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Delay and Redundancy in Lossless Source Coding

Ofer Shayevitz, Eado Meron, Meir Feder and Ram Zamir

Abstract—The penalty incurred by imposing a finite delay best polynomially with the delay, though sometimes fastant
constraint in lossless source coding of a memoryless souré® in the BV casel[4],[[7], [;ﬁ_
investigated. It is well known that for the so-called blockto- In a delay Chonsfrain-ed setting, the classical framework

variable and variable-to-variable codes, the redundancy dcays . S ; o
at best polynomially with the delay, where in this case the delay admits two (related) limitations. First, even within thearhe-

is identified with the source block length or maximal source WOrk, there is an apparent disparity between delay and

phrase length, respectively. In stark contrast, it is shownthat block/phrase length. The reason block/phrase lengthglare i

for sequential codes (e.g., a delay-limited arithmetic cag) the tified with delay in the first place is since concatenatingezod

redundancy can be made to decayexponentially with the delay orqs allows the source reproduction at block/phrase tengt

constraint. The corresponding redundancy—delay exponents . . A

shown to be at least as good as the @Ryi entropy of order intervals. However_, the delay can sometimes pe signifigantl

2 of the source, but (for almost all sources) not better than a Shorter, for essentially the same reason: Consider a BV code

quantity depending on the minimal source symbol probabiliy of block lengthn = kd obtained by concatenating BV

and the alphabet size. codes of block lengthl. Clearly, the decoder can reproduce
symbols with a delayl, rather than the possibly much larger
delay n. Waiting until the end of the block would mean the

. INTRODUCTION encoder is “holding back” bits it is already certain of, clga
an undesirable trait in a delay constrained setting. Of smur

totically losslessl dtoit ¢ 11 H SYMire redundancy associated with such an encoder in the limit
otically losslessly compressed to its entropy [1]. Howeie of K — oo still decays polynomially as a function af,

the presence of resource constraints, a rate penaltyrediey which brings us to the second limitation. In the memoryless

asredundancyis unavoidable. In this work we focus on thecl ssical framework, the encoder never looks beyond the end

Ledltjr:lda_\ncy |r?t_the efnc:O(t:h.n({_:] ofdatmemgréllelss sourcte |_r:§urr the current block/phrase, in the sense that the source’s
y the imposition ot astrict end-to-end defay constral prefix has no effect on the output of the encoder beyond

m(ter?sureddmdsourcs ?IOCkSt' "Ie" unc;l)er thefre(glwremer:jthba;th t poinfl. The encoder is therefore being “reset” roughly
n-th encoded symbol must always be pertectly reproducedg ery d symbols. Loosely speaking, the penalty incurred by

the der(]:oo:er bly time: + d. ding i h | forcing these regularly recurring reset points, is the sewf
In the lossless source coding literature, three cassesi épolynomial delay of the redundancy.

codes in which delay is a design parameter are traditionally\yih these observations in mind, we recall a lossless coding

studiecil: 1) The Block-to-Variable (BV_) class_ _(e.g. |T"“Efma“f'e_chnique of a different flavor that does not suffer from the
code [2]), where a source sequence is partitioned into eqyf;,e shortcomings. Imrithmetic coding[10], [11], [12],

length blocks and each block is mapped to a unique varialiey 5 source subsequence is sequentially mapped intechest
length codeword from a prefix-free set, 2) The Variable-tQypintervals of the unit interval, with length equal to the
Block (VB) class (e.g. Tunstall codel[3]L1[4]), where theeqence probability, and the common most significant bits
source sequence is parsed into phrases according to a 48mMpieyhe cyrrent subinterval are emitted. This way, the encode
code-tree, and each phrase is mapped to a unique fixgde holds back any bits it is already certain of, by debiniti
length codeword, and 3) The Variable-to-Variable (VV) slas\yqreqver, whereas BV/VBIVV encoders never look beyond
(e.g., Khodak codes), where the source sequence is Siilgfle enq of the current block/phrase, an arithmetic encoater ¢
parsed but each phrase is mapped to a unique variable lenglyy, jooks into the (possibly infinite) future. Unforately,
codeword from a prefix-free set. In the sequel, we colletivey,ig comes at a cost of an unbounded delay (though a bounded
refer to the three classes abovethe classical framework expected delay, se& [14], J15], ]16]). Nevertheless, théono

In the BV class, a delay constraint is interpreted as a blogk 5 jthmetic coding does point us in the right direction.ain
length constraint, and the redundancy is known to decay @ljay constrained framework, an encoder shaldiefinition
best polynomially with the delay [S]. [6]. In the VB/VV classyg sequential, emitting all the bits it can at any given insta
(where the delay is a random variable depending on the SoUfggreover, a good delay constrained encoder should always
sequence) the delay _constramt is translated into a maxind@hve to lookd steps ahead, avoiding “reset” points as much as
phrase length constraint, and the redundancy again ded:ayf)c%sible. As we shall see, these properties are nicely Eptu

_ - within an interval mapping type framework.
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It is well known that any memoryless source can be asy
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the fundamental tradeoff between delay and redundancy. We [l. PRELIMINARIES
show that, in stark contrast to the polynomial decay withi t o  Notations

classical framework, the redundan®¥( P, d) associated with
a memoryless sourck over a finite alphabet’, can be made
to decayexponentiallywith the delayd. Specifically, we show
that any encoder obeying a delay constrairgatisfied]

We write s < t to indicate that a string is a prefix of a
string ¢, ands < ¢ to indicate thats < ¢ ands # t. A set of
finite strings S is said to beprefix-freeif no pair of strings
o s,t € S satisfiess < t. The longest common prefigf S is
(pmin> < R(Pd) S pl the stringt of maximal length satisfy_ing <sforall seS.

|X] ~ TR max The Lebesgue measure of a set_ R is denoted byA|. The
wherepuin, pmax are the minimal and maximal source symbdiractional partof a numbew € R is denoted bya) gt — la].
probabilities, the upper bound holds for all sources, aral tiihedifference modulo-14 — B) between two setsl, B C R
lower bound holds for almost all sourflesVe then tighten the is the set of all number&: — b) wherea € A ,b € B. For any
upper bound and obtain function f : R — R and any setd C R, we write f(A) for

R(P.d) < o—dHs(P) the image ofA underf. All logarithms are taken to the base

. o of 2. A total order of a finite set is called simply aarder.
where H(P) is the Rényi entropy of orde? of the source.  The following lemma is easily verified.

For our upper bound, we introduce a construction based on
mismatched arithmetic coding in conjunction with a fictitio Lemma 1. Let A, B C R be any two sets. Then
symbol insertion mechanism. For our lower bound, we providell) f b € B and (c) € (A—B), thenb+c ¢ A.
a “generalized interval mapping” representation for delayil) If b € B and (logc) ¢ (log A —log B), thenbc & A.
constrained encoders.

Related workWhereas in this paper we consider the impad&. Sources
of an end-to-end delay constraint measured in source clocks et x be a finite alphabet of source symbols. The set of
other works have considered complementary questions whgfelength+ strings of symbols frondt’ is denotedt™, the set
delay is measured in encoded bits. [n/[15].1[19] the authogs all finite length strings is denoted*, and the set of all

describe a variable-length lossless source coding sysésedh infinite length strings is denoted>. We sometimes use the
on finite precision arithmetic coding, that falls outsidee thy, iationszn % T12o ... x, andz? def TnZmt1 - - - Tp fOr

classical framework and is of a similar flavor to the codes,ite source strings, where the convention is thd = 0
considered he_rein; Specifically, they shaw][19, A_ppend]_x Wwhenm > n. A discrete memoryless source (DM®) is
that the associated redundancy decays exponentially Wéth {afined by arobability mass function (p.m.{)P(z) : = € X}

maximal number of encoded bits the decoder can hold \i\'fhich naturally induces a product measure ovef, via
its queue. A similar observation can be deduced from tl)ﬁ(st) = P(s)P(t) for all s,t € X*, where st is', the

discussion in[[20]. While employing a different measure qfy, 5tenation of andt.

delay, it appears plausible (but remains unverified) theséh , ., ¢ optained by restricting to X™. An infinite random
constructions could also be employed to derive an expcalen lource string emitted by the sourde will be denoted by

upper bound on the redundancy as a function of the delay §tc The minimal and maximal symbol probabilities under
source clocks. None of these prior works provided a lowgs 4. denotegh,.i, andpua. respectively. Thentropyof the
bou.nd for the redundancy. In [21],_the author considers @ e is denoted?(P). The Kullback-Leibler distanceor
setting where the channel connecting the encoder and m9ergencebetween two sourceB, Q over the same alphabet

decoder can transmit a fixed number of bits per second, qeddenotedD(PHQ). We write P < Q if Q(x) = 0 implies

has a finite length queue at its input. He shows that tl)ﬁ(x) — 0 for all z € X. The set of all p.m.f’s overy

probability of queue overflow for BV codes can be made tQ denoted2(X). The type of a sequence™ € X" is the
decay exponentially with the size of the queue, and deszri 'm.f. P,n € 2(X) corresponding to the relative frequency
the tradeoff between the exponent and the minimal achieval \‘symbols inz". The set of all possible types of sequene®s
compression rate. is denoted#?™(X). Thetype classof any type@ € &"(X)

Organization Our framework is introduced in Secti¢n II,is the setT,, def (4" € X" : Py = QY. Fore > 0, let

and some basic lemmas are derived. In Segfidn IlI, the delay, n .
profile of mismatched arithmetic coding is analyzed. Th% EXéﬁD) if (&) be the subset of all typeg for which

analysis is then applied in SectiénllV where a lower bou . -
on the redundancy—delay exponent is derived. In Seffion V, aThe following facts are well known [22].
corresponding upper bound on the redundancy—delay exporieemma 2. For any type@ € &™(X) and anyz™ € Tg:
for almost all sources is presented. Some final remarks arg) p(z7) = 2-(PQIP)+H(Q)),

Specifically, we denote by’™ the

given in Sectioi_MI. (i) |22"(X)|12"H Q) < |Tg| < 27H(Q),
(ii)y |27(X)| = ("R < (4 D).

3By a4 < bg We meanliminfy_, o + log Z—j > 0.

4Recall that the reason for jointly coding over multiple smusymbols,
and consequently incurring delay, is to make the roundimgr esf the log-
probabilities negligible. This is unnecessary for dyadiarses, where symbol .
probabilities are all integer powers of 2. Hence, a lowerriaboannot hold nh—{r;o P U TQ =1
for all sources, as dyadic sources can attain zero redupdaitic zero delay. QePI(X,P)

(iv) (AEP) For anye > 0,



The Rényi entropyl [23] of order of a sourceP is Next, we define several families of encoders.
gef 1 N 1) Lossless EncodersAn encoder is said to béossless
Ho(P) = 1—a log Z(P(x)) w.r.t. P (where P is omitted when there is no confusion), if

zeX
£ _
Lemma 3 (From [24]) The Renyi entropy of orderx > 1 P(A%(P) <o0) =1,

admits the following variational characterization: The family of all encoders that are lossless wiPtis denoted
. ! £(P).
Ha(P) = Qelnﬁl’l(lX) {a -1 D(QIIP) + H(Q)} 2) Bounded Expected Delay Encodefsn encoder is said

to admit abounded expected delay w.ft.(whereP is omitted
when there is no confusion), if

E(Af(P)) < 0o

For 0 < a < 1, replace themin with a max.

For any two sourced’, Q over the same alphabét, we

define
P
v(P,Q) def sup (@) The family of all encoders with bounded expected delay w.r.t
zeX:P(n)>0 Q) P is denotedB(P). Clearly, B(P) C £(P).
The following is easy to verify. 3) Delay Constrained EncodersAn encoder is said to be

Lemma 4. 1 < v(P,Q) < oo with equality in the lower delay-constrainegif

bound if and only ifP = @, and in the upper bound if and sup  6%(s,t) < 00 Q)
only if P <« Q. SEX* tEX>®

More specifically, such an encoder is also said taltuelay-
C. Encoders and Decoders constrained if the supremum above equafs The family of

An encoderis a mapping€ : X* +— {0,1}* such that for d-constrained encodersis denotedtbyf Clearly,¢; c B(P)
anys € X*, £(s) is the longest common prefix of the set ofor any sourceP.
bit strings {€(sx) : + € X}. Namely, we are assuming the 4) Phrase/Block Constrained Encoderén encoder¢ is
encoder does not withhold any bits; at any given time, tis&id to bephrase-constrained & € ¢, for somed, and for
longest prefix the encoder is certain of is assumed to ha#@y > € X' there exists an index sequenfig € N}°
already been emitted.. This will be referred toths integrity such thatd) < i, — i < d+1 and
property. Note that the integrity property implies in particular 58 (a2, ) = 0 @)
the consistency properfynamely thatf(s) < £(sx). Pt
An encodef induces alecoderwhich is a partial mapping In this case we also say the encodef-ishrase-constrainedn
D¢ : {0,1}* — X*, defined as follows. For any € {0,1}*, the special case wheig = (d+1)k for all 2> € x>, we say
let the encoder ig-block-constrainedThe family of alld-phrase-

E71(b) def {seX*:b=<&(s)} constrained (respi-block-constrained) encoders is denoted by

hrase o o hrase
Then Dg(b) is the longest common prefix a1 (b) if the € (resp.€ok). Clearly, €3k € €7 C €.
latter set is not empty, and is otherwise undefined. Notetthat Remark 1. Any encodei€ € ¢block (resp.€ e @3}1”“) can
definition, D¢ does not withhold any symbols, hence SatiSfieSg’:enerally be written as a prefix-dependent concatenati@\of
similar integrity property. Furthermor@®; is defined not only (resp. VB/VV) codes each with block length (resp. maximal
over the range of, but also on the set of all prefixes thereofphrase length) at most + 1. By prefix-dependent here we
the decoder hence operates without the need to be synced wigan that the code used in the next block (resp. phrase)
the source clock. Since a decoder is uniquely defined by @an generally depend on the source sequence encoded thus
encoder, we shall focus our discussion hereafter on ensodgi. Note however that for block (resp. phrase) constrained
only. encoders operating over memoryless sources there is no re-

An encoderé€ is associated with aelay function which dundancy gain to be reaped by using prefix-dependency, since
returns the minimal number of symbols from a given (infinitethe entire prefix can already be decoded and hence is irreleva
suffix that needs to be encoded so that a given prefix can terms of average code-length) to the encoding of the next
be fully decoded. Formally, the delay function is a mappinglock (resp. phrase). Hence for memoryless sources, assfar a
6%+ X* x X = NU{0, oo}, whered® (s, ) is the minimal the redundancy-delay tradeoff is concerned, there is ns los
k € NU {0} such thats < Dg(E(sz*)). If no suchk exists, of generality in restricting our attention to concatenatioof
then &€ (s, 2) LN a single fixed BV (resp. VB/VV) code.

Thedelay profileassociated with an encod€rand a source  Conversely, any BV (resp. VB/VV) code with block length
P for a given prefixs, is the following extended-real-valued(resp. maximal phrase length), adapted to process infinite
r.v.: source strings via concatenation, is @block-constrained

A¢(s, P) aef 6% (s, X>) (resp. d-phrase-constrained) code for sorde< k. Due to
the integrity property requirement, it is generally podsithat

The delay profile associated with an encodeand a source ! .
yp d < k, as the base code itself may be a concatenation of

P is then defined to be

def 5 ] . .
AE(P)E sup Aé(s. P Note that growing dictionary encoders such as the Ziv-Ldngmeoder
( ) se}r:)* ( ’ ) [25] do not belong to this family, as their delay grows unbdeoh



shorter codes. This is however clearly redundant, and withothe integrity property. The family of interval mapping edeos
loss of generality we can restrict our attention to minimal B is denoted byJ.

(resp. VB/VV) codes, i.e., codes for which= d. Let < be any order of¥. A special case of an interval—
mapping encoder is aarithmetic encoder w.r.t. the ordex

Remark 2. Following the previous remark, it is worth atched to a sourc®, which is defined as follows:

mentioning an interesting class of codes known as pIuraIV)}
parsable (PP) codes [26], which are a generalization of VB/V fi(x) def Z P(y)
codes. In a nutshell, a PP encoder is defined via a finite phrase y<w
dictionary® c {0,1}* and a parsing rule. The dictionary is ny def no1 no1
not a complete code-tree, and hence can induce more than (@) = faa(@") + filen) P
one parsing for some source sequences; in such cases the  Z°(z") [fn(2™), fu(2™) + P(z"))
I e omit the reference to a specific orderwhen there is no

parsing rule is employed to determine which of the possitw
parsings will be used. Typically, a greedy parsing rule iEonfusion or when the statement holds for any order.
6) Generalized Interval-Mapping Encoderdet G* be

employed, looking for the longest match@n It is interesting
e set of all finite disjoint unions of subintervals fro@.

to note that while clearly any PP code is delay—constrainek
! n encoderf is said to be ageneralized interval-mapping

any nontrivial PP code, i.e., one that cannot be essential
ncodeiif there exists a mapping® : X* — &* satisfying the

def

translated into a (uniquely parsable) VB/VV cBdés not
blo_ck/phrase copstramed, as .t.here are source sequences inimality and disjoint nesting properties above. The fgmi
which the delay is always positive. For example, using the f generalized interva—mapping encoders is denotediby
code given by the incomplete code-tf®e= {0,000,1,111} Clearly,J C 7*

together with the greedy parsing rule, the delay incurred fo The ’following lemma shows that any:-delay-constrained

the source sequenc@)1100110011... is always at leastl. : : . B . .
Such PP codes hence always look beyond the end of ﬁ1né:oder admits a generalized interval-mapping represamta

current phrase. Lemma 6. Let £ € €,4. Then& can be represented as a

. . . eneralized interval-mapping encoder with
5) Interval-Mapping Encoders:A binary string b* ¢ g ppIng

{0,1}* is said torepresenta binary interval T8(s) = |J [E(sz?) (3)
zdexd

ke def
[0%) €' [0.b1bo, ... 0,0, 0.b1ba,...bx1) C [0,1) Hence.¢, ¢ 7°.

For any setd C [0,1) we writebin(A) to denote the minimal Proof: See the Appendix. m

binary interval containing4, i.e., o _ o .
Remark 3. The representation in[{3) is a finite union of

bin(A) def ﬂ [b) (possibly overlapping) binary intervals. It is worth nagithat
be{0,1}*:AC[b) an arithmetic encoder matched to a source cannot generally b
written that way, as some of its intervals may only be written
as an infinite union of binary intervals. This sits well witiet
Lemma 5. For anyb, c € {0,1}*, fact that generally, an (idealized) arithmetic encoder lzams

i) b<c < [¢) C[b) unbounded delay.
(i) bZcandc2b = [b)Nle) = 0.

The following lemma is easily observed.

D. Redundancy

to IE)eet iin?er&ﬁiago Sina anc§ dl}'rf' tﬁgr:r:ef(ci)sdt(sari rl‘r?asali?\ The (per symbol) expected codelengthtimen associated
pping ® PPING \ith an encode€ and a memoryless sourde is

¢ . X* — &, i.e., a mapping of finite source sequences
into subintervals of the unit interval, such that the foliog LE(P) d:efn—lE|g(Xn)| (4)
properties are satisfied:

(i) Minimality: [£(s)) = bin(Z®(s)) for any s € X™*.

(i) Disjoint nesting For all s € X* and all distinctz, y € X,

def

where X" ~ P™. The (per symbol) expected redundanaty
time n associated with an encodérand a memoryless source
P is the gap between the expected codelength and the entropy
I8 (sx) CI%(s), ZI¢(sx)NIf(sy)=10 aftern symbols have been encoded, i.e.,
The minimality property means that an interval-mapping RE(P) £ LE — H(P)
gncoder emit§ t_he bit sequence repre_sentin.g the minin‘ﬂﬂ)bin-l-he correspondingup-redundancynd inf-redundancyare
interval containing the interval® (s). It is easily observed that defined as
the minimality and disjoint nesting properties togetheplyn . dot s
R (P) ZlimsupRE(P), R (P) = liminf RE(P)
8For example, the PP code given by the incomplete code®Dee= n—00 e
{0, 00, 1} together with the grgedy parsing rule, can essentially baght of Let us define some useful quantities pertaining to general-
as a uniquely parsable code given by the complete codestree{00,01,1}, . . . .
ized interval-mapping encoders, that will enable us to doun

in the sense that the parsing induced by the former is a reéintf the X o ’ ) -
parsing induced by the latter. their redundancy in relatively simple terms. A generalized



interval-mapping encodef induces a measure ovet™,  (ii) (From [d], [V], [6]) For any source

defined b — —
y g 1 7 it R (P)=0d), inf W (P)=0(d?)
p (") = |7 (") gecyion geepteee
and a conditional induced measure, defined as (iii) (From [5], [6]) For almost all sources,
. Epy _ -1
r ( k| n) def Nn+k(xnxk) gglq%fockﬁ (P) = Q(d )
(") inf _ RE(P) = Q(d-2Y-1-7)
Define: £eey
RE(P) & 1y (P™|uf) wheree > 0.
n
We see that employing block/phrase-constrained codes for
and let . g e compression under a strict delay constraint, the redundanc
ra(z") = D (P g (-]z"™)) decays at best polynomially with the delay constfhias we

shall see, the redundancy can be made to degpgnentially
with the delay, if the more general family of delay-consteai
Remark 4. Note thatué and ug(-|z") are not necessarily encoders is used. This reveals a fundamental difference be-
probability distributions, as they may sum to less thanyunittween block/phrase length and delay in lossless sourceigodi
However, clearly it still holds thaRs (P) > 0,74(z™) > 0. The following lemma shows that for an optiméidelay-

constrained encoder, the inf-redundancy and sup—-redapdan
The next lemma relates the interval-based notions of r 80|nC|de y p-reday

dundancy defined above, to the actual operational definition
of redundancy of the associated generalized interval-immgppLemma 9. For any sourceP,
encoders. This correspondence will allow us to think of

be thed-instantaneous redundancy

def

. . £ de
intervals instead of bits, and will play a central role in the ;élefdm (P) = glélefdﬁ (P) =R(P.d)
sequel. Proof: See the Appendix. [ ]
Lemma 7. The following relations hold: Accordingly, 2R(P,d) defined above is called the

redundancy—delay functionassociated with the source

P. The corresponding inf-redundancy—delay and sup-—
RE(P) < RE(P) redundancy—delay exponents associated ititan now be

defined:
(i) For any £ € €4, there exists a generalized interval—

(i) For any & € 7%,

E(P) = limsup —— 1og R(P,d)

mapping representatio® (e.g., the one in Lemnid 6) P d
such that (P P.d)
E(P zliminf—— logR(P,d
d d - 00 ’
o (p) > (" )Rn+d<P> + 2ap) o _
n Our main goal in this paper is to characteri®éP, d), E(P)

and E£(P).
XE(P = liminf — ZE (ra(X E(P)

n—oo nd
Ill. THE DELAY PROFILE OFARITHMETIC CODING

Proof: See the Appendix. | Consider a case where a sourPeis encoded by a mis-

One would naturally be interested in the redundancy pefratched arithmetic encoder, namely where the encoder’s in-
formance that can be guaranteed by employing encoderst@ival lengths match a different sour€e(see also Subsection
different classes. In general, the expected redundatjcyof [I-C). Note that we can always assume that < @, as
an encode€ can be negative for some, or evenalHowever, otherwise the mismatched encoder is not well defined for
the sup and inf-redundancy are nonnegative for all losslegs input symbols. In the next theorem we upper bound
encoders, and bounds in theblock/phrase constrained caseghe probability that the corresponding delay profile exseed
are known. a given threshold. This result will serve as a tool in the
next section, where we lower bound the redundancy—delay

Lemma 8. The following statements hétd
_ exponent.
(i) For any sourceP

Theorem 1. Suppose a sourc® € & (X) is encoded using

inf R (P)= inf ﬁg(P) = inf RE(P) an arithmetic encode€ matched to a sourc€) € Z(X),
£et® £eB(P) £eL® where P < Q. Then
T hmgfp RE(P) =0 v(P,Q)
€B(P) P (A%(P) > d) < 2p?,. <d10g<7’> —|—/~€)
pmax
"Recall thatf(d) = O(g(d)) = < oo, and +2¢¢ . (v(P,Q))? (5)

f(d) = Q(g(d))

f(d) L )
m’ >0 8This is in fact true even under the weaker expected delaytizints




wherek = log (ﬁ{%) ~ 1.4139... not enough to fully decode™. The encoding and decoding
delays are therefore treated here simultaneously, rattzar t

An outline of the proof is given in Sectidn IIA. The full separately as iri [15].

proof is given in Section IM-C.

Corollary 1. Let £ be an arithmetic encoder matched to aRemark 7. When@ « P there are *holes” in the interval—

mapping, namely intervals corresponding to symbols where
sggl(J;?)eCIQf € 2(X), where P < Q. For any sourceP & Q(z) > 0 but P(z) = 0. In this casex™ can be decoded at

timen+d if and only ifbin(Z¢ (2" *)) NZ¢ (y") = 0 for any

gmax - V(P Q) <1 y™ # z™. Hence condition[{6) is necessary and sufficient if
then the delay profile bounBl(5) is exponentially decayirth wiQ < P, and only sufficient otherwise. This point is important
d, hence the expected delay is finite, i&..c B(P). This to note since the case whefg@ &« P appears in the sequel.

specifically holds for all non-deterministié = Q. After having identified the above set ébrbidden points
Corollary 2. Suppose the sourc® is encoded using the We clearly need to analyze the probability of avoiding them
arithmetic encoder matched to the source. Then within the nextd instances. Loosely speaking, for an arith-
metic encoder matched to the soueethe maximal symbol
P(A%(P) > d) < 2pf . (d10g (1/pmax) + £ + 1) probability p,ax represents the “crudest resolution”, or the

Remark 5. A bound on the moment-generating function fi ‘;Jpwest rate” by which we shrink our intervals, hence intu-

matched arithmetic coding, and a corresponding exponbntfllg\(’jelyddicrt]ates oburb{:}.bilit);] to ?\VOid hit(tjing forp(ijddehn pus. .
bound on the delay’s tail distribution, were originally aysed ndeed, the probability that the encoder avoids these point

in [19], [L5]. However, these bounds depend on bath, is rough_lyp”_lmax. F_or a}i misrgatched encoder, we get a similar
and pnax, and can therefore be arbitrarily loose. For the tailEXPression INVOIVING)Y, o, dinax @N1(F, Q) @s a measure of

distribution, a bound depending only gm... was originally the mismatch between the encoder and the source.

obtained by the authors in_[16], where it was also shown

how the proof of [19], [15] can be tweaked to remove th8. The Forbidden Points Notion

dependency opy,in. The bound obtained here is tighter than We now introduce some notations and prove three lemmas,
both. required for the proof of Theorefd 1. Lét= [a,b) C [0,1)

Remark 6. The bound in Theorefd 1 can be further tightene some m_terval, an;_i some p_0|nt in that mterval._We say
; . that p is strictly containedin I if p € (a,b). We define the

by observing that specific orders of the alphalAeare better left-adi of t Ttob

than others in terms of the bounding technique used hefg. adjaceniol p w.rt. 110 be

We do not pursue this direction, since we need an order- g, (p) ":efmin{m €layp) : IkeZ z=p— Q—k}

independent bound in the sequel. _
and thet-left-adjacentof p w.r.t. I as

A. Proof Outline K

(t)(,\ def’ . (0)

Recall the definitions of an interval-mapping encoder and of ‘1 (p) = (lrotbro---otr)(p), € (p)
an arithmetic encoder in particular, given in Subsectie®@Il Notice that¢!" (p) — a monotonically witht. We also define
Attime n, the_ sequence™ has been enCO(_jed infS' (z"), and  the right-adjacentof p w.r.t I to be
the decoder is so far aware only of the mterb'ai(Ig (x”)), def
namely the minimal binary interval containiiy (z™). Thus rr(p) = max{z € (p,b) : Ik e ZT, z=p+ 27k1
the decoder is able to decod&', wherem is maximal such () . . .
that bin(Z€ (+")) C Z¢(z™). Of course,m < n where the andr;’ (p) ag) thet-right-adjacentof p w.r.t. [a,b) similarly,
inequality is generally strict. Afted more source letters areWh_ere nowr;” (p) — b mc_)notor_ncally. Forany <b—a, the
fed to the encoder;"*? is encoded intd€ (z"+¢), and the adjacents-setof p w.r.t. I is defined as the set of all adjacents

entire sequence”™ can be decoded at time+ d if and only that are not "too close” to the edges of
S Ss(I,p) L'z ela+s,b-06): 3tezt U{0},

z=00p) v a=rD(p)}
Now, consider the midpoint obin(Z¢(2™)) which by the , _ _ _
minimality property (see SubsectibiTl-C) is always conégi No_t|ce that ford > p — a this set.may contain %E”Z .ru__:]ht-
in Z¢(z"). If that midpoint is contained irZ< (z"+4) (but adjacents, fop > b—.p only IefF—a_dJ_acents, fob > 25 itis
not as a left edge), then conditidd (6) cannot be satisfied; §"PY. and for = 0 it may be infinite.

fact, in this case the encoder cannot yield even one furtihter b emma 10. The size ofSs(I, p) is upper bounded by
This observation can be generalized to a set of points which, 1|

def
=P

bin(Ig(:C”er)) C 7% (z™). (6)

if contained inZ¢ (z"*%), 2™ cannot be completelgecoded |Ss(I,p)| <1+ 2log— (7
For each of these points the encoder outputs a number of bits ) Y
which may enable the decoder to produce source symbols, but Proof: See the Appendix. -

For an intervall, let m(I) denote the midpoint obin(I).
®Here we are further assuming th@t< P, see RemarKl7. Note thatm(I) € I, by definition ofbin(I) as the minimal



binary interval containingl/. In what follows, we will be establishing the first assertion. For the second assewtidie;
specifically interested in the adjacefset of m(I) w.r.t. I.

£ n+d n_ ,.n d
We therefore suppress the dependencendih) and write P(JNI7(X™) # 01X" = 2") < Z P(y")
y4:JNIE (amyd)#0
S5(1) & S5(1,m(D)) < > QWY mEQ)
y4: JNZE (xnyd)#D
In particular, the sef (1) will be referred to as théorbidden = W(P,Q))? > s (yz™)
points of I. The forbidden points play a central role in the yd:JNTE (zmyd)£0
sequel, for the following reason: ||
TR < (Gl + ) W(P.Q)" ©
Lemma 11. Condition [) is satisfied if and only # (z"+) |28 ()]
does not contain forbidden points &f (z"), i.e., where we have used the fact thatx, pG (yda™) = g
[ |
T8 (2" N So(Z8 (z™)) =0 Write S5 = S5(Z¢(z")) for short. Note thatSs C S,

and thatSy\ Ss is contained in two intervals of lengthboth

Proof: Write m = m(Z¢ (")) for short. As already sharing an edge witlf® (z"). For anys > 0, the delay’s tail
discussed, ifm is strictly contained irZ¢ (z"+4) then [6) is Probability is bounded as follows:
not satisfied. Otherwise, assurié(z"*?) lies to the left of £

. ; (A (", P) > d)

m. Clearly, if Z¢ (z"+4) C [¢(m),m), thenbin(Z* (z")) C
[E(_m),m) as .vveII,.hencel]G) is satisfied. However/{in) is (bm(zf Xn+d)) 7 If(xn)p(n — xn)
strictly contained inZ® (z"¢) thenbin(Z¢(z"™¢)) must be & omid .
the left half ofbin(Z*(2™)), which by minimality cannot be (S NIZ(X"TE) # ¢l X" =)

a subinterval ofZ¢ (z"), hencel[(b) is not satisfied. The same

£ n+d n __
rationale also applies ta(m). The lemma follows by iterating (S0\Ss) NI (X™7) # ¢ ’ Xi=w )
the argument. [ +P(Ss NZE(X™HY) £ ¢| X" = 2")
(d) )
S 2 (7 + qz1ax) (V(Pa Q))d
|78 (27|
C. Proof of Theorerhl1 +pfnax|55|
The probability that the delay\® (2", P) is larger thand (2 9 g d PO
is equal to (or upper bounded by, whéh« P, see Remark |Z¢ (z™)]
[7) the probability that[{6) is not satisfied. By Lemind 11, this d |Z¢ (2™)] 0
in turn equals the probability tha® (X™*?) contains none of + Pmax \ 1 +2log (10)

the forbidden points of® (z™). To get a handle on this latter

probability, the following lemma is found useful. The transitions are justified as follows:

(a) Condition [[6) is sufficient, see discussion in Subsectio

Lemma 12. Suppose a sourc® is encoded using an arith- [M-Al In most cases this would be an equality, as condition

metic encoderf matched to a sourc€), where P < Q, (6) would be also necessary, see Reniark 7.

and let puax, gmax b€ the corresponding maximal symbo(b) Lemmal1l.

probabilities. Then for any € Z¢ (2"), (c) Union bound overS; = S5 U (So \ S5).
(d) Lemmal1R, together with a union bound over the finite

P (a c If(Xn+d)|X" — ;Cn) < pﬁm number of elements i, \ Ss.

(e) LemmdID.

and for any interval/ C Z*(z") sharing an endpoint with Taking the derivative of the right-hand-side pf(10) wd.tve

I%(z"), find thatd = loge (5%, |I£ ™)| minimizes the bound.
Substituting into E{ and notlng that the bound is independ

P(JNZE(X™) £ p|X" = 2) of 2", (8) is prove
J
: % * qi’a") ((P. Q) IV. ALOWERBOUND FORE(P)

In this section we use the delay’s tail distribution menéidn
Proof: The set{Z¢(z"y?) : y* € X7} is a partition of in the previous section, to derive an upper bound for the

7€ (2™) into intervals, and: belongs to a single interval in theredundancy—delay function, and hence a lower bound on

partition. Therefore, the inf-redundancy—delay exponent, via a specific aritlumet
coding scheme. We emphasize that unlke [21], the presented
P (a € T8 (XY X" = n) scheme is error free, hence there is zero probability ofduff
< max P(X"+d =y X" =a") =pl . (8) 100bserve that{10) holds evendf> |Z€(x™)|, in which case our bound

yleXx becomes trivial.



overflow. Moreover, our figure of merit is the delay in source ]

symbols vs. the redundancy in encoded bits per symbol. Returning to the proof of Theorel 2, define an extended
alphabet¥+ = X U{z,zr} wherex, zr are twofictitious
A. A Finite Delay Result symbolsLet P* € &2(X™) be the corresponding extension of

the sourceP to X', assigning zero probability to the fictitious
symbols. For) < & < pmax, let P+ € 22(XT1) be a source
with the following symbol probabilities:

Theorem 2. The redundancy—delay function for a sourPe
is upper bounded by

2
R(P,d) < 2o ((d_c(pma")) 108 (2 ) + HHP Pr(z) = { (1-2)P(z) z€X
(11) e (2) = € x € {xp, xR}
where .
o(z) = 0 T <15 Clearly, max P (2) = (1 — 26)pmax < 1= andu(Pt, PF) =
2 LWJ -1 ow. L. Let < be any order oft'. AssumingP. (z) < - for all

x € X, and since .| = |Ir| = |I|/8, then it is easy to see
ere exists a ordec™ of X't that preserves: over X, such

at the arithmetic encodef w.r.t. <* matched toP." has

the fictitious symbols:;, g mapped into intervals contained
E(P) > log(1/pmax) in Z¢(x™);, and Z¢(2™)g, respectively. If the condition on
fmas is not satisfied, then we can always aggregate a few

Proof: Let us first describe the high-level idea behinS mbols into a super-svmbol. so that the maximal product
the proof. We extend the source’s alphabet by adding el per-sy ' b

fictitious symbolsand then encode the source using a inghtPrObab'“ty satisfies the required condition (the effecttiu’

mismatched arithmetic encoder. The encoder keeps trackgg]gregatlon on the delay is treated later on). To encode the

N : .
the decoding delay, and whenever the delay readheqd, it source P, let us now use th_e arl_th_n_wetlc e”COdeT fo.
. L2 . above together with the following fictitious symbol inserti
inserts a fictitious symbol that nullifies the delay. There ar, oY X
o : : algorithm: The encoder keeps track of the decoding delay by

three key points: 1) There exists a mapping such that there’i : .

" . .emulating the decoder. Whenever this delay readhe$, the

always at least one fictitious symbol whose interval comstain . . e X
encoder finds which one @ (z");, or Z¢(z™)r contains no

no forbidden points, 2) The length assigned to the fictitioys , : .
symbols can be made very small, and 3) The probability Lt)cfrbldden point as guaranteed by Lemna 13, and inserts the

insertion, bounded via Theordm 1, is also very small. ﬁﬂilri?ysiﬁontilggdzgt;?:s Zggmeth \Tvg re;wpee((:jtle\::eol)cg’inhegzela
For any intervall = [a,b), let 9 9 y- Y, g y

never exceedd and no errors are incurred.

Corollary 3. The inf-redundancy—delay exponent for a souréE
P is lower bounded by t

©r(\) “éf(l —Na+ b We now bound the redundancy incurred by the encoder
i i . ) &' € ¢, described above. There are two different sources of
and define define the two disjoint subintervals redundancy. The first is due to the mismatch betwéth

def def and P*, and the second is due to the coding of the inserted
I, = 3/8 1/2 Ir = 1/2 5/8 €’
L= (er(3/8) 1 (1/2)) s In = (1 (1/2), 91 (5/8)) fictitious symbol. At each timé > d, the probabilityw;, for
The first key point is established in the following Lemma. an insertion can be bounded via Theofgm 1:

Lemma 13. For any intervall C [0,1), eitherI;,NSo(I) =0 wp, = ]P;(AE’(kadvp) >d) < ]P)(ASI(P) > d)
or IRmSO(I) = (.
| B T i Ty
Proof of Lemmd_13: Write m = m(Z¢ (z™)) for short. = “Pmax & (1 — 2¢)Ppmax
Without loss of generality, assume that < ¢;(1/2). There +2(1— 2e)%pd (1 —2e)7¢
are two cases: 1
(1) m < ¢7(3/8): It is easily verified that the right adjacent = 2D (dlog (W> + K+ 1) (12)

of m satisfiesr(m) > ¢;(1/2), as otherwise

+n - + i
m+2(r(m) —m) € T Now, let P*" be then-product of P*, and write

contradicting the maximality in the definition of the rightms/(P) _ mg/(pﬂ“) (2) RE’ (PT) = lD(P+n|m5')
adjacent. Therefore in this cagg contains no forbidden " T " "

points of I. () 1 i E (L k=1
(2) m > ¢r(3/8): By our assumptiomn < ¢,,(1/2), hence T n kzlE <D(P e (X ))>
pr(1) — er(1/2) 11
r(m) —m > PR PILE) © PP 4 Log L
2 DPHIRS) + 5 log 3w
Rewriting, we have (@) 1 - 1
— < 210g(—>pdmax (dlog (7) —|—/~€—|—1)
r(m) >m + o) = e1(1/2) 2901(1/2) > 1(5/8) € (1 — 28)Pmax

and therefordr contains no forbidden points. + log 1o



(e) 1
< 210 (1) pie (200108 (

5 )+f<a+1)+45

The transitions are justified as follows:

(@) LemmdlY.

(b) The chain rule for the divergence, and the fact tRat*
is a product (memoryless) distribution.

<,a Over X%, such that the arithmetic encod&rw.r.t. <7jd
matched taP+ has the fictitious symbolsy,, z r mapped into
intervals contained if® (™), andZ¢ (z") g, respectively, and
are (say) of the minimal order satisfying this.

Let us now draw an i.i.d. sequenc¢&?, Yyl ...) with a
marginal P¢, independent of the source sequence. At time

(c) GivenX*~1 £ follows P~ with an extra multiplication instancek (where time is now w.r.t. the product source),
by ¢ if and only if X*~! is such that there is anWe use an arithmetic encoder w.rt. the random orde,

insertion. Hence the the expected divergence gi¥ém!
always yields the ternD(P*||P;), and an extrdog1/e
multiplied by the probability of an insertiony.

(d) The bound forwy given in [12), andD(P*||PF) =
log 5.

(e) log 2y <defor0<e< .

Settinge = p¢,, ., we get:
RE'(P) < 2p%,.. (d log ( )+ K+ 1) dlog +4pt
pmax pmax
92 2
<2pd (d log ( )+ K+ 1) (13)
pmax

Finally, we address the case wharg., > 11—6 As men-

and matched taP?. Denote the associated random interval—
mapping encoder by’. It is easy to see that for any point
a € I¢(2™?), the probability that the interval corresponding
to a type@ will include « is upper boundeg? .  plus the
probability of the type clas¥y, under P?, where by Lemma
[ the latter is upper bounded W ¢P(QIP) By the same
Lemma, the probability of any super-symbol within the type
classTy is 2~ P(QIP)I+H(Q)) Thys,

P (a c I&(Xn(d-f-l))and _ xnd)

< Y (27P@IP) 4 ) 9= dD@IPIHH(Q)
QeZi(x)
(14)

tioned before, we aggregate a minimal number of sourgaking the limit asd — oo, and since there is only a

symbolsk into a super-symbol, such thaf . < -%. This

means thal < k < | ‘I;Lp
procedure for thé:—proéuct alp

. We now carry out the above (
abet. However, since decodinglim —=log P (a e 7 (XD xnd = :z:"d)

polynomial number of types, we obtain

is performedk symbols at a time, we set our delay threshol e

to bed = |2

, ~ 2
RE'(P) < 2pkd, (dlog(2/phe) + 5+ 1)
< 2p2 P ((d — e(Pmax)) 10g (2/Pmax) + K + 1)
| |

£1 — 1|. Substituting the above intg (113) we get> inf {D(QHP) + H(Q) + min (D(QHP),log ! )}
QEP(X) Pmax

Let V(Q) denote the function over which the infimum above is
taken, and assume without loss of generality tR&s strictly
nonzero overt. V(Q) is continuous and the infimum is taken
over a compact set, hence is attained for sapiec Z7(X).

Remark 8. The scheme described above also allows thPPOSe thaD(Q”[[P) > log1/pmax. Let z € X be such

encoder to change the delay constraint on the fly, by inggrti
a suitable fictitious symbol in accordance to the maodifi
constraint. Once the decoder is made aware of this chan
both encoder and decoder need to simultaneously adjust

probability of the fictitious symbols.

B. An Asymptotic Result

at P(z) = pmax, and suppose there exisis € X such

dhat P(y) < pmax and @*(y) > 0. Generate a perturbed
%stribution Q' by increasing the probability assigned by

o by somep > 0, and decreasing the probability assigned
y Q* to y by the sames, leaving the other probabilities
unchanged. This implies that

D(Q'|IP)+ H(Q") < D(Q"||P) + H(Q"),

Theorem 3. The inf-redundancy—delay exponent for a sourc§ce the above is equivalent (by direct calculation) to

P is lower bounded by theé&yi entropy of order of the
source, i.e.,
E(P) > Hy(P)

Blog (P(x)/P(y)) > 0, which holds true under the assump-
tions made. Now, by continuity, there exigissmall enough
such thatD(QT||P) > log1/pmax. HenceV(QT) < V(Q*)

Proof of Theorenil]3:We construct a unit delay encodefor such 3, contradicting the minimality ofQ". If suchy
for the product sourc@? using fictitious symbols in a similar d0S not exist, therP(z) = puax over the entire support

way as done in Theoreld 2, with an additional random codi

,qi Q*. Therefore,D(Q*||P) =

IOg 1/pmax - H(Q*) S

argument. Lek be a order oft? such that all super-symbolslo8 1/Pmax, in contradiction to our assumption. We conclude
in the same type class are adjacent (and otherwise arbitraffat D(Q” [ P) < log1/pmax. Hence,

Let <,« be a new order which is obtained byratation of

the order<, makingy“ the smallest element, i.e., the unique

order that respects: for each of the set§y?} U {24 : y? <
24} and {z? :
in the latter set is the maximal element undeg.. Finally,

24 < y?}, and where the maximal element

. 1 & n(d+1) nd __ ,.nd
dlggo—alogp(aez (X )| xnd = znd)

— QGI%;?X) {2D(Q||P) + H(Q)} = Ha(P)

where Lemma]3 was invoked in the last equality. Continuing

def . . . .
let </, be the order oft* = x4U {xr,zr} that respects this line of argument, we can essentially replage, . with



2-4H2(P) for d large enough, throughout our proofs. Thereregion. This in general cannot be done while still beingfaik
fore, the redundancy averaged over the ensemble of randmnthe source’s distribution, hence this strategy alsorszuan
d-delay constrained encoders is bounded by inevitable redundancy. The latter observation is madeiggec
in Lemmal18. Our bound results from the tension between
E (R (P)) = O (274=(1)) (15) s

these two counterbalancing sources of redundancy.
and thus there exists a deterministic encoflesichieving at
least that expected performance, concluding the proof.m B, proof of Theoreril4

_ In light of Lemmal®, we can restrict our discussion to
V. AN UPPERBOUND FORE(P) generalized interval-mapping encoders of the fdrm (3). How
In this section we prove an upper bound on the sugever, we will find it more convenient to consider a broader
redundancy—delay exponent, hence obtaining an asymptdéimily of generalized interval-mapping encoders, saitigfy
lower bound for the redundancy—delay function. This charaghe following conditions:
terizes the best possible redundancy achievable by any-dela(i) For any s € X* Z¢(s) is a union of at most.X|¢

constrained encoder. Our bound holds &most anymem- intervald™
oryless source, which is meant w.r.t. the Lebesgue measufy For any s € x* 2¢ e X9 Tf(sz?) contains no
over the probability simplex. forbidden points from any of the intervals comprising
Theorem 4. For almost any memoryless sourég the sup— Ig(s)
redundancy—delay exponent is upper bounded by LetI C [0,1) be a finite union of disjoint interval§ly } 5, .
. x| Recall thatSy(I;) is the set of all forbidden points in the
E(P) < 8log (p—) (16) interval I,. Define:

K
-b
Rem_ark 9. Note that[[IB) cannot hold for all sources, e.g. for 4(p) g€ {Ia | - a,b € So(Ix), (a,b) N So(I) = @}
2-adic sources we can have zero redundancy with zero delay, |1

hence an infinite exponent.

k=1
and let
Remark 10. When restricted to interval-mapping encoders def J
only, a tighter upper bound dflog (1/pmin) holds. o7 = 61(P,d) = max{a € A(I) : a < pyn/4}

Namely,d; is the maximal distance between two consecutive
A. Proof Outline forbidden points in somé;, normalized by the measure &f

Since the proof is somewhat tedious, we find it instructif'at is smaller thamy, /4.
to provide a _rough Qutline under _the assumptior_1 that themma 14. ra(z") > 7¢ (4
encoder admits an interval-mapping representation (rathe i
than a generalized one). This assumption will be removed Proof: See the Appendix. o .
in the proof itself. Due to the strict delay constraint, ayan A numbera < [0,1) is called (m, ¢)—constrainedif
time instance the encoder must map the nesymbols into a=0.00...01¢...600...0¢...
intervals that do not contain any forbidden palitSypically — —
(for almost every interval), we will find an infinite number of
forbidden points concentrated near the edges, with a typidherem/(a) is the length of the zeros prefix of and¢ is
“concentration region” whose size depends on the specifite “don’t care” symbol. Thém, ¢)—constrained regiorC,, ¢
interval. Clearly, the distances between consecutive tpoifs the set of all such numbers. A numhee [0,1) is called
diminishes exponentially to zero. Therefore, mapping syisb (1, £)-violating if
to the concentration region will result in a significant métoh _
between the symbol probability and the interval length, and “= Ow 0.6 foreerihnn $ b (17)
this phenomena incurs redundancy. This observation is made m’(a) m ¢ bits, not all ‘0" or all "I’
precise in Lemma_14. The (m, ¢)-violating regionV,, , is the set of all such num-

Now, loosely speaking, there are two opposing strategies thers. The complemen¥,,, = [0,1) \ V.., is called the
encoder may use when mapping symbols to intervals. The fi(st, /)—permissible regionDefine the regio
is to think short-term, namely to be as faithful to the sowase def — et .
possible by assigning interval lengths closely matchinglsyl LCpe = (—10gCmy), LVme = (—logVy.r)
probabilities (within the forbidden points constrainthig will
likely cause the next source interval to have a relativelgda
concentration region, resulting in an inevitable redurmgan D,(i,)g et (LYo — LCms) , Dfi’)g def (DS?Z—DS?Q
at the subsequent mapping. The second strategy is to think

long-term, by mapping to intervals with a small concentnati 12To disambiguate the statement, we clarify that any two vaierwhose
union is an interval are counted as a single interval.
11As mentioned in Remarkl 7, avoiding forbidden points is netagh a 13Note that this is satisfied b(3), sinbﬁ'n(Ig(sxd)) is always contained
necessary condition. However, in the next section we vatifg is not a in one of the intervals comprising® (s).
restriction. 14The log and (-) operations are taken pointwise on the set elements.

m/’(a) m l

and let



The following two lemmas are easily observed. From this point forward we assume is (ug, A)-regular

ith . Let ’, and define the indexed set
Lemma 15. Letpy > 0. If a € V,, 0 and b € C,, »» Where With o > 3. Let <0/, and define the indexed sets

(< El, then dEf{ k c X 515@’“) > pmm}
la —b] > 27" (@) . g=(m+6) > g . 9= (m+0) C(wk) = {y cxt. O7e (phyd) > pmin}
i I
Lemma 16. If I,J C [0,1) are each a union of at most/ For o™ € By, Lemmal1} implies that
intervals of size no larger than each, then(I — J) can be ra(z®) > p (20)
written as a union of at mosd/? + 1 intervals of size no o
larger than2r each. On the other hand,z* ¢ By |mpl|es that the

length of each interval comprisin@®(z*) must be in

The (m, £)—permissible region within the interval/2, 1) is Clatos(1/pms) . udlog(1/pmim)]- SiNCE there are at mogi’|?
comprised oR™~! 41 subintervals. By definition, the size ofgych intervals, it must be that

each is upper-bounded ky (™ +m+0+1_ Applying (— log(-))
to all such intervals in thél /2, 1) interval (corresponding to I8 (2*)| € Craan.pa (21)
m’ = 0) will stretch each of them by a factor of at mMos{, here
2loge < 4. All other permissible intervals (those with' >
0) coincide on the unit interval after applying tHe log(-)) « o log(1/pmin) + log |X], B d:efulog(l/pmin) —log |X|
operator. HencdV,, ¢ can be written as a union of at most
9m—1_{ 1 intervals, each of size at mast M+0+3, A similar S miary, if y! ¢ C(a") then
argument shows thatV,, , can also be written that V\,@z |Z€ (a*y?)| e Clad).[8d] (22)
Appealing to Lemmﬂﬁpﬁi?g can be written as a union of at '
most(2™~+1)2+1 intervals, each of size at magt (m+4)+4, , def
Aopl @) B" = ' log(1/pmin) — log | X

pplying the Lemma again, we find tha,”, can be written
as a union of at mog(2™ ' +1)?+1)*+1 < 2*"*! intervals For Lemmd_1B to apply, we sgt ./ such that3/a > po and
each of size at most—(m+0+5 Hence, B’ /o > po. This yields the constraints:

where

2 4m+1 m—+£0)+5 3m—0+6 1)log|X
D),| < 2Amt1 . g=(m0+5 _ gsm—t+ (18) WS g+ Hot Dlog| ]
log (1/Pmin)

A source P’ is called (uo, A)-regular if there exists a pair |, \yhat foIIows we will think o/ as arbitrarily close tqu.
of symbolsy, z € X andmg € N such that for any: > o For anyz* ¢ B, we have:

P(') - _‘X'lC + Xk+d Xk_

VB

> P = 1 (v")")
dEAd 3NC(x*)

Remark 11. 0 € D(Q)“ m] for anym and i, hence no source
can be(uo,0)-regular. Since for a dyadic sourck = 0 for
any pairy, z, a dyadic source is nevey, A)-regular. pt dP(C( "))

mln

The following two lemmas establish some properties of

d\|TE (k E (ko d
(110, \)-regularity. - 3 Pyl (é 5)(;)"1 (="y)
Lemma 17. Let 1o > 3. Almost any source i§ug, \)-regular yieAd ;NC(a*)
for some\ > 0. Tt dP(O(xk))
Proof: See the Appendix. [ 2
Define the following set: @ Z P(y)|Z¢(z")| prodew(ﬂ
def (1) — A\ e yd Clah) 2 o
d deff d d. d Ad .NC(x
AL 5 E {at e X7 (—log Pa)) € DIy 1o} de sNC (")
. + Pl P(C ("))
Lemma 18. SupposeP is a (uo, A)-regular source. Then for 2
any a, 8 > 0 with 8/a > g [ PA /3 nC(z*)) 2atB)d+d | pld k
- " Pin + mmP(C( ))
1
lim inf P(Ad 5) >3 © 1 9 ,
00 NN dmax(2(« N
d— 2 > 1 [( (Ad 50N C’(xk))> +P(C(:17k))} pim (2(atp),n')+4
Proof: See the Appendix. " @, )
> 5 [( (42 5) = P(AL 5 N C(R) + P(AL 5 1 C ")

151t can in fact be written as a union of less and smaller intspMaut that

i P2+ 1) 108 (1/pmin) +4
adds nothing to our argument. (p+1) log (1/pmin)+

mln



@ 1 (P(Ad ))2 . p2dlu+1)log (1/pmin)+4 length, which in our framework imposes a harsh restriction:
— 4 op e The decoder is not allowed to start reproducing source sisnbo
— (i + 0(1)) .pitliiglwl)log(l/pmm)ﬂ (23) |n the midst of a block/phrase, and the dellay is repeatedly nu
16 lified at the end of each block/phrase. This means the encoder
The inequalities are justified as follows: is reset at these instances, i.e., the prefix has no effect on

(a) Pinsker's inequality for the divergencgl [1] was usedfs future behavior. Loosely speaking, the gain of expoiaént
together with Lemm&_14 and the nonnegativityrgf-).  VErsus polynomial is reaped via a tighter control over the

(b) 1) and [[Z2) hold for all the union-of-intervals length delay process, making such reset events rare. This superior
in the summation. Sincé—log P(y%)) ¢ pM for Performance comes however at a possible cost: in contrast

[ad],[Bd] i i
eachy? in the summation, then appealing to Lema 1to the block/phrase-constrained setup where the encoder ca

we have thatP (y™)|Z% (c*)| € Vyaa|. (50| The inequality Clear its memory and start-over in rou_ghly_ constant intistva
; ' the more general encoders discussed in this paper needgo kee
now follows by virtue of Lemma_15.

- ~ track of a state. The precision required for keeping thesstat
((8 i(fa?] (;é ?alfe(r?zo b];(eﬁl;tg)ri;nj(i(ecﬁzz PANC). is however finite, and can be easily derived from Lenima 14.

(e) LemmdIB was used to lower bound the probability of the In our framework, we haye isolated the _im_pact .Of the delay
set Ad .. on the redundancy by letting the transmission timgo to

Combi(r?if]g [20) and23), we get: infinity. This also makes sense complexity-wise, since the

' ' per-symbol encoding complexity is determined primarily by

E(rq(X*) + rg(X*H) the delay, and not by the length of the encoded sequence. In
. 4 1 20( 1) log (1/pratn) 44 practice however, a finite transmission time forces the daco
Z min (Pﬁnnv (E + 0(1)) " Prnin - ) to terminate the codeword, which in turn incurs an additiona
1 (1) ok (L) penalty of_O(n‘l_)_ in redundancy. Settingl = O(logn) _
= (1_6 + o(l)) P &}/ Pmin renders this additional redundancy term commensurate with

_ _ the redundancy incurred by the delay constraint. Theregfore
This holds for anyd-constrained encodef € &;4, hence and our results imply that the delay can be made logarithmicén th

plugging into Lemmal7 we get block length, while maintaining the same order of redungtanc
T Conversely, for almost all sources this is the best possible
RE(P) = lim inf —— > E(ra(X*) 4 ra(XF) tradeoff between block length and delay. A similar statemen
noee Lndg 4 in the context of universal source coding was mentioned in
> (i i 0(1)) s .deI(p+1)log(1/pmin)+4 [27], though for a somewhat different definition of the delay
—\16 2d ~™* There is still a large gap between the lower and upper
. o+1) log | X bounds on the redundancy—delay exponent, where the upper
This lower bound holds for any. > o + (ﬁlog(l)/pfall) - bound seems particularly loose. Furthermore, it remairseto

;\/Ioreover, bé L??mg7 alm(;]st anty;] sto]:Jrce(lp@, )\t)-regular seen whether the zero-measure set of sources for which the
oranypo > 5. Thereiore, we have that for aimost any SourcSpper bound may fail to hold, can be reduced from the set of

PE(P) > ( 1 ) 1 8dlog(2L)4o(d) sources that do not satisfy our intricate regularity caoditto
R (P) = 16 +o(l))- 2q Pmin the set of dyadic sources only, which is the smallest passibl
and hence By

E(P) < 8log (p : ) APPENDIX

As mentioned in Remark10, if the encoder is restricted to  Proof of Lemmd6: Let us first show thafZf satisfies
be interval-mapping then a tighter upper bodridg(1/pmin) the conditions for a generalized interval-mapping encoder
holds. In this cas&® (-) is a single interval rather than a uniorypf(sx) C 7% (s) is immediate from the consistency property.
of |X|¢ intervals, hence the proof remains the same up to thety, » € X be distinct, and assume tH&t (sy)NZE (sz) # 0.
substitution| X[ < 1. Then since any two binary intervals are either disjoint or

one is contained in the other, then without loss of gengralit
VI. CONCLUSIONS there existz?, 74 such that[€(syz?)) C [E(sza)), i.e., such

The redundancy in lossless coding of a memoryless soutbat £(s27%) < E(syz?). Sinced®(-,-) < d, it must be that
incurred by imposing a strict end-to-end delay constraing = syz* , in contradiction. This verifies the disjoint nesting
was analyzed, and shown to decay exponentially with tfgoperty.
delay. The associated delay-redundancy exponent was loweBy the consistency propertf?(s) C [£(s)). Suppose that
bounded by the Rényi entrop§l,(P) for any sourceP, and there exists a binary intervab) such thatZ¢(s) C [b) C
upper bounded b8 log (|X|/pmin) for most sources. This [£(s)). Then&(s) < b = E(sz?) for any 24 € X7, and
exponential behavior should be juxtaposed against ckissibence by the integrity property it must be that £(s), in
results in source coding, showing a polynomial decay of tte@ntradiction. Hencéin(Z¢(s)) = [£(s)) for any s € X*,
redundancy with the delay. In the classical framework, theerifying the minimality property. [ |
delay is identified with the block length or the maximal pleras Proof of Lemma&l7:



0] The lossless property implies that for any> 0 there exists
d large enough such that

M (P) = Lj, — H(P)
e o P(By)>1-¢ (24)
= —E (—log |bin(Z°(X™))|) — H(P) L o
7; Define B, to be the set of all prefixes iBy, i.e.,
< = _ & ny) _ n _
< — (E(=logpu”(X™)) — H(P")) Ba® (2l x4 <y By)
1 P(z" _
== Z P(z")log ( 5((:;"))) Note that by the very definition aB,, each prefix inB; must
zneX H appear inB, with all possible suffixes. Thereforé(B,) =
= RE(P) P(Bg) > 1 — ¢ for d large enough. Furthermore the lossless

property also implies that for any’ € B, the BV codebook
(i) Consider the generalized interval mapping repres@ma ¢ , . xn . {0,1}* defined by

of £ given in Lemmalb. This representation satisfies o
¢ (z™+4) C Z¢(2™). Thus similarly to the above: Ca(z™) £ E(2x"29) (25)

is a prefix-free lossless codebook, and hence must satisfy

fﬁi(P) = %E (—log}bin(IE(X"))}) — H(P) E|C.a(X™)| > nH(P). Write:

L ( £ d n d
> — |E (—loguf (X)) — —— H(P"*?) _ 1 d n nd
n N ) n+d L"er(P)_n—i—d g{dp(z) ,;mp(x E(@™27)|
n ) z xr
= (M) e+ Ly |
d n n . d
o " 2= Z P(z%) nznp(x )E(z" %)
(iii) For any fixedd € N, 24€ By TnEX
1
n > P(zHE|C,a(X™
1S ‘"+ddeZB (:1)E|Cua (X™)]
d zt€Ba
e > Y py amp) > L2 gipy
d = Xk+d) Therefore,
d . (I—-¢e)n
= Z log 11 (X*) i = lim inf R, +d(P)ZnIgI;O( i d —1) H(P)
]g:
L = —cH(P)
— =2 Elog 41 (XTF) This holds for any > 0, henceR® > 0. ]
k=1 Proof of Lemmd&19: Let £ € €4, and set any > 0. We
<O Y)—H(P) - lIElog (il g (X show that there exists another encoflee ¢, such that
d d N £
o+ (2 )Rf+d+ H(P) R (P) < R (P) +¢

which immediately establishes the Lemma. The encdfer
will be constructed by properly terminatin§. Setn large
enough such that both

<R +0(n)

Similarly,
24%° (P)

n > d + min{d, } (26)

LS Br(x") > 0(w) — 1(P) ~ Elog s (x7)
= and
=RE+O0O(n Y >RE+0(n ) RE(P) < RE(P) +¢/4 (27)

m Foranyz"~?c x4, define
Proof of Lemmd8: We only need to prove (i). An
arithmetic encoder matched to the souteeis well known
to achieve zero asymptotic redundancy![11], and a bounded

expected delay [14]/ [15]| [16]. Therefore namely, y?(z"~?) is the suffix that results in the minimal
. o codelength after having encodeti—?. Clearly,

n— def n—
y (2" =) = argmin{|€ (2" ~27)[}
zdexd

—£ —£
inf |} (P)< inf R (P)<0 _ ne ne =
edblp M (P) < ol B (P) < nTIEIEX X)) < LE(P) (28)
Let £ € £(P). Define B, to be the set of all suffixes that Construct the new encodéf as follows. For any: < n—d,
allow decoding of any prefix with delay at mogti.e., let &'(z%) = £(2*), and let&’ (2"~ ) = E(a" Yy (a"9)).
et For k > n —d, divide z* into blocks of equal size — d (with
B, € {y>® e x> :6%(s,y™) <d,Vs € X*} the last one possibly shorter), apply the rule above to each



separately, and lef’(z*) be the concatenation thereof. UsingP(z?) together with the monotonicity of the scalar relative
(28), we have entropy. In (c) we have usédg(1—p) > —%; for0 <p < 1.
, _ _ If on the other handy > ¢;, then all of thed-fold alphabet
£ _ _ 1 / n—d\| _ = 01
Ry—a(P) (_)(n d) " EjE(X") H(P) has been assigned to a measure at nhest; which results
a n

< LE(P)— H(P) < 2)%5( ) in a d-instantaneous redundancy lower bounded by
“n—d " “n-—
1

(®) n ra(z™) > log > érloge > 61
< R ( £ . ) = — 2 >

RE(P) + (R (P) + —— -&/4 =5
© . .
<R (P)+e Proof of Lemmd17: Note thatC,, 41 C Cn ¢ and

(2) (2)
where (a) follows from[(28), (b) follows froni{27), and (c)’m:t+1 = Vm.t: henceD,’,, C D, ,. By (18), we have

follows from the assumptiofi_(26). Now, from the concatedatdhat for anyuo >3

construction we have that for any > n — d oo
. . 2)
, —d , lim o T | = lim D tm
g{fn (P) S w . (n _ d) .mi_d(P) mo—00 #go muno JM 1 mo—00 mgno s[rom]
m
m+n—d /¢ ad
L . m(3—p0)+6
o (& P)+e) < dm 3 e
m=myo
and hence , om0 (3—0)+6
R (P) = limsup R, (P) < RE(P) +¢ - WEEIOO 1—23—no 0
m—00
as desired. The statement of the lemma follows easily. [ ]

Proof of Lemma10:1t is easy to see that the number of ~ roof of Lemmé I8: We will assume hereinafter that

t-left-adjacents of that are larger tham + § is the number € < 3Pmin- Lety, 2 t;e the syms)ols attaining, and define a
of ones in the binary expansion 6§ — a) up to resolutiony. transformationr : 2¢(X) — 29(X) on types:
Sh|m|lsrly,6tr_1e r;}umbergf t—nght-ad@cegtsgithat are smaller f Q(x) r€{y,z} vV Qy) =

thanb — 4 is the number of ones in the binary expansion of 5(Q)(x) = { Q(z) — d* t=y A Qly)>0

(b — p) up to resolutiony. Defining [z]* et max([z],0), we Q(z) +d* r=z A Qy)>0

get: (29)
p—a ., b—p. . Namely,o exchan.ge.s one gppearancgwﬁth the appearance

1S5(L,p)| = [log==—17 + [log ——] of z as long as this is possible, i.e., as longHg) > 0. Now,
2+ log (p_a)(b_p) S<p—ab—p supposed > log(f}ip) so that [(ID) is satisfied. Noting that

1+ 1og L= a‘ o the setA? , is a union of type classes, It € Z¢(X, P) be

gb P a type such thatp N A4 o5 = 0. Clearlyo(Q) # Q, and for

< 1—|—210g| il anyz? € T andz? eT()
[ (—log P(7%)) = (—log P(z%) + \)
Proof of Lemmd_14: Let I = Z¢(2™) throughout the @

proof. Let Now since A ¢ D, Tpm] for any m > mg and u > o,

24 "éfardgmidnﬂg(yﬂx”) and sincef/a > 1o, then A ¢ D((i)dw,wdw- Recalling the
viey definition ofD[ a1, 18d) and appealing to Lemnid 1, we have

and lety £ 4€ (z4|zm). If v < 67, thenz? has been assignedthat (— log P(i%)) ¢ Dmcﬂ fa) hence we conclude that
with a measure at least four times smaller than its prohﬁblllU(Q) c Ad Therefore S|nce- is one-to-one when restricted
P(z%). Thed-instantaneous redundancy can be lower bound%j@d(x p) theno uniquely matches any type 4 (X, P)
as follows: that is outsided? ,, to a type that is insidel? ,

a Let us now get a handle on the variation in the probability
n f— d . n d d. . . .
ra(a") = D(Plpa(2")) = DPEDy) 2 Deminll?)  of 5 type class incurred by applyirg It is easy to check that

d. _pd. d
— ' log p:m +(1=pt Yiog 1 : f:m for anyQ € Z¢(X, P), andn large enough,
P(y) —e)d ) (P(z))
© P(Ty o)) > P(T, < (
> 2pmln (1 - pmln)lf& pmln Z 51 ( (Q)) o ( Q) (P(Z) + E)d + 1 P(y)
Pmin € e+d!
In (a) we have used the data processing inequality for the > P(To) \1- Ply) 1- P

divergenc@. In (b) we have used the fact that< p?. < — P(Ty) (1 +06) + O(d‘l))

18Recall thatu,(-|z™) sums to at most unity, hence can be complement o
to a probability distribution by adding an auxiliary symhelto X< and elqlamely, the probability of a type class for a ty@g €

defining P%(w) = 0. 23d(Xx, P) under P, remains almost the same after applying



o. Therefore:

1—

P(AG 5)

<P To | + P(Tg)

U

QEZ(X,P)

>

QEPI(X,P):ToNAL ,=0

P(Toq))

= T 0@ +0(d )

o(1) +

>

QEPL(X P) TonAL =

P(T,
T (Tg)

-1
QTachAs 1+0(e) +0(d™1)

P(A3 5)
1+0()+0(d1)

IN

o(1) +

o(1) +

[17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

Where we have used the AEP (Lemih 2) in the second
inequality. The result now follows by rearranging the termi&5]
above, taking the limit ag — oo, and noting that > 0 can

be taken to be arbitrarily small.
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