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Let m ≥ 3 be an odd integer and p be an odd prime.
In this paper, a number of classes of three-weight cyclic
codes C(1,e) over Fp, which have parity-check polynomial
m1(x)me(x), are presented by examining general conditions
on the parameters p, m and e, where mi(x) is the minimal
polynomial of π−i over Fp for a primitive element π of
Fpm . Furthermore, for p ≡ 3 (mod 4) and a positive in-
teger e satisfying (pk + 1) · e ≡ 2 (mod pm − 1) for some
positive integer k with gcd(m, k) = 1, the value distribu-
tions of the exponential sums T(a, b) = ∑

x∈Fpm
ωTr(ax+bxe)

and S(a, b, c) = ∑
x∈Fpm

ωTr(ax+bxe+cxs), where s = (pm− 1)/2,

are determined. As an application, the value distribution
of S(a, b, c) is utilized to derive the weight distribution
of the cyclic codes C(1,e,s) with parity-check polynomial
m1(x)me(x)ms(x). In the case of p = 3 and even e satis-
fying the above condition, the dual of the cyclic code C(1,e,s)
has optimal minimum distance.
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1 IN T R O D U C T I O N

Let p be a prime, m be a positive integer and q = pm. Let Fq denote the
finite field with q elements and F∗q = Fq \ {0}. A linear [n, κ, ρ] code C
over Fp is a κ-dimensional subspace of Fn

p with minimum (Hamming)
nonzero weight ρ. Let Ai denote the number of codewords in C with
Hamming weight i. The weight distribution (A0, A1, · · · , An) is an
important research object in coding theory because it contains crucial
information as to estimate the error correcting capability and allows the
computation of the error probability of error detection and correction
with respect to some error detection and error correction algorithms
[16].

A linear code C over Fp is called cyclic if any cyclic shift of a codeword
is another codeword of C. It is well known that any cyclic code of length
n over Fp corresponds to an ideal of the polynomial residue class ring
Fp[x]/(xn − 1) and can be expressed as C = 〈g(x)〉, where g(x) is
monic and has the least degree. This polynomial is called the generator
polynomial and h(x) = (xn − 1)/g(x) is referred to as the parity-check
polynomial of C. Cyclic codes with a few weights are of particular interest
in secret sharing schemes and designing frequency hopping sequences.
They have been extensively studied in the literature (see, for example,
[4, 9, 10, 13, 14, 20, 22, 23]). In this paper, cyclic codes with τ nonzero
weights are called τ-weight cyclic codes.

Let Γj be the p-cyclotomic coset modular q − 1 containing j, i.e.,
Γj = {j · pi mod (q− 1)|i = 0, 1, · · · , lj − 1}, where j is any integer
with 0 ≤ j ≤ q − 2 and lj is the smallest positive integer such that
j ≡ j · plj mod (q− 1). Let Zq−1 be the set of integers modulo q − 1
and mi(x) be the minimal polynomial of π−i over Fp for a primitive
element π in Fq. For integers i1, · · · , it ∈ Zq−1, t ≥ 1 with pairwise
disjoint cyclotomic cosets Γi1 , · · · , Γit , we denote by C(i1,··· ,it) the cyclic
code with parity-check polynomial h(x) = mi1(x) · · ·mit(x) and write
C⊥(i1,··· ,it) for its dual code. By the well-known Delsarte’s Theorem [7],
one can express the cyclic code C(i1,··· ,it) as

C(i1,··· ,it) =

{( t

∑
s=1

Tr(asπ j·is)
)q−2

j=0

∣∣∣ a1, a2, · · · , at ∈ Fq

}
,
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The weight distributions of several classes of cyclic codes from APN monomials

where Tr(·) is the trace mapping from Fq to Fp. Hence the Hamming
weight of the codeword c = (c0, c1, · · · , cq−2) in C(i1,··· ,it) satisfies

wH(c) =
∣∣{j | 0 ≤ j ≤ q− 2, cj 6= 0}

∣∣
=(q− 1)−

∣∣{j | 0 ≤ j ≤ q− 2, cj = 0}
∣∣

=(q− 1)− 1
p ∑

x∈F∗q
∑

y∈Fp

ω
y·Tr(

t
∑

s=1
asxis )

=
(q− 1)(p− 1)

p
− 1

p ∑
y∈F∗p

∑
x∈F∗q

ω
Tr(y

t
∑

s=1
asxis )

=pm−1(p− 1)− 1
p ∑

y∈F∗p

S(ya1, ya2, · · · , yat),

(1)

where S(a1, a2, · · · , at) = ∑
x∈Fq

ωTr(a1xi1+a2xi2+···+atxit ) and ω is a primi-

tive p-th root of unity. In this way, the weight distribution of the cyclic
code C(i1,··· ,it) can be derived from the value distribution of the multi-set

{S(a1, a2, · · · , at) | a1, a2, · · · , at ∈ Fq}.

Perfect nonlinear (PN) and almost perfect nonlinear (APN) functions
are important research objects in cryptography and coding theory [1,
2, 6]. For p = 2, it is shown in [3] that the monomial xe is APN if and
only if the cyclic code C⊥(1,e) has optimal minimum distance 5. In [23],
the Gold and Kasami-Welch APN monomials were utilized to construct
a class of cyclic codes C⊥(1,3,13) having the same weight distribution as

the triple-error-correcting BCH code C⊥(1,3,5). For odd prime p, when
xe is a PN monomial over Fq, the cyclic codes C(1,e) and C(0,1,e) and
their duals were intensively studied in [4, 12, 17, 21], where the weight
distributions of the cyclic codes C(1,e) and C(0,1,e) were determined and
their dual codes were proved to have optimal minimum distances 4
and 5 respectively. Very recently, for p = 3 and some monomials xe

including APN ones, the ternary cyclic codes C⊥(1,e) and C⊥(1,e,s), where
s = (3m − 1)/2, were shown to have optimal minimum distances 4 and
5 in [8] and [18]. The weight distributions of the proposed cyclic codes
and their duals are mostly unknown.

In this paper, for odd integer m ≥ 3, we will derive general conditions
on the parameters p, m and e under which C(1,e) is a three-weight code.
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It turns out that all the three-weight cyclic codes recently found in
[5, 11, 25] are special cases of the general construction of this paper and
many new three-weight cyclic codes, as demonstrated in Corollaries 1-3,
are generated. Furthermore, for p ≡ 3 (mod 4) and a positive integer
e satisfying (pk + 1) · e ≡ 2 (mod pm − 1) for some positive integer k
with gcd(m, k) = 1, we will determine the value distributions of the
two exponential sums

T(a, b) = ∑
x∈Fq

ωTr(ax+bxe)

and
S(a, b, c) = ∑

x∈Fq

ωTr(ax+bxe+cxs),

where s = (q− 1)/2. The value distribution of S(a, b, c) is subsequently
used to investigate the weight distribution of the cyclic codes C(1,e,s).
For p = 3 and even e satisfying (pk + 1) · e ≡ 2 (mod pm− 1), the cyclic
codes C⊥(1,e,s) have optimal minimum distance 5 [18].

The remainder of this paper is organized as follows. Section 2 presents
a unified approach to generating three-weight cyclic codes, of which the
weight distributions are as well settled. Section 3 deals with the value
distributions of the exponential sums T(a, b) and S(a, b, c). Section 4
determines the weight distribution of the cyclic code C(1,e,s). Section 5
concludes this paper.

2 TH R E E -W E I G H T C Y C L I C C O D E S A N D T H E I R
W E I G H T D I S T R I B U T I O N S

In this section our task is to derive general conditions on (p, m, e) under
which C(1,e) is a three-weight code. To this end, we need to introduce
earlier results on three-weight cyclic codes C(1,e).

In [4, 21], Carlet et al. employed PN monomials to construct three-
weight cyclic codes documented in the following lemma.

Lemma 1. ([4, 21]) Let p be an odd prime and m ≥ 3 be odd. Then the cyclic
code C(1,e) has length q − 1, dimension 2m, and the weight distribution in
Table 1 if

1. e = pk + 1 or

2. e = (pk + 1)/2, where p = 3 and gcd(2m, k) = 1.
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Table 1: Weight distribution I

Hamming weight Multiplicity

0 1

(p− 1)pm−1 − p
m−1

2 1
2 (p− 1)(pm − 1)(pm−1 + p

m−1
2 )

(p− 1)pm−1 + p
m−1

2 1
2 (p− 1)(pm − 1)(pm−1 − p

m−1
2 )

(p− 1)pm−1 (pm − 1)(pm−1 + 1)

Table 2: Weight distribution II

Hamming weight Multiplicity

0 1

(p− 1)pm−1 − (p−1)
2 p

m+s−2
2 (pm − 1)(pm−s + p

m−s
2 )

(p− 1)pm−1 + (p−1)
2 p

m+s−2
2 (pm − 1)(pm−s − p

m−s
2 )

(p− 1)pm−1 (pm − 1)(pm − 2pm−s + 1)

The second construction in Lemma 1 was extended to any odd prime
p and positive integer k, 1 ≤ k ≤ m− 1, in [20, 26].

Lemma 2. ([20, 26]) Let p be an odd prime. Let m and k be positive integers
such that m

gcd(m,k) is odd and no less than 3. Define e = (pk + 1)/2. Then the
cyclic code C(1,e) has length q− 1, dimension 2m, and the weight distribution
in Table 2 if k/s is odd and in Table 3 if k/s is even, where s = gcd(m, k).

The following lemma will be needed in the sequel.

Lemma 3. Let m ≥ 3 be odd and p be an odd prime with p− 1 = 2r · h,
where h is an odd integer. If two integers d, e ∈ Zpm−1 \ Γ1 satisfy 2de ≡ 2
(mod pm − 1) and d + e ≡ 2 (mod 2r), then the cyclic codes C(1,d) and
C(1,e) have the same weight distribution.

Proof. According to (1), the weight distributions of C(1,d) and C(1,e) are
respectively determined by the value distributions of

∆0(a, b) = ∑
y∈F∗p

∑
x∈Fq

ωTr(yax+ybxd)
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Table 3: Weight distribution III

Hamming weight Multiplicity

0 1

(p− 1)pm−1 − (p− 1)p
m+s−2

2 1
2 (pm − 1)(pm−s + p

m−s
2 )

(p− 1)pm−1 + (p− 1)p
m+s−2

2 1
2 (pm − 1)(pm−s − p

m−s
2 )

(p− 1)pm−1 (pm − 1)(pm − pm−s + 1)

and

∆1(a, b) = ∑
y∈F∗p

∑
x∈Fq

ωTr(yax+ybxe).

Notice that h and m are odd. The element λ = π
(pm−1)h

p−1 , where π is a
primitive element in Fpm , is a non-square in Fpm . It then follows from
p− 1 = 2r · h that the order of λ in F∗p (the least integer t such that
λt = 1) equals 2r .

When x runs through F∗q , x2 runs twice through the squares in F∗q ,
and λx2 runs twice through all the non-squares in F∗q . Thus,

∆0(a, b) =
1
2 ∑

y∈F∗p

(
∑

x∈Fq

ωTr(yax2+ybx2d) + ∑
x∈Fq

ωTr(yaλx2+ybλd x2d)
)

=
1
2 ∑

y∈F∗p

(
∑

x∈Fq

ωyTr(ax2+bx2d) + ∑
x∈Fq

ωyλTr(ax2+λd−1bx2d)
)

=
1
2 ∑

y∈F∗p

(
∑

x∈Fq

ωyTr(ax2+bx2d) + ∑
x∈Fq

ωyTr(ax2+λd−1bx2d)
)

.

Note that 2de ≡ 2 (mod pm − 1) implies gcd(2d, pm − 1) = 2. Thus,
when x runs through F∗q , x2d runs twice through the squares in F∗q , and
λx2d runs twice through all the non-squares in F∗q . Similarly we have

∆1(a, b) =
1
2 ∑

y∈F∗p

(
∑

x∈Fq

ωyTr(ax2d+bx2) + ∑
x∈Fq

ωyTr(ax2d+λe−1bx2)
)

.
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Furthermore, it follows from d + e ≡ 2 (mod 2r) and λ2r
= 1 that

∆0(a, b) =
1
2 ∑

y∈F∗p

(
∑

x∈Fq

ωyTr(ax2+bx2d) + ∑
x∈Fq

ωyTr(λe+d−2ax2+λd−1bx2d)
)

=
1
2 ∑

y∈F∗p

(
∑

x∈Fq

ωyTr(ax2+bx2d) + ∑
x∈Fq

ωyλd−1Tr(λe−1ax2+bx2d)
)

=
1
2 ∑

y∈F∗p

(
∑

x∈Fq

ωyTr(ax2+bx2d) + ∑
x∈Fq

ωyTr(λe−1ax2+bx2d)
)

= ∆1(b, a).

Therefore, the multi-sets {∆0(a, b) : a, b ∈ Fq} and {∆1(a, b) : a, b ∈
Fq} have the same value distribution.

Applying Lemmas 1-3, we obtain the following.

Theorem 1. Let m ≥ 3 be odd. (i) Let p ≡ 3 (mod 4). If e is an even integer
satisfying 2(pk + 1)e ≡ 2 (mod pm − 1) for some nonnegative integer k,
then C(1,e) is a [pm − 1, 2m] cyclic code with the weight distribution in Table
1. (ii) Let p be any odd prime. If e is an integer satisfying (pk + 1)e ≡ 2
(mod pm − 1) for some positive integer k with gcd(m, k) = s, then C(1,e) is
a [pm − 1, 2m] cyclic code with the weight distribution of

• Table 2 when e ≡ 1 + (p− 1)/2 (mod p− 1); and

• Table 3 when e ≡ 1 (mod p− 1).

Proof. (i) When m is odd and p ≡ 3 (mod 4), we have p− 1 = 2rh with
r = 1 and h = (p− 1)/2 being odd. Set d = pk + 1. By assumption,
2de ≡ 2 (mod pm − 1). Then |Γe| = m since gcd(2de, pm − 1) = 2
implies pm−1

2 |ple − 1. In addition, we have e + d ≡ 2 (mod 2r) as e is
even by assumption and d is obviously even.

Since m is odd and p ≡ 3 (mod 4), pm ≡ 3 (mod 4). Hence gcd(2(pk +
1), pm − 1) = 2. It then follows that e 6∈ Γ1. It is clear that d 6∈ Γ1. Thus,
all the conditions in Lemma 3 are satisfied. Then it follows from Lem-
mas 1 and 3 that C(1,e) has the weight distribution of Table 1.

(ii) Let p be any odd prime and m be odd. Assume that e is an integer
satisfying (pk + 1)e ≡ 2 (mod pm− 1) for some positive integer k. Then
gcd((pk + 1)e, pm − 1) = 2, and it follows that gcd(pk + 1, pm − 1) = 2,
e 6∈ Γ1 and |Γe| = m.

By assumption, (pk + 1)e ≡ 2 (mod pm− 1), which implies that 2e ≡
2 (mod p− 1), we deduce that e ≡ 1 (mod p− 1) or e ≡ 1+ (p− 1)/2
(mod p− 1).
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In the case of e ≡ 1 (mod p− 1), let k0 be an integer such that k0 = k
if k is even and k0 = m− k if k is odd. It is clear that k0 is always even
since m is odd. Set d = (pk0 + 1)/2. We have d ≡ 1 + (pk0 − 1)/2 ≡
1 + k0(p − 1)/2 ≡ 1 (mod p − 1). Then d + e ≡ 2 (mod p − 1). In
addition, by assumption (pk + 1)e ≡ (mod pm − 1), we have 2de ≡ 2
(mod pm − 1) if k is even and 2de ≡ 2pm−k (mod pm − 1) if k is odd.
Since m is odd, the integer s = gcd(m, k0) is odd and k0/s is even.
Note that the cyclic codes C(1,e) are the same when e runs through the
cyclotomic coset Γe. The conclusion thus follows from Lemmas 2 and 3.

Similarly, in the case of e ≡ 1+(p− 1)/2 (mod p− 1), we take k1 = k
if k is odd and k1 = m− k if k is even. Then k1 is odd and (pk1 + 1)/2 ≡
1 + k1(p − 1)/2 ≡ 1 + (p − 1)/2 (mod p − 1). Let d = (pk1 + 1)/2.
Then d + e ≡ 2 (mod p− 1). In addition, 2de ≡ 2 (mod pm − 1) if k
is odd and 2de ≡ 2pm−k (mod pm − 1) if k is even. Since the cyclic
codes C(1,e) are the same when e runs through the cyclotomic coset Γe,
it follows from Lemmas 2 and 3 that C(1,e) has the weight distribution
of Table 2 since k1/s is odd. The proof is completed.

Very recently, a total of twelve classes of three-weight [pm − 1, 2m]
cyclic codes over Fp are described in [5, 11, 25]. It can be verified by
hand that all the three-weight cyclic codes found in [5, 11, 25] are special
cases of the codes in Theorem 1. Furthermore, a closer look at Theorem
1 reveals that many new three-weight cyclic codes can be generated in
this way.

The following are three corollaries of Theorem 1, which give new
three-weight codes that are not covered in [5, 25] and [11]. They demon-
strate that Theorem 1 can be employed to generate many new three-
weight cyclic codes and settle their weight distributions.

Corollary 1 below is an extension of Theorem 6.11 in [25] and The-
orem 4.8 in [11], and produces new three-weight codes that are not
covered in [5, 25] and [11] when t > 3.

Corollary 1. Let p = 3 and let m ≡ 2t − 1 (mod 2t) for any integer t ≥ 2.
For any h with 2 ≤ h ≤ t, if e =

(
3(m+1)/2h − 1

)
∏h−1

i=1

(
3(m+1)/2i

+ 1
)

,
then C(1,e) is a [3m − 1, 2m] ternary cyclic code with the weight distribution

in Table 2, where s = 1; if e =
(

3(m+1)/2h − 1
)

∏h−1
i=1

(
3(m+1)/2i

+ 1
)
+

(3m − 1)/2, then C(1,e) is a [3m − 1, 2m] ternary cyclic code with the weight
distribution in Table 3, where s = 1.
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Proof. Let d = (3(m+1)/2h
+ 1). Then de ≡ 2 (mod 3m − 1). We have

clearly that gcd((m + 1)/2h, m) = 1. In addition,
(

3(m+1)/2h − 1
)

∏h−1
i=1(

3(m+1)/2i
+ 1
)
≡ 2 (mod p− 1). The desired conclusion then follows

from Theorem 1 (ii).

Corollaries 2 and 3 below document new three-weight codes that are
not covered in [5, 11, 25] for p > 3.

Corollary 2. Let m ≥ 3 be odd and p ≡ 3 (mod 4). Let e = (pm + 1)/4 +
(pm − 1)/2 if p ≡ 3 (mod 8) and e = (pm + 1)/4 if p ≡ 7 (mod 8).
Then C(1,e) is a [pm − 1, 2m] cyclic code with the weight distribution in Table
1.

Proof. Let d = 4. Then de ≡ 2 (mod pm − 1). Since (pm + 1)/4 ≡
(p + 1)/4 (mod 2) and (pm − 1)/2 is odd, the conclusion follows from
Theorem 1 (i).

Corollary 3. Let m ≥ 3 be odd and p be any odd prime. Let the sets Si be de-

fined by Si =
{

(p+1)(pm−1)−4p(p
m−1

2 −1)
2(p−1) + i(pm−1)

2 , (p−3)(pm−1)+4(p
m+1

2 −1)
2(p−1) +

i(pm−1)
2

}
, i = 0, 1. (i) If e ∈ S0, then C(1,e) is a [pm − 1, 2m] cyclic code with

the weight distribution in Table 2, where s = 1. (ii) If e ∈ S1, then C(1,e) is a
[pm − 1, 2m] cyclic code with the weight distribution in Table 3, where s = 1.

Proof. Since (p
m−1

2 + 1)(p+ 1) ≡ 4 (mod p− 1), it is easily verified that

(p
m−1

2 + 1) · (p + 1)(pm − 1)− 4p(p
m−1

2 − 1)
2(p− 1)

≡ 2 (mod pm − 1).

Similarly, it follows from (p
m+1

2 + 1)(p− 3) ≡ −4 (mod p− 1) that

(p
m+1

2 + 1) · (p− 3)(pm − 1) + 4(p
m+1

2 − 1)
2(p− 1)

≡ 2 (mod pm − 1).

Thus, for any integer e ∈ S0 ∪ S1, there exists an integer d ∈ {p
m−1

2 +

1, p
m+1

2 + 1} such that de ≡ 2 (mod pm − 1). In addition, we observe
that

(p + 1)(pm − 1)− 4p(p
m−1

2 − 1)
2(p− 1)

≡ 1 +
(p− 1)

2
(mod p− 1)

and

(p− 3)(pm − 1) + 4p(p
m+1

2 − 1)
2(p− 1)

≡ 1 +
(p− 1)

2
(mod p− 1).
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Then it follows that e ≡ 1 + (p − 1)/2 (mod p − 1) for e ∈ S0 and
e ≡ 1 (mod p− 1) for e ∈ S1. The desired conclusion then follows from
Theorem 1 (ii).

3 VA L U E D I S T R I B U T I O N S O F T H E T W O E X P O N E N T I A L
S U M S

Throughout what follows, we will always assume that m ≥ 3 is an odd
integer, p ≡ 3 (mod 4) and e is an integer e satisfying (pk + 1)e ≡ 2
(mod pm − 1) for some positive integer k with gcd(m, k) = 1. For
convenience of presentation, such an integer e is hereafter said to satisfy
the Congruence Condition.

In this section, for an integer e satisfying the Congruence Condition,
we will study the following multi-sets{

T(a, b) = ∑
x∈Fq

ωTr(ax+bxe)|a, b ∈ Fq

}
(2)

and {
S(a, b, c) = ∑

x∈Fq

ωTr(ax+bxe+cxs)|a, b ∈ Fq, c ∈ F′p

}
, (3)

where s = (q− 1)/2, F′p is composed of p elements in Fq such that
{Tr(c)|c ∈ F′p} = Fp (It is clear that F′p = Fp if Tr(1) 6= 0). The
value distribution of S(a, b, c) will be utilized to investigate the weight
distribution of the cyclic codes C(1,e,s) in Section 4.

Define
T0(a, b) = ∑

x∈Fq

ωTr(axpk+1+bx2). (4)

For odd m and p ≡ 3 (mod 4), −1 is a non-square in Fq. When x runs

through F∗q , xpk+1 runs twice through the squares in F∗q and −xpk+1

runs twice through all the non-squares in F∗q . Therefore, for integers e
satisfying the Congruence Condition, the exponential sums T(a, b) and
S(a, b, c) can be rewritten as

T(a, b) =
1
2
(
T0(a, b) + T0(−a, (−1)eb)

)
, (5)

and

S(a, b, c) =1− 1
2
(
ωt + ω−t)

+
1
2
(
ωtT0(a, b) + ω−tT0(−a, (−1)eb)

)
,

(6)
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Table 4: The value distribution of T0(a, b) for odd m ≥ 3

Values Multiplicity (each)

±
√

p∗p
m−1

2 p2(pm − 1)(pm − pm−1 − pm−2 + 1)/(2(p2 − 1))

±p
m+1

2 (pm − 1)(pm−1 ± p
m−1

2 )/2

±
√

p∗p
m+1

2 (pm − 1)(pm−1 − 1)/(2(p2 − 1))

pm 1

where t = Tr(c).
The value distribution of the exponential sum T0(a, b) for odd m ≥ 3

is given in Table 4 [13]. In order to determine the value distribution of
T(a, b) and S(a, b, c), we shall study the distribution of(

T0(a, b), T0(−a, (−1)eb)
)

when (a, b) runs through F2
q. When e is an odd integer, as T0(−a,−b)

is the conjugate of T0(a, b) for any (a, b) ∈ F2
q, the distribution of(

T0(a, b), T0(−a,−b)
)

can be readily settled from Table 4. When e is an
even integer, the calculation of the distribution of

(
T0(a, b), T0(−a, b)

)
is not trivial and we will focus on it in the sequel.

The following two lemmas characterize all possible
(
T0(a, b), T0(−a, b)

)
for any a, b ∈ Fq.

Lemma 4. ([13]) Let Q(x) be a quadratic form in m variables over Fp of
rank r,

( a
p
)

be the conventional Legendre symbol. Then

∑
x∈Fq

ωQ(x) =


(∆

p
)

pm−r/2, if p ≡ 1 (mod 4)

(−1)r/2(∆
p
)

pm−r/2, if p ≡ 3 (mod 4),

where ∆ is the determinant of Q(x). Furthermore, for any y ∈ F∗p,

∑
x∈Fq

ωyQ(x) =
(yr

p
)

∑
x∈Fq

ωQ(x). (7)

Lemma 5. ([13]) Let m and k be positive integers such that gcd(m, k) = 1.
Let

Qa,b(x) = Tr(axpk+1 + bx2)
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be a quadratic form in m variables over Fp. Then, (i) for (a, b) ∈ F2
pm \

{(0, 0)}, the quadratic form Qa,b(x) has rank no less than m− 2; (ii) if m is
odd, then for any a ∈ F∗pm and b ∈ Fpm , at least one of Qa,b(x) and Q−a,b(x)
has rank m.

For i = 0, 1, 2, let

νi =

 p
m+i

2 , if i is odd,
√

p∗p
m+i−1

2 , if i is even,
(8)

where p∗ = (−1)
p−1

2 p. By Lemmas 4 and 5, for any (a, b) ∈ F2
q \ {(0, 0)},(

T0(a, b), T0(−a, b)
)
∈
{
(ε1νi1 , ε2νi2) | 0 ≤ i1, i2 ≤ 2, ε1, ε2 = ±1

}
.

Before further studying the value distribution of
(
T0(a, b), T0(−a, b)

)
,

we define
N+

ε,i =
{
(a, b) ∈ F2

q | T0(a, b) = ενi

}
,

N−ε,i =
{
(a, b) ∈ F2

q | T0(−a, b) = ενi

}
,

(9)

where ε ∈ {1,−1}. Some properties of N+
ε,i and N−ε,i are summarized in

the following lemma.

Lemma 6. Let λ be a non-square of F∗p. For ε ∈ {1,−1} and i ∈ {0, 1, 2},
we have

(i) (a, b) ∈ N+
ε,i if and only if (−a, b) ∈ N−ε,i;

(ii) λN+
ε,0 = N+

−ε,0, λN−ε,0 = N−−ε,0;

(iii) λN+
ε,1 = N+

ε,1, λN−ε,1 = N−ε,1; and

(iv) λN+
ε,2 = N+

−ε,2, λN−ε,2 = N−−ε,2.

Proof. Property (i) directly follows from the definitions of N+
ε,i and N−ε,i

in (9). Properties (ii), (iii) and (iv) are proved together below.
By Lemma 4, for any non-square λ of F∗p,

T0(λa, λb) = ∑
x∈Fq

ωλTr(axpk+1+bx2) =
(λr

p

)
T0(a, b), (10)

where r is the rank of the quadratic form Qa,b(x) = Tr(axpk+1 + bx2).
Following from the definitions of νi and N+

ε,i, we know that if (a, b) ∈
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N+
ε,i, then the corresponding quadratic form Qa,b(x) has rank m− i. This

fact together with (10) implies that T0(λa, λb) = T0(a, b) if (a, b) ∈ N+
ε,1

and T0(λa, λb) = −T0(a, b) if (a, b) ∈ N+
ε,0 or (a, b) ∈ N+

ε,2. Therefore,
we deduce that

λN+
ε,0 = N+

−ε,0, λN+
ε,1 = N+

ε,1, λN+
ε,2 = N+

−ε,2.

Then the properties for N−ε,i in (ii), (iii) and (iv) directly follow from
(i).

The following results are necessary for calculating the distribution of(
T0(a, b), T0(−a, b)

)
.

Proposition 1. Let N4 denote the number of tuples (x, y, z, w) ∈ F4
q satis-

fying  x2 + y2 + z2 + w2 = 0

xpk+1 + ypk+1 + zpk+1 − wpk+1 = 0.

Then for odd m ≥ 3 and positive integer k with gcd(m, k) = 1,

N4 = 2q2 − qp− q + p.

Proof. See the Appendix.

Proposition 2. For odd m ≥ 3 and positive integer k with gcd(m, k) = 1,

(i) ∑
a,b∈Fq

T0(a, b) · T0(−a, b) = q2;

(ii) ∑
a,b∈Fq

T3
0 (a, b) · T0(−a, b) = q2 · (2q2 − qp− q + p).

Proof. (i) By the definition of T0(a, b) in (4), one has

∑
a, b∈Fq

T0(a, b) · T0(−a, b)

= ∑
a, b∈Fq

∑
x, y∈Fq

ωTr
(

a(xpk+1−ypk+1)+b(x2+y2)
)

= ∑
x, y∈Fq

∑
a∈Fq

ωTr(a(xpk+1−ypk+1)) ∑
b∈Fq

ωTr(b(x2+y2))

= q2N2,
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where N2 is the number of the solutions of the following system of
equations:  x2 + y2 = 0

xpk+1 − ypk+1 = 0.

Since xpk+1 = ypk+1 and gcd(pm − 1, pk + 1) = 2, one has x2 = y2. This
together with x2 + y2 = 0 implies x = y = 0. Thus, we deduce N2 = 1.

(ii) In a similar manner, we deduce that

∑
a, b∈Fq

T3
0 (a, b) · T0(−a, b)

= ∑
x, y,z, w∈Fq

∑
a∈Fq

ωTr(a(xpk+1+ypk+1+zpk+1−wpk+1))

∗ ∑
b∈Fq

ωTr(b(x2+y2+z2+w2))

= q2N4,

where N4 is the number of the solutions of the following system of
equations:  x2 + y2 + z2 + w2 = 0

xpk+1 + ypk+1 + zpk+1 − wpk+1 = 0.

The conclusion immediately follows from Proposition 1.

With the preparations of Table 4, Lemmas 5, 6 and Proposition 2, we
are now ready to determine the distribution of

(
T0(a, b), T0(−a, b)

)
.

Theorem 2. Let vi, i = 0, 1, 2, be defined by (8). For odd m ≥ 3 and positive
integer k with gcd(m, k) = 1, the distribution of the multi-set{(

T0(a, b), T0(−a, b)
)
|a, b ∈ Fq

}
is shown in Table 5.

Proof. By the definitions of N+
ε,i and N−ε,i in (9), for ε1, ε2 ∈ {1,−1} and

i1, i2 ∈ {0, 1, 2},

N+
ε1,i1
∩ N−ε2,i2

=
{
(a, b) ∈ F2

q |
(
T0(a, b), T0(−a, b)

)
= (ε1νi1 , ε2νi2 )

}
.
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Table 5: The value distribution of
(
T0(a, b), T0(−a, b)

)
for odd m ≥ 3

Values Multiplicity (each)

(ν0, ν0), (−ν0,−ν0) (pm − 1)(pm+1 − 3pm + p + 1)/(4(p− 1))

(ν0,−ν0), (−ν0, ν0) (p− 1)(p2m − 1)/(4(p + 1))

(ν0, ν1), (ν1, ν0) (pm − 1)(pm−1 + p
m−1

2 )/4

(−ν0, ν1), (ν1,−ν0)

(ν0,−ν1), (−ν1, ν0) (pm − 1)(pm−1 − p
m−1

2 )/4

(−ν0,−ν1), (−ν1,−ν0)

(ν0, ν2), (ν2, ν0) (pm − 1)(pm−1 − 1)/(2(p2 − 1))

(−ν0,−ν2), (−ν2,−ν0)

(ν0,−ν2), (−ν2, ν0) 0

(−ν0, ν2), (ν2,−ν0)

(pm, pm) 1
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Then one needs to calculate the cardinality of N+
ε1,i1
∩ N−ε2,i2

.
It follows from Lemma 5 (ii) that for any i1, i2 ∈ {0, 1, 2} with i1 ·

i2 6= 0, N+
ε1,i1
∩ N−ε2,i2

= ∅. Thus it suffices to consider the cases where
i1 · i2 = 0, namely,

(i1, i2) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)}.

Furthermore, by Lemma 6 (i), for any ε1, ε2 ∈ {1,−1} and i1, i2 ∈
{0, 1, 2}, (a, b) ∈ N+

ε1,i1
∩ N−ε2,i2

if and only if (−a, b) ∈ N−ε1,i1
∩ N+

ε2,i2
.

Thus,
|N+

ε1,i1
∩ N−ε2,i2

| = |N+
ε2,i2
∩ N−ε1,i1

|. (11)

Hence we in the sequel only need to calculate |N+
ε1,i1
∩ N−ε2,i2

| for i1 = 0
and i2 ∈ {0, 1, 2}. The cardinality of N+

ε1,i1
∩ N−ε2,i2

for i1 ∈ {0, 1, 2} and
i2 = 0 will be directly obtained.

Let λ be a non-square of F∗p. Due to Lemma 6 (ii), we get

λ(N+
1,0 ∩ N−1,0) = N+

−1,0 ∩ N−−1,0, λ(N+
−1,0 ∩ N−1,0) = N+

1,0 ∩ N−−1,0,

which implies

|N+
1,0 ∩ N−1,0| = |N

+
−1,0 ∩ N−−1,0|, |N

+
−1,0 ∩ N−1,0| = |N

+
1,0 ∩ N−−1,0|. (12)

Similarly, Lemma 6 (iv) gives

|N+
1,0 ∩ N−1,2| = |N

+
−1,0 ∩ N−−1,2|, |N

+
−1,0 ∩ N−1,2| = |N

+
1,0 ∩ N−−1,2|. (13)

By Lemma 6 (iii), we can deduce that

|N+
1,0 ∩ N−1,1| = |N

+
−1,0 ∩ N−1,1|, |N

+
−1,0 ∩ N−−1,1| = |N

+
1,0 ∩ N−−1,1|. (14)

For the ease of notations, for i ∈ {0, 2}, denote

si = |N+
1,0 ∩ N−1,i|, s̄i = |N+

−1,0 ∩ N−1,i| (15)

and let
s1 = |N+

1,0 ∩ N−1,1|, s̄1 = |N+
−1,0 ∩ N−−1,1|. (16)

From (11)-(16), the reader will observe that the quantities s0, s0, s1, s̄1,
s2, s̄2 respectively correspond to the first item to the sixth item of the
multiplicities in Table 5. Thus our next task is to determine these
quantities.

By Lemma 6 (i), the cardinalities of N+
ε,i and N−ε,i are the same and

they are listed in Table 4. We denote nε,i = |N+
ε,i| = |N

−
ε,i|. By Lemma
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5 (ii), for any (a, b) ∈ Fq \ {(0, 0)}, only when the quadratic form

Qa,b(x) = axpk+1 + bx2 has rank m, the quadratic form Q−a,b(x) could
have rank m− 2, m− 1. This is equivalent to saying that

N−ε,i ⊆ (N+
1,0 ∪ N+

−1,0)

for ε ∈ {1,−1} and i = 1, 2. Thus we have

|N+
1,0 ∩ N−ε,i|+ |N

+
−1,0 ∩ N−ε,i| = |N

−
ε,i| = nε,i.

This fact combined with (12), (13) and (14) yields the following equations

s0 + s̄0 + s1 + s̄1 + s2 + s̄2 = n1,0

s1 + s1 = n1,1

s̄1 + s̄1 = n−1,1

s2 + s̄2 = n1,2.

(17)

Furthermore, by the correspondences between the first six items of
multiplicities in Table 5 and the quantities s0, s0, s1, s̄1, s2, s̄2, it is easy to
verify that

∑
a,b∈Fq

T0(a, b)T0(−a, b) = p2m + 2(s0 − s̄0)ν
2
0 + 4(s2 − s̄2)ν0ν2

and

∑
a,b∈Fq

T3
0 (a, b)T0(−a, b)

= q4 + 2(s0 − s̄0)ν
4
0 + 2(s2 − s̄2)(ν

3
0 ν2 + ν0ν3

2).

Then Proposition 2 gives two more equations{
2(s0 − s̄0)ν

2
0 + 4(s2 − s̄2)ν0ν2 = 0

2(s0 − s̄0)ν
4
0 + 2(s2 − s̄2)(ν

3
0 ν2 + ν0ν3

2) = q2(q− 1)(q− p).
(18)

Therefore, one can deduce the values of s0, s̄0, s1, s̄1, s2, s̄2 by solving (17)
and (18). Then the distribution of

(
T0(a, b), T0(−a, b)

)
is determined

and listed in Table 5.

By (4)-(6), Tables 4 and 5, we have the following two theorems.
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Table 6: The value distribution of {T(a, b) | a, b ∈ Fq} for odd e

Values Multiplicity

0 (pm − 1)(pm − pm−1 + 1)

p
m+1

2 (pm − 1)(pm−1 + p
m−1

2 )/2

−p
m+1

2 (pm − 1)(pm−1 − p
m−1

2 )/2

pm 1

Table 7: The value distribution of {T(a, b) | a, b ∈ Fq} for even e

Values Multiplicity (each)

0 (p− 1)(p2m − 1)/(2(p + 1))

±
√

p∗p
m−1

2 (pm − 1)(pm+1 − 3pm + p + 1)/(4(p− 1))

1
2 (±
√

p∗ + p)p
m−1

2 (pm − 1)(pm−1 + p
m−1

2 )/2

1
2 (±
√

p∗ − p)p
m−1

2 (pm − 1)(pm−1 − p
m−1

2 )/2

± 1
2 (1 + p)

√
p∗p

m−1
2 (pm − 1)(pm−1 − 1)/(p2 − 1)

pm 1

Table 8: The value distribution of {S(a, b, c) | a, b ∈ Fq, c ∈ F′p} for odd e

Values Multiplicity (each)

1− 1
2 (ω

t + ω−t)± 1
2 (ω

t −ω−t)
√

p∗p
m−1

2
p2(pm−1)(pm−pm−1−pm−2+1)

2(p2−1)

1− 1
2 (ω

t + ω−t)± 1
2 (ω

t + ω−t)p
m+1

2
(pm−1)(pm−1±p

m−1
2 )

2

1− 1
2 (ω

t + ω−t)± 1
2 (ω

t −ω−t)
√

p∗p
m+1

2
(pm−1)(pm−1−1)

2(p2−1)

1 + 1
2 (pm − 1)(ωt + ω−t) 1

where t = 0, 1, · · · , p− 1.
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Table 9: The value distribution of {S(a, b, c) | a, b ∈ Fq, c ∈ F′p} for even e

Values Multiplicity (each)

1− 1
2 (ω

t + ω−t)± 1
2 (ω

t + ω−t)
√

p∗p
m−1

2
(pm−1)(pm+1−3pm+p+1)

4(p−1)

1− 1
2 (ω

t + ω−t)± 1
2 (ω

t −ω−t)
√

p∗p
m−1

2
(p−1)(p2m−1)

4(p+1)

1− 1
2 (ω

t + ω−t) + 1
2 (±ωt√p∗ + ω−t p)p

m−1
2

(pm−1)(pm−1+p
m−1

2 )
2

1− 1
2 (ω

t + ω−t) + 1
2 (±ωt√p∗ −ω−t p)p

m−1
2

(pm−1)(pm−1−p
m−1

2 )
2

1− 1
2 (ω

t + ω−t)± 1
2 (ω

t + ω−t p)
√

p∗p
m−1

2
(pm−1)(pm−1−1)

p2−1

1 + 1
2 (pm − 1)(ωt + ω−t) 1

where t = 0, 1, · · · , p− 1.

Table 10: Weight distribution of C(1,e,s) for odd e

Hamming weight Multiplicity

0 1

pm − 1 p− 1

pm−1(p− 1)− p
m−1

2 − 1 (pm−1)(pm+2−pm−pm−1−p
m+3

2 +p
m−1

2 +p2)
2(p+1)

pm−1(p− 1) + p
m−1

2 − 1 (pm−1)(pm+2−pm−pm−1+p
m+3

2 −p
m−1

2 +p2)
2(p+1)

pm−1(p− 1)− p
m+1

2 − 1 (pm−1)(pm−1−1)
2(p+1)

pm−1(p− 1) + p
m+1

2 − 1 (pm−1)(pm−1−1)
2(p+1)

pm−1(p− 1)− (p− 1)p
m−1

2
(pm−1)(pm−1+p

m−1
2 )

2

pm−1(p− 1) + (p− 1)p
m−1

2
(pm−1)(pm−1−p

m−1
2 )

2

pm−1(p− 1) (pm − 1)(pm − pm−1 + 1)
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Table 11: Weight distribution of C(1,e,s) for even e

Hamming weight Multiplicity

0 1

pm − 1 p− 1

pm−1(p− 1)− p
m−1

2 − 1 (pm−1)(pm+1+pm+2pm−1−2p
m+1

2 −2p
m−1

2 +p−1)(p−1)
4(p+1)

pm−1(p− 1) + p
m−1

2 − 1 (pm−1)(pm+1+pm+2pm−1+2p
m+1

2 +2p
m−1

2 +p−1)(p−1)
4(p+1)

pm−1(p− 1)− 1
2 (p− 1)p

m−1
2 − 1 (pm−1)(pm−1−1)

p+1

pm−1(p− 1) + 1
2 (p− 1)p

m−1
2 − 1 (pm−1)(pm−1−1)

p+1

pm−1(p− 1)− 1
2 (p− 1)p

m−1
2 (pm − 1)(pm−1 + p

m−1
2 )

pm−1(p− 1) + 1
2 (p− 1)p

m−1
2 (pm − 1)(pm−1 − p

m−1
2 )

pm−1(p− 1)− 1 (pm − 1)(pm+1 − pm − 2pm−1 + p + 1)/2

pm−1(p− 1) (pm − 1)(pm + 1− 2pm−1)

Theorem 3. Let T(a, b) be the exponential sum defined in (2). For p ≡ 3
(mod 4), odd m ≥ 3 and an integer e satisfying the Congruence Condition,
the value distribution of the multi-set {T(a, b)|a, b ∈ Fq} is shown in Table
6 if e is odd and in Table 7 if e is even.

Theorem 4. Let S(a, b, c) be the exponential sum defined in (3). For p ≡ 3
(mod 4), odd m ≥ 3 and an integer e satisfying the Congruence Condition,
the value distribution of the multi-set {S(a, b, c)|a, b ∈ Fq, c ∈ F′p} is shown
in Table 8 if e is odd and in Table 9 if e is even.

4 WE I G H T D I S T R I B U T I O N O F C(1,e,s)

In this section, for odd m ≥ 3 and p ≡ 3 (mod 4), we study the
weight distribution of the cyclic codes C(1,e,s) for integers e satisfying the
Congruence Condition, i.e., there exist some positive integers k coprime
to m such that (pk + 1)e ≡ 2 (mod pm − 1).

Theorem 5. Let p ≡ 3 (mod 4), s = (pm− 1)/2, m ≥ 3 be an odd integer
and e be an integer satisfying the Congruence Condition. Then the weight
distribution of the [pm − 1, 2m + 1] cyclic code C(1,e,s) is given in Table 10 if
e is odd and in Table 11 if e is even.
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Proof. By (1), the Hamming weight of any nonzero codeword c =
(c0, c1, · · · , cq−2) ∈ C(1,e,s) is

wH(c) = pm−1(p− 1)− 1
p

∆(a, b, c), (19)

where
∆(a, b, c) = ∑

y∈F∗p
∑

x∈Fq

ωyTr(ax+bxe+cxs).

It suffices to determine the value distribution of ∆(a, b, c).
Let Tr(c) = t and Qa,b(x) = Tr(axpk+1 + bx2). The exponential sum

∆(a, b, c) is investigated according to the parity of the integer e in the
following.

When e is an odd integer satisfying the Congruence Condition, one has

∆(a, b, c)

=
1
2 ∑

y∈F∗p

(
2 + ∑

x∈F∗q

ωyTr(axpk+1+bx2+c) + ∑
x∈F∗q

ωyTr(−axpk+1−bx2−c)
)

=
1
2 ∑

y∈F∗p

(
2 + ∑

x∈F∗q

ωyTr(axpk+1+bx2+c) + ∑
x∈F∗q

ωyTr(axpk+1+bx2+c)
)

= ∑
y∈F∗p

(
1 + ∑

x∈F∗q

ωyTr(axpk+1+bx2+c)
)

= ∑
y∈F∗p

(
1−ωyt + ∑

x∈Fq

ωyQa,b(x)+yt
)

= ∑
y∈F∗p

(
1−ωyt + ωyt(yr

p
)

∑
x∈Fq

ωQa,b(x)
)

,

where r is the rank of Q(a, b) and the last equality sign comes from
Lemma 4.

Case I: t = 0. In this case, we have

∆(a, b, c) = ∑
y∈F∗p

( yr

p
)

∑
x∈Fq

ωQa,b(x). (20)

Case II: t 6= 0. It is easily seen that

∑
y∈F∗p

ωyt = −1
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and

∑
y∈F∗p

ωyt( y
p
)
=
( t

p
)

∑
y∈F∗p

ωty( ty
p
)
=
( t

p
)√

p∗.

Then,

∆(a, b, c) = p + ∑
y∈F∗p

ωyt(yr

p
)

∑
x∈Fq

ωQa,b(x). (21)

Recall that T0(a, b) = ∑x∈Fq ωQa,b(x). According to the value distribu-
tion of T0(a, b) in Table 4, the weight distribution of C(1,e,s) for odd e
can therefore be derived from (19), (20) and (21) by direct calculations.

When e is an even integer satisfying the Congruence Condition,

∆(a, b, c)

=
1
2 ∑

y∈F∗p

(
2 + ∑

x∈F∗q

ωy(Qa,b(x)+t) + ∑
x∈F∗q

ωy(Q−a,b(x)−t)
)

=
1
2 ∑

y∈F∗p

(
2− (ωyt + ω−yt)

+ ∑
x∈Fq

ωyQa,b(x)+yt + ∑
x∈Fq

ωyQ−a,b(x)−yt
)

=
1
2 ∑

y∈F∗p

(
2− (ωyt + ω−yt)

+ ωyt(yr

p
)

∑
x∈Fq

ωQa,b(x) + ω−yt(yr′

p
)

∑
x∈Fq

ωQ−a,b(x)
)

(22)

where r, r′ are the rank of Q(a, b) and Q(−a, b) respectively, and the
last equality sign comes from Lemma 4. It follows from Lemma 5 that
(r, r′) takes value from the following set{

(m, m), (m, m− 1), (m, m− 2), (m− 1, m), (m− 2, m)
}

. (23)

Case I: t = 0. In this case,

∆(a, b, c) = 1
2

(
∑

y∈F∗p

( yr

p
)

∑
x∈F∗q

ωQa,b(x) + ∑
y∈F∗p

( yr′

p
)

∑
x∈F∗q

ωQ−a,b(x)
)

.

By a similar analysis as in the case of odd e, the value distribution of
∆(a, b, c) is given in (24).
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∆(a, b, c) =



(p− 1)pm, once
1
2 (p− 1)p

m−1
2 , for (pm − 1)(pm−1 + p

m−1
2 ) times

− 1
2 (p− 1)p

m−1
2 , for (pm − 1)(pm−1 − p

m−1
2 ) times

0, for (pm − 1)(pm − 2pm−1 + 1) times.

(24)

Case II: t 6= 0. Since ∑
y∈F∗p

ωyt = ∑
y∈F∗p

ω−yt = −1, one has

∆(a, b, c) = p + 1
2

(
∑

y∈F∗p

ωyt( yr

p
)

∑
x∈Fq

ωQa,b(x)

+ ∑
y∈F∗p

ω−yt( yr′

p
)

∑
x∈Fq

ωQ−a,b(x)
)

.

Furthermore, the fact ∑
y∈F∗p

ωyt( y
p
)
=
( t

p
)√

p∗ and the possible values

of (r, r′) in (23) imply (25).

∆(a, b, c) =



p + 1
2

(( t
p
)√

p∗ ∑
x∈Fq

ωQa,b(x) − ∑
x∈Fq

ωQ−a,b(x)
)

, if r = r + 1 = m

p + 1
2

(
− ∑

x∈Fq

ωQa,b(x) −
( t

p
)√

p∗ ∑
x∈Fq

ωQ−a,b(x)
)

, if r + 1 = r′ = m

p + 1
2
( t

p
)√

p∗
(

∑
x∈Fq

ωQa,b(x) − ∑
x∈Fq

ωQ−a,b(x)
)

, otherwise.

(25)

Recall that T0(a, b) = ∑
x∈Fq

ωQa,b(x). Thus, by the distribution of
(
T0(a, b),

T0(−a, b)
)

in Table 5, the value distribution of ∆(a, b, c) can be calcu-
lated.

From the above analysis, we deduce the weight distribution of C(1,e,s)
for even e.

Theorem 5 settles the weight distribution of C(1,e,s) for p ≡ 3 (mod 4)
and integers e satisfying the Congruence Condition. For the special case
p = 3, it is shown in [18] that the APN monomials xe generate the
optimal cyclic codes C⊥(1,e,s) if

1) e = 3m+1
4 + 3m−1

2 [15]; or
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Table 12: The weight distribution of C(1,e,s) for three APN exponents e and
s = (3m − 1)/2

Hamming weight Multiplicity

2 · 3m−1 − 3
m−1

2 − 1 (3m − 1)(2 · 3m−1 − 3
m−1

2 )

2 · 3m−1 + 3
m−1

2 − 1 (3m − 1)(2 · 3m−1 + 3
m−1

2 )

2 · 3m−1 − 3
m−1

2 (3m − 1)(3m−1 + 3
m−1

2 )

2 · 3m−1 + 3
m−1

2 (3m − 1)(3m−1 − 3
m−1

2 )

2 · 3m−1 − 1 2(3m − 1)(3m−1 + 1)

2 · 3m−1 (3m − 1)(3m−1 + 1)

3m − 1 2

0 1

2) e = 3(m+1)/2 − 1 [15]; or

3) e = (3(m+1)/4 − 1)(3(m+1)/2 + 1) for m ≡ 3 (mod 4) [24].

On the other hand, it is easily verify that the above integers e satisfy the
Congruence Condition. We thus have the following corollary.

Corollary 4. Let xe be a monomial over F3n with

1) e = 3m+1
4 + 3m−1

2 ; or

2) e = 3(m+1)/2 − 1; or

3) e = (3(m+1)/4 − 1)(3(m+1)/2 + 1) for m ≡ 3 (mod 4).

Then the weight distribution of the [3m− 1, 2m+ 1] ternary cyclic code C(1,e,s)
is given as in Table 12.

For a linear code C of length n with weight distribution (A0, A1, · · · , An),
its weight enumerator is defined by A0 + A1x + · · ·+ Anxn.

Example 1. Let p = 7, m = 3 and k = 2. The integers e = 130
and e = 301 satisfy the congruence equation 50e ≡ 2 (mod 342). If
e = 301, then C(1,e,s) is a [342, 7, 244] cyclic code with the weight enumer-
ator 1 + 1026x244 + 9576x252 + 344736x286 + 100890x294 + 359100x300 +
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7182x336 + 1032x342, which agrees with Theorem 5 (i). If e = 130,
then C(1,e,s) is a [342, 7, 272] cyclic code with the weight enumera-
tor 1 + 2052x272 + 19152x273 + 175446x286 + 336528x293 + 84132x294 +
189810x300 + 2052x314 + 14364x315 + 6x342, which agrees with Theorem
5 (ii).

Example 2. Let p = 3 and m = 3. Then the integer e in Corollary
4 is respectively 20, 8 and 20. For e = 8 or e = 20, the numerical
result indicates that C(1,e,s) is a [26, 7, 14] cyclic code with the weight
enumerator 1 + 390x14 + 312x15 + 520x17 + 260x18 + 546x20 + 156x21 +
2x26, which agrees with Corollary 4, and the dual C⊥(1,e,s) has parameter
[26, 19, 5], which agrees with the result in [18].

5 SU M M A RY A N D C O N C L U D I N G R E M A R K S

One major contribution of this paper is the development of Theorem 1,
which not only unifies the weight distributions of the twelve classes of
cyclic codes documented in [5, 25] and [11], but also settles the weight
distribution of new three-weight codes C(1,e) with two zeros such as
those described in Corollaries 1, 2 and 3. In many cases, the duals of
these three-weight codes C(1,e) are optimal [8, 11, 25].

Another major contribution of this paper is the settlement of the
weight distributions of a class of cyclic codes C(1,e,s) with three zeros,
which is documented in Theorem 5. In many cases the duals of the
codes C(1,e,s) are also optimal [18]. Our technique in proving Theorem 5
is similar to that employed in [27].

6 TH E AP P E N D I X

PR O O F O F PR O P O S I T I O N 1:

Note that the equation xpk+1 + ypk+1 + zpk+1 − wpk+1 = 0 is equivalent
to xpm−k+1 + ypm−k+1 + zpm−k+1 − wpm−k+1 = 0. Since m is odd, we may
assume k is even in the sequel (otherwise replace k by m− k).
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For any (α, β) ∈ F2
pm , let N(α, β) denote the number of solutions of

the following system of equations

x2 + y2 = α

xpk+1 + ypk+1 = β

z2 + w2 = −α

zpk+1 − wpk+1 = −β.

Then,
N4 = ∑

α,β∈Fpm

N(α, β). (26)

Given (α, β) ∈ F2
pm , we will study the following systems of equations: x2 + y2 = α

xpk+1 + ypk+1 = β
(27)

and  z2 + w2 = −α

zpk+1 − wpk+1 = −β.
(28)

Denote by N1(α, β) and N2(α, β) the numbers of solutions of (27) and
(28), respectively. Then N(α, β) = N1(α, β) ∗ N2(α, β) for any (α, β) ∈
F2

pm .
We first investigate the possible values of N1(α, β) for p ≡ 3 (mod 4).

The investigation is divided into two subcases: αβ = 0 and αβ 6= 0.
Case I: αβ = 0. For (27), if α = 0, then x = y = 0 since −1 is a

non-square in Fpm . Thus (27) has a solution if and only if β = 0. If

β = 0, x2(pk+1) = y2(pk+1) together with gcd(2(pk + 1), pm − 1) = 2
implies x2 = y2, then x = y = 0 since xpk+1 = −ypk+1. Thus (27) has
a solution if and only if α = 0. Therefore, (27) has only one solution
for (α, β) = (0, 0) and has no solution in other cases. In addition, for
(α, β) = (0, 0), (28) becomes z2 + w2 = 0 and z2 − w2 = 0. Thus it has
exactly one solution (0, 0) as well.

From the above analysis we deduce that when αβ = 0,

N(α, β) =

 1, if (α, β) = (0, 0)

0, otherwise.
(29)
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Case II: αβ 6= 0. We first consider the possible values of N1(α, β).
Let s, t ∈ F∗p2m such that s2 = α, t2 = −1. It is easy to verify that all

solutions x, y ∈ F∗p2m of x2 + y2 = α have the form

x =
1
2

s(θ + θ−1), y =
1
2

st(θ − θ−1), θ ∈ F∗p2m . (30)

The above representations of x, y will be utilized to analyze the
solutions of (27) in Fpm .

For the first equation of (27), by applying the fact xpm
= x to (30), we

get spm−1(θ + θ−1)pm
= (θ + θ−1), which is equivalent to(

θpm+1 − α(pm−1)/2)(θpm−1 − α(pm−1)/2) = 0.

Similarly, the fact ypm
= y gives(

θpm+1 − α(pm−1)/2)(θpm−1 + α(pm−1)/2) = 0.

By combining these two equations, we deduce

θpm+1 = α(pm−1)/2. (31)

It follows from the second equation of (27) and (30) that( 1
2 s(θ + θ−1)

)pk+1
+
( 1

2 st(θ − θ−1)
)pk+1

= 1
2 α(pk+1)/2(θpk−1 + θ1−pk

) = β.

Thus, if we take τ1 = θpk−1 and β1 = 2α−(pk+1)/2β, then τ1, τ−1
1 are the

two solutions of the following equation

τ2 − β1τ + 1 = 0. (32)

By (31) and (32), we have

θpm+1 = α(pm−1)/2, θpk−1 = τ1 (33)

and
θpm+1 = α(pm−1)/2, θpk−1 = τ−1

1 . (34)

If β1 = 2, then τ1 = τ−1
1 = θpk−1 = 1 and (34) is the same as

(33). Note that gcd(2(pm + 1), pk − 1) = 2(p + 1) when k is even and
gcd(m, k) = 1. Then θ2(pm+1) = α(pm−1) = 1 together with θpk−1 = 1
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gives θ2(p+1) = 1. Furthermore, since m is odd and α(pm−1)/2 = ±1,
one gets θp+1 = α(pm−1)/2, which indicates that (33) has exactly p + 1
solutions in Fp2m .

If β1 = −2, then τ1 = τ−1
1 = θpk−1 = −1 and (34) is the same as

(33). The fact θ2(pm+1) = θ2(pk−1) = 1 suggests θgcd(2(pm+1), 2(pk−1)) =

θ2(p+1) = 1, which is in contradiction with θpk−1 = −1 since 2(p +
1)|(pk − 1). Thus, (33) has no solution in this case.

If β1 6= ±2, then τ1 6= τ−1
1 . It is readily seen that θ is a solution of

(33) if and only if θ−1 is a solution of (34). Suppose θ1 and θ2 are two
solutions of (33). Then (θ1/θ2)

pm+1 = (θ1/θ2)
pk−1 = 1, and this implies

(θ1/θ2)
p+1 = 1 since gcd(pm + 1, pk − 1) = p + 1. As a result, if (33)

has a solution θ, all solutions of (33) can be represented as µθ, and
all solutions of (34) can be represented as µθ−1, where µ ∈ Fp2m and
µp+1 = 1. Therefore for (33) and (34), either each of them has exactly
p + 1 solutions or none of them has a solution.

In summary, for αβ 6= 0,

N1(α, β) =


p + 1, if β = α(pk+1)/2,

0, if β = −α(pk+1)/2,

0 or 2(p + 1), otherwise.

(35)

Now we turn to analyze the possible values of N2(α, β). The analysis
proceeds in a similar fashion to that for N1(α, β).

Recall that s, t ∈ F∗p2m with s2 = α and t2 = −1. Thus all solutions of

z2 + w2 = −α can be represented as

z =
1
2

st(ϑ + ϑ−1), w =
1
2

s(ϑ− ϑ−1), ϑ ∈ F∗p2m . (36)

For the first equation of (28), the facts zpm
= z and wpm

= w imply

ϑpm+1 = −α(pm−1)/2, (37)

and the second equation of (28) together with (36) yields

1
2

α(pk+1)/2(ϑpk+1 + ϑ−(pk+1)) = β.

Assume τ2 = ϑpk+1 and β1 = 2α−(pk+1)/2β. Then τ2, τ−1
2 are the two

solutions of
τ2 − β1τ + 1 = 0. (38)
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This equation is the same as Equation (32). Thus τ2 ∈ {τ1, τ−1
1 }.

By (37) and (38), we get the following equations:

ϑpm+1 = −α(pm−1)/2, ϑpk+1 = τ2 (39)

and
ϑpm+1 = −α(pm−1)/2, ϑpk+1 = τ−1

2 . (40)

If β1 = 2, then τ2 = τ−1
2 = ϑpk+1 = 1 and (40) is the same as (39).

Since gcd(2(pm + 1), pk + 1) = 2, one deduces ϑ2 = 1. Therefore, (39)
has exactly 2 solutions ϑ = ±1 if α is a non-square and has no solution
otherwise.

If β1 = −2, then τ2 = τ−1
2 = ϑpk+1 = −1 and (40) is the same as

(39). The fact gcd(2(pm + 1), 2(pk + 1)) = 4 suggests ϑ4 = 1, and then
ϑ2 = −1. Thus, (39) has exactly 2 solutions ϑ = ±t if α is a non-square,
where t2 = −1, and has no solution otherwise.

If β1 6= ±2, then τ2 6= τ−1
2 . Note that ϑ is a solution of (39) if and only

if ϑ−1 is a solution of (40). Suppose ϑ1 and ϑ2 are two solutions of (39).
Then (ϑ1/ϑ2)

pm+1 = (ϑ1/ϑ2)
pk+1 = 1, and this implies (ϑ1/ϑ2)

2 = 1.
Consequently, for (39) and (40), either they respectively have solutions
±ϑ and ±ϑ−1, or none of them has a solution.

Summarizing up, for αβ 6= 0, we have

N2(α, β) =


2, if β = ±α(pk+1)/2, α ∈ NQR,

0, if β = ±α(pk+1)/2, α ∈ QR,

0 or 4, otherwise,

(41)

where and whereafter QR (resp. NQR) is the set consisting of all squares
(resp. nonsquares) in F∗pm .

By (35) and (41), for α ∈ F∗pm and β ∈ {α(pk+1)/2,−α(pk+1)/2},

N(α, β) =

 2(p + 1), if α ∈ NQR, β = α(pk+1)/2,

0, otherwise.
(42)

To complete the proof, the next task is to consider the possible values
of N(α, β) for α ∈ F∗pm and β ∈ F∗pm \ {±α(pk+1)/2}. Thus we turn back
to Equations (33), (34), (39) and (40) and gather them together as below θpm+1 = α(pm−1)/2, θ(pk−1) = τ1, or τ−1

1 ,

ϑpm+1 = −α(pm−1)/2, ϑ(pk+1) = τ1, or τ−1
1

(43)
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since τ2 ∈ {τ1, τ−1
1 }. For a fixed α ∈ F∗pm , let T = F∗pm \ {±α(pk+1)/2}

and define

S1(α) =
{

β ∈ T | (33), (34) have p + 1 solutions
}

,

S2(α) =
{

β ∈ T | (39), (40) have 2 solutions
}

.
(44)

Then (35) and (41) suggest that N(α, β) = 8(p + 1) if β ∈ S1(α) ∩ S2(α)
and N(α, β) = 0 otherwise. In what follows, we shall show that if α
is a square, then S1(α) ∩ S2(α) = ∅; and if α is a non-square, then
S1(α) ⊆ S2(α).

When α is a square, i.e., α(pm−1)/2 = 1, the equations in the first row
of (43) yield

τ
(pm+1)/2
1 = (θ±(pk−1))(pm+1)/2 = (θpm+1)±(pk−1)/2 = 1,

while the equations in the second row of (43) imply

τ
(pm+1)/2
1 = (ϑ±(pk+1))(pm+1)/2 = (ϑpm+1)±(pk+1)/2

= (−1)±(pk+1)/2 = −1.

This is a contradiction. Thus, there do not exist θ, ϑ ∈ F∗p2m satisfying
(43), which is equivalent to S1(α) ∩ S2(α) = ∅.

When α is a non-square, i.e., α(pm−1)/2 = −1, one has θpm+1 = −1
and ϑpm+1 = 1. Let ξ be a primitive element of Fp2m . Then θ and ϑ

can be respectively represented as θ = ξ(2i+1)(pm−1)/2 and ϑ = ξ j(pm−1),
where i, j = 0, 1, · · · , pm. Assume τ1 = ξr, then the equation θpk−1 = τ1
is equivalent to (2i + 1)(pm − 1)(pk − 1)/2 ≡ r (mod p2m − 1). For any
β ∈ S1(α), by the definition of S1(α), this linear congruence equation
with variable i has p+ 1 solutions. Thus, gcd((pm− 1)(pk− 1)/2, p2m−
1)|r. Since gcd(pk + 1, pm + 1) = 2 and gcd((pk − 1)/2, pm + 1) =
(p + 1), one has

gcd((pm − 1)(pk + 1), p2m − 1)|r.

This implies the congruence equation j(pm− 1)(pk + 1) ≡ r (mod p2m−
1) with variable j has solutions. Thus, the equations ϑpm+1 = 1 and
ϑpk+1 = τ1, τ−1 have 4 solutions. This implies that β is also contained
in S2(α). Then S1(α) is a subset of S2(α).
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Therefore, for α ∈ F∗pm and β ∈ F∗pm \ {±α(pk+1)/2}, we have

N(α, β) =

 8(p + 1), if α is a non-square, β ∈ S1(α),

0, otherwise.
(45)

Combining (26), (29), (42) and (45) gives

N4 = 1 + ((p + 1) + 4(p + 1)|S1(α)|)(pm − 1).

Thus, to determine the value of N4, we only need to calculate the
cardinality of the set S1(α). Given α ∈ F∗pm , by [19, Lemma 6.24], the
equation x2 + y2 = α has pm + 1 solutions in Fpm . Among all these

solutions, by (35), if β = α(pk+1)/2, there are exactly p + 1 solutions
satisfying xpk+1 + ypk+1 = β, and for any β ∈ S1(α), there are exactly
2(p + 1) solutions satisfying xpk+1 + ypk+1 = β. Thus, (p + 1) + 2(p +
1)|S1(α)| = pm + 1, which implies |S1(α)| = (pm − p)/2(p + 1).

Therefore, for p ≡ 3 (mod 4)

N4 = 1 + ((p + 1) + 2(pm − p))(pm − 1) = 2p2m − pm+1 − pm + p.

The analysis on the value of N4 for p ≡ 1 (mod 4) is similar in spirit to
that for p ≡ 3 (mod 4) and is thus omitted. The proof is completed. �
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