(t}|[f]o ,s™1) = h(t?[[flo i T+
= H(ci-w) +ZH i~W+k,0) (201) H([fli_wllflo™ " e, sty)
k=1 n n t—B—-W-—-1 t n
= h(t}") — h(t}[[fl [ liw s ")+
:H(Mi w0, Mi—w-1,1,.., Mi—p-w,B)
H([fliwllflo™ " e, sty) (207)
+ZH i—W+k,0) where [20V) follows since} = (s z_v,--.,s;") is indepen-
dent of ([f]5" 2~ ~1 s",) as the source sequence’ are
_ nzB:Rk (W + 1) R (202) generated i.i.d. . By expanding we have that
k=1 h(t?) = h(szl—B—Wv R S?—W—l) + h(sgl—W’ R Szl)v

(208)
where in [20D) we use the fact that the sub-symbols sat-

isfy M; ;11 C M;; as illustrated in Fig_15. In particular, 2nd

in computing the rate in[{200) all the sub-symbols in (| [FE B[]t ")

c;_w and the sub-symbols/;  for j € [i — W + 1,1] ¢ =W 1tBW1 ,

need to be considered. Frofn (199), (202) dnd](192), the = "(si-p-w - > siew-1llflo w5+

rate R is achievable if L G | A 1 - S
LB .,stfwfl,s,l) (209)
R Ro+ 7 ZRk (203)  Wwe next establish the following claim whose proof is in
k=1 Appendix(G.
B
— 1 i 1Og 1 . Lemma 11. The following two inequalities holds.
2 do W +1) f dw +k
(204) h(sip_ws--»Siew—1)—
_ _ _ . WSt pows - stw 1o 2 [l s™0)
as required. Thus, the rate constrainfin {204) is sufficient
for the decoder to recover the codewo(ds, ..., c]_y;) > Z n log ( ! ) (210)
right after the error propagation window and to recon- = 2 dw 4
structt?” according to Clainfl1.
Thus, the rate constraint in (204) is sufficient for the derod h(S s S)—
to succeed in reconstructing the source sequences within h(s sr[F ]t B_W—1 [f]t o
required distortion constraints at the anytimeutside error t=wo e t=WoRt=B-W
propagation window. This completes the justification of the e Stiwo1, St 1)
upper bound in Theorefd 2. + H([f] w1572V e, sy
1 1
SR WES (211)
2 do
C. Converse for Theoref 2 O
We need to show that for any sequence of codes that achieve Proof: See AppendiX G. u

a distortion tuple(dy, . . ., dw, ) the rate is lower bounded From [207), [(208),[(209)[(210) and (211), we can write
by (204). As in the proof of Theorefd 1, we consider a burst

erasure of lengttB spanning the time intervéd — B— W, t — H ([f]i W [Flo powet 521) =
W —1]. Consider, n(W +1) 1
Zlog <dw+l) + o log (d—o) . (12)
(W +1)nR > H([f]!_w) Substituting[(ZIR) intd (205) and taking— oo, we recover
> H([fl,_wllfly "~ (205)

1 1 1 & 1
> = — R E — .
R = 2 10g2 (do) + 2( 1) L 10g2 (d +J> (213)
where the last step follows from the fact that conditioning =

reduces entropy. We need to lower bound the entropy termas required.
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D. lllustrative Suboptimal Schemes ‘ ‘ ‘ ‘
We compare the optimal lossy rate-recovery function wit o RBW.9

. . —— Bgp

the following suboptimal schemes. 45¢ —~—§wz
_ 1) Still-lmage Compressionin this sc_heme, the encoder +Rgg§, I
ignores the decoder’s memory and at titne 0 encodes the 1
sourcet; in a memoryless manner and sends the codewol

through the channel. The rate associated with this scheme

35

K
Re(d) = I(t£) = 3" S 1og <dik> (214)
k=0
In this scheme, the decoder is able to recover the sou
whenever its codeword is available, i.e. at all the timesepkc
when the erasure happens. 15 ‘ ‘ ; ;
2) Wyner-Ziv Compression with Delayed Side Informatiol "o 2 4 6 8 10
At time i the encoders assumes that z_; is already W (Recovery Window Length)

reconstructed at the receiver within distortion With this Fig. 16: Comparison of rate-recovery of suboptimal systems
assumption, it compresses the soutcaccording to Wyner- to minimum possible rate-recovery function for differeet r
Ziv scheme and transmits the codewords through the chani@lyery window length?’. We assumek = 5, B =2 and a
The rate of this scheme is distortion vectord = (0.1, 0.25,0.4, 0.55,0.7, .85).

1

B
JIN 1
Rwz(B,d) = I(t;;ti|t;_ 1) = E 3 log (d_k) (215)
k=0
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Rate (Bits—per-Transmission)

<jet

In Fig.[18, we compare the result in TheorEin 2 with the

Note that, if at ime}, t;,_5_; is not availablef, ; is available described schemes. It can be observed from Eig. 16 that

and the decoder can still use it as side-information to coost €xcept wherl¥ = 0 none of the other schemes are optimal.

t; sinceI(ti; tilti_p_1) > I(t;; t[ti_1). The Predictive Coding plus FEGcheme, which is a natural
As in the case of Still-image Compression, the Wyner-zi§eparation based scheme and tB&P-basedcompression

scheme also enables the recovery of each source sequé§f€me are suboptimal even for relatively large valued’of

except those with erased codewords. Also note that theGOP-basedcompression scheme reduces
3) Predictive Coding plus FECThis scheme consists ofto Still-imagecompression foiV = 0.

predictive coding followed by a Forward Error Correction

(FEC) code to compensate the effect of packet losses of the X. CONCLUSIONS

channel. As the contribution aB erased codewords need to \We presented a real-time streaming scenario where a se-

be recovered using’ + 1 available codewords, the rate of thisyjuence of source vectors must be sequentially encoded, and

scheme can be computed as follows. transmitted over a burst erasure channel. The source gector
B+W4+1 A must be reconstructed with zero delay at the destination.
Rrec(B,W,d) = Wf(ti;ti|ti—l) (216) However those sequences that occur during the erasure burst
B+W+1 1 or a period of lengthiW following the burst need not be
) lo <d_0) (217) reconstructed. We assume that the source vectors are shmple

o ) i.i.d. across the spatial dimension and from a first-order,
~4) GOP-Based CompressiofThis scheme consists of pre-giationary, Markov process across the temporal dimentien.
dictive coding where the synchronization sources (I-frmegy, gy the minimum achievable compression rate, which we
are mser.ted_ periodically to prevent error propagatione TRiefine to be the rate-recovery function in our setup.
synchronization frames are transmitted with the rate = For the case of discrete sources and lossless recovery, we
I(ti;t;) and the rest of the frames are transmitted at th&iaplish upper and lower bounds on the rate-recoveryimct
rate Ry = I(t;;t;|t;—1) using predICtIYe coding. Whenevergng observe that they coincide for the special cases when
the erasure happens the decoder fails to recover the soujige — o and W — oo. More generally both our upper
sequences until the next synchronization source and tren 4 [ower bound expressions can be expressed as the rate
decoder becomes synced to the encoder. In order to guaragfegredictive coding plus another term that decreasesaat-le
the recovery of the sources, the synchronization frames hayyersely with . For the restricted class of memoryless
to be inserted with the period of at mdst + 1. This results encoders and symmetric sources, we establish that a binning
in the following average rate expression. based scheme is optimal. For the case of Gauss-Markov
sources and a quadratic distortion measure, we establsr up
1 : w g and lower bounds on the minimum rate wh&n = 0 and
= ——I(t;t) + ——I(t;; 4|t 218 U _ .
(W +1) (ti;t:) (W +1) (tistiftia) (218) observe that these bounds coincide in the high-resolution
K regime. The achievability is based on a quantize and binning
1 1 w 1 L. L. .
WD Zlog(d—)—i- WD) log(d—) (219) scheme, but the analysis is a non-trivial extension of the
k=0 b 0 lossless case as the reconstruction sequences at theatlestin
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do not form a Markov chain. We also study another setup APPENDIXB
involving independent Gaussian sources and a sliding-ovind PROOF OFLEMMA [4]
reconstruction constraint where the rate-recovery foncts Define g, 2 271t 1F".s"1) We need to show that
attained using a successive refinement coding scheme. .

We believe that the present work can be extended in a 2me(L—=p%) (. (P* (229)
number of directions. The focus in this paper has been on U = "o _ P2 22R
causal encoders and zero-delay decoders. It is interetﬂingﬁ ider the followi
consider more general encoders with finite-lookahead al gnsider the following entropy term.
decoders with delgy constraint. Some such extensions havgsguf]’g,sfl) = h(sg|[f]’5—1,5ﬁ1) — I(fk;sgl[f]g_l,ﬂl)
been recently considered in [36]. Secondly, the paper dersi niretk—1 n

. ; .= h(sg|[flo ) —

only the case of burst-erasure channels. It may be intagesti el m e hel m
to consider channels that introduce both burst erasures and H(fllflo™ ", s%1) + H(filsg, [flg™ ", s"1)
isolated erasures as considered recently in the channieigcod > h(sp'|[f]E~1,s" ) — H(f) (230)
context [21]. Thirdly, our present setup assumes that withi _ n 202 h(sP [[]E1 8" ) 9
the recovery period, a complete outage is declared, and ne 5103 (P 2n -l 1) 4 9e(1 — p )) —nR
reconstruction is necessary. Finally our paper only adees (231)

the case of lossless recovery for discrete sources. Ert@Siyhere [23D) follows from the fact that conditioning reduces

to lossy reconstruction, analogous to the case of Gaussi@fropy and[{231) follows from the Entropy Power Inequality
sources, will require characterization of the worst-cass@e gimilar to [101). Thus

sequence for a general source model, which appears challeng
ing. This may be further generalized by considering partial
recovery with a higher distortion during the recovery pério
Such extensions will undoubtedly lead to a finer understandiBy repeating the iteration in_(2B82), we have
of tradeoffs between compression rate and error propagatio

2 2
p 2we(l — p
qk > 22—Rq;g—1 + 7(221% ) (232)

2 2y k=1
N i Pt e, 2me(l—p?) P>\
in video transmission systems. Qe > (22_1?,) Qo + e Z(QQ—R) (233)
APPENDIXA =
PROOF OFCOROLLARY [1] S 2Zme(l — ) (4 (P_2> (234)
We want to show the following equality. TR 228
1

RY(B,W) = H(si|s) + W—HI(SB;SB+1|50) where [234) follows from the fadl < 2”2—2 < 1foranyp e

(0,1) and R > 0. This completes the proof.

H(sp+1,5B+2;---,SB+w+1[5)

W+l (220) APPENDIXC

. . : PrROOF OF(238)AND (236
According to the chain rule of entropies, the term[in_(220) ) ] ) )
can be written as We need to show (112) and (113), i.e. we need to establish

the following two inequities for each € [1 : t — B’]

H(sp+1,5B+2;- - SB+W+1]50) (221) /
Y L. h(ue[u)g™® 7 Wi Ty ) <
~ Mol ) Hlomkalsosna o) Pl s 0) (239)
= H(SB+1|S()) + WH(51|50) (222) ,
h(sil[uy® ~F 7 [k 5o1) <
= H(sp+1ls0) — H(sp+1lsB,50) + H(sB11/sB, %0) t11U]o s [Ult—k> S—1 -

+ W H (s1]s0) (223) h(sllulo™® 7", [ulf_ps1,5-1)- (236)
= H(sp+1l|s0) — H(sB+1|sB,s0) + H(sp+1|sB) We first establish the following Lemmas.

+ WH(s1|s) (224) | emma 12. Consider random variable§Xy, X1, Xa, Y1, Y2}
= I(sp+1;sB|s0) + (W + 1)H (s1]s0) (225) that are jointly GaussianX;, ~ N(0,1),k € {0,1,2}, Xo —
= (W4 1)RT(B,W) (226) X1 — X, and that forj € {1,2} we have:

where [22P) follows from the Markov property Xj=p;jXj—1+ Nj, (237)
(S05SB+41,-- -3 SB4k—1) — SB+k — SB+k+1 (227) Yi= X+ Zj. (238)
for any k& and from the stationarity of the sources which foAssume thatZ; ~ N(0,02) are independent of all random
eachk implies that variables and likewise\V; ~ N'(0,1 — p?) for j € {1,2} are
H(spani|spen) = H(st|so)- (228) also independent of all random variables. The structure of

correlation is sketched in Fig._17. Then we have that:
Note that in[[22B) we add and subtract the same term[andl (224)

also follows from the Markov property of {227) fdr= 0. 0% (X0, Ya) < 0%, (X0, V1) (239)



P11 Ny P2 Ny

Xo 4%—$—>X1 4%—$—>X2
214)% 224)%
Y1 Yo

Fig. 17: Relationship of the Variables for Leming 12.

where o (Xo, Y;) denotes the minimum mean square error

of estimatingX, from {Xo, Y;}.

Proof: By applying the standard relation for the MMS

estimation error we have (see elg.l[32])

0%, (X0, Y1)

= E[X3]-
E[Y?] E[XoYi] -t E[X5Y1]
(E[X2Y1] E[X2Xo)) (E[Xolyl] Ep?gf) (E[XjXE])
(240)
o? -
TR, (1 -l [11) <;1) (241)
_,_ Pir3oZ —plri + 03 (242)

1402 —pf

where we use the fact thaf[X3] = 1, E[Y?] = 1 + o2,
E[X()Yl] = p1, E[XQX()] = pop1 and E[ngvl] = p2. In a
similar fashion it can be shown that:

-1
) 1+02 pipe 1
ox,(Xo, Y2) =1 — (1 p1p2) < p1p2 1 P1P2

(243)
_q_ Pirsol —pipi+1 (244)
- 2 22
L+o03 = pipy
To establish[(239) we only need to show that,
pip3ol —pips +1 _ pip3o? — pips + p3 (245)
1402 = pip3 1+02 - p}
It is equivalent to showing
L+o2—pt _ pipsol —pips +p3 (246)
L+02 —pips = pip3o? —pips +1
or equivalently
2 1— 2 1— 2
o P1(2 p22)221_ 2 2 2 p222 (247)
L+0z2—pip3 pipz0os — pipz +1
which is equivalent to showing
2
1
A1 < (248)

1402 —pp3 = pip3o? —pip3+1°

E
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a setQ C [t — k,t], consider two sets of random variables
Wi and W, each jointly Gaussian withs;_;, such that the
following Markov property holds:
Wi — sk — {s,uq}
Wa = si — {st,uq}

(249)
(250)

If the MMSE error ins;_j, satisfies o2 , (Wi) < 02, (Ws)
then we have

h(5t|W1, UQ) < h(st|W2, UQ), vQ) C [t — k,t] (251)
h(Ut|Wl7UQ) < h(Ut|W2,UQ), vQ) C [t—k,t—l],
(252)

Proof: Since the underlying random variables are jointly
Gaussian, we can express the MMSE estimates _gf from
Wj, j € {1,2} as follows (see e.gl [32])

(253)
(254)
where e; ~ N(0,FE;) and e ~ N(0,F2) are Gaussian

random variables both independentspf ;. Furthermore the
constants in[(293) and (254) are given by

S—kWi) =a1si— + e
Si—k(Wa) = aasi—i + e

aj =1- o7, (W) (255)
Ej = o e (W) (1 — o (W) (256)
for j = 1,2. To establish[(281), we have

h(st|W1, UQ) = h(5t|.§t7k(W1), UQ) (257)

= h(silars;—k + e1,uq) (258)

< h(st|azsi—k + e2,uq) (259)

= h(s|Si—x(Wa), uq) (260)

= h(s:[W2,uq) (261)

where [257) and[(261) follows from the following Markov
property.
Wi = 5 W) = {s, ua} (262)
Wo = 5 (W) = {st, ua} (263)
(258) and [(260) follows from[(2%3) and (254) arld _(R59)

follows from the fact thats? ,(Wi) < o7, (W) implies
that

E, _E
<=2 (264)
aj az

Thus the only difference between (258) ahd (259) is that the
variance of the independent noise component in the first term
is smaller in the former. Clearly we obtain a better estimate
of s; in (258), which justifies the inequality i (259).

Eq. (Z52) can be established as an immediate consequence
of (251). Since the noise; in the test channel is Gaussian
and independent of all other random variables, we have

However note that[{248) can be immediately verified since B 9

the left hand side has the numerator smaller than the right Var(u [ Wy, ug) = Var(s;[Wj, ua) + o (265)
hand side and the denominator greater than the right hamHere the notation Vas|V) indicates the noise variance of
side whenevep? € (0,1). This completes the proof. B estimatinga from W. As a result,

Lemma 13. Consider the Gauss-Markov source mod&l)

1
. . h . = _1 22h(st\Wj,ug) 92 2 . 266
and the test channel in Prop] 3. For a fixedk < [1,t¢] and (ug]Wj,uq) 5 Og( + WO’Z) (266)



Thus [251) immediately imple§ (252). [ |
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for anyi € {1,...,7}, a; < b;. Then the test channdl {106)

We now establisH (235) and subsequently estallishl (236)satisfies the following:

a similar fashion. Consider the following two steps.
1) First by applying LemmB_12 we show.

o (e T g, so1) <
o2 (W) P R g, s1),  (267)
i.e.,  knowing {[ul§™ B'=k=1 ., .. s_1} rather than
{lu ]6 Bk ,Ui—pB—k,S—1}, improves the estimate of

the sources, . Let &_p ([ul5 % "' s.1) be the

MMSE estimator ofs, g/ glven([ JhB ks ),
Note thats;_ g/ ([u]§~ Bi—h—1 g 1) is a sufficient statistic
of s;_p:_x given {[u]i~5 ~F1

([l s 0} =
t—B' —k—1
)

S—pr—i([ulg 1) = St—B/—k —> S—k. (268)

Therefore, by application of Lemmd 112 foxX,
S k(U P s ), Xo = smk, Y1 = U,

Xo = s,_;, and Yo = u;_, we have

2 ([u]th’fkfl

o (lulp s Ut—k,5—1)

= o7 Gop— k(W] 7 s0), wi) (269)
<ot yGopw(Wy P s ) k) (270)
= o2 (P T g, o). (271)

where [26B) and_(271) both follow frorh (268). This completes

the claim in [(267).
2) In the second step, we apply Lemma 13 for

Wi = {7 g, 50} (272)
Wy = {[u]” B=h=1 4 i g,so1} (273)
Q=[t—k+1,t—1] (274)
we have
P | [P i s ) <
o | Ly R ) (279)

and again by applying Lemniall3 fo#; and W, in (272)
and [278) and) = [t — k + 1,¢], we have

B (s | s ™4 i) <

h(st | [u ]t b=k [U]i—k-i-lvsfl) (276)

This establishe$ (285) and (236) and equivalehily](112) and

(113).

APPENDIXD
PROOF OFLEMMA [

,s,l} and thus we have that:

vt > b,
vVt > b,.

(277)
(278)

h(St|UA,S,1) Z h(St|UB,571),
h(uilua,s-1) > h(ut|lup,s-1),

We first prove [(27I7) by induction as follows. The proof
of (Z78) follows directly from [(Z27]7) as discussed at the end
of this section.

e First we show that[{217) is true far = 1, i.e. given
0 < a1 < by and for allt > b; we need to show

h(st | Uay,5-1) > h(st | up,,5-1). (279)
We apply Lemma [I2 in Appendix [JC for
{X03X17X27 Yla YQ} - {5*13 Says Sbys Uay s ubl} which
results in

h(slh |ua1 ) 5—1) > h(sbl |ub1 ) 5—1) (280)

Thus [279) holds fot = b;. For anyt > b; we can always
expresss; = p' s, + 7 wheren ~ N(0,1 — p2(*=01)) and
also we can express, = 8, (u;,s-1) + w; for j € {a1,b:1}
wherew; ~ N(0, 07, (uj,5-1)) is the MMSE estimation error.
For j € {a1,b1}, we have

st=p"""%, (uj,5-1) + p' 0wy + R (281)

Then we have
07 (Uay,5-1) = p*" 07, (ta,,5-1) + 1= p* 7" (282)
> p2<t ) ) 2 (Upy,5-1) +1— p?t=t1) (283)
=02(up,,5-1) (284)

where [28B) immediately follows fronT_(2B0). Thus_(284)
establishes[(2T79) and the proof of the base case is now

complete.
o Now assume thal (277) is true fori.e. for the setst,., B,
of sizer satisfyinga; < b; fori € {1,--- ,r} and anyt > b,,

h(stlua,,s-1) > h(slup,,s_1) (285)

We show that the lemma is also true for the sdts
{A4;,a,41} and B,41 = {B,b,41} wherea, < a,41, b, <
bry1 anda, 41 < b.11. We establish this in two steps.

1) We show that

(286)

h(st|uAr+1 ) 5*1) > h(st|uArv Ub, 15 571)'

By application of Lemm&_12 for

{Xo, X1, X2, Y1, Yo} =
{gaT (uAT ) S—l)a Sll7~+1 ) sb7~+1 ) UaT+1 ) ub7~+1} (287)

we have

h(sbr+1 |§¢lr (uA'r7 571)7 uar+1)

> h(sbr+1 |§ar (uA'r7 571)7 (288)

ub'r‘+1)

For reader’s convenience, we first repeat the statementTdfus [286) holds fort = b,.,. Fort > b,,; we can use

the Lemma. Consider the two sets B C N each of size
rasA = {a1,a2, - ,a.}, B = {b1,ba, - ,b.} such that
1< <a<--<a.andl <b; < by < --- < b, and

the argument analogous to that leading fo {284). We omit
the details as they are completely analogous. This edtaislis

(288).



2) Next we show that where [30P) follows from Lemma&]8 for the setd =
Q(0),t} and B = {Qt}. Thus we havev;(Q;) <
h(sua,,up,,\,5-1) > (289) ”{Yt(tﬂ(ﬁ()t?))} {Q, 1} +(24)
h(stlup,,,5-1). (290)  2) We next argue that botk; (7 (9)) and~,(Q2;(9)) attain
eir maximum values with the minimum possitfle Recall
m Part 1 that when the number of erasurgs=t — 6 is
flxed, the worst case sequence must have all erasure pgasition

First note that based on the induction hypotheS|M(28
for t = b,,1 we have

h(sp, ,|ua,,s-1) > h(sp,,,|up,,s 1) (291) as close tot as possible. Thus ifi, < B the worst case
sequence consists of a single burst spanfiirgn.,t — 1]. If
and equivalently B < n. < 2B, the worst case sequence must have two burst
2 2 erasures spanniriy—n.—L,t—B—L—1|U[t— B, t—1]. More
Tpy s (VA5 5-1) 2 03, (UB,, 5-1) (292) generally the wo?st case sequence will] C([)nsist of a]sequﬂnce
Now by application of LemmBa13 fok =t — b, and burst erasures each (except possibly the first one) of leBgth
separated by a guard interval of lendthThus the non-erased
Wy ={up,,s1} (293) indices associated with decreasing valued afe nested, i.e.
Wy ={ua,,s_1} (294) 6, < 6, implies thatQ;(61) C Qf(62). Further note that
Q= {bry1} (295) adding more elements in the non-erased indi¢gs) can only

decrease both(-) and v (-), i.e. Q3(01) C QF(02) implies
ris ) fOr j = 1,2 we have that A, (2 (61)) > A (2 (62)) and (2 (61)) > 7(27 (62)).
b >h 296 Thus the worst casé€);(#) must constitute the minimum
(stlua,, s, 15 5-1) 2 hsilup,, s,y 5-1) (296) possible value of). The formal proof, which is analogous
which is equivalent to[{290). to the second part of Lemnhad 6 will be skipped.
Combining [286) and[{290) we ha\le<5t|UAT+175— ) > 3) This property follows from the fact that in steady state th
h(st|up,,,s_1) which shows tha{{277) is also true for-1. effect of knowings_; vanishes. In particular we show below
This completes the induction and the proof B (277) fohat A1 (27,1) = Ae(2F) andyep1 (271) > 7 (27)-
generalr.
Finally note that[(277) implied (2¥8) as follows.

and noting thaWV; — s,, — (s

Aer1(2711)

1
h(ut|uATaS—l) _ 5 10g (22h(5t‘UA7~7571) + 27T€O'z) (297) St+13 Ut+1|UQ*+1, 1)

=1
1 = h(u1lugy, ,5-1) — h(upsa]se+1)
> ~log (22h(stlumrs-1) 4 97eq?) (298 o
> 5 log ( +2meo?)  (299) > h(uiilugy,, 5-1,5%) — h(ualsin)  (304)
= I’L(Ut|uBT3571) (299) h(ut+1|uﬂ"+1\{0}750) h(ut+1|st+1) (305)
where [297) follows from the fact that the noise in the test = h(utlugs,s_1) — h(ug|s;) (306)
channel is independent. Alsp (298) follows from (P77). This = I(s; ut]ugs, s_1)
completes the proof. — () (307)
APPENDIXE where [30#) follows from the fact that conditioning reduces
PROOF OFLEMMA [0 the differential entropy. Also i (305) the notatiéf, ,\{0}

indicates the sef2;, ; when the index) is excluded if0 €
2, ,. It can be easily verified that the s8 is equivalent

to the set obtained by left shifting the elements of the set
() = I(sy; ug]ug,,s-1) Q7. 1\{0} by one. Then[(305) follows from this fact and the
following Markov property.

We prove each part separately as follows.
1) For any feasible se®,; with size # we have

(
= h(ulug,,s-1) — h(uls;)
< h(utugsr(g),s-1) — h(utls:) (300) {uo,s—1} = {ug;, \(o}, S0} = w1 (308)
= I(st; uelug; (o), 5-1) Eq. (306) follows from the time-invariant property of soerc
= M (Q7(0)) (301) model and the test channel. Also note that

where [[30D) follows from the application of Lemrhh 8 with 1

1og 2mey1 (27 = h(st41|Uty1,u )
A = Qf(#) and B = €, which by construction of2}(6) (rerin (@) = hoenlue, vy, 5-0)

clearly satisfy the required condition. Also note that > h(st+1|ut1, uQy, 551, s0)
1 (309)
5 log (27‘-8%5 (Qt)) = h(st|uta uq,, 571) h(st+1|ut+1, UQ*+1\{O}7 So) (310)
< h(st|u, uo: (9), 5-1) (302) = h(st|u,un;,s-1) (3112)
1

= Jlog(2ren () (309 = 1 log (2me (©)) (312)
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where [[30D) follows from the fact that conditioning reduttess the constants and variables [0 (824) ahd {325) are as defined
differential entropy,[{3710) follows from the following Mieov  before. Again, taking the limit of {(326) when— oo results

property in (318).
According to [[(3211) and_(326) if we choose the noise in the
{0, s-1} = {ua;, \(0}, Ue+15 S0} = St+1 (313)  test channeb? to satisfy
and [311) again follows from the time-invariant property of 02(Gror—p, [ ]i f é+1= u) =D (327)

source model and the test channel.
then the test channel and the rdtg,, e (L, B, D) defined in

APPENDIXF (321) both satisfy rate and distortion constraints[in {16
PROOF OFLEMMA [I0 (169) and therefordr sy, e (L, B, D) is achievable.
We need to show
APPENDIXG
I(sy; |31 B, [U]E:LB:EH) > lim e (QF) PROOF OFLEMMA [11]

(314) We first show that[{210) which is repeated [in_(B28) at the
top of next page. From the fact that conditioning reduces the
differential entropy, we can lower bound the left hand side

hm I(st, utlugy,s_1)

AN 1Y) SN Jim 7, (27) in (328) by

— i 2 B-1

- tli}{.lo O (UQ,*J Ug, 571) (315) Z (h(S?_B_W_H)
For anyt > L + B, we can write i=0

_ t—B-W—1 gt n
A(Q) —I(St,Ut|UQ* s1) (316) h(si p_willflo [f]thSfl)) (329)

= (s wlugy | . [u ]ﬁ f éH’L ) (317) We show that for each=0,1,...,B—1

= I(st; ug|r—1— B(Uﬂt I B,S—l)a[u]i_f:irgﬂ) hsi p_wi) —h(s/p_ W+1|[f]t pow-t [f]i—Wanﬂ >
(318) i) <7) (330)
- - _B_ 1o ,
< I(sy;ulasp p+ &l B7E ) (319) 2 %%\ dpws
= I(st; ue|si—r.—B + e, [u]ﬁjfjgﬂ) which then establisheE (328). Recall that since there igst bu
= I(st;u|3-1-5, [ ]i_f_;éﬂ) (320) erasure bgt;Neen tirri?e [i— B —W,t— W —1] the receiver
is required to reconstruc
= Ry we(L, B, D) (321) )
. t) = |5",...,8 331
where [31V7) follows from the structure 6f in Lemmal®, P8 S (331)
(318) follows from the Markov relation with a distortion vector(dy,...,dg+w) i.€., a reconstruc-
R Bl tion of 5 5 y ., is desired with a distortion oflpw —;
{UQ,*,,L,BaS—l}—> {St—L—B(uQZ,L,}ys—l)?[u]thfBJrl for i = 0,1,...,B + W when the decoder is revealed

—s (322) (Flg "1 [Fli_w). Hence

and in [3I9) we introduce a=1-D and A(sip_wii) — At g wl (F16 PV L IFl ., s™)

é ~N(0,D(1—D)). This follows from the fact that — WS ps) — B (S s 115 B-W-1
the estimates, r_p(uq:r , .,s-1) satisfies the average s 8™ 10 {80 s} ) (332)
—Ws=2—-1> —B— iJaB+w—i

distortion constraint ofD. In (320) we re-normalize the test . N o
channel so thae ~ N(0,D/(1 — D)). Taking the limit of 2 h(sipwi) = M pw {8 B-witdsiw_:)

(321) whent — oo, results in [[3I¥). Also note that (333)
> hsp_wii) = MStp_wii — {5 B-w+itdsiw_:)
* (334)
(%) = Ut( QF s Upy S—1) .
2 t—B— Since we have that
:Ut(UQ; L Bv[u]t L— B+1=Ut75—1)
=01 Bug;_,_p»S-1); D= é“’ut) li(st B-Waij —S-B-wiij)?| <dpiw_i
(323) n g T B WALy = BB
<o(asrp+& Ui 7 h,, um) (324) (335)
=0i(s-r-p+e 7 é+17 ) (325) It follows from standard arguments that [29, Chapter 13} tha
2z u]t~ B-1 7 326 . n
Gt( heE [ ]t LBt Ut) ( ) h( St—B— Wi {St—B—W+i}dB+W—i) S ElogZﬂ'e(dBJeri)-

where [32B) follows from the following Markov properfy (322 (336)
and [324%) again follows from the fact that the estimatBubstituting[(336) intd(334) and the fact thes] 5 ;) =
$i—r—p(ug: —1) satisfies the distortion constraint. All 2 log 2rre establishes[{330).

rLB’
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B
n n n n —B-W-— n n 1
WSt pows - Stew—1) = h(S{op_w - - stew 1 |[flo WL Il sm) > Z b) IOg(m) (328)
i=1 ¢
h(SZL_W, te 5?) - h(stn—Wv AR S?Hf]f)_B_W_la [f]i—Wv S?—B—Wv ) S?—W—lv Sﬁl)
H(A s > M D gy (337)
0

Now we establish[{211) which is repeated [n (837) at thes]
top of next page. Sincés;” ,...,s;") are independent we
can express the left-hand side [n_(B37) as:

AR | e 2 st g

n n
S w1, S)

(5]

(6]

+ H([iw ] PVt s™)) (338) [
= H( w2 st s SPw 1, ™)
(339) 8]

> H([f]i—wuf]é_w_laStn—B—Wa .
=1 ([f]i—w;sf—vva cee

S w1,
[11]

The above mutual information term can be bounded as
follows: (12]

i Sitw—1,501)
Stnl[f]to_w_la Stn—B—W’

El

[10]
(340)

h(szl—W’ ce ’ngl[f]g—W—l’ S;l—B—Wv te Sgl—W—la Szl) [13]
- h’(SZLfW7 tet SZLHf]I(E)v SZLBfW7 R sglfwflv Sﬁl)
n n [14]
=h(st"w,---,s)
- h(szl—Wa N aS?Hf]éa S;I—B—Wa R SZL—W—laSﬁl) [15]
(341) [16]
2 h(SZLW7 AR SZL) - h(SZLW7 SRR 5f|{§liw}do7 AR {ggl}do)
(342) 17]
w
2 Z (h(stwsi) = hstowrgs — {8 waitdo)) (18]
i=0
S P log( Ly = 2V D Ly (343)
> — 10 — )= — |0 JR—
- P 2 & dp 2 J dp [20]
where [[341L) follows from the independence(sff ,,...,s") [21]

from the past sequences, afd (342) follows from the fact that
given the entire pasf]} each source sub-sequence needs to
reconstructed with a distortion @f and the last step follows
from the standard approach in the proof of the rate-distorti [23]
theorem. This establishds (337).

This completes the proof. [24]
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