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Encoding Tasks and &hyi Entropy

Christoph Bunte and Amos Lapidoth

Abstract—A task is randomly drawn from a finite set of tasks the typical tasks and to group together the atypical ones. We
and is described using a fixed number of bits. All the tasks then  will see, however, that this may not always be optimal.
share its description must be performed. Upper and lower boads If we assume for simplicity that all tasks require an equal

on the minimum p-th moment of the number of performed tasks t of effort. th it ble to ch h
are derived. The case where a sequence of tasks is producedamoun of efiort, then 1t seems reasonable o choose the

by a source andn tasks are jointly described usingnR bits Subsets so as to minimize the expected number of performed
is considered. If R is larger than the Rényi entropy rate of tasks. Ideally, this expectation is close to one. More gafyer
the source of order 1/(1 + p) (provided it exists), then the p- e ook at thep-th moment of the number of performed tasks,

th moment of the ratio of performed tasks ton can be driven o\ hare , may be any positive number. Phrased in mathematical
one asn tends to infinity. If R is smaller than the Renyi entropy .
terms, we consider encoders of the form

rate, this moment tends to infinity. The rgsults are generalied to

Settng, the key duantty s a condiional version of Fenyt extropy frX = {1 MY, &)
et s o by Aol For D Sauces o aSNS where i a given posive integer. Every such cncoder gives
other where different tasks may have different nonnegativecosts. fS€ 10 a partition of into M disjoint subsets

mismaich pendity i the. Massey-Arikan guessing problem i/ (m) = {z € X: (@) = m}, me (L. M} @)

shown to play a similar role here. Here f(x) is the description of the task, and the set

[Index Terms—Divergence, Fenyi entropy, Rényi entropy rate,  f=1(f(zx)) comprises all the tasks sharing the same description
mismatch, source coding, tasks. asz, i.e., the set of tasks that are performed whés required.
We seek anf that minimizes thep-th moment of the

| INTRODUCTION cardinality of f~1(f(X)), i.e.,
Atask X that is drawn from a finite set of task$ according E[lf7Hf(X)P] = Z P(@)|f~1(f (). (3)
to some probability mass function (PMP)is to be described TEX

using a fixed number of bits. The least number of bits needgflis minimum is at least 1 becausé ¢ FUF(X); it is

for an unambiguous description is the base-2 logarithm ghnincreasing inV/ (because fewer tasks share the same de-
_the total number of tas_ks it (rou_nded up to the_ nearestseription whenM grows); and it is equal to one fav/ > x|
integer). When fewer bits are available, the classical @®urhecause thert' can be partitioned into singletons). Our first
coding approach is to provide descriptions for the taské wifag it is a pair of lower and upper bounds on this minimum.

the largest or with the “typical” probabilities only. This® The bounds are expressed in terms of Réayi entropy ofX
the obvious drawback that less common, or atypical, tasks Wis grder 1/(1+ p)

never be completed. For example Aif comprises all possible

household chores, then “wash the dishes” will almost celtai H. (X)= 1+p log Z p(x)ﬁ_ (4)
occur more frequently than “take out the garbage”, but most e P

people would agree that the latter should not be neglected. .

The classical approach is not so well-suited here becaf—érOUQhOUﬂOg.(') stands forlog, (), the logarithm to ba_sE.
it does not take into account the fact that not performing o typographic reasons we henceforth use the notation
unlikely but critical task may have grave consequences, and 1 <0 )
that performing a superfluous task often causes little or no F=3 +p’ P '
harm. A more nat_ural approach in this C(_)ntext s to partitio?heorem I.1. Let X be a chance variable taking value in a
the set of tasks into subsets. If a particular task needsfﬁqte setX, and letp > 0
be completed, then the subset containing it is described and ’ . .
all the tasks in this subset are performed. This approachl) For all positive integersM and every f: & —
has the disadvantage that tasks are sometimes completed {L,.... M},
superfluously, but it guarantees that critical tasks, notenat E[lf1(f(X))] > 9p(Hj(X)—log M) (6)
how atypical, are never neglected (provided that the nuraber
subsets in the partition ot does not exceed/, whenlog M 2) For all integers M > log|X'| + 2 there existsf: X' —
is the number of bits available to describe them). One way to  {1,..., M} such that
partition the set of tasks is to provide distinct descripsidor B[f~ (O] < 14+ 270C0-1s3) (7)

reX
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A proof is provided in Sectiof lll. Theorei 1.1 is partic- The connection between the problem of encoding tasks and
ularly useful when applied to the case where a sequencetloé Massey-Arikan guessing problem [[10], [[11] is explored
tasks is produced by a sour¢é;}>°, with alphabet¥ and in [12].
the firstn tasks X™ = (Xy,...,X,) are jointly described The operational characterization of Rényi entropy predid
usingn R bits (the number: is therate of the description in by Theorem[ .2 (applied to 1ID sources) reveals many of
bits per task and can be any nonnegative number): the known properties of Rényi entropy (see, eld., [9]) 13]
For example, it shows thal;(X) is nondecreasing irp
because?” is nondecreasing ip when¢ > 1. It also shows
that
1) If R > limsup,_,., H;(X™)/n, then there exist en- N

codersf,: X" — {1,. .l? ,2"1Y such thal H(X) < Hy(X) < log|suprP), a4

Theorem I.2. Let{X;}2°, be a source with finite alphabét,
and letp > 0.

. . . where H(X) denotes the Shannon entropy and upp=
Jim B[ £, (fu(X™)7] =1. (8) {x : P(x) > 0} denotes the support of. Indeed, if
R < H(X), then, by the converse part of the classical source-

2) If R < liminf,,_,. H;(X™)/n, then for any choice of coding theorem[14, Theorem 3.1.1]

encodersf,,: X" — {1,...,2"%}, .
Jim B[S (X)) oo (@) A P 22 =1 09)

which implies that the-th moment of| £, 1(f,,(X™))| cannot
tend to one as tends to infinity. And if R > log|supd P)|,
then everyn-tuple of tasks that occurs with positive probability

Proof: On account of Theorefn 1.1, for all large enough
so that2"® > nlog|X| + 2,

H(X™) can be given a distinct description so for every
PRSI < min B[ (X))
fos o2 min - E[|f, (fa(XM)P] =1 (16)
<14 2np(H’3(j{n>fR+6n) (10) . fT_L: xn—{1,...,.2n}
’ The limit
whered,, — 0 asn — oo. u : ) _
When it exists, the limit pli{I(}o Hp(X) = log|supe P)| (17)
o s a . Ho(X™) follows from our operational characterization of Rényirepy
Ho({Xi}iZ,) = lim, " (11)  as follows. If B < log|supP)|, then, by the pigeonhole-
principle, for any choice off,,: X" — {1,...,2"%} there

is called theRényi entropy rate of X; }2°, of ordera. It exists
for a large class of sources, including time-invariant Mark
sources|([1], [[2]. |t (fu(xR))] > 2nUcslsupHP)=R) (18)

If we assume that eveny-tuple of tasks inf,, *(f.(X™))is .
performed (even if this means that some tasks are performadCer" (26) = Prin, Wherepmin denotes the smallest nonzero
multiple times) and thus that the total number of performdy©Pability of any source symbol, we have
tasks isn times|f,, 1 (f.(X™))|, then Theoreni ]2 furnishes E[lf7 (Fa(X™)IP] = P @) 7 (Falai))]? (19)
the following operational characterization of the Rénytrepy
rate for all orders in(0,1). For all rates above the Rényi
entropy rate of ordet /(1 + p), the p-th moment of the ratio For all sufficiently largep the RHS tends to infinity as —

of performed tasks ta can be driven to one as tends to o, which proves thatim, o, H;(X) > log|supP)|; the

infinity. For all rates below it, this moment grows to infinity reverse inequality follows fromi{14).
In fact, the proof of Theoreri 1.2 shows that for largeit ~ As to the limit when p approaches zero, note that if
grows exponentially im with exponent approaching R > H(X), then the probability that the cardinality of
LY Y f7Y(f(X™)) exceeds one can be driven to zero expo-
p(H({Xi}2) — R). (12) nentially fast inn [15, Theorem 2.15], say as "¢ for
More precisely, [(I0) shows that for all rateR < some( > 0 and sufficiently large:.. And since|f, (. (X™))|

must exist someg € supgP™) for which

> gne(loglSUpHP)|—R+p™ " log pmin) - (20)

H;({X:}52,), is trivially upper-bounded by"'°8l¥|  the p-th moment of
. |f;1(fn(X"))| will tend to one if p < (/log|X|. Thus,
lim = log min Bl (fa(X™))7] lim, o0 H;(X) < H(X) and, in view of [1#),
n—oo N fn: Xn—{1,...,.2nR} .
— p(Hp({X:}) ~ R). (13) ity Ho(X) = HX)- @)

Note that for 1ID sources the Rényi entropy rate reduces to 1he rest of this paper is organized as follows. In Sedion I
the Rényi entropy because in this cadg(X") = nH;(X;). We introduce some notation. In Sectibnl Il we prove Theo-
Other operational characterizations of the Rényi entngtg '®M[L1. In Sectior IV we consider a mismatched version of
were given in[[1][6], and of the Rényi entropy in [7]=[10]. the direct part of Theorem 1.1 (i.e., the upper bound), where
is designed based on the lgyinstead ofP. We show that the
LThroughout2™ stands for|2"% |. penalty incurred by this mismatch can be expressed in tefms o



a divergence measure betweRrand (@ that was proposed by I1l. PROOF OFTHEOREM[L]]
Sundaresari [16]. In Sectigd V we state and prove a univergal the [ ower Bound (Converse)
version of the direct part of Theorem]l.2 for IID sources. In ) L
Sectior[V] we generalize Theorefis]I.1 4nd 1.2 to account forThe proof of the lower bound(6) in Theorémll.1 is inspired
the presence of side-information, where the key quantity is®Y the proof of [10, Theorem 1]. It hinges on the following
conditional version of Renyi entropy. We also generalize t SMPI€ observation.
result from Sectiof V. In Sectidn V1l we study a rate-distnt proposition Il.1. If £y,...,Ly is a partition of a finite
version of the problem for 1ID sources, where the key qugntitet x into A/ nonempty subsets, i.e.,
is “Rényi’'s analog to the rate-distortion function” inthaced o
by Arikan and Merhav[[17]. In Sectioh VIIl we study the -  a e
problem of encoding 11D tasks when different tasks may have mL_Jl Lon=& and (Lo 0L =0 iff m’#m),  (27)
different costs.
and L(z) is the cardinality of the subset containing i.e.,
L(z) = |Ly] if 2 € Ly, then
Il. NOTATION AND PRELIMINARIES

1
We denote byN the set of positive integers. The cardinality z;( L(x) =M. (28)
of a finite setX is denoted by|X|. We use the notation e
" = (x1,...,2,) for n-tuples. If P is a PMF onX, then Proof:

P™ denotes the product PMF oti™ 1 M
n 22 2T (29)
L(x
pPr(a") =[] P(@i), 2" e€am (22) €x m=12ELm
i=1 M 1
= — (30)
The support ofP is denoted by sug@), so mz:: Zﬁ Lo
supP) = {z € X : P(z) > 0}. (23) - (31)
. - [ |
If A C &, then we writeP(A) in lieu of 5, 4 P(x). If To prove the lower bound in Theordmll.1, fix afiy X —
W(-|z) is a PMF on a finite sey for everyz € X (i.e., a ,M}, and let N denote the number of nonempty
channel fromX to ))), thenP o W denotes the induced jOimsubsets in the partitiorf=1(1),..., f~'(M). Note that for
PMF ond'x Y this partition the cardinality of the subset containings
(PoW)(z,y) = P(x)W(yl|z), (z,y)€XxY, (24) L(z)=[f"'(f(z), zeAX. (32)
and PW denotes the induced marginal PMF dn Recall Holder's Inequality: Ifa and b are functions fromY
into the nonnegative reals, apcandg are real numbers larger
Z Px)W(y|lx), ye. (25) than one satisfyind /p + 1/q = 1, then
vex 1/p 1/q
The collection of all PMFs onY is denoted byP(X). The > al@)b(x) < <Z a(x)p) <Z b(I)q) . (33)
collection of all channels fromt’ to ) is denoted byP (Y| .X'). zEX zEX TEX

For information-theoretic quantities (entropy, relatiga- Rearranging[{33) gives
tropy, mutual information, etc.) we adopt the notation[iB][1 —p/q »
We need basic results from the Method of Types as presented N™ ()7 > ( b(z q) ( a(z)b(z ) . (34)
in [15, Chapter 2]. The set of types of sequenceg’ih(i.e., Z @) 2 Z (=) Z (z)b()
the set of rational PMFs with denominatoy is denoted by o
P.(X). The set of alle” € X" of type @ € P,,(X) (ie., the SubsiUtingp = 1+ p q = (1 + p)/p, a(z) =
type class of)) is denoted b)ﬂ”é") or by Ty, if n is clear from .P(I) N (f(:.c))| weoand b(z) = |fT (@)

n n i in (34), we obtain
the context. Thé/-shell of a sequence™ € X™ is denoted

zeX reX reX

by Tv (a"). > Pl (F@))
The ceiling of a real numbef (i.e., the smallest integer oy
no smaller thart) is denoted by[¢|. We frequently use the —p L\
inequality (Z = ))|) (Z P(ff)m) (35)
[€1° <1420¢7, £>0, (26) e e
— 2P(Hp(X)—10gN) (36)
which is easily checked by considering separately the > 9p(Hp(X)—log M) (37)

cased) < ¢ <1 and¢ > 1. As mentioned in the introduction,
log(-) denotes the base-2 logarithm, alg_ (-) denotes the where [36) follows from[{4),[{32), and PropositibnTlI.1;dan
basea logarithm for generaby > 1. where [37) follows becausty < M. O



B. The Upper Bound (Direct Part) {1,..., M} by settingf (z) = m if z € L,,. For this encoder,

The key to t_he upper bour_lq in Theorém 1.1 i§ the fo_llowir_lg Z P(a)|f~(f(2))
reversed version of Propositign Tll.1; a proof is provided i —x
Appendix[A. _ Z P(2)L(z)" a7
Proposition 1I1.2. If X is a finite set,A\: X — N U {400} z:P(2)>0
and X < Y P@A@P (48)
Z m =L (38) z:P(z)>0
re - P(a)[8 P(x)” ] (49)
(with the convention /oo = 0), then there exists a partition z:P(2)>0
of X into at most <1+ (28)° Z P(z)T+e (50)
. z:P(x)>0
?;?Lau +log, |X] +2] (39) = 1 4 9P(H(X)~log Mv)7 (51)

subsets such that where [BD) follows from[(26), and whe® is as in Theo-

L(z) < min{A\(z),|X|}, forallzex,  (40) remiLl. =
where L(z) is the cardinality of the subset containing IV. MISMATCH

(Proposition[TIl.1 cannot be fully reversed in the sense The key to the upper bound in Theordmll.1 was to use
that [39) cannot be replaced with Indeed, conside®” = proposition TIL.2 with A as in [Z1)4{4P) to obtain a partition
{a,b,¢,d} with A(a) =1, A\(b) = 2, andA(c) = A(d) = 4. In of X for which the cardinality of the subset containingis
this examplep. equals 2, but we need 3 subsets to satisfy thgyproximately proportional taP(z) /(47 Evidently, this
cardinality constraints.) construction requires knowledge of the distributi&nof X.

Since Holder’s Inequality (33) holds with equality if, anqBut see SectiohV for a universal version of the direct pért o
only if, a(x)? is proportional tah(x)?, it follows that the lower Theoren{T2 for IID sources that does not require knowledge
bound in Theoreni_Tl1 holds with equality if, and only if,of the source’s distribution.)
|f~*(f(x))| is proportional toP(z)~*/(F¢). We derive [¥)  In this section, we study the penalty whéhis replaced

by constructing a partition that approximately satisfies thwith @ in (@) and [4R). Since it is then still true that
relationship. To this end, we use Proposifion 111.2 with= 2

in (39) and p< M~ log|| — 2 k’im — 2, (52)
AMz) = [BP(x)" 2] if P(z) >0, (41) Propositior 1.2 guarantees the existence of a partitibit’o
+o0 if P(x)=0, into at most M subsets satisfying[_(#0). Constructing an

encoderf from this partition as in Sectidn II[3B and following

where we choosg just large enough to guarantee the exsteps similar to[{47)E(51) yields
istence of a partition oft’ into at mostM subsets satisfy-

ing (40). ForM > log|X| + 2 this is accomplished by the Z P)|f 1 (f(2))
choice zEX

ﬂ o 2ZIEXP(I)m
M —log|X| -2

< 1 4 2PH(X)+A5(Pl|Q)~log 1\7)’ (53)

(42)

here M i in Th 1, and wh
Indeed, with this choice where M is as in TheorerLTl1, and where

1 Aa(PlIQ)
=25 (43) a =
< \z) PN SN 1C)) P(z) \T*
@€ 2 Jog — (> . (54)
P(z) 77 (3, Pla)e) =7\ Q@)
TEX B The parameten. can be any positive number not equal to
M —log|X| — 2 one. We use the conventiof0 = 0 anda/0 = 4o if a > 0.

- ’ (45) Thus, A;(P||Q) < oo only if the support ofP is contained

in the support ofQ.
The penalty in the exponent on the RHS Bf](53) when
24+ log| X +2 < M. (46) compared to the upper bound in Theoren 1.1 is thus given
by A;(P||Q). To reinforce this, note further that

and hence

Let then the partitionLy,..., Ly with N < M be as
promised by Proposition l112. Construct an encodert’ — Ao (PM|Q™) = nAL(P|Q). (55)



Consequently, if the sourdeX;}2, is IID P and we construct
fn: X" — {1,...,2"7} based onQ" instead of P", we
obtain the bound

[ (Fa (X))

< 14 2nP(H(XD)+A(PIIQ)=R+0n) - (56)
whered,, — 0 asn — oo. The RHS of [(Gb) tends to one
provided thatR > H;(X1) + As(P||Q). Thus, in the 1ID
caseA;(P||Q) is the rate penalty incurred by the mismatc
betweenP and Q.

The family of divergence measures, (P||Q) was first
identified by Sundaresan [16] who showed that it plays
similar role in the Massey-Arikan guessing problém [10L][1
We conclude this section with some propertiesof(P||Q).

Properties 1-3 (see below) were given [n][16]; we repe

them here for completeness. Note that Rényi's divergesee, (
e.g., [9])

1

a—1

Do (P|IQ) = log ¥ P(2)*Q(x)'~*,  (57)

zeX

satisfies Properties 1 and 3 but none of the others in general.

Proposition IV.1. The functionalA, (P||@) has the following
properties.

1) A,(P||Q) > 0 with equality if, and only if,P = Q.

2) AL(P]|Q) = oo if, and only if, supg P) € sup@)
(o > 1 and supg P) Nsup@) = 0.)

3) lima1 Aa(Pl|Q) = D(P[|Q).

4) lima o Aa(P||Q) = log fEEZH if supP) C
SUpRQ).
5) liMayeo A (P||Q) = log RaXzex P(@) - \yhere 9 =
o1 ZIEQ P(x)

{z € X:Q(z) =maxyex Q(z)}.
Proof: Property 2 follows by inspection of (b4). Proper

p=c«aandq=c«a/(a—1) gives

S LW S payg) (61)
reX Q(x) reX
< (S Pe) (T ow) . 62
(S rer) (Zewr)

Dividing by >~ P(z)/Q(z)'~* and raising to the power of
a/(a — 1) shows thatA,, (P||Q) > 0. Equality holds if, and
r(])nly if, P =0Q. [ ]

V. UNIVERSAL ENCODERS FORIID SOURCES

In Section(ll the direct part of Theordmll.2 is proved using
the upper bound in Theordmll.1. It is pointed out in Sedfioh IV
that the construction of the encoder in the proof of this uppe
gpund requires knowledge of the distribution &f. As the
next result shows, however, for [ID sources we do not need to
know the distribution of the source to construct good encade

Theorem V.1. Let X’ be a finite set, and let > 0. For every
rate R > 0 there exist encoder§,: X — {1,...,2"%} such
that for every 11D sourcel X;}5°, with alphabetX,

B[/ (fa(XM)IP] < 1427000 - (63)
where
5, = 1—|—(1—|—p*1)|X|10g(n—|—1). (64)
In particular, !
Tim B[ (fa (X)) = 1, (65)

wheneverd;(X;) < R.

Proof: We first partition X" into the different type
classesTy, of which there are less tham + 1)I*. We
then partition eacH, into 2"(%~%.) subsets of cardinality at
most [|T|2~"(R~9)] whered!, = n~!|X|log(n + 1). Since
|Tg| < 2"H(@) | eacha™ € Tg thus ends up in a subset of

ties 3-5 follow by simple calculus. As to Property 1, consigé&ardinality at most

first the case wher8 < a < 1. In view of Property 2, we
may assume that supB) C supd Q). Holder's Inequality[(3B)
with p=1/a andq = 1/(1 — «) gives

> P)°

- B Faprer (59)
- (meﬁp)ﬁ) (%SU%P)QW) (59)
: <;( %)Y;ﬁ@“)la- (60)

Dividing by > P(x)* and taking(l — «)-th roots shows
that A, (P||Q) > 0. The condition for equality in Holder’s
Inequality implies that equality holds if, and only if? =

Q. Consider next the case where > 1. We may assume
supg P)Nsup @) #  (Property 2). Holder’s Inequality with

[QH(H(Q)*RML)} . (66)
Note that the total number of subsets in the partition does
not exceed2"®. We constructf,: X — {1,...,2"%} by

enumerating the subsets in the partition with the numbers in
{1,...,2"%} and by mapping ton € {1,...,2"%} the z™’s

that comprise then-th subset. Suppose now thgk;}5°, is

IID P and observe that

B[l (fa(X™))7]

= > P (X)) (67)
zneXxn
< > DT prem[erH @R (68)

QEPR(X)xneTq
<142° Z onp(H(Q)—R+6y,) Z P"(z") (69)

QEPA(X) wreTa

<12 3 2w RHQETID@IPE)  (70)
QEP(X)

S 1 + 2_np(R—Hﬁ(X1)—6n). (71)



Here [68) follows from the construction gof,; (69) follows 2) If R < liminf, .., H;(X"|Y™)/n, then for any choice
from (28); [70) follows because the probability of the s@urc of fr: X" x Y — {1,...,2"1%}

emitting a sequence of tyg@ is at mos2—"P(QlIP): and [71) . 1 novny vyl

follows from the identity (se€ [10]) nlinéoE“f" (Fu(X™,Y7),Y™)I7] = oo (80)

Hy(X1) = legx H(Q) = p~'D(Q||P), (72) To prove [(77) fixM and f: X x Y — {1,...,M}. Note

(x) that for everyy € ) the setsf~1(1,v),..., f~*(M,y) form
x| a partition of X', and the cardinality of the subset containing
and the fact thafP,,(X)| < (n +1)'". B s lf~(f(x,y),y)|. Following steps similar tod_(35)=(B7), we
obtain

VI. TASKS WITH SIDE-INFORMATION

In this section we generalize Theoremd 1.2, V.1lto
account for side-information: A task and side-information 1+p
Y are drawn according to a joint PMPx y on X x ), where > g~plogM (Z ny($|y)1}r/)> , y€Y. (81)
both X and ) are finite, and where the side-information is X
available to both the task describer (encoder) and the ta%%ﬁltiplying both sides byPy
performer. The encoder is now of the form establishes{77).

FrAxXY = {1,..., M) (73) To prove [78) fix somey € Y and replaceP(x) with _
Px |y (z|y) everywhere in the proof of the upper bound in
If the realization of(X,Y") is (z,y) and f(z,y) = m, then TheoreniLl (see SectiGnTII}B) to obtain an encofier X' —
all the tasks in the set {1,..., M} satisfying

> Pxy (ly)l /7 (fa ), )
rzeX

(y) and summing over alj € Y

fmy) e X flay)=m) (T8 Y Pyl (@)

are performed. As in Sectidh I, we seek to minimize for a rer

. ~ L 1+p
given M the p-th moment of the number of performed tasks < 14 9rlogM (Z PX|Y(x|y)m> . (82)
_ TeX
B[/ (f(X.Y), V)] . o :

. Setting f(z,y) = fy(z), multiplying both sides of [(82)
= Z Z Pxy (@ y)lf~(f(@9),9)". (75) py Py (y), and summing over alj € ) established (78). O

zeX yey One may also generalize Theorem]V.1:
The key quantity here is a conditional version of Renyi@myr Theorem VI.3. Let X and ) be finite sets, and lep > 0.
(proposed by Arimotol [18]): For every rateR > 0 there exist encoderg,: X x Y —

1 L\ e {1,...,2"%} such that for every IID sourcd(X;,Y;)}2,
Hp(X]Y) = ;10gz (Z PX,Y(xay)m> . (76) with alphabett x ),

yey ‘zekX
E[| £ (fa (X" Y7), Y ™)

Theoren{ Il can be generalized as follows. < 14 - R-HXIY=5)  (ga)

Theorem VI.1. Let (X,Y) be a pair of chance variables

taking value in the finite set’ x ), and letp > 0. where
1) For all positive integersM and everyf: X x ¥ — 5 _ 1+ (1+p )| X|Y[log(n + 1) + p~!|X|log(n + 1)
{1,...,M}, n (84)
B[/~ (f(X,Y),Y)]"] > 9p(H3(X|Y)—log M) (77) In particular,
. —1 n n n —
2) For all integersM > log|X'|+2 there existsf : X'x) — nll{r;oE“fn (fu (XY™, Y] =1, (85)
{1,..., M} such that wheneverH;(X,[V;) < R.
E[|f 7 (f(X,Y),Y)[?] < 1+ 20H(X¥)~log M) Proof: We fix an arbitraryy™ € Y" and partition ™
s (78) into the differentV-shells Ty (y™) (see [15, Chapter 2]) of
where M = (M — log|X| — 2)/4. which there are less tham + 1)I¥IIYl. We then partition

each V-shell into 27(%=%.) subsets of cardinality at most
[Ty (y™)|27" R0 where &), = n~!|X[|Y|log(n + 1).

Theorem VI.2. Let {(X;,Y;)}2°, be any source with finite Since|Ty (y")| < 2"#(VIP») whereP,. denotes the type of
alphabetX x ), and letp > 0. y", eachz™ € Ty (y™) will end up in a subset of cardinality

1) If R > limsup,_,. H;(X"|Y™)/n, then there exist & MOSt
fo: X7 x Y — {1,...,2"%} such that

: - n yny yny el — From this partition we construgt, (-, y"): X — {1,...,2"%}
lim BE[|f, ' (fu(X™,Y™),Y™)|P] = 1. 79 , o e
00 [ (U ) W] (79) by enumerating the subsets with the numbetarough2™#

As a corollary we obtain a generalization of Theolfem 1.2

[ (HV Py )—R+6L)1 . (86)



and by mapping to eactm € {1,...,2""} the z™’s that The distortion functioni extends ton-tuples of tasks in the
comprise them-th subset. Carrying out this construction fousual way:
everyy" € J" yields an encodef: X x Y — {1,..., 2"} n

Suppose now tha{t(Xl,Y) ©, is1ID Pxy and observe that d(z",2") = 1 Zd(xi’j;i)’ (z",2") € X" x X", (93)

for everyy™ € Y™ with PV )(, ") >0, [t
P @™y £ (fu (2™, y™), y™) | We assume that for every € X there is somei € X for
m;{ iy @ WOl (97, 07) which d(z, &) = 0, i.e.,
< Z Z P)((n\y( "y [2" n(HVI Py )= Ee, e mind(z,%) =0, x€ X. (94)
ViTy (y™)#0 zn €Ty (y™) zex
(87)  We describe the first tasksX " usingn R bits with an encoder
o np(H(V|Pyn)—R+4,,) (n) (.
<1420 )02 > PXiv@E"y) FrAm {1, 2R} (95)
ViTy (ym)#0 zne€Tv (y™)
(88)  subsequently, the descriptigitX") of X™ is decoded into a
<1429° Z 9—nD(V||Px |y |Pyn)gnp(H(V|Pyn)—R+6y,) subset ofY™ by a decoder
ViTy (ym) 20 . .
v (89) @: {1,...,2"} 2" (96)

Here [87) follows from the construction of,; (88) follows where 2*" denotes the collection of all subsets &f*. We
from (28); [89) follows because conditionel ait = y" require that the subset produced by the decoder alwaysiononta

the probability thatX™ is in the V-shell of y™ is at most at least _onen-tuple of tasks within distortiorD of X", i.e.,
2-nD(VIIPx v [Py»)  Noting that whethefly (y™) is nonempty W€ require

depends o™ only via its type, it follows that the sum if(B9) min  d(z",2") <D, a" € X. (97)
depends o™ only via P,~. Noting further that the probability &nep(f(an)) -

that Y is of type @ € P,()) is at most2-"P(QIIPy) jt

follows from (87)-[89) upon taking expectation with respe All n-tuples of tasks in the set(f(X™)) are performed. The

text theorem shows that the infimum of all raf@gor which

to Y™ that the p-th moment of the ratio of performed tasksstocan be
B[l (fa(X™, Y™, Y™)P] <1+2° Z 9—nD(Q||Py) Qriven tog)ne as tends to infinity subject to the constraiht]{97)
QePa() is given by
x Y 2PV R greHVIRm) =I5 - (90) R,(P,D)2 max R(Q,D)-p 'D(Q||P),  (98)

% QEP(X)

where R(Q, D) is the classical rate-distortion function (see,
e.g., [15, Chapter 7]) evaluated at the distortion leefor an
D Q source and distortion functiaf The functionR, (P, D)
(multiplied by p) has previously appeared [n[17] in the context
Hy(Xa[Vi) = max  H(VIQ)—p'D(QoV]|Px,y). O guessing
VEP(X|Y) Theorem VII.1. Let {X;}°, be an IID P source with finite
(91) alphabetX, and letD > 0 andp > 0.

1) If R > R,(P, D), then there existf,,¢,) as in (95)

where for a given) € P,()) the inner sum extends over
all V' such thatTy (y™) is not empty for some (and hence
all) y™ of type Q. In Appendix(B it is shown that

Using [91), the identity

D(QoVI|Pxy) = D@|IPy) + D(V|[PxylQ), (92) ~ and(E8) saisfying(@7) such that
. n\\|p] —
and the fact that the number of types of sequence¥’inis nlinéoE“%(f"(X W] =1. (99)

less than(n + 1)1 and the number of conditional typ&s 5 1t » = R (P.D) then for an as in (95
is less than(n + 1)!*1IVI ] it follows that the RHS of-O) is ) and (35) sgt(isf;/in)gi@jl) Y(fnron) @S in ©9)
upper-bounded by the RHS ¢ (83). ’

lim_ Efjon(fa(X™))7] = oo. (100)
VIl. CODING FORTASKS WITH A FIDELITY CRITERION It follows immediately from TheoreffiVITI1 thak, (P, D)

In this section we study a rate-distortion version of thts nonnegative and nondecreasing in> 0. Some other
problem described in Sectidh 1. We only treat IID sourcgdfoperties are (see [17] for proofs):
and single-letter distortion functions. Suppose that therce 1) R,(P,D) is nonincreasing, continuous and convex in
{X;}2, generates tasks from a finite set of taskslID D >o0.
according toP. Let X be some other finite set of tasks, 2) R,(P,0) = H;(P).
and letd: X x X — [0,00) be a function that measures the 3) lim, o R,(P, D) R(P, D).
dissimilarity, or distortion, between any pair of taskstin X 4) lim, o0 R,(P, D) = maxgepx) R(Q, D).



assume that > n(d). For each typ&) € P, (X) we partition
Bg) into 2(F—9») subsets of cardinality at most

{Qn(R(Q,D)+6—R+5n)-| ’ (102)
. where §,, = n~1|X|log(n + 1). Since the total number of
Q types is less thafvn + 1;"“', we can enumerate all the subsets
5& of all the differenth’ 's with the numberdl, ..., 2"E. Let

on: {1,...,2"} — 2% pe the mapping that maps the index
to the corresponding subset. (If there are less #dhsubsets
in our construction, then we map the remaining indices tp, sa
the empty set.) We then constrygt: ™ — {1,...,2"7} by
mapping each:™ € X" of type @) to an index of a subset of
Bg) that contains ari:™ with d(z™, ") < D. Note that the
encoder/decoder pair thus constructed satisfigs (97), and

Fig. 1. R,(P,D) in bits for an IID Bernoulli{1/4) d Hammi Elln(fn(X")V]
ig. 1. D) in bits for an ernoulli source and Hamming
distortion = Z P (a™)|on(fn(z™)]? (103)
xnexn
Z Z Pn(xn) |'2n(R(Q,D)+6—R+5n)'|P (104)

QG,PTL(X) zneT((Qn)

The fact thatR,(P, D) is a continuous function oD (Prop-

erty[1) allows us to strengthen the converse statement in The
orem[VILT as follows. Suppose that for every positive imleg <« 1 4+ 97 Z onp(R(Q,D)+6—R+0n) Z P™(z™) (105)
n the encoder/decoder pai,, »,) is as in [9b) and[(36) QEP(X)
with R < R,(P, D) and satisfied (97) for som®,, such that .
limsup,, ,.. D, < D. Then [I0D) holds. Indeed, continuity < 1+2”Z g el DQIIP)=R(Q.D)=0=0x)  (106)

(n)
I"ETQ

implies thatkR < R,(P, D +¢) for a sufficiently smalk > 0, QEP(X)
andlimsup,,_, . D, < D implies thatD,, < D + ¢ for all < 14 2 "P(R=Ro(P.D)=6-4,) (107)
sufficiently largen. The claim thus follows from the converse H
part of Theoreni VILIL withD replaced byD + «. where L4 (14012l 1

Considering Propertyl2, Theordmll.2 particularized to 11D 5 = + (1 +p )| X|log(n + ). (108)
sources can be recovered from Theofem VII.1 by takther " )
X and the Hamming distortion function Here [10%) follows from the construction ¢f, andy,,; (103)

follows from (26); [106) follows because the probability of
d(z, ) = 0 ifx=az, (101) an IID P source emitting a sequence of typkis at most
©T 701 otherwise. 2-nP(QIIP); and [107) follows from the definition a?,,(P, D)

. ~in (@8) and the fact thaP,,(X)| < (n + 1)I¥. The proof of
It was noted in[[17] thatkz,(P, D) can be expressed inthe direct part is completed by noting thatAf > R,(P, D),
closed form for binary sources and Hamming distortion:  then for sufficiently smals > 0 the RHS of [I07) tends to

Proposition VIL.2. If X = X = {0,1}, d is the Hamming ©N€ asn tends to infinity. _
distortion function(Z01) and P(0) = 1 — P(1) = p, then To prove the converse, we fix for each ¢ N an en-
coder/decoder paitf,,, ¢») as in [95) and(96) satisfyinfg (P7).
R,(P,D) = {Hﬁ(p) —h(D) if0<D<h ' (Hsp)), We may assume that
if D>~ (Hp(p)), on(m)Np,(m') =0 wheneverm # m'. (109)
where/,~'(-) denotes the inverse of the binary entropy fungngeed. ifm #m’ andi™ € ¢, (m) N e, (m’'), then we can
tion h(-) on the interval[0,1/2] and, with slight abuse of gelete;™ from the larger of the two subsets, say(m), and
notation, H;(p) = H(P). map tom’ all the source sequenced’ that were mapped

For a proof of Propositiof VITI2 seé [17, Thereom 3] ané® m by fn and satisfyd(z",2") < D. This could only
subsequent remarks. A plot dk,(D) for p = 1/4 and reduce thep-th moment of the number of performed tasks

different values ofy is shown in Figuré&ll. while preserving the property (97).

We now prove the direct part of Theorém VII.1. Fix> 0  Define the set -
and select an arbitrary > 0. Accqrdlng to Fhe .Type Covering z - U on(m). (110)
Lemma [15, Lemma 9.1], there is a positive integéf) such et

>
that for all n > n(9) and every typeQ € P, (X) we can The assumption[(109) implies that the union on the RHS

i (n) — pn inali n(R(Q,D)+9)
find asegﬁQ_ C &™ of cardinality at mosg (n) tha_\t of (I0) is disjoint. Consequently, we may defipg (")
coversT;, " in the sense that for every” < Tj," there is for every i” € 2, as the unique element dfl,...,2 R}

at least onet™ € Bgl) with d(z™, ™) < D. We henceforth for which 2" € ¢, (1, (2™)). Moreover, [(9FF) guarantees the



existence of a mapping,: X" — Z,, (not necessarily unique) so applying[14, Theorem 9.2.1] (which is the main ingretien
such that, for alk™ € X", in the classical rate-distortion converse) to the pair*, X™)

n n " n gives
gn(x )€<pn(fn(:v )) and d(w , gn(T )) <D. (111)
We also define the PMF o§,,,
P, (i™) = P" (g, (z")), i" € Z,, (112)

I(X"AX™) > nR(Q., E[d(X™, X™)]) (128)
> nR(Qx, D), (129)
where [12P) follows from[(127) by the monotonicity of the
where e . . . . rate-distortion function. CombmmBE(jZQHJ.ZM)
gn (@) = {a" € X" : gn(a™) = 2"} (113)  @22)-{12%), and(121) establishés (117).

With these definitions oft,,, g, and P,, we have

P VIII. TASKS wWITH COSTS
> Pa)|en(fulz™)]
zrexn We have so far assumed that every task requires an equal
= Z P"(g, (™) [on (1n (™))" (114) amount of effort. In this section, we discuss an extensioarah
inez, a nonnegative, finite cost(x) is associated with each task
= Z Po(@")|on (pn(2™))]” (115) « € X. For the sake of simplicity, we limit ourselves to 1D

sources ang = 1.
For ann-tuple of taskst™ € ™, we denote by(z") the
average cost per task:

ez,
> 2p(1‘f;3(15n)—ﬂR)7 (116)

where the inequality[{116) follows fronf1(6) (wittE,,, P,, n
and u,, taking the roles oft, P and f) by noting thatp,, = cla) = = ZC(Ii)' (130)
w L. In view of (I14)(11b) the converse is proved once we ni4

show that . . .
We still assume that-tuples of tasks are describe usingg

Hp(Pn) 2 nRy(P. D). (17 bits by an encoder of the forrfi: ™ — {1,...,2"%}, and
To prove [I1V), note that on account Bfi(72) we have for evetyat if ™ is assigned, then all-tuples in the sef ~!(f(2"))
PMF @ on Z, are performed. Thus, if” is assigned, then the average cost
per assigned task is

H3(P,) > H(Q) — p~'D(Q|| ). (118)
ny\ A ~n
The PMF P, can be written as off,a") = Z c(z"). (131)
5 zref=1(f(z™))

The following result extends Theordmll.2 to this setting (fo

wherelV,, is the deterministic channel frofi” to X induced 1D tasks andp = 1). We focus on the casE[c(X1)] > 0
by gn: because otherwise we can achieve

Wi (372" = {1 if 2" = gp(z™),

0 otherwise. (120) Ele(f,X™)] =0 (132)

Let Q, be a PMF onX that achieves the maximum in theUSir:Lg only one bit by settingf(z") = 1 if ¢(2") = 0 and
definition of R,(P, D), i.e., f(a") =2 otherwise.
Theorem VIII.1. Let{X;}3, be IID with finite alphabett

RP(PvD) :R(Q*vD)_p_lD(Q*”P) (121) andE[C(Xl)] >O.
SubstitutingQ} W, for @ in (118) and using[(119), 1) If R > H,5(X1), then there exist encodefs : X" —
Hy(Py) > H(QIWn) = p~ ' D(QIW,|| P"W,)  (122) {3, 27} such that
> H(QIW,) — p~ D(Q}]|P™) (123) lim E[e(fn, X™)] = Ele(X1)]. (133)
= H(Q!W,) —np~ ' D(Q.]|P), (124)

i _ 2) If R < Hy;5(Xy), then for any choice of encoders
where [12B) follows from the Data Processing Inequality, [15 For X7 5 {1,... 27RY,

Lemma 3.11]. Let the sourcéX;}°, be IID Q, and set

X" = g,(X). Then lim E[e(fy, X™)] = oco. (134)
n—oo
H(QWn) = H(~X”) . (125) Proof of Theorend VIITI1: We begin with the cas& >
=I(X"AX"). (126) H,/5(X1), i.e., the direct part. Let us denote &yax the largest

By (T1), we have cost of any single task i’

E[d(X™,X™)] < D, (127) Cmax = IaxX c(z). (135)



Select a sequencg,: X" — {1,...,2"7} as in the direct
part of Theoreni I]2 and observe that

E[c(fn,X")}

= Y Pra")e(fn,2") (136)
TnEX™
= Z P"(x")(c(x")—l— Z C(CE"))
zrexn Frefit (fn @)\ {zn}
(137)
=E[e(X)] + Y P"@") > (&)
arexn Fnefi (fn(@m)\ (2"}
(138)
<E[e(X1)] +cmax Y P(@)|f (fale™) \ {2"}]
zneX (139)
= E[e(X1)] + emax(E[If,  (fu(X™))[] = 1), (140)

and the second term on the RHS Bf {lL40) tends to zero
n — oo by Theoreni TR.

We now turn to the cas® < H;,5(X,), i.e., the converse
part. If the minimum cost of any single task,, is positive,
then [134%) follows from the converse part of Theoilem 1.2
replacing in [I3P)Ymax With cmin and “<” with “ >". If at least
one task has zero cost (i.emn = 0), then we need a different
proof.

The assumptiorE[c(X1)] > 0 implies that there is some
x* € X with P(z*)c(x*) > 0. Using Holder's Inequality as
in @4) with p = ¢ = 2, a(z) = /P*(z")c(fn,z"), and
b(x) = \/c(z™)/c(fn, 2™) gives

S P e fara™)
zneXxn
Z Nnot )

z™:c(xz™)>0 C(.I'n)

(Zm":c(m")>0 \% C(:Cn)Pn (:En))2 .

c(zm™)
Zzn:c(m")>0 c(fn,zm)

> c(x")P”(x”)c(f n,2") (141)

>

(142)

To bound the denominator on the RHS lof (1L42), observe that

Z c(z™)
zm:c(z™)>0 C(fn7 1‘")
2nR
c(x™)
=> > — (143)
m=1gnefl(m),c(zm)>0 Zine-fgl(m) C(.”L' )
< 2"37 (144)

where the inequality follows because for some the set
{z" € f1(m) : c(2™) > 0} may be empty. Combining (144)
and [142) gives

Yo PraM)e(fa,a")

TreX™
> 2‘”R<

>

zm:e(zm)>0

2
c(am)Pr (:C")) . (145)

b
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We can bound the sum on the RHS bf {1L45) as follows.

>
(zm)>0

x":c

c(am)pr(azn)

c(x*)

>/ = > /P (146)
QEPH(X),Q(z*)>02m€Tq
) ax 9r(HQ-82)9-5 (DQIPHHQ) (147)
n  QeP,(X)
Q(z*)>0
— 9% (maxgep, (x),Q*)>0 H(Q)—D(Q||P)-4),) (148)
_ 2%(H1/2(X1)—8n—5;)’ (149)
where 6, = n~!X|log(n + 1), where §, = 23, +

n~!log(n/c(x*)), and wheres,, — 0 asn — co. Here, [14b)
follows because it:” € T and@Q(z*) > 0, thenz; = «* for
at least one and hence:(z") > ¢(z*)/n > 0; (1417) follows
becauseP™(z") = 2~ P RIPI+H(Q)) whenz" € Tg, and
becauséTy| > 2"(H(@)~%); ([T49) follows from [72) because
2 set of rational PMF€) with Q(z*) > 0 is dense in the
set of all PMFs onY, and H(Q) — D(Q||P) is continuous
in @ (provided thatQ(xz) = 0 wheneverP(z) = 0, which
is certainly satisfied by the maximizing in (Z2)). Combin-
g (I29) and[(145) completes the proof of the converdm.

APPENDIXA
ProoOF oFProPoOSITIONIIL.Z]

Since the labels do not matter, we may assume for conve-
nience of notation that’ = {1,...,|X|} and

A1) S A@) < -+ < (). (150)

We construct a partition aft’ as follows. The first subset is
Lo={ze€X:\x)>|X|}. (151)

If X = Ly, then the construction is complete ahd|(39) dndl (40)
are clearly satisfied. Otherwise we follow the steps below to
construct additional subset;, ..., Ly;. (Note that if £y #
X, thenx \ Lo = {1,...,|X| = |Lo|}.)
Stepl: If
|X\ Lo| < A(D), (152)
then we complete the construction by settifig =
X\ Lo and M = 1. Otherwise we set

L1={1,....A(1)}

and go to Step.
Stepm > 2: If

‘ m—1

(153)

x\ U &

i=0

then we complete the construction by settifig =

X\ U;’;gl L; and M = m. Otherwise we let’,,

contain theX(|£1| + ... + |Lm—1| + 1) smallest
elements oft’ \ "' £;, i.e., we set

Lo ={IL1]+ ...+ L] +1,...,

|L1]+ .o oA | Lot | FA(La |+ oA+ L [+ 1) }
(155)



and go to Stepn + 1.

We next verify that[(4D) is satisfied and that the total number

of subsetsM + 1 does not exceed(B9). Clearlfi(z) < |X|
for everyxz € X, so to prove[(40) we check thdi(z) <
A(z) for everyz € X. From [151) it is clear thal(z) <
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APPENDIXB

ProoF oF(@1)
We first show thatd (V|Q) — p~'D(Q o V||Pxy) <
H;(X:|Y1) for every@ € P(Y) andV € P(X|Y). This is
clearly true whenD(Q o V||Px,y) = 0o, SO we may assume

A(z) for all z € Ly. Let k(z) denote the smallest element irthat Px y (z,y) = 0 implies Q(y)V (z|y) = 0, and hence that

the subset containing. Then L(z) < A(k(x)) for all =z €

Uff:l L., by construction (the inequality can be strict only if

x € L), and sincek(z) < x, we havei(k(z)) < A(z) by
the assumptior{ (I50), and hentéz) < A(z) for all = € X.

It remains to check that/ + 1 does not exceed (B9). This

is clearly true whenV/ = 1, so we assume that/ > 2. Fix
an arbitrarya > 1 and let M be the set of indicesn €
{1,..., M — 1} such that there is am € £,, with \(z) >
aX(k(x)). We next show that

M| < log, | X]. (156)
To this end, enumerate the indicesh asm; < ms < --- <
myrq . For eachi € {1,...,| M|} select somer; € L,,, for
which A(z;) > aA(k(z;)). Then

AMz1) > ai(k(z1))
> a.

(157)
(158)

Note that ifm < m’ andz € £,, andz’ € L,,/, thenz < 2'.
Thus, z1 < k(z2) becauser; € L,,,, k(z2) € L,,, and
my < mg. ConsequentlyA(z1) < A(k(x2)) and hence

A@2) > aA(k(z2)) (159)
> al(r) (160)
> a?. (161)
Iterating this argument shows that
A pq)) > ML (162)

And since A(z) < |X| for everyz ¢ L, by (I51), the
desired inequality[(156) follows fromi_(162). Le¢1¢ denote
the complement ofM in {1,...,M — 1}. Using Proposi-
tion [llL.I] and the fact that(z) = A\(k(z)) > A(z)/« for all

# € Upeee Lo

1
M = 163
> @) (163)
zeUM_, Lm
1
=1+ |M|+ Z m (164)
IeUnlEMC Lm
1

<1+ Ml+a )] o) (165)

€U, emec Lm
< 1+1log,|X| + au, (166)

where [166) follows from[{136) and the hypothesis of the

proposition [(3B). Sincel/ + 1 is an integer andv > 1 is
arbitrary, it follows from [16B)-£(186) thads/ + 1 is upper-
bounded by[(39). O

Py (y) = 0 impliesQ(y) = 0. Now observe that
H(V|Q) — p~'D(Qo V||Px,y)

=1L Q) Y Vel log T

= = (zly)

1 Q(y)

p %Q@) log 5 °00) (167)
< 12N Q) 108 3 Py (aly) ™

P yeY TeEX

1 Qy)

- ;%Q(y) log 5705 (168)
1 Py (y) (Cuen PX\Y($|y)ﬁ)l+p 69
= %Q(y) log o6) (169)

1 L\
<ig Y Pr(y) <Z ny<x|y>w> (170)
yeY TeEX
= Hy(X1|%1), (171)

where [168) and(170) follow from Jensen’s Inequality. The
proof is completed by noting that equality is attained intbot
inequalities by the choice

Py (y) (X e PX|Y(x|y)ﬁ)l+p

Qy) = T ,
Y S P (S Pry () )

(172)

Py (zly) ™
Zm’ex PX\Y(‘T/W)W
(Note thatP(y) > 0 whenQ(y) > 0 so the RHS of[(173)

makes sense. How we defifi€x|y) whenQ(y) = 0 does not
matter.) O

V(zly) =

, Qy)>0. (173
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