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Abstract

We study private broadcasting of two messages to two groups of receivers over independent parallel channels.

One group consists of an arbitrary number of receivers interested in a common message, whereas the other group

has only one receiver. Each message must be kept confidentialfrom the receiver(s) in the other group. Each of the

sub-channels is degraded, but the order of receivers on eachchannel can be different. While corner points of the

capacity region were characterized in earlier works, we establish the capacity region and show the optimality of

a superposition strategy. For the case of parallel Gaussianchannels, we show that a Gaussian input distribution is

optimal. We also discuss an extension of our setup to broadcasting over a block-fading channel and demonstrate

significant performance gains using the proposed scheme over a baseline time-sharing scheme.

I. I NTRODUCTION

There has been a considerable amount of interest in recent years in exploiting the properties of fading wireless

channels for transmission of confidential messages (see e.g., [1]–[6] and references therein). Such studies have

lead to new coding techniques such as the variable rate extension of the wiretap codebook [1], secure product

codebooks [7] and secure multicast codebooks [4]. In the present work we study a setup where a single transmitter

needs to serve two groups of receivers over a block-fading channel. There areK receivers in group1, all

interested in a common message, whereas there is a single receiver in group2. The message of group1 must

be kept confidential from the group2 receiver, whereas the message of group2 must be kept confidential from

group1. We will refer to this setup asprivate broadcasting. In related work, references [8]–[10] study private

broadcasting when there is one receiver in each group. References [11], [12] study private broadcasting with

feedback over erasure and MIMO broadcast channels. Reference [13] studies interference alignment techniques
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for private broadcasting. In this paper we focus on the case when there areM independent, parallel and degraded

sub-channels and thereafter treat the natural extension toblock-fading channels.

Our setup reduces to previously known results at the corner points of the capacity region. When we only need

to transmit the message for group1, with the group2 receiver as the only eavesdropper, the capacity can be

achieved using a secure multicast codebook [4]. Instead, when we only need to transmit the message for group

2, with all receivers in group1 as eavesdroppers, the capacity can be achieved using a secure product codebook

[7]. Interestingly the secure multicast and secure productcodebook constructions are based on different ideas. A

secure multicast codebook consists ofM sub-codebooks, one for each channel. Each sub-codebook is awiretap

codebook [14], has the same rate as the transmitted message and guarantees confidentiality of the message from

the eavesdropper on its respective link. The secure multicast construction guarantees that the legitimate receiver

can decode the message by using the output of all the channels. Furthermore the message remains confidential

from the eavesdropper even when all the channel outputs are combined. While the secure product codebook also

uses one sub-codebook for each sub-channel, the rate of eachsub-codebook equals the capacity of the legitimate

receiver on that sub-channel. The secure product codebook takes a cartesian product of these codebooks and

then applies the wiretap construction to this product codebook. This guarantees that the output codeword on

any given sub-channel is (nearly) independent of the outputcodewords on other sub-channels. This limits the

amount of information that gets leaked to an eavesdropper onany given sub-channel. Both the secure multicast

codebook and secure product codebook result in a higher ratethan a vector extension of the wiretap codebook

to parallel channels.

In this paper we study the case when both the messages need to be simultaneously transmitted. We find that

a superposition construction achieves the entire capacityregion. The proposed construction imposes a particular

layering order for the secure multicast and secure product codebooks. The codewords in each sub-codebook of

the secure product codebook must constitute the cloud centers, whereas the codewords in the associated sub-

codebook of the secure multicast codebook must constitute satellite codewords. The optimality of such a layered

coding scheme was somewhat unexpected. In absence of secrecy constraints, to the best of our knowledge the

capacity region in the proposed setup remains open, even though the corner points are known [15]. We will

provide an explanation on the sufficiency of the superposition approach after presenting the coding scheme in

section III.

For the case of independent Gaussian sub-channels, we further establish that a Gaussian input distribution is

optimal. The proof involves obtaining a Lagrangian dual forevery boundary point of the capacity region and

then using an extremal inequality [16], [17] to show that theexpression is maximized using Gaussian inputs.

The result for the Gaussian channels are extended to a block-fading channel model using suitable quantization

of the channel gains. We numerically evaluate the rate region for a sub-optimal power allocation and observe

significant gains over a naive time-sharing approach.
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II. PROBLEM STATEMENT AND MAIN RESULTS

A. Independent Parallel Channels

Our setup involvesM independent parallel sub-channels and two groups of receivers. There areK receivers

in group1 and one receiver in group2. The output symbols at receiverk in group1 across theM sub-channels

is denoted by

yk = (yk,1, yk,2, . . . , yk,M ), k = 1, 2 . . . ,K, (1)

whereas the output symbols of the group2 receiver across theM sub-channels are denoted by

z = (z1, z2, . . . , zM ), (2)

and the channel input symbols are denoted byx = (x1, . . . , xM ).

Each sub-channel is a degraded broadcast channel. The degradation on sub-channeli can be expressed as

xi → yπi(1),i · · · yπi(li),i → zi → yπi(li+1),i · · · yπi(K),i, (3)

for some permutation{πi(1), . . . , πi(K)} of the set{1, . . . ,K}.

We intend to transmit messagem1 to receivers1, . . . ,K in group1, while the messagem2 must be transmitted

to the receiver in group2. A length-n private broadcast code encodes a message pair(m1,m2) ∈ [1, 2nR1] ×

[1, 2nR2 ] into a sequencexn such thatPr(m1 6= m̂1,k) ≤ εn, and Pr(m2 6= m̂2) ≤ εn, and furthermore the

secrecy constraints

1

n
I(m1; z

n) ≤ εn,
1

n
I(m2; y

n
k ) ≤ εn, k = 1, 2, . . . ,K, (4)

are also satisfied. Here{εn} approaches zero asn → ∞. The capacity region consists of the set of all rate pairs

(R1, R2) achieved by some private broadcast code. The following Theorem characterizes this region.

Theorem 1: Let auxiliary variables{ui}1≤i≤M satisfy the Markov condition

ui → xi → yπi(1),i · · · yπi(li),i → zi → yπi(li+1),i · · · yπi(K),i. (5)

The capacity region is given by the union of all rate pairs(R1, R2) that satisfy the following constraints:

R1 ≤ min
1≤k≤K

{

M
∑

i=1

I(xi; yk,i|ui, zi)

}

(6)

R2 ≤ min
1≤k≤K

{

M
∑

i=1

I(ui; zi|yk,i)

}

(7)

for some choice of{ui}1≤i≤M that satisfy (5). The alphabet ofui satisfies the cardinality constraint|Ui| ≤

|Xi|+ 2K − 1. ✷

The coding theorem and converse for Theorem 1 are presented in section III and IV respectively.
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B. Gaussian Channels

Consider the discrete-time real Gaussian model where the channel output over sub-channeli at time indext

is given by

yk,i(t) = xi(t) + nk,i(t) (8)

zi(t) = xi(t) + wi(t), t = 1, . . . , T. (9)

The additive noise vectorsnk,i = (nk,i(1), · · · , nk,i(T )) andwi = (wi(1), · · · ,wi(T )) have entries that are

sampled i.i.d.N (0, σ2
k,i) andN (0, δ2i ), respectively. Since the capacity region of the channel depends on the

joint distribution of the additive noise(n1,i(t), . . . , nK,i(t),wi(t)) only through the marginals and that Gaussian

variables are infinitely divisible, without loss of generality we may assume that for each sub-channeli the

receivers are degraded as expressed in (3). We shall consider both the per sub-channel average power constraint

1

T
E
[

‖xi‖
2
]

≤ Pi, ∀i = 1, . . . ,M (10)

and the total average power constraint

1

T

M
∑

i=1

E
[

‖xi‖
2
]

≤ P (11)

wherexi = (xi(1), · · · , xi(T )) is the input vector for sub-channeli.

Theorem 2: The capacity region under the per sub-channel average powerconstraint (10) is given by the

union of all rate pairs(R1, R2) that satisfy the following constraints:

R1 ≤ min
1≤k≤K

{

M
∑

i=1

A
(1)
k,i (Q)

}

(12)

R2 ≤ min
1≤k≤K

{

M
∑

i=1

A
(2)
k,i (Q)

}

(13)

for some power vectorQ = (Q1, . . . , QM ), where0 ≤ Qi ≤ Pi for all i = 1, . . . ,M ,

A
(1)
k,i (Q) :=

[

1

2
log

(

Qi + σ2
k,i

σ2
k,i

)

−
1

2
log

(

Qi + δ2i
δ2i

)

]+

(14)

A
(2)
k,i (Q) :=

[

1

2
log

(

Pi + δ2i
Qi + δ2i

)

−
1

2
log

(

Pi + σ2
k,i

Qi + σ2
k,i

)]+

(15)

andx+ := max{x, 0}. ✷

A proof of Theorem 2 is provided in section V.

Corollary 1: The capacity region under the total average power constraint (11) is given by the union of all

rate pairs(R1, R2) that satisfy the constraints (12) and (13) for some power vectors P = (P1, . . . , PM ) and

Q = (Q1, . . . , QM ), where0 ≤ Qi ≤ Pi for all i = 1, . . . ,M and
∑M

i=1 Pi ≤ P . ✷

The above corollary follows directly from Theorem 2 and the well-known connection between the per sub-

channel and the total average power constraints. We will notprovide a proof of Corollary 1.
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C. Fading Channels

We consider a block-fading channel model with a coherence period of T complex symbols. The channel

output in coherence blocki is given by

yk(i) = hk(i)x(i) + nk(i) (16)

z(i) = g(i)x(i) +w(i), i = 1, 2 . . . ,M (17)

where the channel gainshk(i) of theK receivers in group1 and the channel gaing(i) of the group2 receiver

are sampled independently in each coherence blocki and stay constant throughout the block. The coherence

periodT will be taken to be sufficiently large so that random coding arguments can be invoke in each coherence

block. The channel inputx(i) ∈ CT satisfies a long-term average power constraint

E

[

1

MT

M
∑

i=1

||x(i)||2

]

≤ P (18)

whereas the additive noise vectorsnk(i) andw(i) have entries that are sampled i.i.d.CN (0, 1). We are interested

in the ergodic communication scenario where the number of blocksM used for communication can be arbitrarily

large. Furthermore we assume that the channel gains in each coherence block are revealed to all terminals

including the transmitter at the beginning of each coherence block.

Theorem 3: The private broadcasting capacity region for the fading channel model consists of all rate pairs

(R1, R2) that satisfy the following constraints:

R1 ≤ min
1≤k≤K

E

[

{

log

(

1 +Q(h, g)|hk|
2

1 +Q(h, g)|g |2

)}+
]

, (19)

R2 ≤ min
1≤k≤K

E





{

log

(

1 + P (h, g)|g |2

1 +Q(h, g)|g |2

)

− log

(

1 + P (h, g)|hk|2

1 +Q(h, g)|hk|2

)}+


, (20)

for some power allocation functionsP (h, g) andQ(h, g) that satisfy0 ≤ Q(h, g) ≤ P (h, g) for all (h, g) ∈

CK+1, andE[P (h, g)] ≤ P , whereh := (h1, . . . , hK) denotes the channel gains of the receivers in group1. ✷

A proof of Theorem 3 is provided in Section VI.

Theorems 1, 2 and 3 constitute the main results in this paper.

III. C ODING THEOREM

The basic idea behind our coding scheme is illustrated in Fig. 1. The messagem2 is encoded using a product

codebook [1], [7], whose codewords are obtained by taking cartesian product of theM codebooks, one for

each of the parallel channels. The messagem1 is encoded using a multicast codebook [4], also consisting of

M codebooks. As shown in Fig. 1, the codewords of the product-codebook constitute cloud centers of the

superposition codebook, whereas the codewords of the multicast codebook constitute the satellite codewords.

We describe the details of our construction in the followingsub-sections.
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Fig. 1: Superposition construction for the case of two channels. The product codebook for the group2 user is

obtained by taking a cartesianC21 × C22 of two independently generated codebooks and binning the resulting

codeword pairs. The multicast codebook is generated, conditioned on the codewords ofC21 andC22.

A. Product-Codebook Construction

The messagem2 is encoded using a product codebook [1], [7]. LetM2,i be the set of all binary sequences

of lengthN2,i = n(I(ui; zi)− 2ε) i.e.,

M2,i := {0, 1}N2,i. (21)

On channeli, we generate a codebookC2,i : M2,i → Un
i consisting of|M2,i| codewords, i.e.,

C2,i :=
{

un
i (m̄2,i) : m̄2,i ∈

[

1, 2N2,i
]}

, (22)

where each sequenceun
i is sampled i.i.d. from the distributionpui(·). Let

M2 := M2,1 ×M2,2 × . . .×M2,M (23)

=
{

(m̄2,1, . . . , m̄2,M ) : m̄2,i ∈ {0, 1}Ni, i = 1, . . . ,M
}

. (24)

As shown in Fig. 1, we partition the setM2 into 2nR2 bins such that there areL2 = 2n{
∑M

i=1
I(ui;zi)−R2−Mε}

sequences in each bin. Each bin corresponds to one messagem2 ∈ [1, 2nR2]. Thus given a messagem2 the

encoder selects one sequence(m̄2,1, . . . , m̄2,M ) ∈ M2 uniformly at random from the corresponding bin. On

channeli we select the codeworduni ∈ C2,i associated with̄m2,i. We note that from our construction, each
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sequence inM2 is equally likely i.e.,

Pr(m̄2,1 = m̄2,1, . . . , m̄2,M = m̄2,M ) =

M
∏

j=1

Pr(m̄2,j = m̄2,j) =
1

|M2,1| × |M2,2| . . . , |M2,M |
. (25)

B. Multicast-Code Construction

The codebook associated withm1 is a secure multicast codebook [4]. For eachuni ∈ C2,i, and each

m1 ∈ [1, 2nR1 ] we construct a codebookC1,i(uni ,m1) consisting of a total ofL1,i = 2n(I(xi;zi|ui)+ε) codeword

sequences of lengthn, each sampled i.i.d. from the distribution
∏n

j=1 pxi|ui(xij |uij).

Let l1,i be uniformly distributed over[1, L1,i]. Given a messagem1 ∈ [1, 2nR1 ] and codewords(un1 , . . . , u
n
M ),

selected in the base layer, we select the sequencexni from the codebookC1,i(uni ,m1) corresponding to the

randomly and uniformly generated indexl1,i. The sequencexni is transmitted on sub-channeli.

The following property will be useful in our subsequent analysis.

Lemma 1: The sequences(xn1 , x
n
2 , . . . , x

n
M ) are conditionally independent givenm1.

Proof: Note that

p(xn1 , . . . , x
n
M |m1) =

∑

{m̄2,i}

p(xn1 , . . . , x
n
M , m̄2,1, . . . , m̄2,M |m1) (26)

=
∑

{m̄2,i}

p(xn1 , . . . , x
n
M |m1, m̄2,1, . . . , m̄2,M )p(m̄2,1, . . . , m̄2,M ) (27)

=
∑

{m̄2,i}

p(xn1 , . . . , x
n
M |m1, m̄2,1, . . . , m̄2,M )p(m̄2,1) . . . p(m̄2,M ) (28)

=
∑

{m̄2,i}

p(xn1 |m1, m̄2,1) . . . p(x
n
M |m1, m̄2,M )p(m̄2,1) . . . p(m̄2,M ) (29)

=

M
∏

i=1

∑

m̄2,i

p(xni |m1, m̄2,i)p(m̄2,i) (30)

=

M
∏

i=1

∑

m̄2,i

p(xni , m̄2,i|m1) (31)

=

M
∏

i=1

p(xni |m1) (32)

where (27) follows from the fact that the messagesm̄2,1, . . . , m̄2,M are independent ofm1; (28) follows from

the fact that the messages satisfy (25); (29) follows from the fact that eachxni ∈ C1,i(m1, u
n
i ) and uni is a

function of m̄2,i. Eq. (32) establishes the conditional independence of the messages and completes the proof.
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C. Decoding and Error Analysis

1) Decoding of Message m1: Receiverk in group1 selects those sub-channelsJk where it is stronger than

the group2 receiver:

Jk =
{

i ∈ [1,M ] : xi → yk,i → zi

}

(33)

• For eachi ∈ Jk, receiverk selects a sequencêuni ∈ C2,i such that1 (ûni , y
n
k,i) ∈ T n

ε (ui, yk,i). We define

Ek as the event that there exists somei ∈ Jk such that{ûni 6= uni }.

• Receiverk then searches for a messagem̂1 ∈ [1, 2nR1 ] with the following property: for eachi ∈ Jk

there exists a codewordxni ∈ C1,i(m1, û
n
i ) such that(xni , y

n
k,i) ∈ T n

ε (xi, yk,i|ui). An error is declared if

m̂1 6= m1.

Now observe that

Pr(m̂1 6= m1) ≤ Pr(Ek) + Pr(m̂1 6= m1|E
c
k). (34)

Since|C2,i| ≤ 2n(I(ui;zi)−ε) andI(ui; yk,i) ≥ I(ui; zi) for eachi ∈ Jk, it follows thatPr(Ek) ≤ Mε.

To bound the second term in (34) we use the union bound and analysis of typical events.

Pr(m̂1 6= m1|E
c
k) ≤ 2nR1

∏

i∈Jk

{

|C1,i| 2
−n(I(xi;yk,i|ui)−ε)

}

(35)

≤ 2nR12
−n

∑
i∈Jk

(I(xi;yk,i|ui)−I(xi;zi|ui)−2ε) (36)

= 2nR12
−n

∑
i∈Jk

(I(xi;yk,i|ui,zi)−2ε) (37)

which goes to zero provided thatR1 ≤
∑

i∈Jk
I(xi; yk,i|ui, zi)−(2M+1)ε. Sinceε > 0 is arbitrary, our choice

of R1 in (6) thus guarantees that the error probability associated with messagem1 vanishes to zero.

2) Decoding of message m2: The receiver in group2 decodes messagēm2,i on sub-channeli by searching

for a sequenceuni ∈ C2,i that is jointly typical withzni . Since the number of codewords inC2,i does not exceed

2n(I(ui;zi)−2ε), this event succeeds with high probability. Hence the receiver correctly decodes(m̄2,1, . . . , m̄2,M )

and in turn messagem2 with high probability.

D. Secrecy Analysis

In order to establish the secrecy of messagem1 we need to show that

1

n
I(m1; z

n|C) ≤ εn (38)

Using Lemma 1 and the fact that the channels are independent,we have thatzn1 , . . . , z
n
M are conditionally

independent givenm1. It follows that

1

n
I(m1; z

n|C) ≤
M
∑

i=1

I(m1; z
n
i |C). (39)

1We will use the notion of strong typicality. The setTn

ε
(x , y) denotes theε-strongly typical set.
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Since in our conditional codebook construction, there are2n(I(xi;zi|ui)+ε) sequences in each codebookC1,i(uni ,m1),

it follows from standard arguments that1
n
I(m1; z

n
i |C) ≤ εn. The secrecy constraint (38) now follows.

To establish secrecy of messagem2 with respect to user1 in group1, we show that

1

n
H(m2|y

n
1 ,m1) ≥ R2 − εn. (40)

where for simplicity we drop the subscript associated with user1 in the sequenceyn1 . Without loss of generality,

we assume that sub-channelsi = 1, 2, . . . , L satisfyxi → zi → yi while sub-channelsi = L+1, . . . ,M satisfy

xi → yi → zi. Now consider

H(m2|y
n
1 ,m1) = H(m2|y

n
1 , . . . , y

n
M ,m1) (41)

= H(m̄M
2,1|y

n
1 , . . . , y

n
M ,m1)−H(m̄M

2,1|m2,m1, y
n
1 , . . . , y

n
M ) (42)

=

M
∑

j=1

H(m̄2,j |y
n
j ,m1)−H(m̄M

2,1|m2,m1, y
n
1 , . . . , y

n
M ) (43)

≥
L
∑

j=1

H(m̄2,j |y
n
j ,m1)−H(m̄M

2,1|m2,m1, y
n
1 , . . . , y

n
M ) (44)

where (43) follows by establishing that the collection of pairs {(m2,1, y
n
1 ), . . . , (m2,M , yn

M )} is conditionally

independent givenm1, which can be establishes in a manner similar to the proof of Lemma 1 and (44) follows

from the fact that the entropy function is non-negative and therefore we can drop the termsL + 1, . . . ,M in

the first summation.

We lower bound the first term in (44). Recall thatm̄2,j is uniformly distributed overC2,j with |C2,j| =

2n(I(uj;zj)−ε). Furthermore, the corresponding codewordunj is the base codeword inC1,j(m1, u
n
j ) and

∣

∣C1,j(m1, u
n
j )
∣

∣ = 2n(I(xj ;zj|uj)−ε) ≥ 2n(I(xj ;yj |uj)−ε),

since the channel satisfies the relationxj → zj → yj for j = 1, . . . , L. Since the satellite codewordxnj is

uniformly selected fromC1,j it follows that [18, Remark 22.2, pp. 554-555]

1

n
H(m̄2,j |y

n
j ,m1) ≥ I(uj ; zj)− I(uj ; yj)− ε. (45)

and therefore using the fact thatuj → zj → yj , we have

1

n

L
∑

j=1

H(m̄2,j |y
n
j ,m1) ≥

L
∑

j=1

I(uj ; zj |yj)− Lε. (46)

We next upper bound the second term in (44). Note that

H(m̄M
2,1|m2,m1, y

n
1 , . . . , y

n
M ) ≤ H(m̄M

2,1|m2,m1, y
n
1 , . . . , y

n
L , z

n
L+1, . . . z

n
M ) (47)

sinceznj is a degraded version ofyn
j on channelsj ∈ {L+ 1, . . . ,M}. Also note that

R̃ =
1

n
H(m̄2,1, . . . , m̄2,M ) (48)
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=
1

n

M
∑

i=1

H(m̄2,i) (49)

=

M
∑

i=1

{I(ui; zi)− 2ε} , (50)

where we use the fact that the messages(m̄2,1, . . . , m̄2,M ) are mutually independent (c.f. (25)). Furthermore

we select

R2 =
1

n
H(m2) (51)

≤
L
∑

i=1

I(ui; zi|yi)− (2M + 1)ε. (52)

Note that

R̃−R2 >
L
∑

i=1

I(ui; yi) +
M
∑

i=L+1

I(ui; zi) (53)

= I(u1, . . . , uM ; y1, . . . , yL, zL+1, . . . , zM ) (54)

where the last step follows from the fact that we have selected u1, . . . , uM to be mutually independent and the

channels are also independent. We can therefore conclude that (c.f. [18, Lemma 22.1, Remark 22.2, pp. 554-555],

[19, Lemma 1])

1

n
H(m̄M

2,1|m2,m1, y
n
1 , . . . , y

n
L , z

n
L+1, . . . z

n
M )

≤ R̃−R2 − I(u1, . . . , uM ; y1, . . . , yL, zL+1, . . . , zM ) + ε (55)

=

L
∑

i=1

I(ui; zi|yi)−R2 + ε. (56)

Substituting (46) and (56) into (44) we have that

1

n
H(m2|y

n
1 ,m1) ≥ R2 − (L+ 1)ε, (57)

Sinceε > 0 can be arbitrarily small, this establishes the secrecy of messagem2 with respect to user1 in group

1. The secrecy with respect to every other user can be established in a similar fashion.

Remark 1: The superposition approach uses the codewords for the group2 user as cloud centers and the

codewords of the group1 user as satellite codewords. To justify this, note that on any given channel, say

channeli, there is an ordering of receivers as in (3). Receivers{πi(li+1), . . . , π(K)} belonging to group1 that

are weaker than the group2 user. It can be seen that these receivers do not learn any information on channel

i. Thus among all the set ofactive users on any given channel, the group2 user is the weakest user. Therefore

the associated codeword of the group2 user constitutes the cloud center.
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IV. CONVERSE

We first show that there exists a choice of auxiliary variables ui(j) that satisfy the Markov chain condition

ui(j) → xi(j) → yπ(1),i(j) · · · yπ(li),i(j) → zi(j) → yπ(li+1),i(j) · · · yπ(K),i(j). (58)

such that the ratesR1 andR2 are upper bounded by

nR1 ≤
M
∑

i=1

n
∑

j=1

I(xi(j); yk,i(j)|ui(j), zi(j)) + 2nεn (59)

nR2 ≤
M
∑

i=1

n
∑

j=1

I(ui(j); zi(j)|yk,i(j)) + 2nεn (60)

for eachk ∈ {1, . . . ,K}.

In particular we show that the choice ofui(j) is given by the following:

ui(j) =
{

m2, Z̄
n
\i, z̄

n
i,j+1, z̄

j−1
i

}

(61)

where we introduce (c.f. (58))

z̄ni := (zni , y
n
π(li+1),i, . . . , y

n
π(K),i), (62)

Z̄n
\i := (z̄n1 , . . . , z̄

n
i−1, z̄

n
i+1, . . . , z̄

n
M ), (63)

z̄
j−1
i := (zj−1

i , y j−1
π(li+1),i, . . . , y

j−1
π(K),i), (64)

z̄ni,j+1 := (zni,j+1, y
n
π(li+1),i,j+1, . . . , y

n
π(K),i,j+1), (65)

and observe our choice ofui(j) in (61) indeed satisfies (58). Note thatz̄ni is the collection of the Group2

receiver’s channel output as well as the output of all the receivers{π(li + 1), . . . , π(K)} in Group1 that are

degraded with respect to the group2 receiver on channeli.

We begin with the secrecy constraint associated with message m2 with respect to userk in group1. Let us

define the following:

ȳn
k,i :=















yn
k,i, xk → zi → yk,i

zni , xk → yk,i → zi,

(66)

ȳnk := (ȳn
k,1, . . . , ȳ

n
k,M ), zn := (zn1 , . . . , z

n
M ), (67)

ȳnk,i := (ȳn
k,1, . . . , ȳ

n
k,i), zni := (zn1 , . . . , z

n
i ). (68)

Thus ȳnk corresponds to a weaker receiver, whose output on channeli is degraded tozni , if user k is stronger

than the group2 user on this sub-channel. Clearly we have that1
n
I(m2; ȳ

n
k ) ≤ εn whenever1

n
I(m2; y

n
k ) ≤ εn.

We thus have

n(R2 − 2εn) ≤ I(m2; z
n)− I(m2; ȳ

n
k ) (69)
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≤ I(m2; z
n|ȳnk ) (70)

=

M
∑

i=1

n
∑

j=1

I(m2; zi(j)|z
j−1
i , zni−1, ȳ

n
k ) (71)

≤
M
∑

i=1

n
∑

j=1

I(m2, z
j−1
i , zni,j+1, z

n
i−1, ȳ

n
k\i, ȳ

j−1
k,i , ȳn

k,i,j+1; zi(j)|ȳk,i(j)) (72)

≤
M
∑

i=1

n
∑

j=1

I(m2, Z̄
n
\i, z̄

n
i,j+1, z̄

j−1
i ; zi(j)|ȳk,i(j)) (73)

=

M
∑

i=1

n
∑

j=1

I(ui(j); zi(j)|ȳk,i(j)) (74)

=
M
∑

i=1

n
∑

j=1

I(ui(j); zi(j)|yk,i(j)) (75)

where (73) follows from the fact that

(zni−1, ȳ
n
k\i) ⊆ Z̄n

\i, (zj−1
i , ȳ j−1

k,i ) ⊆ z̄
j−1
i , (zni,j+1, ȳ

n
k,i,j+1) ⊆ z̄ni,j+1, (76)

and (75) follows from the fact wheneveryk,i(j) 6= ȳk,i(j) then zi(j) is a degraded version ofyk,i(j) and

from (66), we have that

I(ui(j); zi(j)|yk,i(j)) = I(ui(j); zi(j)|ȳk,i(j)) = 0. (77)

This establishes (60).

Next, we upper boundR1 as follows:

n(R1 − 2εn) ≤ I(m1; y
n
k )− I(m1; z

n,m2) (78)

≤ I(m1; y
n
k |z

n,m2) (79)

≤
M
∑

i=1

n
∑

j=1

I(m1; yk,i(j)|y
j−1
k,i , ynk,i−1, z

n,m2) (80)

≤
M
∑

i=1

n
∑

j=1

H(yk,i(j)|y
j−1
k,i , ynk,i−1, z

n,m2)−H(yk,i(j)|y
j−1
k,i , ynk,i−1, z

n,m1,m2, xi(j)) (81)

=

M
∑

i=1

n
∑

j=1

H(yk,i(j)|y
j−1
k,i , ynk,i−1, z

n,m2)−H(yk,i(j)|xi(j), zi(j)) (82)

≤
M
∑

i=1

n
∑

j=1

H(yk,i(j)|z
n,m2)−H(yk,i(j)|xi(j), zi(j)) (83)

=

M
∑

i=1

n
∑

j=1

H(yk,i(j)|Z̄
n
\i, z̄

j−1
i , z̄ni,j+1, zi(j),m2)−H(yk,i(j)|xi(j), zi(j)) (84)

=

M
∑

i=1

n
∑

j=1

H(yk,i(j)|ui(j), zi(j))−H(yk,i(j)|xi(j), zi(j), ui(j)) (85)
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=

M
∑

i=1

n
∑

j=1

I(xi(j); yk,i(j)|ui(j), zi(j)), (86)

where (82) follows from the fact that for our channel model(yk,i(j), zi(j)) are independent of all other random

variables givenxi(j) whereas (84) follows from the fact that even thoughzn ⊆ {Z̄n
\i, z̄

j−1
i , z̄ni,j+1, zi(j)} holds,

the additional elements in the latter are only a degraded version of zn. This establishes (59).

To complete the converse, letqi to be a random variable uniformly distributed over the set{1, 2, . . . , n} and

furthermore we letui = (ui(qi), qi), xi = xi(qi) etc. Then (59) and (60) can be reduced to

R1 − 2εn ≤
M
∑

i=1

I(xi; yk,i|ui, zi, qi) =
M
∑

i=1

I(xi; yk,i|ui, zi) (87)

R2 − 2εn ≤
M
∑

i=1

I(ui; zi|yk,i, qi) ≤
M
∑

i=1

I(ui; zi|yk,i). (88)

The upper bound on the cardinality ofUi follows by a straightforward application of Caratheodory’s theorem

and the proof is omitted.

A. Special case of K = 2 receivers

For the case when there areK = 2 receivers, the upper bound can be obtained via an alternative approach

which involves first obtaining single-letter bounds for a particular genie-aided channel and then combining these

bounds in a suitable manner.

In particular, suppose that we only need to transmit messagem1 to receiver1 in group1 and that the message

m2 only needs to be secure from user2 in group1. Under these relaxed constraints, it can be shown that any

achievable rate pair(R1, R2) must satisfy:

R1 ≤
M
∑

i=1

I(xi; y1,i|zi, ui), R2 ≤
M
∑

i=1

I(ui; zi|y2,i), (89)

for some auxiliary variables{ui}1≤i≤M that satisfy the Markov chain in (58). Similarly if we instead consider

transmitting messagem1 only to user2 in group1 and require secrecy ofm2 only with respect to user1 in

group1, it can be shown that any achievable rate pair(R1, R2) must satisfy:

R1 ≤
M
∑

i=1

I(xi; y2,i|zi, vi), R2 ≤
M
∑

i=1

I(vi; zi|y1,i). (90)

for some auxiliary variables{vi}1≤i≤M . Next, we show that on each sub-channeli we can always setui = vi

without affecting the upper bound. In particular we consider the following four cases:

• Group2 receiver satisfiesxi → zi → (y1,i, y2,i): It suffices to takeui = vi = xi in (89) and (90) as the

contribution of this sub-channel in the expressions forR1 is always zero.

• Group2 receiver satisfiesxi → (y1,i, y2,i) → zi: It suffices to takeui = vi = 0 since the contribution of

this sub-channel in the expressions forR2 is zero.
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• Group2 receiver satisfiesxi → y1,i → zi → y2,i: Since the contribution of sub-channeli in the expressions

of bothR1 andR2 in (90) is zero, we can setvi = ui without affecting the upper bound.

• Group2 receiver satisfiesxi → y2,i → zi → y1,i: Since the contribution of sub-channeli in the expressions

of bothR1 andR2 in (89) is zero, we can setui = vi without affecting the upper bound.

Thus we need no more than one non-trivial auxiliary variableon each sub-channel. Settingvi = ui in (90) we

have

R1 ≤
M
∑

i=1

I(xi; y2,i|zi, ui), R2 ≤
M
∑

i=1

I(ui; zi|y1,i). (91)

The converse follows by combining (89) and (91).

Unfortunately when there are more than two receivers in group 1, we have not been able to obtain the converse

directly from such single-letter expressions. Therefore our approach in the previous section was to identify a

single auxiliary random variableui as in (61) that is simultaneously compatible with all then-letter upper bound

expressions.

V. GAUSSIAN CHANNELS

In this section we provide a proof for Theorem 2. Note that theachievability of the rate pairs(R1, R2)

constrained by (12) and (13) follows that of those constrained by (6) and (7) by settingxi = ui + vi, whereui

andvi are independentN (0, Pi −Qi) andN (0, Qi) respectively for some0 ≤ Qi ≤ Pi andi = 1, . . . ,M . For

the rest of the section, we shall focus on proving the converse result.

Considering proof by contradiction, let us assume that(Ro
1, R

o
2) is an achievable rate pair that liesoutside the

rate region constrained by (12) and (13). Note that the maximum rate for messagem1 is given by the right-hand

side of (12) by settingQi = Pi for all i = 1, . . . ,M [4], and the maximum rate for messagem2 is given by

the right-hand side of (13) by settingQi = 0 for all i = 1, . . . ,M [1], [7]. Thus, without loss of generality we

may assume thatR0
2 = R∗

2 + δ for someδ > 0 whereR∗
2 is given by

max
(Q,R2)

R2

subject to Ro
1 ≤

M
∑

i=1

A
(1)
k,i(Q), ∀k = 1, . . . ,K (92)

R2 ≤
M
∑

i=1

A
(2)
k,i (Q), ∀k = 1, . . . ,K (93)

Qi ≥ 0, ∀i = 1, . . . ,M (94)

Qi ≤ Pi, ∀i = 1, . . . ,M. (95)

For eachk = 1, . . . ,K and i = 1, . . . ,M let αk, βk, M1,i andM2,i be the Lagrangians that correspond to the
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constrains (92)–(95) respectively, and let

L := R2 +
K
∑

k=1

αk

[

M
∑

i=1

A
(1)
k,i (Q)−Ro

1

]

+
K
∑

k=1

βk

[

M
∑

i=1

A
(2)
k,i (Q)−R2

]

+
M
∑

i=1

M1,iQi +
M
∑

i=1

M2,i(Pi −Qi).

(96)

It is straightforward to verify that the above optimizationprogram that determinesR∗
2 is a convex program.

Therefore, taking partial derivatives ofL overQi, i = 1 . . . ,M andR2 respectively gives the following set of

Karush-Kuhn-Tucker (KKT) conditions, which must be satisfied by anyoptimal solution (Q∗, R∗
2):

∑

k∈Yi

αk(Q
∗
i + σ2

k,i)
−1 +

∑

k∈Zi

βk(Q
∗
i + σ2

k,i)
−1 +M1,i =

(

∑

k∈Yi

αk +
∑

k∈Zi

βk

)

(Q∗
i + δ2i )

−1 +M2,i (97)

K
∑

k=1

βk = 1 (98)

αk

[

M
∑

i=1

A
(1)
k,i(Q

∗)−Ro
1

]

= 0, ∀k = 1, . . . ,K (99)

βk

[

M
∑

i=1

A
(2)
k,i(Q

∗)−R∗
2

]

= 0, ∀k = 1, . . . ,K (100)

M1,iQ
∗
i = 0, ∀i = 1, . . . ,M (101)

M2,i(Pi −Q∗
i ) = 0, ∀i = 1, . . . ,M (102)

αk, βk ≥ 0, ∀k = 1, . . . ,K (103)

M1,i,M2,i ≥ 0, ∀i = 1, . . . ,M (104)

where

Yi := {k : σ2
k,i < δ2i } and Zi := {k : σ2

k,i > δ2i }. (105)

Note thatδ > 0, so we have
(

K
∑

k=1

αk

)

Ro
1 + Ro

2 >

(

K
∑

k=1

αk

)

Ro
1 +R∗

2 (106)

=
K
∑

k=1

(αkR
o
1 + βkR

∗
2) (107)

=

K
∑

k=1

[

αk

M
∑

i=1

A
(1)
k,i (Q

∗) + βk

M
∑

i=1

A
(2)
k,i (Q

∗)

]

(108)

=

M
∑

i=1

K
∑

k=1

[

αkA
(1)
k,i (Q

∗) + βkA
(2)
k,i (Q

∗)
]

, (109)

where (107) follows from the KKT condition (98), and (108) follows from the KKT conditions (99) and (100).
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Next, we shall show that by assumption(Ro
1, R

o
2) is achievable, so we have

(

K
∑

k=1

αk

)

Ro
1 +Ro

2 ≤
M
∑

i=1

K
∑

k=1

[

αkA
(1)
k,i (Q

∗) + βkA
(2)
k,i (Q

∗)
]

(110)

which is an apparent contradiction to (109) and hence will help to complete the proof of the theorem.

To prove (110), let us apply the converse part of Theorem 1 on(Ro
1, R

o
2) and write

(

K
∑

k=1

αk

)

Ro
1 +Ro

2 ≤

(

K
∑

k=1

αk

)

min
1≤k≤K

{

M
∑

i=1

I(xi; yk,i|ui, zi)

}

+ min
1≤k≤K

{

M
∑

i=1

I(ui; zi|yk,i)

}

(111)

≤
K
∑

k=1

[

αk

M
∑

i=1

I(xi; yk,i|ui, zi)

]

+

K
∑

k=1

[

βk

M
∑

i=1

I(ui; zi|yk,i)

]

(112)

=

M
∑

i=1

K
∑

k=1

[αkI(xi; yk,i|ui, zi) + βkI(ui; zi|yk,i)] , (113)

where (112) follows from the well-known fact that minimum isno more than any weighted mean. By the

degradedness assumption (3), we have

I(xi; yk,i|ui, zi) = I(xi; yk,i|ui)− I(xi; zi|ui) (114)

= h(yk,i|ui)− h(zi|ui)− h(nk,i) + h(wi) (115)

= h(yk,i|ui)− h(zi|ui)−
1

2
log

(

σ2
k,i

δ2i

)

(116)

for any k ∈ Yi andI(xi; yk,i|ui, zi) = 0 for any k /∈ Yi. Similarly,

I(ui; zi|yk,i) = I(ui; zi)− (ui; yk,i) (117)

= h(zi)− h(yk,i)− h(zi|ui) + h(yk,i|ui) (118)

≤
1

2
log

(

Pi + δ2i
Pi + σ2

k,i

)

− h(zi|ui) + h(yk,i|ui) (119)

for any k ∈ Zi, where (119) follows from the worst additive noise Lemma [20], and I(ui; zi|yk,i) = 0 for any

k /∈ Zi. Thus, for eachi = 1, . . . ,M we have
K
∑

k=1

[αkI(xi; yk,i|ui, zi) + βkI(ui; zi|yk,i)]

≤
∑

k∈Yi

αk

[

h(yk,i|ui)− h(zi|ui)−
1

2
log

(

σ2
k,i

δ2i

)]

+

∑

k∈Zi

βk

[

1

2
log

(

Pi + δ2i
Pi + σ2

k,i

)

− h(zi|ui) + h(yk,i|ui)

]

(120)

=
∑

k∈Yi

αkh(yk,i|ui) +
∑

k∈Zi

βkh(yk,i|ui)−

(

∑

k∈Yi

αk +
∑

k∈Zi

βk

)

h(zi|ui)−

∑

k∈Yi

αk

2
log

(

σ2
k,i

δ2i

)

+
∑

k∈Zi

βk

2
log

(

Pi + δ2i
Pi + σ2

k,i

)

. (121)
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We have the following lemma, which is the scalar version of the extremal inequality established in [17,

Theorem 2].

Lemma 2: For any real scalarsαk, βk, Q∗
i , M1,i andM2,i that satisfy KKT conditions (97) and (101)–(104),

we have

∑

k∈Yi

αkh(yk,i|ui) +
∑

k∈Zi

βkh(yk,i|ui)−

(

∑

k∈Yi

αk +
∑

k∈Zi

βk

)

h(zi|ui)

≤
∑

k∈Yi

αk

2
log(Q∗

i + σ2
k,i) +

∑

k∈Zi

βk

2
log(Q∗

i + σ2
k,i)−

∑

k∈Yi
αk +

∑

k∈Zi
βk

2
log(Q∗

i + δ2i ) (122)

for any (ui, xi) that is independent of the additive Gaussian noise(n1,i, . . . , nK,i,wi) and such thatE[x2i ] ≤ Pi.

✷

We note here that the extremal inequality in [17, Theorem 2] was established using avector generalization

of Costa’s entropy-power inequality. The scalar version that we used here, however, can be directly established

using theoriginal Costa’s entropy-power inequality [16]. Substituting (122) into (121) gives

K
∑

k=1

[αkI(xi; yk,i|ui, zi) + βkI(ui; zi|yk,i)]

≤
∑

k∈Yi

αk

2
log(Q∗

i + σ2
k,i) +

∑

k∈Zi

βk

2
log(Q∗

i + σ2
k,i)−

∑

k∈Yi
αk +

∑

k∈Zi
βk

2
log(Q∗

i + δ2i )−

∑

k∈Yi

αk

2
log

(

σ2
k,i

δ2i

)

+
∑

k∈Zi

βk

2
log

(

Pi + δ2i
Pi + σ2

k,i

)

(123)

=
∑

k∈Yi

αk

[

1

2
log

(

Q∗
i + σ2

k,i

σ2
k,i

)

−
1

2
log

(

Q∗
i + δ2i
δ2i

)

]

+

∑

k∈Zi

βk

[

1

2
log

(

Pi + δ2i
Q∗

i + δ2i

)

−
1

2
log

(

Pi + σ2
k,i

Q∗
i + σ2

k,i

)]

(124)

=

K
∑

k=1

[

αkA
(1)
k,i(Q

∗) + βkA
(2)
k,i(Q

∗)
]

. (125)

Further substituting (125) into (113) completes the proof of (110). We have thus completed the proof of

Theorem 2.

VI. FADING CHANNELS

To establish the connection to fading channels, first observe that Theorem 2 and Corollary 1 can be extended

in the following way. Consider the following scalar Gaussian broadcast channel withK + 1 users:

yk(t) = x(t) + nk(t) (126)

z(t) = x(t) + w(t), t = 1, . . . , T. (127)
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At each time samplet, the additive noise(n1(t), . . . , nK(t),w(t)) are independent zero-mean Gaussian with the

variances(σ2
1 , . . . , σ

2
K , δ2) selected at random as(σ2

1,i, . . . , σ
2
K,i, δ

2
i ) with probability pi, i = 1, . . . ,M . Both

the selection of the noise variances and the realization of the additive noise are assumed to be independent

across the time indext and revealed to all the terminals. We are interested in the ergodic scenario where the

durationT of communication can be arbitrarily large. The following extension of Thoerem 2 readily follows

and its proof will be omitted.

Corollary 2: For the scalar Gaussian broadcast channel considered above, the capacity region consists of all

rate pairs(R1, R2) that satisfy

R1≤ min
1≤k≤K

M
∑

i=1

pi

[

1

2
log

(

Qi + σ2
k,i

σ2
k,i

)

−
1

2
log

(

Qi + δ2i
δ2i

)

]+

(128)

R2≤ min
1≤k≤K

M
∑

i=1

pi

[

1

2
log

(

Pi + δ2i
Qi + δ2i

)

−
1

2
log

(

Pi + σ2
k,i

Qi + σ2
k,i

)]+

(129)

for some0 ≤ Qi ≤ Pi and i = 1, . . . ,M . ✷

Clearly if the fading coefficients in (17) are all discrete-valued, then the result in Theorem 3 follows

immediately from Corollary 2. When the fading coefficients are continuous valued, we can generalize Theorem 2

by suitably quantizing the channel gains.

First without loss of generality, we assume that each fadingcoefficient is real-valued, since each receiver can

cancel out the phase of the fading gain through a suitable multiplication at the receiver. Consider a discrete set

A := {A1, A2, . . . , AN , AN+1}

whereAi ≤ Ai+1, A1 := 0, AN := J andAN+1 := ∞ holds.

Given a set of channel gains(h1(i), . . . , hK(i), g(i)) in coherence blocki, we discretize them to one of

(N + 1)K+1 states as described below.

• Encoding messagem1: Suppose that the channel gain of receiverk satisfiesAq ≤ hk(i) ≤ Aq+1, then

we assume that the channel gain equalssi,k = Aq. If the channel gain of the group2 user satisfies

Aq ≤ g(i) ≤ Aq+1 then we assume that its channel gain equalss̄i,K+1 = Aq+1.

• Encoding messagem2: Suppose that the channel gain of the group2 receiver satisfiesAq ≤ g(i) ≤ Aq+1,

then we assume that the channel gain equalssK+1 = Aq. If the channel gain of a group1 receiver satisfies

Aq ≤ hk(i) ≤ Aq+1 then we assume it equals̄sk = Aq+1.

Thus the channel gains in coherence block are mapped to one ofL = (N +1)K+1 states{sj}Lj=1. We denote

the channel gains of the associated receivers in statesj as(sj,1, . . . , sj,K , sj,K+1) and the channel gains of the

associated eavesdroppers as(s̄j,1, . . . , s̄j,K+1). Note that in our notation, theK receivers in group1 are labeled

{1, . . . ,K} while the group2 receiver is labeled{K + 1}.

With the above quantization procedure it suffices to consider a coding scheme associated forL = (N+1)K+1

parallel channels, where each parallel channel corresponds to one state realizationsj . Using Corollary 2 the
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following rate pair(R1, R2) is achievable:

R1 ≤ min
1≤k≤K

L
∑

j=1

Pr(sj)A
(1)
j,k(sj) (130)

R2 ≤ min
1≤k≤K

L
∑

j=1

Pr(sj)A
(2)
j,k(sj), (131)

where

A
(1)
j,k(sj) :=







log
1 +Q(sj)|sj,k|2

1 +Q(sj)|s̄j,K+1|2







+

(132)

A
(2)
j,k(sj) :=







log
1 + P (sj)|sj,K+1|

2

1 +Q(sj)|sj,K+1|2
−log

1 + P (sj)|s̄j,k|
2

1 +Q(sj)|s̄j,k|2







+

. (133)

For anyJ , taking the limitN → ∞ we have that

L
∑

j=1

Pr(sj)A
(1)
j,k(h, g) →

∮ J

0

∫ J

0

A
(1)
k (h, g)dF (g)dF (h) (134)

=

∮ J

0

∫ ∞

0

A
(1)
k (h, g)dF (g)dF (h) (135)

where

A
(1)
k (h, g) =







log
1 +Q(h, g)|hk|2

1 +Q(h, g)|g|2







+

,

and (135) follows from the fact thatA(1)
k (·) = 0 for s̄K+1 > J . Finally, by takingJ arbitrarily large, the right

hand side in (130) approaches

R1 ≤ min
1≤k≤K

∮ ∞

0

∫ ∞

0

A
(1)
k (h, g)dF (g)dF (h) (136)

as required. In a similar fashion the achievability ofR2 can be established.

The converse follows by noticing that if the channel gains are revealed non-causally to the terminals, the

system reduces to a parallel channel model and the result in Theorem 2 immediately applies.

A. Numerical Results

In order to evaluate the achievable rate region, we assume that the fading gains are all sampled from

CN (0, 1). Furthermore instead of finding the optimal power allocation we assume a potentially sub-optimal

power allocation:

Q(h, g) =















P, |g|2 ≥ θ

0, |g|2 < θ.

(137)
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Fig. 2: Achievable rates (nats/symbol) for the two groups atdifferent SNR values. The x-axis shows the rate

R1 for group1 whereas the y-axis shows the rateR2 for group2.

where θ is a certain fixed parameter and assume thatP (h, g) = P for all values of (h, g). Notice that

our power allocation does not depend on the channel gains of the receivers in group1.This is a reasonable

simplification whenK is large and the channel gains(h1, . . . , hK) are identically distributed. The achievable

rate expressions (19) and (20) reduce to:

R1 ≤ Pr(|g |2 ≤ θ)E











log
1 + P |h|2

1 + P |g |2







+∣
∣

∣

∣

∣

∣

|g |2 ≤ θ



 (138)

R2 ≤ Pr(|g |2 ≥ θ)E











log
1 + P |g |2

1 + P |h|2







+∣
∣

∣

∣

∣

∣

|g |2 ≥ θ



 (139)

In Fig. 2, we plot the achievable rates forP ∈ {2, 10, 100}. We make the following observations:

• The corner points forR1 andR2 are obtained by settingθ = ∞ andθ = 0 respectively. By symmetry of

the rate expressions in (138) and (139), it is clear that boththe corner points evaluate to the same numerical

constant.

• As we approach the corner point(0, R2) the boundary of the capacity region is nearly flat. Any coherence

block, where|g(i)| ≤ min1≤k≤K |hk(i)| is clearly not useful to the group2 receiver. By transmittingm1

in these slots one can increase the rateR1 without decreasingR2.

• As we approach the corner point(R1, 0), the boundary of the capacity region is nearly vertical. The

argument is very similar to the previous case. In any period where|g(i)| ≥ max1≤k≤K |hk(i)| one cannot

transmit to group1. By transmittingm2 in these slots we increaseR2 without decreasingR1.

• We observe that a natural alternative to the proposed schemeis time-sharing. The rate achieved by such

a scheme corresponds to a straight line connecting the corner points. The rate-loss associated with such a
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scheme is significant compared to the proposed scheme.

VII. C ONCLUSIONS

We establish the optimality of a superposition construction for private broadcasting of two messages to two

groups of receivers over independent parallel channels, when there are an arbitrary number of receivers in group

1 but there is only one receiver in group2. We observe that in the optimal construction the codewords of

group 2 must constitute the “cloud centers” whereas the codewords of group 1 must constitute the “satellite

codewords”. For the case of Gaussian sub-channels the optimality of Gaussian codebooks is established. This

is accomplished by obtaining a Lagrangian dual for each point on the boundary of the capacity region and

then using an extremal inequality to show that the resultingexpression is maximized using a Gaussian input

distribution. An extension to block-fading channels is also discussed. Numerical results for Rayleigh-fading

channels indicate that the proposed scheme can provide significant performance gains over naive time-sharing

techniques.
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