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Abstract

A new problem formulation is presented for the Gaussian interference channels (GIFC) with two

pairs of users, which are distinguished as primary users and secondary users, respectively. The primary

users employ a pair of encoder and decoder that were originally designed to satisfy a given error

performance requirement under the assumption that no interference exists from other users. In the

scenario when the secondary users attempt to access the same medium, we are interested in the maximum

transmission rate (defined as accessible capacity) at which secondary users can communicate reliably

without affecting the error performance requirement by the primary users under the constraint that the

primary encoder (not the decoder) is kept unchanged. By modeling the primary encoder as a generalized

trellis code (GTC), we are then able to treat the secondary link and the cross link from the secondary

transmitter to the primary receiver as finite state channels (FSCs). Based on this, upper and lower bounds

on the accessible capacity are derived. The impact of the error performance requirement by the primary

users on the accessible capacity is analyzed by using the concept of interference margin. In the case of

non-trivial interference margin, the secondary message is split into common and private parts and then

encoded by superposition coding, which delivers a lower bound on the accessible capacity. For some

special cases, these bounds can be computed numerically by using the BCJR algorithm. Numerical results
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are also provided to gain insight into the impacts of the GTC and the error performance requirement

on the accessible capacity.

Index Terms

Accessible capacity, accessible rate, cognitive Gaussian interference channel, finite state chan-

nel (FSC), Gaussian interference channel (GIFC), generalized trellis code (GTC), interference margin,

limit superior in probability

I. INTRODUCTION

A. Gaussian Interference Channel

As an important model for wireless network communications, the Gaussian interference chan-

nel (GIFC) was first mentioned by Shannon [1] in 1961 and studied a decade later by Ahlswede [2]

who gave simple but fundamental inner and outer bounds on the capacity region of the GIFC. In

1978, Carleial [3] proved that any GIFC with two pairs of users can be standardized by scaling

as
Y1 = X1 + a21X2 + Z1

Y2 = a12X1 + X2 + Z2

, (1)

where the real numbers Xi ∈ Xi, Yi ∈ Yi and Zi ∈ R (i ∈ {1, 2}) are the channel inputs, outputs

and additive noises, respectively. The channel inputs Xi are required to satisfy power constraints

Pi and the noises Zi are samples from a white Gaussian process with double-sided power

spectrum density one. The GIFC is then completely specified by the interference coefficients

a12 and a21 as well as the transmission powers P1 and P2. Carleial also showed that, in the

case that the interference is very strong (i.e., a2
12 ≥ 1 + P2 and a2

21 ≥ 1 + P1), the capacity

region is a rectangle [3, 4]. When the interference is strong (i.e., a2
12 ≥ 1 and a2

21 ≥ 1), Han and

Kobayashi [5], and Sato [6] obtained the capacity region by transforming the original problem

into the problem to find the capacity region of a compound multiple-access channel. The idea

of this transformation was also employed to find the capacity regions of another class of GIFCs,

where the channel outputs Y1 and Y2 are statistically equivalent [2, 3].

However, the determination of the capacity region of the general GIFC is still open. Only

various inner and outer bounds are presented. Among these, the best inner bound is that put

forth by Han and Kobayashi [5], which has been simplified by Chong et al. and Kramer in their
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independent works [7] and [8]. In 2004, Kramer derived two outer bounds on the capacity region

of the general GIFC [9]. The first bound for general GIFC unifies and improves the outer bounds

of Sato [10] and Carleial [11]. The second bound, which is based on one-sided GIFCs (i.e.,

a12 = 0 or a21 = 0), follows directly from the outer bounds of Sato [6] and Costa [12], and is

proved to be better than the first one for certain weak GIFCs (i.e., 0 < a2
12 ≤ 1 or 0 < a2

21 ≤ 1).

In light of the difficulty in finding the exact capacity regions of general GIFCs, Etkin et al. [13]

introduced the idea of approximation to show that Han and Kobayashi’s inner bound [5] is

within one bit of the capacity region, and also gave outer bounds for the weak GIFC (i.e.,

0 < a2
12 ≤ 1 and 0 < a2

21 ≤ 1) and the mixed GIFC (i.e., 0 < a2
12 ≤ 1 and a2

21 ≥ 1,

or a2
12 ≥ 1 and 0 < a2

21 ≤ 1). This fresh approximation approach is recently widely used

in understanding and exploring multiuser Gaussian channels. For example, Bresler et al. [14]

extended the approximation method to investigate the capacity regions of many-to-one and one-

to-many GIFCs and showed that the capacity regions can be determined to within constant gaps.

They also proposed the use of lattice codes for alignment of interfering signals on the signal

level instead of in the signal space [15, 16]. However, for the two user GIFC, the result of

being within one bit of the capacity region is particularly relevant in the high signal-to-noise

ratio (SNR) regime. In [17], Motahari and Khandani proposed upper bounds for weak GIFC and

mixed GIFC, both of which outperform the upper bounds of Kramer [9] and Etkin et al. [13].

B. Cognitive Radio

GIFC is also an important model to explore the throughput potential of cognitive radios. In the

scenarios of cognitive radios [18], the secondary (unlicensed) users are allowed to communicate

with each other using the same spectrum as allocated to the primary (licensed) users provided

that their communications do not interfere the primary users. As pointed out by Srinivasa and

Jafar [19], cognitive radios can be classified in a very broad sense into three groups, which seek

to underlay, interweave or overlay the secondary users’ signals with the primary users’ signals

in such a way that the primary users of the spectrum are as unaffected as possible.

In underlay cognitive radios, the secondary users are assumed to be capable of measuring

the current radio environment, and adjusting their transmission characteristics (say, spreading

their transmission power in an ultra-wide band) in such a way that the interference temperature

at the primary receivers remains below a preset limit. With this constraint, Clancy [20] has
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developed a model to analyze interference temperature and to examine the relationships between

the capacity achieved by the secondary users and the interference caused to the primary users.

In interweave cognitive radios, the secondary users periodically monitor the radio spectrum,

detect the presence/absence of the primary users and then opportunistically interweave their

transmitted signals through gaps that arise in frequency and time. For such cognitive radios, key

problems include resource allocation, cognition and sensing. Capacity limits with various models

for resource allocation, cognition and sensing were investigated in [21, 22] and the references

therein. In overlay cognitive radios, the secondary users transmit signals simultaneously with the

primary users. The overlay cognitive radio channel (also referred to as cognitive GIFC) is very

similar to the classical GIFC. The main difference lies in that the secondary users are assumed

to know (non-causally or causally) full (or partial) messages to be transmitted at the primary

users [23]. This assumption is asymmetric, hence the overlay cognitive radio channels [24] are

also known as GIFCs with unidirectional cooperation [25, 26] or GIFCs with degraded message

sets [27]. Like classical GIFCs, the capacity region of the cognitive GIFC is only known in certain

parameter regimes but remains unknown in general, say, capacity regions were determined in [26]

for a special channel with “strong interference” under certain assumptions and in [27, 28] for

a class of channels with “weak interference” at the primary receiver. Instead, inner and outer

bounds with various assumptions have been proposed, for more details see [29, 30] and the

references therein.

All the above techniques rely mainly on the transmitter-side cognition and/or cooperation.

Popovski et al. [31] focused on receiver-side cognition and proposed opportunistic interference

cancellation (OIC) at the secondary receiver. The idea is as follows. The secondary receiver

monitors the data rate as well as the received power from the primary transmitter and checks if

the primary signal (interference) is decodable. Once such an opportunity occurs, the secondary

receiver can inform the secondary transmitter to adjust the transmission rate such that the noisy

multiple access signals at the secondary receiver can be decoded by first decoding and canceling

the primary signals. Popovski et al. [31] also devised a method (superposition coding) to achieve

the maximum achievable rate of the secondary user in this setting. The dependence of outage

probabilities on the channel state information with OIC (or suboptimal OIC) has been analyzed

in [32]. The idea of receiver-side opportunism, which has been extended to cognitive networks

with multiple-secondary-users [33], has a practical significance since it requires less cooperations
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Fig. 1. The system model of a Gaussian interference channel.

from the primary (legitimate) users.

C. New Problem Formulation

In this paper, we present a new problem formulation for the GIFC with two users. For ease

of comparisons, let us recall the original information theoretic problem of the GIFC. The whole

system with codes C1 and C2 is shown in Fig. 1. Briefly, the system works as follows. The

messages at User A are encoded by C1 and transmitted to User B, while the messages at User

C are encoded by C2 and transmitted to User D. The messages from User A and C are assumed

to be independent and the two senders do not collaborate with each other. User B and D work

independently to decode the respective received signals for the purpose of correctly extracting

the respective messages. User B and D are assumed to know exactly the structures of C1 and C2.

The problem of finding the capacity region is equivalent to that of determining whether or not

a pair of codes (C1,C2) exist with any given respective rates (R1, R2) such that the decoding

error probabilities are arbitrarily small. In this original formulation, both C1 and C2 are allowed

to be varied to determine the limits. Typically, on (or near) the boundary of the capacity region,

they must be an optimal (or near-optimal) pair of codes.

In our new formulation, we follow the terminology in cognitive GIFCs and distinguish the

two pairs of users as primary users and secondary users, respectively. The primary users (User

A and B) employ a pair of encoder C1 and decoder that were originally designed to satisfy a

given error performance requirement under the assumption that no interference exists from other

users. In the case when the secondary users (User C and D) attempt to access the same medium,

we are interested in the maximum transmission rate (defined as accessible capacity) at which
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secondary users can communicate reliably without affecting the error performance requirement

by the primary users under the constraint that the primary encoder (not the decoder) is kept

unchanged. That is, we make an assumption that the code C1 of rate R1 is fixed and only

the code C2 is allowed to be varied for the purpose of maximizing the coding rate R2. This

assumption is reasonable at least in the following three scenarios.

• It is not convenient (or economic) to change the encoder C1 at User A for dealing with the

interference from the secondary users. For example, User A is located in a place (say the

Space Station) that cannot be reached easily.

• User A is weak in the sense that it can only afford the simple encoders such as C1 due to

the limit of its processing ability. For example, User A is an energy-limited wireless sensor

that collects and transmits data to the powerful data center (User B).

• This assumption becomes more reasonable in the cognitive radios since the primary encoder

is a part of a legacy system and the primary user, as a legitimate user, may not want to

change the encoder.

Apparently, due to the constraint that the primary encoder was designed for interference-free

channels and cannot be changed, our formulation is different from both the classical GIFCs and

the cognitive GIFCs. The detailed difference will be given in Sec. II after the model is explicitly

defined.

D. Structure and Notations

The main results as well as the structure of this paper are summarized as follows.

1) In Sec. II, the accessible capacity is explicitly defined by modeling the primary encoder

as a generalized trellis code (GTC) and using the concept of limit superior in probability

introduced in [34]. The relationships between our new formulation and existing works are

also revealed in this section.

2) In Sec. III, upper and lower bounds on accessible capacities are derived by treating the

secondary link and the cross link from the secondary transmitter to the primary receiver

as finite state channels (FSCs) [35]. To investigate the impact of the error performance

requirement by the primary users on the accessible capacity, we borrow the idea of

interference margin from [33]. When non-trivial interference margin exists, we propose a

lower bound by using superposition coding.
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3) In Sec. IV-A, we show that the derived bounds on the accessible capacity can be evaluated

numerically using the BCJR algorithm [36] for special cases.

4) In Sec. IV-B, simulations are presented, showing numerically the following either expected

or interesting results.

• Primary users with lower transmission rates may allow higher accessible rates.

• Better primary encoders guarantee not only higher quality of the primary links but

also higher accessible rates of the secondary users.

• The accessible rate does not always increase with the transmission power of the

secondary transmitter.

• Relaxing the quality requirement by the primary users allows higher accessible rates

for the secondary users.

5) In Sec. V, we conclude our work.

In this paper, a random variable is denoted by a capital letter, say X , while its realization

and sample space are denoted by the lower-case letter x and X , respectively. A sequence of

random variables (X1, X2, · · · , XN) is denoted by X. The probability mass function (pmf) of

a discrete random variable X is denoted by pX(x), while the probability density function (pdf)

of a continuous random variable Y is denoted by fY (y). The transition probability mass (or

density) function from X to Y is denoted by pY |X(y|x) (or fY |X(y|x)). To avoid cluttering the

notation in some contexts, we may use, for example, p(x1) in place of pX1(x1) and f(y1|x2) in

place of fY1|X2(y1|x2).

II. BASIC DEFINITIONS AND PROBLEM STATEMENTS

A. Interference-Free AWGN Channels

Referring to Fig. 1, we assume that only primary users, User A and B, exist at the beginning.

That is, User A is sending messages to User B through a discrete-time AWGN channel without

any interference from other users. The messages from User A are usually represented by integers

and required to be coded and modulated as a sequence of real signals. This process can be

described in a unified way by introducing the concept of generalized trellis code (GTC) as

follows.

• The code can be represented by a time-invariant trellis and (hence) is uniquely specified

by a trellis section.
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• A trellis section is composed of left states and right states which are connected by branches

in between. Both the left and right states are selected from the same set S = {0, 1, . . . , |S|−

1}.

• Emitting from each state there are M branches. A branch is specified by a four-tuple

b
∆
= (s−(b), u(b), c(b), s+(b)), where s−(b) is the starting state, s+(b) is the ending state,

u(b) ∈ {0, 1, . . . ,M−1} is an integer that represents a message to be encoded, and c(b) ∈ Rn

is an n-dimensional real signal to be transmitted over the channel. We assume that a branch

b is uniquely determined by s−(b) and u(b). We denote the collection of all branches by B.

The coding rate is RGTC
∆
= logM

n
.

• Without loss of generality, we assume that the average energy emitted from each state is

normalized, i.e., 1
M

∑
b:s−(b)=s ‖c(b)‖2 = n for all s, where ‖c(b)‖ represents the squared

Euclidean norm of c(b).

To help readers understand the concept of GTC, we give four examples below.

Example 1 (Uncoded BPSK): The binary phase shift keying (BPSK) modulation can be con-

sidered as a GTC. The trellis section is composed of one left state and one right state which are

connected by two parallel branches. The two branches encode messages 0 and 1 to −1 and +1,

respectively. The trellis section and the branch set B are shown in Fig. 2 (a). q

Example 2 (Repetition Coded BPSK (RCBPSK)): The simplest repetition code [2, 1, 2] of rate

1/2 with the BPSK signaling can be regarded as a GTC. The trellis section is composed of one

left state and one right state which are connected by two parallel branches. The two branches

encode messages 0 and 1 to (−1,−1) and (+1,+1), respectively. Fig. 2 (b) gives the trellis

representation of this GTC. q

Example 3 (Extended Hamming Coded BPSK (EHCBPSK)): Consider the [8, 4, 4] extended

Hamming code defined by the parity-check matrix

H =


1 0 1 1 1 0 0 0

0 1 0 1 1 1 0 0

0 0 1 0 1 1 1 0

1 1 1 1 1 1 1 1

 . (2)

The extended Hamming code with the BPSK signaling can be regarded as a GTC. The trellis

section is composed of one left state and one right state which are connected by sixteen parallel
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Fig. 2. Generalized trellis codes. (a) Uncoded BPSK. (b) Repetition coded BPSK. (c) Extended Hamming coded BPSK.

(d) Convolutional coded BPSK.
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branches, each of which encodes an integer (of four binary digits) to an eight-dimensional real

signal. Fig. 2 (c) depicts the trellis representation of this GTC. q

Example 4 (Convolutional Coded BPSK (CCBPSK)): Consider the (2, 1, 2) convolutional code

defined by the generator matrix

G(D) = [1 +D2 1 +D +D2]. (3)

The convolutional code with the BPSK signaling can be regarded as a GTC. At each stage of

the trellis, there are four states {0, 1, 2, 3}, and from each state there are two branches, each of

which encodes a binary digit to a two-dimensional real signal. The trellis section and the branch

set B are shown in Fig. 2 (d). q

The system model for the primary link with a GTC is described as follows.

Encoding: Let w1 = (u1, u2, . . . , uN) ∈ {0, 1, . . . ,M − 1}N be an M -ary data sequence,

drawn from an independent and uniformly distributed (i.u.d.) source, to be transmitted. Denote

M1
∆
= {0, 1, . . . ,M−1}N and call it “super” message set. Obviously, |M1| = MN . If necessary,

N is allowed to be sufficiently large. The encoding is described as follows.

1) At time t = 0, the state of the encoder is initialized as s0 ∈ S.

2) At time t = 1, 2, . . ., the message ut is input to the encoder and drives the encoder

from state st−1 to st. In the meantime, the encoder delivers a coded signal ct such that

(st−1, ut, ct, st) forms a valid branch.

3) Suppose that the available power is P1. Then the signal x1,t =
√
P1ct at time t is

transmitted. The transmitted signal sequence is denoted by x1. The collection of all

coded (transmitted) sequences is denoted by C1. Notice that C1 may depend on s0. We

assume that, given s0, all transmitted sequences are distinct.

AWGN Channel: The channel is assumed to be an AWGN channel and the received signal

sequence is denoted by y1, which is statistically determined by

y1 = x1 + z1 (4)

where z1 is a sequence of samples from a white Gaussian noise of variance one per dimension.

Decoding: Upon receiving y1, User B can utilize, in principle, the Viterbi algorithm [37],

the BCJR algorithm [36] or other trellis decoding algorithms [38] to estimate the transmitted

messages. Assume that a decoder ψ1 is utilized and ŵ1 = (û1, û2, . . . , ûN) is the estimated

message sequence after decoding.
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Error Performance Criterion: For all t ≥ 1, define error random variables as

Et =

 0, if Ût = Ut

1, if Ût 6= Ut

. (5)

Depending on the structure of the GTC as well as the assumed decoding algorithm ψ1, the

statistical dependence among the random variables {Et} may be very complicated. In order

to characterize the performance of the (de)coding scheme in a unified way, we introduce the

following random variables

ΘN =
ΣN

t=1Et

N
, for N = 1, 2, . . . (6)

and consider the limit superior in probability [34] of the sequence {ΘN}.

Definition 1: Let ε be a real number in the interval (0, 1). A GTC is said to be ε-satisfactory

under the decoder ψ1 if the limit superior in probability of {ΘN} is not greater than ε, that is,

p- lim sup ΘN
∆
= inf

{
α | lim

N→∞
Pr{ΘN > α} = 0

}
≤ ε. (7)

q

In this paper, the given real number ε is referred to as the error performance requirement by

the primary users.

Remarks.

1) From Examples 2 and 3, we can see that a conventional block code of size M can be

regarded as a GTC. The trellis section has only one state and M parallel branches, which

correspond to M codewords, respectively. Such a representation is different from those

conventional trellis representations in [36, 39, 40]. For this special class of GTCs, the error

random variables {Et} under commonly-used decoders are independent and identically

distributed (i.i.d.). Then, by the weak law of large numbers, we know that the word-error-

rate (WER) ΘN converges to the expectation of E1 in probability. That is, for any δ > 0,

lim
N→∞

Pr {|ΘN − λ1| ≤ δ} = 1 (8)

where λ1 = Pr(E1 = 1) is the word error probability (WEP) of the block code. In this

case, p- lim sup ΘN = λ1 and the definition that a block code is said to be ε-satisfactory

is equivalent to saying that the WEP is not higher than ε.
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2) For the convolutional code given in Example 4, the error random variables {Et} under

commonly-used decoders are usually dependent. In this case, p- lim sup ΘN characterizes

the limiting behavior of the bit-error-rate (BER) ΘN .

B. Gaussian Interference Channels

Referring to Fig. 1 again, we assume that User C attempts to send messages to User D by

accessing the same medium as used by the primary users. In this scenario, cross-talks (inter-

ferences) may occur. Assume that it is not convenient to change the encoder at User A. Now

an interesting question arises: What is the maximum (reliable) transmission rate from User C

to User D under the constraint that the encoder at User A remains unchanged but the error

performance requirement is still fulfilled? The detailed formulation of this problem is presented

in the following.

Encoding: The message set at User A, as mentioned in the previous subsection, is set to

be the “super” set M1 = {0, 1, . . . ,M − 1}N , while the message set at User C is set to be

M2 = {1, 2, · · · ,M2}.

1) The encoding function at User A is

φ1 : M1 → RnN

w1 7→ x1 = φ1(w1)
, (9)

where message w1 = (u1, u2, . . . , uN) ∈ M1 is an M -ary sequence drawn from an

i.u.d. source and x1 is the coded sequence of length nN such that (w1,x1) corresponds to

a path through the trellis of the GTC C1. As in the absence of secondary users, the coded

sequence x1 satisfies E [‖X1‖2] = nNP1.

2) The encoding function at User C is

φ2 : M2 → RnN

w2 7→ x2 = φ2(w2)
, (10)

where message w2 is an integer uniformly distributed over M2, and x2 is the coded

sequence of length nN under the power constraint E [‖X2‖2] ≤ nNP2.

3) The coding rates (bits/dimension) at User A and C are R1 = RGTC = logM
n

and R2
∆
=

logM2

nN
, respectively.
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Gaussian Interference Channels: Assume that User A and C transmit synchronously x1 and

x2, respectively. The received sequences at User B and D are y1 and y2, respectively. For the

standard GIFC shown in Fig. 1, we have

y1 = x1 + a21x2 + z1

y2 = a12x1 + x2 + z2

, (11)

where z1 and z2 are two sequences of samples drawn from an AWGN of variance one per

dimension, and a = (a12, a21) is the real interference coefficient vector.

Decoding:

1) The decoding function at User B is

ψ̃1 : RnN → M1

y1 7→ w̃1
∆
= (ũ1, ũ2, . . . , ũN) = ψ̃1(y1)

, (12)

which can be different from the decoder ψ1 used in the case when no interference exists.

2) The decoding function at User D is

ψ2 : RnN → M2

y2 7→ ŵ2 = ψ2(y2)
. (13)

Error Performance Criteria:

1) For the decoding at User B, we define random variables

Ẽt =

 0, if Ũt = Ut

1, if Ũt 6= Ut

for t ≥ 1. (14)

The performance of the decoding is measured by p- lim sup Θ̃N , where

Θ̃N =
ΣN

t=1Ẽt

N
, for N = 1, 2, . . . . (15)

2) For the decoding at User D, we use as usual the WEP λ
(N)
2 = Pr{Ŵ2 6= W2} to measure

the performance.

We make an assumption that User C knows exactly the coding function φ1 and attempts to

find the optimal coding function φ2 under certain constraints. We also assume that User B and D

know exactly the coding functions and attempt to find optimal decoding functions under certain

criteria.
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Definition 2: A rate R2 is achievable for the secondary users, if for any δ > 0, there exists a

sequence of coding/decoding functions (φ2, ψ2) of coding rates greater than or equal to R2 − δ

such that limN→∞ λ
(N)
2 = 0. q

Definition 3: A rate R2 is accessible for the secondary users if R2 is achievable and there

exists a decoder ψ̃1 at the primary receiver such that the GTC C1 is ε-satisfactory, that is,

p- lim sup Θ̃N ≤ ε. q

Definition 4: The accessible capacity for the secondary users is defined as the supremum of

all accessible rates, i.e.,

Ca(C1, ε) = sup{R2 : R2 is accessible}. (16)

q

Remark. The notation Ca(C1, ε) indicates that the accessible capacity depends on the GTC

C1 and the error performance requirement ε by the primary users. When no confusion arises in

the context, we use notation Ca instead for ease.

Problem formulation: The problem is formulated as,

given C1 and ε, find Ca.

C. Relationships Between Our Formulation And Existing Works

1) As we have mentioned in Introduction, the problem of finding the capacity region1 of

the classical GIFC is equivalent to that of determining whether or not a pair of codes

(C1,C2) exist with any given respective coding rates (R1, R2) such that the decoding

error probabilities are arbitrarily small. To determine the capacity region, both C1 and

C2 are allowed to be varied for the purpose of optimization. It is a two-dimensional

optimization problem. In our formulation, the primary encoder C1 is assumed to be fixed

and only the secondary encoder C2 is allowed to be varied for the purpose of finding the

accessible capacity Ca. This is a one-dimensional optimization problem, which could be

more tractable than the two-dimensional one. However, the accessible capacity is closely

related to the capacity region as illustrated in the following.

• For large ε, the pair (R1, Ca) may fall outside the capacity region of the GIFC.

1The explicit definition of the capacity region may be found in the references, say [3].
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• When ε→ 0, the pair (R1, Ca) must fall inside the capacity region.

• Specifically, the pair (R1, C
∗
a) must lie on the boundary of the capacity region, where

C∗a is defined as

C∗a = lim
ε→∞

sup
{C1}
{Ca(C1, ε)} (17)

and the supremum is taken over all possible ε-satisfactory GTCs C1 of rate R1.

2) In cognitive GIFCs [23], the secondary encoder is assumed to have knowledge of the

primary message. However, in our formulation, to design the secondary encoder, it needs

only the structure of the primary GTC along with the primary error performance require-

ment ε and the primary transmission power P1. In [28], Jovičić and Viswanath presented a

model that imposes two imperative constraints (referred to as coexistence conditions) on the

secondary users (with noncausal knowledge of the primary message): 1) it creates no rate

degradation for the primary user in its vicinity, and 2) the primary receiver uses a single-

user decoder, just as it would in the absence of the cognitive radio. In our formulation, the

first constraint is strengthened by fixing the primary encoder, and the second constraint

is relaxed by allowing the primary decoder to be changed. Since the primary rate, the

primary power and the channel coefficients are fixed in our formulation, OIC [31] is not

applicable and we do not consider outage performance [32] in this paper.

3) In most existing works on GIFCs, both the primary users and the secondary users (with or

without cooperation) are assumed to use random Gaussian codebooks with an exception

of [41]. In [41], the primary transmitter selects randomly (possibly from a very high

dimensional space) a fixed-size constellation for each transmission frame and then reveals

the constellation non-causally to both primary users and secondary users, while the sec-

ondary transmitter is assumed to use a random Gaussian codebook. In our formulation,

the primary transmitter uses not only a fixed constellation but also a fixed code structure.

Our formulation is also closely related to [42]. Actually, in our formulation, the primary

transmitter uses a point-to-point code, while the secondary transmitter uses a multi-user

code. That is, the secondary code must be designed considering the primary point-to-point

code. Hence, a good point-to-point code may not be a good candidate for a secondary

code.
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III. BOUNDS ON THE ACCESSIBLE CAPACITY

In this section, we derive bounds on the accessible capacity for the secondary users. For doing

so, we rewrite the considered system in (11) in terms of random variables as

Y1 = X1 + a21X2 + Z1

Y2 = a12X1 + X2 + Z2

, (18)

where

• X1 is a random sequence of length nN whose pmf p(x1) can be determined by the i.u.d.

input to the encoder together with the initial state of the encoder, that is, X1 is uniformly

distributed over C1 for a given initial state;

• Z1 and Z2 are two sequences of i.i.d. Gaussian random variables of variance one;

• X2 is a random sequence of length nN whose distribution is to be determined.

From the previous section, the accessible capacity depends on the following parameters:

the GTC structure at the primary transmitter, the primary transmission power P1, the error

performance requirement ε by the primary users, and the transmission power constraint P2 at

the secondary transmitter. Given the structure of the GTC, we may treat P1 and ε as a single

parameter by removing the so-called interference margin as defined below, which is essentially

the same as that defined in [33].

Let ε be the error performance requirement by the primary users. Obviously, p- lim sup ΘN

as defined in (7) depends not only on the GTC but also on the power P1. Given the GTC, define

P ∗1
∆
= inf{P |P is the primary transmission power such that p- lim sup ΘN ≤ ε}. (19)

Similar to [33], we call δ1
∆
= P1/P

∗
1 interference margin. Obviously, δ1 ≥ 1 since we assume

that the error performance is satisfied for the interference-free AWGN channel in the beginning.

A. Removal of Interference Margin

Temporarily, we assume that the interference margin is removed by the primary transmitter,

i.e., δ1 = 1. This assumption means that the primary transmitter works at the most “economic”

power level P ∗1 , and (hence) is reasonable since the GTC was originally designed for the primary

users in the absence of the interference. For the derivations in this subsection, we assume that

X2 is a sequence of discrete random variables, whose pmf is denoted by p(x2) for x2 ∈ XN
2 ,
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where X2 ⊆ Rn is a finite set. This assumption is reasonable since we are primarily interested

in the low SNR regime.

Considering the GTC structure at the primary transmitter, we have two finite state chan-

nels (FSCs) as shown in the following lemma.

Lemma 1: Both the links X2 → Y2 and X2 → Y1 can be viewed as FSCs where the processes

of channel states are Markovian. q

Proof: From Y2 = a12X1 + X2 + Z2 in (18), we can see that the transition probability

from x2 to y2 depends on the random sequence x1, which corresponds to a path through the

trellis of the GTC C1. To prove that this channel is an FSC as defined in [35], we need to define

a channel state such that, conditioned on the channel state and the current input, the channel

output is statistically independent of all previous inputs and outputs. Let st ∈ S be the trellis

state at the t-th stage of the GTC. We can see that the channel X2 → Y2 is then completely

characterized by

f(y2,t, st|x2,t, st−1) =
∑ 1

M

1

(2π)n/2
exp

{
−‖y2,t − a12x1,t − x2,t‖2

2

}
, (20)

where x1,t =
√
P1c(b) and the summation is over all branches b connecting st−1 and st. This

allows us to follow Gallager [35] and to work with the conditional probability f(y2, sN |x2, s0),

which can be calculated inductively from

f(y2, sN |x2, s0) =
∑
sN−1

f(y2,N , sN |x2,N , sN−1)f(y
(N−1)
2 , sN−1|x(N−1)

2 , s0), (21)

where x
(N−1)
2 = (x2,1, x2,2, · · · , x2,N−1) and y

(N−1)
2 = (y2,1, y2,2, · · · , y2,N−1). The final state can

be summed over to give

f(y2|x2, s0) =
∑
sN

f(y2, sN |x2, s0). (22)

The channel state process {St} is a Markov process, which evolves freely (independently from

the input x2) with the following transition probabilities

pSt|St−1(st|st−1) =
number of branches connecting st−1 and st

M
(23)

for st−1 ∈ S, st ∈ S. Therefore the link X2 → Y2 is a noncontrollable FSC [43–45]. Similarly,

the link X2 → Y1 is also a noncontrollable FSC with the channel state process {St}.
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Following Gallager [35], define

C
(N)
U

∆
=

1

nN
max
{p(x2)}

max
s0

I(X2; Y2|s0) (24)

and

C
(N)
L

∆
=

1

nN
max
{p(x2)}

min
s0

min{I(X2; Y1|s0), I(X2; Y2|s0)}, (25)

where the set {p(x2)} consists of all possible pmfs p(x2) over XN
2 such that E [‖X2‖2] ≤ nNP2.

Lemma 2: The limits CU = lim
N→∞

C
(N)
U and CL = lim

N→∞
C

(N)
L exist. q

Proof: The existence of CU can be proved by applying directly Theorem 4.6.1 in [35]2.

To prove the existence of CL, we define a new FSC whose channel states are drawn from S̄ ∆
=

{1, 2} × S. Given an initial state s̄0 = (i, s0), the new FSC channel is completely characterized

by

fY|X2(y|x2, s̄0) =

 fY1|X2(y|x2, s0), if i = 1

fY2|X2(y|x2, s0), if i = 2
. (26)

Then the definition of C(N)
L in (25) can be rewritten as

C
(N)
L

∆
=

1

nN
max
{p(x2)}

min
s̄0

I(X2; Y|s̄0)

and the existence of CL becomes obvious from Theorem 4.6.1 in [35].

Theorem 1: The accessible capacity Ca is bounded as

CL ≤ Ca ≤ CU . (27)
q

Proof: Intuitively, these bounds can be explained as follows. The term I(X2; Y2|s0) specifies

the achievable rate for the secondary link, hence it appears in both the upper bound CU derived

from (24) and the lower bound CL derived from (25). The term I(X2; Y1|s0) specifies the

achievable rate for the cross link X2 → Y1. Hence, putting I(X2; Y1|s0) into the lower bound

CL derived from (25) makes it possible for the primary receiver to cancel the interference from

the secondary transmitter first before doing its own decoding. The formal proof is given below.

Firstly, we prove that any rate R2 > CU is not achievable for the link X2 → Y2. It is equivalent

to proving that, for any code, if the probability of decoding error λ(N)
2 = Pr{Ŵ2 6= W2} → 0

as N →∞, then the coding rate R2 ≤ CU .

2For completeness, Theorem 4.6.1 in [35] is rephrased in Appendix.
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Actually, from Fano’s inequality and data processing inequality [46], we have

nNR2 = H(W2|s0) = H(W2|Y2, s0) + I(W2; Y2|s0)

≤ 1 + λ
(N)
2 nNR2 + I(W2; Y2|s0)

≤ 1 + λ
(N)
2 nNR2 + I(X2; Y2|s0). (28)

Dividing by nN ,

R2 ≤
1

nN
+ λ

(N)
2 R2 +

1

nN
I(X2; Y2|s0) (29)

≤ 1

nN
+ λ

(N)
2 R2 + C

(N)
U . (30)

As N →∞, we have R2 ≤ CU since 1
nN
→ 0 and λ(N)

2 → 0.

Secondly, we prove that any rate R2 < CL is accessible. It is equivalent to proving that

R2 < CL is achievable and the GTC C1 is still ε-satisfactory in the presence of the secondary

transmission rate R2.

Applying Theorem 5.9.2 in [35] to the newly defined FSC in (26), we have the following

facts. For any ε > 0, there exists N(ε) such that for each N ≥ N(ε) and each R2 ≥ 0 there

exists a block code C2 with rate R2 and codeword length nN such that, for all initial states

s̄0 ∈ S̄,
λ

(N)
1 ≤ 2−N [Er(R2)−ε]

λ
(N)
2 ≤ 2−N [Er(R2)−ε]

, (31)

where

• λ
(N)
1 is the average probability of erroneously decoding W2 from the received sequence Y1

at User B by the maximum-likelihood decoding algorithm ψ̃1,1;

• λ
(N)
2 is the average probability of erroneously decoding W2 from the received sequence Y2

at User D by the maximum-likelihood decoding algorithm3 ψ2;

• Er(R2) is the random coding error exponent [35], which is strictly positive for R2 < CL.

3The maximum-likelihood decoding algorithm ψ2 is defined as [35, Chapter 5.9]

ŵ2
∆
= ψ2(y2) = argmax

w2

∑
s0

1

|S|f(y2|x2(w2), s0)

where f(y2|x2(w2), s0) can be computed by combining (20), (21) and (22). The maximum-likelihood decoding algorithm ψ̃1,1

can be defined similarly.
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Therefore, as N → ∞, λ(N)
1 → 0 and λ

(N)
2 → 0. The latter implies that the rate R2 < CL is

achievable for the secondary link X2 → Y2.

To complete the proof, we need to find a decoder ψ̃1 such that the error performance require-

ment ε is still fulfilled, that is, p- lim sup Θ̃N ≤ ε. Such decoders do exist, one of which is the

following two-stage decoder.

Step 1: Upon receiving y1, User B utilizes the maximum-likelihood decoder ψ̃1,1 to get an

estimated message w̃2. The probability of decoding error λ(N)
1 = Pr{W̃2 6= W2} goes

to zero as N goes to infinity. For convenience, we introduce a random variable as

Υ1 =

 0, W̃2 = W2

1, W̃2 6= W2

. (32)

Then λ(N)
1 = Pr(Υ1 = 1).

Step 2: User B re-encodes w̃2 to get an estimated coded sequence x̃2 = φ2(w̃2). Then User B

uses the primary decoder ψ1 to decode the sequence ỹ1 = y1−a21x̃2 to get a sequence

of estimated messages w̃1 = (ũ1, ũ2, . . . , ũN).

The above two-stage decoder, denoted by ψ̃1 = ψ1 ◦ ψ̃1,1, is a successive full interference

cancellation decoding scheme. For such a two-stage decoder, the statistical dependence among

the error random variables {Ẽt} as defined in (14) becomes even more complicated. On one

hand, the erroneously-decoding of w2 at User B may cause burst errors in w̃1 at the second stage.

On the other hand, the correctly-decoding of w2 at User B indicates that the link X2 → Y1 is

not that noisy, equivalently, that the sum of the transmitted codeword x1 and the Gaussian noise

sequence z1 is not that “strong”. This implies that, even in the case of Υ1 = 0, the random

variables {Ẽt} may still have a different distribution from the random variables {Et} as defined

in (5) for the interference-free AWGN channel. Fortunately, this complicatedness does not affect

the ε-satisfactoriness of the GTC C1. Actually, for random variables Θ̃N as defined in (15), we

have

Pr{Θ̃N > ε} = Pr{Θ̃N > ε,Υ1 = 0}+ Pr{Θ̃N > ε,Υ1 = 1}

≤ Pr{Θ̃N > ε,Υ1 = 0}+ λ
(N)
1

= Pr{ΘN > ε,Υ1 = 0}+ λ
(N)
1

≤ Pr{ΘN > ε}+ λ
(N)
1 . (33)
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Since the GTC C1 is ε-satisfactory under the decoder ψ1 (implying lim
N→∞

Pr{ΘN > ε} = 0) and

R2 < CL (implying lim
N→∞

λ
(N)
1 = 0), we have lim

N→∞
Pr{Θ̃N > ε} = 0, which is equivalent to

p- lim sup Θ̃N ≤ ε.

An immediate consequence of Theorem 1 is the following corollary, which is related to the

case of strong interference at the primary receiver.

Corollary 1: For the new formulation of the GIFC, if the strong interference condition

I(X2; Y2|s0) ≤ I(X2; Y1|s0) (34)

holds for all pmfs p(x2) and all initial states s0 ∈ S, then the upper bound and the lower bound

coincide and the accessible capacity is Ca = CL = CU . q

The condition in (34) means that the cross link from the secondary transmitter to the primary

receiver is better/stronger than the secondary link (say, a2
21 > 1 and a2

12 < 1). If this is the case,

any rate that is achievable through the secondary link is also achievable through the cross link

from the secondary transmitter to the primary receiver, which admits a successive interference

cancellation decoding algorithm at the primary receiver. Also noticing that the strong interference

condition (34) is analogous to the case investigated in [26, Theorem 5], where the capacity region

for a certain strong interference cognitive IFC was presented.

As a special class of GTCs, block codes satisfy the property that all components x1,t ∈ Rn in

the coded sequence x1 = (x1,1, x1,2, . . . , x1,N) are independent since the GTC of a block code

has only one state and each n-dimensional coded signal x1,t is driven by the message ut (see

the description of the GTC and Examples 2 and 3 in Sec. II-A). In this case, both the links

X2 → Y1 and X2 → Y2 can be viewed as block-wise memoryless channels. That is, the channel

laws of the links X2 → Y1 and X2 → Y2 can be characterized by, for all x2,y1,y2 ∈ RnN ,

f (y1|x2) =
N∏
t=1

f (y1,t|x2,t) and f (y2|x2) =
N∏
t=1

f (y2,t|x2,t) , (35)

respectively. Hence, Theorem 1 and Corollary 1 can be simplified as Corollary 2 and Corollary 3

as below, respectively.

Corollary 2: For conventional block codes (GTCs with only one state), the bounds on the

accessible capacity are reduced to

CU =
1

n
max
{p(x2)}

I(X2;Y2), (36)
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and

CL =
1

n
max
{p(x2)}

min{I(X2;Y1), I(X2;Y2)}, (37)

where the set {p(x2)} consists of all possible pmfs over X2⊆Rn such that E [‖X2‖2]≤nP2. q

Proof: Since both the links X2 → Y1 and X2 → Y2 are block-wise memoryless with only

one channel state, we can remove the initial state s0 from the definitions of C(N)
U in (24) and

C
(N)
L in (25).

On one hand, for any pmf p(x2), if we take an i.i.d. sequence X2 (where X2,t ∼ p(x2)) as

the input process, we have

I(X2; Y2) =
N∑
t=1

I(X2,t;Y2,t) = NI(X2;Y2) , (38)

and

I(X2; Y1) =
N∑
t=1

I(X2,t;Y1,t) = NI(X2;Y1) . (39)

This implies C(N)
U ≥ 1

n
I(X2;Y2) and C

(N)
L ≥ 1

n
min {I(X2;Y1), I(X2;Y2)} for any i.i.d. input

sequence. Hence,

C
(N)
U ≥ 1

n
max
{p(x2)}

I(X2;Y2), (40)

and

C
(N)
L ≥ 1

n
max
{p(x2)}

min {I(X2;Y1), I(X2;Y2)} . (41)

On the other hand, for any joint pmf p(x2), using the same method as given in the proof of

Lemma 8.9.2 in [46], we can prove that

1

nN
I(X2; Y2) ≤ 1

n
max
{p(x2)}

I(X2;Y2). (42)

Combining (40) and (42), we have

CU =
1

n
max
{p(x2)}

I(X2;Y2). (43)

Also from the proof of Lemma 8.9.2 in [46], we know that

1

N
I(X2; Y2) ≤ 1

N

N∑
t=1

I(X2,t;Y2,t)

(a)

≤ I(X2;Y2) |X2∼Q̄2
, (44)
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where Q̄2 is the pmf of X2 defined as p̄(x2) = 1
N

∑N
t=1 p(X2,t = x2) and p(X2,t = x2) is derived

from the joint pmf p(x2), and inequality (a) results from the concavity of the mutual information

I(X2, Y2) with respect to the pmf p(x2) of X2. Similarly, we have

1

N
I(X2; Y1) ≤ I(X2;Y1) |X2∼Q̄2

. (45)

From (44) and (45), we have

1

nN
min {I(X2; Y1), I(X2; Y2)} ≤ 1

n
min

{
I(X2;Y1)|X2∼Q̄2

, I(X2;Y2)|X2∼Q̄2

}
, (46)

which implies that

1

nN
min {I(X2; Y1), I(X2; Y2)} ≤ 1

n
max
{p(x2)}

min {I(X2;Y1), I(X2;Y2)} . (47)

Combining (41) and (47), we have

CL =
1

n
max
{p(x2)}

min {I(X2;Y1), I(X2;Y2)} . (48)

Corollary 3: For conventional block codes (GTCs with only one state), if I(X2;Y2) ≤ I(X2;Y1)

holds for the pmf Q∗2 = arg max
{p(x2)}

I(X2;Y2), then Ca = CL = CU . That is,

Ca =
1

n
I(X2;Y2)

∣∣∣∣
X2∼Q∗2

. (49)

q

Proof: Since Q∗2 is the pmf of X2 such that Q∗2 = arg max
{p(x2)}

I(X2;Y2), from the expression

of CU in (36) in Corollary 2, we have CU = 1
n
I(X2;Y2)

∣∣
X2∼Q∗2

. First, by Theorem 1, we have

CL ≤ CU . Second, if I(X2;Y2)|X2∼Q∗2
≤ I(X2;Y1)|X2∼Q∗2

, from the expression of CL in (37) in

Corollary 2, we have

CL =
1

n
max
{p(x2)}

min {I(X2;Y2), I(X2;Y1)}

≥ 1

n
min

{
I(X2;Y2)|X2∼Q∗2

, I(X2;Y1)|X2∼Q∗2

}
=

1

n
I(X2;Y2)|X2∼Q∗2

= CU . (50)

Therefore, the lower and upper bounds coincide. That is, CL = CU = Ca = 1
n
I(X2;Y2)

∣∣
X2∼Q∗2

.
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Note that the condition in Corollary 3 is even slightly weaker than that in Corollary 1.

Remarks.

1) As seen from (24) and (25), the initial state of the GTC is involved in the derived bounds.

This cannot be avoided if the initial state is not known to the secondary users or if the

access time4 of the secondary users is at a random time t instead of t = 0. However,

most GTCs (for example, block codes and convolutional codes) satisfy that the process

{St} takes the uniform distribution as the unique stationary distribution. Equivalently, a

sufficiently long i.u.d. sequence of inputs at User A can drive the GTC encoder from

any given initial state into each state with equal probability. In this case, both the links

X2 → Y2 and X2 → Y1 are indecomposable [35]. Then the initial state can be fixed in

the derived bounds.

2) The readers may notice that the error performance requirement ε by the primary users

is not shown explicitly in the above derived bounds. However, these bounds do depend

on the parameter ε because the involved mutual information rates depend on the primary

transmission power P1 that is closely related to the primary error performance requirement

ε. In particular, in the case of δ1 = 1, the primary transmission power P1 plays the same

role as the error performance requirement ε does. In a general case, we may use (say)

CL(ε, δ1, P2) to emphasize the dependence of the lower bound on ε, δ1 and P2.

B. Non-trivial Interference Margin

Now let us discuss the case when non-trivial interference margin exists at the primary transmit-

ter, i.e., δ1 > 1. Let ∆P2 = min{P2, (δ1−1)/a2
21} and P ′2 = P2−∆P2. Define X2 = X′2 +∆X2,

where X′2 is a discrete random sequence over XN
2 with pmf p(x′2) and power constraint P ′2,

i.e., E [‖X′2‖2] ≤ nNP ′2, and ∆X2 is a Gaussian random sequence with mean zero and variance

∆P2 per dimension. Then the considered system in (18) can be expressed as

Y1 = X1 + a21X
′
2 + a21∆X2 + Z1

Y2 = a12X1 + X′2 + ∆X2 + Z2

. (51)

4By a time we mean a stage of the trellis that represents the GTC.
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Theorem 2: Let R2 = R21 +R22 satisfying

R21 ≤ CL(ε, 1, P ′2)
∆
= lim

N→∞

1

nN
max
{p(x′2)}

min
s0

min {I(X′2; Y1|s0), I(X′2; Y2|s0)} (52)

and

R22 ≤ lim
N→∞

1

nN
I(∆X2; Y2|X′2) . (53)

Then R2 is accessible. q

Proof: Here we follow Han and Kobayashi’s idea of splitting message into the common

and private parts [5]. That is, the message set at the secondary transmitter is assumed to be

M2 = L1×L2, where L1 = {1, 2, . . . , L1} is the common message and will be decoded at both

receivers and L2 = {1, 2, . . . , L2} is the private message set and will be decoded only at the

secondary receiver. Obviously, M2 = L1L2.

Codebook Generation: Generate L1 independent codewords x′2 ∈ XN
2 at random according

to the pmf p(x′2). Generate L2 independent codewords ∆x2 ∈ RnN at random by drawing each

codeword’s coordinates independently according to the Gaussian distribution N (0,∆P2). For

sufficiently large N , without loss of optimality, we can assume that these two codebooks satisfy

power constraints E [‖X′2‖2] ≤ nNP ′2 and E [‖∆X2‖2] ≤ nN ·∆P2, respectively.

Encoding: The encoding function at User C is

φ2 : M2 → RnN

w2 = (v1, v2) 7→ φ2(w2) = x2(w2) = x′2(v1) + ∆x2(v2)
(54)

where v1 ∈ L1 and v2 ∈ L2 are the common message and the private message transmitted by

the secondary user, respectively.

Decoding: After transmission over the system (51), the received sequences at User B and D

can be rewritten as
y1 = x1 + a21x

′
2 + z′1

y2 = a12x1 + x′2 + z′2
(55)

where z′1 = a21∆x2 + z1 and z′2 = ∆x2 + z2. Since R21
∆
= logL1

nN
≤ CL(ε, 1, P ′2) (defined

in (52)), we can prove (following the proof of Theorem 1) by treating z′1 and z′2 as noises that

the secondary common message v1 transmitted by the codeword x′2(v1) can be decoded correctly

with high probability at both receivers. After subtracting the decoded codeword a21x
′
2(v1) from

y1, we can verify that the SNR at the primary receiver is P1/(1 + a2
21∆P2) ≥ P ∗1 and hence
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the primary decoding performance will not get worse. After subtracting the decoded codeword

x′2(v1) from y2, the secondary receiver can decode the private message v2 correctly with high

probability since R22 ≤ limN→∞
1

nN
I(∆X2; Y2|X′2).

The proof of Theorem 2 is different from that of Theorem 1 where no inference margin exists:

1) the secondary transmitter uses a two-level superposition (rather than single-level) code; 2) the

primary decoder uses a two-stage successive partial (rather than full) interference cancellation

decoding algorithm, while the secondary decoder uses a two-stage successive (rather than one-

stage) decoding algorithm.

Theorem 2 indicates that, when non-trivial interference margin exists at the primary receiver,

the accessible capacity can be lower-bounded by

CL(ε, δ1, P2)
∆
= CL(ε, 1, P ′2) + lim

N→∞

1

nN
I(∆X2; Y2|X′2) . (56)

Remark. Given C1 and P1, let εmin be the error performance requirement corresponding

to the interference margin δ1 = 1. That is, εmin can not be decreased further unless P1 is

increased or the GTC C1 is replaced by a better one. Intuitively, as the error performance

requirement is relaxed (i.e., ε increases from εmin), the interference margin is getting larger (i.e.,

δ1 increases). This means that the primary users can tolerate stronger interference. As a result, the

accessible capacity of the secondary users can not decrease as the error performance requirement

by the primary users is relaxed. However, the accessible capacity must be upper bounded by the

maximum secondary transmission rate in the case when the error performance requirement by

the primary users is not considered at all5.

IV. THE EVALUATION OF THE UPPER AND LOWER BOUNDS

We have now derived upper and lower bounds on the accessible capacity for the considered

GIFC (18), as shown in Theorems 1 and 2. However, it could be very complicated to evaluate

these bounds. The difficulty arises from the following two facts. Firstly, a complex GTC for

primary users that has a large number of branches must result in intractable FSCs for the

secondary links. Secondly, even if the GTC is simple, the space of sequences x2 expands

exponentially as the length N increases, which makes it infeasible to optimize the mutual

5This can happen when the secondary users are illegal and “rude”.
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information rates over all possible pmfs p(x2) for large N . Therefore, we consider only those

tractable GTCs and assume that the transmitted signal sequences X2 ∈ XN
2 are i.u.d. under

the power constraint P2. The resulting accessible rate is referred to as i.u.d. accessible capacity

and denoted by C
(i.u.d.)
a . The i.u.d. accessible capacity plays an important role in the practice

of coding design since it specifies the achievable rate when random linear (coset) codes are

implemented, as shown in [47, Theorems 1 and 2]. The objective of this section is to evaluate

lower bounds and upper bounds on the i.u.d. accessible capacity. In what follows, we have fixed

the initial state as s0 = 0 and removed it from the equations for simplicity.

A. Computations of the Mutual Information Rates

From Theorems 1 and 2, we have bounds as follows.

1) In the case when no interference margin exists at the primary receiver, the i.u.d. accessible

capacity C(i.u.d.)
a can be upper-bounded and lower-bounded by

C
(i.u.d.)
U = lim

N→∞

1

nN
I(X2; Y2) (57)

and

C
(i.u.d.)
L = lim

N→∞

1

nN
min{I(X2; Y1), I(X2; Y2)}, (58)

respectively, where the channel input sequence X2 is i.u.d. according to the pmf p(x2) =

1
|X2|N . Obviously, C(i.u.d.)

U is a lower bound of the derived upper bound CU defined in

Lemma 2 and hence it may not be an upper bound on the accessible capacity Ca, while

C
(i.u.d.)
L does serve as a lower bound on Ca.

2) In the case when non-trivial interference margin exists at the primary receiver, the acces-

sible capacity Ca can be lower-bounded by

C ′
(i.u.d.)
L = lim

N→∞

1

nN
(I(∆X2; Y2|X′2) + min {I(X′2; Y1), I(X′2; Y2)}) (59)

where the channel input sequence X2 is a superposition of an i.u.d. sequence X′2 according

to the pmf p(x′2) = 1
|X2|N and an i.i.d. sequence ∆X2 according to the Gaussian distribution

N (0,∆P2).

The above upper and lower bounds can be evaluated by adapting the methods used in [48–

51]. We focus on the evaluation of the upper bound, while the lower bounds can be estimated
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similarly. Specifically, we can express the upper bound C(i.u.d.)
U as

C
(i.u.d.)
U = lim

N→∞

1

nN
I(X2; Y2)

= lim
N→∞

1

nN
h(Y2)− lim

N→∞

1

nN
h(Y2|X2)

= lim
N→∞

1

nN
h(Y2)− lim

N→∞

1

nN
h(a12X1 + Z2). (60)

These two entropy rates lim
N→∞

1
nN
h(Y2) and lim

N→∞
1

nN
h(a12X1+Z2) can be computed by a similar

method since both Y2 and a12X1 +Z2 can be viewed as hidden Markov chains. As an example,

we show how to compute lim
N→∞

1
nN
h(Y2) in the following.

From the Shannon-McMillan-Breiman theorem [46, Theorem 15.7.1], we know that, with

probability 1,

lim
N→∞

− 1

nN
log f(y2) = lim

N→∞

1

nN
h(Y2), (61)

since the sequence Y2 is a stationary stochastic process. Then evaluating lim
N→∞

1
nN
h(Y2) is

converted to computing

lim
N→∞

− 1

nN
log f(y2) ≈ − 1

nN
log

(
N∏
t=1

f(y2,t|y(t−1)
2 )

)
= − 1

nN

N∑
t=1

log f(y2,t|y(t−1)
2 ) (62)

for a sufficiently long typical sequence y2. Then, the key is to compute the conditional prob-

abilities f(y2,t|y(t−1)
2 ) for all t. This can be done by performing the BCJR algorithm over a

new (time-invariant) trellis, which is constructed by modifying the original trellis of the GTC

C1. Actually, the link X2 → Y2 can be represented by the following modified trellis.

• The new trellis has the same state set S = {0, 1, . . . , |S| − 1} as the GTC C1.

• Each branch b = (s−(b), u(b), c(b), s+(b)) in B of the original trellis is expanded into |X2|

parallel branches{
b=(s−(b), u(b), c(b), x2(b), s+(b))

∣∣x2(b)∈X2 is the transmitted signal at User C
}
.

(63)

Fig. 3 depicts a trellis section of the link X2 → Y2, where the GTC C1 is the (2, 1, 2)-CCBPSK

as introduced in Example 4.

Given the received sequence y2 at User D, similar to the BCJR algorithm [36], we define
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s-(b) s+(b)c(b)u(b)
0 0-1 -10
0 0-1 -10
0 00
0 0-1 -10
0 2+1+11
0 2+1+11
0 2+1+11
0 2+1+11

-1 -1

x2(b)
+1+1
+1 -1

-1 -1
-1+1

+1+1
+1 -1

-1 -1
-1+1

1 0+1+10
1 0+1+10
1 00
1 0+1+10
1 2-1 -11
1 2-1 -11
1 2-1 -11
1 2-1 -11

+1+1

+1+1
+1 -1

-1 -1
-1+1

+1+1
+1 -1

-1 -1
-1+1

s-(b) s+(b)c(b)u(b)
2 1-1+10
2 1-1+10
2 10
2 1-1+10
2 3+1 -11
2 3+1 -11
2 3+1 -11
2 3+1 -11

-1+1

x2(b)
+1+1
+1 -1

-1 -1
-1+1

+1+1
+1 -1

-1 -1
-1+1

3 1+1 -10
3 1+1 -10
3 10
3 1+1 -10
3 3-1+11
3 3-1+11
3 3-1+11
3 3-1+11

+1 -1

+1+1
+1 -1

-1 -1
-1+1

+1+1
+1 -1

-1 -1
-1+1

Fig. 3. A trellis section of the link X2 → Y2 where the GTC C1 represents the (2,1,2) convolutional coded BPSK shown in

Example 4.

Branch Metrics: To each branch bt = (st−1, ut, ct, x2,t, st), we assign a metric

ρ(bt)
∆
= f(bt, y2,t|st−1)

= p(ut) p(x2,t) f(y2,t|st−1, ut, x2,t)

=
1

M

1

|X2|
1

(2π)n/2
exp

{
−‖y2,t − a12

√
P1ct − x2,t‖2

2

}
. (64)

State Transition Probabilities: The transition probability from st−1 to st is defined as

γt(st−1, st)
∆
= f (st, y2,t|st−1) (65)

=
∑

b:s−(b)=st−1,s+(b)=st

ρ(b). (66)

Forward Recursion Variables: We define the posterior probabilities

αt(st)
∆
= p

(
st|y(t)

2

)
, t = 0, 1, . . . , N. (67)

Then

f(y2,t|y(t−1)
2 ) =

∑
st−1,st

αt−1(st−1)γt(st−1, st), (68)

where the values of αt(st) can be computed recursively by

αt(st) =

∑
st−1

αt−1(st−1)γt(st−1, st)∑
st−1,st

αt−1(st−1)γt(st−1, st)
. (69)



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, DECEMBER, 2010 30

In summary, the algorithm to estimate the entropy rate lim
N→∞

1
nN
h(Y2) is described as follows.

Algorithm 1:

1) Initializations: Choose a sufficiently large number N . Set the initial state of the GTC

to be s0 = 0. The forward recursion variables are initialized as α0(s) = 1 if s = 0 and

otherwise α0(s) = 0.

2) Simulations for User A:

a) Generate a message sequence (u1, u2, . . . , uN) independently according to the uni-

form distribution p(U = ui) = 1
M

.

b) Encode the message sequence by the encoder of the GTC C1 and get the coded

sequence (c1, c2, . . . , cN).

c) Transmit the signal sequence x1 =
√
P1(c1, c2, . . . , cN).

3) Simulations for User C:

a) Generate a sequence x2 ∈ XN
2 independently according to the uniform distribution

p(x2) = 1
|X2| .

b) Transmit the signal sequence x2.

4) Simulations for User D:

a) Generate an (nN)-sequence z2 ∈ RnN independently according to the Gaussian

distribution N (0, 1).

b) Receive the sequence y2 = a12x1 + x2 + z2.

5) Computations:

a) For t = 1, . . . , N , compute the values of f(y2,t|y(t−1)
2 ) and αt(st) recursively accord-

ing to equations (68) and (69).

b) Evaluate the entropy rate

lim
N→∞

1

nN
h(Y2) ≈ − 1

nN

N∑
t=1

log(f(y2,t|y(t−1)
2 )). (70)

q

Similarly, we can evaluate the entropy rate lim
N→∞

1
nN
h(a12X1 + Z2). Therefore, we obtain the

bound as

C
(i.u.d.)
U = lim

N→∞

1

nN
h(Y2)− lim

N→∞

1

nN
h(a12X1 + Z2). (71)
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TABLE I

COMPARISON OF THE GTCS

GTC Rate P1 ε

Uncoded-BPSK 1 6 ≈ 0.72 e−2

[2, 1, 2]-RCBPSK 1/2 6 ≈ 0.28 e−3

[8, 4, 4]-EHCBPSK 1/2 6 ≈ 0.20 e−4

(2, 1, 2)-CCBPSK 1/2 6 ≈ 0.63 e−7

(3, 1, 2)-CCBPSK 1/3 6 < 0.63 e−7

B. Numerical Results and Discussion

In this subsection, we give numerical results to show the dependence of the accessible capacity

on parameters. In all simulations, we assume that both User A and C utilize BPSK modulation

since we are primarily concerned with the low-SNR regime, and we choose a large number

N = 106.

1) The Impact of the GTCs on Accessible Rates: To investigate the dependence of the

accessible rates on GTCs, we assume that no interference margin exists at the primary receiver.

The power at User A is fixed to be P1 = 6, while the power P2 at User C is allowed to be

varied. The GTCs at User A we simulated are listed in Table I, where the first four GTCs are the

examples introduced in Sec. II-A and the last GTC is the (3, 1, 2) convolutional code (defined

by the generator matrix G(D) = [1 + D 1 + D2 1 + D + D2]) with the BPSK signaling.

Also given in Table I are the error performances corresponding to the fixed transmission power

P1 = 6. These error performances will be getting worse if treating the interference from the

secondary users as noise. In this case, the upper and lower bounds C(i.u.d.)
U and C

(i.u.d.)
L , given

in (57) and (58), are computed.

The GIFCs we simulated have interference coefficients a2
12 = a2

21 = 1.5 (strong interference),

a2
12 = a2

21 = 1 (median interference), a2
12 = a2

21 = 0.5 (weak interference), or a2
12 = 0.5, a2

21 =

1.5 (asymmetric interference).

Figs. 4, 5 and 6 illustrate the computational results for three different GTCs with different

coding rates over three GIFCs with different interference coefficients, respectively. Figs. 7, 8

and 9 illustrate the computational results for three different GTCs of the same coding rate 1/2

over three GIFCs with different interference coefficients, respectively. Recall that the GIFC has
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Fig. 4. Bounds on the i.u.d. accessible capacities of the GIFC with a2
12 = a2

21 = 1.5 for different GTCs with different coding

rates.

been standardized such that the noise power is unit (see (11)). In all plots and tables in this

paper, the powers P1 and P2 are measured by the real SNR instead of decibel. From Figs. 4-9,

we can see that,

• primary users with lower coding rates allow higher accessible rates;

• given the primary coding rate R1 and the primary transmission power P1, a GTC that

provides a better performance allows a higher accessible rate.

The above observations can be interpreted intuitively as follows. Recall that the computed

lower bound is derived under the assumptions that i) the secondary transmitter uses an i.u.d. input,

and ii) the primary receiver employs a successive interference cancellation decoding algorithm.

That is, the secondary message must be decoded correctly with high probability at the primary

receiver by treating the “noise” as a high-dimensional mixed Gaussian noise with “modes” at

x1 ∈ C1. In the first case, the lower the primary coding rate (the fewer codewords used at the

primary transmitter), the less crowded the modes are. In the second case, a better GTC (with lower

decoding error probability at the primary receiver in the absence of the secondary users) typically

implies that the modes are not that crowded. In any case, the less crowded primary modes allow

the secondary transmitter (with i.u.d. codewords) to “insert/superpose” more distinguishable
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Fig. 5. Bounds on the i.u.d. accessible capacities of the GIFC with a2
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Fig. 6. Bounds on the i.u.d. accessible capacities of the GIFC with a2
12 = a2

21 = 0.5 for different GTCs with different coding

rates.

modes (secondary codewords), resulting in higher accessible rates.6

6It appears that, if the primary modes are squeezed together, “more space” would be left for the secondary users. However,

given that the mixed-Gaussian noise has (incompressible) power 1+P1, the primary codewords (if squeezed together) must be

distributed non-uniformly over the signal space. If so, the secondary transmitter cannot be benefited from the extra space if the

secondary codewords are generated independently and uniformly.
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21 = 1.5 for different GTCs with the same coding

rate 1/2.
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Fig. 8. Bounds on the i.u.d. accessible capacities of the GIFC with a2
12 = a2

21 = 1 for different GTCs with the same coding

rate 1/2.

Fig. 10 illustrates the computational results for the asymmetric GIFC with a2
12 = 0.5 and

a2
21 = 1.5. From this figure, we can see that the upper bounds coincide with the lower bounds,
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Fig. 9. Bounds on the i.u.d. accessible capacities of the GIFC with a2
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21 = 0.5 for different GTCs with the same coding

rate 1/2.
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21 = 1.5 for different GTCs.

which verifies Corollary 1 for the case of strong interference at the primary receiver.

Remark. It is worth pointing out that, as seen from the above figures, the accessible rate

does not always increase as the secondary transmission power P2 increases. This is because
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Fig. 11. The “noise” seen by the secondary user (User D) is the sum of the interference from User A and the Gaussian noise

Z2, i.e., V = a12X1 + Z2. Let a2
12 = 1.5 and X1 be drawn from {+

√
P1,−

√
P1} uniformly. In sub-figure (a), the two-mode

curve characterizes the pdf f(v) of V . Sub-figure (b) shows us that, as P2 increases from 0 to 2, the two likelihood functions

f−(v) = f(v +
√
P2) and f+(v) = f(v −

√
P2) become more and more distinguishable. While, sub-figure (c) shows us that,

as P2 continuously increases, the two likelihood functions become less and less distinguishable. Finally, for sufficiently large

P2, the two likelihood functions are (almost) completely distinguishable, as shown in sub-figure (d).

that, given the primary encoder, the secondary links are no longer AWGN channels. The “noise”

seen by User D, which is composed of interference from the primary user and the Gaussian

noise, may have a pdf with multi-modes. Usually, for an additive noise with single-mode pdf,

the transmitted signals at the secondary user become more distinguishable as the transmission

power increases. However, when the additive noise has a multi-mode pdf, higher transmission

power may result in heavier overlaps between the likelihood functions. Let us see an example.

Suppose that User A utilizes uncoded BPSK encoder with fixed power P1 = 6. In the case of

a2
12 = 1.5, the noise seen by User D is V = a12X1 +Z2, which has a pdf f(v) with two modes

as shown in Fig. 11 (a). Suppose that User C employs BPSK signaling {+
√
P2,−

√
P2}. As P2

increases from 0 to 2, we can see that the two likelihood functions f+(v) = f(v −
√
P2) and

f−(v) = f(v +
√
P2) become more and more distinguishable, as shown in Fig. 11 (b). While,

as P2 continuously increases, the two likelihood functions become less and less distinguishable,

as shown in Fig. 11 (c). Finally, as P2 goes to infinity, the two likelihood functions are (almost)
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TABLE II

PARAMETERS FOR THE GTC (2, 1, 2)-CCBPSK

ε P ∗1 P1 δ1

≈ 10−2 1.7 4.75 2.79

≈ 10−4 3.2 4.75 1.48

≈ 10−5 4 4.75 1.18

≈ 10−6 4.75 4.75 1

completely distinguishable, as shown in Fig. 11 (d).

2) The Impact of the Error Performance Requirement on Accessible Rates: The GTC at User A

is fixed as (2, 1, 2)-CCBPSK and the transmission power is fixed as P1 = 4.75. At the beginning,

the error performance requirement by the primary users is set to be ε ≈ 10−5 corresponding to

the interference margin δ1 = 1.18, as shown in Table II. This error performance requirement

can be either strengthened by decreasing ε ≈ 10−5 down to εmin ≈ 10−6 corresponding to

δ1 = 1 (shown in Table II) or relaxed by increasing ε from 10−5 to 10−4 and 10−2 resulting

in larger interference margins (shown in Table II). In all these cases, the lower bounds C ′(i.u.d.)L

given in (59) can be computed, as shown in Fig. 12. Also shown in Fig. 12 is the curve of

the lower bounds C ′(i.u.d.)L when the error performance requirement by the primary users is not

considered at all, which is referred to as “no-constraint”. From this figure, we can see that

relaxing the error performance requirement at the primary users allows the secondary users to

have higher accessible rates. However, the rates must be upper bounded by the case where no

error performance requirement by the primary users is constrained.

V. CONCLUSION

In this paper, we have presented a new problem formulation for the GIFC with primary

users and secondary users. We defined the accessible capacity as the maximum rate at which the

secondary users can communicate reliably without affecting the error performance requirement by

the primary users. Upper and lower bounds on the accessible capacity were derived and evaluated

using the BCJR algorithm. Numerical results were also provided to illustrate the dependence of

the accessible capacity on parameters.
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Fig. 12. Lower bounds on the accessible capacity of the GIFC with a2
12 = 0.5, a2

21 = 0.5, when the GTC is fixed as

(2, 1, 2)-CCBPSK.

APPENDIX

THE DISCRETE FINITE STATE CHANNEL AND THEOREM 4.6.1 IN [35]

In this appendix, we re-state Gallager’s Theorem 4.6.1 [35], which is used to prove Lemma 2

in Sec. III-A.

In [35], a discrete finite state channel has an input sequence x = · · ·x−1, x0, x1, · · · , an

output sequence y = · · · y−1, y0, y1, · · · , and a state sequence s = · · · s−1, s0, s1, · · · . Each

input letter xn, each output letter yn and each state letter sn are selected from finite alphabets

{0, 1, . . . , K−1}, {0, 1, . . . , J−1} and {0, 1, . . . , A−1}, respectively. The channel is described

statistically by the time-invariant conditional probability assignment p(yn, sn|xn, sn−1) satisfying

p(yn, sn|xn, yn−1, sn−1) = p(yn, sn|xn, sn−1). (72)

The probability of a given output sequence y = (y1, · · · , yN) and a final state sN at time N

conditional on an input sequence x = (x1, · · · , xN) and an initial state s0 at time 0 can be

calculated inductively from

pN(y, sN |x, s0) =
∑
sN−1

p(yN , sN |xN , sN−1)pN−1(yN−1, sN−1|xN−1, s0) (73)
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where xN−1 = (x1, . . . , xN−1) and yN−1 = (y1, . . . , yN−1). The final state can be summed over

to give

pN(y|x, s0) =
∑
sN

pN(y, sN |x, s0). (74)

Define

CN =
1

N
max
pN (x)

min
s0

I (X; Y|s0) (75)

CN =
1

N
max
pN (x)

max
s0

I (X; Y|s0) . (76)

Theorem 4.6.1 in [35]: For the above finite state channel with A states,

lim
N→∞

CN = sup
N

[
CN −

logA

N

]
(77)

lim
N→∞

CN = inf
N

[
CN +

logA

N

]
. (78)

q
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