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Abstract

In 1998, Lin presented a conjecture on a class of ternary sequences with ideal 2-level autocor-

relation in his Ph.D thesis. Those sequences have a very simple structure, i.e., their trace repre-

sentation has two trace monomial terms. In this paper, we present a proof for the conjecture. The

mathematical tools employed are the second-order multiplexing decimation-Hadamard transform,

Stickelberger’s theorem, the Teichmüller character, and combinatorial techniques for enumerating

the Hamming weights of ternary numbers. As a by-product, we also prove that the Lin conjectured

ternary sequences are Hadamard equivalent to ternary m-sequences.

Index Terms. Teichmüller character, decimation-Hadamard transform, multiplexing decimation-
Hadamard transform, Stickelberger’s theorem, two-level autocorrelation.

1 Introduction

Sequences with good random properties have wide applications in modern communications and cryp-

tography, such as CDMA communication systems, global positioning systems, radar, and stream cipher
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cryptosystems [9, 10, 27]. The research of new sequences with good correlation properties has been an

interesting research issue for decades, especially sequences with ideal two-level autocorrelation [10, 18].

There has been significant progress in finding new sequences with ideal two-level autocorrelation in

the last two decades. In 1997, by exhaustive search, Gong, Gaal and Golomb found a class of binary

sequences of period 2n − 1 with 2-level autocorrelation in [12], and in 1998, No, Golomb, Gong, Lee,

and Gaal published five conjectures regarding binary sequences of period 2n − 1 with ideal two-level

autocorrelation [26] including two classes, called Welch-Gong transformation sequences, conjectured by

the group of the authors in [12]. Interestingly, using monomial hyperovals, Maschietti constructed three

classes of binary sequences of period 2n − 1 with ideal two-level autocorrelation [24] from Segre and

Green type monomial hyper ovals and a shorter proof of those sequences is reported in [28] [4]. Shortly

after that, No, Chung, and Yun [25], in terms of the image set of the polynomial zd + (z + 1)d where

d = 22k − 2k + 1 where 3k ≡ 1 mod n, a special Kasami exponent, conjectured another class of binary

sequences of period 2n − 1 with ideal two-level autocorrelation. This class turned out to be the same

class as the Welch-Gong sequences conjectured in [26] and Dobbertin formally proved that in [7]. In

1999, for the case of n odd, Dillon proved the conjecture of Welch-Gong sequence using the Hadamard

transform [4], i.e., he showed that the Welch-Gong sequence is equivalent to an m-sequence under the

Hadamard transform. A few months later, Dillon and Dobbertin confirmed all these conjectured classes

of ideal two-level autocorrelation sequences of period 2n − 1, although the paper is published later [6].

The progress on binary 2-level autocorrelation sequences has been collected in [10] and has no new

sequences coming out since then.

The progress on searching for nonbinary sequences with 2-level autocorrelation seems different. For

p = 3, Lin conjectured a class of ideal two-level autocorrelation sequences of period 3n − 1 with two

trace monomial terms in 1998 in his Ph.D thesis [22]. In 2001, a new class of ternary ideal two-level

autocorrelation sequences of period 3n − 1 was constructed by Helleseth, Kumar, and Martinsen [19].

In 2001, Ludkovski and Gong proposed several conjectures regarding ternary sequences with ideal two-

level autocorrelation [23], which are obtained by applying the second order decimation and Hadamard

transform, introduced in [13].

For any p 6= 2, in [16], Helleseth and Gong found a construction of p-ary sequences of period pn − 1

with ideal two-level autocorrelation which includes the construction in [19] when p = 3. For the ternary

case, the validity of the Lin conjectured sequences has been first announced by Dillon, Arasu and Player

in 2004 [2]. Together with Lin’s conjecture, those found by Ludkovski and Gong have been claimed

recently by Arasu in [1] for which it is referred to an unpublished paper by Arasu, Dillon and Player

[3]. Nevertheless, the proofs have not appeared in the public domain yet since SETA 2004 announced

this result [2] in 2004. Their approach is to use the Gauss sum and group ring to represent sequences

as many researchers do, say [8], to just list a few, and the Hasse-Davenport identity to determine the
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trace representation of the sequences.

In this paper, we provide a proof for the Lin conjecture through the decimation Hadamard transform.

In 2002, Gong and Golomb introduced the concept of the iterative decimation-Hadamard transform

(DHT) to investigate ideal two-level autocorrelation sequences [13]. They showed that, for all odd

n ≤ 17, using the second-order DHT and starting with a single binary m-sequence, one can obtain all

known binary ideal two-level autocorrelation sequences of period 2n − 1 without subfield factorization.

Later, Yu and Gong generalized the second-order DHT to the second-order multiplexing DHT [29, 30].

In this paper, we prove that, using the second-order multiplexing DHT and starting with a single ternary

m-sequence, one may obtain the Lin conjectured ternary ideal two-level autocorrelation sequences. The

second set of the key tools for the proof are Stickelberger’s theorem and the Teichmüller character.

Elementary enumeration methods for ternary numbers play the essential role in the last touch of the

proof. Those methods are different from the approach sketched in [2]. As a by-product, we also confirm

Conjecture 2 in [11] which is selected from [14]. In other words, the Lin conjectured ternary sequences

are Hadamard equivalent to ternary m-sequences.

This paper is organized as follows. In Section 2, we give some notation and background which will

be used later. In Sections 3 and 4, we present the proof of the Lin Conjecture. Finally, Section 5

concludes this paper.

2 Preliminaries

Let Fq denote the finite field of order q, where q = pn, and p is a prime number, and Tr(·) denote

the trace map from Fq to Fp. The primitive pth root of unity in characteristic 0 is denoted as ωp, i.e.,

ωp = e2πi/p.

2.1 Ideal Two-Level Autocorrelation Sequence and Lin’s Conjecture

Let S = {si} be an p-ary sequence with period N . For any 0 ≤ τ < N , the autocorrelation of S at shift

τ is defined by

CS(τ) =
N−1∑

i=0

ωsi+τ−si
p .

If CS(τ) = −1 for any 0 < τ < N , we call S an (ideal) two-level autocorrelation sequence.

Conjecture 1 (Lin’s Conjecture [22]) Let n = 2m+ 1, and α be a primitive element in F3n . Sup-

pose that S = {si} is a ternary sequence defined by si = Tr(αi +α(2·3m+1)i) for i = 0, 1, 2, · · · . Then S

has ideal two-level autocorrelation.
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2.2 The Second-Order Decimation-Hadamard Transform

Let f(x) be a polynomial from Fq to Fp. Then the Hadamard transform of f(x) is defined by

f̂(λ) =
∑

x∈Fq

ωTr(λx)−f(x)
p , λ ∈ Fq,

and the inverse transform is given by

ωf(λ)
p =

1

q

∑

x∈Fq

ωTr(λx)
p f̂(x), λ ∈ Fq.

The following three concepts are from [13].

Definition 1 For any integer 0 < v < q − 1, we define

f̂(v)(λ) =
∑

x∈Fq

ωTr(λx)−f(xv)
p , λ ∈ Fq.

f̂(v)(λ) is called the first-order decimation-Hadamard transform (DHT) of f(x) with respect to Tr(x),

and the first-order DHT for short.

Definition 2 For any integers 0 < v, t < q − 1, we define

f̂(v, t)(λ) =
∑

y∈Fq

ωTr(λy)
p f̂(v)(yt), λ ∈ Fq,

where f̂(v)(yt) is the complex conjugate of f̂(v)(yt). f̂(v, t)(λ) is called the second-order decimation-

Hadamard transform (DHT) of f(x) with respect to Tr(x), and the second-order DHT for short.

Remark 1 If t = 1, then f̂(v, t)(λ)/q is just the inverse Hadamard transform of f(x).

Definition 3 With the notation as in Definition 2, if

f̂(v, t)(λ) ∈ {qωi
p | i = 0, 1, · · · , p− 1}, λ ∈ Fq,

then (v, t) is called a realizable pair of f(x). In this case, let

ωg(x)
p =

1

q
f̂(v, t)(x), x ∈ Fq.

Then g(x) is called a realization of f(x) under (v, t).
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2.3 The Second-Order Multiplexing Decimation-Hadamard Transform

For the case of gcd(v, q − 1) > 1, we may define another kind of decimation-Hadamard transform,

namely, the multiplexing decimation-Hadamard transform, which introduced are introduced in [29, 30].

Definition 4 For any integer 0 < v < q − 1 and γ ∈ F
∗
q, we define

f̂(v)(λ, γ) =
∑

x∈Fq

ωTr(λx)−f(γxv)
p , λ ∈ Fq.

f̂(v)(λ, γ) is called the first-order multiplexing decimation-Hadamard transform (DHT) of f(x) with

respect to Tr(x), and the first-order multiplexing DHT for short.

Definition 5 For any integers 0 < v, t < q − 1 and γ ∈ F
∗
q, we define

f̂(v, t)(λ, γ) =
∑

y∈Fq

ωTr(λy)
p f̂(v)(yt, γ), λ ∈ Fq,

where f̂(v)(yt, γ) is the complex conjugate of f̂(v)(yt, γ). f̂(v, t)(λ, γ) is called the second-order mul-

tiplexing decimation-Hadamard transform (DHT) of f(x) with respect to Tr(x), and the second-order

multiplexing DHT for short.

Definition 6 With the notation as in Definition 5, if

f̂(v, t)(λ, γ) ∈ {qωi
p | i = 0, 1, · · · , p− 1}, λ ∈ Fq, γ ∈ F

∗
q

then (v, t) is called a realizable pair of f(x). In this case, let

ωg(x,γ)
p =

1

q
f̂(v, t)(x, γ), x ∈ Fq.

Then g(x, γ) is called a realization of f(x) under (v, t) and γ.

2.4 Gauss Sums and Stickelberger’s Theorem

The mapping ψ defined by

ψ(x) = ωTr(x)
p

is an additive character of Fq. Suppose that χ is a multiplicative character of F∗
q . For the convenience,

we extend χ to Fq by defining χ(0) = 0. Henceforth, the multiplicative character set of F∗
q will be

denoted by F̂∗
q for simplicity.
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Definition 7 For any multiplicative character χ over Fq, the Gauss sum G(χ) over Fq is defined by

G(χ) =
∑

x∈Fq

ψ(x)χ(x).

Lemma 1 ([21]) For any multiplicative character χ over Fq, we have

G(χ) = χ(−1)G(χ) and G(χp) = G(χ).

If χ is trivial, then G(χ) = −1. Furthermore, if χ is nontrivial, then

G(χ)G(χ) = q.

In other words, for any nontrivial character χ, G(χ) is invertible, and G(χ)−1 = G(χ)/q.

The factorization of prime ideals in algebraic integer rings is an interesting issue. (p) is a prime ideal

in Z. Let π = ωp − 1. It is known that (π) is a prime ideal in Z[ωp]. Moreover, (p) = (π)p−1 in Z[ωp],

and (π) = Q1Q2 · · ·Qt in Z[ωp, ωq−1], where Qi are prime ideals in Z[ωp, ωq−1], and t = φ(pn − 1)/n.

Hence, (p) = (Q1Q2 · · · Qt)
p−1 in Z[ωp, ωq−1]. On the other hand, (p) = p1p2 · · · pt in Z[ωq−1]. For each

pi, it is the (p− 1)-th power of a prime ideal in Z[ωp, ωq−1]. Without loss of generality, we may assume

that pi = Qp−1
i . For the relationship among (p), pi, and Qi, the reader is referred to Figure 1.

For each Qi, we have Z[ωp, ωq−1]/Qi
∼= Fq because [Z[ωp, ωq−1]/Qi : Z/(p)] = n. Henceforth, we fix

one prime ideal Qi, and denote it by Q for simplicity. There is one special multiplicative character χ

on Fq satisfying

χ(x)(mod Q) = x.

This character is called the Teichmüller character. For simplicity, henceforth we denote it by χp. The

Teichmüller character has been used to investigate the dual of certain bent functions [15].

For any 0 ≤ k < q − 1, let k = k0 + k1p+ · · ·+ kn−1p
n−1 be the p-adic representation of k, where

0 ≤ ki < p for i = 0, 1, . . . , n − 1. Let wt(k) = k0 + k1 + · · · + kn−1, and σ(k) = k0!k1! · · · kn−1!.

Moreover, for any j, we use wt(j) and σ(j) to denote wt(j) and σ(j) respectively, where 0 ≤ j < q − 1

and j ≡ j (mod q − 1).

Theorem 1 (Stickelberger’s Theorem, [20]) For any 0 < k < q − 1, we have

G(χ−k
p ) ≡ −

πwt(k)

σ(k)
(mod πwt(k)+p−1).

Let e = ⌊wt(k)/(p − 1)⌋, where ⌊·⌋ is the floor function. Then pe‖G(χ−k
p ) for any 0 < k < q − 1 by

Stickelberger’s theorem. The following lemma is extremely powerful, which will be used later.

6



Z[ωp, ωq−1]

Z[ωp]

(π)=Q1Q2···Qt

99ssssssssss

Z[ωq−1]

pi=Qp−1

i

ff▼▼▼▼▼▼▼▼▼▼

Z

(p)=πp−1

ff▲▲▲▲▲▲▲▲▲▲▲
(p)=p1p2···pt

88♣♣♣♣♣♣♣♣♣♣♣♣

Figure 1: Prime Ideal Factorization

Lemma 2 ([17]) For any y ∈ F
∗
q, we have

ωTr(y)
p =

1

q − 1

∑

χ∈F̂∗

q

G(χ)χ(y).

3 Proof of the Lin Conjecture: Part I

Lemma 3 For any e ∈ Z[ω3], if 3
n|e, then e = 0 or |e| ≥ 3n.

Proof. If e 6= 0, then e = 3nf with f ∈ Z[ω3] and f 6= 0. Let f = f0 + f1ω3, where f0, f1 ∈ Z.

Then |f |2 = f2
0 + f2

1 + f0f1 ≥ 1. Thus, |e| = 3n|f | ≥ 3n. �

Lemma 4 If gcd(t, 3n − 1) = 1, then for any γ ∈ F
∗
3n

∑

λ∈F3n

|f̂(v, t)(λ, γ)|2 = 33n.

Proof.

∑

λ∈F3n

|f̂(v, t)(λ, γ)|2 =
∑

λ∈F3n

∑

x1,y1∈F3n

ω
Tr(λy1−yt

1x1+γxv
1)

3

∑

x1,y2∈F3n

ω
Tr(−λy2+yt

2x2−γxv
2)

3

=
∑

x1,x2,y1,y2∈F3n

ω
Tr(−yt

1x1+γxv
1+yt

2x2−γxv
2)

3

∑

λ∈F3n

ω
Tr(λy1−λy2)
3

= 3n
∑

x1,x2,y∈F3n

ω
Tr(−ytx1+ytx2+γxv

1−γxv
2)

3

= 3n
∑

x1,x2∈F3n

ω
Tr(γxv

1−γxv
2)

3

∑

y∈F3n

ω
Tr(−ytx1+ytx2)
3

= 32n
∑

x1,x2∈F3n ,x1=x2

ω
Tr(γxv

1−γxv
2)

3 = 33n.
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Lemma 5 If d = gcd(v, 3n − 1) > 1, then for any γ ∈ F
∗
3n, we have

∑

x∈F
∗

3n

ω
Tr(γxv)
3 =

∑

χ∈F̂
∗

3n
,χd=1

G(χ)χ(γ).

Proof. Firstly, we have

∑

x∈F
∗

3n

ω
Tr(γxv)
3 =

∑

x∈F
∗

3n

ω
Tr(γxd)
3 .

By Lemma 2, it follows that

∑

x∈F
∗

3n

ω
Tr(γxv)
3 =

∑

x∈F
∗

3n

1

3n − 1

∑

χ∈F̂
∗

3n

G(χ)χ(γxd)

=
1

3n − 1

∑

χ∈F̂
∗

3n

G(χ)χ(γ)
∑

x∈F
∗

3n

χd(x)

=
∑

χ∈F̂
∗

3n
,χd=1

G(χ)χ(γ).

�

Theorem 2 Let f(x) = Tr(x). For the multiplexing DHT of f(x), if gcd(v, 3n−1) > 1 and gcd(t, 3n−

1) = 1, then (v, t) is a realizable pair if and only if wt(jvt)+wt(−jv)+wt(j) > 2n for any 0 < j < 3n−1

with jd 6= 0, where d = gcd(v, 3n − 1). Moreover, for any γ ∈ F
∗
3n , the realization of f(x) under (v, t)

and γ is given by

g(v, t)(λ, γ) =
∑

wt(jvt) + wt(−jv) + wt(j)

= 2n+ 1, 0 < j < 3n − 1

(−1)jvσ(jvt)σ(−jv)σ(j)(γλvt)j .

Proof. If λ = 0, then f̂(v, t)(λ, γ) = 3n. For any λ 6= 0,

f̂(v, t)(λ, γ) =
∑

x,y∈F3n

ω
Tr(λy)−Tr(ytx)+Tr(γxv)
3 .
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By Lemma 2, we have the following deviations.

f̂(v, t)(λ, γ) =
∑

x∈F
∗

3n

∑

y∈F3n

ω
Tr(λy)−Tr(ytx)+Tr(γxv)
3

=
∑

x∈F
∗

3n

ω
Tr(xv)
3 +

∑

x∈F
∗

3n

∑

y∈F
∗

3n

ω
Tr(λy)−Tr(ytx)+Tr(γxv)
3

=
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

(3n − 1)3

∑

x∈F
∗

3n

∑

y∈F
∗

3n

∑

χ1∈F̂
∗

3n

G(χ1)χ1(λy)
∑

χ2∈F̂
∗

3n

G(χ2)χ2(y
tx)

∑

χ3∈F̂
∗

3n

G(χ3)χ3(γx
v)

=
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

(3n − 1)3

∑

χ1,χ2,χ3∈F̂
∗

3n

G(χ1)G(χ2)G(χ3)
∑

x∈F
∗

3n

∑

y∈F
∗

3n

χ1(λy)χ2(y
tx)χ3(γx

v)

=
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

(3n − 1)2

∑

χ1,χ3∈F̂
∗

3n

G(χ1)G(χv
3)G(χ3)

∑

y∈F
∗

3n

χ1(λy)χ3(y
vt)χ3(γ)

=
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

3n − 1

∑

χ∈F̂
∗

3n

G(χvt)G(χv)G(χ)χvt(λ)χ(γ)

=
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

3n − 1

∑

χd=1

G(χ)χ(γ) +
1

3n − 1

∑

χd 6=1

G(χvt)G(χv)G(χ)χvt(λ)χ(γ).

According to Lemma 5, it follows that

f̂(v, t)(λ, γ) =
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

3n − 1

∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

3n − 1

∑

χd 6=1

G(χvt)G(χv)G(χ)χvt(λ)χ(γ)

=
3n

3n − 1

∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

3n − 1

∑

χd 6=1

G(χvt)G(χv)G(χ)χvt(λ)χ(γ)

=
3n

3n − 1

∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

1

3n − 1

∑

χd 6=1

G(χvt)G(χv)G(χ)χvt(λ)χ(γ)χv(−1). (1)

If (v, t) is a realizable pair, then f̂(v, t)(λ, γ)(mod 3n) = 0 for any λ and γ 6= 0. Thus, we have

∑

jd 6=0

G(χjvt
p )G(χjv

p )G(χj
p)χ

jvt
p (λ)χj

p(γ)χ
jv
p (−1)(mod 3n) = 0

for any λ 6= 0 and γ 6= 0. Therefore, G(χjvt
p )G(χjv

p )G(χj
p)χ

jvt
p (λ)χjv

p (−1)(mod 3n) = 0 for any jd 6= 0

which is equivalent to wt(jvt) + wt(−jv) + wt(j) > 2n for any 0 < j < 3n − 1 with jd 6= 0.

On the other hand, if wt(jvt) + wt(−jv) + wt(j) > 2n for any 0 < j < 3n − 1 with jd 6= 0, then

f̂(v, t)(λ, γ)(mod 3n) = 0 for any λ 6= 0. Furthermore, (3n − 1)f̂(v, t)(λ, γ)(mod π2n+1) = −3n for any
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λ 6= 0. Thus, f̂(v, t)(λ, γ) 6= 0 for any λ 6= 0. By Lemma 3, |f̂(v, t)(λ, γ)| ≥ 3n. In addition, by Lemma

4,
∑

λ∈F3n
|f̂(v, t)(λ, γ)|2 = 33n. Thus, |f̂(v, t)(λ, γ)| = 3n for any λ and γ 6= 0. Moreover, by (1),

f̂(v, t)(λ)/3n(mod π) = 1. Therefore, we have f̂(v, t)(λ) = 3n, 3nω3, 3
nω2

3 which means that (v, t) is a

realizable pair.

Let f̂(v, t)(λ, γ) = 3nω
g(v,t)(λ,γ)
3 , where g(v, t)(λ, γ) = 0, 1, 2. Then f̂(v, t)(λ, γ) = 3n+3ng(v, t)(λ, γ)π+

O(π2n+2), and (3n − 1)f(v, t)(λ, γ) = −3n − 3ng(v, t)(λ, γ)π +O(π2n+2). By (1),

(3n − 1)f(v, t)(λ, γ) = 3n
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

∑

χd 6=1

G(χvt)G(χv)G(χ)χvt(λ)χ(γ)χv(−1)

= 3n
∑

x∈F
∗

3n

ω
Tr(γxv)
3 +

∑

jd 6=0

G(χjvt
p )G(χjv

p )G(χj
p)χ

jvt
p (λ)χj

p(γ)χ
jv
p (−1).

It follows that

g(v, t)(λ, γ) =
(3n − 1)f(v, t)(λ, γ) + 3n

−3nπ
(mod Q)

=
3n + 3n

∑
x∈F

∗

3n
ω
Tr(γxv)
3 +

∑
jd 6=0G(χ

jvt
p )G(χjv

p )G(χj
p)χ

jvt
p (λ)χj

p(γ)χ
jv
p (−1)

−3nπ
(mod Q)

=
∑

wt(jvt) + wt(−jv) + wt(j)

= 2n+ 1, 0 < j < 3n − 1

(−1)jvσ(jvt)σ(−jv)σ(j)(γλvt)j .

Thus the assertion is established. �

Remark 2 Assume that (v, t) is a realizable pair. By Theorem 2, for (λ, γ) 6= (λ1, γ1), if γλ
vt = γ1λ

vt
1 ,

then g(v, t)(λ, γ) = g(v, t)(λ1, γ1).

With notations as in Theorem 2, let U = {xvt|x ∈ F
∗
3n}(= {xd|x ∈ F

∗
3n}), and Λ = {γ0, γ1, · · · , γd−1}

be a set of representatives for the cosets of U in F
∗
3n , i.e., F

∗
3n = γ0U ∪ γ1U ∪ · · · ∪ γd−1U . Let α be a

primitive element of F3n . For any 0 ≤ i < 3n − 1, αi can be written in the form of αi = γλvt, where

γ ∈ Λ and λ ∈ F3n . Then we can construct a ternary sequence T = {ti} by

ti = g(v, t)(λ, γ), i = 0, 1, 2, · · · (2)

Note that for any (λ1, γ1) 6= (λ, γ), if γ1λ
vt
1 = γλvt, then ti = g(v, t)(λ1, γ1).

Theorem 3 The ternary sequence T = {ti} defined by (2) is an ideal two-level autocorrelation sequence.
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Proof. For any 0 ≤ i < 3n − 1 and 0 < τ < 3n − 1, let αi = γλvt, and ατ = γ̃λ̃vt, where γ, γ̃ ∈ Λ,

and λ, λ̃ ∈ F3n . Then α
i+τ = (γγ̃)(λλ̃)vt. Thus, ti+τ = g(v, t)(λλ̃, γγ̃). We have

CT (τ) =

3n−2∑

i=0

ω
ti+τ−ti
3

=
1

d

∑

γ∈Λ

∑

λ∈F
∗

3n

ω
g(v,t)(λλ̃,γγ̃)−g(v,t)(λ,γ)
3 .

According to the definition of g(v, t)(λ, γ), we have

CS(τ) =
1

32nd

∑

γ∈Λ

∑

λ∈F
∗

3n

f̂(v, t)(λλ̃, γγ̃)f̂(v, t)(λ, γ)

=
1

32nd

∑

γ∈Λ

∑

λ∈F3n

f̂(v, t)(λλ̃, γγ̃)f̂(v, t)(λ, γ) − 1

=
1

32nd

∑

γ∈Λ

∑

λ∈F3n

∑

x1,y1∈F3n

ω
Tr(λλ̃y1)−Tr(yt

1x1)+Tr(γγ̃xv
1)

3

∑

x2,y2∈F3n

ω
−Tr(λy2)+Tr(yt

2x2)−Tr(γxv
2)

3 − 1

=
1

3nd

∑

γ∈Λ

∑

x1,x2,y∈F3n

ω
−Tr(ytx1)+Tr(γγ̃xv

1)+Tr(λ̃tytx2)−Tr(γxv
2)

3 − 1

=
1

d

∑

γ∈Λ

∑

x2∈F3n

ω
Tr(γγ̃λ̃vtxv

2)−Tr(γxv
2)

3 − 1

=
1

d

∑

γ∈Λ

∑

x2∈F3n

ω
Tr((ατ−1)γxv

2)
3 − 1

=
∑

x∈F3n

ω
Tr((ατ−1)x)
3 − 1 = −1.

�

Theorem 4 For any n = 2m+1, let v = 2(3m+1 − 1), and t = (3n +1)/4. Then wt(jvt) +wt(−jv) +

wt(j) > 2n for any 0 < j < 3n − 1. Moreover, wt(jvt) + wt(−jv) + wt(j) = 2n + 1 if and only if

j ∈ {3i, (2 · 3m + 1)3i | i = 0, 1, · · · , n− 1}.

The proof of Theorem 4 is heavily related to the enumerating techniques for computing the Hamming

weights of ternary numbers jvt,−jv and j. So we postpone it to Section 4.

Theorem 5 The Lin conjecture is true.

Proof. Let n = 2m + 1, v = 2(3m+1 − 1), and t = (3n + 1)/4. Then gcd(v, 3n − 1) = 2 and

gcd(t, 3n − 1) = 1.
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Let f(x) = Tr(x). By Theorem 2, (v, t) is a realizable pair, and

g(v, t)(λ, γ) =
∑

0<j<3n−1: wt(jvt)+wt(−jv)+wt(j)=2n+1

(−1)jvσ(jvt)σ(−jv)σ(j)(γλvt)j

=
∑

0<j<3n−1: wt(jvt)+wt(−jv)+wt(j)=2n+1

σ(jvt)σ(−jv)σ(j)(γλvt)j .

By Theorem 4,

g(v, t)(λ, γ) =
∑

j∈{3i,(2·3m+1)3i | i=0,1,··· ,n−1}

σ(jvt)σ(−jv)σ(j)(γλvt)j

= 2Tr(γλvt) + 2Tr((γλvt)2·3
m+1).

By Theorem 3, T = {ti} constructed via (2) has ideal two-level autocorrelation whose trace represen-

tation is given by

ti = g(v, t)(λ, γ) = 2Tr(γλvt) + 2Tr((γλvt)2·3
m+1) = 2Tr(αi) + 2Tr(α(2·3m+1)i).

We construct another S = {si} where si = 2ti. Then S also has ideal two-level autocorrelation. The

trace representation of S is given by

si = 2ti = Tr(αi) + Tr(α(2·3m+1)i).

Thus, the validity of the Lin conjecture is established. �

Remark 3 The results in Theorems 2 and 3 are general, which state a relationship between the second

order multiplexing DHT and ternary 2-level autocorrelation sequences with their trace representation.

4 Proof of the Lin Conjecture: Part II

Theorem 4 is equivalent to the following theorem.

Theorem 6 Let n = 2m+ 1. Then wt(j) + wt((3m+1 − 1)j)− wt(2(3m+1 − 1)j) > 0 for any 0 < j <

3n−1. Moreover, wt(j)+wt((3m+1−1)j)−wt(2(3m+1−1)j) = 1 if and only if j ∈ {3i, (2·3m+1)3i | i =

0, 1, · · · , n− 1}.

We need some preparations in order to prove this theorem. One may check that wt(3j) = wt(j).

We define H(j) = wt(j)+wt((3m+1 − 1)j)−wt(2(3m+1− 1)j). We use Ci to denote the coset modular

3n − 1 which contains i. Thus C1 = {1, 3, · · · , 3n−1} and C2·3m+1 = {(2 · 3m + 1)3i mod (3n − 1) | i =

0, 1, · · · , n− 1}, since gcd(2 · 3m + 1, 3n − 1) = 1.
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For any a > 0, we denote the residue of a modulo 3n − 1 by a, i.e., a ≡ a (mod 3n − 1) and 0 ≤ a <

3n − 1. If a =
∑2m

i=0 ai3
i with ai ∈ {0, 1, 2}, then we write it as a = a2ma2m−1 · · · a1a0 for simplicity,

i.e., a2ma2m−1 · · · a1a0 is the ternary representation of a. However, if it is clear that 0 < a < 3n − 1,

sometimes, we also directly write a instead of a for simplicity. For any 0 ≤ i ≤ 2m, using the shift

operation, we define an equivalent relationship on: (a2ma2m−1 · · · a1a0) ∼ (aiai−1 · · ·a0a2m · · · ai+1).

The shift operation does not change the value of H(j), i.e., we have

H(3ij) = H(j), i = 0, 1, · · · , n− 1, 0 < j < 3n − 1. (3)

Thus, for the assertion of Theorem 6, we only need to show that for one j in its equivalent class.

We need two more notations. For any r ≥ 0, let

Rr0 = 11 · · · 11︸ ︷︷ ︸
r

0 and Rr2 = 11 · · ·11︸ ︷︷ ︸
r

2.

Then a ∼ bt−1bt−2 · · · b0, where bi = Rri0 or Rri2, i = 0, 1, · · · , t− 1, and t ≥ 1.

Lemma 6 With notations as above, wt(2a) =
∑t−1

i=0 wt(2bi).

Proof.

1) If bi = Rri0 for all 0 ≤ i ≤ t− 1, the result follows immediately.

2) If bi = Rri2 for all 0 ≤ i ≤ t− 1, then

2a = 2(11 · · ·1︸ ︷︷ ︸
rt−1

2 11 · · ·1︸ ︷︷ ︸
rt−2

2 · · · 11 · · ·1︸ ︷︷ ︸
r0

2) = 00 · · ·0︸ ︷︷ ︸
rt−1

2 00 · · ·0︸ ︷︷ ︸
rt−2

2 · · · 00 · · · 0︸ ︷︷ ︸
r0

2.

Hence, wt(2a) = 2t =
∑t−1

i=0 2 =
∑t−1

i=0 wt(2bi).

3) If these exist 0 ≤ i 6= j ≤ t − 1 such that bi = Rri0 and bj = Rrj2, we may assume that

bt−1 = Rrt−10 and b0 = Rr02. In this case, 2a = 2a. Let us compute

2a = 2(bt−1bt−2 · · · b0) = 2(bt−1bt−2 · · · b1 00 · · ·00︸ ︷︷ ︸
r0+1

)+2(11 · · ·1︸ ︷︷ ︸
r0

2) = 2(bt−1bt−2 · · · b1 00 · · · 00︸ ︷︷ ︸
r0+1

)+1 00 · · ·00︸ ︷︷ ︸
r0

1.

Because the last digit of 2(bt−1bt−2 · · · b1) is 0 or 1, we get

wt(2a) = wt(2(bt−1bt−2 · · · b1)) + 2 = wt(2(bt−1bt−2 · · · b1)) + wt(2b0).

Similarly, wt(2(bt−1bt−2 · · · b1)) = wt(2(bt−1bt−2 · · · b2))+wt(2b1), and so on. Hence, wt(2a) =
∑t−1

i=0 wt(2bi).

�

This lemma shows that the Hamming weight of 2a can be computed through the Hamming weights

of their the runs of 1’s. Here the runs of 1’s play an important rule in computing H(j).
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Lemma 7 (i) For any r ≥ 0, wt(Rr0)− wt(2Rr0) = −r, and wt(Rr2)− wt(2Rr2) = r.

(ii) If Rr0 and Rr2 appear as a pair in a, then wt(a) = wt(2a).

Proof. The proof is easy, so we omit it.

�

Note that we allow r = 0. Thus we have wt(R02) = wt(2R02). This lemma is another important

counting technique for the Hamming weights of a and 2a, which will be frequently used later. The

following lemma shows that the effect of changing digits in a.

Lemma 8 For i ≥ 0, wt(a+ 2 · 3i)− wt(2(a+ 2 · 3i)) ≥ wt(a)− wt(2a)− 2.

Proof. Assume that a ∼ bt−1bt−2 · · · b0, where bi = Rri0 or Rri2, i = 0, 1, · · · , t − 1, and t ≥ 1.

Under this equivalence, without loss of generality, we still keep the notation of i, and assume that

0 ≤ i < n. In the following, if j ≥ t, then bj = bj−t; if j < 0, then bj = bj+t.

Let ∆ = wt(a+ 2 · 3i)−wt(2(a+ 2 · 3i))− [wt(a)−wt(2a)]. Let us look at a+2 ·3i, which is actually

the addition of 2 to one digit of some bk, where 0 ≤ k ≤ t− 1. In the following, we consider bk = Rr0

and bk = Rr2 separately, since for each case, the location of a digit which will be changed effects the

Hamming weights of the resultant number.

Let ai+v−1, · · · , ai+1, ai is a segment of a. We say that ai is the least significant digit (LSD) of the

segment and ai+v−1, the most significant digit (MSD) of the segment.

Case 1. bk = Rr0.

(1) 2 is added to the LSD of bk: In this case, bk = 11 · · · 11︸ ︷︷ ︸
r

0 → 11 · · · 11︸ ︷︷ ︸
r

2. By Lemmas 6 and 7,

∆ = r − (−r) = 2r > −2.

(2) 2 is added to the MSD of bk.

i) bj = 2 for any j 6= k: In this case, a+ 2 · 3i = 00 · · · 0 11 · · ·1︸ ︷︷ ︸
r

00 · · ·0. By Lemmas 6 and 7,

∆ = −r − (−r) = 0 > −2.

ii) bk+1 = bk+2 = · · · = bk+j = 2, bk+j+1 = Rp0: 11 · · ·11︸ ︷︷ ︸
p

0 22 · · ·22︸ ︷︷ ︸
j

11 · · ·11︸ ︷︷ ︸
r

0 → 11 · · ·11︸ ︷︷ ︸
p+1

00 · · · 00︸ ︷︷ ︸
j+1

11 · · ·11︸ ︷︷ ︸
r−1

0.

By Lemmas 6 and 7, ∆ = −(p+ 1) + (−(r − 1))− (−p+ (−r)) = 0 > −2.

iii) bk+1 = bk+2 = · · · = bk+j = 2, bk+j+1 = Rp2: 11 · · ·11︸ ︷︷ ︸
p

0 22 · · ·22︸ ︷︷ ︸
j

11 · · ·11︸ ︷︷ ︸
r

2 → 11 · · · 11︸ ︷︷ ︸
p+1

00 · · · 00︸ ︷︷ ︸
j+1

11 · · ·11︸ ︷︷ ︸
r−1

2.

By Lemmas 6 and 7, ∆ = −(p+ 1) + (r − 1)− (−p+ r) = −2.

(3) 2 is added to one middle digit of bk: bk = 11 · · · 11︸ ︷︷ ︸
r

0 → 11 · · · 1︸ ︷︷ ︸
r1

20 11 · · ·1︸ ︷︷ ︸
r2

0, where r1+ r2 = r−2.

By Lemmas 6 and 7, ∆ = r1 − r2 − (−r) = 2r1 + 2 > −2.
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Case 2. bk = Rr2.

(1) 2 is added to the LSD of bk.

i) r > 0 and bk−1 = Rt0: 11 · · · 11︸ ︷︷ ︸
r

2 11 · · ·111︸ ︷︷ ︸
t

0 → 11 · · ·11︸ ︷︷ ︸
r−1

21 11 · · ·111︸ ︷︷ ︸
t

0. By Lemmas 6 and 7,

∆ = (r − 1) + (−(t+ 1))− (r + (−t)) = −2.

ii) r > 0 and bk−1 = Rt2: 11 · · · 11︸ ︷︷ ︸
r

2 11 · · ·111︸ ︷︷ ︸
t

2 → 11 · · · 11︸ ︷︷ ︸
r−1

21 11 · · ·111︸ ︷︷ ︸
t

2. By Lemmas 6 and 7,

∆ = (r − 1) + (t+ 1)− (r + t) = 0.

iii) bk = bk+1 = · · · = bk+j = 2, bk+j+1 = Rp2, bk−1 = Rt0: 11 · · · 11︸ ︷︷ ︸
p

22..2︸︷︷︸
j+2

11 · · · 1︸ ︷︷ ︸
t

0 → 11 · · ·11︸ ︷︷ ︸
p−1

2 00..0︸︷︷︸
j+1

11 · · ·1︸ ︷︷ ︸
t+1

0.

By Lemmas 6 and 7, ∆ = (p− 1) + (−(t+ 1))− (p+ (−t)) = −2.

iv) bk = bk+1 = · · · = bk+j = 2, bk+j+1 = Rp2, bk−1 = Rt2: 11 · · ·11︸ ︷︷ ︸
p

22..2︸︷︷︸
j+2

11 · · ·1︸ ︷︷ ︸
t

2 → 11 · · · 11︸ ︷︷ ︸
p−1

2 00..0︸︷︷︸
j+1

11 · · ·1︸ ︷︷ ︸
t+1

2.

By Lemmas 6 and 7, ∆ = (p− 1) + (t+ 1)− (p+ t) = 0.

v) bk = bk+1 = · · · = bk+j = 2, bk+j+1 = Rp0, bk−1 = Rt0: 11 · · ·11︸ ︷︷ ︸
p

0 22..2︸︷︷︸
j+1

11 · · · 1︸ ︷︷ ︸
t

0 → 11 · · ·11︸ ︷︷ ︸
p+1

00..0︸︷︷︸
j

11 · · · 1︸ ︷︷ ︸
t+1

0.

By Lemmas 6 and 7, ∆ = −(p+ 1) + (−(t+ 1))− (−p− t) = −2.

vi) bk = bk+1 = · · · = bk+j = 2, bk+j+1 = Rp0, bk−1 = Rt2: 11 · · ·11︸ ︷︷ ︸
p

0 22..2︸︷︷︸
j+1

11 · · · 1︸ ︷︷ ︸
t

2 → 11 · · ·11︸ ︷︷ ︸
p+1

00..0︸︷︷︸
j

11 · · ·1︸ ︷︷ ︸
t+1

2.

By Lemmas 6 and 7, ∆ = −(p+ 1) + (t+ 1)− (−p+ t) = 0.

(2) 2 is added to the MSD of bk.

i) bj = 2 for any j 6= k: In this case, a+ 2 · 3i = 00 · · ·0 11 · · ·1︸ ︷︷ ︸
r−2

20 · · ·0, where r ≥ 2, or

00 · · · 0100 · · ·0, where r = 1. Thus, ∆ = r − 2− r = −2 or ∆ = −1− 1 = −2.

ii) bk+1 = bk+2 = · · · = bk+j = 2, bk+j+1 = Rp0: 11 · · ·11︸ ︷︷ ︸
p

0 22 · · ·2︸ ︷︷ ︸
j

11 · · · 1︸ ︷︷ ︸
r

2 → 11 · · ·11︸ ︷︷ ︸
p+1

00..0︸︷︷︸
j+1

11 · · ·1︸ ︷︷ ︸
r−1

2.

By Lemmas 6 and 7, ∆ = −(p+ 1) + (r − 1)− (−p+ r) = −2.

iii) bk+1 = bk+2 = · · · = bk+j = 2, bk+j+1 = Rp2: 11 · · ·11︸ ︷︷ ︸
p

22 · · · 2︸ ︷︷ ︸
j+1

11 · · · 1︸ ︷︷ ︸
r

2 → 11 · · ·11︸ ︷︷ ︸
p−1

2 00..0︸︷︷︸
j+2

11 · · ·1︸ ︷︷ ︸
r−1

2.

By Lemmas 6 and 7, ∆ = (p− 1) + (r − 1)− (p+ r) = −2.

(3) 2 is added to the middle digit of bk: bk = 11 · · ·11︸ ︷︷ ︸
r

2 → 11 · · ·1︸ ︷︷ ︸
r1

20 11 · · ·1︸ ︷︷ ︸
r2

2, where r1+ r2 = r− 2.

By Lemmas 6 and 7, ∆ = r1 − r2 − r = −2.

�

Lemma 9 For any i, j > 0, we have

(3m+1 − 1)[j ± (3m+1 + 1)3i] ≡ (3m+1 − 1)j ± 2 · 3i (mod 3n − 1).
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Proof.

(3m+1 − 1)[j ± (3m+1 + 1)3i] ≡ (3m+1 − 1)j ± (32m+2 − 1)3i (mod 3n − 1)

≡ (3m+1 − 1)j ± 2 · 3i (mod 3n − 1).

�

Let a ∼ bt−1bt−2 · · · b0, where bi = Rri0 or Rri2, i = 0, 1, · · · , t − 1, and t ≥ 1. In the following

lemma, we present the result on how wt(2a) will be changed when one digit is changed in a.

Lemma 10 Suppose that the segment to be changed is bi. We denote the resulting ternary vector from

a by a′ .

1) bi = Rr0, b
′

i = 2 11 · · ·11︸ ︷︷ ︸
r−1

0: ∆ = wt(2a′)− wt(2a) = 0;

2) bi = Rr2, b
′

i = 11 · · ·11︸ ︷︷ ︸
r1

0 11 · · ·11︸ ︷︷ ︸
r2

2 where r1 + r2 = r − 1: ∆ = wt(2a′)− wt(2a) = 2r1;

3) bi = Rr2, b
′

i = 2 11 · · ·11︸ ︷︷ ︸
r−1

2: ∆ = wt(2a′)− wt(2a) = 2;

4) bi = Rr2, bi−1 = 0, b
′

i = 11 · · ·11︸ ︷︷ ︸
r+1

: ∆ = wt(2a′)− wt(2a) = 2r.

Proof. By Lemma 7, the result follows immediately. �

Now we are ready to show a proof of Theorem 6.

Proof of Theorem 6. The proof consists of two parts. First we show that H(j) = 1 when

J ∈ C1 ∪ C2·3m+1. Then we show that H(j) ≥ 2 if j /∈ C1 ∪ C2·3m+1. In other words, we have the

following statements.

Claim 1. If j ∈ C1 ∪ C2·3m+1, then H(j) = 1. This can be easily verified.

Claim 2. If j /∈ C1 ∪ C2·3m+1, then H(j) ≥ 2.

Proof of Claim 2. We will use the induction to show this result. Note that for j = 2, we have

H(j) = 2. Assume that Claim 2 holds for 2 ≤ j ≤ k − 1 < 3n − 1. Now we consider the case of j = k.

We write j = a2ma2m−1 · · · a1a0, the ternary representation of j. In the following, if i > 2m, then

ai = ai−2m−1. In order to compute wt((3m+1 − 1)j) and wt(2(3m+1 − 1)j), we need to consider 2m+1
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pairs: (a0, am+1), · · · , (ai, am+1+i), · · · , (a2m, am) from counting the Hamming weight of (3m+1 − 1)j,

i.e.,

3m+1j am−1 am−2 · · · a0 a2m a2m−1 · · · am+1 am

j a2m a2m−1 · · · am+1 am am−1 · · · a1 a0

Type 1. There exists 0 ≤ i ≤ 2m such that ai 6= 0 and am+1+i 6= 0.

If j = (3n−1)/2, thenH(j) > 1. Hence, we can assume that j 6= (3n−1)/2. Let j′ = j−(3m+1 + 1)3i.

Then 0 ≤ j′ < j and wt(j) = wt(j′) + 2. If j′ = 0, then H(j) = 2. Otherwise, by Lemmas 8 and 9, we

have the following inequalities:

H(j) = H(j′ + (3m+1 + 1)3i)

= wt((3m+1 − 1)j′ + 2 · 3i)− wt(2((3m+1 − 1)j′ + 2 · 3i)) + wt(j′) + 2

≥ wt((3m+1 − 1)j′)− wt(2(3m+1 − 1)j′)− 2 + wt(j′) + 2

= H(j′).

Since j′ < j, if j′ /∈ C1 ∪ C2·3m+1, then H(j′) ≥ 2. We now compute H(j) directly for the case that

j′ ∈ C1 ∪ C2·3m+1. We only need to compute j′ = 1 and j′ = 2 · 3m + 1.

For j′ = 1, then j = 1 + (3m+1 + 1)3i =⇒ wt(j) = 3. If i = 0, then 1 + (3m+1 + 1)3i = 3m+1 + 2 ∈

C2·3m+1. Hence, we may assume i 6= 0. In this case,

H(j) = wt(j) + wt((3m+1 − 1)j)− wt(2(3m+1 − 1)j)

= wt(1 + (3m+1 + 1)3i) + wt((3m+1 − 1)(1 + (3m+1 + 1)3i))

−wt(2(3m+1 − 1)(1 + (3m+1 + 1)3i))

= wt(1 + (3m+1 + 1)3i) + wt(3m+1 − 1 + 2 · 3i))− wt(2(3m+1 − 1) + 4 · 3i))

= 3 + wt(3m+1 − 1 + 2 · 3i))− 4

= wt(3m+1 − 1 + 2 · 3i))− 1

= 2i+ 2− 1

≥ 3.

Similarly, if j′ = 2 · 3m + 1, then j = 2 · 3m + 1 + (3m+1 + 1)3i =⇒ wt(j) ≥ 3. If i = m, then

2 · 3m + 1 + (3m+1 + 1)3i = 3m+1 + 2 ∈ C2·3m+1. Hence, we may assume i 6= m. In this case, we also
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have

H(j) = wt(j) + wt((3m+1 − 1)j)− wt(2(3m+1 − 1)j)

= wt(2 · 3m + 1 + (3m+1 + 1)3i) + wt((3m+1 − 1)(2 · 3m + 1 + (3m+1 + 1)3i))

−wt(2(3m+1 − 1)(2 · 3m + 1 + (3m+1 + 1)3i))

= wt(2 · 3m + 1 + (3m+1 + 1)3i) + wt((3m+1 − 1)(2 · 3m + 1) + 2 · 3i)

−wt(2(3m+1 − 1)(2 · 3m + 1) + 4 · 3i)

= wt(2 · 3m + 1 + (3m+1 + 1)3i) + wt(3m + 1 + 2 · 3i))− wt(2(3m + 1) + 4 · 3i))

=





5 + 2− 4 = 3, i = 0;

5 + 4− 4 = 5 i = m− 1;

3 + 4− 4 = 3 i = 2m;

5 + 4− 6 = 3 i 6= 0,m− 1,m, 2m.

≥ 3.

Thus Claim 2 is true for this case.

Type 2. For any 0 ≤ i ≤ 2m, ai = 0 or am+1+i = 0. Suppose that ai ≤ am+1+i for 0 ≤ i ≤ 2m.

Then, it follows that a0 ≤ am+1 ≤ a1, i.e., a0 ≤ a1. Similarly, we have a1 ≤ a2 ≤ · · · ≤ a2m ≤ a0.

Thus, a2m = a2m−1 = · · · = a0 which means that j = (3n − 1)/2. We get a contradiction. Thus there

exists 0 ≤ i1 ≤ 2m such that ai1 > am+1+i1 . As a consequence,

32m−i1j = ai1ai1−1 · · · a0a2m · · · ai1+1 > am+i1+1am+i1 · · · a0a2m · · ·am+i1+2 = 3m−i1−1j.

Because H(j) = H(3j), without loss of generality, we can assume that

3m+1j = am−1am−2 · · · a1a0 · · · am > a2ma2m−1 · · · a1a0 = j.

In this case, (3m+1 − 1)j = (am−1am−2 · · ·a1a0 · · · am) − (a2ma2m−1 · · · a1a0). We can classify the

ternary representation of those j into three disjoint cases, which are listed in Table 1.

Case I: j contains a segment of the form xaa · · · aa︸ ︷︷ ︸
r≥2

0, where a 6= 0, x 6= a.

(1) a = 1. In this case, (3m+1 − 1)j contains two segments

1 1 · · · 1 0

− 0 0 · · · 0 0

d1 d2 · · · dr dr+1

(1 1 · · · 1 0)

(1 1 · · · 0 2)

and

0 0 0 · · · 0 y

− x 1 1 · · · 1 0

e0 e1 e2 · · · er er+1

(e0 1 1 · · · 2)

(e0 1 1 · · · 1 2)

.
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Table 1: Three Disjoint Cases of Patterns in the Ternary Representation of j with ai = 0 or ai+m−1 = 0

for all 0 ≤ i ≤ 2m

Patterns

Case I xaa · · ·aa︸ ︷︷ ︸
r≥2

0: a 6= 0, x 6= a

Case II xaa · · ·aa︸ ︷︷ ︸
r≥1

b0: a 6= 0, b 6= 0, a 6= b, x 6= a

Case III 0a0: a 6= 0

In other words, d1 = d2 = · · · = dr−1 = 1, dr = 1, dr+1 = 0, or dr = 0, dr+1 = 2; e1 = e2 = · · · = er−1 =

1, er = 2, or er = 1, er+1 = 2. Because x 6= 1, e0 6= 1. We change the segment of j from 11 · · · 11︸ ︷︷ ︸
r≥2

0

to 01 · · · 11︸ ︷︷ ︸
r≥2

0, and denote the new integer by j
′

. Then d
′

1 = 0, e
′

1 = 2, and other di, ei stay the same.

Therefore, wt((3m+1 − 1)j
′

) = wt((3m+1 − 1)j). By Lemma 10, wt(2(3m+1 − 1)j
′

) ≥ wt(2(3m+1 − 1)j).

Moreover, wt(j) = wt(j
′

) + 1. Therefore, H(j) ≥ H(j
′

) + 1 ≥ 2.

(2) a = 2. In this case, (3m+1 − 1)j contains two segments

2 2 · · · 2 0

− 0 0 · · · 0 0

d1 d2 · · · dr dr+1

(2 2 · · · 1 2)

(2 2 · · · 2 0)

and

0 0 0 · · · 0 y

− x 2 2 · · · 2 0

e0 e1 e2 · · · er er+1

(e0 0 0 · · · 0 2)

(e0 0 0 · · · 1 y)

.

In other words, d1 = d2 = · · · = dr−1 = 2, dr = 1, dr+1 = 2, or dr = 2, dr+1 = 0; e0 = 1 or 2,

e1 = e2 = · · · = er−1 = 0, er = 0, er+1 = 2, or er = 1, er+1 = y or y − 1. We change the segment

from 0 22 · · ·22︸ ︷︷ ︸
r≥2

0 to 0 22 · · ·21︸ ︷︷ ︸
r≥2

0, and denote the new integer by j
′

. Then d
′

r = dr − 1, e
′

r = er + 1,

and other di, ei stay the same. Therefore, wt((3m+1 − 1)j
′

) = wt((3m+1 − 1)j). By Lemma 10,

wt(2(3m+1−1)j
′

) ≥ wt(2(3m+1−1)j). Moreover, wt(j) = wt(j
′

)+1. Therefore, H(j) ≥ H(j
′

)+1 ≥ 2.

Case II: j contains a segment of the form xaa · · ·aa︸ ︷︷ ︸
r≥1

b0, where a 6= 0, b 6= 0, a 6= b, x 6= a.
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(1) a = 1, b = 2. Similarly, (3m+1 − 1)j contains two segments

1 1 · · · 1 2 y

− 0 0 · · · 0 0 0

d1 d2 · · · dr dr+1 dr+2

(1 1 · · · 1 2)

(1 1 · · · 1 1 2)

and

0 0 0 · · · 0 0

− x 1 1 · · · 1 2

e0 e1 e2 · · · er er+1

(e0 1 1 · · · 1 er+1)

.

In other words, d1 = d2 = · · · = dr = 1, dr+1 = 1 or 2. If dr+1 = 1, then dr+2 = 2. Hence, d1d2 · · · dr+1

or d1d2 · · · dr+1dr+2 is contained in a segment of form Rr2. e1 = e2 = · · · = er = 1, er+1 = 0 or

1. Because x 6= 1, e0 6= 1. We change the segment of j from 11 · · · 11︸ ︷︷ ︸
r≥1

2 to 01 · · · 11︸ ︷︷ ︸
r≥1

2, and denote the

new integer by j
′

. Then d
′

1 = 0, e
′

1 = 2, and the other di’s and ei’s remain unchanged. Therefore,

wt((3m+1 − 1)j
′

) = wt((3m+1 − 1)j). By Lemma 10, wt(2(3m+1 − 1)j
′

) ≥ wt(2(3m+1 − 1)j). Moreover,

wt(j) = wt(j
′

) + 1. Therefore, H(j) ≥ H(j
′

) + 1 ≥ 2.

(2) a = 2, b = 1. By the analysis above, we only need to consider the case of x = 0. In this case,

(3m+1 − 1)j contains two segments

2 2 · · · 2 1 0

− 0 0 · · · 0 0 0

d1 d2 · · · dr dr+1 dr+2

(2 2 · · · 2 1 0)

(2 2 · · · 2 0 2)

and

0 0 0 · · · 0 0 y

− 0 2 2 · · · 2 1 0

e0 e1 e2 · · · er er+1 er+2

(2 0 0 · · · 0 2)

(2 0 0 · · · 0 1 2)

.

In other words, d1 = d2 = · · · = dr = 2, dr+1 = 1, dr+2 = 0, or dr+1 = 0, dr+2 = 2; e0 = 2,

e1 = e2 = · · · = er = 0, er+1 = 2, or er+1 = 1, er+2 = 2. We change the segment of j from 0 22 · · ·22︸ ︷︷ ︸
r≥1

10

to 0 12 · · ·22︸ ︷︷ ︸
r≥1

10, and denote the new integer by j
′

. Then d
′

1 = 1, e
′

1 = 1, and the other di’s and ei’s

are unchanged. Therefore, wt((3m+1 − 1)j
′

) = wt((3m+1 − 1)j). By Lemma 10, wt(2(3m+1 − 1)j
′

) ≥

wt(2(3m+1 − 1)j). Moreover, wt(j) = wt(j
′

) + 1. Therefore, H(j) ≥ H(j
′

) + 1 ≥ 2.

Case III: j contains 0 and segments of the form 0a0, where a 6= 0.

(1) j only contains 0’s and segments of the form 010. Since j 6∈ C1, there are at least two segments

of 010. By Lemma 7, we only need to consider segments of form Sr0 in (3m+1 − 1)j. Among such
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patterns, one may check that only S10 can occur:

1 0 · · · 0 1 0

− 0 0 · · · 0 0 0

1 0 · · · 0 ? ?

However, another segment also occurs:

0 0 · · · 0 0

− 1 0 · · · 0 1

1 2 · · · 2 ?

Therefore, “10” and “12” occur as a pair. Consequently, by Lemmas 6 and 7, wt((3m+1 − 1)j) −

wt(2(3m+1 − 1)j) ≥ 0, and H(j) ≥ 2.

(2) j only contains 0’s and segments of the form 020. Since H(j) = 2 when j = 2, then there are at

least two segments of 020. One may check that only S110 and S10 can occur. There are two cases.

i)

0 2 0 0

− ? 0 2 0

? 1 1 0

However, this means that (ai, ai+m+1) = (2, 2) for certain 0 ≤ i ≤ 2m, which is impossible. Hence,

wt((3m+1 − 1)j)− wt(2(3m+1 − 1)j) ≥ 0, and H(j) ≥ 2.

ii)

2 0 · · · 0 0 0 · · · 0 2

− 0 0 · · · 0 2 0 · · · 0 0

1 2 · · · 2 1 0 · · · 0 ?

In this case, “10” and “12” occur as a pair. Consequently, by Lemmas 6 and 7, wt((3m+1 − 1)j) −

wt(2(3m+1 − 1)j) ≥ 0, and H(j) ≥ 2.

(3) j contains 0’s, and segments of both forms 020 and 010. There are 3 cases we need to consider.

i)

1 0 · · · 0 x 0

− 0 0 · · · 0 0 0

1 0 · · · 0 ? ?

where x = 1 or 2. In this case, by (1) of Case III, “10” and “12” occur as a pair. Consequently, by

Lemmas 6 and 7, wt((3m+1 − 1)j)− wt(2(3m+1 − 1)j) ≥ 0, and H(j) ≥ 2.

ii)
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0 1 0 0

− ? 0 2 0

? 0 1 0

or

0 2 0 0

− ? 0 2 0

? 1 1 0

.

By (2) of Case III, this case is impossible.

iii)

x 0 · · · 0 0 0 · · · 0 y

− 0 0 · · · 0 2 0 · · · 0 0

? 2 · · · 2 1 0 · · · 0 ?

where x = 1 or 2, y = 1 or 2. If x = 1, by (1) of Case III, “10” and “12” occur as a pair; if x = 2, by

(2) of Case III, “10” and “12” occur as a pair. Consequently, by Lemmas 6 and 7, wt((3m+1 − 1)j)−

wt(2(3m+1 − 1)j) ≥ 0, and H(j) ≥ 2.

According to Claims 1 and 2, the assertions of Theorem 6 is established.

�

From Theorems 2-4, the validity of Conjecture 2 in [11] selected from [14] follows immediately.

Corollary 1 The Lin conjectured sequences are Hadamard equivalent to m-sequences.

5 Concluding Remarks

In this paper, we present a proof for the Lin conjecture using the second order multiplexing DHT to-

gether with Stickelberger’s theorem, and the Teichmüller character for getting a sufficient and necessary

condition for ideal 2-level autocorrelation sequences and their trace representation, and combinatorial

techniques for enumerating the Hamming weights of ternary numbers. As we can see the treatments

of the proof, the results obtained in first part of the proof is general, and the second part of the proof

is rather involved in enumeration of the Hamming weights of ternary numbers. As a by-product, we

also confirmed a conjecture in [14], which is restated as Conjecture 2 in [11], i.e., two term sequences,

conjectured by Lin, are Hadamard equivalent to m-sequences. Furthermore, using the second order

multiplexing DHT, we have found the realizable pairs of (v, t) from starting an m-sequence instead of

starting with a Lin sequence, which realize the conjectured ideal two-level autocorrelation sequences in

[23] by computer search. These new findings are under further investigation.
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