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Abstract

We study private broadcasting of two messages to two grofimsceivers over independent parallel channels.
One group consists of an arbitrary number of receiversested in a common message, whereas the other group
has only one receiver. Each message must be kept confidiotiathe receiver(s) in the other group. Each of the
sub-channels is degraded, but the order of receivers onaasinel can be different. While corner points of the
capacity region were characterized in earlier works, waldish the capacity region and show the optimality of
a superposition strategy. For the case of parallel Gaussiannels, we show that a Gaussian input distribution is
optimal. We also discuss an extension of our setup to brasidgaover a block-fading channel and demonstrate
significant performance gains using the proposed schenteaockiaseline time-sharing scheme.

I. INTRODUCTION

There has been a considerable amount of interest in recarg yeexploiting the properties of fading wireless
channels for transmission of confidential messages (see[E]-g[6] and references therein). Such studies have
lead to new coding techniques such as the variable rate sgtenf the wiretap codebook [1], secure product
codebooks [7] and secure multicast codebooks [4]. In thegmtavork we study a setup where a single transmitter
needs to serve two groups of receivers over a block-fadirammdl. There ard( receivers in groupl, all
interested in a common message, whereas there is a singigeaem group2. The message of group must
be kept confidential from the groupreceiver, whereas the message of gr@upust be kept confidential from
group 1. We will refer to this setup aprivate broadcasting. In related work, references [8]-[10] study private
broadcasting when there is one receiver in each group. &efes [11], [12] study private broadcasting with

feedback over erasure and MIMO broadcast channels. Refef&B] studies interference alignment techniques
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for private broadcasting. In this paper we focus on the cdsenwthere aré/ independent, parallel and degraded
sub-channels and thereafter treat the natural extensibiotk-fading channels.

Our setup reduces to previously known results at the coroiatgof the capacity region. When we only need
to transmit the message for grotpwith the group2 receiver as the only eavesdropper, the capacity can be
achieved using a secure multicast codebook [4]. Insteadnwie only need to transmit the message for group
2, with all receivers in groug as eavesdroppers, the capacity can be achieved using @ ggoduct codebook
[7]. Interestingly the secure multicast and secure prodadebook constructions are based on different ideas. A
secure multicast codebook consistsidfsub-codebooks, one for each channel. Each sub-codebookiistap
codebook [14], has the same rate as the transmitted messdgpiarantees confidentiality of the message from
the eavesdropper on its respective link. The secure msit@anstruction guarantees that the legitimate receiver
can decode the message by using the output of all the chamuethermore the message remains confidential
from the eavesdropper even when all the channel outputsoanbined. While the secure product codebook also
uses one sub-codebook for each sub-channel, the rate ofebhatodebook equals the capacity of the legitimate
receiver on that sub-channel. The secure product codeladkals ta cartesian product of these codebooks and
then applies the wiretap construction to this product codkb This guarantees that the output codeword on
any given sub-channel is (nearly) independent of the outpdewords on other sub-channels. This limits the
amount of information that gets leaked to an eavesdropp@ngrgiven sub-channel. Both the secure multicast
codebook and secure product codebook result in a highethratea vector extension of the wiretap codebook
to parallel channels.

In this paper we study the case when both the messages needstmbltaneously transmitted. We find that
a superposition construction achieves the entire capesifipn. The proposed construction imposes a particular
layering order for the secure multicast and secure produtélooks. The codewords in each sub-codebook of
the secure product codebook must constitute the cloud rsemdaereas the codewords in the associated sub-
codebook of the secure multicast codebook must constitiédlite codewords. The optimality of such a layered
coding scheme was somewhat unexpected. In absence of seorestraints, to the best of our knowledge the
capacity region in the proposed setup remains open, evemiththe corner points are known [15]. We will
provide an explanation on the sufficiency of the superpmsitipproach after presenting the coding scheme in
section III.

For the case of independent Gaussian sub-channels, werfestablish that a Gaussian input distribution is
optimal. The proof involves obtaining a Lagrangian dual éeery boundary point of the capacity region and
then using an extremal inequality [16], [17] to show that &x@ression is maximized using Gaussian inputs.
The result for the Gaussian channels are extended to a Hodakg channel model using suitable quantization
of the channel gains. We numerically evaluate the rate refpio a sub-optimal power allocation and observe

significant gains over a naive time-sharing approach.



Il. PROBLEM STATEMENT AND MAIN RESULTS
A. Independent Parallel Channels

Our setup involves\/ independent parallel sub-channels and two groups of rexeirhere ard receivers
in groupl and one receiver in group The output symbols at receivirin group1 across theV/ sub-channels

is denoted by
Yie = (Vk,1:Ye,2, - Yiom), k=1,2... K, (1)
whereas the output symbols of the graipeceiver across thd/ sub-channels are denoted by
z=(z1,22,...,2m), (2)

and the channel input symbols are denotedkby (xi,...,xa).

Each sub-channel is a degraded broadcast channel. Theddégraon sub-channélcan be expressed as

Xi = Yri(1)i = Yori()i = Zi = Yro(li1)si " " Yoo (K) i 3

for some permutatiofr;(1),...,m(K)} of the set{1,..., K}.

We intend to transmit message to receiverd, ..., K in groupl, while the messager, must be transmitted
to the receiver in group. A length+ private broadcast code encodes a message(pairm,) € [1,2"%1] x
[1,27%2] into a sequenc&™ such thatPr(m; # fn i) < e,, and Pr(my # fy) < &, and furthermore the

secrecy constraints
1 1
—I(my;2") <en, —I(myyE) <en, k=12,... K, (4)
n n

are also satisfied. Here,, } approaches zero as— oco. The capacity region consists of the set of all rate pairs
(R1, R2) achieved by some private broadcast code. The following férecharacterizes this region.

Theorem 1. Let auxiliary variables{u; }1<i<as satisfy the Markov condition

Ui = Xi = Yro(1)yit Yra(ls)i = Zi = Yori(lit1) i Yo (K i )

The capacity region is given by the union of all rate paiRs, R-) that satisfy the following constraints:

M
R < 1?}?%1}{ {;I(Xi§}/k,i|ui,zi)} ©)
M
2 < min {;I(ui;zﬂyk,i)} @)
for some choice of u;}1<i<as that satisfy (5). The alphabet of satisfies the cardinality constraifit;| <
|| + 2K — 1. -

The coding theorem and converse for Theorem 1 are presemtgtiion Il and IV respectively.



B. Gaussian Channels

Consider the discrete-time real Gaussian model where taengh output over sub-channeht time indext

is given by
Yii(t) = xi(t) + ngi(t) (8)
The additive noise vectomsy,; = (ngi(1), -, k(7)) andw; = (w;(1),---,w;(T)) have entries that are

sampled i.i.dJ\/(O,o—,%,i) and (0, 62), respectively. Since the capacity region of the channekdép on the
joint distribution of the additive noisén ;(t), ..., nk,i(t), w;(t)) only through the marginals and that Gaussian
variables are infinitely divisible, without loss of gendiralwe may assume that for each sub-channéhe

receivers are degraded as expressed in (3). We shall comsittethe per sub-channel average power constraint

1
TE[HxiHQ] <P, Vi=1,....,.M (10)
and the total average power constraint
1 M
72 Ellxil?] <P (11)
=1
wherex; = (x;(1),---,x(T)) is the input vector for sub-channeél

Theorem 2: The capacity region under the per sub-channel average poovestraint (10) is given by the

union of all rate pair§R;, R2) that satisfy the following constraints:

M
: (1)
Ri < min {Z; Ak,i@)} (12)
- (2)
. 2
Ry < min {Z; Ak,i@)} (13)
for some power vecto® = (Q1,...,Qn), Where0 < @, < P, foralli=1,..., M,
) 2 2 +
Doy e | Ly (@it o) 1, (Qi+d
Ak,z‘(Q) = lg log (T) ~3 log 52 (14)
(2) 1 P, + 6?7 1 P+ 0%, "
A(Q) = | =1 L) — Zlog [ —2 15
ka(Q) 2 % <Qi +§i2> 2 %\ @ +0oi; (15)
andz™ := max{z, 0}. O

A proof of Theorem 2 is provided in section V.

Corollary 1: The capacity region under the total average power constfal) is given by the union of all
rate pairs(R;, R2) that satisfy the constraints (12) and (13) for some powetove® = (P;,...,Py) and
Q=(Q1,...,Qunm), where0 < @Q; < P, foralli=1,....M andzij\i1 P, <P. O

The above corollary follows directly from Theorem 2 and thellsknown connection between the per sub-

channel and the total average power constraints. We willpna¢ide a proof of Corollary 1.



C. Fading Channels

We consider a block-fading channel model with a coherenec®mgef 7' complex symbols. The channel

output in coherence blockis given by
i (i) = hi(i)x(i) + ng (i) (16)
z(i) = g(i)x(d) +w(i), i=1,2...,.M a7)

where the channel gains; (i) of the K receivers in groud and the channel gaig(:) of the group2 receiver
are sampled independently in each coherence bloahd stay constant throughout the block. The coherence
periodT" will be taken to be sufficiently large so that random codirguanents can be invoke in each coherence

block. The channel input(i) € CT satisfies a long-term average power constraint

1 M
VT ZHX(Z')H2
=1

whereas the additive noise vectasg:) andw(i) have entries that are sampled i.idV (0, 1). We are interested

E <P (18)

in the ergodic communication scenario where the numberaaidsi)/ used for communication can be arbitrarily
large. Furthermore we assume that the channel gains in edudrence block are revealed to all terminals
including the transmitter at the beginning of each cohezdriock.

Theorem 3: The private broadcasting capacity region for the fadingnalehmodel consists of all rate pairs

(Rq1, R2) that satisfy the following constraints:

. 1+Q(h,g)lh*\ "

m< s 2| {los (YL 0G5 ) ) ] o)
. 1+ P(h,g)lg|? 1+ P(h,g)|hl*\ "

2= min B {bg (1+Q<h,g>|g|2) s (1+Q<h,g>|hk|2>} ’ 20

for some power allocation functionB(h, g) and Q(h, g) that satisfy0 < Q(h,g) < P(h,g) for all (h,g) €
CE+L andE[P(h,g)] < P, whereh := (hy, ..., hx) denotes the channel gains of the receivers in group

A proof of Theorem 3 is provided in Section VI.

Theorems 1, 2 and 3 constitute the main results in this paper.

Ill. CODING THEOREM

The basic idea behind our coding scheme is illustrated in Eifhe messager; is encoded using a product
codebook [1], [7], whose codewords are obtained by takingesin product of thel/ codebooks, one for
each of the parallel channels. The messageis encoded using a multicast codebook [4], also consisting o
M codebooks. As shown in Fig. 1, the codewords of the prododelook constitute cloud centers of the
superposition codebook, whereas the codewords of the aasitcodebook constitute the satellite codewords.

We describe the details of our construction in the followsulp-sections.



Multicast Codebooks

Product Codebook C. 2"z
217 Messages
Messages met | me2

my=1 my=2
(@] @ s |
o) A,
glle
[¢]
3
]
=
o
2]

Messages

Fig. 1: Superposition construction for the case of two cledsnThe product codebook for the gropuser is
obtained by taking a cartesid@h; x Co2 of two independently generated codebooks and binning thaltheg

codeword pairs. The multicast codebook is generated, tiondd on the codewords @%; andCos.

A. Product-Codebook Construction
The messagen; is encoded using a product codebook [1], [7]. Vet ; be the set of all binary sequences
of length Ny ; = n(I(u;z;) — 2¢) i.e.,
My = {0, 1} V21, (21)
On channel, we generate a codebodk ; : My ; — U]* consisting of| M ;| codewords, i.e.,
Co = {u?(rﬁgl) tmy,; € [1, 2N2’i] }, (22)
where each sequened is sampled i.i.d. from the distributiop,, (-). Let
Mo = Ma1 X Maa X ... x Mo (23)
={(mgy,...,monr) t Moy € {0, 13N i=1,...,M}. (24)

As shown in Fig. 1, we partition the s@tf, into 277 bins such that there atf, — 27 {1 1(viiz)—Ra—Me}
sequences in each bin. Each bin corresponds to one message|[l,2"#2]. Thus given a message, the
encoder selects one sequer{@e, 1,..., m2 ar) € My uniformly at random from the corresponding bin. On

channeli; we select the codeword? € C,; associated withms ;. We note that from our construction, each



sequence i, is equally likely i.e.,

M

Pr(mg,y = Ma,...,mom = Man) = [[Pr(may = may;) =
i=1

1
|M271| X |M272| ceey |M271\,{| '

(25)

B. Multicast-Code Construction

The codebook associated witth; is a secure multicast codebook [4]. For eagh € C,;, and each
my € [1,2"1] we construct a codeboak ;(u?*,m;) consisting of a total of; ; = 2" (xiszilu)+e) codeword
sequences of length, each sampled i.i.d. from the distributid;_, p., |, () |wij)-

Let i ; be uniformly distributed ovefl, L, ;]. Given a messager € [1,2"f1] and codeword$u?, ..., u?,),
selected in the base layer, we select the sequefickom the codeboolC, ;(u]*, my) corresponding to the
randomly and uniformly generated indéx;,. The sequence is transmitted on sub-channgel

The following property will be useful in our subsequent gsé.

Lemma 1: The sequence&, x3, ..., x};) are conditionally independent given;.

Proof: Note that

PO xiglm) = Y PO X M M | me) (26)
{m2,:}
= Z p(XIL, L. ,X}Gﬂml, moq,..., mgyM)p(mgyl, ceey ﬁ’lQ_]]\,{) (27)
{m2,:}
= Z p(XIL, .. ,X}Gﬂml, moq,..., mgyM)p(mgyl) .. .p(m271\,{) (28)
{m2,:}
= > PO mr, m2) - p(xfy|m, Mo a0)p(Maa) - p(ma,ar) (29)
{572 i}
= Hzp i'[my, Mo, )p(ma,i) (30)
i=1ma ;
—HZP » Mo i|my) (31)
=1 m2 i

':élz

p(x;"[m1) (32)

i=1

where (27) follows from the fact that the messages, ..., mz s are independent ah;; (28) follows from
the fact that the messages satisfy (25); (29) follows from féct that each” € Cy ;(my,u]’) and u? is a
function of my ;. Eq. (32) establishes the conditional independence of teesages and completes the proof.



C. Decoding and Error Analysis

1) Decoding of Message m;: Receiverk in group1 selects those sub-channglg where it is stronger than

the group2 receiver:
N {iE [1,]\/1] :Xi—>yk,i—>zi} (33)

« For eachi € 7, receiverk selects a sequendg® € C,; such that (ﬂ?,yﬁi) € T (u;, yi,i). We define
&, as the event that there exists soine 7, such that{a? # ul'}.

« Receiverk then searches for a message < [1,2"%1] with the following property: for eachi € J;
there exists a codeword® € Ci ;(my, i*) such that(x, yi';) € T:*(xi, yki|u;). An error is declared if
my # my.

Now observe that

Since|Cy ;| < 27U Wiz =) and I(u;; yi.;) > I(u;; z;) for eachi € 7y, it follows that Pr(&y) < Me.

To bound the second term in (34) we use the union bound angsisalf typical events.

Pr(i # m|&f) < 2" H { |14l 27n(l(x“yk’”"i)75)} (35)
i€ Tk

< gnRig—n Pieq, T(asyk,ilu) =1 (xi32i u;) —2e) (36)

— 2nR1 2—n Ziejk (I (Xi3Yn,ilui,zi)—2¢) (37)

which goes to zero provided tha < Ziejk I(x;; yrilui, zi) — (2M +1)e. Sincee > 0 is arbitrary, our choice
of R; in (6) thus guarantees that the error probability assatiatth messagen; vanishes to zero.

2) Decoding of message my: The receiver in grou2 decodes message; ; on sub-channel by searching
for a sequence] € Cq; that is jointly typical withz. Since the number of codewords@a ; does not exceed
on(uszi)=2¢) this event succeeds with high probability. Hence the rexedorrectly decode@ns 1, . . ., Mo, ar)

and in turn messager, with high probability.

D. Secrecy Analysis

In order to establish the secrecy of messagewe need to show that

Lrmy2nie) <o (38)
n
Using Lemma 1 and the fact that the channels are independentave that:]',. .., z}, are conditionally
independent givemn;. It follows that
1 M
~I(m;2"(C) < ;Hml; z'[C). (39)

Iwe will use the notion of strong typicality. The s&f*(x, y) denotes the-strongly typical set.



Since in our conditional codebook construction, there2afé&>::#1ui)+¢) sequences in each codebabk (ul*, m;),
it follows from standard arguments thgtl(ml;sz) < &,. The secrecy constraint (38) now follows.
To establish secrecy of message with respect to uset in group1, we show that

1
S H(maly?, m) > Ry — en. (40)

where for simplicity we drop the subscript associated wibra in the sequencg?. Without loss of generality,
we assume that sub-channels 1,2,..., L satisfyx; — z; — y; while sub-channels=L +1,..., M satisfy

x; = y; — z;. Now consider

H(m2|y?,m1):H(m2|y1”,.,.,y}f[,m1) (41)
= H(mé\?ﬂy{l, e Yi, M) — H(ﬁ7271|m2, my, YY) (42)

M
= ZH(mljb/jn? ml) - H(r_ng,[llm% mlelna s ay}\ll) (43)

j=1

L
2 ZH(ﬁ’Isz/;-I, ml) - H(r_néullm% mu,yis. . aylytl[) (44)

j=1
where (43) follows by establishing that the collection ofred (m2 1, y1"), ..., (m2 ., yiy)} is conditionally

independent givem,, which can be establishes in a manner similar to the proofesfitna 1 and (44) follows
from the fact that the entropy function is non-negative ametéfore we can drop the ternis+ 1,..., M in
the first summation.

We lower bound the first term in (44). Recall thak ; is uniformly distributed ovelC, ; with |Cy ;| =

on(I(uj3z)—¢) - Furthermore, the corresponding codewatdis the base codeword i@y ;(m, u?') and

‘Cl,j(ml, u;l)| — onU(xj3z5]uj) =€) > on(l(xj;y;luj)—e€)

- 3

since the channel satisfies the relation— z; — y; for j = 1,..., L. Since the satellite codeword’ is
uniformly selected front; ; it follows that [18, Remark 22.2, pp. 554-555]

1 = n

S H (Mo 5lyjts my) 2 1(uj; 25) — 1(uj; y5) —e. (45)

and therefore using the fact that — z; — y;, we have

L L
1 = n
EZH(mlj'yjaml) > " I(uj; zly;) — Le. (46)
j=1

j=1
We next upper bound the second term in (44). Note that

H(f_n%ﬂmz, my, ¥y 7)/]7\14) < H(m¥1|m27 mi, yi's. .. ,}/fazfﬂa i 217\14) (47)
sincez} is a degraded version of* on channelg € {L +1,..., M}. Also note that
1

R: EH(mgyl,.. .7m27]\,[) (48)
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1
== ; H(msy ;) (49)
M
= Z {I(us; z;) — 2¢}, (50)
i=1
where we use the fact that the messages 1, ..., mz ) are mutually independent (c.f. (25)). Furthermore
we select
1
Ry = EH(TTQ) (51)
L
<> I(uizily) — (2M + 1)e. (52)
i=1
Note that
~ L M
R— Ry >ZI(U1';Y¢)+ Z I(ui; z;) (53)
=1 i=L+1
:I(Ul,...,UM;yl,...7yL,ZL+1,...,Z]u) (54)

where the last step follows from the fact that we have setegte. . ., uy; to be mutually independent and the
channels are also independent. We can therefore conclatéth [18, Lemma 22.1, Remark 22.2, pp. 554-555],
[19, Lemma 1])

1

~H (M3 ma, mu, Y 2 2
< R— R —I(Ula---7U1\4;Y17---7YL,ZL+1,---,ZM) +e€ (55)
L
= Zl(ui;zi|yi) — Ry +e. (56)
i=1

Substituting (46) and (56) into (44) we have that
1
—H(malyy, mi) = Ry — (L +1)e, (57)

Sincee > 0 can be arbitrarily small, this establishes the secrecy cfsagem, with respect to uset in group
1. The secrecy with respect to every other user can be establlis a similar fashion.

Remark 1: The superposition approach uses the codewords for the grawger as cloud centers and the
codewords of the group user as satellite codewords. To justify this, note that op gmen channel, say
channel;, there is an ordering of receivers as in (3). Receifer$l; +1),...,7(K)} belonging to grougd that
are weaker than the grodpuser. It can be seen that these receivers do not learn anynafion on channel
i. Thus among all the set @fctive users on any given channel, the graupser is the weakest user. Therefore

the associated codeword of the graipiser constitutes the cloud center.
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IV. CONVERSE
We first show that there exists a choice of auxiliary variahlgj) that satisfy the Markov chain condition

ui(3) = xi(4) = Ya(0),i(3) - Yr)i(G) = 2i(3) = Yri41),60G) - Yr(x),i(4)- (58)

such that the rateR®; and Ry are upper bounded by

nlt < ZZI (% (5); Yo, ()i (5), 2:(5)) + 2nen (59)
=1 j=1

nky <ZZI ui(4); 2 (5)yr,i(4)) + 2ne, (60)
=1 j=1

for eachk € {1,...,K}.

In particular we show that the choice of(j) is given by the following:

ui(j) = {mQa Z{Ziﬁﬁpi?_l} (61)
where we introduce (c.f. (58))
2} = (2 Va0 0 V(i) i) (62)
Z0, = (2, 22, 2, (63)
igfl = (zf l,y il +1)Z,...,y (K),) (64)
2?.,j+1 = (ngj+1a}’:(zi+1),i,j+1a .- 7y7:}(K),i,j+1)7 (65)

and observe our choice af;(j) in (61) indeed satisfies (58). Note thzlt is the collection of the Groug
receiver's channel output as well as the output of all theixes{=x(l; + 1),...,x(K)} in Groupl that are
degraded with respect to the groRpeceiver on channel
We begin with the secrecy constraint associated with messagwith respect to usek in group1. Let us
define the following:
Yicis Xk = Zi = Yii

Vi = (66)

n
zZ;,

X = Yk, — Zi,

S’Z = ()7/21""’}772]\4)7 z" = (2{1’_“’2]1&)7 (67)

yz,i = ()7]?,13 R 7)7]?,1')3 Z? = (Z{Za R azin)' (68)

Thusy; corresponds to a weaker receiver, whose output on charselegraded te;*, if user k is stronger
than the groug user on this sub-channel. Clearly we have tl};a(mg; yi) <en whenever%](mg;y}g) < ep.

We thus have

n(Ry — 2e,) < I(my;2") — I(ma; ¥}) (69)



12

< I(my; 2"|yy) (70)
M n )

=33 I(masz()lZ 7 20, 9%) (71)
i=1 j=1
M n . )

< Z Zl(m%zg_lazﬁjJrlu 2?71792\i7y£;1=y£i7j+1;Zi(j)l}_/k,i(j)) (72)
i=1 j=1
M n B )

<D (me, 202} 4,2 Zi() e (5) (73)
i=1 j=1
M n

=D H(wig):zi(7)vmai(i) (74)
i=1 j=1
M n

=D H(wig)z()ywai(i) (75)
i=1 j=1

where (73) follows from the fact that
(Z0 ) €20, (F il el @ atign) S 2 (76)

and (75) follows from the fact whenevet, ;(j) # yi,i(J)

from (66), we have that
I(ui(5);

This establishes (60).

Next, we upper bound?, as follows:

n(Ry —2e,) < I(my;yy) — I(mi; 2", my)

< I(my;yglz", ma)

<Zzlmlaykl |y]g7, 7ykz 1,Z m2)
=1 j=1

<ZZH}//€1 |ykz 7)'1” 172 m2)
=1 j=1

_ZZHykZ |.yk;7, 7Yk1 1,Z mQ)_
=1 j=1
M n

<35 Hpa ()2 m) — Hlyes ()l
i=1 j=1

_ZZH Vi (DIZY 2 20 0, 2i(5), ma) — Hyia ()i (4), 2 (4))

=1 j=1

—ZZHWH )i (), z:(5)) — H(yea(j

=1 j=1

zi(9)|yr,i(5)) = I(ui(4);

then z;(j) is a degraded version of; ;(j) and

zi(j)|9k,:(4)) = 0. (77)
(78)
(79)
(80)
H(yii()yls i1, 2" m, ma,xi(4))  (81)
H (i ()1x:(5), (7)) (82)
), 2i(7)) (83)
(84)
i (3), 2(7), us(5)) (85)
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=22 16@)yni(G)ls(9), (7)), (86)

where (82) follows from the fact that for our channel mo@e!;(j), z;(j)) are independent of all other random
variables giverx;(j) whereas (84) follows from the fact that even thoughC {Z\z, z) 1,2;fj+1,zi(j)} holds,
the additional elements in the latter are only a degradesiofeiof z'*. This establishes (59).

To complete the converse, lgt to be a random variable uniformly distributed over the &et2, ..., n} and

furthermore we letw; = (u;(qi), qi), x; = xi(q;) etc. Then (59) and (60) can be reduced to

M ,
Ry —2en, < ZI(Xi;Yk.ﬂUi,Zm i) = ZI(Xi§Yk,i|UiaZi) (87)
i—1 i=1
M M
Ry =22, <Y I(ui; zilyrir 4i) Z (uis Zilyi,i) (88)

=1 =1
The upper bound on the cardinality &f follows by a straightforward application of Caratheodsrifieorem

and the proof is omitted.

A. Secial case of K = 2 receivers

For the case when there afé = 2 receivers, the upper bound can be obtained via an alteenafiproach
which involves first obtaining single-letter bounds for atjzalar genie-aided channel and then combining these
bounds in a suitable manner.

In particular, suppose that we only need to transmit message receiverl in group1 and that the message
msy only needs to be secure from usein group1. Under these relaxed constraints, it can be shown that any

achievable rate paifR;, R2) must satisfy:

M
R; < ZI(Xi;}/1,i|Zz‘,Ui), Ry <

i=1 %

I(ui; zi|ya,i), (89)

M=

Il
A

for some auxiliary variable$u; }1<;<s that satisfy the Markov chain in (58). Similarly if we insteaonsider
transmitting messager, only to user2 in group 1 and require secrecy ohs only with respect to uset in

group1, it can be shown that any achievable rate g, R2) must satisfy:

M

M
Ry <> I(xiyailziovi), Ro <> I(viizilyi). (90)
i=1 1=1

for some auxiliary variable$v; }1<;<a. Next, we show that on each sub-chanhele can always set; = v;
without affecting the upper bound. In particular we consitie following four cases:
» Group?2 receiver satisfies; — z; — (y1.4, y2,1): It suffices to takey; = v; = x; in (89) and (90) as the
contribution of this sub-channel in the expressionsRgris always zero.
» Group?2 receiver satisfies; — (y1,i,y2.i) — z: It suffices to takeu; = v; = 0 since the contribution of

this sub-channel in the expressions 05 is zero.
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« Group?2 receiver satisfies; — y; ; — z, — y2,;: Since the contribution of sub-chanrigh the expressions
of both Ry and Rs in (90) is zero, we can set = u; without affecting the upper bound.
o Group2 receiver satisfies; — y» ; — z; — y1;: Since the contribution of sub-chanrigh the expressions
of both R, and R, in (89) is zero, we can set; = v; without affecting the upper bound.
Thus we need no more than one non-trivial auxiliary variaisieeach sub-channel. Setting= v; in (90) we

have

I(us; zily1)- (91)

o

Il
-

M
§ Xz,}/21|2uuz RQ S

(2

The converse follows by comb|n|ng (89) and (91).

Unfortunately when there are more than two receivers ingiouve have not been able to obtain the converse
directly from such single-letter expressions. Therefaue approach in the previous section was to identify a
single auxiliary random variable; as in (61) that is simultaneously compatible with all théetter upper bound

expressions.

V. GAUSSIAN CHANNELS

In this section we provide a proof for Theorem 2. Note that aélchievability of the rate pair$R;, R»)
constrained by (12) and (13) follows that of those consgwiby (6) and (7) by setting; = u; + v;, whereu;
andv; are independent/ (0, P; — @;) and N (0, Q;) respectively for somé < Q; < P, andi =1,..., M. For
the rest of the section, we shall focus on proving the comvegsult.

Considering proof by contradiction, let us assume ti#ft, R3) is an achievable rate pair that lieatside the
rate region constrained by (12) and (13). Note that the mawimate for message; is given by the right-hand
side of (12) by setting); = P; forall : = 1,..., M [4], and the maximum rate for messagg is given by
the right-hand side of (13) by setting; = 0 for all ¢ = 1,..., M [1], [7]. Thus, without loss of generality we

may assume thak) = Rj + ¢ for somed > 0 where R} is given by

max R
(Q,R2)
M
subjectto RY <Y ANNQ), Vk=1,...,K (92)
=1
RQ<ZA<2> Ve=1,...,K (93)
Q;, <P, Yi=1,...,M. (95)

Foreachk =1,...,K andi=1,..., M let oy, B;, M1,; and M, ; be the Lagrangians that correspond to the
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constrains (92)—(95) respectively, and let
M

K
S ANQ R+ B
k=1

=1

M M
—+ ZMl,iQi + Z MQ,i(Pi - QZ)

=1 i=1

M
Z AI(CQ,Z?(Q)_RQ

i=1

K
L:= Ry —l—Zak
k=1

(96)
It is straightforward to verify that the above optimizatipnrogram that determineR; is a convex program.
Therefore, taking partial derivatives éf over@Q;, i = 1..., M and R, respectively gives the following set of

Karush-Kuhn-Tucker (KKT) conditions, which must be satidfby anyoptimal solution (Q*, R3):

Z a(QF +op) " + Z Br(Qf +op) 4+ My, = (Z ay + Z ﬁk) (Qf +67) "+ My (97)

kEY; keZ; keY; keZ;
K
> Bi=1 (98)
k=1
M
ar | Y ANQY) =0,Vk=1,...,K (99)
=1
M
B |3 ADQ) ~Ry| =0, Vk=1,...,K (100)
=1
My ,Qf=0,Yi=1,....,M (101)
Msi(P,— Q) =0,Vi=1,...,.M (102)
ag, B >0, Vek=1,...,. K (103)
My, My; >0,Vi=1,....M (104)
where
Vi={k:oj; <6’} and Z:={k:op,>5;}. (105)

Note thatd > 0, so we have

K K
<Z ozk) RS + R§ > (Z ozk) RS+ R; (106)

k=1

K

= 3 (RS + B) (107)
o u

-3 [ak Yoal@)+ 8y Aﬁf‘m*)] (108)
k;l - = =1

=33 [anal@) + BAR @) (109)
=1 k=1

where (107) follows from the KKT condition (98), and (108)I6evs from the KKT conditions (99) and (100).
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Next, we shall show that by assumptiOR?, Rg) is achievable, so we have

<Z ak> R} + RS < Z Z (AL (@) + BeA Q)] (110)

i=1 k=1
which is an apparent contradiction to (109) and hence wilh he complete the proof of the theorem.

To prove (110), let us apply the converse part of Theorem 1R R3) and write

K K
<Zo¢k> R+ R3 < < )1?11@1?1({2[ Xi5 Vil Uiy Zi) }—i— n}lclélK{ZI Ui; Zi|Yk,i) } (111)
=1

k=1
K M K
<> [Oék > I(asyrilui,z) |+ | B Z I(us; Zil}/k,i)‘| (112)
k=1 i=1 k=1 i=1
M
= Z [OékI(XiQ}/k,iluiazi) + Bl (uis zilyr,i)] , (113)

where (112) follows from the weII—known fact that minimum n® more than any weighted mean. By the

degradedness assumption (3), we have

I(Xi3 yieiluis zi) = 1(xi5 yi,i|ui) — (x5 2| u;) (114)
= h(yk,ilui) — h(zi|u;) — h(ng;) + h(w;) (115)
1 i
= h(yr,ilui) — M(zi|u;) — 3 log 5_2’ (116)
for any k € ); and I(x;; yi|ui,z;) = 0 for any k ¢ ;. Similarly,

I(Ui§zi|)/k,i) = I(“z’; Zi) - (UiU/k,z') (117)
= I(z;) = "yk,i) — h(zi|u;) + h(yk,i|ui) (118)

1 P+ 62

for any k € Z;, where (119) follows from the worst additive noise Lemma][20hd I (u;; z;|yx,;) = 0 for any

k ¢ Z;. Thus, for each = 1,..., M we have

K
lard (X35 Yi,il Ui, zi) + Bid (us; Zi|yr,i)]
=1
1 C’lﬁ,z‘
< Zak h(yi,ilui) — (Zi|Ui)—§10g 52 +
keY; v
1 P+ 52
> B 5 log = h(zi|ui) + h(yr,i|ui) (120)
: Pto7,
€z,
= Z arh(ykqilu) + Z Brh(yr,i|ui) — <Z oy + Z ﬂk) (zi|u;)—
keY; kez; keY; kez;
2 2
o Ok.i Bk P +9;
Z 210g<52>+z 210g<Pz‘+Cf;€- . (121)
keY; H kez; )t
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We have the following lemma, which is the scalar version o #xtremal inequality established in [17,
Theorem 2].

Lemma 2: For any real scalarsy, 5k, Q;, M1, and M ; that satisfy KKT conditions (97) and (101)—(104),

we have

Zakh(y/ﬂ,i|uz Z ﬁkh )/k z|uz (Z ap + Z Bk) Zz|uz

kEY; kEZ; kEY; kEZ;

o+ B
<Y Slog(@ + ot + Y Kon(@; +ot,) - By, O 5 Ziee Pygi v st (22)
keY; keZ;

for any (u;, x;) that is independent of the additive Gaussian néise, . . ., nk i, w;) and such that[x?] < P;.
O

We note here that the extremal inequality in [17, Theorem @} wstablished using\gctor generalization
of Costa’s entropy-power inequality. The scalar versiaat the used here, however, can be directly established

using theoriginal Costa’s entropy-power inequality [16]. Substituting (L2#o (121) gives
K

D oI (3 yiiluis 1) + Br (us; zily.))
k=1
o, . 2 B - 2okey; Wk T 2kez, Br _—
< Z 710g(Qi + 0k,i) + Z 5} log(Q7 + 0i ;) — ) log(Q7 +67)~
keY; keZ;
2
> Glog (2’“) 2 tog ( Ry ) (123)
kEYV: i kEZ; + ok
1 Q; + Uk i Q; + 52
:Zak slog | —5—— ——log
2 0%
keY; v
1 P; + 5 P+ Uk i
> B [— ( i) - 1og< . )] (124)
=, Qr + 5 Qr + ak i
= Z | AL(@) + 8eA2(Q")] (125)

Further substltutmg (125) into (113) completes the probf(1l0). We have thus completed the proof of

Theorem 2.

VI. FADING CHANNELS

To establish the connection to fading channels, first olesttrvat Theorem 2 and Corollary 1 can be extended

in the following way. Consider the following scalar Gausstaoadcast channel with’ 4+ 1 users:

yie(t) = x(t) + nk(t) (126)

z(t) =x(t) +w(t), t=1,...,T. (127)
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At each time sample, the additive noisén, (¢),. .., nk(t), w(t)) are independent zero-mean Gaussian with the
variances(a?, . .., 0%, 0%) selected at random &s7 ,, ..., 0% ;,07) with probability p;, i = 1,..., M. Both
the selection of the noise variances and the realizatiorhefadditive noise are assumed to be independent
across the time indek and revealed to all the terminals. We are interested in thedéc scenario where the
durationT of communication can be arbitrarily large. The followingiension of Thoerem 2 readily follows
and its proof will be omitted.

Corollary 2: For the scalar Gaussian broadcast channel considered,aheveapacity region consists of all

rate pairs(R;, R2) that satisfy

M 2 +
] L Qi +0i, 1 Qi + 62
< | Z > _ 7
Ri < 1521}(2@ [ 5 log <70£i ) S log < 72 (128)
M ) +
. 1 Pi+o7\ 1 Pi+op,
< . 1 _ - ,
Ry < 151%11(121)1 [2 log (Qi — 53) 5 log <7Qi o7, (129)
for some0 < Q; < P andi =1,..., M. 5

Clearly if the fading coefficients in (17) are all discret@ed, then the result in Theorem 3 follows
immediately from Corollary 2. When the fading coefficients aontinuous valued, we can generalize Theorem 2
by suitably quantizing the channel gains.

First without loss of generality, we assume that each fadowefficient is real-valued, since each receiver can

cancel out the phase of the fading gain through a suitabléiptichtion at the receiver. Consider a discrete set
A:={A,As,..., AN, AN 11}

where A; < A;11, A1 :=0, Ay :=J and Ay, := oo holds.
Given a set of channel gair# (i), ..., hx(i),g(i)) in coherence block, we discretize them to one of
(N + 1)K+ states as described below.
« Encoding messagen: Suppose that the channel gain of receikesatisfiesA, < hi(i) < A,41, then
we assume that the channel gain equals = A,. If the channel gain of the group user satisfies
A, < g(i) < Ag41 then we assume that its channel gain eqeglsy; = Agt1.

« Encoding messagen.: Suppose that the channel gain of the graugceiver satisfiesl, < g(i) < Ag11,
then we assume that the channel gain egsials; = A,. If the channel gain of a groupreceiver satisfies
Ay < hi(i) < Agyq then we assume it equads = Ag41.

Thus the channel gains in coherence block are mapped to ahe=ofN + 1)X+! states(s; f:l- We denote
the channel gains of the associated receivers in sfaés (s; 1, . .., Sk, S;,k+1) and the channel gains of the
associated eavesdroppers(as, . .., 5; x+1). Note that in our notation, th& receivers in grougd are labeled
{1,..., K} while the group2 receiver is labeled K + 1}.

With the above quantization procedure it suffices to comsidending scheme associated foe= (N +1)%+1

parallel channels, where each parallel channel corresptmdne state realizatiosy. Using Corollary 2 the
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following rate pair(R;, R2) is achievable:

L
Ry < min 1Pr<sJ>A< 2(s;) (130)

J_

L

2
2 S\ B D Pr(s;) AT (s)). (131)
where
Jr
1+ Q(s))]s)xl?
AYs):={ 1o 9 /1%, 132
#4(53) BT Q) sk 112 (132)
) +
1+ P(s;)|sj. 5041/ 1+ P(s;)|5; x|

A% (s):={ 1o J: “lo UL . 133
74(53) g1+Q(57)|5.7,K+1|2 BT Q)54 (133)

For anyJ, taking the limit N — oo we have that

L
> Pr(s)) Al ) = ?{ / A" (h, g)dF (g)dF (h) (134)
j=1
J e’} (1)

[ APt gargarm (135)

where

+
1+ Q(h, ¢)|hi|?
o [ R

and (135) follows from the fact thazn.g)(-) = 0 for sx41 > J. Finally, by takingJ arbitrarily large, the right
hand side in (130) approaches

min ?{ / A (h, g)dF (g)dF (h) (136)

1<k<K
as required. In a similar fashion the achievability®f can be established.
The converse follows by noticing that if the channel gains @mvealed non-causally to the terminals, the

system reduces to a parallel channel model and the resulbiéorém 2 immediately applies.

A. Numerical Results

In order to evaluate the achievable rate region, we assumettie fading gains are all sampled from
CN(0,1). Furthermore instead of finding the optimal power allogatiee assume a potentially sub-optimal

power allocation:

P, |g*>#6
Q(h,g) = (137)

0, lg*<o.
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Fig. 2: Achievable rates (nats/symbol) for the two groupslifierent SNR values. The x-axis shows the rate

R, for group1 whereas the y-axis shows the rdtg for group?2.

where ¢ is a certain fixed parameter and assume tRéh,g) = P for all values of (h,g). Notice that
our power allocation does not depend on the channel gainkeofeceivers in group.This is a reasonable
simplification whenK is large and the channel gaifis,, ..., hx) are identically distributed. The achievable

rate expressions (19) and (20) reduce to:

Jr
1+ Plh?
< 2 < - 2<
Ry < Pr(lg]” < 0)E | q log 7 Plal? gl* <0 (138)
) +
Ry < Pr(lgP > 0)B | { log Lo DIEL Lz 5 (139)

1+ P|hJ?
In Fig. 2, we plot the achievable rates fBre {2,10,100}. We make the following observations:

« The corner points folR; and R, are obtained by setting = co and# = 0 respectively. By symmetry of
the rate expressions in (138) and (139), it is clear that Hwtcorner points evaluate to the same numerical
constant.

« As we approach the corner poifii, R2) the boundary of the capacity region is nearly flat. Any coheee
block, where|g ()| < mini<k<x |hi(7)| is clearly not useful to the group receiver. By transmittingn,
in these slots one can increase the ratewithout decreasingi,.

« As we approach the corner poif2;,0), the boundary of the capacity region is nearly vertical. The
argument is very similar to the previous case. In any peribere|g(i)| > maxi<i<x |hx(i)| one cannot
transmit to groupl. By transmittingm, in these slots we increade, without decreasing?;.

« We observe that a natural alternative to the proposed schetirae-sharing. The rate achieved by such

a scheme corresponds to a straight line connecting the rcpaiets. The rate-loss associated with such a



We establish the optimality of a superposition construcfior private broadcasting of two messages to two
groups of receivers over independent parallel channelsnwifiere are an arbitrary number of receivers in group

1 but there is only one receiver in grop We observe that in the optimal construction the codeworfds o
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scheme is significant compared to the proposed scheme.

VII. CONCLUSIONS

group 2 must constitute the “cloud centers” whereas the codewofdgaup 1 must constitute the “satellite

codewords”. For the case of Gaussian sub-channels the ajttirof Gaussian codebooks is established. This

is accomplished by obtaining a Lagrangian dual for eachtpainthe boundary of the capacity region and

then using an extremal inequality to show that the resulérgression is maximized using a Gaussian input
distribution. An extension to block-fading channels isoatfiscussed. Numerical results for Rayleigh-fading

channels indicate that the proposed scheme can providdicigm performance gains over naive time-sharing

techniques.

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]
[12]

[13]

REFERENCES

P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacftfading channels,1EEE Trans. Inform. Theory, vol. 54, no. 10, pp.
4687-4698, Oct. 2008.

Z. Li, R. D. Yates, and W. Trappe, “Achieving Secret Conmuation for Fast Rayleigh Fading Channel&ZEE Transactions on
Wireless Communications, vol. 9, no. 9, pp. 2792-2799, 2010.

Y. Liang, H. V. Poor, and S. Shamai, “Secure communicaiiwer fading channels!EEE Trans. Inform. Theory, vol. 54, no. 6, pp.
2470-2492, 2008.

A. Khisti, A. Tchamkerten, and G. Wornell, “Secure breadting over fading channeldEEE Trans. Inform. Theory, vol. 54, no. 6,
pp. 2453—2469, 2008.

M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughl'Wireless information-theoretic security/EEE Trans. Inform.
Theory, vol. 54, no. 6, pp. 2515-2534, 2008.

Y. Liang, G. Kramer, H. V. Poor, and S. Shamai, “Compouridetap channels,EURASP Journal on Wreless Communications and
Networking - Special issue on wireless physical layer security, Mar. 2009.

T. Liu, V. Prabhakaran, and S. Vishwanath, “The secreapacity of a class of parallel gaussian compound wiretapratla,” in
Proc. Int. Symp. Inform. Theory, 2008, pp. 116—120.

N. Cai and K. Y. Lam, “How to broadcast privacy: Secret icmdfor deterministic broadcast channeldlumbers, Information, and
Complexity (Festschrift for Rudolf Ahlswede), eds: |. Althofer, N. Cai, G. Dueck, L. Khachatrian, M. Pinsker, A. Sarkozy, |. Wegener,
and Z. Zhang, pp. 353-368, 2000.

R. Liu, T. Liu, H. Poor, and S. Shamai, “Multiple-input rtiple-output gaussian broadcast channels with confidemtiessages,”
|IEEE Trans. Inform. Theory, no. 9, pp. 4215 — 4227, 2010.

R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Digerenemoryless interference and broadcast channels wifideotial messages:
Secrecy capacity regions,EEE Trans. Inform. Theory, June 2008.

L. Czap, V. M. Prabhakaran, S. N. Diggavi, and C. Fragd@roadcasting private messages securely,1$irl, 2012, pp. 428-432.
S. Yang, P. Piantanida, M. Kobayashi, and S. Shamai, ti@nsecrecy degrees of freedom of multi-antenna wiretapreia with
delayed CSIT,” inl9T, 2011, pp. 2866-2870.

A. Khisti, “Interference alignment for the multi-amiea compound wiretap channelEEE Trans. Inform. Theory, vol. 57, no. 5, pp.
2967—2993, 2011.



22

[14] 1. Csiszar and J. Korner, “Broadcast channels withfickential messagesfEEE Trans. Inform. Theory, vol. 24, pp. 339-348, 1978.

[15] A. A. El Gamal, “Capacity of the product and sum of two mmatched broadcast channel®fobl. Inform. Transmission, pp. 3-23,
1980.

[16] M. H. M. Costa, “A new entropy power inequalitylEEE Trans. Inform. Theory, vol. 31, no. 6, pp. 751-760, 1985.

[17] R. Liu, T. Liu, H. V. Poor, and S. Shamai, “A vector gerlem@ion of costa’s entropy-power inequality with appticas,” |IEEE
Trans. Inform. Theory, vol. 56, no. 4, pp. 1865-1879, 2010.

[18] A. E. Gamal and Y. H. KimNetwork Information Theory. Cambridge, UK: Cambridge University Press, 2011.

[19] Y. Chia and A. E. Gamal, “Three-receiver broadcast dedsmwith common and confidential messagéBFEE Trans. Inform. Theory,
vol. 58, no. 5, pp. 2748-2765, 2012.

[20] S. N. Diggavi and T. M. Cover, “The worst additive noiseder a covariance constrainlEEE Trans. Inform. Theory, vol. IT-47,
no. 7, pp. 3072-3081, 2001.



