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Abstract

In 1998, Lin presented a conjecture on a class of ternary sequences with ideal 2-level autocor-
relation in his Ph.D thesis. Those sequences have a very simple structure, i.e., their trace repre-
sentation has two trace monomial terms. In this paper, we present a proof for the conjecture. The
mathematical tools employed are the second-order multiplexing decimation-Hadamard transform,
Stickelberger’s theorem, the Teichmiiller character, and combinatorial techniques for enumerating
the Hamming weights of ternary numbers. As a by-product, we also prove that the Lin conjectured
ternary sequences are Hadamard equivalent to ternary m-sequences.

Index Terms. Teichmiiller character, decimation-Hadamard transform, multiplexing decimation-
Hadamard transform, Stickelberger’s theorem, two-level autocorrelation.

1 Introduction

Sequences with good random properties have wide applications in modern communications and cryp-

tography, such as CDMA communication systems, global positioning systems, radar, and stream cipher
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cryptosystems [9] 10} 27]. The research of new sequences with good correlation properties has been an
interesting research issue for decades, especially sequences with ideal two-level autocorrelation [10, [18].

There has been significant progress in finding new sequences with ideal two-level autocorrelation in
the last two decades. In 1997, by exhaustive search, Gong, Gaal and Golomb found a class of binary
sequences of period 2™ — 1 with 2-level autocorrelation in [12], and in 1998, No, Golomb, Gong, Lee,
and Gaal published five conjectures regarding binary sequences of period 2" — 1 with ideal two-level
autocorrelation [20] including two classes, called Welch-Gong transformation sequences, conjectured by
the group of the authors in [I2]. Interestingly, using monomial hyperovals, Maschietti constructed three
classes of binary sequences of period 2" — 1 with ideal two-level autocorrelation [24] from Segre and
Green type monomial hyper ovals and a shorter proof of those sequences is reported in [28] [4]. Shortly
after that, No, Chung, and Yun [25], in terms of the image set of the polynomial z¢ + (z + 1)% where
d = 2% — 2k + 1 where 3k = 1 mod n, a special Kasami exponent, conjectured another class of binary
sequences of period 2™ — 1 with ideal two-level autocorrelation. This class turned out to be the same
class as the Welch-Gong sequences conjectured in [26] and Dobbertin formally proved that in [7]. In
1999, for the case of n odd, Dillon proved the conjecture of Welch-Gong sequence using the Hadamard
transform [4], i.e., he showed that the Welch-Gong sequence is equivalent to an m-sequence under the
Hadamard transform. A few months later, Dillon and Dobbertin confirmed all these conjectured classes
of ideal two-level autocorrelation sequences of period 2™ — 1, although the paper is published later [6].
The progress on binary 2-level autocorrelation sequences has been collected in [I0] and has no new
sequences coming out since then.

The progress on searching for nonbinary sequences with 2-level autocorrelation seems different. For
p = 3, Lin conjectured a class of ideal two-level autocorrelation sequences of period 3" — 1 with two
trace monomial terms in 1998 in his Ph.D thesis [22]. In 2001, a new class of ternary ideal two-level
autocorrelation sequences of period 3™ — 1 was constructed by Helleseth, Kumar, and Martinsen [19].
In 2001, Ludkovski and Gong proposed several conjectures regarding ternary sequences with ideal two-
level autocorrelation [23], which are obtained by applying the second order decimation and Hadamard
transform, introduced in [13].

For any p # 2, in [16], Helleseth and Gong found a construction of p-ary sequences of period p™ — 1
with ideal two-level autocorrelation which includes the construction in [19] when p = 3. For the ternary
case, the validity of the Lin conjectured sequences has been first announced by Dillon, Arasu and Player
in 2004 [2]. Together with Lin’s conjecture, those found by Ludkovski and Gong have been claimed
recently by Arasu in [I] for which it is referred to an unpublished paper by Arasu, Dillon and Player
[3]. Nevertheless, the proofs have not appeared in the public domain yet since SETA 2004 announced
this result [2] in 2004. Their approach is to use the Gauss sum and group ring to represent sequences

as many researchers do, say [8], to just list a few, and the Hasse-Davenport identity to determine the



trace representation of the sequences.

In this paper, we provide a proof for the Lin conjecture through the decimation Hadamard transform.
In 2002, Gong and Golomb introduced the concept of the iterative decimation-Hadamard transform
(DHT) to investigate ideal two-level autocorrelation sequences [I3]. They showed that, for all odd
n < 17, using the second-order DHT and starting with a single binary m-sequence, one can obtain all
known binary ideal two-level autocorrelation sequences of period 2" — 1 without subfield factorization.
Later, Yu and Gong generalized the second-order DHT to the second-order multiplexing DHT [29, [30].
In this paper, we prove that, using the second-order multiplexing DHT and starting with a single ternary
m-sequence, one may obtain the Lin conjectured ternary ideal two-level autocorrelation sequences. The
second set of the key tools for the proof are Stickelberger’s theorem and the Teichmiiller character.
Elementary enumeration methods for ternary numbers play the essential role in the last touch of the
proof. Those methods are different from the approach sketched in [2]. As a by-product, we also confirm
Conjecture 2 in [IT] which is selected from [I4]. In other words, the Lin conjectured ternary sequences
are Hadamard equivalent to ternary m-sequences.

This paper is organized as follows. In Section 2] we give some notation and background which will
be used later. In Sections 3] and @, we present the proof of the Lin Conjecture. Finally, Section

concludes this paper.

2 Preliminaries

Let F, denote the finite field of order ¢, where ¢ = p", and p is a prime number, and Tr(-) denote
the trace map from [y to F,. The primitive pth root of unity in characteristic 0 is denoted as wy, i.e.,
wp = e27ri/p.

2.1 Ideal Two-Level Autocorrelation Sequence and Lin’s Conjecture

Let S = {s;} be an p-ary sequence with period N. For any 0 < 7 < N, the autocorrelation of S at shift
7 is defined by

N-1
Cs(r) = wpir s,
=0
If Cg(r) = —1 for any 0 <7 < N, we call S an (ideal) two-level autocorrelation sequence.

Conjecture 1 (Lin’s Conjecture [22]) Let n = 2m + 1, and o be a primitive element in Fgn. Sup-
pose that S = {s;} is a ternary sequence defined by s; = Tr(a’ +a(>3" %) for i =0,1,2,---. Then S

has ideal two-level autocorrelation.



2.2 The Second-Order Decimation-Hadamard Transform

Let f(x) be a polynomial from F, to F,,. Then the Hadamard transform of f(z) is defined by

Fy =Y wIrea—i@ X e,

z€F,

and the inverse transform is given by

1 T T T
wl® = . > w0 f(x), A € F,.
z€F,

The following three concepts are from [I3].

Definition 1 For any integer 0 < v < q — 1, we define

Fw)) = 3 wlrOn=1e ) e F,.

z€F,

F(w)(A) is called the first-order decimation-Hadamard transform (DHT) of f(x) with respect to Tr(z),
and the first-order DHT for short.

Definition 2 For any integers 0 < v,t < ¢ — 1, we define

Flo.)N) =Y w9 flo)(yh), A € Fy,

yelF,

= o~ ~

where f(v)(yt) is the complex conjugate of f(v)(y"). f(v,t)()\) is called the second-order decimation-
Hadamard transform (DHT) of f(x) with respect to Tr(x), and the second-order DHT for short.

~

Remark 1 Ift =1, then f(v,t)(\)/q is just the inverse Hadamard transform of f(z).
Definition 3 With the notation as in Definition 2, if
f/l\(vat)(A) S {qw; | ’L:O,l, P 2 1}7)\ S ]an

then (v,t) is called a realizable pair of f(x). In this case, let

o~

f(v,t)(z),z € Fy,.

wg(w) —

Q| =

Then g(z) is called a realization of f(x) under (v,t).



2.3 The Second-Order Multiplexing Decimation-Hadamard Transform

For the case of ged(v,g — 1) > 1, we may define another kind of decimation-Hadamard transform,

namely, the multiplexing decimation-Hadamard transform, which introduced are introduced in [29, 30].

Definition 4 For any integer 0 <v < q—1 and v € F, we define

F)YXy) =D wprO0=f0m) e,

T€F,

f(v)(/\,ﬂy) is called the first-order multiplexing decimation-Hadamard transform (DHT) of f(z) with
respect to Tr(x), and the first-order multiplexing DHT for short.

Definition 5 For any integers 0 < v,t < q—1 and v € Fy, we define

flv =3 WO Fw)(y, ), A € By,
yeF,

where f(v)(yt,’y) is the complex conjugate of f(v)(yt,’y). f(v,t)()\,'y) is called the second-order mul-
tiplexing decimation-Hadamard transform (DHT) of f(z) with respect to Tr(z), and the second-order
multiplexing DHT for short.

Definition 6 With the notation as in Definition[d, if
f(’Ut)( )e{qwz|1_0517"'7p_1}7)\6F(1576]FZ

then (v,t) is called a realizable pair of f(x). In this case, let

~

(v, t)(z,7),z € F,.

)
P q

Then g(x,v) is called a realization of f(x) under (v,t) and 7.

2.4 Gauss Sums and Stickelberger’s Theorem

The mapping ¢ defined by
#(a) =

is an additive character of IF,. Suppose that y is a multiplicative character of F. For the convenience,

we extend x to I, by defining x(0) = 0. Henceforth, the multiplicative character set of F; will be

denoted by I/E‘E for simplicity.



Definition 7 For any multiplicative character x over Fq, the Gauss sum G(x) over Fy is defined by

Glx) = > v@)x(@).

z€F,

Lemma 1 ([2I]) For any multiplicative character x over Fy, we have

G(X) = x(~1)G(x) and G(x") = G(x).

If x is trivial, then G(x) = —1. Furthermore, if x is nontrivial, then

In other words, for any nontrivial character x, G(x) is invertible, and G(x)~* = G(x)/q.

The factorization of prime ideals in algebraic integer rings is an interesting issue. (p) is a prime ideal
in Z. Let m = w, — 1. It is known that (7) is a prime ideal in Z[w,]. Moreover, (p) = (7)P~! in Z[w,],
and () = Q1Qs -+ Q¢ in Z|wy, wg—1], where Q; are prime ideals in Zw,,wq—1], and t = ¢(p" — 1)/n.
Hence, (p) = (Q1Qs -+ Q¢)P~! in Z]w,,wy—1]. On the other hand, (p) = p1pa - - - p; in Zwy—1]. For each
p;, it is the (p — 1)-th power of a prime ideal in Z[w,,wq—1]. Without loss of generality, we may assume
that p;, = QF ~!. For the relationship among (p), pi, and Q;, the reader is referred to Figure[Il

For each Q;, we have Z[w,,wq—1]/Q; = Fy because [Z[wy, wq—1]/9;i : Z/(p)] = n. Henceforth, we fix
one prime ideal Q;, and denote it by Q for simplicity. There is one special multiplicative character x
on F, satisfying

x(z)(mod Q) = x.

This character is called the Teichmiiller character. For simplicity, henceforth we denote it by x,. The
Teichmiiller character has been used to investigate the dual of certain bent functions [15].

Forany 0 < k<gq—1,let k =ky+kip+---+ k,_1p" " be the p-adic representation of k, where
0<ki<pflori=0,1,....,n—1. Let wt(k) = ko + k1 + -+ + kn_1, and o(k) = kolk1! - kn_1!.

Moreover, for any j, we use wt(j) and o(j) to denote wt(j) and o () respectively, where 0 < j < ¢ — 1

and j = j (mod q — 1).
Theorem 1 (Stickelberger’s Theorem, [20]) For any 0 < k < g — 1, we have

wt (k) wt(k)-l—p—l).

(mod

Let e = |wt(k)/(p — 1), where |-] is the floor function. Then p®||G(x, ") for any 0 < k < ¢ — 1 by

Stickelberger’s theorem. The following lemma is extremely powerful, which will be used later.



Z[Wp] Z[qul]
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Figure 1: Prime Ideal Factorization

Lemma 2 ([17]) For any y € F}, we have

3 Proof of the Lin Conjecture: Part I
Lemma 3 For any e € Z|ws], if 3"|e, then e =0 or |e| > 3™.

Proof. If e # 0, then e = 3"f with f € Z[ws] and f # 0. Let f = fo + fiws, where fo, f1 € Z.
Then |f|?> = f& + f2 + fofr > 1. Thus, |e| = 3"|f| > 3™ O

Lemma 4 If ged(t,3" — 1) =1, then for any v € Fi.

ST IFw y(a ) =3

AEFgn
Proof.
E : 7 2 } : } : Tr(Ay1—yiz1+vyz?)) } : Tr(—Ay2+ysza—vyzy)
|f(1), t)(Av'-Y” - Ws W3
AEF3n AEF3n x1,y1 EF3n x1,y2€F3n
_ WIr(Cyieityel +ysza—yey) WOy =Ayz)
- 3 3
T1,22,Y1,Y2€F3n AEF3n

3n 2 : wTT(—ytwl-i-yth-i-W’f—WS)

3
z1,22,yEF3n
_ gn Z Irei—yes) 2: Ir(yeityte:)
- 3 3
x1,x2E€F3n yEF3n

Tr(yx]—~zs
— 32n E w; (v 177 2) :3311.

T1,x2€F3n ,21=22



Lemma 5 If d = ged(v,3" — 1) > 1, then for any v € F5., we have

Tr(yz® _
wy T = 3 GOOx().
IE]F;n Xeﬂ“/gqudzl
Proof. Firstly, we have
Z wgr(’yz”) _ wgr(wd)'
z€F3, z€F;,

By Lemma [2] it follows that

PDREALEEED DL Seltty ey

w€FY, 2€F3, N
1 _ _
= 7 2 GOIOX(M) Y X'
N 2E€F,
= ) GOxXM).
X€F3, xd=1

O

Theorem 2 Let f(xz) = Tr(z). For the multiplexing DHT of f(x), if ged(v,3" —1) > 1 and ged(t, 3™ —
1) =1, then (v,t) is a realizable pair if and only if wt(jut) +wt(—jv)+wt(j) > 2n for any 0 < j < 3"—1
with jd # 0, where d = ged(v,3™ — 1). Moreover, for any v € Fi., the realization of f(x) under (v,t)
and 7y 1s given by

g9(v, 1) (A7) = > (=1 o (jut)o(—jv)a(F)(YA").
wt(jot) + wt(—jv) + wt(4)
—n41,0<j<3"—1

~

Proof. If A =0, then f(v,t)(\,v) = 3". For any A # 0,

~

r(\y)—Tr(y'z r(yx®
flo, )\, y) = Z wg(y) Tr(y'z)+Tr(vz®)

z,y€l3n



By Lemma [2] we have the following deviations.

fonny = Y ) Wl ON=Tr(y' D)+Tr(y2)

z€F%, yEFzn

_ Z 1’)_i_ Z Z r(\y)—Tr(y'z)+Tr(yz")

z€F%, z€F5, yeF;,
T -~ N _
= Y w4 e Y Y ctamtw) Y Ghonews) Y Ghe)xa(et)
IG]F::" IG]F'E" y€]F 16]17.:" X2 G]F/é: X3 G]F/é:

= ¥ w?“””+ﬁ Y G)G(x2)Glxs) Y. Y. xwxa(y'z)xE(a")

z€F3n X1.x2,X3€F 5, ©€FGn yEFsn

r(yz® 1 TV N v\ ——
= Y "G X GhaGhEche) Y Xy xE0)
z€F3n XLXaGJF/;: yEFs,

y 3n 1
IE]FSn XG]F;n

= Y w0 Y GBI NG

= Y W L S GO s Y GOCDERTIGOOR (X ().
z€F%, x4=1 x?#1

According to Lemma [ it follows that

Y r(yz? 1 r(yz? 1 VENTYT o — _
o) = D w0 T S oWy “rﬁ > G"HG)GIX (NX()
z€F, 2€F%, x#1
3" Tr(vyxz") 1 IAYATNVY —vt ~
= g 2w gy D GGG HOR (VR ()
z€F%, x4#1
3n N R
= 57 D W 3 NGERYGOOX" (VXX (=) (1)
z€F%, x4#1

If (v,t) is a realizable pair, then f(v, t)(A\,v)(mod 3™) = 0 for any A and v # 0. Thus, we have

D GEGOR)GE X ()X ()X (—1) (mod 37) =0
jd#0
for any A # 0 and v # 0. Therefore, G(X3" )G (3" )G D" (N)xd’ (—1)(mod 3") = 0 for any jd # 0
which is equivalent to wt(jvt) + wt(—jv) + wt(j) > 2n for any 0 < j < 3™ — 1 with jd # 0.
On the other hand, if wt(jvt) + wt(—jv) + wt(j) > 2n for any 0 < j < 3" — 1 with jd # 0, then
Fw,t)(A,7)(mod 3") = 0 for any A # 0. Furthermore, (3" — 1) f(v,t)(\,7)(mod 727+1) = —3" for any



-~ ~

A # 0. Thus, f(v,t)(A,7) # 0 for any A # 0. By LemmaBl | f(v,t)(\,v)| > 3™. In addition, by Lemma
B Y er,. [F(0, )N )? = 3%, Thus, |f(v,t)(A,7)| = 3" for any A and v # 0. Moreover, by (I,
Fl,)(\)/3"(mod ) = 1. Therefore, we have f(v,t)(\) = 3", 3"ws, 3"w? which means that (v,t) is a
realizable pair.

Let f(v,t)(\,7) = 3"w3g(v’t)()"7), where g(v,t)(A,7) = 0,1,2. Then f(v,t)(A,7) = 3"+3"g(v, t)(A, v) 7+
O(7?"*2) and (3" — 1) f(v,t)(\,y) = —=3" — 3"g(v, t)(\,y)7 + O(7?"2). By (),

B" = Dfw, Ny = 3" Y w7+ 3 GGER"GHOX AR (1)

z€F5, x4#1
n Tr(yz" —jv jv —7 jv j ju

= 30 3 w0 1 N GGG GEING MG ()N (1)
z€Fn, jd#0

It follows that

3" = Df (v, )(Ay) +3"

g, )(\y) = g (mod Q)
B e w0 00 GRG0 GRG0 (1) (0 )
= —gnr mo
= > (=)o (jut)a(—jv)a(j)(yA").
wt(jut) + wi(—jv) + wt(j)
=2n+1,0<j<3" -1
Thus the assertion is established. ]

Remark 2 Assume that (v,t) is a realizable pair. By Theorem[d, for (A\,v) # (A1,71), if YAV = 11 AV,
then g(U7 t)()‘u 7) = g(v, t)()‘la ’71)

With notations as in Theorem [ let U = {z"!|z € F3. }(= {z%x € F3.}), and A = {y0,71," " ,Ya—1}
be a set of representatives for the cosets of U in F3., ie., F5. = U Uy UU---U~y;_1U. Let a be a
primitive element of Fs.. For any 0 < i < 3" — 1, o' can be written in the form of o' = v\, where

v € A and X € F3n. Then we can construct a ternary sequence T' = {t;} by
ti:g(v7t)()‘77)7i:071727"' (2)
Note that for any (A1,71) # (A,7), if 11A7" = A", then t; = g(v,t)(A\1, 7).

Theorem 3 The ternary sequence T = {t;} defined by (3) is an ideal two-level autocorrelation sequence.

10



Proof. For any 0 <i<3"—1land 0 <7 <3"—1,let o =\, and o™ = AV, where 7,7 € A,
and A,S\Gan.

Then o/t = (v3)(AN)"t. Thus, iy, = g(v,t)(AX,77). We have

3m—2
Cr(t) = ngi”%i
i=0

_ = Z Z YOXAT)—g(v.t) (X, V)

vEA AEFS,

According to the definition of g(v,t)(\,v), we have

Cs(7)

Zvat (AN 73) F (v, ) (A7)

'y€A AEFL,
Z 3 Flot) M3 Flo, (A7) — 1
vEA A€F3n
Z Z Z r(Ay1)—Tr(ytw1)+Tr(y7zy) Z W;TT(Ayz)JrTT(yém)*TT(WS) 1
'yEA AEF3n x1,y1EF3n T2,y2€F3n
1 —Tr(ytz))+Tr( ~mv)+Tr(Xt txo)—Tr(yxl)
ﬂ Z Z Wy y Ty YTy Y T2 YT2) 1
YEA T1,72,yEF3n
1 Z Z TN @)= Tr(ywy) 1
'y€Am2€]F3n
1 Tr((a” —1)vzl)
DI IR -1
YEA x2€F3n
ST wg T =
xeF3n
a
Theorem 4 For anyn =2m+1, let v =2(3"T1 1), and t = (3" +1)/4. Then wt(jvt) + wt(—jv) +

wt(j) > 2n for any 0 < j < 3" — 1. Moreover, wt(juvt) + wt(—jv) + wt(j) = 2n + 1 if and only if
GjE{3,(2-3m+1)31 | i=0,1,--- ,n—1}.

The proof of Theorem[lis heavily related to the enumerating techniques for computing the Hamming

weights of ternary numbers jut, —jv and j. So we postpone it to Section [

Theorem 5 The Lin conjecture is true.

Proof. Let n = 2m +1, v = 2(3™*t — 1), and t = (3" + 1)/4. Then ged(v,3" —

ged(t,3" —1) = 1.

11

1) = 2 and



Let f(z) = Tr(z). By Theorem[2] (v,t) is a realizable pair, and

g(v.)(\ ) = > (=1 o(jut)o(—jv)o(i)(vA")?
0<j<3m—1: wt(jut)+wt(—jv)+wt(j)=2n+1

= > o(jut)o(=jv)o(f)(yA").

0<j<3m—1: wt(jvt)+wt(—jv)+wt(j)=2n+1

By Theorem [

g, t)(Ay) = > o(jot)o(—jv)o(j)(vA")’
FE{31,(2:3m+1)3¢ | i=0,1,-- ,n—1}

= 2Tr(yAY") + 2Tr((yA") >3 ).

By Theorem Bl 7' = {t;} constructed via (2)) has ideal two-level autocorrelation whose trace represen-

tation is given by
t; = g(v, £)(\,y) = 2T (Y A") + 2Tr((AAY)23" H1) = 2T (o) + 277 (o237 +1)),

We construct another S = {s;} where s; = 2t;. Then S also has ideal two-level autocorrelation. The

trace representation of S is given by
s5; = 2t; = Tr(a’) + Tr(a®3" D),
Thus, the validity of the Lin conjecture is established. O

Remark 3 The results in Theorems 2 and 3 are general, which state a relationship between the second

order multiplexing DHT and ternary 2-level autocorrelation sequences with their trace representation.

4 Proof of the Lin Conjecture: Part 11

Theorem [ is equivalent to the following theorem.

Theorem 6 Let n =2m + 1. Then wt(j) + wt((3™T! —1)j) — wt(2(3™ ! —1)5) > 0 for any 0 < j <
3"—1. Moreover, wt(j)+wt((3™ 1 —1)j)—wt(2(3™ 1 —1)j) = 1 if and only if j € {3%,(2-:3™+1)3" | i =
0,1,--,n—1}.

We need some preparations in order to prove this theorem. One may check that wt(3j) = wt(j).
We define H(j) = wt(j) +wt((3mTF —1)5) — wt(2(3™T —1)4). We use C; to denote the coset modular
3" — 1 which contains i. Thus C7 = {1,3,---,3" '} and Cy.3m 1 = {(2-3™ +1)3* mod (3" — 1) | i =
0,1,---,n—1}, since ged(2-3™+1,3" = 1) = 1.

12



For any a > 0, we denote the residue of a modulo 3" — 1 by @, i.e.,a =a (mod 3" —1) and 0 < a <
3" —1. Ifa= Z?;no a;3" with a; € {0,1,2}, then we write it as @ = aomaam_1 - - - a1ag for simplicity,
i.e., Agmaam—1 - -aiap is the ternary representation of @. However, if it is clear that 0 < a < 3" — 1,
sometimes, we also directly write a instead of @ for simplicity. For any 0 < ¢ < 2m, using the shift
operation, we define an equivalent relationship on: (agm@2m—1---a1ag) ~ (@;@;—1 - AoQ2m = - Qit1)-

The shift operation does not change the value of H(j), i.e., we have
H(3'j) = H(j),i=0,1,---,n—1,0<j < 3" —1. (3)

Thus, for the assertion of Theorem [6 we only need to show that for one j in its equivalent class.

We need two more notations. For any r > 0, let

Ryp=11---110 and R,o = 11---112.
— ——

Then @ ~ by—1bs—o - - - by, where b; = R0 or Ry2,1=0,1,---,t—1,and ¢t > 1.

Lemma 6 With notations as above, wt(2a) = Z:;é wt(2b;).

Proof.
1) If b; = R,,0 for all 0 < i <t — 1, the result follows immediately.
2)Ifb; = R,,o for all 0 <i <¢—1, then

2a=2(11---1211---12---11---12) =00---0200---02---00---02.

Hence, wt(2a) = 2t = 20202 = 207 wt(2h;).
3) If these exist 0 < i # j < t — 1 such that b; = R,,0 and b; = R;;2, we may assume that

bi—1 = Ry, ,0 and by = R,,2. In this case, 2a = 2a. Let us compute

28 = 2(by_1by—o -+ bo) = 2(by—1by—o -+ b1 00 00)+2(11 - 12) = 2(by_1by_o - by 00---00)+100 - --00 1.

ro+1 0 ro+1 0
Because the last digit of 2(bs—1bs—2---b1) is 0 or 1, we get
wt(26) = wt(2(bt_1bt_2 s bl)) +2= wt(2(bt_1bt_2 s bl)) + wt(2b0).

Similarly, wt(2(by_1bi—g -+ - b1)) = wt(2(by—1b¢—2 - - - b2))+wt(2b1), and so on. Hence, wt(2a) = Zf;é wt(2b;).
O
This lemma shows that the Hamming weight of 2a can be computed through the Hamming weights

of their the runs of 1’s. Here the runs of 1’s play an important rule in computing H (j).

13



Lemma 7 (i) For anyr > 0, wt(Ryo) — wt(2Ry0) = —r, and wt(Ry2) — wt(2Ry2) = 7.
(ii) If Ryo and R.o appear as a pair in @, then wt(a) = wt(2a).

Proof. The proof is easy, so we omit it.
O
Note that we allow r = 0. Thus we have wt(Rp2) = wt(2Ro2). This lemma is another important
counting technique for the Hamming weights of @ and 2a, which will be frequently used later. The

following lemma shows that the effect of changing digits in a.

Lemma 8 Fori >0, wt(a+2-3") —wt(2(a+ 2-3%)) > wt(@a) — wt(2a) — 2.

Proof. Assume that @ ~ by_1bi—2--- by, where b; = R,,0 or Ry2,7=0,1,---,t—1,and t > 1.
Under this equivalence, without loss of generality, we still keep the notation of ¢, and assume that

0 <i < n. In the following, if j > ¢, then b; = b;_y; if 7 < 0, then b; = bj4,.

Let A = wt(a + 2 - 3") —wt(2(a + 2 - 3%)) — [wt(a) —wt(2a)]. Let us look at a+2-3¢, which is actually
the addition of 2 to one digit of some by, where 0 < k < ¢ — 1. In the following, we consider by = R,q
and by = R,o separately, since for each case, the location of a digit which will be changed effects the
Hamming weights of the resultant number.

Let ajq1yp—1, - ,ai11,a; is a segment of a. We say that a; is the least significant digit (LSD) of the
segment and a;4,—1, the most significant digit (MSD) of the segment.

Case 1. b, = R,o.
(1) 2 is added to the LSD of by: In this case, by = 11---110 — 11---112. By Lemmas [0l and [1]
—_—— —_——

A=r—(—r)=2r>-2.
(2) 2 is added to the MSD of by.
i) b; = 2 for any j # k: In this case, a+2-3" = 00---011---100---0. By Lemmas [6] and [7]

A=—r—(—r)=0>-2.
) Dt = by = -+ = sy = 2, bjajr = Rpot 11---11022-+-2211---110 — 11---1100---0011 - - 110.
P 7 s p+1 Jj+1 r—1
By Lemmas@Bland [ A = —(p+1)+ (=(r—1)) = (=p+ (-r)) =0 > -2,
1) Dyt = brga = -+ = sy = 2, bpgj1 = Rypot 11---11022---2211---112 — 11---1100---0011 - - 11 2.
P 7 r p+1 J+1 r—1
By Lemmas[@ and[l A =—(p+1)+(r—1)— (—p+7r) = —2.

(3) 2 is added to one middle digit of by: by =11---110 — 11---12011---10, where r; +75 =1 —2.
—_—— —_— ———

T T1 T2

By LemmasBland [l A =7y —ro — (—7) = 2r1 +2 > —2.
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Case 2. b, = R,o.
(1) 2 is added to the LSD of by.

i) r > 0 and by—1 = Ryo: 11---11211---1110 — 11---112111---1110. By Lemmas [0 and [7,
—_—_—— — —_— ——
T t r—1 t

A=r—=1)4+(—t+1) = (r+(-t)) = -2.
ii) r > 0 and by = Ryg: 11---11211---1112 — 11---112111---1112. By Lemmas [6 and [1]
—_—— N—— N—_—— N—_——

T t r—1 t
A=r—-1)4+t+1)—(r+t)=0.
i) b = by1 = - = bryj = 2,bpr i1 = Rpaybe—1 = Ryo: 11---1122.211---10 — 11---11200..011 - - - 1 0.
p Jj+2 t p—1 Jj+1 t+1

By LemmasB and[l A= (p—1)+ (—(t+1)) — (p+ (—t)) = —2.

V) b = b1 = = brj = 2,bgyjr1 = Rpoa,bp1 = Ryo: 11---1122.211---12 — 11---11200..011---12.
P J+2 t p—1 j+1 t+1

By Lemmas[@ and[l A=(p—1)+ (t+1)— (p+1t) =0.

V)bp = b1 = = brrj = 2,bprjr1 = Rpo,bp—1 = Ryo: 11---11022..211---10 — 11---1100..011---10.
p Jj+1 t p+1 i t+1

By Lemmas[Bland [l A =—(p+ 1)+ (—(t+1)) — (—p—t) = —2.

Vi) by = bgy1 =+ =bpij = 2,bpyj41 = Rpo,bg—1 = Ryo: 11---11022.211---12 — 11---1100..011---12.
P Jj+1 t p+1 j t+1

By Lemmas[@ and[l A = —-(p+ 1)+ (t+1)— (—p+1t)=0.
(2) 2 is added to the MSD of by.
i) b; = 2 for any j # k: In this case, a+2-3" = 00---011---120---0, where r > 2, or
2
00---0100---0, where r = 1. Thus, A=r—2—r=-2o0rA=-1-1=-2.

i) bpyr = brgo = - = bpyj = 2,bppjq1 = Rpo: 11+--11022+--211---12 — 11---1100..011---12.
P i s p+1 J+1 r—1

By LemmasB and[ll A = —(p+ 1)+ (r—1) — (=p+71) = —2.

iii)bk+1=bk+2=---=bk+j=2,bk+j+1 =Ryp:11---1122---211---12 = 11---11200..011---12.
P j+1 r p—1 itz r—1

By LemmasBand[l A = (p— 1)+ (r—1) — (p+7r) = —2.
(3) 2 is added to the middle digit of by: by =11---112 — 11---12011---12, where r{ +7r9 =7 —2.

T T1 T2

By Lemmas Bl and[[l A =7y —ro — 7 = —2.

Lemma 9 For any i,j > 0, we have

(3™ D[ £ B™T +1)37) = (3™ —1)j £2-3° (mod 3" —1).
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Proof.

(3™ D[+ BT +1)37] = (3™ —1)5+ (3% —1)3" (mod 3" — 1)
= (3™ —1)j+£2-3° (mod 3" —1).
O

Let @ ~ bt_1bt—o - - - bg, where b; = Ry,0 or R0, i =0,1,---,t —1, and ¢t > 1. In the following

lemma, we present the result on how wt(2a) will be changed when one digit is changed in @.
Lemma 10 Suppose that the segment to be changed is b;. We denote the resulting ternary vector from
a by a.

1) bi= Ry, b, =211---110: A = wt(2d") — wt(2a) = 0;

r—1

2) by = Ry, by =11---11011---112 where ri + 1y =7 — 1: A = wt(2d') — wt(2a) = 2ry;

71 T2

3) by = Ry, by =211---112: A = wt(2d") — wt(2a) = 2;

r—1

4) bi=Ryo,bi_1 =0,b; =11---11: A = wt(2a’) — wt(2a) = 2r.
r+1

Proof. By Lemmal7l the result follows immediately. O
Now we are ready to show a proof of Theorem
Proof of Theorem [6l  The proof consists of two parts. First we show that H(j) = 1 when

J € C1 UCo.3myq1. Then we show that H(j) > 2 if j ¢ Cy U Ca.gm41. In other words, we have the

following statements.
Claim 1. If j € Cy U Ca.3m 1, then H(j) = 1. This can be easily verified.
Claim 2. Ifj ¢ Ol U 02.3m+1, then H(]) Z 2.
Proof of Claim 2. We will use the induction to show this result. Note that for j = 2, we have

H(j) = 2. Assume that Claim 2 holds for 2 < j <k —1 < 3" — 1. Now we consider the case of j = k.

We write j = agmaam—1 - aiag, the ternary representation of j. In the following, if ¢ > 2m, then

a; = @;j—2m—1. In order to compute wt((3m+1 —1)j) and wt(2(3m+1 — 1)5), we need to consider 2m + 1

16



pairs: (ag, @m+1), 5 (@i, @Gmiisi)s - (@2m, am) from counting the Hamming weight of (3™ —1)7,

ie.,

1.
3G a1 Ao - ag | G2m | G2m—1 ***  Qmil Qm

J A2m a2m—1  *°  Am41 | Gm am—-1 - a1 aq

Type 1. There exists 0 <1 < 2m such that a; # 0 and a,, 4145 # 0.
If j = (3"—1)/2, then H(j) > 1. Hence, we can assume that j # (3" —1)/2. Let j/ = j—(3™+1 + 1)3".
Then 0 < j' < j and wt(j) = wt(j’) + 2. If j/ = 0, then H(j) = 2. Otherwise, by Lemmas 8 and [ we

have the following inequalities:

H(j) = H("+ @™+ +1)3)

= w3 = 1) +2-37) — wt2(B™F — 1)/ + 2 37)) + wt(j) + 2

> wt((3mH — 1)) —wt(2(3m*t —1)5") — 2+ wt(j’) + 2
= H(j).
Since j' < j, if 7 ¢ C1 U Ca.3m41, then H(j') > 2. We now compute H(j) directly for the case that
j € C1 UCy.3my1. We only need to compute j/ =1 and j' =2-3™ + 1.
For j' = 1, then j = 1+ (3m+1 + 1)37 = wt(j) = 3. If i = 0, then 1 + (3™ + 1)3i = 3™+ 4 2 ¢
Cs.3m 1. Hence, we may assume ¢ # 0. In this case,
H(G) = wt()+wt((3™ — 1)) — wt2(3™+ — 1))
= wt(1+ (3™ +1)3%) 4wt (3™ —1)(1 + (3™ +1)37))
—wt(2(3™ — 1)(1 + (3™ +1)3%))
= wt(1+ 3™ +1)3°) + wt(3™ T — 142 3Y) —wt(2(3™T! — 1) +4-3%))
= 3+wt(3™ —14+2-3)) -4
= wt(3™ —1+4+2-3)) -1

= 21+2-1

Y

3.

Similarly, if j/ = 2-3™ + 1, then j = 2-3™ + 1+ (3™t +1)3" = wit(j) > 3. If i = m, then

2-3M 41+ (3m+ 4 1)31 = 3mFL 4 2 € Cy.3my 1. Hence, we may assume i # m. In this case, we also
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have
H(j) = wt(j) +wt((3™F = 1)j) —wt(2(3™*! ~1)j)
= wt(2-3"+ 1+ 3™+ 13 +wt((3™ —1)(2-3™ + 14 (3™ +1)3%))
—wt(2(3™T —1)(2-3™ + 1+ (3™ 4 1)3%))
= wt(2-3"+1+ 3™+ 1)3) +wt((3™H —1)(2-3m 4+ 1) +2-3Y)
—wt(2(3™T —1)(2-3™ 4+ 1) +4-3%)
= wt(2-3"+ 14+ 3™ 13 +wt(3™ 4+ 142-3Y) —wt(2(3™ 4+ 1) + 4 - 3%))

5+2—-4=3, i=0;
5+4—-4=5 1=m-—1;
3+4—-4=3 1=2m;
544—6=3 i#0,m—1,m,2m.

> 3

Thus Claim 2 is true for this case.

Type 2. For any 0 < i < 2m, a; = 0 or a;pq14s = 0. Suppose that a; < @414 for 0 < i < 2m.
Then, it follows that ay < ap41 < aq, ie., ag < a;. Similarly, we have a1 < as < -+ < agy < ap.
Thus, agy;, = a2m-1 = -+ = ap which means that j = (3" — 1)/2. We get a contradiction. Thus there

exists 0 <1 < 2m such that a;, > am+1+4,. As a consequence,

32MTU G = @, @4y 1 A0A2m, Qg 41 > Gmiy +10mepiy T G002m, Gy 42 = 3T
Because H(j) = H(3j), without loss of generality, we can assume that
3MHj = apm1Gm—2+ 100 -+ Am > A2mA2m—1 """ Q100 = .

In this case, (3™t —1)j = (@m—1Gm-2-"-a1a0 " am) — (A2m02m—1---a1ap). We can classify the
ternary representation of those j into three disjoint cases, which are listed in Table [l

Case I: j contains a segment of the form zaa---aa0, where a # 0,z # a.
—_——
r>2

(1) @ = 1. In this case, (3m*! — 1)j contains two segments

1 1 - 1 0 0 0 0 -~ 0 oy
-0 0 -+ 0 0 - 1 1 - 1 0
di dy - d, dyy; and €p €1 €z -+ € €pyl
@1 - 1 0 @ 1 1 - 2
@1 - 0 2 @ 1 1 - 1 2
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Table 1: Three Disjoint Cases of Patterns in the Ternary Representation of j with a; = 0 or a;4y,—1 =0

forall 0 <i<2m

H ‘ Patterns H
Case I zaa---aa0: a#0,x #a
r>2
Case Il | zaa---aab0: a#0,b#0,a# b,z # a
r>1

Case II1 0a0: a #0
In other words, dy =do =---=d,_1 =1,d, =1,dry1 =0,0rd, =0,d,41 =251 =3 =---=¢€,_1 =
1, e, =2, 0re =1,e.41 =2 Because x # 1, eg # 1. We change the segment of j from 11---110

r>2

to 01---110, and denote the new integer by j/. Then dl1 =0, e/l = 2, and other d;, e; stay the same.

r>2

’

Therefore, wt((3™*+! —1)5) = wt((3™+* —1)5). By Lemma 0 wt(2(3™+ —1)5") > wt(2(3™+! —1)5).
Moreover, wt(j) = wt(j') 4+ 1. Therefore, H(j) > H(j') +1 > 2.

(2) a = 2. In this case, (3m*! — 1)j contains two segments

2 0 o 0 o0 --- 0 Y
-0 0 - 0 0 -z 2 2 - 2 0
dy da dyr dpyp  and €y €1 €2 e Cppl
2 2 - 1 2) (e O 0 - 0 2
2 2 - 2 0) (eo O 0 - 1 g
In other words, dy = dy = --- =d,—1 =2,d, =1,dyy1 = 2,0rd, =2,dy1 =0; e =1o0r 2
ep=er=---=¢€_1=0,e,=0,€e,41=2,0re, =1, e.41 =yory—1 We change the segment

from 022---220 to 022---210, and denote the new integer by j. Then d, = d, — 1,e, = e, + 1,
——
r>2 r>2
and other d;,e; stay the same. Therefore, wt((3™1 — 1)j') = wt((3™+' —1)7). By Lemma [T

wt(2(3™+ —1)5") > wt(2(3™+! —1)5). Moreover, wt(j) = wt(j )+ 1. Therefore, H(j) > H(j' )+1 > 2.

Case II: j contains a segment of the form z aa - --aa b0, where a # 0,b # 0,a # b, x # a.
r>1
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(1) @ =1,b = 2. Similarly, (3m+! — 1)j contains two segments

1 1 - 1 2 y
o o 0 --- 0 0
-0 0 - 0 0 0
-z 1 1 - 1
di dy -+ dy dyy1 dppo  and
ey €1 €y - En e
1 1 1 2) (0 11 12 1 +1)
e PR eT
1 1 11 2 0 i
In other words, dy =dy =---=d, =1,dr,41 =1or 2. If d.y1 =1, then d,;2 = 2. Hence, dids - - dr41

or didy---dyy1d,42 is contained in a segment of form Ryo. e = €3 = -+ =¢, =1, ¢,417 = 0 or

1. Because x # 1, ey # 1. We change the segment of j from 11---112 to 01---112, and denote the
——

r>1 r>1
new integer by j/. Then d/1 = O,e/1 = 2, and the other d;’s and e;’s remain unchanged. Therefore,
wt((3™H —1)5) = wt((3™ T —1)7). By Lemma 0 wt(2(3™ 1 —1)5) > wt(2(3™*+! —1)5). Moreover,
wt(j) = wt(j') + 1. Therefore, H(j) > H(j') + 1> 2.

(2) a = 2,b = 1. By the analysis above, we only need to consider the case of x = 0. In this case,

(3m+1 —1)j contains two segments

2 1 0 o 0 o0 --- 0 0 Y
-0 0 - 0 0 0 — 2 1 0
dy d dy dry1 dpyp  and €0 €1 €2 -+ €r €yl €r42
(2 2 2 1 0) (2 0 2
(2 2 0 2) 2 0 0 --- 0 1 2)
In other words, dy = dy = --- =d, =2, dr41 =1, dryo =0, 0r dpy1 = 0, dpjo = 2; g = 2,
ep=ey=---=e,=0, €41 =2,0r ¢,41 =1, €,4.2 = 2. We change the segment of j from 022---2210

r>1

to 012---2210, and denote the new integer by j/. Then d,1 = l,ell = 1, and the other d;’s and e;’s
——
r>1

’

are unchanged. Therefore, wt((3"! —1)5') = wt((3™+! — 1)j). By Lemma [0 wt(2(3™+! —1)5) >
wt(2(3™+ —1)7). Moreover, wt(j) = wt(j ) + 1. Therefore, H(j) > H(j ) +1 > 2.
Case III: j contains 0 and segments of the form 0a0, where a # 0.

(1) j only contains 0’s and segments of the form 010. Since j ¢ C, there are at least two segments

of 010. By Lemma [ we only need to consider segments of form S,o in (3™*! —1)j. Among such
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patterns, one may check that only Sip can occur:

10---010
—00---000
10---077
However, another segment also occurs:
00---00
~10---01
12..-27

Therefore, “10” and “12” occur as a pair. Consequently, by Lemmas B and [ wt((3™* — 1)5) —
wt(2(3m+ — 1)) > 0, and H(j) > 2.
(2) j only contains 0’s and segments of the form 020. Since H(j) = 2 when j = 2, then there are at
least two segments of 020. One may check that only S110 and S1p can occur. There are two cases.
i)
0200
—7020
7110

However, this means that (a;, a;rm+1) = (2,2) for certain 0 < ¢ < 2m, which is impossible. Hence,
wt((3mTE —1)5) — wt(2(3™T —1)5) > 0, and H(j) > 2.
ii)

20---000---02
~—00---020---00
12..-210---07

In this case, “10” and “12” occur as a pair. Consequently, by Lemmas [6] and [ wt((3™* — 1)j) —
wt(2(3m™ L —1)5) > 0, and H(j) > 2.

(3) j contains 0’s, and segments of both forms 020 and 010. There are 3 cases we need to consider.

i)
10---020
~00---000
10077

where x = 1 or 2. In this case, by (1) of Case III, “10” and “12” occur as a pair. Consequently, by
Lemmas [ and [ wt((3™ ! — 1)5) — wt(2(3™T —1)5) >0, and H(j) > 2.
i)
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0100 0200
—7020 or —7020
7010 7110

By (2) of Case III, this case is impossible.
iii)
20 ---000---0y

~00---020---00
72..-210---07

where x = 1or 2, y=1or 2. If z = 1, by (1) of Case III, “10” and “12” occur as a pair; if © = 2, by
(2) of Case III, “10” and “12” occur as a pair. Consequently, by Lemmas [6 and [, wt((3™*! — 1)j) —
wt(2(3m™ L —1)5) > 0, and H(j) > 2.

According to Claims 1 and 2, the assertions of Theorem 6 is established.

From Theorems 2-4, the validity of Conjecture 2 in [I1] selected from [I4] follows immediately.

Corollary 1 The Lin conjectured sequences are Hadamard equivalent to m-sequences.

5 Concluding Remarks

In this paper, we present a proof for the Lin conjecture using the second order multiplexing DHT to-
gether with Stickelberger’s theorem, and the Teichmiiller character for getting a sufficient and necessary
condition for ideal 2-level autocorrelation sequences and their trace representation, and combinatorial
techniques for enumerating the Hamming weights of ternary numbers. As we can see the treatments
of the proof, the results obtained in first part of the proof is general, and the second part of the proof
is rather involved in enumeration of the Hamming weights of ternary numbers. As a by-product, we
also confirmed a conjecture in [I4], which is restated as Conjecture 2 in [I1], i.e., two term sequences,
conjectured by Lin, are Hadamard equivalent to m-sequences. Furthermore, using the second order
multiplexing DHT, we have found the realizable pairs of (v,t) from starting an m-sequence instead of
starting with a Lin sequence, which realize the conjectured ideal two-level autocorrelation sequences in

[23] by computer search. These new findings are under further investigation.
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