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Abstract— In this paper, the available spatial Degrees-Of-
Freedoms (DOF) in single antenna systems is exploited. A
new coding scheme is proposed in which several data streams
having fractional multiplexing gains are sent by transmitters
and interfering streams are aligned at receivers. Viewed as
a field over rational numbers, a received signal has infinite
fractional DOFs, allowing simultaneous interference alignment
of any finite number of signals at any finite number of receivers.
The coding scheme is backed up by a recent result in the field
of Diophantine approximation, which states that the convergence
part of the Khintchine-Groshev theorem holds for points on non-
degenerate manifolds. The proposed coding scheme is proved
to be optimal for three communication channels, namely the
Gaussian Interference Channel (GIC), the uplink channel in
cellular systems, and theX channel. It is proved that the total
DOF of the K-user GIC is K

2
almost surely, i.e. each user enjoys

half of its maximum DOF. Having K cells andM users within
each cell in a cellular system, the total DOF of the uplink channel
is proved to be KM

M+1
. Finally, the total DOF of the X channel

with K transmitters and M receivers is shown to be KM

K+M−1
.

Index Terms— Interference channels, interference alignment,
number theory, Diophantine approximation.

I. I NTRODUCTION

T IME, frequency, and space are natural resources in
wireless systems. While time and frequency are two

global resources independent of systems’ topologies, space
is a local resource related to the number of antennas incor-
porated in transceivers. Spectrum sharing is known as a key
solution to time/frequency allocation among several users. To
avoid interference in the system, orthogonal schemes do not
allow different transmissions overlap in time or frequency.
Orthogonal schemes fall short of achieving high throughputin
dense networks because allowing for multi-user interference is
proved to be optimal in such networks.

Achieving the optimum throughput of a system requires
efficient interference management. Interference alignment is a
type of interference management that exploits spatial Degrees-
Of-Freedoms (DOF) available at transmitters and receivers.

0Financial support provided by Nortel and the correspondingmatching
funds by the Natural Sciences and Engineering Research Council of Canada
(NSERC), and Ontario Ministry of Research & Innovation (ORF-RE) are
gratefully acknowledged.

Interference alignment makes the interference less damaging
by merging the communication dimensions occupied by inter-
fering signals. In [2], Maddah-Ali, Motahari, and Khandani
introduced the concept of interference alignment and showed
its capability in achieving the full Degrees-Of-Freedom (DOF)
for certain classes of two-userX channels. Being simple and
at the same time powerful, interference alignment providedthe
spur for further research. Besides lowering the harmful effect
of the interference, interference alignment can be appliedto
provide security in networks, c.f. [8].

The study of interaction between two users sharing the same
channel goes back to Shannon’s work on the two-way channel
in [1]. His work was followed by several researchers and
the two-user interference channel emerged as the fundamental
building block in dealing with interference in networks.

Although partial capacity results on the interference channel
are recently derived, c.f. [5]–[7], the problem of characterizing
the capacity region of the Gaussian Interference Channel
(GIC) is still open. In [4], it is shown that in the two-user GIC,
the Han-Kobayashi (HK) scheme [3] achieves within one bit
of the capacity region, as long as the interference from the
private message in the HK scheme is designed to be below
the noise level.

It turns out that moving from the two-user scenario to a
larger number of users is a challenging task. Indeed, forK-
user GIC (K > 2), the Han-Kobayashi approach of interfer-
ence management is not enough and we need to incorporate
the interference alignment in the signaling.

Interference alignment inn-dimensional Euclidean spaces
for n ≥ 2 is studied by several researchers, c.f. [2], [9]–[11].
In this method, at each receiver a subspace is dedicated to
interference, then the signaling is designed such that all the
interfering signals are squeezed in the interference sub-space.
Such an approach saves some dimensions for communicating
desired signal, while keeping it completely free from the inter-
ference. Using this method, Cadambe and Jafar showed that,
contrary to the popular belief, aK-user Gaussian interference
channel with varying channel gains can achieve its total DOF,
which is K

2 . Later, in [12], it is shown that the same result
can be achieved using a simple approach based on a particular
pairing of the channel matrices. The assumption of varying
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channel gains, particularly noting that all the gains should
be known at the transmitters, is unrealistic, which limits the
application of these important theoretical results in practice.
This paper aims to remove this shortcoming.

In [13], followed up by [14], [15], interference alignment
is applied in single antenna systems. In [13], it is shown
that lattice codes, rather than random Gaussian codes, are
essential parts of signaling for three-user time-invariant GICs.
In [14], after aligning interference using lattice codes, the
aggregated signal is decoded and its effect is subtracted from
the received signal. In fact, [14] shows that the very strong
interference region of theK-user GIC is strictly larger than the
corresponding region when alignment is not applied. In their
scheme, to make the interference less severe, transmittersuse
lattice codes to reduce the code-rate of the interference, which
guarantees decodability of the interference at the receiver. In
[15], Sridharan et al. showed that the DOF of a class of 3-user
GICs with fixed channel gains can be greater than 1. This result
was obtained using layered lattice codes along with successive
decoding at the receiver.

In [16] and [17], the results from the field of Diophantine
approximation in Number Theory are used to show that
interference can be aligned using properties of rational and
irrational numbers and their relations. They showed that the
total DOF of some classes of time-invariant single antenna
interference channels can be achieved. In particular, Etkin
and Ordentlich in [16] proposed an upper bound on the total
DOF, which accounts for the properties of channel gains
with respect to being rational or irrational. Using this upper
bound, surprisingly, they proved that the DOF is everywhere
discontinuous for the class of channels under investigation.

The channels considered in [16] and [17] are special in the
sense that signals not intended for a given receiver are aligned
by the channel. Therefore, signaling design is not requireddue
to the nature of the channel. The first example of interference
alignment in one-dimensional spaces, which requires signaling
design, is presented in [18]. Using irrational numbers as
transmit directions and applying Khintchine-Groshev theorem,
[18] shows the two-userX channel achieves its total DOF.
This is the first channel in which no variations in coefficients
over time or frequency and no multiple antennas are required
to achieve the total DOF. This is because rational dimensions
in one-dimensional spaces can play the role of real dimensions
in more-than-two dimensional spaces. In this paper, we take
one step forward and prove that the total DOF of theK-user
GIC, the uplink channel in cellular systems, and theX channel
can be achieved without the need for channel variation over
time/frequency/space.

This paper is organized as follows: in Section II, the main
theorem of this paper is stated and some discussions follow.
In Section III, the main ideas incorporated in the proposed
coding scheme are presented. Moreover, several examples are
provided to shed light on the ideas. In Section IV, some
background on the field of Diophantine approximation and,
in particular, Khintchine-Groshev type theorems are presented.
Section V describes the coding scheme used to prove the main
theorem. Moreover, the performance analysis, based on recent
results in the field of Diophantine approximation, is presented.

In Section VI-C, the total DOF of theK-user GIC is derived.
In Section VII, it is proved that the uplink channel in cellular
systems hasKM

M+1 DOF, whereK is the number of cells and
M is the number of users within each cell. In Section VIII,
the total DOF of theK ×M X channel is derived. Finally,
Section IX concludes the paper.

Notation: R, Q, N represent the set of real, rational, and
nonnegative integers, respectively. For a random variableX ,
E[X ] denotes the expectation value.(a, b)Z denotes the set of
integers betweena andb.

II. M AIN CONTRIBUTIONS AND DISCUSSIONS

A. Main Results

In this paper, the total DOFs of three channels, namely the
K-user GIC, the uplink channel in cellular systems, and the
K × M X channel, are characterized using a new coding
scheme.

Theorem 1:The total DOF of theK-user GIC with real and
time invariant channel coefficients isK2 for almost all channel
realizations.

Theorem 2:The total DOF of a cellular system consisting
of K cells andM users within each cell isKM

M+1 for almost
all channel realizations.

Theorem 3:The total DOF of theK ×M X channel with
real and time invariant channel coefficients isKM

K+M−1 for
almost all channel realizations.

B. Real Interference Alignment

The available DOF of the systems having multiple-antenna,
time-varying, and/or frequency-selective channels can beeffi-
ciently exploited by choosing appropriate signaling directions
to maximize the channel gains and avoiding or aligning
interference. We refer to the alignment scheme incorporating
directional signaling asvector alignment. In contrary, it was
commonly believed that time-invariant frequency-flat single-
antenna channels are restrictive in the sense that they prevent
us to incorporate vector alignment. Here, we develop a ma-
chinery that transforms the single-antenna systems into pseudo
multiple-antenna systems with infinite-many pseudo antennas.
Indeed the number of available dimensions in the resultant
pseudo multiple-antenna systems is, roughly speaking, as
many as rationally-independent irrational numbers. We seethat
the pseudo multiple-antenna channels mimics the behavior of
real multi-dimensional systems (in time/frequency/space) and,
for example, allows us to simultaneously align interference at
all receivers of static single-antenna channels. We refer to the
alignment scheme applicable in single antenna systems asreal
alignment.

C. Almost All vs All Cases

In the statement of the theorem, it is emphasized that the
total DOFs of theK-user GIC, the uplink channel in a cellular
system, and theX channel are achievable for almost all
channel realizations. It means the collection of all possible
channel realizations in which the total DOF may not be
achieved has measure zero. In other words, if all channel
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gains are drawn independently from a random distribution then
almost surely the channel has the desired properties required
for achieving the total DOF.

In the case of theK-user GIC if all channel gains are
rational, then the total DOF is strictly less thank

2 . This is due
to the recent upper bound on the total DOF obtained by Etkin
and Ordentlich in [16]. This result, together with Theorem
1, implies that the total DOF of the channel is everywhere
discontinuous with respect to channel coefficients. This isdue
to the fact that for any set of channel gains one can find a set of
rational numbers arbitrarily close to it. This behavior is unique
to this channel (or related networks with single antennas).
In fact, almost all of the total DOFs obtained for Multiple
Input Multiple Output (MIMO) systems are discontinuous at
a point or on a set of measure zero. However, none of them
are everywhere discontinuous.

Other than rational channel gains, infinitely many channel
realizations are not covered by the theorems. However, it
cannot be concluded that for these realizations the total DOFs
are not achievable. In fact, it is proved that there are some
cases where the total DOFs can be achieved and those cases
are out of the scope of the theorems, c.f., [16]–[18]. As an
example, the total DOF of theK-user GIC can be achieved by
using a single layer constellation at transmitters in the special
case where all cross gains are rational numbers and all direct
gains are algebraic irrationals (this is the case for almostall
irrationals) [16]. This is due to the fact that cross gains lie
on a single rational dimension and therefore, the effect of the
interference caused by several transmitters behaves as that of
interference caused by a single transmitter. Using a singledata
stream, one can deduce that the multiplexing gain of1

2 is
achievable for each user.

D. Time Varying versus Time-Invariant Channels

Cadambe and Jafar in their papers [10] and [11] proved
that the total DOFs of the time-varyingK-user GIC andX
channel can be achieved. They showed that the variation of the
channel in time, if it is fast enough to be assumed independent,
provides enough freedom to align the interference. However,
such an assumption about the variation of wireless channels
is not practically realistic. Moreover, it imposes an inadmis-
sible delay on the system, noting that wireless channels are
changing slowly.

Here, we propose a signaling scheme that achieves the total
DOFs in almost all realizations of the channel without impos-
ing any delay to the system or requiring channel variation.
Indeed, the channel can be static over time and still it is
possible to achieve the total DOFs of the channels.

E. MIMO and Complex Coefficients Cases

Let us consider theK-user MIMO GIC where each node in
the network is equipped withM antennas. The upper bound
on the total DOF states that at mostMK

2 is achievable for this
channel. Except for the three-user case where Cadambe and
Jafar in [10], through explicit interference alignment, showed
that 3M

2 is achievable, the total DOF ofK-user MIMO GIC
with static channel states is not considered in the literature.

Again, if we assume time-variant channels, however, this upper
bound can be achieved, see [10].

The applicability of Theorem 1 is not restricted to the single
antenna case. In fact, we can also show that for theK-user
MIMO GIC the total DOF of the channel can be achieved
for almost all cases. This can be proved by simply viewing a
single user asM virtual users in which a transmit antenna
is paired with a receive antenna. Using separate encoding
(resp. decoding) at all transmit (resp. receive) antennas,the
channel becomes aMK-user single antenna GIC. Applying
the theorem to this channel, we conclude that the total ofMK

2
is achievable and this meets the upper bound. In [21]), the
total DOF of theK-user IC is obtained for the case where the
numbers of transmit and receive antennas are different.

Needless to say, Theorem 1 is also applicable to channels
(either single or multiple antennas) with complex coefficients.
In fact, the real and imaginary parts of the input and the output
can be paired. This converts the channel to2K virtual users.
Therefore, the total DOF of the channel can be achieved by a
simple application of the theorem. It is worth noting that joint
processing between all antennas and/or real-imaginary parts at
a transmitter increases the achievable sum rate of the channel.
However, at high SNR regimes this increase vanishes and the
total DOF of the channel can be achieved by separate coding
over all available dimensions.

The total DOF of theX channel with complex coefficients
follows similar behavior, but it can not be derived by pairing.
In fact, a simple extension of the coding proposed in this paper
results in the total DOF of this channel [19].

III. M AIN IDEAS AND BASIC EXAMPLES

In this section, we review some important features of the
real interference alignment introduced in [18] and extend its
application to more general cases. To clarify basic ideas,
we rely on some simple examples and provide only rough
reasoning for rationality of the schemes. Unless otherwise
stated, the following assumptions are in place throughout this
section.

Generic Assumptions

1) All channels are additive.
2) The received signals are corrupted by unit

variance additive Gaussian noise.
3) All transmitters are subject to power con-

straint P .

In [18], constellation points carved from integers are usedto
construct a code for transmission of a given data stream. Car-
rying multiple data streams, a transmitter designs itstransmit
constellationbased on a linear combination of constellations
designed for individual data streams. Since all transmitters use
a set of finite points as the input symbols, the received symbol
before corruption by additive noise is also a finite set, which
is called thereceived constellation.

It will be shown that the performance of the system is highly
related to the design of transmit constellations. In order to
focus on the important aspects of the optimum constellation
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x y = x + z

dmin

Fig. 1. A point-to-point communication system. The receiveconstellation is
the same as the transmit constellation.

x3

x2

x1

y
1

a

b

Fig. 2. A multiple access channel.

design, we bypass the effect of error correction codes and
assume that receivers can remove the additive noise under the
following condition:

Noise Removal
A receiver can completely remove the noise if the
minimum distance of the received constellation
points is greater than

√
N , whereN is the noise

variance.

The preceding assumption is by no means correct. However,
it provides accurate estimates of the total DOFs of the systems
under investigation. In the following sections, we will explain
that if the minimum distance of the received constellation is of
order of

√
NP ǫ for any ǫ > 0, then a code with rate arbitrary

close to the size of the transmit constellation exists such that
the noise can be completely removed from the received signal.
To see the power of the above assumption, we look at the
following examples.

Example 1 (Point-to-point communication):A single user
channel is shown in Figure 1. Given an integerQ, the transmit
constellationU = (−Q,Q)Z = {−Q,−Q+ 1, . . . , Q− 1, Q}
is used for transmission of a single data stream. Since it is
assumed that the additive noise has unit variance and the
minimum distance in the received constellation, which is the
same as the transmit constellation, is also one, the noise can be
removed from the received signal. Therefore,R ≈ log(2Q−1)
is achievable for the channel. On the other hand, the input
power is less thanQ2. Hence,P = Q2. The multiplexing
gain associated with the data stream can be computed as

r = lim
P→∞

R

0.5 logP
= 1. (1)

Example 2 (Multiple Access Channel):A multiple access
channel with three users is shown in Figure 2. The channel
can be modeled as

y = x1 + ax2 + bx2 + z.

It is assumed thata andb are two real numbers. Moreover, let
us assume that all three users communicate with the receiver
using a single data stream. The data streams are modulated
by the constellationU = A(−Q,Q)Z whereA is a factor
controlling the minimum distance of the received constellation.

The received constellation consists of points representable
by A(u1 + au2 + bu3) whereuis are integer. Let us choose
two distinct pointsv1 = A(u1+au2+ bu3) andv2 = A(u′1+
au′2+bu

′
3) in the received constellation. The distance between

these two points isd = A|(u1 − u′1) + a(u2 − u′2) + b(u3 −
u′3)|. Khintchine-Groshev theorem (see Section IV, Theorem
4) provides us a lower bound on any linear combination of
integers. Using the theorem, one can obtaindmin ≈ A

Q2 where
dmin is the minimum distance in the received constellation.
To be able to remove the noise,dmin = 1. Hence,A ≈ Q2.
In a noise-free environment, the receiver can decode the three
messages if there is a one-to-one map from the received signal
to the transmit constellation. Mathematically, one can satisfy
this condition by enforcing the following:

Separability Condition

The receiver is able to decode the three messages
if a and b are rationally independent. In other
words, p1 + ap2 + bp3 = 0 has no non-trivial
solution in integersp1, p2, andp3.

Having the above condition, the receiver can decode all
three messages. To calculate Useri’s rateRi = log(2Q−1) in
terms ofP , we need to find a relation betweenQ andP . Due
to the power constraints, we haveP = A2Q2. We showed that
A ≈ Q2. Therefore,P ≈ Q6. Hence, we have

ri = lim
P→∞

Ri

0.5 logP
=

1

3
. (2)

Two facts are hindered in the preceding example. First,
Khintchine-Groshev theorem is not valid for all possible values
of a and b. In fact, there are infinitely many cases that are
not addressed in the theorem (see Figure 3). However, the
theorem asserts that the measure of these points is zero. In
other words, for any smooth probability distribution on the
pair of (a, b), the probability that the theorem holds is one.
Second, the separability condition does not hold in general. In
fact, this condition holds again with measure one. Hence, we
can conclude:

Achievablity for Almost All Cases

The proofs presented in this paper are based
on the separability condition and Khintchine-
Groshev type theorems. Therefore, all results are
valid for almost all channel realizations.

As mentioned in the previous example, the pair(a, b) can
possibly take all vectors inR2. Let us assume thata and b
have a relation. For instance,b is a function ofa, sayb = a2.
In this case, the pair(a, b) lies on a one dimensional manifold
in R2, see Figure 3. Since the manifold itself has measure
zero, Khintchine-Groshev theorem can not be applied directly.
For such cases, however, there is an extension to Khintchine-
Groshev theorem (see Section IV, Theorem 5) which states
that the same lower bound on the minimum distance can be
applied when coefficients lie on a non-degenerate manifold
and, in fact, the measure of points not satisfying the theorem
is zero.
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Non-degenerate Manifold
b = a2

b

Fig. 3. There are infinitely many points on thea − b plane with measure
zero that are not addressed by the Khintchine-Groshev theorem (these are
called bad events). The curveb = a2 is a non-degenerate manifold and by
the extension of Khintchine-Groshev theorem, the measure of bad events is
zero on the curve.

Non-degenerate Manifolds [25]

Let U ⊂ Rd be an open set. The functionf :
U → Rn is l-non-degenerate atx0 ∈ U if

1) f is l times continuously differentiable on
some sufficiently small ball centered atx0.

2) Partial derivatives off at x0 of orders up
to l spanRn.

The functionf is non-degenerate atx0 if it is
l-non-degenerate atx0 for somel ∈ N . We say
that f is non-degenerate if it is non-degenerate
almost everywhere onU .

The preceding example can be extended to the multi-user
multiple access channel. The following statement presentsthe
result:

Achievable DOF in a Multiple Access Channel

In a multiple access channel withK users, each
user enjoys 1

K
of the total DOF provided that

the channel coefficients are independent over
rational numbers and lie on a non-degenerate
manifold inRK .

Remark 1:Due to the general statement of the achievablity
for almost all cases, the preceding statement about the total
DOF of theK-user multiple access channel holds for almost
all channels. However, the capacity region of theK-user
multiple access channel is completely characterized and itcan
be shown that under all circumstances each user can enjoy
1
K

of the total DOF. We will show that the above coding
scheme is capable of achieving the total DOF of channels
with interference.

In the following example, we will look at the two-userX
channel that was originally introduced in [2]. This example
adds two important features to the signaling. First, multiple
data streams are transmitted from each transmitter. Second,
interference alignment is required to achieve the total DOFof
the channel.

Example 3 (Two-userX Channel [18]): In the two-userX
channel, each transmitter has independent messages to both
receivers, see Figure 4. Hence, each transmitter has two data
streams and they need to be transmitted such that they can
be separated in their corresponding receivers. In [18], the

x1

x2

y1

y2

h11

h
1
2

h
2
1

h22v2u2

v1u1

v2

u2

v1

u1

1
3

1
3

1
3

1
3

1
3

1
3

v1

v2

u1

u2

Fig. 4. The two-userX channel. Data streams intended for the first receiver,
u1 and u2, are aligned at the second receiver occupying one third of the
received dimension. Similarly, data streams intended for the second receiver,
v1 andv2, are aligned at the first receiver occupying one third of the received
dimension.

following signaling is proposed for the channel:

x1= h22u1 + h12v1,

x2= h21u2 + h11v2,

where u1, u2 and v1, v2 are data streams intended for the
first and second receivers, respectively. All data streams are
transmitted using the constellationU = A(−Q,Q)Z, where
Q is an integer andA is the factor controlling the minimum
distance of the received constellation.

The direction used to transmit data streams are chosen based
on the channel coefficients. As we will explain, this choice
allows us to align unwanted signals at receivers. In general,
we can state the following:

Transmit Directions Matching the Channel

To transmit multiple data streams from a trans-
mitter, channel coefficients are used as generators
for the directions.

Using the above signaling, the received signal can be written
as:

y1= (h11h22)u1 + (h21h12)u2 + (h11h12)(v1 + v2) + z1,

y2= (h21h12)v1 + (h11h22)v2 + (h21h22)(u1 + u2) + z2.

The received signals are linear combinations of three termsin
which two of them are the intended data streams and one is
the sum of interfering signals, see Figure 4. Let us focus on
the first receiver.y1 resembles the received signal of a multiple
access channel with three users. However, there is an important
difference between them. In the two-userX channel the term
corresponding to the interfering signals, i.e.u3 = v1 + v2,
is a sum of two data streams. However, we claim that this
difference does not change considerably the minimum distance
of the received constellation, i.e.dmin. Recall that Khintchine-
Groshev theorem is used to bounddmin. The bound is a
function of the maximum value that the integers can take.
The maximum value ofu3 is 2AQ, which is different from a
single data stream by a factor of two. Since this change only
affects the constant term of Khintchine-Groshev theorem, we
havedmin ≈ A

Q2 and the receiver can decode all data streams
if each of them have a multiplexing gain of13 . Therefore, the
multiplexing gain of43 is achievable in total, which meets the
upper bound.
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Interference Alignment

Two data streams are aligned at a receiver if
they arrive at the receiver with the same received
direction (coefficient).

It is interesting to see what Khintchine-Groshev theorem of-
fers whenv1 andv2 receive in different directions. In this case,
the received constellation consists of points representable by
a linear combination of four integers. Therefore, Khintchine-
Groshev theorem gives usdmin ≈ A

Q3 . Hence, each data stream
can carry information with a multiplexing gain of14 , and in
total, the DOF of 1 is achievable. This means interference
alignment reduces the power ofQ in the expression ofdmin,
which in turn allows achieving higher DOFs.

The signaling proposed for the two-userX channel can be
interpreted as follows. The received signal at each receiver is a
real number, which is a one-dimensional component. One can
embed three rational dimensions, each of which has dimension
1
3 in this one dimensional space, see Figure 4. One of these
dimensions is associated with interference and the other two
with intended signals. Therefore,43 out of two dimensions
available at both receivers are used for data, which in turn
gives us the total DOF of the channel. In general, we can
state:

Rational Dimension Occupation

If a receiver observesK data stream inK differ-
ent directions, then each data stream occupies1

K

of the receiver’s dimension. Moreover, if multiple
data streams are aligned at a receiver then the
dimension that they occupy is the same as that of
a single data streams.

As above example reveals, available dimensions at all
receivers, like time and frequency, are natural resources in
wireless systems. Interference alignment at all receiversis
a way of exploiting the full potential of these resources by
reducing the unused dimensions at all receivers. In the two
userX channel, we have observed that interfering signals from
two different sources can be easily aligned at a single receiver.
Moreover, two interfering streams are received with the same
direction occupying only13 of the available dimensions of the
receivers. This is in fact the best efficiency that one can hope
for in reducing the number of waste dimensions. This idea
inspires us to define the alignment efficiency as follows.

Alignment Efficiency

Let us consider that all transmitters transmit the
same number of data streams, sayLt, using
Lt different directions. Moreover, the maximum
dimension occupied by interference at all re-
ceivers is caused byLr received directions. The
alignment efficiencyη is defined as the ratio of
Lt andLr as

η =
Lt

Lr

.

Alignment is called perfect ifη = 1.

In the two userX channel, we were able to perform perfect
alignment in the system. As the following example shows,
however, this is not the case in general.

Example 4 (Alignment at two receivers):Let us consider a
communication scenario in which three transmitters try to
align their signals at two different receivers. The channelis
depicted in Figure 5. In order to shed light on the alignment
part of the signaling, the intended receivers are removed from
the picture.

Alignment can be done at the first receiver by sending a
single data stream with direction1 from each of the trans-
mitters; whereas alignment at the second receiver requiresbc,
ac, andab as chosen transmit directions for first, second, and
third transmitters, respectively. In general, it is not possible
to simultaneously align three single data streams at two
different receivers. Therefore perfect alignment is not feasible
by transmitting single data streams from each transmitter.

The solution to this problem is partial alignment, which is
first introduced in [10]. In this technique, instead of sending
just one data stream, several data streams are transmitted from
each transmitter. The idea is to choose the transmit directions
based on channel coefficients in such a way that the number
of received directions is minimum. For sake of simplicity, we
choose the same directions at all transmitters. LetT denote
the set of transmit directions. A directionT ∈ T is chosen as
a transmit direction if it can be represented as

T = as1bs2cs3 , (3)

where0 ≤ si ≤ n − 1 for all i ∈ {1, 2, 3}. In this way, the
total number of transmit directions isL1 = n3.

Generating Transmit Directions

Let G = {g1, g2, . . . , gm} denote a finite set
of real numbers. The set of transmit directions
G generated byG is the collection of all real
numbers representable by

gs11 g
s2
2 · · · gsmm ,

where si ∈ N for all i ∈ {1, 2, . . . ,m}. G is
closed under multiplication.

To compute the efficiency of the alignment, one needs to
find the set of received directions in the first and second
receivers, which are denoted byT1 andT2, respectively. Since
all transmit directions arrive at the first receiver intact,T1 = T .

To compute the set of received directions at the second
receiver, we look at the received directions due to the first,
second, and third transmitters separately. Since all of them
are multiplied bya, the received directions due to the first
transmitter are of the formasl+1bs2cs3 , where0 ≤ si ≤ n−1
for all i ∈ {1, 2, 3}. Similarly, aslbs2+1cs3 and aslbs2cs3+1

are the types of received directions due to the second and
third transmitter, respectively. Taking the union of all these
directions, one can computeT2. However, we can easily see
that the set of directions formed byaslbs2cs3 , where 0 ≤
si ≤ n for all i ∈ {1, 2, 3} includesT2 and can be used as
an upper bound on the number of received directions. This
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Fig. 5. Three transmitters wish to align their signals at tworeceivers. Each
circle on the transmitters’ sides represents a set of data streams transmitted
in the directionsT . Each circle on the receivers’ sides represent the received
directions due to different transmitters. The received directions can be aligned
with efficiency arbitrary close to one.

set has(n+ 1)3, which is an upper bound forL2. Hence, we
conclude that

η =
L1

L2
>

(
n

n+ 1

)3

.

Sincen is an arbitrary integer, any alignment efficiency close
to 1 is possible. Hence, the partial alignment approaches the
perfect alignment.

For the multiple transmitter and receiver, the above approach
can be easily extended. In fact, it can be shown that the perfect
alignment is possible for any finite number of transmitters and
receivers.

Simultaneous Interference Alignment

Partial interference alignment of any finite num-
ber of signals is possible at any finite number of
receivers. Moreover, by increasing the number of
transmit directions, one can achieve any align-
ment efficiency close to one.

The above example shows that a set of data streams with
the appropriate directions in any system can play the role
of a single data stream in the two-userX channel, where
perfect interference alignment was possible. In addition to
perfect alignment, which is desired in any system, receivers
are required to decode their own messages from the received
signals. However, the receiver can decode its own messages
if the intersection of the set of received directions due to
interference and message is null.

In the last example, we will combine all ideas presented in
this section to obtain the total DOF of the3× 3 X channel.

Example 5 (3× 3 X channel): In this example, we con-
sider the 3 × 3 X channel shown in Figure 6. In this
channel, each transmitter has independent messages for all
three receivers. Letmji denote the message transmitted by
the ith transmitter and intended for thejth receiver, where
i, j ∈ {1, 2, 3}. In addition, letxij denote the signal carrying
the messagemji.

The transmitters send their messages using the following

signaling:

x1 =h11x11 + h21x21 + h31x31,

x2 =h12x12 + h22x22 + h32x32,

x3 =h13x13 + h23x23 + h33x33.

The messages intended for the first receiver are transmitted
by x11, x12, andx13 (red circles in Figure 6). In the previous
example, we have shown that the signals carrying these data
can be efficiently aligned at the second and third receivers
using transmit directionsG1 generated by

G1 = {h11h21, h11h31, h12h22, h12h32, h13h23, h13h33}.

To see this, let us consider the signalx11. This signal arrives
at the second and third receivers multiplied byh11h21 and
h11h31, respectively. In other words,h11h21 andh11h31 are
equivalent channel gains betweenx11 and the second and third
receivers. Therefore, these factors need to be incorporated in
the selection of transmit directions to have efficient alignment
at both receivers. A similar argument can be applied forx12
andx13. In a similar fashion, one can obtain the setsG2 and
G3 used for sending messages to the second and third receivers
by using generators

G2 = {h21h11, h21h31, h22h12, h22h32, h23h13, h23h33}

and

G3 = {h31h11, h31h21, h32h12, h32h22, h33h13, h33h23},

respectively.
The previous example ensures us that the preceding sig-

naling is efficient regarding interference alignment. However,
we need to guarantee that the messages can be decoded at
the intended receivers. To this end, we look at the received
directions at the first receiver.h211G1, h212G1, and h213G1 are
received directions due to the intended messages. Clearly,they
are all different and therefore can be separated based on the
separability condition. Moreover, it can be shown that the
set of intended directions has no intersection with the set of
interfering directions represented byG2∪G3 (recall thatG2 and
G3 are closed under multiplication). Dividing the dimension of
the first receiver into five, one can conclude that two of them
are occupied by interference and three of them are occupied
by the intended signals. Therefore,3

5 is an achievable DOF at
the first receiver. Due to symmetry, a similar argument can be
applied for the second and third receivers, resulting in9

5 as
the total DOF of the channel.

IV. D IOPHANTINE APPROXIMATION:
KHINTCHINE-GROSHEV TYPE THEOREMS

In number theory, the field of Diophantine approximation
deals with the approximation of real numbers with rational
numbers. The reader is referred to [22], [23] and the references
therein. Khintchine theorem is one of the cornerstones in this
field. It gives a criteria for a given functionψ : N → R+

and real numberv such that|p + vq| < ψ(|q|) has either
infinitely many solutions or at most finitely many solutions
for (p, q) ∈ Z2. Let A(ψ) denote the set of real numbers such
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Fig. 6. The3× 3 X channel. Each red circle represents a set of data streams intended for the first receiver. They can be aligned with efficiency arbitrary
close to one at the second and third receivers, occupying1

5
of the received directions. Similarly, signals intended for the second and third receivers can be

aligned efficiently at non-intended receivers (blue and green circles). Each set of data stream can carry data with multiplexing gain of 1
5

. There are 9 sets of
streams resulting in the total DOF of9

5
.

that |p+vq| < ψ(|v|) has infinitely many solutions in integers.
The theorem has two parts. The first part is the convergence
part and states that ifψ(|q|) is convergent, i.e.,

∞∑

q=1

ψ(q) <∞

thenA(ψ) has measure zero with respect to Lebesque mea-
sure. This part can be rephrased in a more convenient way as
follows. For almost all real numbers,|p+ vq| > ψ(|q|) holds
for all (p, q) ∈ Z2 except for finitely many of them. Since the
number of integers violating the inequality is finite, one can
find a constantκ such that

|p+ vq| > κψ(|q|)

holds for all integersp and q almost surely. The divergence
part of the theorem states thatA(ψ) has the full measure, i.e.
the setR−A(ψ) has measure zero, providedψ is decreasing
andψ(|q|) is divergent, i.e.,

∞∑

q=1

ψ(q) = ∞.

There is an extension to Khintchine’s theorem due to
Groshev, which regards the rational approximation of linear
forms with rational coefficients. Letv = (v1, v2, . . . , vm)
and q = (q1, q2, . . . , qm) denote anm-tuple in Rm and
Zm, respectively. LetAm(ψ) denote the set ofm-tuple real
numbersg such that

|p+ v · q| < ψ(|q|∞) (4)

has infinitely many solutions forp ∈ Z and q ∈ Zm. |q|∞
is the supreme norm ofq defined asmaxi |qi|. The following
theorem gives the Lebesque measure of the setAm(ψ).

Theorem 4 (Khintchine-Groshev):Let ψ : N → R+. Then
the setAm(ψ) has measure zero, provided

∞∑

q=1

qm−1ψ(q) <∞, (5)

and has the full measure if
∞∑

q=1

qm−1ψ(q) = ∞ andψ is monotonic. (6)

In [18], Theorem 4 is used to prove that the total DOF
of the two-userX channel can be achieved using a simple
coding scheme. It is also proved that the three-user GIC can
achieve the DOF of43 almost surely. Note that Theorem 4
does not include the case where elements ofv are related. It
turned out that such a shortcoming in this theorem prevented
us from proving the achievablity of32 for the three-user GIC.
Let us assumev lies on a manifold with dimension less than
m in Rm. In this case, the theorem may not be correct as
the measure of the manifold is zero with respect to Lebesque
measure. Recently, [24] and [25] independently extended the
convergence part of the theorem to the class of non-degenerate
manifolds. However, a subclass of non-degenerate manifolds is
sufficient for the proofs of the results in this paper. Therefore,
in the following theorem we state the theorem in its simplest
form by limiting the scope of it.

Theorem 5 ( [24] and [25]):Let n ≤ m, v =
(v1, v2, . . . , vn) ∈ Rn, and g1, g2, . . . , gm be functions
from Rn to R with the following conditions:

1) gi for i ∈ {1, 2, . . . ,m} is analytic,
2) 1, g1, g2, . . . , gm are linearly independent overR.

For any monotonic functionψ : N → R+ such that
∑∞

q=1 q
m−1ψ(q) <∞ the inequality

|p+ q1g1(v) + q2g2(v) + . . .+ qmgm(v)| < ψ(|q|∞) (7)

has at most finitely many solutions(p,q) ∈ Z×Zm for almost
all v ∈ Rn.

Throughout this paper, the functionψ(q) is chosen as 1
qm+ǫ

for an arbitraryǫ > 0. Clearly, this function satisfies (5) and
is an appropriate candidate for the theorem. If all conditions
of the theorem hold, then one can find a constantκ such that
for almost allv ∈ Rn

|p+ q1g1(v) + q2g2(v) + . . .+ qmgm(v)| > κ

(maxi |qi|)m+ǫ

(8)



9

holds for allp ∈ Z andq ∈ Zm.
One class of functions satisfying the conditions in Theorem

5 is of special interest. LetG(v) denote the set of all
monomials with variables from the setv = {v1, v2, . . . , vn}.
In other words, a functiong belongs toG(v) if it can be
represented asg = vs11 v

s2
2 · · · vsmn for some nonnegative

integerss1, s2, . . . , sn. It is easy to show that any collection
of functions fromG(v) satisfies the conditions of Theorem 5.
More specifically, all functions belonging toG(v) are analytic.
Moreover, a set of monomials are independent overR as long
as they are distinct. As a special case when setv has only one
member, i.e.v = {v}, then we haveG(v) = {1, v, v2, v3, . . .}.

V. CODING SCHEME AND PERFORMANCEANALYSIS

Unless otherwise stated, we assume that the same encoding
and decoding schemes are applied at all transmitters and
all receivers, respectively. In the following, we will describe
the proposed encoding and decoding schemes for a given
transmitter and receiver.

Construction of a single data stream: Let us first explain
the encoding of a single data stream. The constellationC =
(−Q,Q)Z as the set of input symbols is chosen. Even though
one can use the continuum of real numbers as the input
alphabets, restriction to a finite set has the benefit of easy and
feasible interference alignment. We assumeQ = γP

1−ǫ
2(m+ǫ)

whereγ is a constant. Notice that since the number of input
symbols are bounded by2Q − 1, the data stream modulated
by C can at most provide1−ǫ

m+ǫ
DOF. We will show that at

high SNR regimes this DOF can be achieved.
Having formed the constellation, a random codebook with

rate R is constructed to change the channel into a reliable
one. This can be accomplished by choosing a probability
distribution on the input alphabets. The uniform distribution is
the first candidate and it is selected for the sake of simplicity.
Note that since the constellation is symmetrical by assumption,
the expectation of the uniform distribution is zero and the
transmit signal has no DC component. The power consumed
by the data stream can be loosely upper-bounded asQ2.

Remark 2:The parameters involved in the proposed con-
struction, i.e,Q, m,γ, andǫ, are universal and applied to all
the available data streams. Clearly, the optimum performance
of a system can be attained by selecting these parameters
appropriately.

Encoding scheme: It is well known that a transmitter with
average power constraintP and equipped withM antennas has
M degrees-of-freedoms available for data transmission. This is
due to the fact that the input signal lies on anM -dimensional
Euclidean space1. As it has been reported in numerous papers,
the most applicable approach utilizing these available DOFs
relies on the expansion of the input signal intoM bases and
transmission of a single data stream over each of these bases.
For instance, if the input signal isx ∈ RM then by choosing

1If a channel is time/frequency varying then the input signalover M

extensions of time/frequency lies on anM -dimensional Euclidean space.
Therefore, MIMO and time/frequency varying channels behave the same
regarding the DOF.

{T0,T2, . . . ,TM−1} independent vectors we have

x =

M−1∑

i=0

Tixi, (9)

wherexi is the i’th component ofx in the direction ofTi.
Being a real number,xi for i ∈ {0, 1, . . . ,M − 1} can carry
at most one DOF. If a transmitter, however, wishes to send
less thanM data streams, sayL, then it choosesL bases out
of M available bases and discards the rest of bases. In this
scheme only integral DOFs are possible for each transmitter.
As a simple example, a single antenna transmitter can send a
data stream with either one DOF or zero DOF.

In this paper, we prove that the restriction on achieving
integral DOFs can be relaxed in a dramatic way. We claim that
under some regularity conditions, which are not too restrictive,
any fractional DOF is possible. Let us focus on a single
antenna transmitter. Viewing as a one-dimensional Euclidean
space it has only one base; whereas viewing as a vector
field over rational numbers (or equivalently integers), it has
infinitely many bases.

The i’th transmitter chooses a set of real numbers, say
Ti = {Ti0, Ti1, . . . , Ti(M−1)}, as the set of transmit directions
for transmittingM independent data streams. The members
of Ti are independent over the field of rational numbers.
In the proposed coding scheme, the transmit signal can be
represented by

xi = A

M−1∑

l=0

Tiluil, (10)

whereuil for l ∈ {0, 1, . . . ,M − 1} is the l’th data stream
transmitted in the direction ofTil.

The parameterA controls the input power of the transmit-
ters. In what follows,A is computed based on an upper-bound
on the input power of a typical transmitter. We start with the
following chain of inequalities

E[x2i ]
(a)
= A2

M−1∑

l=0

T 2
ilE
[
u2il
]

(b)

≤ A2Q2

(
M−1∑

l=0

T 2
il

)

= A2Q2λ2i

where (a) follows from the fact that all data streams are
independent and (b) follows from the fact that the data streams
are all the same and henceu2il ≤ Q2. We use a short-hand
notationλi asλi =

∑M−1
l=0 T 2

il. Since eachTil is constant,λi
is also a constant. To satisfy the power constraint, it is required
that

A ≤ P
1
2

Qλi

for all i ∈ {1, 2, . . . ,K}, whereK is the number of transmit-
ters. Clearly, it is sufficient to choose

A =
ζP

1
2

Q
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whereζ = mini
1
λi

. By assumptionQ = γP
1−ǫ

2(m+ǫ) . Hence,
we have

A = ξP
m−1+2ǫ
2(m+ǫ) , (11)

whereξ = ζ
γ

.
In fact,A andQ are two important design parameters in the

encoding.Q controls the cardinality of the input constellation,
which in turn provides the maximum achievable rate for
individual data streams. The cardinality of the constellation
grows roughly asP

1
2m . On the other hand,A controls the

minimum distance in the received constellation, which in turn
affects the performance. Our calculation reveals that no matter
how many data streams each transmitter is intended to send,
Q andA only depend onm, which is the reciprocal of the
multiplexing gain of each data streams.

Transmit directions and interference alignment: The
most important part of the proposed coding design is the
selection of transmit directions. As it is shown in Section III
through several examples, transmit directions provide interfer-
ence alignment as well as separability at all receivers. In fact,
to design the optimum directions, interference alignment plays
the role as the separability condition usually comes for free.

One important observation is that the transmit directions
need to be generated based on channel parameters. Monomials
are the best candidates as they are forming a non-degenerate
manifold in higher dimensions. This property allows us to
incorporate Khintchine-Groshev type theorems in the perfor-
mance analysis.

We will explain in more details how the transmit directions
can be chosen based on the channel coefficients. To have a
glimpse on the procedure, we consider there areK ′ receivers
in the network receiving signals fromK transmitters as inter-
ference. The interference, due to all transmitters at Receiver
j, can be represented asIj =

∑K
i=1 hjixi where hji is a

real number. Clearly, if each transmitter transmits one data
stream then it is impossible to align them at all receivers.
However, it is possible to align the transmit signals if each
transmitter encodesM data streams asxi =

∑M−1
l=0 Tiluil for

all i ∈ {1, 2, . . . ,K}. Therefore, the interference at thej’th
receiver can be written as

Ij =

K∑

i=1

M−1∑

l=0

(hjiTil)uil,

where(hjiTil) is thereceived directionfor thel’th data stream
of the i’th transmitter. If the transmit directions are chosen
randomly, then all of the received directions are distinct and
the total number of received directions isKK ′, which is not
desirable.

To reduce the number of received directions,hji’s can be
used as the generators for the transmit directions. Let us fix
the set of received directions by assuming that all received
directions belong to the setTr, which consists of directions of
the form

∏K
i=1

∏K′

j=1 h
sji
ji , wheren is an arbitrary integer and

0 ≤ sji ≤ n for all i ∈ {1, 2, . . . ,K} andj ∈ {1, 2, . . . ,K ′}.
If M ′ denotes the number of received directions then it is easy
to show thatM ′ = (n+ 1)KK′

.
A transmit direction is legitimate if it arrives at all receivers

with directions belonging toTr. Let us focus on thei’th

transmitter. The received signals due to the transmit signal
xi are h1ixi, h2ixi, . . . , hMixi. If we choose the transmit
directions from the setTi, which consists of directions of the
form 



K′

∏

j=1

h
s′ji
ji





︸ ︷︷ ︸

0≤s′
ji
≤n−1





K∏

k=1&k 6=i

K′

∏

j=1

h
sjk
jk





︸ ︷︷ ︸

0≤sjk≤n

,

then the received directions at all receivers belong toTr as the
power ofhji for all j ∈ {1, 2, . . . ,K ′} is lowered by one. It
is easy to show thatM = nK′

(n+ 1)K
′(K−1).

The efficiency of the alignment can be measured by the

ratio of M ′ andM , i.e., η = M ′

M
=
(
n+1
n

)K′

. The perfect
alignment happens whenM = M ′ , i.e., the ratio is one.
However, asn can be chosen arbitrarily large, then we can
have any efficiency close to one from the proposed alignment
technique. In a loose sense, we can say that any number of
transmitters can align their signals at any number of receivers.

Decoding scheme: The received signal at thej’th receiver
in its general form can be represented by

yj = A





Lj−1
∑

l=0

T̄jlujl +

L′

j−1
∑

l=0

T̄ ′
jlu

′
jl



+ zj , (12)

where T̄jl and T̄ ′
jl are the received directions due to an

intended data stream and an interfering signal, respectively.
It is assumed thatLj and L′

j are the number of received
directions due to the intended data streams and interfering
signals, respectively.ujl is an intended data stream.u′jl is the
an interfering signals. Because of interference alignment, it is
possible thatfjl data streams arrive at the directionT̄ ′

jl, which
results inu′jl ∈ (−fjlQ, fjlQ)Z. To have a uniform bound, let
us definef = max(j,l) fjl and U ′ = (−fQ, fQ)Z. Clearly,
u′jl ∈ U ′ for all j’s and l’s.

We assume thatLj + L′
j ≤ m for all j ∈ {1, 2, . . . ,K}.

The j’th receiver is interested in data streamsujl for all l ∈
{0, 1, . . . , Lj −1}. The data streamujl is decoded as follows.
The received signal is first passed through a hard decoder. The
hard decoder looks at the received constellation

Vj = A





Lj−1
∑

l=0

T̄jlU +

L′

j−1
∑

l=0

T̄ ′
jlU ′





and maps the received signal to the nearest point in the constel-
lation. This changes the continuous channel to a discrete one
in which the input symbols are from the transmit constellation
U and the output symbols are from the received constellation
Vj .

It is assumed that the received constellation has the property
that there is a many-to-one map fromVj toUj =

∑Lj−1
l=0 T̄jlU .

Recall that the transmit directions are chosen in such a way
that all ujl’s can be recovered uniquely fromUj . This, in
fact, implies that if there is no additive noise in the channel
then the receiver can decode all intended data streams with
zero error probability. This property holds, for example, when
T̄jl’s and T̄ ′

jl are all distinct and linearly independent over
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rational numbers. Throughout this paper, we always design
the transmit directions in such a way that this condition holds.

The equivalent channel betweenujl and the output of the
hard decoder̂ujl becomes a discrete channel and the joint-
typical decoder can be used to decode the data stream from
a block of ûjl’s. To decode another data stream, Receiverj

performs the same procedure used for decodingujl. In fact,
joint-decoding is not used to decode all intended data streams.

Performance Analysis: Let djmin denote the minimum
distance in the received constellationVj. The average error
probability in the equivalent discrete channel from inputujl
to outputûjl , i.e. Pe = Pr{ûjl 6= ujl} is bounded as:

Pe≤ Q

(
djmin

2

)

≤ exp

(

−
d2jmin

8

)

. (13)

Pe can be used to lower bound the rate achievable for the
data streamujl. In [16], Etkin and Ordentlich used Fano’s
inequality to obtain a lower bound on the achievable rate,
which is tight in high SNR regimes. Following similar steps,
one can obtain

Rjl= I(ûjl, ujl)

= H(ujl)−H(ujl|ûjl)
(a)

≥ H(ujl)− 1− Pe log |U|
(b)
= (1− Pe) log |U| − 1
(c)
= (1 − Pe) log(2Q− 1)− 1 (14)

where (a) follows from Fano’s inequality, (b) follows from the
fact thatujl has a uniform distribution on its range, and (c)
follows from the fact that|U|, which is the number of integers
in the interval[−Q,Q], is bounded by2Q− 1. Let us assume
thatPe → 0 asP → ∞. Under this condition, the achievable
multiplexing gain from data streamujl can be obtained as
follows:

rjl= lim
P→∞

Rjl

0.5 logP

≥ lim
P→∞

logQ

0.5 logP
(a)
=

1− ǫ

m+ ǫ
(15)

where (a) follows from the fact thatQ = γP
1−ǫ

2(m+ǫ) . Since
ǫ > 0 is an arbitrary constant, the multiplexing gain of1

m
is

achievable for the data streamujl.
Provided that all intended data streams can be successfully

decoded at all receivers, the achievable DOF at thej’th
receiver can be written asLj

m
. However, it is achievable under

the condition thatPe → 0 as P → ∞ and it needs to be
shown. To this end, one requires to calculate the minimum
distance between points in the received constellation.

Recall thatLj +L
′
j ≤ m andT̄jl’s andT̄ ′

jl’s are all distinct
and monomials with variables from the channel coefficients.
Theorem 5 can be applied to obtain a lower bound on the
minimum distance. Let us assume that one of the directions

in T̄jl’s or T̄ ′
jl’ is 1. Then a point inVj can be represented as

v = A



v0 +

Lj+Lj−1
∑

l=1

T̂lvl



 . (16)

whereT̂l’s are all distinct monomials at receiverj. Moreover,
vl for all l ∈ {0, 1, . . . , Lj + L′

j − 1} are bounded by
(−fQ, fQ)Z. Therefore, the distance between any two points
in the received constellationVj can be bounded using (8) as
follows:

djmin >
κA

(2fQ)Lj+L′

j
−1+ǫ

.

SinceLj + L′
j ≤ m, we have

djmin >
κA

(2fQ)m−1+ǫ
. (17)

The probability of error in hard decoding (see (13)) can be
bounded as

Pe < exp

(

−̺
(

A

Qm−1+ǫ

)2
)

, (18)

whereη is a constant and a function ofγ, κ, σ, andγis.
SubstitutingA andQ in (18) yields

Pe < exp (−ηP ǫ) , (19)

which shows thatPe has the desired property.
The following theorem summarizes the conditions needed

to achieve the multiplexing gain of1
m

per data stream.
Theorem 6:Consider there areK transmitters andK ′ re-

ceivers in a system parameterized by the channel coefficient
vectorh. Transmitteri sendsM data stream along directions
Ti = {Ti0, Ti2, . . . , Ti(M−1)} for all i ∈ {1, 2, . . . ,K}. The
data streams intended for thej’th receiver arrive atLj di-
rections, which areTj = {T̄j0, T̄j2, . . . , T̄j(Lj−1)}. Moreover,
the interference part of the received signal at thej’th receiver
hasL′

j effective data streams with received directionsT ′
j =

{T̄ ′
j0, T̄

′
j2, . . . , T̄

′
j(L′

j
−1)} for all j ∈ {1, 2, . . . ,K ′}. Let the

following conditions for allj ∈ {1, 2, . . . ,K ′} hold:
C1 Components ofTi are distinct member ofG(h)

and linearly independent over the field of rational
numbers.

C2 Components ofTi andT ′
i are all distinct.

C3 One of the elements of eitherTi or T ′
i is 1.

Then, by encoding each data stream using the constellation
U = (−Q,Q)Z whereQ = γP

1−ǫ
2(m+ǫ) andγ is a constant, the

following DOF is achievable for almost all realizations of the
system:

rsum=
L1 + L2 + · · ·+ LK′

m
, (20)

where m is the maximum received directions among all
receivers, i.e.,m = maxi Li + L′

i.
Remark 3: If C2 holds, then the measure of the event

“components ofTi and T ′
i are dependent over the field of

rational numbers” is zero.
Remark 4: If C3 does not hold, then by adding a virtual

data stream in the direction 1 at the receiver, one can conclude
that 1

m+1 is achievable for all data streams.
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Fig. 7. The K-user GIC. Useri for i ∈ {1, 2, . . . , K} wishes to
communicate with its corresponding receiver while receiving interference from
other users.

Theorem 6 implies that the most difficult part of the design
is the selection of transmit directions for all users. This is due
to the fact that random selection results inm =

∑K
i=1 Li

received directions, which in turn provides 1 DOF for the
channel. A careful design is needed to reduce the number of
received directions at all users. In the following section,we
provide such a design for theK-user GIC.

VI. K -USERGAUSSIAN INTERFERENCECHANNEL

A. System Model

TheK-user GIC models a network in whichK transmitter-
receiver pairs (users) sharing a common bandwidth wish to
have reliable communication at their maximum rates. The
channel’s input-output relation can be stated as follows, see
Figure 7,

y1= h11x1 + h12x2 + . . .+ h1KxK + z1,

y2= h21x1 + h22x2 + . . .+ h2KxK + z2,

... =
...

...
. . .

... (21)

yK= hK1x1 + hK2x2 + . . .+ hKKxK + zK ,

wherexi and yi are input and output symbols of Useri for
i ∈ {1, 2, . . . ,K}, respectively.zi is Additive White Gaussian
Noise (AWGN) with unit variance fori ∈ {1, 2, . . . ,K}.
Transmitters are subject to the power constraintP . hji repre-
sents the channel gain between Transmitteri and Receiver
j. It is assumed that all channel gains are real and time
invariant. The set of all channel gains is denoted byh, i.e.,
h = {h11, . . . , h1K , h21, . . . , h2K , . . . , hK1, . . . , hKK}. Since
the noise variances are normalized, the Signal to Noise Ratio
(SNR) is equivalent to the input powerP . Hence, we use them
interchangeably throughout this paper.

In this paper, we are primarily interested in characterizing
the total DOF of theK-user GIC. LetC denote the capacity
region of this channel. The DOF region associated with the
channel is in fact the shape ofC in high SNR regimes
scaled bylogSNR. Let us denote the DOF region byR. All

extreme points ofR can be identified by solving the following
optimization problem:

rλ = lim
SNR→∞

max
R∈C

λt
R

0.5 logSNR
. (22)

The total DOF refers to the case whereλ = {1, 1, . . . , 1}, i.e.,
the sum-rate is concerned. Throughout this paper,rsum denotes
the total DOF of the system.

An upper bound on the DOF of this channel is obtained in
[10]. The upper bound states that the total DOF of the channel
is less thanK2 , which means each user can at most enjoy one
half of its maximum DOF.

B. Three-user Gaussian Interference Channel: DOF= 3
2 is

Achievable

In this section, we consider the three-user GIC and explain
in detail that, by an appropriate selection of transmit directions,
the DOF of 3

2 is achievable for almost all cases. We will
explain in more detail that by an appropriate selection of
transmit directions this DOF can be achieved.

In [18], we defined the standard model of the three-user
GIC. The definition is as follows:

Definition 1: The three user interference channel is called
standard if it can be represented as

y1= G1x1 + x2 + x3 + z1

y2= G2x2 + x1 + x3 + z2 (23)

y3= G3x3 + x1 +G0x2 + z3.

wherexi for User i is subject to the power constraintP . zi
at Receiveri is AWGN with unit variance.

In [18], it is also proved that every three-user GIC has an
equivalent standard channel as far as the DOF is concerned.
The parameters in the standard channel are related to the pa-
rameters of the original one thorough the following equations.

G0 =
h13h21h32

h12h23h31
,

G1 =
h11h12h23

h12h21h13
,

G2 =
h22h13

h12h23
,

G3 =
h33h12h21

h12h23h31
.

As mentioned in the previous section, transmit directions are
monomials with variables from channel coefficients. For the
three user case, we only useGO as the generator of transmit
directions. Therefore, transmit directions are selected from the
setG(G0), which is a subset ofG(G0, G1, G2, G3). Clearly,
G(G0) = {1, G0, G

2
0, G

3
0, · · · }.

We consider two different cases based on the value ofG0

being algebraic or transcendental. Although the measure of
being algebraic is zero, we prove that for each case the total
DOF can be achieved if the transmit and receive directions
satisfy the conditions of Theorem 6. We start with the case
whereG0 is algebraic.
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1) Case I:G0 is algebraic: By definition, ifG0 is algebraic
then it is a root of a polynomial with integer coefficients. Let
us assumeG0 satisfies

adG
d
0 + ad−1G

d−1
0 + . . .+ a1G0 + a0 = 0, (24)

wheread, ad−1, . . . , a0 are integers. In other words, the set
T = {1, G0, G

2
0, . . . , G

d−1
0 } is a basis forG(G0) over rational

numbers. Therefore, as the transmit directions need to be inde-
pendent over the field of rational numbers, the transmittersare
restricted to choose their transmit directions among numbers in
T . We assume that all transmitters transmit along all directions
in T , i.e., Ti = T for all i ∈ {1, 2, 3}. By this selection, C1
in Theorem 6 holds for all transmitters.

In this case, Transmitteri sendsLi = d data streams as
follows

xi = A

d−1∑

j=0

G
j
0uij , (25)

for all i ∈ {1, 2, 3}. The received signal at Receiver 1 can be
written as

y1 = A





d−1∑

j=0

G1G
j
0u1j +

d−1∑

j=0

G
j
0u

′
1j



+ z1, (26)

whereu′1j = u2j + u3j for all j ∈ {0, 1, . . . , d − 1}. The
signals from Transmitters 2 and 3 are aligned and the number
of received directions isL′

1 = d. Moreover C2 and C3 in
Theorem 6 hold for this receiver. Since the received signal at
Receiver 2 is similar to that of Receiver 1, we can deduce that
L′
2 = d and C2 and C3 hold.
The received signal at Receiver 3 can be written as

y3 = A





d−1∑

j=0

G3G
j
0u3j +

d∑

j=0

G
j
0u

′
3j



+ z3, (27)

whereu′3j = u2j + u1(j−1) for j ∈ {1, 2, . . . , d − 1}, u′30 =
u20, andu′3d = u1d. The number of received directions from
interfering users isd+ 1. However, they are not independent
over the field of rational numbers. Using (24),Gd

0 can be
represented as a linear combination of{1, G0, G

2
0, . . . , G

d−1
0 }

with rational coefficients. Multiplying both sides of (27) by
ad, we have

ỹ3 = A





d−1∑

j=0

adG3G
j
0u3j +

d−1∑

j=0

G
j
0adu

′
3j + adG

d
0u

′
3d



 + z̃3,

(28)
where ỹ3 = ady3 and z̃3 = adz3. Substituting from (27), we
obtain

ỹ3 = A







d−1∑

j=0

adG3G
j
0u3j +

d−1∑

j=0

G
j
0(adu

′
3j − aju

′
3d

︸ ︷︷ ︸

u′′

j

)







+ z̃3.

(29)
Clearly,L′

3 = d and C2 and C3 hold for this receiver as well.
The maximum number of received directions at all receivers

is m = 2d. Since C1, C2, and C3 hold at all receivers, by
applying Theorem 6 we conclude that the total DOF of3

2 is
achievable for almost all cases.

Remark 5: In a special case,d = 1 in (24). In other words,
G0 is a rational number. This case is considered in [16] and
it is proved that it can achieve the total DOF of the channel.

2) Case II:G0 is transcendental:If G0 is transcendental
then all members ofG(G0) are linearly independent over the
field of rational numbers. Hence, we are not limited to any
subset ofG(G0), as far as the independence of transmit direc-
tions is concerned. We will show that3n+1

2n+1 is an achievable
DOF for anyn ∈ N. To this end, we propose a design that is
not symmetrical.

Transmitter 1 uses the set of directionsT1 =
{1, G0, G

2
0, . . . , G

n
0 } to transmitL1 = n+1 to its correspond-

ing receiver. ClearlyT1 satisfies C1. The transmit signal from
User 1 can be written as

x1 = A

n∑

j=0

G
j
0u1j .

Transmitters 2 and 3 transmit inL2 = L3 = n directions
usingT2 = T3 = {1, G0, G

2
0, . . . , G

n−1
0 }. Clearly bothT2 and

T3 satisfy C1. The transmit signals can be expressed as

x2 = A

n−1∑

j=0

G
j
0u2j

and

x3 = A

n−1∑

j=0

G
j
0u3j .

The received signal at Receiver 1 can be expressed as:

y1 = A





n∑

j=0

G1G
j
0u1j +

n−1∑

j=0

G
j
0u

′
1j



+ z1, (30)

whereu′1j = u2j + u3j . In fact, transmit signals from Users
2 and 3 are aligned at Receiver 1. This is due to the fact that
out of 2n possible received directions, onlyn directions are
effective, i.e.,L′

1 = n. One can also confirm that C2 and C3
hold at Receiver 1.

The received signal at Receiver 2 can be expressed as:

y2 = A





n−1∑

j=0

G2G
j
0u2j +

n∑

j=0

G
j
0u

′
2j



+ z2, (31)

whereu′2j = u1j+u3j for all j ∈ {0, 1, . . . , n−1} andu′2n =
u1n. At Receiver 2, transmitted signals from Users 1 and 3
are aligned and the number of effective received directionsis
L′
2 = n+ 1. Moreover, it can be easily seen that C2 and C3

hold at Receiver 2.
The received signal at Receiver 3 can be expressed as:

y3 = A





n−1∑

j=0

G3G
j
0u3j +

n∑

j=0

G
j
0u

′
3j



+ z3, (32)

whereu′3j = u1j + u2j for all j ∈ {1, 2, . . . , n} andu′30 =
u10. At Receiver 3, transmitted signals from Users 1 and 2
are aligned and the number of effective received directionsis
L′
2 = n+ 1. Clearly, C2 and C3 hold for Receiver 3.
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Since C1, C2, and C3 hold at all users, we only need
to obtain the number of maximum received directions at all
receivers. To this end, we observe that

m = max{L1 + L′
1, L2 + L′

2, L3 + L′
3} = 2n+ 1

. Therefore, an application of Theorem 6 reveals that the
following DOF is achievable.

rsum=
L1 + L2 + L3

m

=
3n+ 1

2n+ 1
. (33)

Sincen is an arbitrary integer, one can conclude that3
2 is

achievable for the three-user GIC almost surely.

C. K-user Gaussian Interference Channel: DOF= K
2 is

Achievable

In this section, we prove the main theorem of this paper, i.e.,
the DOF of K2 is achievable for theK-user GIC. As pointed
out in Section V, we need to design the transit directions of all
transmitters in such a way that they satisfy the conditions of
Theorem 6. Recall that all transmit directions are monomials
with variables inh. We reserve the direct gains and do not
use them as generating variables. The reason is that C2 in
Theorem 6 requires that all received directions be distinct. By
setting aside the direct gains, a transmit direction from the
intended user is multiplied by the direct gain and thereforeit
is distinct from all other transmit directions (by C1 all transmit
directions from a user are distinct).

We assume that all channel gains are transcendental. On the
one hand, since the measure of being algebraic is zero, this
assumption is innocuous. On the other hand, as we learned
from the three-user case algebraic gains are beneficial as they
reduce the number of transmit directions required to achieve
the total DOF of the channel.

We start with selecting the transmit directions for Useri.
A direction T ∈ G(h) is chosen as the transmit direction for
User i if it can be represented as

T =

K∏

j=1

K∏

l=1

h
sjl
jl , (34)

wheresjl’s are integers satisfying






sjj = 0 ∀ j ∈ {1, 2, . . . ,K}
0 ≤ sji ≤ n− 1 ∀ j ∈ {1, 2, . . . ,K} & j 6= i

0 ≤ sjl ≤ n Otherwise.

The set of all transmit directions is denoted byTi. It is easy
to show that the cardinality of this set is

Li = nK−1(n+ 1)(K−1)2 . (35)

Clearly,Ti satisfies C1 for alli ∈ {1, 2, . . . ,K}.
To computeL′

i (the number of independent received di-
rections due to interference), we investigate the effect of
Transmitterk on Receiveri. Let us first defineTr as the set
of directions represented by (34) and satisfying

{

sjj = 0 ∀ j ∈ {1, 2, . . . ,K}
0 ≤ sjl ≤ n Otherwise.

(36)

We claim thatTik, the set of received directions at Receiver
i due to Transmitterk, is a subset ofTr. In fact, all transmit
directions of Transmitterk arrive at Receiveri multiplied by
hik. Based on the selection of transmit directions, however, the
maximum power ofhik in all members ofTik is n−1. There-
fore, none of the received directions violates the condition of
(46) and this proves the claim.

SinceTr is not related to Userk, one can conclude that
Tik ⊆ Tr for all k ∈ {1, 2, . . . ,K} and k 6= i. Hence, we
deduce that all interfering users are aligned in the directions
of Tr. Now, L′

i can be obtained by counting the members of
Tr. It is easy to show that

L′
i = (n+ 1)K(K−1). (37)

The received directions at Receiveri are members ofhiiTi
and Tr. Since hii does not appear in members ofTr, the
members ofhiiTi and Tr are distinct. Therefore, C2 holds
at Receiveri. Since all the received directions are irrationals,
C3 does not hold at Receiveri.

SinceC1 andC2 hold for all users, we can apply Theorem
6 to obtain the DOF of the channel. We have

rsum=
L1 + L2 + . . .+ LK

m+ 1

=
KnK−1(n+ 1)(K−1)2

m+ 1
(38)

wherem is

m= max
i
Li + L′

i

= nK−1(n+ 1)(K−1)2 + (n+ 1)K(K−1). (39)

Combining the two equations, we obtain

rsum =
K

1 + (n+1
n

)K−1 + 1
nK−1(n+1)(K−1)2

. (40)

Sincen can be arbitrary large, we conclude thatK
2 is achiev-

able for theK-user GIC.

VII. C ELLULAR SYSTEMS: UPLINK

A. System Model

In a cellular network, an area is partitioned into several
cells and, within each cell, there is a base station serving users
inside the cell. There are two modes of operation. In the uplink
mode, users within a cell transmit independent messages to
the base station in the cell; whereas in the downlink mode,
the base station broadcasts independent messages to all users
inside the cell. In this section, we only consider the uplink
mode. Abstractly, the uplink mode corresponds to a network
in which several Multiple Access Channels (MAC) share the
same spectrum for data transmission. Let us assume there
exist M users in each MAC and there areK MACs in the
network. The received signal at the base station in Cellk can
be represented as

yk =

M∑

l=1

hk(kl)xkl

︸ ︷︷ ︸

users within the cell

+

K∑

i=1&i6=k

Iki

︸ ︷︷ ︸

intra cell interference

+zk (41)
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whereIki is the aggregate interference from all users in Cell
i, i.e.,

Iki =

M∑

l=1

hk(il)xil. (42)

Let Cup denote the capacity region of this channel. The DOF
region associated with the channel can be defined as the shape
of the region in high SNR regimes scaled bylogSNR. Let us
denote the DOF region byRup. We are primarily interested in
the main facet of the DOF region defined as:

rup = lim
SNR→∞

max
R∈Cup

∑K
k=1

∑M
l=1Rkl

0.5 logSNR
, (43)

whereRkl is an achievable rate for thel’th user in Cellk.

B. The Total DOF ofKM
M+1 is Achievable

To obtain an upper bound on the total DOF of this channel,
we assume that all users within a cell can cooperate. This
cooperation converts the uplink mode to a MISOK-user GIC
with M antennas at the transmitters and one antenna at the
receivers. An upper bound on the DOF of the MISOK-user
GIC is obtained in [20]. The upper bound states that the total
DOF of the channel is less thanKM

M+1 . We will show that this
DOF is achievable.

We start with selecting the transmit directions of them’th
user in Cellk. A direction T ∈ G(H) (H is the set of all
channel gains) is chosen as the transmit direction for this user
if it can be represented as

T =
K∏

j=1

K∏

i=1

M∏

l=1

h
sj(il)

j(il) , (44)

wheresj(il)’s are integers satisfying






sj(jl) = 0 ∀ j ∈ {1, 2, . . . ,K} & l ∈ {1, . . . ,M}
0 ≤ sj(km) ≤ n− 1 ∀ j ∈ {1, 2, . . . ,K} & j 6= k

0 ≤ sj(il) ≤ n Otherwise.

The set of all transmit directions is denoted byTkm. It is easy
to show that the cardinality of this set is

Lkm = nK−1(n+ 1)(KM−1)(K−1). (45)

Clearly,Tkm satisfies C1.
We claim that all signals from non-intended cells are aligned

at all base stations. In order to prove the claim, we introduce
Ti as the set of received direction due to interference at the
i’th base stations. Clearly,

Ti =
K⋃

k=1&k 6=i

M⋃

m=1

(hi(km)Tkm).

Let us defineT as the set of directions represented by (44)
and satisfying
{

sj(jl) = 0 ∀ j ∈ {1, 2, . . . ,K} & l ∈ {1, 2, . . . ,M}
0 ≤ sj(il) ≤ n Otherwise.

(46)
We claim thatTi ⊆ T . In fact, all transmit directions of
the m’th user in Cell k arrive at Receiveri multiplied by

x1

x2

y1

xK

yK′

h
11

m
11

h
M

1

m
M

1

h12

m12
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Fig. 8. TheK×M X Channel. Useri for i ∈ {1, 2, . . . ,K} wishes to trans-
mit an independent messagemji to Receiverj for all j ∈ {1, 2, . . . ,M}.

hi(km). Based on the selection of transmit directions, however,
the maximum power ofhi(km) in all members ofTkm is
n− 1. Therefore, none of the received directions violates the
condition (46) and this proves the claim.

Since T is not related to thei’s base station, one can
conclude thatTi ⊆ T for all i ∈ {1, 2, . . . ,K}. Hence, we
deduce that all interfering users are aligned in the directions
of T . Now, L′

i can be obtained by counting the members of
Tr. It is easy to show that

L′
i = (n+ 1)MK(K−1). (47)

The total number of received directions at thei’th base
stations is

∑M
l=1 Lil + L′

i. SinceC1 andC2 hold at all base
stations, we can obtain the total DOF of the channel as

rsum=

∑K
k=1

∑M
m=1 Lkm

MnK−1(n+ 1)(KM−1)(K−1) + (n+ 1)MK(K−1) + 1

=
MKnK−1(n+ 1)(KM−1)(K−1)

MnK−1(n+ 1)(KM−1)(K−1) + (n+ 1)MK(K−1) + 1

=
MK

M +
(
n+1
n

)K−1
+ 1

nK−1(n+1)(KM−1)(K−1)

. (48)

Since n can be arbitrary large, we conclude thatMK
M+1 is

achievable for the uplink of a cellular system.

VIII. K ×M X CHANNEL

A. System Model

TheK×M X channel models a network in whichK trans-
mitters wish to communicate withM receivers. Unlike the
interference channel, each transmitter has a message for each
receiver. In other words, Transmitteri for all i ∈ {1, 2, . . . ,K}
wishes to transmit an independent message to Receiverj for
all j ∈ {1, 2, . . . ,M}. The message transmitted by Transmitter
i and intended for Receiverj is denoted bymji. The channel’s
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input-output relation can be stated as follows, see Figure 8,

y1= h11x1 + h12x2 + . . .+ h1KxK + z1,

y2= h21x1 + h22x2 + . . .+ h2KxK + z2,

... =
...

...
. . .

... (49)

yM= hM1x1 + hM2x2 + . . .+ hMKxK + zM ,

wherexi and yi are input and output symbols of Useri for
i ∈ {1, 2, . . . ,K}, respectively.zi is Additive White Gaussian
Noise (AWGN) with unit variance fori ∈ {1, 2, . . . ,K}.
Transmitters are subject to the power constraintP . hji repre-
sents the channel gain between Transmitteri and Receiverj.
It is assumed that all channel gains are real and time invariant.

Let CX denote the capacity region of this channel. The DOF
region associated with the channel can be defined as the shape
of the region in high SNR regimes scaled bylogSNR. Let us
denote the DOF region byRX . We are primarily interested in
the main facet of the DOF region defined as:

rXsum = lim
SNR→∞

max
R∈CX

∑K
i=1

∑M
j=1 Rij

0.5 logSNR
, (50)

whereRij is an achievable rate for the messagemij andR

is the set of all achievable rates. The DOF achievable by the
messagemij is denoted byrij .

B. The Total DOF of KM
K+M−1 is Achievable

An upper bound on the DOF of this channel is obtained in
[11]. The upper bound states that the total DOF of the channel
is less than KM

K+M−1 , which means each message can at most
achieve 1

K+M−1 of DOF. We will show that this DOF is
achievable. To this end, Transmitteri for all i ∈ {1, 2, . . . ,K}
transmitsM signals alongM directions as follows:

xi =

M∑

j=1

hjixji, (51)

wherexji is the signal carrying the messagemji. Let us focus
on the signals intended for Receiver 1, i.e.,x11, x12, . . . , x1K .
The received signals due to these transmit signals can be
written as

ỹ1= h211x11 + h212x12 + . . .+ h21Kx1K

I21= (h21h11)x11 + (h22h12)x12 + . . .+ (h2Kh1K)x1K
... =

...
...

. . .
... (52)

IM1= (hM1h11)x11 + (hM2h12)x12 + . . .+ (hM1h1K)x1K .

Sincex11, x12, . . . , x1K are not intended for Receiverj for
all j ∈ {2, 3, . . . ,M}, Ij1 is a part of interference at Re-
ceiver j. We claim that we can align all interfering signals
x11, x12, . . . , x1K at all Receiversj ∈ {2, 3, . . . ,M}.

Let H1 denote the set of all coefficients appeared
in I21, I31, . . . , IM1, i.e., H1 = {(h21h11),
(h22h12), . . . , (hM2h12), hM1h1K)}. H1 has (M − 1)K
members. The set of all monomials with variables inH1

is denoted byG(H1). Let T1 denote a subset ofG(H1)
consisting of monomials represented by

T =
K∏

i=1

M∏

j=1

(hjih1i)
sji , (53)

where {

s1i = 0 ∀ i ∈ {1, 2, . . . ,K}
0 ≤ sji ≤ n Otherwise.

Clearly,T1 has(n+ 1)(M−1)K members.
The messagem1i for i ∈ {1, 2, . . . ,K} is transmitted along

directions inT1i whereT1i ⊂ T1. A directionT in T1i can be
represented as

T =

K∏

l=1

M∏

j=1

(hjlh1l)
sjl , (54)

where






s1l = 0 ∀ l ∈ {1, 2, . . . ,K}
0 ≤ sji ≤ n− 1 ∀ j ∈ {1, 2, . . . ,M} & j 6= 1

0 ≤ sjl ≤ n Otherwise.

It is easy to show that the cardinality ofT1i is nM−1(n +
1)(M−1)(K−1). The received directions due tox1i at all re-
ceivers belong toT1. In fact,x1i arrives at receiverj multiplied
by (hjih1i) and since the power of(hjih1i) in all directions
in x1i is less thann we conclude that the received directions
are all in T1. Therefore, all transmit signals are aligned and
the total number of directions inIj1 for all j ∈ {2, 3, . . . ,M}
is (n+ 1)(M−1)K .

A similar argument can be applied for signals intended for
Receiverj for all j ∈ {2, 3, . . . ,M}. Therefore, the received
signals can be represented as

y1= ỹ1 + I12 + I13 + . . .+ I1M + z1,

y2= ỹ2 + I21 + I23 + . . .+ I2M + z2,

... =
...

...
. . .

... (55)

yM= ỹM + IM1 + IM2 + . . .+ I(M−1)M + z1,

whereIji is the part of interference caused by all messages in-
tended for Receiveri at Receiverj. Due to symmetry, we only
consider the received directions at Receiver 1. At Receiver1,
there areM1 interfering signals, each of which consists of at
most (n + 1)(M−1)K directions. Therefore, the total number
of interfering directions isL′

1 = (M − 1)(n + 1)(M−1)K .
On the other hand,̃y1 consists ofKnM−1(n+1)(M−1)(K−1)

directions. This is due to the fact thatỹ1 = h211x11+h
2
12x12+

. . . + h21Kx1K and x1i for all i ∈ {1, 2, . . . ,K} consists
of nM−1(n + 1)(M−1)(K−1) directions. Therefore, the total
number of received directions is

L = (M − 1)(n+ 1)(M−1)K +KnM−1(n+ 1)(M−1)(K−1).

Using Theorem 6, we can conclude that

rXsum ≥ KMnM−1(n+1)(M−1)(K−1)

KnM−1(n+1)(M−1)(K−1)+(M−1)(n+1)(M−1)K+1
(56)
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is achievable for theX channel. By rearranging, we obtain

rXsum ≥ KM

K + (M − 1)
(
n+1
n

)M−1
+ 1

nM−1(n+1)(M−1)(K−1)

.

(57)
Since (57) holds for alln, we obtain

rXsum =
KM

K +M − 1
, (58)

which is the desired result. In a special case,M = K and
the total DOF is K2

2K−1 . This shows that as the number of
transmitter and receivers increases the DOFs ofX and GIC
behaves similarly.

IX. CONCLUSION

In this paper, we have considered three static channels,
namely theK-user Gaussian Interference Channel (GIC), the
uplink channel of cellular systems, and theK×M X channel.
We have proved that the total DOF of these systems can
be attained by incorporating real interference alignment in
the signaling. We have proved that single antenna systems
can be treated similar to multiple antenna systems where
directions can be used for data transmission and reception.
This result is obtained by proposing a new coding scheme
in which several fractional dimensions are embedded into a
single real line. These fractional dimensions play the roleof
integral dimensions in Euclidean spaces. This fact is supported
by a recent extension of Khintchine-Groshev theorem for the
non-degenerate manifolds. The total DOF of the MIMO case
as well as the complex case is also achieved by a simple
application of the main result.
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