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Encoding Tasks and Ŕenyi Entropy
Christoph Bunte and Amos Lapidoth

Abstract—A task is randomly drawn from a finite set of tasks
and is described using a fixed number of bits. All the tasks that
share its description must be performed. Upper and lower bounds
on the minimum ρ-th moment of the number of performed tasks
are derived. The case where a sequence of tasks is produced
by a source and n tasks are jointly described usingnR bits
is considered. If R is larger than the Rényi entropy rate of
the source of order 1/(1 + ρ) (provided it exists), then the ρ-
th moment of the ratio of performed tasks ton can be driven to
one asn tends to infinity. If R is smaller than the Ŕenyi entropy
rate, this moment tends to infinity. The results are generalized to
account for the presence of side-information. In this more general
setting, the key quantity is a conditional version of Ŕenyi entropy
that was introduced by Arimoto. For IID sources two additional
extensions are solved, one of a rate-distortion flavor and the
other where different tasks may have different nonnegativecosts.
Finally, a divergence that was identified by Sundaresan as a
mismatch penalty in the Massey-Arikan guessing problem is
shown to play a similar role here.

Index Terms—Divergence, Ŕenyi entropy, Rényi entropy rate,
mismatch, source coding, tasks.

I. I NTRODUCTION

A taskX that is drawn from a finite set of tasksX according
to some probability mass function (PMF)P is to be described
using a fixed number of bits. The least number of bits needed
for an unambiguous description is the base-2 logarithm of
the total number of tasks inX (rounded up to the nearest
integer). When fewer bits are available, the classical source
coding approach is to provide descriptions for the tasks with
the largest or with the “typical” probabilities only. This has
the obvious drawback that less common, or atypical, tasks will
never be completed. For example, ifX comprises all possible
household chores, then “wash the dishes” will almost certainly
occur more frequently than “take out the garbage”, but most
people would agree that the latter should not be neglected.

The classical approach is not so well-suited here because
it does not take into account the fact that not performing an
unlikely but critical task may have grave consequences, and
that performing a superfluous task often causes little or no
harm. A more natural approach in this context is to partition
the set of tasks into subsets. If a particular task needs to
be completed, then the subset containing it is described and
all the tasks in this subset are performed. This approach
has the disadvantage that tasks are sometimes completed
superfluously, but it guarantees that critical tasks, no matter
how atypical, are never neglected (provided that the numberof
subsets in the partition ofX does not exceedM , whenlogM
is the number of bits available to describe them). One way to
partition the set of tasks is to provide distinct descriptions for
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the typical tasks and to group together the atypical ones. We
will see, however, that this may not always be optimal.

If we assume for simplicity that all tasks require an equal
amount of effort, then it seems reasonable to choose the
subsets so as to minimize the expected number of performed
tasks. Ideally, this expectation is close to one. More generally,
we look at theρ-th moment of the number of performed tasks,
whereρ may be any positive number. Phrased in mathematical
terms, we consider encoders of the form

f : X → {1, . . . ,M}, (1)

whereM is a given positive integer. Every such encoder gives
rise to a partition ofX into M disjoint subsets

f−1(m) =
{
x ∈ X : f(x) = m

}
, m ∈ {1, . . . ,M}. (2)

Here f(x) is the description of the taskx, and the set
f−1(f(x)) comprises all the tasks sharing the same description
asx, i.e., the set of tasks that are performed whenx is required.

We seek anf that minimizes theρ-th moment of the
cardinality off−1(f(X)), i.e.,

E
[
|f−1(f(X))|ρ

]
=

∑

x∈X

P (x)|f−1(f(x))|ρ. (3)

This minimum is at least 1 becauseX ∈ f−1(f(X)); it is
nonincreasing inM (because fewer tasks share the same de-
scription whenM grows); and it is equal to one forM ≥ |X |
(because thenX can be partitioned into singletons). Our first
result is a pair of lower and upper bounds on this minimum.
The bounds are expressed in terms of theRényi entropy ofX
of order 1/(1 + ρ)

H 1
1+ρ

(X) =
1 + ρ

ρ
log

∑

x∈X

P (x)
1

1+ρ . (4)

Throughoutlog(·) stands forlog2(·), the logarithm to base2.
For typographic reasons we henceforth use the notation

ρ̃ =
1

1 + ρ
, ρ > 0. (5)

Theorem I.1. Let X be a chance variable taking value in a
finite setX , and letρ > 0.

1) For all positive integersM and every f : X →
{1, . . . ,M},

E
[
|f−1(f(X))|ρ

]
≥ 2ρ(Hρ̃(X)−logM). (6)

2) For all integersM > log|X | + 2 there existsf : X →
{1, . . . ,M} such that

E
[
|f−1(f(X))|ρ

]
< 1 + 2ρ(Hρ̃(X)−log M̃), (7)

whereM̃ = (M − log|X | − 2)/4.
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A proof is provided in Section III. Theorem I.1 is partic-
ularly useful when applied to the case where a sequence of
tasks is produced by a source{Xi}∞i=1 with alphabetX and
the first n tasksXn = (X1, . . . , Xn) are jointly described
usingnR bits (the numberR is the rate of the description in
bits per task and can be any nonnegative number):

Theorem I.2. Let{Xi}∞i=1 be a source with finite alphabetX ,
and letρ > 0.

1) If R > lim supn→∞ Hρ̃(X
n)/n, then there exist en-

codersfn : Xn → {1, . . . , 2nR} such that1

lim
n→∞

E
[
|f−1

n (fn(X
n))|ρ

]
= 1. (8)

2) If R < lim infn→∞ Hρ̃(X
n)/n, then for any choice of

encodersfn : Xn → {1, . . . , 2nR},

lim
n→∞

E
[
|f−1

n (fn(X
n))|ρ

]
= ∞. (9)

Proof: On account of Theorem I.1, for alln large enough
so that2nR > n log|X |+ 2,

2nρ
(

Hρ̃(Xn)

n −R
)
≤ min

fn : Xn→{1,...,2nR}
E
[
|f−1

n (fn(X
n))|ρ

]

< 1 + 2nρ
(

Hρ̃(Xn)

n −R+δn

)
, (10)

whereδn → 0 asn → ∞.
When it exists, the limit

Hα({Xi}
∞
i=1) , lim

n→∞

Hα(X
n)

n
(11)

is called theRényi entropy rate of{Xi}∞i=1 of orderα. It exists
for a large class of sources, including time-invariant Markov
sources [1], [2].

If we assume that everyn-tuple of tasks inf−1
n (fn(X

n)) is
performed (even if this means that some tasks are performed
multiple times) and thus that the total number of performed
tasks isn times |f−1

n (fn(X
n))|, then Theorem I.2 furnishes

the following operational characterization of the Rényi entropy
rate for all orders in(0, 1). For all rates above the Rényi
entropy rate of order1/(1 + ρ), theρ-th moment of the ratio
of performed tasks ton can be driven to one asn tends to
infinity. For all rates below it, this moment grows to infinity.
In fact, the proof of Theorem I.2 shows that for largen it
grows exponentially inn with exponent approaching

ρ
(
Hρ̃({Xi}

∞
i=1)−R

)
. (12)

More precisely, (10) shows that for all ratesR <
Hρ̃({Xi}∞i=1),

lim
n→∞

1

n
log min

fn : Xn→{1,...,2nR}
E
[
|f−1

n (fn(X
n))|ρ

]

= ρ
(
Hρ̃({Xi}

∞
i=1)−R

)
. (13)

Note that for IID sources the Rényi entropy rate reduces to
the Rényi entropy because in this caseHρ̃(X

n) = nHρ̃(X1).
Other operational characterizations of the Rényi entropyrate
were given in [1]–[6], and of the Rényi entropy in [7]–[10].

1Throughout2nR stands for⌊2nR⌋.

The connection between the problem of encoding tasks and
the Massey-Arikan guessing problem [10], [11] is explored
in [12].

The operational characterization of Rényi entropy provided
by Theorem I.2 (applied to IID sources) reveals many of
the known properties of Rényi entropy (see, e.g., [9], [13]).
For example, it shows thatHρ̃(X) is nondecreasing inρ
becauseξρ is nondecreasing inρ when ξ ≥ 1. It also shows
that

H(X) ≤ Hρ̃(X) ≤ log|supp(P )|, (14)

whereH(X) denotes the Shannon entropy and supp(P ) =
{x : P (x) > 0} denotes the support ofP . Indeed, if
R < H(X), then, by the converse part of the classical source-
coding theorem [14, Theorem 3.1.1]

lim
n→∞

Pr
(
|f−1

n (fn(X
n))| ≥ 2

)
= 1, (15)

which implies that theρ-th moment of|f−1
n (fn(X

n))| cannot
tend to one asn tends to infinity. And ifR ≥ log|supp(P )|,
then everyn-tuple of tasks that occurs with positive probability
can be given a distinct description so for everyn

min
fn : Xn→{1,...,2nR}

E
[
|f−1

n (fn(X
n))|ρ

]
= 1. (16)

The limit

lim
ρ→∞

Hρ̃(X) = log|supp(P )| (17)

follows from our operational characterization of Rényi entropy
as follows. If R < log|supp(P )|, then, by the pigeonhole-
principle, for any choice offn : Xn → {1, . . . , 2nR} there
must exist somexn

0 ∈ supp(Pn) for which

|f−1
n (fn(x

n
0 ))| ≥ 2n(log|supp(P )|−R). (18)

SincePn(xn
0 ) ≥ pnmin, wherepmin denotes the smallest nonzero

probability of any source symbol, we have

E
[
|f−1

n (fn(X
n))|ρ

]
≥ Pn(xn

0 )|f
−1
n (fn(x

n
0 ))|

ρ (19)

≥ 2nρ(log|supp(P )|−R+ρ−1 log pmin). (20)

For all sufficiently largeρ the RHS tends to infinity asn →
∞, which proves thatlimρ→∞ Hρ̃(X) ≥ log|supp(P )|; the
reverse inequality follows from (14).

As to the limit when ρ approaches zero, note that if
R > H(X), then the probability that the cardinality of
f−1
n (fn(X

n)) exceeds one can be driven to zero expo-
nentially fast in n [15, Theorem 2.15], say ase−nζ for
someζ > 0 and sufficiently largen. And since|f−1

n (fn(X
n))|

is trivially upper-bounded by2n log|X |, the ρ-th moment of
|f−1

n (fn(X
n))| will tend to one if ρ < ζ/ log|X |. Thus,

limρ→0 Hρ̃(X) ≤ H(X) and, in view of (14),

lim
ρ→0

Hρ̃(X) = H(X). (21)

The rest of this paper is organized as follows. In Section II
we introduce some notation. In Section III we prove Theo-
rem I.1. In Section IV we consider a mismatched version of
the direct part of Theorem I.1 (i.e., the upper bound), wheref
is designed based on the lawQ instead ofP . We show that the
penalty incurred by this mismatch can be expressed in terms of
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a divergence measure betweenP andQ that was proposed by
Sundaresan [16]. In Section V we state and prove a universal
version of the direct part of Theorem I.2 for IID sources. In
Section VI we generalize Theorems I.1 and I.2 to account for
the presence of side-information, where the key quantity isa
conditional version of Rényi entropy. We also generalize the
result from Section V. In Section VII we study a rate-distortion
version of the problem for IID sources, where the key quantity
is “Rényi’s analog to the rate-distortion function” introduced
by Arikan and Merhav [17]. In Section VIII we study the
problem of encoding IID tasks when different tasks may have
different costs.

II. N OTATION AND PRELIMINARIES

We denote byN the set of positive integers. The cardinality
of a finite setX is denoted by|X |. We use the notation
xn = (x1, . . . , xn) for n-tuples. If P is a PMF onX , then
Pn denotes the product PMF onXn

Pn(xn) =

n∏

i=1

P (xi), xn ∈ Xn. (22)

The support ofP is denoted by supp(P ), so

supp(P ) =
{
x ∈ X : P (x) > 0

}
. (23)

If A ⊆ X , then we writeP (A) in lieu of
∑

x∈A P (x). If
W (·|x) is a PMF on a finite setY for everyx ∈ X (i.e., a
channel fromX to Y), thenP ◦W denotes the induced joint
PMF onX × Y

(P ◦W )(x, y) = P (x)W (y|x), (x, y) ∈ X × Y, (24)

andPW denotes the induced marginal PMF onY

(PW )(y) =
∑

x∈X

P (x)W (y|x), y ∈ Y. (25)

The collection of all PMFs onX is denoted byP(X ). The
collection of all channels fromX to Y is denoted byP(Y|X ).

For information-theoretic quantities (entropy, relativeen-
tropy, mutual information, etc.) we adopt the notation in [15].
We need basic results from the Method of Types as presented
in [15, Chapter 2]. The set of types of sequences inXn (i.e.,
the set of rational PMFs with denominatorn) is denoted by
Pn(X ). The set of allxn ∈ Xn of typeQ ∈ Pn(X ) (i.e., the
type class ofQ) is denoted byT (n)

Q or byTQ if n is clear from
the context. TheV -shell of a sequencexn ∈ Xn is denoted
by TV (x

n).
The ceiling of a real numberξ (i.e., the smallest integer

no smaller thanξ) is denoted by⌈ξ⌉. We frequently use the
inequality

⌈ξ⌉ρ < 1 + 2ρξρ, ξ ≥ 0, (26)

which is easily checked by considering separately the
cases0 ≤ ξ ≤ 1 andξ > 1. As mentioned in the introduction,
log(·) denotes the base-2 logarithm, andlogα(·) denotes the
base-α logarithm for generalα > 1.

III. PROOF OFTHEOREM I.1

A. The Lower Bound (Converse)

The proof of the lower bound (6) in Theorem I.1 is inspired
by the proof of [10, Theorem 1]. It hinges on the following
simple observation.

Proposition III.1. If L1, . . . ,LM is a partition of a finite
setX into M nonempty subsets, i.e.,

M⋃

m=1

Lm = X and (Lm ∩ Lm′ = ∅ iff m′ 6= m), (27)

and L(x) is the cardinality of the subset containingx, i.e.,
L(x) = |Lm| if x ∈ Lm, then

∑

x∈X

1

L(x)
= M. (28)

Proof:

∑

x∈X

1

L(x)
=

M∑

m=1

∑

x∈Lm

1

L(x)
(29)

=

M∑

m=1

∑

x∈Lm

1

|Lm|
(30)

= M. (31)

To prove the lower bound in Theorem I.1, fix anyf : X →
{1, . . . ,M}, and let N denote the number of nonempty
subsets in the partitionf−1(1), . . . , f−1(M). Note that for
this partition the cardinality of the subset containingx is

L(x) = |f−1(f(x))|, x ∈ X . (32)

Recall Hölder’s Inequality: Ifa and b are functions fromX
into the nonnegative reals, andp andq are real numbers larger
than one satisfying1/p+ 1/q = 1, then

∑

x∈X

a(x)b(x) ≤

(∑

x∈X

a(x)p
)1/p(∑

x∈X

b(x)q
)1/q

. (33)

Rearranging (33) gives

∑

x∈X

a(x)p ≥

(∑

x∈X

b(x)q
)−p/q(∑

x∈X

a(x)b(x)

)p

. (34)

Substituting p = 1 + ρ, q = (1 + ρ)/ρ, a(x) =

P (x)
1

1+ρ |f−1(f(x))|
ρ

1+ρ and b(x) = |f−1(f(x))|−
ρ

1+ρ

in (34), we obtain
∑

x∈X

P (x)|f−1(f(x))|ρ

≥

(∑

x∈X

1

|f−1(f(x))|

)−ρ(∑

x∈X

P (x)
1

1+ρ

)1+ρ

(35)

= 2ρ(Hρ̃(X)−logN) (36)

≥ 2ρ(Hρ̃(X)−logM), (37)

where (36) follows from (4), (32), and Proposition III.1; and
where (37) follows becauseN ≤ M .
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B. The Upper Bound (Direct Part)

The key to the upper bound in Theorem I.1 is the following
reversed version of Proposition III.1; a proof is provided in
Appendix A.

Proposition III.2. If X is a finite set,λ : X → N ∪ {+∞}
and ∑

x∈X

1

λ(x)
= µ (38)

(with the convention1/∞ = 0), then there exists a partition
of X into at most

min
α>1

⌊αµ+ logα|X |+ 2⌋ (39)

subsets such that

L(x) ≤ min{λ(x), |X |}, for all x ∈ X , (40)

whereL(x) is the cardinality of the subset containingx.

(Proposition III.1 cannot be fully reversed in the sense
that (39) cannot be replaced withµ. Indeed, considerX =
{a, b, c, d} with λ(a) = 1, λ(b) = 2, andλ(c) = λ(d) = 4. In
this example,µ equals 2, but we need 3 subsets to satisfy the
cardinality constraints.)

Since Hölder’s Inequality (33) holds with equality if, and
only if, a(x)p is proportional tob(x)q, it follows that the lower
bound in Theorem I.1 holds with equality if, and only if,
|f−1(f(x))| is proportional toP (x)−1/(1+ρ). We derive (7)
by constructing a partition that approximately satisfies this
relationship. To this end, we use Proposition III.2 withα = 2
in (39) and

λ(x) =

{⌈
β P (x)−

1
1+ρ

⌉
if P (x) > 0,

+∞ if P (x) = 0,
(41)

where we chooseβ just large enough to guarantee the ex-
istence of a partition ofX into at mostM subsets satisfy-
ing (40). ForM > log|X | + 2 this is accomplished by the
choice

β =
2
∑

x∈X P (x)
1

1+ρ

M − log|X | − 2
. (42)

Indeed, with this choice

µ =
∑

x∈X

1

λ(x)
(43)

≤
∑

x∈X

P (x)
1

1+ρ

β
(44)

=
M − log|X | − 2

2
, (45)

and hence

2µ+ log|X |+ 2 ≤ M. (46)

Let then the partitionL1, . . . ,LN with N ≤ M be as
promised by Proposition III.2. Construct an encoderf : X →

{1, . . . ,M} by settingf(x) = m if x ∈ Lm. For this encoder,
∑

x∈X

P (x)|f−1(f(x))|ρ

=
∑

x:P (x)>0

P (x)L(x)ρ (47)

≤
∑

x:P (x)>0

P (x)λ(x)ρ (48)

=
∑

x:P (x)>0

P (x)
⌈
β P (x)−

1
1+ρ

⌉ρ
(49)

< 1 + (2β)ρ
∑

x:P (x)>0

P (x)
1

1+ρ (50)

= 1 + 2ρ(Hρ̃(X)−log M̃), (51)

where (50) follows from (26), and wherẽM is as in Theo-
rem I.1.

IV. M ISMATCH

The key to the upper bound in Theorem I.1 was to use
Proposition III.2 withλ as in (41)–(42) to obtain a partition
of X for which the cardinality of the subset containingx is
approximately proportional toP (x)−1/(1+ρ). Evidently, this
construction requires knowledge of the distributionP of X .
(But see Section V for a universal version of the direct part of
Theorem I.2 for IID sources that does not require knowledge
of the source’s distribution.)

In this section, we study the penalty whenP is replaced
with Q in (41) and (42). Since it is then still true that

µ ≤
M − log|X | − 2

2
, (52)

Proposition III.2 guarantees the existence of a partition of X
into at most M subsets satisfying (40). Constructing an
encoderf from this partition as in Section III-B and following
steps similar to (47)–(51) yields

∑

x∈X

P (x)|f−1(f(x))|ρ

< 1 + 2ρ(Hρ̃(X)+∆ρ̃(P ||Q)−log M̃), (53)

whereM̃ is as in Theorem I.1, and where

∆α(P ||Q)

, log

∑
x∈X Q(x)α

(∑
x∈X P (x)α

) 1
1−α

(∑

x∈X

P (x)

Q(x)1−α

) α
1−α

. (54)

The parameterα can be any positive number not equal to
one. We use the convention0/0 = 0 anda/0 = +∞ if a > 0.
Thus,∆ρ̃(P ||Q) < ∞ only if the support ofP is contained
in the support ofQ.

The penalty in the exponent on the RHS of (53) when
compared to the upper bound in Theorem I.1 is thus given
by ∆ρ̃(P ||Q). To reinforce this, note further that

∆α(P
n||Qn) = n∆α(P ||Q). (55)
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Consequently, if the source{Xi}∞i=1 is IID P and we construct
fn : Xn → {1, . . . , 2nR} based onQn instead ofPn, we
obtain the bound

E
[
|f−1

n (fn(X
n))|ρ

]

< 1 + 2nρ(Hρ̃(X1)+∆ρ̃(P ||Q)−R+δn), (56)

where δn → 0 as n → ∞. The RHS of (56) tends to one
provided thatR > Hρ̃(X1) + ∆ρ̃(P ||Q). Thus, in the IID
case∆ρ̃(P ||Q) is the rate penalty incurred by the mismatch
betweenP andQ.

The family of divergence measures∆α(P ||Q) was first
identified by Sundaresan [16] who showed that it plays a
similar role in the Massey-Arikan guessing problem [10], [11].
We conclude this section with some properties of∆α(P ||Q).
Properties 1–3 (see below) were given in [16]; we repeat
them here for completeness. Note that Rényi’s divergence (see,
e.g., [9])

Dα(P ||Q) =
1

α− 1
log

∑

x∈X

P (x)αQ(x)1−α, (57)

satisfies Properties 1 and 3 but none of the others in general.

Proposition IV.1. The functional∆α(P ||Q) has the following
properties.

1) ∆α(P ||Q) ≥ 0 with equality if, and only if,P = Q.
2) ∆α(P ||Q) = ∞ if, and only if, supp(P ) 6⊆ supp(Q) or

(α > 1 and supp(P ) ∩ supp(Q) = ∅.)
3) limα→1 ∆α(P ||Q) = D(P ||Q).
4) limα→0 ∆α(P ||Q) = log |supp(Q)|

|supp(P )| if supp(P ) ⊆
supp(Q).

5) limα→∞ ∆α(P ||Q) = log maxx∈X P (x)
1

|Q|

∑
x∈Q P (x)

, whereQ =
{
x ∈ X : Q(x) = maxx′∈X Q(x′)

}
.

Proof: Property 2 follows by inspection of (54). Proper-
ties 3–5 follow by simple calculus. As to Property 1, consider
first the case where0 < α < 1. In view of Property 2, we
may assume that supp(P ) ⊆ supp(Q). Hölder’s Inequality (33)
with p = 1/α andq = 1/(1− α) gives

∑

x∈X

P (x)α

=
∑

x∈supp(P )

P (x)α

Q(x)α(1−α)
Q(x)α(1−α) (58)

≤

( ∑

x∈supp(P )

P (x)

Q(x)1−α

)α( ∑

x∈supp(P )

Q(x)α
)1−α

(59)

≤

(∑

x∈X

P (x)

Q(x)1−α

)α(∑

x∈X

Q(x)α
)1−α

. (60)

Dividing by
∑

x P (x)α and taking(1 − α)-th roots shows
that ∆α(P ||Q) ≥ 0. The condition for equality in Hölder’s
Inequality implies that equality holds if, and only if,P =
Q. Consider next the case whereα > 1. We may assume
supp(P )∩supp(Q) 6= ∅ (Property 2). Hölder’s Inequality with

p = α andq = α/(α− 1) gives
∑

x∈X

P (x)

Q(x)1−α
=

∑

x∈X

P (x)Q(x)α−1 (61)

≤

(∑

x∈X

P (x)α
) 1

α
(∑

x∈X

Q(x)α
)α−1

α

. (62)

Dividing by
∑

x P (x)/Q(x)1−α and raising to the power of
α/(α − 1) shows that∆α(P ||Q) ≥ 0. Equality holds if, and
only if, P = Q.

V. UNIVERSAL ENCODERS FORIID SOURCES

In Section I the direct part of Theorem I.2 is proved using
the upper bound in Theorem I.1. It is pointed out in Section IV
that the construction of the encoder in the proof of this upper
bound requires knowledge of the distribution ofX . As the
next result shows, however, for IID sources we do not need to
know the distribution of the source to construct good encoders.

Theorem V.1. Let X be a finite set, and letρ > 0. For every
rate R > 0 there exist encodersfn : X → {1, . . . , 2nR} such
that for every IID source{Xi}∞i=1 with alphabetX ,

E
[
|f−1

n (fn(X
n))|ρ

]
< 1 + 2−nρ(R−Hρ̃(X1)−δn), (63)

where

δn =
1 + (1 + ρ−1)|X | log(n+ 1)

n
. (64)

In particular,

lim
n→∞

E
[
|f−1

n (fn(X
n))|ρ

]
= 1, (65)

wheneverHρ̃(X1) < R.

Proof: We first partition Xn into the different type
classesTQ, of which there are less than(n + 1)|X |. We
then partition eachTQ into 2n(R−δ′n) subsets of cardinality at
most⌈|TQ|2−n(R−δ′n)⌉ whereδ′n = n−1|X | log(n+ 1). Since
|TQ| ≤ 2nH(Q), eachxn ∈ TQ thus ends up in a subset of
cardinality at most

⌈
2n(H(Q)−R+δ′n)

⌉
. (66)

Note that the total number of subsets in the partition does
not exceed2nR. We constructfn : X → {1, . . . , 2nR} by
enumerating the subsets in the partition with the numbers in
{1, . . . , 2nR} and by mapping tom ∈ {1, . . . , 2nR} the xn’s
that comprise them-th subset. Suppose now that{Xi}∞i=1 is
IID P and observe that

E
[
|f−1

n (fn(X
n))|ρ

]

=
∑

xn∈Xn

Pn(xn)|f−1
n (fn(X

n))|ρ (67)

≤
∑

Q∈Pn(X )

∑

xn∈TQ

Pn(xn)
⌈
2n(H(Q)−R+δ′n)

⌉ρ
(68)

< 1 + 2ρ
∑

Q∈Pn(X )

2nρ(H(Q)−R+δ′n)
∑

xn∈TQ

Pn(xn) (69)

≤ 1 + 2ρ
∑

Q∈Pn(X )

2−nρ(R−H(Q)+ρ−1D(Q||P )−δ′n) (70)

≤ 1 + 2−nρ(R−Hρ̃(X1)−δn). (71)
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Here (68) follows from the construction offn; (69) follows
from (26); (70) follows because the probability of the source
emitting a sequence of typeQ is at most2−nD(Q||P ); and (71)
follows from the identity (see [10])

Hρ̃(X1) = max
Q∈P(X )

H(Q)− ρ−1D(Q||P ), (72)

and the fact that|Pn(X )| < (n+ 1)|X |.

VI. TASKS WITH SIDE-INFORMATION

In this section we generalize Theorems I.1, I.2, and V.1 to
account for side-information: A taskX and side-information
Y are drawn according to a joint PMFPX,Y onX ×Y, where
both X and Y are finite, and where the side-information is
available to both the task describer (encoder) and the tasks
performer. The encoder is now of the form

f : X × Y → {1, . . . ,M}. (73)

If the realization of(X,Y ) is (x, y) and f(x, y) = m, then
all the tasks in the set

f−1(m, y) , {x ∈ X : f(x, y) = m} (74)

are performed. As in Section I, we seek to minimize for a
givenM the ρ-th moment of the number of performed tasks

E
[
|f−1(f(X,Y ), Y )|ρ

]

=
∑

x∈X

∑

y∈Y

PX,Y (x, y)|f
−1(f(x, y), y)|ρ. (75)

The key quantity here is a conditional version of Rényi entropy
(proposed by Arimoto [18]):

Hρ̃(X |Y ) =
1

ρ
log

∑

y∈Y

(∑

x∈X

PX,Y (x, y)
1

1+ρ

)1+ρ

. (76)

Theorem I.1 can be generalized as follows.

Theorem VI.1. Let (X,Y ) be a pair of chance variables
taking value in the finite setX × Y, and letρ > 0.

1) For all positive integersM and everyf : X × Y →
{1, . . . ,M},

E
[
|f−1(f(X,Y ), Y )|ρ

]
≥ 2ρ(Hρ̃(X|Y )−logM). (77)

2) For all integersM > log|X |+2 there existsf : X×Y →
{1, . . . ,M} such that

E
[
|f−1(f(X,Y ), Y )|ρ

]
< 1 + 2ρ(Hρ̃(X|Y )−log M̃),

(78)
whereM̃ = (M − log|X | − 2)/4.

As a corollary we obtain a generalization of Theorem I.2.

Theorem VI.2. Let {(Xi, Yi)}∞i=1 be any source with finite
alphabetX × Y, and letρ > 0.

1) If R > lim supn→∞ Hρ̃(X
n|Y n)/n, then there exist

fn : Xn × Yn → {1, . . . , 2nR} such that

lim
n→∞

E
[
|f−1

n (fn(X
n, Y n), Y n)|ρ

]
= 1. (79)

2) If R < lim infn→∞ Hρ̃(X
n|Y n)/n, then for any choice

of fn : Xn × Yn → {1, . . . , 2nR}

lim
n→∞

E
[
|f−1

n (fn(X
n, Y n), Y n)|ρ

]
= ∞. (80)

To prove (77) fixM and f : X × Y → {1, . . . ,M}. Note
that for everyy ∈ Y the setsf−1(1, y), . . . , f−1(M, y) form
a partition ofX , and the cardinality of the subset containingx
is |f−1(f(x, y), y)|. Following steps similar to (35)–(37), we
obtain

∑

x∈X

PX|Y (x|y)|f
−1(f(x, y), y)|ρ

≥ 2−ρ logM

(∑

x∈X

PX|Y (x|y)
1

1+ρ

)1+ρ

, y ∈ Y. (81)

Multiplying both sides byPY (y) and summing over ally ∈ Y
establishes (77).

To prove (78) fix somey ∈ Y and replaceP (x) with
PX|Y (x|y) everywhere in the proof of the upper bound in
Theorem I.1 (see Section III-B) to obtain an encoderfy : X →
{1, . . . ,M} satisfying

∑

x∈X

PX|Y (x|y)|f
−1
y (fy(x))|

ρ

< 1 + 2−ρ log M̃

(∑

x∈X

PX|Y (x|y)
1

1+ρ

)1+ρ

. (82)

Setting f(x, y) = fy(x), multiplying both sides of (82)
by PY (y), and summing over ally ∈ Y establishes (78).

One may also generalize Theorem V.1:

Theorem VI.3. Let X and Y be finite sets, and letρ > 0.
For every rateR > 0 there exist encodersfn : X × Y →
{1, . . . , 2nR} such that for every IID source{(Xi, Yi)}∞i=1

with alphabetX × Y,

E
[
|f−1

n (fn(X
n, Y n), Y n)|ρ

]

< 1 + 2−nρ(R−Hρ̃(X1|Y1)−δn), (83)

where

δn =
1 + (1 + ρ−1)|X ||Y| log(n+ 1) + ρ−1|X | log(n+ 1)

n
.

(84)
In particular,

lim
n→∞

E
[
|f−1

n (fn(X
n, Y n), Y n)|ρ

]
= 1, (85)

wheneverHρ̃(X1|Y1) < R.

Proof: We fix an arbitraryyn ∈ Yn and partitionXn

into the differentV -shellsTV (y
n) (see [15, Chapter 2]) of

which there are less than(n + 1)|X ||Y|. We then partition
each V -shell into 2n(R−δ′n) subsets of cardinality at most
⌈|TV (y

n)|2−n(R−δ′n)⌉ where δ′n = n−1|X ||Y| log(n + 1).
Since|TV (y

n)| ≤ 2nH(V |Pyn ), wherePyn denotes the type of
yn, eachxn ∈ TV (y

n) will end up in a subset of cardinality
at most ⌈

2n(H(V |Pyn )−R+δ′n)
⌉
. (86)

From this partition we constructfn(·, yn) : X → {1, . . . , 2nR}
by enumerating the subsets with the numbers1 through2nR
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and by mapping to eachm ∈ {1, . . . , 2nR} the xn’s that
comprise them-th subset. Carrying out this construction for
everyyn ∈ Yn yields an encoderf : X ×Y → {1, . . . , 2nR}.
Suppose now that{(Xi, Yi)}∞i=1 is IID PX,Y and observe that
for everyyn ∈ Yn with P

(n)
Y (yn) > 0,

∑

xn∈Xn

P
(n)
X|Y (x

n|yn)
∣∣f−1

n

(
fn(x

n, yn), yn
)∣∣ρ

≤
∑

V :TV (yn) 6=∅

∑

xn∈TV (yn)

P
(n)
X|Y (x

n|yn)
⌈
2n(H(V |Pyn )−R+δ′n)⌉ρ

(87)

< 1 + 2ρ
∑

V :TV (yn) 6=∅

2nρ(H(V |Pyn )−R+δ′n)
∑

xn∈TV (yn)

P
(n)
X|Y (x

n|yn)

(88)

< 1 + 2ρ
∑

V :TV (yn) 6=∅

2−nD(V ||PX|Y |Pyn )2nρ(H(V |Pyn )−R+δ′n).

(89)

Here (87) follows from the construction offn; (88) follows
from (26); (89) follows because conditional onY n = yn

the probability thatXn is in the V -shell of yn is at most
2−nD(V ||PX|Y |Pyn ). Noting that whetherTV (y

n) is nonempty
depends onyn only via its type, it follows that the sum in (89)
depends onyn only viaPyn . Noting further that the probability
that Y n is of type Q ∈ Pn(Y) is at most2−nD(Q||PY ) it
follows from (87)–(89) upon taking expectation with respect
to Y n that

E
[
|f−1

n (fn(X
n, Y n), Y n)|ρ

]
< 1 + 2ρ

∑

Q∈Pn(Y)

2−nD(Q||PY )

×
∑

V

2−nD(V ||PX|Y |Pyn )2nρ(H(V |Pyn )−R+δ′n), (90)

where for a givenQ ∈ Pn(Y) the inner sum extends over
all V such thatTV (y

n) is not empty for some (and hence
all) yn of typeQ. In Appendix B it is shown that

Hρ̃(X1|Y1) = max
Q∈P(Y)

V ∈P(X|Y)

H(V |Q)− ρ−1D(Q ◦ V ||PX,Y ).

(91)
Using (91), the identity

D(Q ◦ V ||PX,Y ) = D(Q||PY ) +D(V ||PX|Y |Q), (92)

and the fact that the number of types of sequences inYn is
less than(n + 1)|Y| and the number of conditional typesV
is less than(n + 1)|X ||Y|, it follows that the RHS of (90) is
upper-bounded by the RHS of (83).

VII. C ODING FOR TASKS WITH A FIDELITY CRITERION

In this section we study a rate-distortion version of the
problem described in Section I. We only treat IID sources
and single-letter distortion functions. Suppose that the source
{Xi}∞i=1 generates tasks from a finite set of tasksX IID
according toP . Let X̂ be some other finite set of tasks,
and letd : X × X̂ → [0,∞) be a function that measures the
dissimilarity, or distortion, between any pair of tasks inX×X̂ .

The distortion functiond extends ton-tuples of tasks in the
usual way:

d(xn, x̂n) =
1

n

n∑

i=1

d(xi, x̂i), (xn, x̂n) ∈ Xn × X̂n. (93)

We assume that for everyx ∈ X there is somêx ∈ X̂ for
which d(x, x̂) = 0, i.e.,

min
x̂∈X̂

d(x, x̂) = 0, x ∈ X . (94)

We describe the firstn tasksXn usingnR bits with an encoder

f : Xn → {1, . . . , 2nR}. (95)

Subsequently, the descriptionf(Xn) of Xn is decoded into a
subset ofX̂n by a decoder

ϕ : {1, . . . , 2nR} → 2X̂
n

, (96)

where2X̂
n

denotes the collection of all subsets of̂Xn. We
require that the subset produced by the decoder always contain
at least onen-tuple of tasks within distortionD of Xn, i.e.,
we require

min
x̂n∈ϕ(f(xn))

d(xn, x̂n) ≤ D, xn ∈ X . (97)

All n-tuples of tasks in the setϕ(f(Xn)) are performed. The
next theorem shows that the infimum of all ratesR for which
the ρ-th moment of the ratio of performed tasks ton can be
driven to one asn tends to infinity subject to the constraint (97)
is given by

Rρ(P,D) , max
Q∈P(X )

R(Q,D)− ρ−1D(Q||P ), (98)

whereR(Q,D) is the classical rate-distortion function (see,
e.g., [15, Chapter 7]) evaluated at the distortion levelD for an
IID Q source and distortion functiond. The functionRρ(P,D)
(multiplied byρ) has previously appeared in [17] in the context
of guessing.

Theorem VII.1. Let {Xi}∞i=1 be an IIDP source with finite
alphabetX , and letD ≥ 0 and ρ > 0.

1) If R > Rρ(P,D), then there exist(fn, ϕn) as in (95)
and (96) satisfying(97) such that

lim
n→∞

E
[
|ϕn(fn(X

n))|ρ
]
= 1. (99)

2) If R < Rρ(P,D), then for any(fn, ϕn) as in (95)
and (96) satisfying(97),

lim
n→∞

E
[
|ϕn(fn(X

n))|ρ
]
= ∞. (100)

It follows immediately from Theorem VII.1 thatRρ(P,D)
is nonnegative and nondecreasing inρ > 0. Some other
properties are (see [17] for proofs):

1) Rρ(P,D) is nonincreasing, continuous and convex in
D ≥ 0.

2) Rρ(P, 0) = Hρ̃(P ).
3) limρ→0 Rρ(P,D) = R(P,D).
4) limρ→∞ Rρ(P,D) = maxQ∈P(X )R(Q,D).
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Fig. 1. Rρ(P,D) in bits for an IID Bernoulli-(1/4) source and Hamming
distortion

The fact thatRρ(P,D) is a continuous function ofD (Prop-
erty 1) allows us to strengthen the converse statement in The-
orem VII.1 as follows. Suppose that for every positive integer
n the encoder/decoder pair(fn, ϕn) is as in (95) and (96)
with R < Rρ(P,D) and satisfies (97) for someDn such that
lim supn→∞ Dn ≤ D. Then (100) holds. Indeed, continuity
implies thatR < Rρ(P,D+ ε) for a sufficiently smallε > 0,
and lim supn→∞ Dn ≤ D implies thatDn ≤ D + ε for all
sufficiently largen. The claim thus follows from the converse
part of Theorem VII.1 withD replaced byD + ε.

Considering Property 2, Theorem I.2 particularized to IID
sources can be recovered from Theorem VII.1 by takingX̂ =
X and the Hamming distortion function

d(x, x̂) =

{
0 if x = x̂,

1 otherwise.
(101)

It was noted in [17] thatRρ(P,D) can be expressed in
closed form for binary sources and Hamming distortion:

Proposition VII.2. If X = X̂ = {0, 1}, d is the Hamming
distortion function(101), andP (0) = 1− P (1) = p, then

Rρ(P,D) =

{
Hρ̃(p)− h(D) if 0 ≤ D < h−1

(
Hρ̃(p)

)
,

0 if D ≥ h−1
(
Hρ̃(p)

)
,

whereh−1(·) denotes the inverse of the binary entropy func-
tion h(·) on the interval[0, 1/2] and, with slight abuse of
notation,Hρ̃(p) = Hρ̃(P ).

For a proof of Proposition VII.2 see [17, Thereom 3] and
subsequent remarks. A plot ofRρ(D) for p = 1/4 and
different values ofρ is shown in Figure 1.

We now prove the direct part of Theorem VII.1. FixD ≥ 0
and select an arbitraryδ > 0. According to the Type Covering
Lemma [15, Lemma 9.1], there is a positive integern(δ) such
that for all n ≥ n(δ) and every typeQ ∈ Pn(X ) we can
find a setB(n)

Q ⊂ X̂n of cardinality at most2n(R(Q,D)+δ) that

coversT (n)
Q in the sense that for everyxn ∈ T

(n)
Q there is

at least onêxn ∈ B
(n)
Q with d(xn, x̂n) ≤ D. We henceforth

assume thatn ≥ n(δ). For each typeQ ∈ Pn(X ) we partition
B

(n)
Q into 2n(R−δn) subsets of cardinality at most

⌈
2n(R(Q,D)+δ−R+δn)

⌉
, (102)

where δn = n−1|X | log(n + 1). Since the total number of
types is less than(n+1)|X |, we can enumerate all the subsets
of all the differentB(n)

Q ’s with the numbers1, . . . , 2nR. Let

ϕn : {1, . . . , 2nR} → 2X̂
n

be the mapping that maps the index
to the corresponding subset. (If there are less than2nR subsets
in our construction, then we map the remaining indices to, say,
the empty set.) We then constructfn : Xn → {1, . . . , 2nR} by
mapping eachxn ∈ Xn of typeQ to an index of a subset of
B

(n)
Q that contains an̂xn with d(xn, x̂n) ≤ D. Note that the

encoder/decoder pair thus constructed satisfies (97), and

E
[
|ϕn(fn(X

n))|ρ
]

=
∑

xn∈Xn

Pn(xn)|ϕn(fn(x
n))|ρ (103)

≤
∑

Q∈Pn(X )

∑

xn∈T
(n)
Q

Pn(xn)
⌈
2n(R(Q,D)+δ−R+δn)

⌉ρ
(104)

< 1 + 2ρ
∑

Q∈Pn(X )

2nρ(R(Q,D)+δ−R+δn)
∑

xn∈T
(n)
Q

Pn(xn) (105)

< 1 + 2ρ
∑

Q∈Pn(X )

2−nρ(R+ρ−1D(Q||P )−R(Q,D)−δ−δn) (106)

≤ 1 + 2−nρ(R−Rρ(P,D)−δ−δ′n), (107)

where

δ′n =
1 + (1 + ρ−1)|X | log(n+ 1)

n
. (108)

Here (104) follows from the construction offn andϕn; (105)
follows from (26); (106) follows because the probability of
an IID P source emitting a sequence of typeQ is at most
2−nD(Q||P ); and (107) follows from the definition ofRρ(P,D)
in (98) and the fact that|Pn(X )| < (n+ 1)|X |. The proof of
the direct part is completed by noting that ifR > Rρ(P,D),
then for sufficiently smallδ > 0 the RHS of (107) tends to
one asn tends to infinity.

To prove the converse, we fix for eachn ∈ N an en-
coder/decoder pair(fn, ϕn) as in (95) and (96) satisfying (97).
We may assume that

ϕn(m) ∩ ϕn(m
′) = ∅ wheneverm 6= m′. (109)

Indeed, ifm 6= m′ and x̂n ∈ ϕn(m) ∩ ϕn(m
′), then we can

deletex̂n from the larger of the two subsets, sayϕn(m), and
map to m′ all the source sequencesxn that were mapped
to m by fn and satisfyd(xn, x̂n) ≤ D. This could only
reduce theρ-th moment of the number of performed tasks
while preserving the property (97).

Define the set

Zn =
2nR⋃

m=1

ϕn(m). (110)

The assumption (109) implies that the union on the RHS
of (110) is disjoint. Consequently, we may defineµn(x̂

n)
for every x̂n ∈ Zn as the unique element of{1, . . . , 2nR}
for which x̂n ∈ ϕn(µn(x̂

n)). Moreover, (97) guarantees the
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existence of a mappinggn : Xn → Zn (not necessarily unique)
such that, for allxn ∈ Xn,

gn(x
n) ∈ ϕn

(
fn(x

n)
)

and d
(
xn, gn(x

n)
)
≤ D. (111)

We also define the PMF onZn,

P̃n(x̂
n) = Pn

(
g−1
n (x̂n)

)
, x̂n ∈ Zn, (112)

where
g−1
n (x̂n) = {xn ∈ Xn : gn(x

n) = x̂n}. (113)

With these definitions ofµn, gn, andP̃n, we have
∑

xn∈Xn

Pn(xn)
∣∣ϕn

(
fn(x

n)
)∣∣ρ

=
∑

x̂n∈Zn

Pn
(
g−1
n (x̂n)

)∣∣ϕn

(
µn(x̂

n)
)∣∣ρ (114)

=
∑

x̂n∈Zn

P̃n(x̂
n)
∣∣ϕn

(
µn(x̂

n)
)∣∣ρ (115)

≥ 2ρ(Hρ̃(P̃n)−nR), (116)

where the inequality (116) follows from (6) (withZn, P̃n,
andµn taking the roles ofX , P andf ) by noting thatϕn =
µ−1
n . In view of (114)–(116) the converse is proved once we

show that
Hρ̃(P̃n) ≥ nRρ(P,D). (117)

To prove (117), note that on account of (72) we have for every
PMF Q on Zn

Hρ̃(P̃n) ≥ H(Q)− ρ−1D(Q||P̃n). (118)

The PMFP̃n can be written as

P̃n = PnWn, (119)

whereWn is the deterministic channel fromXn to X̂n induced
by gn:

Wn(x̂
n|xn) =

{
1 if x̂n = gn(x

n),

0 otherwise.
(120)

Let Q⋆ be a PMF onX that achieves the maximum in the
definition ofRρ(P,D), i.e.,

Rρ(P,D) = R(Q⋆, D)− ρ−1D(Q⋆||P ). (121)

SubstitutingQn
⋆Wn for Q in (118) and using (119),

Hρ̃(P̃n) ≥ H(Qn
⋆Wn)− ρ−1D(Qn

⋆Wn||P
nWn) (122)

≥ H(Qn
⋆Wn)− ρ−1D(Qn

⋆ ||P
n) (123)

= H(Qn
⋆Wn)− nρ−1D(Q⋆||P ), (124)

where (123) follows from the Data Processing Inequality [15,
Lemma 3.11]. Let the source{X̃i}∞i=1 be IID Q⋆ and set
X̂n = gn(X̃

n). Then

H(Qn
⋆Wn) = H(X̂n) (125)

= I(X̃n ∧ X̂n). (126)

By (111), we have

E[d(X̃n, X̂n)] ≤ D, (127)

so applying [14, Theorem 9.2.1] (which is the main ingredient
in the classical rate-distortion converse) to the pair(X̃n, X̂n)
gives

I(X̃n ∧ X̂n) ≥ nR
(
Q⋆,E[d(X̃

n, X̂n)]
)

(128)

≥ nR(Q⋆, D), (129)

where (129) follows from (127) by the monotonicity of the
rate-distortion function. Combining (128)–(129), (125)–(126),
(122)–(124), and (121) establishes (117).

VIII. T ASKS WITH COSTS

We have so far assumed that every task requires an equal
amount of effort. In this section, we discuss an extension where
a nonnegative, finite costc(x) is associated with each task
x ∈ X . For the sake of simplicity, we limit ourselves to IID
sources andρ = 1.

For ann-tuple of tasksxn ∈ Xn, we denote byc(xn) the
average cost per task:

c(xn) =
1

n

n∑

i=1

c(xi). (130)

We still assume thatn-tuples of tasks are describe usingnR
bits by an encoder of the formf : Xn → {1, . . . , 2nR}, and
that if xn is assigned, then alln-tuples in the setf−1(f(xn))
are performed. Thus, ifxn is assigned, then the average cost
per assigned task is

c(f, xn) ,
∑

x̃n∈f−1(f(xn))

c(x̃n). (131)

The following result extends Theorem I.2 to this setting (for
IID tasks andρ = 1). We focus on the caseE[c(X1)] > 0
because otherwise we can achieve

E
[
c(f,Xn)

]
= 0 (132)

using only one bit by settingf(xn) = 1 if c(xn) = 0 and
f(xn) = 2 otherwise.

Theorem VIII.1. Let {Xi}∞i=1 be IID with finite alphabetX
andE[c(X1)] > 0.

1) If R > H1/2(X1), then there exist encodersfn : Xn →
{1, . . . , 2nR} such that

lim
n→∞

E
[
c(fn, X

n)
]
→ E[c(X1)]. (133)

2) If R < H1/2(X1), then for any choice of encoders
fn : X

n → {1, . . . , 2nR},

lim
n→∞

E
[
c(fn, X

n)
]
→ ∞. (134)

Proof of Theorem VIII.1: We begin with the caseR >
H1/2(X1), i.e., the direct part. Let us denote bycmax the largest
cost of any single task inX

cmax = max
x∈X

c(x). (135)
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Select a sequencefn : Xn → {1, . . . , 2nR} as in the direct
part of Theorem I.2 and observe that

E
[
c(fn, X

n)
]

=
∑

xn∈Xn

Pn(xn)c(fn, x
n) (136)

=
∑

xn∈Xn

Pn(xn)
(
c(xn) +

∑

x̃n∈f−1
n (fn(xn))\{xn}

c(x̃n)
)

(137)

= E
[
c(X1)

]
+

∑

xn∈Xn

Pn(xn)
∑

x̃n∈f−1
n (fn(xn))\{xn}

c(x̃n)

(138)

≤ E
[
c(X1)

]
+ cmax

∑

xn∈Xn

Pn(xn)|f−1
n (fn(x

n)) \ {xn}|

(139)

= E
[
c(X1)

]
+ cmax

(
E
[
|f−1

n (fn(X
n))|

]
− 1

)
, (140)

and the second term on the RHS of (140) tends to zero as
n → ∞ by Theorem I.2.

We now turn to the caseR < H1/2(X1), i.e., the converse
part. If the minimum cost of any single taskcmin is positive,
then (134) follows from the converse part of Theorem I.2 by
replacing in (139)cmax with cmin and “≤” with “ ≥”. If at least
one task has zero cost (i.e.,cmin = 0), then we need a different
proof.

The assumptionE[c(X1)] > 0 implies that there is some
x⋆ ∈ X with P (x⋆)c(x⋆) > 0. Using Hölder’s Inequality as
in (34) with p = q = 2, a(x) =

√
Pn(xn)c(fn, xn), and

b(x) =
√
c(xn)/c(fn, xn) gives

∑

xn∈Xn

Pn(xn)c(fn, x
n)

≥
∑

xn:c(xn)>0

c(xn)Pn(xn)
c(fn, x

n)

c(xn)
(141)

≥

(∑
xn:c(xn)>0

√
c(xn)Pn(xn)

)2
∑

xn:c(xn)>0
c(xn)

c(fn,xn)

. (142)

To bound the denominator on the RHS of (142), observe that

∑

xn:c(xn)>0

c(xn)

c(fn, xn)

=

2nR∑

m=1

∑

xn∈f−1
n (m),c(xn)>0

c(xn)∑
x̃n∈f−1

n (m) c(x̃
n)

(143)

≤ 2nR, (144)

where the inequality follows because for somem the set
{xn ∈ f−1

n (m) : c(xn) > 0} may be empty. Combining (144)
and (142) gives

∑

xn∈Xn

Pn(xn)c(fn, x
n)

≥ 2−nR

( ∑

xn:c(xn)>0

√
c(xn)Pn(xn)

)2

. (145)

We can bound the sum on the RHS of (145) as follows.
∑

xn:c(xn)>0

√
c(xn)Pn(xn)

≥

√
c(x⋆)

n

∑

Q∈Pn(X ),Q(x⋆)>0

∑

xn∈TQ

√
Pn(xn) (146)

≥

√
c(x⋆)

n
max

Q∈Pn(X )
Q(x⋆)>0

2n(H(Q)−δn)2−
n
2 (D(Q||P )+H(Q)) (147)

= 2
n
2 (maxQ∈Pn(X),Q(x⋆)>0 H(Q)−D(Q||P )−δ′n) (148)

= 2
n
2 (H1/2(X1)−εn−δ′n), (149)

where δn = n−1|X | log(n + 1), where δ′n = 2δn +
n−1 log(n/c(x⋆)), and whereεn → 0 asn → ∞. Here, (146)
follows because ifxn ∈ TQ andQ(x⋆) > 0, thenxi = x⋆ for
at least onei and hencec(xn) ≥ c(x⋆)/n > 0; (147) follows
becausePn(xn) = 2−n(D(Q||P )+H(Q)) when xn ∈ TQ, and
because|TQ| ≥ 2n(H(Q)−δn); (149) follows from (72) because
the set of rational PMFsQ with Q(x⋆) > 0 is dense in the
set of all PMFs onX , andH(Q) − D(Q||P ) is continuous
in Q (provided thatQ(x) = 0 wheneverP (x) = 0, which
is certainly satisfied by the maximizingQ in (72)). Combin-
ing (149) and (145) completes the proof of the converse.

APPENDIX A
PROOF OFPROPOSITIONIII.2

Since the labels do not matter, we may assume for conve-
nience of notation thatX = {1, . . . , |X |} and

λ(1) ≤ λ(2) ≤ · · · ≤ λ(|X |). (150)

We construct a partition ofX as follows. The first subset is

L0 = {x ∈ X : λ(x) ≥ |X |}. (151)

If X = L0, then the construction is complete and (39) and (40)
are clearly satisfied. Otherwise we follow the steps below to
construct additional subsetsL1, . . . ,LM . (Note that ifL0 6=
X , thenX \ L0 = {1, . . . , |X | − |L0|}.)

Step1: If
|X \ L0| ≤ λ(1), (152)

then we complete the construction by settingL1 =
X \ L0 andM = 1. Otherwise we set

L1 =
{
1, . . . , λ(1)

}
(153)

and go to Step2.
Stepm ≥ 2: If
∣∣∣∣X \

m−1⋃

i=0

Li

∣∣∣∣ ≤ λ(|L1|+ . . .+ |Lm−1|+1), (154)

then we complete the construction by settingLm =
X \

⋃m−1
i=0 Li andM = m. Otherwise we letLm

contain theλ(|L1| + . . . + |Lm−1| + 1) smallest
elements ofX \

⋃m−1
i=0 Li, i.e., we set

Lm =
{
|L1|+ . . .+ |Lm−1|+ 1, . . . ,

|L1|+ . . .+ |Lm−1|+λ(|L1|+ . . .+ |Lm−1|+1)
}

(155)
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and go to Stepm+ 1.

We next verify that (40) is satisfied and that the total number
of subsetsM + 1 does not exceed (39). Clearly,L(x) ≤ |X |
for every x ∈ X , so to prove (40) we check thatL(x) ≤
λ(x) for every x ∈ X . From (151) it is clear thatL(x) ≤
λ(x) for all x ∈ L0. Let k(x) denote the smallest element in
the subset containingx. ThenL(x) ≤ λ(k(x)) for all x ∈⋃M

m=1 Lm by construction (the inequality can be strict only if
x ∈ LM ), and sincek(x) ≤ x, we haveλ(k(x)) ≤ λ(x) by
the assumption (150), and henceL(x) ≤ λ(x) for all x ∈ X .

It remains to check thatM + 1 does not exceed (39). This
is clearly true whenM = 1, so we assume thatM ≥ 2. Fix
an arbitraryα > 1 and let M be the set of indicesm ∈
{1, . . . ,M − 1} such that there is anx ∈ Lm with λ(x) >
αλ(k(x)). We next show that

|M| < logα|X |. (156)

To this end, enumerate the indices inM asm1 < m2 < · · · <
m|M|. For eachi ∈ {1, . . . , |M|} select somexi ∈ Lmi for
which λ(xi) > αλ(k(xi)). Then

λ(x1) > αλ(k(x1)) (157)

≥ α. (158)

Note that ifm < m′ andx ∈ Lm andx′ ∈ Lm′ , thenx < x′.
Thus, x1 < k(x2) becausex1 ∈ Lm1 , k(x2) ∈ Lm2 , and
m1 < m2. Consequently,λ(x1) ≤ λ(k(x2)) and hence

λ(x2) > αλ(k(x2)) (159)

≥ αλ(x1) (160)

> α2. (161)

Iterating this argument shows that

λ(x|M|) > α|M|. (162)

And since λ(x) < |X | for every x /∈ L0 by (151), the
desired inequality (156) follows from (162). LetMc denote
the complement ofM in {1, . . . ,M − 1}. Using Proposi-
tion III.1 and the fact thatL(x) = λ(k(x)) ≥ λ(x)/α for all
x ∈

⋃
m∈Mc Lm,

M =
∑

x∈
⋃M

m=1 Lm

1

L(x)
(163)

= 1 + |M|+
∑

x∈
⋃

m∈Mc Lm

1

L(x)
(164)

≤ 1 + |M|+ α
∑

x∈
⋃

m∈Mc Lm

1

λ(x)
(165)

< 1 + logα|X |+ αµ, (166)

where (166) follows from (156) and the hypothesis of the
proposition (38). SinceM + 1 is an integer andα > 1 is
arbitrary, it follows from (163)–(166) thatM + 1 is upper-
bounded by (39).

APPENDIX B
PROOF OF(91)

We first show thatH(V |Q) − ρ−1D(Q ◦ V ||PX,Y ) ≤
Hρ̃(X1|Y1) for everyQ ∈ P(Y) and V ∈ P(X|Y). This is
clearly true whenD(Q ◦ V ||PX,Y ) = ∞, so we may assume
thatPX,Y (x, y) = 0 impliesQ(y)V (x|y) = 0, and hence that
PY (y) = 0 impliesQ(y) = 0. Now observe that

H(V |Q)− ρ−1D(Q ◦ V ||PX,Y )

=
1 + ρ

ρ

∑

y∈Y

Q(y)
∑

x∈X

V (x|y) log
PX|Y (x|y)

1
1+ρ

V (x|y)

−
1

ρ

∑

y∈Y

Q(y) log
Q(y)

PY (y)
(167)

≤
1 + ρ

ρ

∑

y∈Y

Q(y) log
∑

x∈X

PX|Y (x|y)
1

1+ρ

−
1

ρ

∑

y∈Y

Q(y) log
Q(y)

PY (y)
(168)

=
1

ρ

∑

y∈Y

Q(y) log
PY (y)

(∑
x∈X PX|Y (x|y)

1
1+ρ

)1+ρ

Q(y)
(169)

≤
1

ρ
log

∑

y∈Y

PY (y)

(∑

x∈X

PX|Y (x|y)
1

1+ρ

)1+ρ

(170)

= Hρ̃(X1|Y1), (171)

where (168) and (170) follow from Jensen’s Inequality. The
proof is completed by noting that equality is attained in both
inequalities by the choice

Q(y) =
PY (y)

(∑
x∈X PX|Y (x|y)

1
1+ρ

)1+ρ

∑
y′∈Y PY (y′)

(∑
x∈X PX|Y (x|y′)

1
1+ρ

)1+ρ , (172)

and

V (x|y) =
PX|Y (x|y)

1
1+ρ

∑
x′∈X PX|Y (x′|y)

1
1+ρ

, Q(y) > 0. (173)

(Note thatP (y) > 0 whenQ(y) > 0 so the RHS of (173)
makes sense. How we defineV (x|y) whenQ(y) = 0 does not
matter.)
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