
Network Coding Capacity Regions via Entropy

Functions
Terence H. Chan and Alex Grant

Abstract

In this paper, we use entropy functions to characterise the set of rate-capacity tuples achievable with either

zero decoding error, or vanishing decoding error, for general network coding problems. We show that when sources

are colocated, the outer bound obtained by Yeung, A First Course in Information Theory, Section 15.5 (2002) is

tight and the sets of zero-error achievable and vanishing-error achievable rate-capacity tuples are the same. We also

characterise the set of zero-error and vanishing-error achievable rate capacity tuples for network coding problems

subject to linear encoding constraints, routing constraints (where some or all nodes can only perform routing) and

secrecy constraints. Finally, we show that even for apparently simple networks, design of optimal codes may be

difficult. In particular, we prove that for the incremental multicast problem and for the single-source secure network

coding problem, characterisation of the achievable set is very hard and linear network codes may not be optimal.

I. INTRODUCTION

Determining network coding capacity regions (the set of link capacities and source rates admitting a network

coding solution for a given multicast) is a fundamental problem in information theory and communications. Recently,

the network coding capacity region for general network coding problems was implicitly determined using entropy

functions [1]1. This characterisation has a similar (but slightly more complicated) form to the outer bound in [2,

Section 15.5], which is expressed in terms of almost entropic functions. Explicit characterisation of the set of

entropy functions (or its closure) is however a very difficult open problem (for instance, it is known that this set is

not polyhedral [3]).

It is therefore natural to wonder whether there might be a simpler, explicit characterisation of network coding

capacity regions which somehow avoid the use of entropy functions. However, these two problems are inextricably

linked, and in general, determining network coding capacity regions is as hard as finding the set of all entropy

functions, or equivalently, determining all information inequalities [4].

One approach to avoid these intrinsic challenges of the general case is to seek special cases, or specific classes

of networks for which an explicit, computable solution is possible. To date, only a few such special cases have

been found. One notable example is where a single source data stream is unicast to multiple destinations. In this

case, the capacity region is characterised by graph-theoretic maximal flow/minimum cut bounds, and linear codes

1We assume the reader is familiar with polymatroids, entropy functions and representable functions. We review these and other related concepts

in Section II and as needed throughout the paper.

ar
X

iv
:1

20
1.

10
62

v1
 [

cs
.I

T
]

 5
 J

an
 2

01
2

2

are optimal [5]. As second example is a secure network coding problem when all links have equal capacities and

the eavesdropper’s capability is only limited by the total number of links it can wiretap. In this case, the minimum

cut bound is also tight [6].

Another approach is to develop computable bounds on the capacity region. Relaxation from entropy functions

to polymatroids yields the so-called linear programming bound [2, Section 15.6]. Although this bound is explicit,

both the number of variables and the number of constraints increase exponentially with the number of links in the

network, making the bound computationally infeasible even for modest networks. Other works such as [7], [8], [9]

aim to obtain useful outer bounds with computationally efficient algorithms for their evaluation. In fact, it can be

shown that all of the bounds obtained in those works are relaxations of the linear programming bound from [2,

Section 15.6].

This paper extends [1] in several aspects. In both [1] and [2], vanishing decoder error probabilities are allowed.

In Section III, we will extend these results to the case where the decoding error probability must be exactly zero.

We also prove that when all the sources are colocated, the outer bound [2] is in fact zero-error achievable and

tight. For the general non-colocated source case, we show that tightness of the outer bound reduces to a question

of whether or not the addition of a zero-rate link can change the capacity region of a particular network that we

derive from the original network. This leads us to conjecture tightness of the bound in general.

The existing capacity result [1] does not place any constraints on the operation of intermediate nodes, allowing

arbitrary network coding operations. We further extend this entropy-function based approach to three different

practically-motivated cases where additional constraints are placed on the network: (a) all nodes use linear encoding,

(b) all, or some nodes can only perform routing, and (c) we desire secrecy in the presence of an eavesdropper.

In Section IV, we consider the case where only linear network codes are allowed. We prove equivalence of zero-

error and vanishing-error achievability, and characterise the linear network coding capacity region using representable

functions.

When comparing the performance of network coding to routing-only networks (where nodes can only store and

forward received packets), it may be useful to have a capacity characterisation for routing in terms of entropy

functions. In Section V we introduce almost atomic functions which provide just such a characterisation. We go

on to consider heterogeneous networks, containing both network coding nodes and routing nodes, and show how

to obtain an entropy function characterisation of the capacity region.

In Section VI, we impose secrecy constraints, where we assume the presence of eavesdropper who has access

to certain links and desires to decode particular sets of sources. The objective is to design a transmission scheme

such that the eavesdropper remains ignorant of the source messages. We will once again characterise the resulting

general secure network coding capacity region via representable functions.

Finally, in Section VII, we will consider two very simple network coding problems where despite the apparent

simplicity of the setup, characterisation of the capacity region turns out to be extremely difficult, and linear codes

may be suboptimal. The first is incremental multicast, where the sources and sinks are ordered such that sink i

demands sources 1, 2, . . . , i. The second example is secure unicast of a single source. This demonstrates that the

November 2, 2018 DRAFT

3

seemingly innocuous addition of a security constraint loosens the minimum cut bound [5]. Similarly we see that

the min-cut result from [6] does not hold even for this simple case.

Notation: R is the set of all real numbers and R0 is the set of all nonnegative real numbers. Random variables

will be denoted by uppercase roman letters X and sets will be denoted using uppercase script X . The power set

2X is the set of all subsets of X . For a discrete random variable X taking values in the set (or alphabet) X , its

support SP(X) is

SP(X),{x ∈ X : Pr(X = x) > 0}.

Realisations of a random variable will typically denoted via lowercase x.

For sets {X1, X2, . . . , Xn} and S ⊆ {1, 2, . . . , n}, the subscript notation XS will mean {Xi, i ∈ S}. Where

it will cause no confusion, set notation braces will be omitted from singletons and union will be denoted by

juxtaposition. Thus A ∪ B ∪ {i} can be written ABi and so on. Ordered tuples will be denoted

(x(i), i = 1, 2, . . . , n) = (x1, x2, . . . , xn).

II. BACKGROUND

In this section we provide the formal problem definition for transmission of information in networks consisting of

error-free broadcast links. This includes representation of such networks as hypergraphs, the notions of a multicast

connection requirement, network codes and zero-error or vanishing-error achievability. We then review existing

results on characterisation of the network coding capacity via the use of entropy functions. In this section, we

do not impose any additional constraints (such as linearity or security) beyond zero- or vanishing-decoding-error

probability.

A. Unconstrained Network Coding for Broadcast Networks

We represent a communication network by a directed hypergraph G = (V, E). The set of nodes

V =
{
V1, . . . , V|V|

}
and the set of hyperedges

E =
{
E1, . . . , E|E|

}
respectively model the set of communication nodes and error-free broadcast links. In particular, each hyperedge

e ∈ E is defined by a pair (tail(e), head(e)), where tail(e) ∈ V is the transmit node and head(e) ⊆ V is the set

of nodes which receive identical error-free transmissions from tail(e). When head(e) is a singleton, e models an

ordinary point-to-point link.

We assume that the network is free of directed cycles (a nonempty sequence of links {f1, . . . , fk} such that

tail(fi) ∈ head(fi−1) for i = 2, . . . , k and tail(f1) ∈ head(fk)).

November 2, 2018 DRAFT

4

Definition 1 (Connection Constraint): For a given communication network G, a connection constraint M is a

tuple (S, O,D), where S indexes the sources, O : S 7→ 2V specifies the source locations and D : S 7→ 2V specifies

the sink nodes. Unless specified otherwise, we let

S =
{
S1, . . . , S|S|

}
be the index set of |S| independent sources. Source s ∈ S is available at every node in O(s) ⊆ V . Note that in

general each source can be available to more than one network node. The sink nodes D(s) ⊆ V are nodes where

source s should be reconstructed according to some desired error criteria.

It is conceptually useful to imagine each source s as a message sent along an imaginary source edge, which for

simplicity will also be labelled s. In this case, we can use the notation head(s) to denote O(s). For any e ∈ E and

u ∈ V , we define

in(e) , {f ∈ S ∪ E : tail(e) ∈ head(f)} (1)

in(u) , {f ∈ S ∪ E : u ∈ head(f)}. (2)

In other words, in(·) is the set of incoming edges (including the imaginary source edges).

Solution of the network coding problem P = (G,M) requires a transmission scheme allowing source s to be

reliably reconstructed at the sink nodes D(s). We have not yet specified the transmission capacity of each hyperedge,

or the rate of each source. Characterisation of the capacity region for network coding means determination of the

combinations of source rates and hyperedge capacities which admit a network coding solution. Before we can

proceed, we need to formalise what we mean by network code, reliable and rate-capacity tuple.

Definition 2 (Network Code): A network code

Φ , {φe : e ∈ E} (3)

for the problem P = (G,M) is a set of local encoding functions

φe :
∏

f∈in(e)

Yf 7→ Ye.

where Ys is the alphabet of source s ∈ S and Ye is the alphabet for messages transmitted on hyperedge e ∈ E .

Each network code induces a set of random variables

{Yf , f ∈ S ∪ E}. (4)

as follows:

1) {Ys, s ∈ S} is a set of mutually independent random variables, each of which is uniformly distributed over

its support and denotes a message generated by a source.

2) For each e ∈ E ,

Ye = φe(Yf : f ∈ in(e)) (5)

and denotes the message transmitted on hyperedge e ∈ E .

November 2, 2018 DRAFT

5

If the set of random variables induced by a network code is given, then the local encoding functions (3) are

determined with probability one. In other words, if

Pr (Yf = yf , f ∈ in(e)) > 0,

then for all ye 6= φe (yf : f ∈ in(e)),

Pr (Ye = ye | Yf = yf , f ∈ in(e)) = 0.

For this reason, we will often specify a network code by its set of induced random variables.

The following lemma follows directly from the above definitions and gives a necessary and sufficient condition

under which a set of random variables is induced by a network code.

Lemma 2.1: A set of random variables {Yf , f ∈ S∪E} defines a network code, with respect to a network coding

problem P, if and only if

1) Ys is uniformly distributed over its support for all s ∈ S.

2) H (Ys, s ∈ S) =
∑
s∈S H (Ys).

3) H (Ye | Yf : f ∈ in(e)) = 0 for all e ∈ E .

Conditions 2) and 3) are due to the mutual independence of the sources and the deterministic encoding constraints.

Definition 3 (Rate-Capacity Tuples): For a network coding problem P let

χ(P) , R|S|0 × R|E|0 .

be the set of all rate-capacity tuples

(λ, ω) = (λ(s) : s ∈ S, ω(e) : e ∈ E)

for P.

Definition 4 (Fitness): A rate-capacity tuple (λ, ω) ∈ χ(P) is fit for a network code {Yf , f ∈ S ∪ E} on P if

there exists c > 0 such that for all e ∈ E and s ∈ S,

λ(s) ≤ c log |SP(Ys)|, (6)

ω(e) ≥ c log |SP(Ye)|. (7)

The tuple is asymptotically fit for a sequence of network codes {Y nf , f ∈ S ∪ E} for n = 0, 1, . . . if there exists a

sequence cn > 0 such that for all e ∈ E and s ∈ S,

lim
n→∞

cn log |SP(Y ns)| ≥ λ(s), (8)

lim
n→∞

cn log |SP(Y ne)| ≤ ω(e). (9)

Note that fitness does not imply achievability of a rate-capacity tuple, rather that the tuple is not impossible.

Fitness indicates that (up no normalisation) each individual source rate is not too large to be achieved by the

corresponding source variable with the given alphabet size, and that each hyperedge capacity is large enough to

carry the corresponding edge variable regardless of particular distribution.

November 2, 2018 DRAFT

6

Definition 5 (Zero-error Achievable Rate-Capacity Tuples): A rate capacity tuple

(λ, ω) = (λ(s) : s ∈ S, ω(e) : e ∈ E)

is called zero-error achievable, or 0-achievable if there exists a sequence of network codes Φn, n = 1, 2, . . . and

corresponding induced random variables {Y nf : f ∈ E ∪ S} such that

1) (λ, ω) is asymptotically fit for Φn.

2) for any source s ∈ S and receiver node u ∈ D(s), the source message Y ns can be uniquely determined from

the received messages
(
Y nf : f ∈ in(u)

)
. In other words,

H
(
Y ns | Y nf , f ∈ in(u)

)
= 0. (10)

In Definition 5, each network code in the sequence has zero probability of decoding error. Relaxing this criteria

to allow decoding error probability that vanishes in the limit, we have the following definition.

Definition 6 (Vanishing Error Achievable): A rate capacity tuple (λ, ω) is called vanishing error achievable, or

ε-achievable if the tuple is asymptotically fit, and

2′) for all s ∈ S and u ∈ D(s), there exists decoding functions gns,u such that

lim
n→∞

Pr(Y ns 6= gns,u(Y nf : f ∈ in(u))) = 0.

In other words, decoding error probabilities vanish asymptotically.

For any subset R ⊆ χ(P), define CL(R) as the subset of χ(P) containing all tuples (λ, ω) such that there exists

a sequence of (λn, ωn) ∈ R and positive numbers cn satisfying

lim
n→∞

cnω
n(e) ≤ ω(e), (11)

lim
n→∞

cnλ
n(s) ≥ λ(s). (12)

Clearly, if every tuple in R is 0-achievable/ε-achievable, then CL(R) is also 0-achievable/ε-achievable.

The central theme of this paper is the characterisation of 0-achievable and ε-achievable regions for network

coding via the use of entropy functions.

Definition 7 (Entropy Function): A set of random variables {Yi, i ∈ N} (where N is some index set) induces a

real entropy function h : 2N 7→ R such that for any α ⊆ N ,

h (α) = H (Yi, i ∈ α)

is the joint Shannon entropy2 of (Yi : i ∈ α), which according to our notational conventions we will also write

H (Yα).

Let

H[N] , R2|N|

2We define h (α) = 0 whenever α is an empty set.

November 2, 2018 DRAFT

7

be the 2|N |-dimensional Euclidean space whose coordinates are indexed by subsets of N . Thus, any element

g ∈ H[N] has coordinates (g(α), α ⊆ N). Elements of H[N] are called rank functions3. Clearly, entropy functions

are rank functions.

Definition 8 (Entropic Functions): A rank function h ∈ H[N] is

• Entropic if h is the entropy function of a set of |N | random variables. The set of entropic functions is denoted

Γ∗(N) ⊂ H[N] [10]. When the index set N for the set of random variables is understood, we simply denote

the set of entropic functions as Γ∗.

• Weakly entropic if there exists c > 0 such that c · h is entropic.

• Almost entropic if there exists a sequence of weakly entropic functions hi such that

lim
i→∞

hi = h.

The set of almost entropic functions is Γ̄∗.

For any rank function g ∈ H[N], define the notations

g(α | β) , g(α ∪ β)− g(β), (13)

g(α ∧ β) , g(α) + g(β)− g(α ∪ β). (14)

If g is in fact an entropy function induced by random variables {Yi, i ∈ N}, then g(α | β) is the usual conditional

entropy H (Yα | Yβ) and g(α∧β) is the usual mutual information I(Yα;Yβ). We avoid the standard notation I(·; ·)

since it hides the underlying entropy function, which will be critical in most of what we do.

The set Γ∗ plays an important role in information theory. Characterisation of this set amounts to characterising

every possible information inequality. Thus Γ∗ essentially fixes the “laws” of information theory. However it turns

out that Γ∗ has a very complex structure and an explicit characterisation is still missing [11]. It has been proved

that the closure Γ̄∗ is a closed convex cone [10] and hence is more analytically manageable than Γ∗. For many

applications, it is in fact sufficient to consider Γ̄∗. However, it was proved in [12] that when |N | ≥ 3,

Γ∗ 6= Γ̄∗.

B. Existing Results

For a given network coding problem P = (G,M), let Γ∗(P) and H[P] respectively denote Γ∗(S∪E) and H[S∪E].

Define the coordinate projection

projP : H[P] 7→ χ(P)

such that for any h ∈ H[P],

projP[h](s) = h(s), ∀s ∈ S (15)

projP[h](e) = h(e), ∀e ∈ E (16)

3This terminology comes from matroid theory and does not imply that such functions must be defined via ranks of linear operators – although

such functions are rank functions by this definition.

November 2, 2018 DRAFT

8

Similarly, for any subset R ⊆ H[P],

projP[R],{projP[h] : h ∈ R}. (17)

Again, if the underlying network coding problem P is understood implicitly, we will simply use the notations proj[h]

and proj[R].

Consider any network coding problem P = (G,M). Define the following subsets of H[P],H[S ∪ E]:

CI(P),

{
h ∈ H[P] : h(S) =

∑
s∈S

h(s)

}
, (18)

CT(P),
{
h ∈ H[P] : h (s | in(e)) = 0,∀e ∈ E

}
, (19)

CD(P),

h ∈ H[P] : h (s | in(u)) = 0,

∀s ∈ S, u ∈ D(s)

 . (20)

The above subsets will be denoted by CI, CT and CD respectively if the network coding problem P is understood

implicitly. Consider a network code {Yi, i ∈ S∪E} with induced entropy function h ∈ H[S∪E]. By Lemma 2.1 we

see that h ∈ CI since the sources are mutually independent, and h ∈ CT due to deterministic transmission through

the network. If the network code is zero-error, h ∈ CD follows from the decodability constraint (10).

The set of ε-achievable rate-capacity tuples can be characterised exactly as follows [1].

Theorem 2.1 (Yan, Yeung and Zhang – ε-achievable Region [1]): For a given network coding problem P = (G,M),

a rate-capacity tuple (λ, ω) ∈ χ(P) is ε-achievable if and only if

(λ, ω) ∈ CL(projP [con(Γ∗ ∩ CI ∩ CT) ∩ CD]). (21)

Inner and outer bounds for the 0-achievable region were also investigated in [13] using a similar framework as

in [1], [4]. However, [13] allowed the use of variable length coding, where the amount of data traffic on a particular

link is measured as the average number of transmitted bits.

In contrast, this paper studies the worst case scenario where the amount of traffic is measured by the maximum

number of bits transmitted on a link (hence, it is sufficient to consider fixed-length codes). It is worth pointing out

that when decoding error is not allowed, there is a significant difference between using the average or the maximum

number of transmitted bits. For example, consider a source X compressed/encoded by an optimal uniquely-decodable

code. The average length of resulting codeword is roughly equal to H(X). However, for all uniquely-decodable

codes, the maximum length of the encoded codeword must be at least log |SP(X)|, which can be much greater

than H(X) if X is heavily biased.

The following outer bound follows directly from Theorem 2.1, but was proved earlier in [2]

Corollary 2.1 (Yeung – Outer Bound [2]): If a rate-capacity tuple (λ, ω) is ε-achievable, then

(λ, ω) ∈ CL(projP[Γ̄∗ ∩ CI ∩ CT ∩ CD]). (22)

This bound (22) is not necessarily tight, since Γ∗ is not closed and convex in general. Therefore,

con(Γ∗ ∩ CI ∩ CT)

November 2, 2018 DRAFT

9

theoretically may be a proper subset of

con(Γ̄∗ ∩ CI ∩ CT)
(a)
= Γ̄∗ ∩ CI ∩ CT

where (a) follows from that Γ̄∗ is a closed and convex cone.

It is clear that if (λ, ω) ∈ χ(P) is 0-achievable, then it is also ε-achievable and hence must satisfy the outer

bound (22) in Corollary 2.1. In fact, it can be seen directly that (22) must be an outer bound for the set of 0-

achievable rate-capacity tuples. Suppose (λ, ω) ∈ χ(P) is 0-achievable. Then there exists a sequence of network

codes {Y nf , f ∈ S ∪ E} with induced entropy functions hn and positive constants cn such that for all e ∈ E and

s ∈ S

lim
n→∞

cnH(Y ne) ≤ lim
n→∞

cnlog |SP(Y ne)| ≤ ω(e),

lim
n→∞

cnH(Y ns) = lim
n→∞

cnlog |SP(Y ns)| ≥ λ(s),

and that hn ∈ CI ∩ CT ∩ CD. Consequently,

(λ, ω) ∈ CL(projP[Γ∗ ∩ CI ∩ CT ∩ CD]).

The proof that (22) is an outer bound for ε-achievable tuples is similar. However, as vanishing error is allowed,

Fano’s inequality is invoked to ensure limn→∞ cnh
n ∈ CD.

In the next section, we deliver our first main result, namely that (22) is tight when the sources are colocated.

III. TIGHTNESS OF YEUNG’S OUTER BOUND

The analytical challenges in characterising Γ∗ (let alone its intersection with CI and CT) may render Theorem 2.1

unattractive as a characterisation of the network coding capacity region. In this section we show that the more

manageable bound of Corollary 2.1, which involves the closure of Γ∗ is in fact tight when the sources are colocated,

a notion that we make precise below in Definition 9. Our proof will use quasi-uniform random variables, discussed

in III-A, which are a valuable tool in proving zero-error results. The proof of the main result, Theorem 3.1 is given

in III-B.

Definition 9 (Colocated sources): Consider a network coding problem P = (G,M). Its sources are called colo-

cated if

O(s) = O(s′), ∀s, s′ ∈ S.

In other words, if a node has an access to any source s, it also has access to all the other sources.

Theorem 3.1 (Colocated sources): Consider a network coding problem P = (G,M) with colocated sources

according to Definition 9. Then

1) A rate-capacity tuple (λ, ω) is 0-achievable if and only if it is ε-achievable.

2) The outer bound in Corollary 2.1 is tight.

We fail to prove the tightness of the outer bound in Corollary 2.1 when sources are not colocated. However, we

will give evidence in III-C to support our conjecture that the outer bound should be tight in general.

November 2, 2018 DRAFT

10

A. Tools: Quasi-Uniform Random Variables

Before we prove Theorem 3.1 in Section III-B, we introduce key tools and intermediate results. In particular, the

proof relies on the concept of quasi-uniform random variables, which are crucial for proving zero-error results.

Definition 10 (Quasi-Uniform Random Variables [11]): A set of random variables {Xi, i ∈ N} is called quasi-

uniform if for any subset α ⊆ N , the random variable Xα,(Xi, i ∈ α) is uniformly distributed over its support,

or equivalently,

H (Xα) = log |SP(Xα)|.

Lemma 3.1: Suppose {A,B} is quasi-uniform. Then one can construct a random variable W such that

H(W) = H (A | B) ,

H (A | B,W) = 0.

Sketch of proof: As {A,B} is quasi-uniform, it can be proved from Definition 10 that for any b ∈ SP(B),

Pr(A = a | B = b) =

2−H(A|B) if Pr(A = a,B = b) > 0

0 otherwise.

Assume without loss of generality that

{q(1, b), . . . , q(2H(A|B), b)}

is the set of all elements in SP(A) such that

Pr(A = a | B = b) > 0.

Let W be a random variable such that for any (a, b) in SP(A,B),

Pr(W = w | A = a,B = b) =

1 if a = q(w, b)

0 otherwise.

The lemma can then be verified directly.

Definition 11 (Quasi-Uniform Rank Functions): A rank function h ∈ H[N] is called

• Quasi-uniform if h is the entropy function of a set of |N | quasi-uniform random variables.

• Weakly quasi-uniform if there exists c > 0 such that c · h is quasi-uniform;

• Almost quasi-uniform if there exists a sequence of weakly quasi-uniform rank functions hi such that

lim
i→∞

hi = h.

Lemma 3.2: If h1, h2 ∈ H[N] are quasi-uniform, then their sum, defined for all A ⊆ N as h1(A) + h2(A), is

also quasi-uniform.

Proof: Suppose AN and BN are two independent sets of quasi-uniform random variables whose entropy

functions are h1 and h2 respectively. It is straightforward to construct a new set of variables XN with entropy

function h1 + h2, via

Xi = (Ai, Bi), ∀i ∈ N .

November 2, 2018 DRAFT

11

The lemma follows, since XN , and hence h1 + h2, is quasi-uniform.

For any weakly entropic function h, [14] explicitly constructed a sequence of weakly quasi-uniform functions

with limit h. It can be verified directly that this sequence of weakly quasi-uniform functions satisfies the same

functional dependency constraints as h. Hence, we have the following proposition.

Proposition 3.1: For any weakly entropic rank function h, there exists a sequence of quasi-uniform random

variables {U `i , i ∈ N} and positive numbers c` such that

1) For any α ⊆ N ,

lim
`→∞

c`H
(
U `α
)

= h (α) . (23)

2) If h (k | α) = 0, then

H
(
U `k|U `α

)
= 0, for all `. (24)

In other words, h is the limit of a sequence of weakly quasi-uniform functions f ` where

h (k | α) = 0 =⇒ f `(k | α) = 0.

In fact, Proposition 3.1 remains valid even if h is almost entropic.

Proposition 3.2: For any almost entropic rank function h ∈ Γ̄∗(N), there exists a sequence of quasi-uniform

random variables {U `i , i ∈ N} and positive numbers c` such that (23) and (24) hold.

Proof: By [14], there exists a sequence of quasi-uniform random variables {U `i , i ∈ N} and positive numbers

c` such for all α ⊆ N ,

lim
`→∞

c`H
(
U `α
)

= h (α) . (25)

The challenge however is that (24) may not hold if h is not weakly entropic (we only know that h is the limit of a

sequence of weakly entropic functions). In the following, we will show how to modify the {U `i , i ∈ N} such that

(24) indeed holds. First, notice that {U `i , i ∈ N} is quasi-uniform. Hence, for any k ∈ N and α ⊆ N , {U `k, U `α}

is quasi-uniform. By Lemma 3.1, one can construct a random variable W `
k,α such that

H
(
W `
k,α

)
= H(U `k | U `α), (26)

H
(
U `k | U `α,W `

k,α

)
= 0. (27)

Let

W `
∆,{W `

k,α, (k, α) ∈ ∆}

where

∆,{(k, α) : h(k | α) = 0, k ∈ N , α ⊆ N}

November 2, 2018 DRAFT

12

Then

0 ≤ lim
`→∞

c`H
(
W `

∆

)
≤ lim
`→∞

c`
∑

(k,α)∈∆

H
(
W `
k,α

)
=

∑
(k,α)∈∆

lim
`→∞

c`H(U `k | U `α)

=
∑

(k,α)∈∆

lim
`→∞

c`(H(U `k, U
`
α)−H(U `α))

(a)
=

∑
(k,α)∈∆

(h (k, α)− h (α))

= 0

where (a) follows from (25). Consequently,

lim
`→∞

c`H
(
W `

∆

)
= 0. (28)

We now construct our new set of random variables, {V `i , i ∈ N} by defining

V `i , (U `i ,W
`
∆), ∀i ∈ N .

It is obvious that H(V `k | V `α) = 0 for all (k, α) ∈ ∆. Let f ` be the entropy function of V `N . Then by (25), for any

β ⊆ N ,

h (β) = lim
`→∞

c`H
(
U `β
)

(29)

≤ lim
`→∞

c`H
(
U `β ,W

`
∆

)
(30)

≤ lim
`→∞

c`H
(
U `β
)

+ lim
`→∞

c`H
(
W `

∆

)
(31)

(b)
= lim

`→∞
c`H

(
U `β
)

(32)

= h (β) . (33)

where (b) is by (28). Consequently,

lim
`→∞

c`f
`(β) = lim

`→∞
c`H

(
U `β ,W

`
∆

)
= h(β), ∀β ⊆ N .

Since f ` is weakly entropic and f `(k | α) = 0 for all (k, α) ∈ ∆, we can once again use Proposition 3.1 to

construct a sequence of weakly quasi-uniform functions gj such that limj→∞ gj = h and gj(k | α) = 0 for all

(k, α) ∈ ∆.

B. Proof for Theorem 3.1

The first claim of Theorem 3.1 is that the ε-achievable and 0-achievable regions are equivalent when sources are

colocated. For any network coding problem P = (G,M), it is clear that if (λ, ω) ∈ χ(P) is 0-achievable, then it is

November 2, 2018 DRAFT

13

also ε-achievable and hence must satisfy the outer bound (22) in Corollary 2.1. Thus, to prove Theorem 3.1, it suffices

to show that for colocated sources, the rate-capacity tuple projP[h] is 0-achievable for all h ∈ Γ̄∗ ∩ CI ∩ CT ∩ CD.

Our proof technique is similar to that used in [1]. However, instead of constructing network codes from strongly

typical sequences, we use quasi-uniform random variables. Codes constructed from typical sequences admit a small

(but vanishing) error. However, as we shall see, codes constructed from quasi-uniform random variables can be

carefully designed to ensure zero decoding error probability.

Consider a network coding problem P = (G,M) where all sources are colocated. Suppose

h ∈ Γ̄∗ ∩ CI ∩ CD ∩ CT.

Since h is almost entropic, Proposition 3.2 implies the existence of a sequence of quasi-uniform random variables

{Unf , f ∈ S ∪ E} (34)

and positive numbers cn such that

lim
n→∞

cnH (Unα) = h (α) , ∀α ⊆ S ∪ E (35)

H
(
Une | Unin(e)

)
(a)
= 0, ∀e ∈ E (36)

H
(
Uns | Unin(u)

)
(b)
= 0, ∀s ∈ S, u ∈ D(s) (37)

where (a) is due to h ∈ CT and (b) is due to h ∈ CD. Furthermore, by Lemma 3.2 the sum of two quasi-uniform

rank functions is quasi-uniform. Hence, we can assume without loss of generality that

lim
n→∞

cn = 0 (38)

and H(Un1) grows unbounded. This assumption (38) will be used in the latter part when we construct a zero-error

network code.

In the following, for each n, we will construct a zero-error network code {Y nf , f ∈ S ∪ E} from each set of

quasi-uniform random variables {Unf , f ∈ S ∪ E} such that

lim
n→∞

cnH (Y ns) = h(s) (39)

lim
n→∞

cnH (Y ne) ≤ h(e) (40)

and consequently, projP[h] is 0-achievable and the outer bound is tight.

Code construction: For simplicity of notation, we will drop the superscript n in (34) and directly denote the set

of quasi-uniform random variables by

{Uf , f ∈ S ∪ E}.

Suppose first that the Us, s ∈ S are mutually independent. The Us are quasi-uniform and hence uniformly

distributed over their support. Thus (36) holds and Lemma 2.1 implies that {Uf , f ∈ S ∪ E} in fact defines a

network code. Furthermore, by (37), the decoding error probability is zero, and Theorem 3.1 is proved for this

special case of independent sources.

November 2, 2018 DRAFT

14

Unfortunately, {Us, s ∈ S} need not be mutually independent in general. To address this problem, we will modify

these variables to satisfy the independency constraint. This is when we require all sources to be colocated.

Since the network G is acyclic, repeated application of (36) can be used to prove that

H (Uf | US) = 0, ∀f ∈ S ∪ E .

Hence, for any e ∈ E , there exists functions Ge such that

Ue = Ge(US).

Similarly, for any e ∈ E , s ∈ S and v ∈ D(s), there exists functions ge and gs,v such that for all uS ∈ SP(US),

Ge(uS)
(a)
= ge(Gf (uS), f ∈ in(e)), ∀e ∈ E (41)

Us
(b)
= gs,v(Gf (uS), f ∈ in(v)),

∀s ∈ S, v ∈ D(s). (42)

where (a) follows from (36) and (b) from (37).

Definition 12 (Partition): Let A = {1, 2, . . . , |A|} be an index set. A partition of a set X into |A| partitions is

a mapping

Ξ : A 7→ 2X

where Ξ(i) ⊆ X is the set of elements in partition i ∈ A. If the Ξ(i) are disjoint then the partition Ξ is called

disjoint.

Definition 13 (Regular Partition Set): Let Us, s ∈ S be random variables with supports SP(Us). For s ∈ S ,

define the index sets As,{1, . . . , |As|}, where |As| ≤ |SP(Us)|, and let

Ξs : As 7→ 2SP(Us)

be a disjoint partition of SP(Us) into |As| subsets. We call the set of partitions {Ξs, s ∈ S} a regular partition set

for {Us, s ∈ S} if and only if for all bS ∈ AS

SP(US) ∩
∏
s∈S

Ξs(bs) 6= ∅. (43)

Note that (43) is a non-trivial condition, since in general SP(US) 6=
∏
s SP(Us) when the Us are not necessarily

independent.

We will now construct a zero-error network code {Yf , f ∈ S ∪ E} from a regular partition set. Let {Ξs, s ∈ S}

be a regular partition set according to Definition 13. By (43), for each s ∈ S, there exists mappings

Ts :
∏
i∈S
Ai 7→ SP(Us), (44)

November 2, 2018 DRAFT

15

such that for s ∈ S and bS ∈
∏
i∈S Ai,(

T1(bS), T2(bS), . . . , T|S|(bS)
)
∈ SP(US) and(

T1(bS), T2(bS), . . . , T|S|(bS)
)
∈ Ξ(b1)× Ξ(b2)× · · · × Ξ(b|S|).

We can write this more concisely as

(Ts(bS), s ∈ S) ∈ SP(US) ∩
∏
i∈S

Ξi(bi). (45)

By (45),

Ts(bS) ∈ Ξs(bs). (46)

And as Ξs is a disjoint partition, bs can be uniquely determined from Ts(bS).

Now let {Ys, s ∈ S} be a set of mutually independent random variables such that for each s ∈ S, Ys is uniformly

distributed over As. Also, for each s ∈ S, define auxiliary random variables Zs such that

Zs = Ts(YS). (47)

By (45) and (46), it is easy to see that

SP(ZS) ⊆ SP(US), (48)

H (Ys | Zs) = 0, s ∈ S. (49)

Further define

Ze,Ge(ZS), e ∈ E . (50)

It is now easy to see that4

SP(ZSE) ⊆ SP(USE). (51)

Following from (51), we have that

H (Zk | Zα) = 0 (52)

whenever H (Uk | Uα) = 0 for some k ∈ S ∪ E and α ⊆ S ∪ E .

Let Ye = Ze for all e ∈ E . If in(e) ∩ S = ∅, then

0
(i)
= H

(
Ue | Uin(e)

)
(ii)
= H

(
Ze | Zin(e)

)
(iii)
= H

(
Ye | Yin(e)

)
4Recalling our convention to denote set union by juxtaposition.

November 2, 2018 DRAFT

16

where (i) follows from (36), (ii) from (52) and (iii) from the fact that in(e) ⊆ E . Now, suppose in(e)∩S 66= ∅. As

all sources are colocated in P, then in(e) ∩ S = S. In this case, application of (47) and (50) yields

0 ≤ H(Ye | Yin(e)) ≤ H (Ye | YS) = H (Ze | YS) = 0.

Finally, for any s ∈ S and u ∈ D(s),

0 = H
(
Us | Uin(u)

)
= H

(
Zs | Zin(u)

)
= H

(
Zs | Yin(u)

)
(a)
= H

(
Ys | Yin(u)

)
where (a) follows from (49). Hence {YSE} defines a zero-error network code for P. Furthermore, it is easy to see

that

log |SP(Ys)| = log |As| (53)

log |SP(Ye)| ≤ log |SP(Ue)| = H (Ue) . (54)

Hence, (η, ζ) is 0-achievable where

η(s) = log |As| , ∀s ∈ S, (55)

ζ(e) = log |Ue| , ∀e ∈ E . (56)

The final ingredient of the proof is the following proposition which will be proved in Appendix A.

Proposition 3.3: Let {U1, . . . , US} be a set of quasi-uniform random variables. If H (U1) is sufficiently large,

then there exists at least one regular partition set {Ξs, s ∈ S} for {SP(Us), s ∈ S} where

As,

{
1, . . . ,

2H(Us|U1,...,Us−1)

H (U1, . . . , Us)
2

}
.

By Proposition 3.3 (and (38)), we can construct a sequence of zero-error network codes such that

H (Y ns) = H
(
Uns | Un1 , . . . , Uns−1

)
− 2 logH (Un1 , . . . , U

n
s)

H (Y ne) ≤ H (Une) .

Finally, from (35) and that h ∈ CI, we can prove that

lim
n→∞

cnH (Y ns) = h(s),

lim
n→∞

cnH (Une) ≤ h(e)

for all s ∈ S and e ∈ E . Thus, projP[h] is 0-achievable and Theorem 3.1 follows.

November 2, 2018 DRAFT

17

C. Generalisation – non-colocated sources

Assuming that all sources are colocated, we proved in the previous subsection that a rate-capacity tuple is ε-

achievable if and only if it is indeed 0-achievable, and that the outer bound in Corollary 2.1 is indeed tight. We

conjecture that the same outer bound remains tight even for sources are not colocated. In this subsection, we will

give some arguments to justify our conjecture, which hinges on whether or not removing a zero-rate link can change

the capacity of a certain modification of the original network.

Let P = (G,M) where G = (V, E) and M = (S, O,D). We make no assumption that the sources are colocated.

Now consider two variations on the network coding problem P.

Variation 1 – addition of a “super node”: Let P1,(G†,M1), where the underlying network G† = (V†, E†) is

obtained from G = (V, E) via inclusion of a “super node” v∗ and links fs, s ∈ S,

V† = V ∪ {v∗}, (57)

E† = E ∪ {fs, s ∈ S}, (58)

such that tail(fs) = v∗ and head(fs) = O(s). Here, the links fs are just like an imaginary source edge.

The connection constraint M1 is (S, O1, D) where for all s ∈ S,

O1(s) = O(s) ∪ {v∗}.

In other words, source s is available not only at source node O(s) but also at the super node v∗.

Variation 2: Let P2,(G†,M2), where the underlying network G† = (V†, E†) is the same as in P1, but the

connection constraint M2 = (S, O2, D2) is modified as follows:

O2(s) = {v∗}, ∀s ∈ S (59)

D2(s) = D(s) ∪O(s). (60)

Hence, all sources are available only at the super node v∗. In addition, source s is required to be reconstructed not

only at the nodes in D(s) (the sinks in the original multicast problem P) but also at the original source nodes O(s)

in P.

Figure 1 illustrates the differences between the original problem P and its two variations P1 and P2. In this

figure, a sink node is denoted by an open square. Labels beside each sink node indicate the set of sources required

for reconstruction. Sources are indicated by a double circle with an imaginary link (labeled with the source index)

directed from it to the nodes where that source is available according to the connection constraint.

Given a rate-capacity tuple (λ, ω) ∈ χ(P), let T 1[λ, ω] be a rate capacity tuple in χ(P1) (for the network coding

problem P1) such that

T 1[λ, ω](s) = λ(s), ∀s ∈ S, (61)

T 1[λ, ω](e) = ω(e), ∀e ∈ E , (62)

T 1[λ, ω](fs) = 0, ∀s ∈ S. (63)

November 2, 2018 DRAFT

18

s2

1

s
2

1

(a) The original problem P.

v∗

f1 f2

fs

s

2
1

s2 1

1

s

2

(b) The first variation P1.

1 2 s

v∗

f1 f2
fs

s2 1

1
2 s

(c) The second variation P2.

Figure 1. Variations of a multicast problem P

In other words, the source rates and the hyperedge capacities remain the same for those elements existing in the

original network, and the hyperedge capacities of the new links from the super-node v∗ to each of the original

source nodes are all zero.

Similarly, let T 2[λ, ω] be respectively the rate capacity tuple in χ(P2) (for the network coding problem P2) such

that

T 2[λ, ω](s) = λ(s), ∀s ∈ S, (64)

T 2[λ, ω](e) = ω(e), ∀e ∈ E , (65)

T 2[λ, ω](fs) = λ(s), ∀s ∈ S. (66)

Then, it is straightforward to prove the following:

1) T 1[λ, ω] is ε-achievable with respect to P1 if and only if T 2[λ, ω] is ε-achievable with respect to P2.

2) If (λ, ω) is ε-achievable with respect to P, then T 1[λ, ω] and T 2[λ, ω] are ε-achievable with respect to P1

and P2 respectively.

Conjecture 1: A rate-capacity tuple (λ, ω) is ε-achievable with respect to a network coding P if T 1[λ, ω] is

ε-achievable with respect to the modified problem P1.

The main difference between P and P1 are the zero-capacity links fs for s ∈ S. At first sight it might be tempting

to think that zero-capacity links cannot change the capacity region, and as a result that the conjecture is trivially

true. However proving the conjecture is not straightforward. A zero-capacity link does not mean that absolutely

nothing can be transmitted on the link. In fact according to the definitions, a finite amount of information (that

November 2, 2018 DRAFT

19

does not scale with n) could be transmitted along the link. Thus the links fs can in fact be used (as long as their

capacities vanish asymptotically) in any sequence of network codes achieving T 1[λ, ω]. In fact there exists known

examples where zero-capacity links can indeed modify the capacity of certain multi-terminal problems, in particular

when there are correlated sources, or non-ergodic sources.

If Conjecture 1 does not hold, it is equivalent to saying that a link with “vanishing capacity” can indeed change

the set of achievable tuples, even when all sources are independent and ergodic.

Theorem 3.2: Suppose Conjecture 1 holds. Then the outer bound in Corollary 2.1 is tight even when sources

are not colocated.

Proof: Let h ∈ Γ̄∗(P). Define a rank function

g ∈ H[S ∪ E†]

such that for any β ⊆ S ∪ E†

g(β) = h (α1 ∪ α2) (67)

where

α1 = β \ {fs, s ∈ S} (68)

α2 = {s ∈ S : fs ∈ β}. (69)

It is straightforward to prove that if

h ∈ Γ̄∗(P) ∩ CI(P) ∩ CT(P) ∩ CD(P),

then

g ∈ Γ̄∗(P2) ∩ CI(P2) ∩ CT(P2) ∩ CD(P2).

By Theorem 3.1, projP2 [g] is ε-achievable with respect to network coding problem P2. As

T 2[projP[h]] = projP2 [g]

and is achievable with respect to P2, T 1[projP[h]] is achievable with respect to P1. By Conjecture 1, projP[h] is

achievable with respect to P. Consequently, the outer bound in Corollary 2.1 is tight.

IV. LINEAR NETWORK CODES

In the previous section, the network codes were not subject to any constraints, other than those required by

Definition 2 and that decoding error probabilities must be zero or vanishing, according to Definition 5 or Definition 6.

For the remainder of the paper, we will consider various subclasses of network codes which result from imposing

different kinds of additional constraints.

To begin with, in this section we will study linear network codes [5], which have relatively low encoding and

decoding complexities, making them more attractive for practical implementation.

November 2, 2018 DRAFT

20

Definition 14 (Linear network codes): Let

{Yf : f ∈ E ∪ S} (70)

be a network code (according to Definition 2) for a problem P on a network G = (V, E), with local encoding

functions

Φ , {φe : e ∈ E}.

The code is called q-linear (or simply linear) if it satisfies the following conditions:

1) For s ∈ S , Ys is a random row vector such that each of its entries is selected independently and uniformly

over GF (q).

2) All the local encoding functions are linear.

A network coding problem is said to be subject to a q-linearity constraint if only q-linear network codes are allowed.

Let the row vector Ys have λs elements. Clearly, for a linear network code (70), one can construct a
∑
i∈S λi×λs

matrix Gs for any s ∈ S such that

Ys = Y ×Gs. (71)

where Y,[Y1Y2 . . . Y|S|] is the length
∑
i∈S λi row vector obtained from the concatenation of the Yi and × is the

usual vector-matrix multiplication.

Similarly, as all local encoding functions are linear, for each e ∈ E , there exists a
∑
i∈S λi×ωe matrix Ge such

that

Ye = Y ×Ge. (72)

Hence, the symbol transmitted on link Ye is a length ωe vector over GF (q).

Following the nomenclature in [2], the matrices Gf , f ∈ S ∪ E will be called the global encoding kernels. They

define the linear relation between Ye (the message sent along edge e) and {Ys, s ∈ S} (the symbols generated at

the sources). It is easy to prove that

|SP(Ys)| = qλs (73)

|SP(Ye)| ≤ qωe . (74)

with equality holding in (74) when Ge has full column rank.

A sink node u ∈ D(s) can uniquely decode a source Ys if and only if it can solve for Ys (but not necessarily

all other Yi, i ∈ S \ s) from the following linear system with unknowns Y :

Ye = Y ×Ge, ∀e ∈ in(u). (75)

It is clear that if Ys cannot be uniquely determined from (75), then there must be at least q solutions to (75) such

that the values of Ys in each solution are all different. We can easily show that with maximum likelihood decoding,

the decoding error probability must be at least 1 − 1/q. Consequently, for a network coding problem subject to

November 2, 2018 DRAFT

21

a q-linearity constraint, a rate-capacity tuple (λ, ω) is 0-achievable if and only if it is ε-achievable. Therefore, we

will always assume that linear codes are zero-error codes.

As in Theorem 3.1 for general (possibly non-linear) network codes, a characterisation for the set of 0-achievable

rate-capacity tuples subject to a q-linearity constraint can be obtained by using entropy functions. However as we

shall see, the entropy functions for linear network codes will be constrained to be representable [15] in the sense

of matroid theory.

Definition 15: A rank function h ∈ H[S ∪ E] is called q-representable if there exists vector subspaces

Ui, i ∈ S ∪ E

over GF (q) such that for all α ⊆ S ∪ E ,

h(α) = dim 〈Ui, i ∈ α〉, (76)

where dim 〈Ui, i ∈ α〉 denotes the dimension of the smallest vector space containing all of the Ui, i ∈ α.

In an abstract sense, representable rank functions are similar to entropy functions, where the entropies of random

variables are replaced by dimensions of vector spaces. It is well-known that representable functions are indeed

entropy functions (and hence also polymatroidal) [10], [11]. Hence we will sometimes use the following conventions.

For vector spaces U and V, we will use

H (V) , H (U,V) , and H (U | V)

to respectively denote

dimV, dim 〈U,V〉, and dim 〈U,V〉 − dimU,

as if U and V were random variables.

Similar to Definition 11 we can define weakly- and almost-representable functions.

Definition 16 (Weakly/almost representable): A function h is called

• weakly q-representable if c · h is q-representable for some c > 0

• almost q-representable if it is the limit of a sequence of weakly q-representable functions.

We use Υ∗q(S ∪ E) and Ῡ∗q(S ∪ E) to respectively denote the sets of q-representable and almost q-representable

rank functions in H[S ∪ E].

Theorem 4.1 (Achievability by linear codes): For any network coding problem P = (G,M) subject to a q-

linearity constraint, a rate-capacity tuple (λ, ω) is 0-achievable if and only if

(λ, ω) ∈ CL
(
projP

[
Ῡ∗q(P) ∩ CI(P) ∩ CT(P) ∩ CD(P)

])
. (77)

Theorem 4.1 (for linear network codes) is a counterpart to Theorem 3.1 (for general network codes codes).

However, unlike in Theorem 3.1, Theorem 4.1 holds even when the sources are not colocated.

Before we proceed to prove Theorem 4.1 (which involves proving both an if-part and an only-if part), we will

illustrate the main idea by proving the following special case of the if-part of Theorem 4.1.

November 2, 2018 DRAFT

22

Proposition 4.1: Consider a q-representable function h ∈ Υ∗q(P) such that

h ∈ CI(P) ∩ CT(P) ∩ CD(P) (78)

and let (λ, ω) = projP[h]. Then (λ, ω) is 0-achievable by q-linear network codes.

Proof: By Definition 15, there exists a collection of subspaces

{Vi, i ∈ S ∪ E}

over GF (q) such that

h(α) = dim 〈Vi, i ∈ α〉.

As h ∈ CI(P),

h(S) =
∑
s∈S

h(s).

Therefore,

dim 〈Vs, s ∈ S〉 =
∑
s∈S

dimVs. (79)

Similarly, as h ∈ CT(P) ∩ Γ̄∗(P), we can prove that

h(e,S) = h(S)

for all e ∈ E . Consequently,

Ve ⊆ 〈Vs, s ∈ S〉, ∀e ∈ E . (80)

Let k = dim 〈Vs, s ∈ S〉. By (79) and (80), we may assume without loss of generality that all elements in Vf are

length k column vectors for f ∈ S ∪ E . For each s ∈ S , let Ms be a k × h(s) full column rank matrix such that

the space spanned by its columns is equal to Vs. Similarly, for each e ∈ E , let Me be a k× h(e) full column rank

matrix such that the space spanned by its columns is equal to Ve.

Let Z be a length k row vector such that each of its entries is independently and uniformly selected from GF (q).

Then Z, together with the matrices {Mf , f ∈ S ∪ E} induces a set of random variables

{Yf , f ∈ S ∪ E}

such that Yf , Z ×Mf for all f ∈ S ∪ E . Setting Y = [Ys, s ∈ S], and similarly M = [Ms, s ∈ S] we have

Y = Z ×M.

By (79), it is easy to see that M must be a k × k invertible matrix. Therefore

Z = Y ×M−1 (81)

and consequently, Yf = Y ×Gf where Gf = M−1 ×Mf .

November 2, 2018 DRAFT

23

In the following, we will prove that {Yf , f ∈ S ∪E} is indeed a zero-error linear network code. To see this, first

notice that Ys is a random row vector of length h(s) and all its entries are independently and uniformly distributed

over GF (q). Now, consider any e ∈ E . As h ∈ CT,

h(e, in(e)) = h(in(e)).

Therefore,

dim 〈Ve,Vf , f ∈ in(e)〉 = dim 〈Vf , f ∈ in(e)〉

or equivalently,

Ve ⊆ 〈Vf , f ∈ in(e)〉.

Consequently, we can construct a matrix ψe such that

Me = [Mf , f ∈ in(e)]× ψe

Therefore,

Ye = Z ×Me

= Z × [Mf , f ∈ in(e)]× ψe

= [Z ×Mf , f ∈ in(e)]× ψe

= [Yf , f ∈ in(e)]× ψe. (82)

The equation (82) clearly indicates that the local encoding functions are indeed linear.

Similarly, as h ∈ CD(P),

h(s, in(u)) = h(in(u))

for any u ∈ D(s). We can once again construct a “decoding function” ψs,u such that

Ys = [Yf , f ∈ in(u)]× ψs,u.

Hence, the receiver node u can uniquely decode Ys from {Yf , f ∈ in(u)} and the probability of decoding failure

is zero. As {Yf , f ∈ S ∪ E} is a zero-error linear network code, together with (73)-(74), (λ, ω) is 0-achievable by

linear network codes.

Our next step is to prove that Proposition 4.1 holds, even when the function h in (76) is almost q-representable.

Before we prove this extension, we will need a few basic results from linear algebra.

Lemma 4.1: Let A,B be vector subspaces. Then there exists a subspace C ⊆ B such that

〈A,C〉 = 〈A,B〉

A ∩ C = {0}.

Consequently, H (C) = H (B | A) = H (A,B)−H (A).

November 2, 2018 DRAFT

24

Using Lemma 4.1, for any subspace A of B, one can easily construct a vector subspace A∗ of B such that

〈A,A∗〉 = B, (83)

A ∩ A∗ = {0}. (84)

Any vector u ∈ B can be uniquely expressed as the sum of vectors u1 ∈ A∗ and u2 ∈ A. For notational simplicity,

we use TA(u) to denote u1. Similarly,

TA(V),{TA(u) : u ∈ V}.

Clearly, if V is a subspace, then so is TA(V).

In general, TA(u) depends on the specific choice of A∗. However, all the results mentioned in this paper involving

TA remain valid for any legitimate choice of A∗. The following lemma may be directly verified.

Lemma 4.2 (Properties): For any subspaces A,B1,B2,

TA(B1) ∩ A = {0} (85)

〈TA(B1),A〉 = 〈A,B1〉 (86)

H(TA(B1)) = H (B1 | A) (87)

〈TA(B1), TA(B2)〉 = TA(〈B1,B2〉) (88)

Furthermore, if B1 ⊆ B2, then

TA(B1) ⊆ TA(B2).

Using TA, we can “transform” a set of subspaces

{B1, . . . ,Bn}

into another set of subspaces

{TA(B1), . . . , TA(Bn)}

satisfying Lemmas 4.3 and 4.4 below, which are direct consequences of Lemma 4.2.

Lemma 4.3 (Conditioning):

H (TA(Bi), i ∈ α) = H (TA〈Bi, i ∈ α〉) = H (Bi, i ∈ α | A) . (89)

Lemma 4.4 (Preserving functional dependencies): If

H (Bk | Bi, i ∈ α) = 0,

or equivalently, Bk ⊆ 〈Bi, i ∈ α〉, then

H (TA(Bk) | TA(Bi), i ∈ α) = 0.

Proposition 4.2: Consider any almost q-representable function h ∈ H[S ∪ E]. Let

∆,{(k, α) : k ∈ S ∪ E , α ⊆ S ∪ E such that h(k | α) = 0}.

November 2, 2018 DRAFT

25

Then there exists a sequence of weakly q-representable rank functions h` ∈ H[S ∪ E] such that

lim
`→∞

h` = h (90)

and

h`(k | α) = 0, (91)

for all positive integers `, and (k, α) ∈ ∆.

Proof: By definition, for any almost q-representable function h, there exists a sequence {U`f , f ∈ S ∪ E},

` = 1, 2, . . . of collections of subspaces over GF (q) and c` > 0 such that for any α ⊆ S ∪ E ,

lim
`→∞

c`H
(
U`α
)

= h (α) . (92)

For every pair of (k, α) ∈ ∆, by using Lemma 4.1, we can construct a subspace W`
k,α such that

H
(
W`
k,α

)
= H(U`k,U`α)−H(U`α) (93)

U`k ⊆ 〈U`α,W`
k,α〉. (94)

Let W`
∆ = 〈W`

k,α, (k, α) ∈ ∆〉. By (92)-(93) and the fact that

h (k, α) = h (α) , ∀(k, α) ∈ ∆,

we have

lim
`→∞

c`H
(
W`

∆

)
≤ lim
`→∞

c`
∑

(k,α)∈∆

H
(
W`
k.α

)
=

∑
(k,α)∈∆

lim
`→∞

c`H
(
W`
k.α

)
=

∑
(k,α)∈∆

(h (k, α)− h (α))

= 0. (95)

Define a new collection of subspaces

V`f,〈U `f ,W `
∆〉, ∀f ∈ S ∪ E (96)

and let g` be the representable function induced by

{V`f , f ∈ S ∪ E}.

Obviously, for all (k, α) ∈ ∆, V`k is a subspace of V`α, or equivalently, g`(k, α) = g`(α). By (95), using a similar

argument as given in (29)-(33) in the proof of Proposition 3.2, we can also prove that

lim
`→∞

c`g
` = h.

The proposition then follows by letting h` = c`g
`.

November 2, 2018 DRAFT

26

In the proof for Theorem 3.1, an extra step (via the introduction of a regular partition set) is taken to construct a

network code from a set of quasi-uniform random variables. This extra step requires that all sources are colocated.

As we shall see, when we construct linear codes from a set of subspaces, the colocated assumption is no longer

needed.

Lemma 4.5: For any subspaces A,B,

H (A | B) = H (A | A ∩ B) . (97)

Proof: Direct verification.

Lemma 4.6: Let {Vf , f ∈ S ∪ E} be a collection of subspaces. Then there exists a subspace A such that

H(TA(Vs), s ∈ S) =
∑
s∈S

H(TA(Vs))

and

H (A) = H (VS)−
∑
s∈S

H
(
Vs | VS\s

)
.

Proof: Let

Ws,Vs ∩ 〈Vj , j ∈ S \ s〉, ∀s ∈ S (98)

and A,〈Ws, s ∈ S〉. Then

H (VS | A) = H (VS |Wi, i ∈ S)

≥
∑
s∈S

H (Vs |Wi, i ∈ S,Vk, k 6= s)

(a)
=
∑
s∈S

H (Vs |Ws,Vk, k 6= s)

(b)
=
∑
s∈S

H (Vs | Vk, k 6= s)

(c)
=
∑
s∈S

H (Vs |Ws)

≥
∑
s∈S

H (Vs |Wi, i ∈ S)

=
∑
s∈S

H (Vs | A)

≥ H (VS | A)

where (a) follows from that Wk ⊆ Vk, (b) from that Wk ⊆ 〈Vi, i 6= k〉, and (c) from Lemma 4.5. As all the above

inequalities are in fact equalities, we have

H (VS | A) =
∑
s∈S

H (Vs | A) =
∑
s∈S

H (Vs | Vk, k 6= s) .

November 2, 2018 DRAFT

27

Finally, as A ⊆ 〈Vs, s ∈ S〉,

H (A) = H (Vs, s ∈ S)−H (VS | A) (99)

= H (Vs, s ∈ S)−
∑
s∈S

H (Vs | Vk, k 6= s) . (100)

We now have all the elements required to prove Theorem 4.1.

Proof of Theorem 4.1 :

We begin with the if-part. Suppose

h ∈ Ῡ∗q ∩ CI ∩ CT ∩ CD.

Using Proposition 4.2, we can construct a sequence of q-representable functions f ` and c` > 0 such that

lim
`→∞

c`f
` = h

and each f ` satisfies all of the same functional dependencies as h, i.e.

h (k | α) = 0 =⇒ f `(k | α) = 0.

In particular,

f ` ∈ CT ∩ CD.

For each `, by definition, there exists subspaces

{U`i , i ∈ S ∪ E}

over GF (q) such that f `(α) = H
(
U`i , i ∈ α

)
.

Then by Lemma 4.6, there exists a subspace A` such that

H(TA`(U`s), s ∈ S) =
∑
s∈S

H(TA`(U`s)) (101)

and

H
(
A`
)

= H
(
U`s, s ∈ S

)
−
∑
s∈S

H
(
U`s | U`S\s

)
. (102)

Let g` be the representable function induced by the subspaces

{TA`(U`i), i ∈ S ∪ E}.

Then by (101), g` ∈ CI. As each f ` ∈ CT ∩ CD, by Lemma 4.4, g` ∈ CT ∩ CD. By Proposition 4.1, projP[g`] is

0-achievable.

Due to (102),

lim
`→∞

c`H
(
A`
)

= 0,

and hence,

lim
`→∞

c`g
` = lim

`→∞
c`f

` = h.

November 2, 2018 DRAFT

28

Thus, projP[h] is also 0-achievable and the if-part of Theorem 4.1 is proved.

Now, we will prove the only-if part. Suppose (λ, ω) ∈ T(P) is 0-achievable subject to a q-linearity constraint.

Then there exists a sequence of zero-error linear network codes {Y nf , f ∈ S ∪ E} and positive constants cn such

that

lim
n→∞

cnH(Y ne) ≤ lim
n→∞

cnlog |SP(Y ne)| ≤ ω(e), ∀e ∈ E ,

lim
n→∞

cnH(Y ns) = lim
n→∞

cnlog |SP(Y ns)| ≥ λ(e), ∀s ∈ S.

Again, each set of random variables {Y nf , f ∈ S∪E} induces a q-representable function hn such that H
(
Y nf , f ∈ α

)
=

hn(α) for all α ⊆ S ∪ E . Since {Y nf , f ∈ S ∪ E} is a zero-error linear code, we have hn ∈ Ῡ∗q ∩ CI ∩ CT ∩ CD.

Therefore,

(λ, ω) ∈ CL(Ῡ∗q ∩ CI ∩ CT ∩ CD)

and the theorem is proved.

V. ROUTING

Another class of network coding constraints that is of great practical importance is routing, which requires that

network nodes perform only store-and-forward operations. We will consider two main cases. In Section V-A we

consider networks where all nodes must perform routing. In Section V-B we consider heterogeneous networks

consisting of both routing and network coding nodes.

A. Routing-only schemes

We first consider networks where the nodes are only able to perform routing. We will formalise what we mean

by “routing” later, and proposed a generalisation. In such routing-based schemes, information is transmitted from

the sources to the destinations via a collection of “routing subnetworks”.

Definition 17 (Routing subnetworks): For any given network coding problem P = (G,M), a routing subnetwork

is a subset T of S ∪ E such that

1) |T ∩ S| = 1. Thus, T is associated with a source and we denote that unique source in T ∩ S by ν(T).

2) For any link e ∈ T ∩ E , in(e) ∩ T 6= ∅. In other words, either there exists another link f ∈ T such that

f ∈ in(e),

or ν(T) ∈ in(e), i.e., the originating node of link e is a source node of ν(T). Hence, the subnetwork formed

by the set of links in T is in fact “connected” and is “rooted” at ν(T).

A routing subnetwork is in fact a simple generalisation of the usual multicast trees used in networks with point-

to-point links (i.e. the underlying network is a directed graph) for constructing a routing solution (where messages

are being forwarded and relayed at intermediate nodes without coding). While it is sufficient to consider multicast

trees in such networks, the concept of multicast trees does not extend naturally to wireless networks (where the

November 2, 2018 DRAFT

29

underlying network is a directed hypergraph). In particular, in our hypergraph model, links E are broadcast, i.e.,

the message sent over a link e can be received by more than one node. Therefore, it is not reasonable (and also

not necessary) to insist that there is a unique path connecting a source to a sink. According to our definition of

a multicast constraint, sources may also be available at more than one node. Therefore, the condition s ∈ in(e)

means that there exists a node u ∈ O(s) such that u = tail(e).

Definition 18 (Achievability): A rate-capacity tuple

(λ, ω) ∈ χ(P)

is called 0-achievable subject to a routing constraint if there exists a collection of routing subnetworks Ti and

subnetwork capacities ci ≥ 0 such that

(R1) For any edge e ∈ E ,

ω(e) ≥
∑
i:e∈Ti

ci. (103)

(R2) For any i and u ∈ D(ν(Ti)), there exists e ∈ Ti such that u ∈ head(e). In other words, the node u is on

the routing subnetwork.

(R3) For any source s ∈ S,

λ(s) =
∑

i:ν(Ti)=s
ci. (104)

Clearly, these three conditions are not chosen arbitrarily but have a meaning in practice. Suppose (λ, ω) is 0-

achievable subject to a routing constraint. This tuple corresponds to a zero-error routing solution defined as follows:

Assume without loss of generality that λ(s), ω(e) and ci are all positive integers. For each s ∈ S, let the source

message Ys be a q-ary row vector of length λ(s). For each i, one can use the routing subnetwork Ti to transmit ci

q-ary symbols of Ys from the source nodes (which have access to the source Ys) to all sink nodes u ∈ D(s). By

(R2), it is guaranteed that all sink nodes receive all λ(s) q-ary symbols of Ys and hence can decode Ys. Furthermore,

a link e ∈ E is used in the routing subnetwork Ti if e ∈ Ti. Therefore,∑
i:e∈Ti

ci

is the total number of q-ary symbols that have been transmitted on link e. Clearly, the rate-capacity tuple (λ, ω) is

fit for this routing based solution.

In this routing solution, a source node does not perform any coding, except for partitioning a source message

into several independent segments, and forwarding each segment via a routing subnetwork to the corresponding

sink nodes. This corresponds to the usual concept of routing in networks consisting of point-to-point links. For

successful decoding, a sink node must receive every segment of the source message from the required sources.

In the following, we consider a slight generalisation of the concept of routing, where source nodes can encode

source messages into correlated segments (corresponding to intra-session coding). By doing so, we can weaken the

conditions (R2) and (R3).

November 2, 2018 DRAFT

30

Definition 19 (Generalised routing constraint): A rate-capacity tuple (λ, ω) is called 0-achievable subject to a

generalised routing constraint if there exists a collection of routing subnetworks Ti and subnetwork capacities

ci ≥ 0 satisfying (R1) and the following condition:

(R2′) for any source s ∈ S and any sink node u ∈ D(s),

λ(s) ≤
∑

i:in(u)∩Ti 6=∅ and ν(Ti)=s
ci. (105)

Again, each 0-achievable tuple (λ, ω) subject to a generalised routing constraint is fit for a zero-error routing scheme

as follows: Let Ys be a q-ary row vector of length λ(s). Instead of partitioning a source message Ys into independent

pieces, one can encode (e.g. using simple codes for erasure channels) Ys into
∑
i:ν(Ti)=s ci q-ary symbols such that

any λ(s) encoded symbols can reconstruct Ys with no error. These
∑
i:ν(Ti)=s ci symbols will be forwarded via

the routing subnetworks Ti (where ν(Ti) = s) to sink nodes in D(s). As before, all intermediate network nodes

perform only store-and-forward operations. The condition (R2′) then guarantees that each sink node u ∈ D(s)

receives at least λ(s) coded symbols of Ys. Hence, the node can decode Ys without error.

In the following, we will characterise the set of 0-achievable tuples subject to a (generalised) routing constraint

using a similar framework as developed in Sections III and IV. Developing a characterisation within this same

framework provides a convenient way to evaluate how a routing constraint may reduce the set of 0-achievable

tuples. We should point out that we are not the first to characterise 0-achievable rate-capacity tuples subject to

(generalised) routing constraints. In fact, if

|head(e)| = 1, ∀e ∈ E ,

then the characterisation of 0-achievable rate-capacity tuples subject to (generalised) routing constraint can be

obtained by solving variations of the fractional Steiner tree packing problem [16]. Our characterisation is however

unified with the entropy function formulation used for network coding and highlights the differences (and similarities)

between different characterisations with or without (generalised) routing constraints.

So far we have seen that entropy functions and representable entropy functions were the key ingredients in

characterising the capacity regions for general network codes and for linear codes. For networks with routing

constraints, we introduce almost atomic functions which in Theorem 5.1 below will provide the corresponding

characterisation of the set of 0-achievable tuples.

Definition 20 (Atomic rank function): A rank function h ∈ H[S ∪ E] is called atomic if there exists T ⊆ S ∪ E

such that

h(β) =

1 if β ∩ T 6= ∅

0 otherwise.
(106)

It is called almost atomic if it can be written

h =
∑
i

cih
i

where for all i, ci ≥ 0 and hi is atomic.

November 2, 2018 DRAFT

31

Let ΓAA(P), or simply ΓAA, be the set of all almost atomic rank functions in H[S ∪ E]. It can be easily proved

that ΓAA is a closed and convex cone contained in Γ∗. Thus, almost atomic rank functions are entropic.

Proposition 5.1: Let h be an atomic function such that there exists nonempty subset T ⊆ S ∪E and (106) holds.

Then T is a routing subnetwork (for network coding problem P) if and only if

h ∈ CT(P) ∩ CI(P).

Proof: We first prove the only-if part. Let T be a routing subnetwork. By definition, |T ∩ S| = 1. It can be

verified directly from definition that

h(S) =
∑
s∈S

h(s).

Hence, h ∈ CI(P). It remains to prove that h ∈ CT(P).

For any e ∈ E , if e 6∈ T , then h(in(e), e) = h(in(e)) by (106). On the other hand, suppose e ∈ T . Again as T

is a routing subnetwork, in(e) ∩ T is nonempty. Thus,

h(in(e), e) = 1 = h(in(e)).

Hence, h(in(e), e) = h(in(e)) for all e ∈ E . Consequently, h ∈ CT. The only-if part follows.

Now, we will prove the if -part. Suppose e ∈ T ∩ E . Then h(e) = 1. As h ∈ CT,

h(e, in(e)) = h(in(e)) (107)

and consequently h(in(e)) = 1. By (106),

T ∩ in(e) 6= ∅ (108)

and condition 2) of Definition 17 is satisfied.

As h ∈ CI, it can verified directly that |T ∩ S| ≤ 1. Since the network G is acyclic and there are only finite

number of links, there must exist at least one s ∈ S such that s ∈ T . Consequently, |T ∩ S| = 1. Hence condition

1) of Definition 17 is satisfied and the proposition follows.

Theorem 5.1 (Routing capacity): A rate-capacity tuple (λ, ω) is 0-achievable subject to a routing constraint if

and only if

(λ, ω) ∈ CL(projP[ΓAA ∩ CT ∩ CD ∩ CI]).

Proof: We will first prove the only-if part. Suppose (λ, ω) is 0-achievable subject to a routing constraint.

By Definition 18, there exists a collection of routing subnetworks Ti and nonnegative real numbers ci such that

conditions (R1) – (R3) hold.

By Proposition 5.1, each Ti is associated with an atomic rank function hi ∈ CT ∩ CI ∩ ΓAA such that

hi(β) =

1 if β ∩ Ti 6= ∅

0 otherwise.
(109)

November 2, 2018 DRAFT

32

For all sink nodes u ∈ D(ν(Ti)), (R2) implies that hi(in(u)) = 1. Hence, 1 = hi(in(u)) = hi(in(u), ν(Ti)). On

the other hand, if s 6= ν(Ti), then s 6∈ Ti and hi(in(u)) = hi(in(u), ν(Ti)). Consequently, hi ∈ CD.

Let h =
∑
i cih

i. Since

hi ∈ ΓAA ∩ CT ∩ CD ∩ CI

for all i, h is also in ΓAA ∩ CT ∩ CD ∩ CI. Finally, (R2) and (R3) imply that for any s ∈ S

λ(s) =
∑

i:ν(Ti)=s
ci (110)

=
∑
i

cih
i(s) (111)

= h(s). (112)

Similarly, (R1) implies ω(e) ≥ h(e) for all e ∈ E . Thus, (λ, ω) ∈ CL(projP[h]) and the only-if part follows.

Now, we will prove the if-part. It is easy to prove that if (λ, ω) is 0-achievable subject to a routing constraint,

then all tuples in CL(λ, ω) are also 0-achievable. Therefore, it is sufficient to prove that projP[h] is 0-achievable

subject to a routing constraint for all

h ∈ ΓAA ∩ CT ∩ CD ∩ CI.

Since h is almost atomic, there exist atomic functions

hi(β) =

1 if β ∩ Ti 6= ∅

0 otherwise.
(113)

such that h =
∑
i cih

i.

As each hi is entropic (and hence polymatroidal) and ci is nonnegative for all i,∑
i

cih
i ∈ CT ∩ CD ∩ CI

implies that

hi ∈ CT ∩ CD ∩ CI, ∀i.

By Proposition 5.1, each Ti is in fact a routing subnetwork. Also, hi ∈ CD implies that for any u ∈ D(ν(Ti)),

h(in(u)) = h(in(u), ν(Ti)) = 1.

This implies in(u) ∩ Ti 6= ∅ and hence (R2) is satisfied.

For any s ∈ S, and u ∈ D(s),

h(s) =
∑
i

cih
i(s) (114)

(i)
=

∑
i:ν(Ti)=s

ci (115)

where (i) follows from the fact that hi(s) = 0 if ν(T) 6= s. Hence (R3) is satisfied. Condition (R1) can also be

proved directly. The if-part is then proved.

November 2, 2018 DRAFT

33

Using a similar approach as in Theorem 5.1, we can also characterise the set of 0-achievable rate-capacity tuples

subject to the generalised routing constraint.

Theorem 5.2 (Generalised routing capacity): Consider a network coding problem P. A rate-capacity tuple (λ, ω)

is 0-achievable subject to the generalised routing constraint of Definition 19 if and only if

(λ, ω) ∈ CL(proj∗P[ΓAA ∩ CT ∩ CI]).

where

proj∗P[h](s), min
u∈D(s)

h(s ∧ in(u)) (116)

proj∗P[h](e), h(e). (117)

Proof: Starting with the only-if part, suppose (λ, ω) is 0-achievable subject to the generalised routing constraint.

By Definition 19, there exists a collection of routing subnetworks Ti, and nonnegative constants ci such that

conditions (R1) and (R2′) hold. Each Ti is associated with a rank function hi ∈ ΓAA ∩ CT ∩ CI defined as in (109).

Let

h =
∑
i

cih
i.

Again, (R1) implies that

ω(e) ≥ h(e), ∀e ∈ E .

By (R2′), for any s ∈ S and u ∈ D(s),

λ(s) ≤
∑

i:in(u)∩Ti 6=∅ and s∈Ti
ci (118)

(a)
=
∑
i

cih
i(s ∧ in(u)) (119)

= h(s ∧ in(u)) (120)

where (a) follows from that

hi(s ∧ in(u)) =

1 if in(u) ∩ Ti 6= ∅ and s ∈ Ti

0 otherwise.

As (120) holds for all u ∈ D(s), we have

λ(s) ≤ proj∗P[h](s). (121)

Thus, (λ, ω) ∈ CL(proj∗P[h]) and the only-if part follows.

Now, we will prove the if -part. Let h ∈ ΓAA ∩ CT ∩ CI and (λ, ω) ∈ CL(proj∗P[h]). As before, we can construct a

collection of functions hi, routing subnetworks Ti and positive constants ci such that h =
∑
i cih

i and (113) holds.

By definition,

ω(e) ≥ h(e), ∀e ∈ E .

November 2, 2018 DRAFT

34

and for any s ∈ S and u ∈ D(s),

λ(s) ≤ proj∗P[h](s) (122)

≤ h(s ∧ in(u)) (123)

=
∑

i:in(u)∩Ti 6=∅ and s∈Ti
ci. (124)

Then both (R1) and (R2′) are satisfied and the result follows.

B. Heterogeneous networks: Partial routing constraints

In the previous section, we considered two varieties of routing schemes defined by routing subnetworks. In

those schemes, each subnetwork is dedicated to sending a segment of data from a source to its respective sinks.

Intermediate network nodes can only perform store-and-forward operations to forward the same data segment across

a subnetwork. As only store-and-forward operations are performed, the computational requirements for intermediate

nodes are relatively low. Despite this advantage, such routing-based schemes may suffer loss in throughput, as

evidenced by the now famous example of the butterfly network [17]. In some cases, this loss can be significant.

In this section, we will consider more advanced schemes where some subsets of the intermediate nodes have

sufficient computational resources to permit more sophisticated data processing in order to increase the throughput.

Thus the network now consists of two types of nodes: routing nodes and network coding nodes. As demonstrated

by the butterfly network example, there are known instances where the maximum possible throughput can in fact

be achieved with only one network coding node, and all other nodes performing routing.

The aim of this section is to extend out methodology to such heterogeneous networks. As a first step, we need

to clarify the concept of store-and-forward. Figure 2 is a subnetwork of G such that the node v is a “routing node”

(where only store-and-forward operation is allowed). The node has two incoming links and one outgoing link.

Suppose that v receives (b0, b1) from the incoming link e1 and (b2, b3) from link e2. A natural question is: If v

can only perform store-and-forward operations, which types of outgoing message it can send?

(b0 , b1)

(b2, b
3)

v ?
e1

e2

Figure 2. Partial routing contraint.

Naturally, we should allow the routing node v to send bi for any i = 0, 1, 2, 3, but not b0 ⊕ b3. The question

however is if v can send b0 ⊕ b1 which is a function of the incoming message from e1?

November 2, 2018 DRAFT

35

In this paper, we will assume that v, as a routing node, is in fact permitted to perform intra-edge coding and

send b0 ⊕ b1. We do not allow inter-edge coding across different incoming links. Using this slightly generalised

definition of routing, we can once again use the tools developed earlier to characterise 0-achievable/ε-achievable

rate-capacity tuples for heterogeneous networks with “partial routing” constraints.

Definition 21 (Routing nodes): With respect to a network code {Yf , f ∈ S ∪ E}, an intermediate node v is said

to be a routing node if for all outgoing links e of v (i.e., tail(e) = v), there exist auxiliary random variables

{Yf,e, f ∈ in(e)}

such that

H (Ye | Yf,e, f ∈ in(e)) = H (Yf,e, f ∈ in(e) | Ye) = 0 (125)

H (Yf,e | Yf) = 0, ∀f ∈ in(e). (126)

In other words, the outgoing message Ye is formed by a set {Yf,e, f ∈ in(e)} such that each element Yf,e is a

function of the incoming message Yf from the link f . Routing links are defined as outgoing links from a routing

node.

Let % ⊆ E be the set of all routing links. In other words, e ∈ % if and only if tail(e) is a routing node. We refer

to % as a partial routing constraint.

Definition 22 (Network code with partial routing constraints): A network code satisfying the partial routing con-

straint % is a set of random variables

{Yi, i ∈ S ∪ E} ∪ {Yj,e, e ∈ %, j ∈ in(e)}.

such that {Yi, i ∈ S ∪ E} is an ordinary network code according to Definition 2 and in addition, (125) and (126)

hold for all e ∈ %. We refer to such a code as a %-network code

To go along with our definition of a network code with partial routing constraints, we need to update our definition

of fitness.

Definition 23 (Fitness of a network code with partial routing): A rate-capacity tuple (λ, ω) is fit for a %-network

code {Yi, i ∈ S ∪ E} ∪ {Yj,e, e ∈ %, j ∈ in(e)} if

λ(s) ≤ log |SP(Ys)|,∀s ∈ S (127)

ω(e) ≥
∑

f∈in(e)

log |SP(Yf,e)|,∀e ∈ % (128)

ω(e) ≥ log |SP(Ye)|,∀e 6∈ %. (129)

Note that we use (128) rather than (6) to highlight that the outgoing message Ye will not be jointly compressed by

the routing node. The set of 0-achievable and ε-achievable rate-capacity tuples subject to a partial routing constraint

% can be defined similar to Definitions 5 and 6.

Our approach for characterisation of the set of 0-achievable or ε-achievable rate-capacity tuples for %-codes is to

transform the problem with partial routing constraints into an equivalent unconstrained problem (G†,M).

November 2, 2018 DRAFT

36

Given a network coding problem (G,M) with partial routing constraint %, define G†,(V ′ , E ′) as follows

1) Add new nodes:

V
′

= V ∪ {V[j,e], e ∈ %, j ∈ in(e)}.

2) Add new links:

E
′

= E ∪ {[j, e], e ∈ %, j ∈ in(e)}

such that

head([j, e]) = tail(e) (130)

tail([j, e]) = V[j,e]. (131)

3) Modifying existing link connections: For all f ∈ E , the set head(f) is modified as

(head(f) \ {tail(e) : e ∈ %, f ∈ in(e)}) ∪ {V[f,e] : e ∈ %, f ∈ in(e)}.

In other words, if a link f was directed to a routing node tail(e) for some e ∈ %, it will be redirected to the

newly created node V[f,e].

Figure 3 is an example illustrating how to modify a network to remove the partial routing constraint. In this

example, Figure 3(a) is one part of the network where e ∈ % is a routing link. Figure 3(b) shows how that part of

the network is transformed. In the new network, we no longer impose any routing constraint.

f1 f2

e

(a) Original network.

f2

e

f1

V[f1,e] V[f2,e]

[f1, e][f2, e]

(b) Modified network.

Figure 3. Removing a routing contraint.

Theorem 5.3 (Network transformation): A rate-capacity tuple (λ, ω) is 0-achievable/ε-achievable with respect to

a network coding problem (G,M) subject to a partial routing constraint % if and only if there exists a 0-achievable/ε-

achievable rate-capacity tuple (λ
′
, ω
′
) for the network coding problem (G†,M) where

λs = λ
′
s, ∀s ∈ S (132)

ωe = ω
′
e, ∀e ∈ E \ % (133)

ωe =
∑

f∈in(e)

ω
′
[f,e], ∀e ∈ %. (134)

November 2, 2018 DRAFT

37

Proof: By direct verification.

The construction of G† together with relationships between λ/ω and λ′/ω′ remove the partial routing constraint

by making the capacity of the links e ∈ % in G† sufficiently large such that network coding is never required at

head(e), which has sufficient capacity to simply forward all of the incoming messages. Also note that the choice

of ω′[f,e] are free, apart from the constraints (134).

As a corollary of Theorem 5.3, all of the results obtained in the earlier sections can also be applied to network

coding problems with partial routing constraints.

VI. SECURE NETWORK CODES

So far we have considered two classes of constraints on network codes. In Section IV we considered linear

network codes, which may be attractive for practical implementation. In Section V we considered networks where

some, or all of the nodes are constrained to perform only store-and-forward types of operations. Another important

class of constraints to consider for network coding are motivated by security considerations. The objective is to

determine the achievable network coding rates when we require secret transmission that is impervious to specified

eavesdropping attacks.

Assume that there are |R| adversaries in the network. Adversary r ∈ R observes messages transmitted along links

in the set Br ⊆ E and aims to reconstruct the set of sources indexed by Ar ⊆ S. We refer to W,{(Ar,Br), r ∈ R}

as the wiretapping pattern of the network.

We will use the notation P = (G,M,W) to denote the network coding problem subject to a secrecy constraint,

also referred to as a secure network coding problem. Here, G and M are as usual the network topology and the

connection constraint. The secure communications objective is to transmit information over a network satisfying

the multicast requirements while simultaneously ensuring that the eavesdroppers gain no information about their

desired sources.

Before we characterise the set of 0-achievable/ε-achievable rate-capacity tuples for secure network coding, we

need to point out a significant difference between ordinary and secure network codes. Without a secrecy constraint,

the transmitted message on any network link e can be assumed without loss of generality to be a function of the

source inputs and received messages available at the node tail(e). However, when secrecy constraints are enforced,

it is usually necessary to encode messages stochastically to prevent an eavesdropper from learning any useful

information about its desired sources.

Definition 24 (Stochastic network code): A stochastic network code is defined by a set of random variables

{Yf , f ∈ S ∪ E ∪ V} (135)

with entropy function h such that Ys is uniformly distributed over its alphabet set for all s ∈ S and

h ∈ CI(P) ∩ CT(P)

where

November 2, 2018 DRAFT

38

CI(P),

h ∈ H[S ∪ E ∪ V] :

h(S,V) =
∑
s∈S h(s) +

∑
u∈V h(u)

 (136)

CT(P),

h ∈ H[S ∪ E ∪ V] :

h (s | in(e), tail(e)) = 0,∀e ∈ E

 . (137)

In the definition, {Ys, s ∈ S} and {Ye, e ∈ E} are again the set of random sources (indexed by s ∈ S) and the

set of messages (transmitted on hyperedges e ∈ E). The random variables {Yu, u ∈ V} can be thought of as the

random keys available at nodes u ∈ V for stochastic encoding. Specifically, each link e ∈ E is associated with a

local encoding function such that

Ye = φe(Yi, i ∈ in(e), Ytail(e)). (138)

Clearly, we have

H(Ye | Yi, i ∈ in(e), Ytail(e))

and hence (137). Furthermore, we want to point out that the random keys {Yu, u ∈ V} are not like the usual secret

keys that are privately shared between nodes in Shannon-style secure communications. Instead, they are locally

(and hence independently) generated at each node. In other words, there are no correlated or common keys shared

privately between nodes in advance. Therefore, we will assume that {Yf , f ∈ S ∪ V} are mutually independent,

and require (136) to hold.

A. Weak Secrecy

Definition 25 (Weak secrecy): For a secure network coding problem P = (G,M,W), a rate-capacity tuple (λ, ω)

is called 0-achievable subject to a weak secrecy constraint if there exists a sequence of stochastic network codes

Φn = {Y nf : f ∈ E ∪ S ∪ V}

and positive normalising constants cn such that

(S1) for all e ∈ E and s ∈ S,

lim
n→∞

cn log |SP(Y ne)| ≤ ω(e), (139)

lim
n→∞

cn log |SP(Y ns)| ≥ λ(s). (140)

(S2) for s ∈ S and u ∈ D(s),

H(Y ns | Y nf , f ∈ in(u)) = 0.

(S3) For all r ∈ R,

lim
n→∞

cnI(Y nAr
;Y nBr

) = 0. (141)

November 2, 2018 DRAFT

39

Similarly, a rate capacity tuple (λ, ω) is called ε-achievable subject to a weak secrecy constraint if there exists

a sequence of network codes

Φn = {Y nf : f ∈ E ∪ S ∪ V}

satisfying (S1) and (S3) and the following condition (S2′):

(S2′) for s ∈ S and u ∈ D(s), there exists decoding functions gns,u such that

lim
n→∞

Pr(Y ns 6= gns,u(Y nf : f ∈ in(u))) = 0.

The following theorem can be proved by using the same technique as in Corollary 2.1. For brevity, we state the

theorem without proof.

Theorem 6.1 (Outer bound): Consider any secure network coding problem P = (G,M,W) subject to a weak

secrecy constraint. Let

CD(P),

h ∈ H[S ∪ E ∪ V] : h (s | in(u)) = 0,

∀s ∈ S, u ∈ D(s)

 , (142)

CS(P), {h ∈ H[S ∪ E ∪ V] : h (Ar ∧ Br) = 0,∀r ∈ R} . (143)

If a rate-capacity tuple (λ, ω) ∈ χ(P) is ε-achievable, then there exists

h ∈ Γ̄∗(S ∪ E ∪ V) ∩ CI(P) ∩ CT(P) ∩ CD(P) ∩ CS(P)

such that

λ(s) ≤ h(s), ∀s ∈ S, (144)

ω(e) ≥ h(e), ∀e ∈ E . (145)

Or equivalently,

(λ, ω) ∈ CL(projP[Γ̄∗(S ∪ E ∪ V) ∩ CI(P) ∩ CT(P) ∩ CD(P) ∩ CS(P)]).

The condition (142) corresponds to the decoding constraint, requiring that any node u ∈ D(s) can decode the

source s with vanishingly small error. The condition (143) is the secrecy constraint, ensuring that an adversary can

learn no information about the sources it is interested in.

Unlike in Theorem 3.1, we do not claim tightness of the outer bound even for colocated sources. This is because

secure network nodes may locally generate random keys for the purpose of stochastic encoding. These keys, to a

certain extent, behave like sources (with no corresponding sink nodes), and hence the colocated source condition

fails, even if the actual sources are colocated.

B. Strong Secrecy

Weak secrecy requires that the amount of information leakage vanishes asymptotically after normalisation. In

other words, the amount of information leakage is negligible (when compared with the size of the source messages).

We can also consider a strong secrecy constraint, where we require the information leakage to be exactly zero.

November 2, 2018 DRAFT

40

Definition 26 (Strong secrecy): A rate-capacity tuple (λ, ω) is 0-achievable subject to a strong secrecy constraint

if there exists a sequence of network codes

Φn = {Y nf : f ∈ E ∪ S ∪ V}

and positive normalising constants cn satisfying (S1), (S2) and the following condition

(S3′) I(Y nAr
;Y nBr

) = 0 for all n and r ∈ R.

Similarly, it is ε-achievable subject to a strong secrecy constraint if the sequence of codes satisfies (S1), (S2′) and

(S3′).

In general, it is very hard to characterise the set of achievable rate-capacity tuples subject to a strong secrecy

constraint, even implicitly via entropy functions. However, under the additional constraint of linearity, the set of

0-achievable rate-capacity tuples can in fact be characterised implicitly via the use of representable functions.

Definition 27 (Strongly secure linear network codes): Let

{Yf : f ∈ E ∪ S ∪ V} (146)

be a stochastic network code (according to Definition 24) for a secure network coding problem P on a network

G = (V, E). The code is called q-linear (or simply linear) if it satisfies the following conditions:

1) For f ∈ S∪V , Yf is a random row vector such that each of its entries is selected independently and uniformly

over GF (q).

2) For any e ∈ E , there exists a linear function φe such that

Ye = φe(Yin(e), Ytail(e)).

A network coding problem is said to be subject to a q-linearity constraint if only q-linear network codes are allowed.

Theorem 6.2 (Strongly secure linear network codes): Consider a secure network coding problem P where |O(s)| =

1 for all s ∈ S. A rate-capacity tuple (λ, ω) is 0-achievable subject to q-linearity and strong secrecy if and only if

(λ, ω) ∈ CL(projP[Ῡ∗q ∩ CI ∩ CT ∩ CD ∩ CS]).

Proof: We first prove the only-if part. Suppose (λ, ω) is 0-achievable subject to linearity and strong secrecy

constraints. By definition, there exists a sequence of linear codes

{Y nf , f ∈ S ∪ E ∪ V}

with entropy function hn and normalising constants cn > 0 such that (S1), (S2) and (S3′) hold. By (S2) and (S3′),

hn ∈ Υ∗q ∩ CI ∩ CT ∩ CD ∩ CS.

And hence, cnhn ∈ Ῡ∗q ∩ CI ∩ CT ∩ CD ∩ CS. Consequently,

(λ, ω) ∈ CL(projP[Ῡ∗q ∩ CI ∩ CT ∩ CD ∩ CS]).

and the only-if part follows.

November 2, 2018 DRAFT

41

Now let

h ∈ Ῡ∗q ∩ CI ∩ CT ∩ CD ∩ CS.

To prove the if -part, it suffices to prove that projP[h] is 0-achievable. As in the proof of Theorem 4.1, there exists

a sequence of q-representable functions

hn ∈ Υ∗q ∩ CT ∩ CD ∩ CI (147)

and positive scalars cn such that

h = lim
i→∞

cnh
n. (148)

For each n, hn induces a zero-error linear network code

{Y ni , i ∈ S ∪ E ∪ V} (149)

such that

H (Y ns) = hn(s), ∀s ∈ S (150)

H (Y ne) = hn(e), ∀e ∈ E . (151)

However, the linear network code (149) need not be strongly secure (i.e., hn ∈ CS). In the following, we will create

from hn another representable function gn such that

lim
n→∞

cng
n = lim

n→∞
cnh

n = h (152)

gn ∈ Υ∗q ∩ CI ∩ CT ∩ CD ∩ CS. (153)

Since hn is q-representable, there exists subspaces

{Vni , i ∈ S ∪ E ∪ V}

such that for all α ⊆ S ∪ E ∪ V ,

hn(α) = dim 〈Vnj , j ∈ α〉.

For each r ∈ R and s ∈ Ar, we define

Wn
r,s,Vns ∩ 〈Vnf , f ∈ Br〉. (154)

Then by direct verification,

H
(
Wn
r,s

)
= hn(s ∧ Br)

and hence limn→∞ cnH
(
Wn
r,s

)
= 0.

Let

Wn
s,〈Wn

r,s, r ∈ R and s ∈ Ar〉.

November 2, 2018 DRAFT

42

By Lemma 4.1, for every s ∈ S, there exists a subspace Uns of Vns such that

dimVns = dimUns + dimWn
s , (155)

{0} = Uns ∩Wn
s . (156)

For any s ∈ S, let O(s) be the unique source node where the sth source is available. Let

Unu = 〈Vnu,Wn
s , O(s) = u〉, ∀u ∈ V (157)

Une = Vne , ∀e ∈ E . (158)

On the other hand,

Uns ∩ 〈Vnf , f ∈ Br〉 ⊆ Vns ∩ 〈Vnf , f ∈ Br〉 (159)

= Wn
r,s. (160)

As

Uns ∩Wn
r,s = {0},

we have

Uns ∩ 〈Vnf , f ∈ Br〉 = {0}.

Since hn ∈ CI,

dim 〈Vs, s ∈ S〉 =
∑
s∈S

dimVs. (161)

As Us ⊆ Vs for s ∈ S,

dim 〈Uns , s ∈ S〉 =
∑
s∈S

dimUns . (162)

Let gn be the representable function induced by

{Unf , f ∈ S ∪ E ∪ V}.

Then, it can be directly verified that

1) gn ∈ Υ∗q ∩ CI ∩ CT ∩ CD ∩ CS where gn is the rank function induced by {Y nf , f ∈ S ∪ E ∪ V}, and

2) limn→∞ cng
n = h.

Consequently, projP[gn], and also projP[cng
n] and projP[h], are 0-achievable subject to the two constraints.

C. Secret Sharing

In secret sharing [18], a secret is shared among a set of users N where each user holds a component of the secret.

The main objective is to ensure that only specified legitimate subgroups of users (indexed by a subset A of N)

can successfully decode the secret. All other illegitimate subgroups of users should receive no information about

the secret. The collection of all legitimate subsets Ω is called the access structure of the secret sharing problem.

November 2, 2018 DRAFT

43

We can reformulate a secret sharing problem as a secure network coding problem P = (G,M,W). In this secure

network coding problem, there is only one source (the secret) which is only available at the source node u∗. There

are |N | intermediate nodes, each of which represents a user. The transmitted message an intermediate node (or a

user) received from the source corresponds to the component of the secret that it holds. There are |Ω| sink nodes

indexed by {vα, α ∈ Ω}. The sink node vα is connected to nodes (or users) i ∈ α and aims to reconstruct the secret.

We also assume that each β 6∈ Ω, is associated with an eavesdropper who can wiretap the set of edges {ei, i ∈ β}.

The secrecy constraint implies that all illegitimate subgroups of users have no information about the secret.

Mathematically, the secure network coding problem is defined as follows.

1) G = (V, E) where V = {u∗} ∪ N ∪ {vα, α ∈ Ω} and E = {ei, fi, i ∈ N};

2) for any i ∈ N , tail(ei) = u∗, head(ei) = {i}, tail(fi) = i and head(fi) = {vα : i ∈ α};

3) M = (S, O,D) where (i) S = {1}, (ii) O(1) = {u∗} and (iii) D(1) = {vα, α ∈ Ω};

4) W = {(1, ei, i ∈ β) : β ⊆ N and β 6∈ Ω}.

By translating a secret sharing problem to a secure network coding problem, the results obtained in this paper can

be applied to secret sharing.

VII. CHALLENGES IN CHARACTERISING ACHIEVABLE TUPLES

Characterising the set of achievable rate-capacity tuples for a network coding problem is generally very hard. So

far, there are only a limited number of scenarios where the sets of 0-achievable/ε-achievable rate-capacity tuples

have been explicitly determined. One scenario is when there is only one source, |S| = 1 and no partial routing

constraint or secrecy constraints. In this case, the set of achievable rate-capacity tuples is explicitly characterised

by the cut-set bound [19]. If a secrecy constraint is additionally imposed, the set of achievable tuples can still be

determined if (i) all links have unit capacity and (ii) the eavesdropper is t-uniform in the sense that an eavesdropper

can wiretap any t links in the network [20], [6], [21]. In both cases, linear codes are optimal.

It is natural to wonder whether there is any hope that wide classes of network coding problems could have simple,

explicit characterisations. In the following two subsections, we will show that even in some very simple scenarios,

finding the set of achievable rate-capacity tuples can be extremely hard. The first scenario will be an incremental

multicast. The second scenario is a secure multicast.

A. Incremental Multicast

In a incremental multicast problem, sources are totally ordered such that a receiver who wants to reconstruct

source s is also required to reconstruct all other sources i for i < s. Here, the symbol < is defined with respect

to the total ordering of the sources. Incremental multicast is common in multimedia transmission, where data such

as video or audio may be encoded into multiple layers. A layer can only be used for reconstruction at a receiver

if all its previous layers are also available. This leads directly to an incremental multicast problem.

We will construct the simplest case of a incremental multicast problem involving two layers, colocated at the same

source node. Hence, there are two types of receivers: those which request source 1′, and those which request both

November 2, 2018 DRAFT

44

sources (1′ and 2′). Even for such a simple setup, we will show that determining the set of achievable rate-capacity

tuples can be as hard as solving any network coding problem in general.

To prove our claim, we consider any ordinary network coding problem P = (G,M), where sources may or may

not be colocated. We will transform P into a two-layer incremental multicast problem P† = (G†,M†) and prove

in Theorem 7.1 that determining the set of achievable tuples in the incremental multicast problem P† is at least as

hard as determining the outer bound of Corollary 2.1 for the problem P.

The network G† = (V†, E†) is obtained from its subgraph G by adding nodes and hyperedges

V†,V ∪ {γs, τs,u, s ∈ S, u ∈ D(s)} ∪ {ψ, φ, η, η∗}

E†,E ∪ {as, bs, cs, s ∈ S} ∪ {ds,u, s ∈ S, u ∈ D(s)}

with connections

tail(as) = φ (163)

head(as) = O(s) ∪ {γs, η∗}. (164)

tail(bs) = φ (165)

head(bs) = {γs, η, ψ} ∪
⋃
j 6=s
{τj,v, v ∈ D(j)} (166)

tail(cs) = γs (167)

head(cs) = {η, η∗} ∪ {τs,v, v ∈ D(s)} (168)

tail(ds,u) = u (169)

head(ds,u) = τs,u, (170)

for all s ∈ S, u ∈ D(s).

In addition to augmenting the network, we also need to define the connection requirement M† = (S†, O†, D†).

In our two-layer incremental multicast problem there are two sources indexed by

S†,{1′, 2′}.

All the sources are colocated at the node φ, i.e.,

O†(1
′
) =O†(2

′
) = φ.

Finally, the destination location mapping D† is defined as

D†(1
′
) = {τs,u, s ∈ S, u ∈ D(s)} ∪ {η, η∗, ψ},

D†(2
′
) = {η, η∗}.

Figure 4 exemplifies how to convert an ordinary network coding problem P (which has two sources) into a two

layers incremental multicast problem. Here, a source will be denoted by a double circle, and a sink by an open

November 2, 2018 DRAFT

45

square. The label beside a source or a sink denotes the index of the sources which are available or are required at

the node. Note that in the figure, the sink nodes u and u′ in the original problem P are no longer sink nodes in

the incremental multicast problem P†. Any rate-capacity tuple (λ, ω) ∈ χ(P) for P induces another rate-capacity

1

2

2

1

u u�

(a) Network G

a1

a2

b2

1� 2�

b1

a1
a2

b1

b2

c1 c2

1� 2�

b1 b2

c1 c2

b2

1�1�

φ
b1

γ1 γ2

η

τ1,u τ2,u�

d2,u�d1,u

u u�
c1 c2

1�

b1 b2

ψ

1� 2�

η∗
a1

a2 c1 c2

(b) Network G†

Figure 4. Transformation from G to G†.

tuple

(λ†, ω†),T †(λ, ω)

in χ(P†) for P† such that

ω†(e) = ω(e), (171)

ω†(as) = ω†(bs) = ω†(cs) = λ(s), (172)

ω†(ds,u) = λ(s), (173)

λ†(1
′
) = λ†(2

′
) =

∑
s∈S

λ(s). (174)

where e ∈ E , s ∈ S and u ∈ D(s).

Theorem 7.1: Let (λ, ω) be a rate-capacity tuple in χ(P). Then the following two claims are valid.

1) If T †(λ, ω) ∈ CL(projP† [Γ̄
∗(P†) ∩ CI(P†) ∩ CT(P†) ∩ CD(P†)]), then

(λ, ω) ∈ CL(projP[Γ̄∗(P) ∩ CI(P) ∩ CT(P) ∩ CD(P)]).

2) If a rate-capacity tuple (λ, ω) for P is 0-achievable, then T †(λ, ω) is 0-achievable with respect to P†.

Proof: See Appendix B

Using a similar arguments as in Theorem 7.1, we can also prove the following theorem, whose proofs we omit

for brevity.

November 2, 2018 DRAFT

46

Theorem 7.2: Let (λ, ω) be a rate-capacity tuple in χ(P). Then the following two claims are valid.

1) If T †(λ, ω) ∈ CL(projP† [Ῡ
∗
q(P
†) ∩ CI(P†) ∩ CT(P†) ∩ CD(P†)]), then

(λ, ω) ∈ CL(projP[Ῡ∗q(P) ∩ CI(P) ∩ CT(P) ∩ CD(P)]).

2) If (λ, ω) is 0-achievable with respect to P subject to the q-linearity constraint, then T †(λ, ω) is also 0-

achievable with respect to P†, subject to the q-linearity constraint.

Corollary 7.1 (Colocated sources): Suppose all the sources are colocated in P. Then

1) (λ, ω) is 0-achievable with respect to P if and only if T †(λ, ω) is also 0-achievable with respect to P†.

2) (λ, ω) is 0-achievable with respect to P subject to the q-linearity constraint if and only if T †(λ, ω) is also

0-achievable with respect to P† subject to the same linearity constraint.

Proof: A direct consequence of Theorems 3.1, 4.1, 7.1 and 7.2.

In [4], a specific network coding problem P was proposed, such that all sources are colocated and that determining

the set of ε-achievable rate-capacity tuple is at least as hard as determining the set of all information inequalities.

Furthermore, it was also proved that linear codes are not optimal5. Therefore, by Corollary 7.1, we can directly

prove the following proposition.

Proposition 7.1: There exists a two-layer incremental multicast network coding problem P† such that

1) Characterising the set of achievable rate-capacity tuples for a two-layer incremental network is in general no

simpler than determining the set of all information inequalities.

2) Linear codes are not optimal.

B. Secure Multicast

In this subsection, we consider another scenario, very simple secure network coding problem with only one

source. We will again show that solving the resulting secure network coding problem can be as hard as solving

a general multi-source unconstrained network coding problem. Our approach is essentially the same as that used

in the previous subsection for the incremental multicast. We will construct a simple single-source secure network

coding problem P‡ = (G‡,M‡,W) from an ordinary network coding problem P = (G,M). We will then show

that solving the so-constructed secure network coding problem is as hard as solving the original network coding

problem.

Construct the network G‡ in P‡ by adding nodes and hyperedges

V‡,V ∪ {ψs, γs, θs,u, τs,u, s ∈ S, u ∈ D(s)} ∪ {φ, η}

E‡,E ∪ {as, bs, cs, es, s ∈ S} ∪ {ds,u, ws,u, s ∈ S, u ∈ D(s)}

5Linear codes are not optimal in the sense that there exists a 0-achievable rate-capacity tuple (λ, ω) for P which is not achievable when

subject to the additional linearity constraint.

November 2, 2018 DRAFT

47

with link connections:

tail(as) = φ

head(as) = O(s) ∪ {η} ∪ {γs}

tail(bs) = φ

head(bs) = {γs, η} ∪
⋃
j 6=s
{θj,i, i ∈ D(j)}

tail(cs) = γs

head(cs) = {ψs}

tail(ds,u) = u

head(ds,u) = τs,u

tail(es) = φ

head(es) = {ψs} ∪ {τs,i, i ∈ D(s)}.

for all s ∈ S, u ∈ D(s).

The connection requirement M‡ = (S‡, O‡, D‡) is defined as follows:

O(1
′
),φ

D(1
′
),{τs,u, s ∈ S, u ∈ D(s)} ∪ {ψs, s ∈ S} ∪ {η}

W,{(A1,B1), (A2,B2)}

where

A1 = A2 = 1′

B1 = {as, s ∈ S}

B2 = {bs, s ∈ S}.

Figure 5 exemplifies how to convert an unconstrained network coding problem P into a single-source secure

network coding problem.

As before, for any rate-capacity tuple (λ, ω) ∈ χ(P), we define a tuple (λ‡, ω‡),T ‡(λ, ω) ∈ χ(P‡) as follows:

ω‡(e) = ω(e), (175)

ω‡(as) = ω‡(bs) = ω‡(cs) = λ(s), (176)

ω‡(ds,u) = λ(s), (177)

ω‡(es) =
∑

i∈S\{s}
λ(i) (178)

λ‡(1
′
) =

∑
s∈S

λ(s) (179)

November 2, 2018 DRAFT

48

1

2

2

1

u u�

(a) Network G

a1

a2

b2

1�

b1

a1 a2 b2

c1 c2

1�

d2,u�d1,u

a1
a2 b1 b2

1� 1�

b1

e1

e2

e1 e2

1� 1�

b2

e2

w2,u�w1,u

e1

b1

γ1 γ2

τ1,u τ2,u�

φ

η

ψ1 ψ2

θ1,u θ2,u�

(b) Network G‡

Figure 5. Transformation from G to G‡.

for all e ∈ E , s ∈ S and u ∈ D(s).

Theorem 7.3: Let (λ, ω) be a rate-capacity tuple in χ(P). Then the following two claims are valid.

1) If T ‡(λ, ω) ∈ CL(proj(h‡)) for some

h‡ ∈ Γ̄∗(P‡) ∩ CI(P‡) ∩ CT(P‡) ∩ CD(P‡) ∩ CS(P‡).

then

(λ, ω) ∈ CL(proj(Γ̄∗(P) ∩ CI(P) ∩ CT(P) ∩ CD(P))).

2) If a rate-capacity tuple (λ, ω) for P is 0-achievable, then T ‡(λ, ω) is 0-achievable with respect to P‡ subject

to the strong secrecy constraint.

Proof: See Appendix C

The following theorem is the counterpart of Theorem 7.2. Again, its proof will be omitted.

Theorem 7.4: Let (λ, ω) be a rate-capacity tuple in χ(P). Then the following two claims are valid.

1) If T ‡(λ, ω) ∈ CL(projP‡ [Γ̄
∗(P‡) ∩ CI(P‡) ∩ CT(P‡) ∩ CD(P‡) ∩ CS(P‡)]), then

(λ, ω) ∈ CL(projP[Ῡ∗q(P) ∩ CI(P) ∩ CT(P) ∩ CD(P)]).

2) If (λ, ω) is 0-achievable with respect to P subject to the q-linearity constraint, then T ‡(λ, ω) is also 0-

achievable with respect to P‡, subject to the strong secrecy and q-linearity constraint.

Corollary 7.2 (Counterpart of Corollary 7.1): Suppose all the sources are colocated in P. Then

1) (λ, ω) is 0-achievable with respect to P if and only if T ‡(λ, ω) is also 0-achievable with respect to P‡ subject

to the strong secrecy constraint.

November 2, 2018 DRAFT

49

2) (λ, ω) is 0-achievable with respect to P subject to the q-linearity constraint if and only if T ‡(λ, ω) is also

0-achievable with respect to P‡ subject to the strong secrecy and q-linearity constraint.

Proposition 7.2 (Counterpart of Proposition 7.1): There exists a single source secure multicast network coding

problem P‡ such that

1) Characterising the set of achievable rate-capacity tuples for P‡ is in general no simpler than determining the

set of all information inequalities.

2) Linear codes may not be optimal.

Remark: In [6], it was proved that in the single-source case, if all links have equal capacity and the eavesdroppers’

capability is limited by the total number of links it can wiretap, then linear network codes are optimal. Therefore,

Proposition 7.2 is indeed a surprising result proving that linear network codes are not optimal in general.

VIII. CONCLUSION

Characterisation of the set of zero-error or vanishing-error achievable rate-capacity tuples for network coding is

a fundamental problem in multiterminal information theory. In [4], it was proved that this characterisation problem

is extremely difficult in general and is as hard as determining the set of all information inequalities. This goes some

way toward explaining why the problem has so far been solved only for a few special cases.

The authors in [1] and [2] used entropy functions to implicitly characterise the set of achievable rate-capacity

tuples for general networks. Although this characterisation is implicit, it offers insights about the structure of the

set of achievable tuples. For example, knowing that the set of almost entropic functions Γ̄∗ is not polyhedral, [4]

proved that the set of achievable tuples also is not polyhedral in general.

This paper extended [1] and [2] in several aspects. First, we proved that when sources are colocated, the outer

bound given in [2, Section 15.5] is indeed tight. In particular, we showed that the set of rate-capacity tuples

achievable with vanishing error, and the set achievable with zero error are indeed the same. We also gave evidence

to support our conjecture that the outer bound in [2, Section 15.5] remains tight even when sources are not colocated.

Secondly, we considered network coding problems subject to several practically-motivated constraints, such as

linear coding, the restriction of some or all nodes to perform only routing, and security requirements. For these

cases we characterised the set of zero-error and vanishing-error achievable rate-capacity tuples. Finally in Section

VII, we proved that even for very simple network coding problems, such as the incremental multicast problem and

the single source secure network coding problem with arbitrary wiretapping patterns, characterisation of achievable

tuples is as hard as the characterisation problem for general unconstrained network coding. We also proved that

linear codes are suboptimal for both the general incremental multicast problem and for the single source secure

network coding problem.

November 2, 2018 DRAFT

50

APPENDIX A

PROOF OF PROPOSITION 3.3

Consider the following combinatorial problem. Suppose that there are k boxes, t of which are nonempty. If we

randomly select m distinct boxes, then the probability that all selected boxes are empty is upper bounded by

Pr(all m boxes are empty) ≤
(

1− t

k

)m
(180)

Let κ(c) = (1 − c)1/c. Since limc→0+ κ(c) = exp(−1), there exists 0 < δ < 1 such that κ(c) < δ for all

0 < c ≤ 1. Hence, (180) can be relaxed as

Pr(all m boxes are empty) ≤ δtm/k. (181)

Let (U, V) be a pair of quasi-uniform random variables. As V is uniform over its support, |SP(V)| = 2H(V).

Let

m = H (UV)
2 2H(V)

2H(V |U)
.

Partition the set SP(V) randomly into

2H(V)/m =
2H(V |U)

H (UV)
2

subsets, each of which is of size m. These disjoint subsets will be denoted by Ξ(b) where

b ∈ AV,{1, . . . , 2H(V |U)/H (UV)
2}.

For any u ∈ SP(U) and b ∈ AV , let E(u, b) be the event that

{(u, i) : i ∈ Ξ(b)} ∩ SP(U, V) 6= ∅.

In other words, the event is equivalent to the existence of an element i ∈ Ξ(b) such that (u, i) ∈ SP(U, V).

In the following, we will prove that the probability of E(u, b) is “arbitrarily close to one asymptotically” for all

u ∈ SP(U) and b ∈ AV .

For any u ∈ SP(U), it is easy to see that

|{v : (u, v) ∈ SP(U, V)}| = 2H(V |U). (182)

By setting k = 2H(V) and t = 2H(V |U), (181) implies that

Pr(E(u, b)) ≥ 1− δH(UV)2 (183)

and hence via the union bound, the probability that the event E(u, b) occurs for all u ∈ SP(U) and b ∈ AV is at

least

1− 2H(U)+H(V)δH(UV)2 .

This probability approaches to 0 as H (UV) goes to infinity. Consequently, if the entropy H (U) (and hence also

H (UV)) is sufficiently large, there exists a way to partition SP(V) such that for any u ∈ SP(U) and b ∈ AV ,

there exists at least one v ∈ Ξ(b) such that (u, v) ∈ SP(U, V).

November 2, 2018 DRAFT

51

Assume without loss of generality that S = {1, . . . , |S|}. Repeating the same argument, we can recursively prove

that for any set of quasi-uniform random variables {Ui, i ∈ S} and H (U1) sufficiently large, there exists at least

a way to partition SP(Us) into

2H(Ui|U1,...,Ui−1)/H (U1, . . . , Ui)
2

subsets Ξs(bs) where

bs ∈ As,{1, . . . , 2H(Us|U1,...,Us−1)/H (U1, . . . , Us)
2}

such that for any (u1, . . . , us−1) ∈ SP(U1, . . . , Us−1) and bs ∈ As, there exists at least one us ∈ Ξs(bs) such that

(u1, . . . , us) ∈ SP(U1, . . . , Us). Hence, the proposition is proved.

APPENDIX B

PROOF OF THEOREM 7.1

We first prove the first claim. Suppose

(λ†, ω†),T †(λ, ω) ∈ CL(projP† [h
†])

for some

h† ∈ Γ̄∗(P†) ∩ CI(P†) ∩ CT(P†) ∩ CD(P†).

Then by definition,

λ†(i) ≤ h†(i), i = 1, 2 (184)

ω†(as) ≥ h†(as), ∀s ∈ S (185)

ω†(bs) ≥ h†(bs), ∀s ∈ S (186)

ω†(cs) ≥ h†(cs), ∀s ∈ S (187)

ω†(e) ≥ h†(e), ∀e ∈ E . (188)

Consequently, by (171)–(174) and (185)–(187),

2
∑
s∈S

λ(s) =
∑
s∈S

(ω†(as) + ω†(bs)) ≥
∑
s∈S

(h†(as) + h†(bs))
(i)

≥ h†(as, bs, s ∈ S) (189)

where (i) follows from the fact that h† ∈ Γ̄∗(P†) (and hence is polymatroidal). Similarly, we can also prove that

2
∑
s∈S

λ(s) =
∑
s∈S

(ω†(as) + ω†(cs)) ≥
∑
s∈S

(h†(as) + h†(cs)) ≥ h†(as, cs, s ∈ S). (190)

Let g be the “projection” of h† on H[S ∪ E] such that for any α ⊆ E and β ⊆ S,

g(α, β),h†(α, ai, i ∈ β). (191)

In the following, we will prove that

(λ, ω) ∈ CL(projP[g])

November 2, 2018 DRAFT

52

and

g ∈ Γ̄∗(P) ∩ CI(P) ∩ CT(P) ∩ CD(P).

First, h† ∈ Γ̄∗(P†). Hence, its projection g is also in Γ̄∗(P). Second, the network G† contains G as a subnetwork

and O(s) ⊆ head(as). In other words, if a node u has access to the source s in the network coding problem P, then

u also has access to what is being transmitted along the link as in P†. The link as in G† is thus like an imaginary

source link in G. It can then be verified directly that g ∈ CT(P).

Now, we will prove that g ∈ CI(P) ∩ CD(P). As

h† ∈ Γ̄∗(P†) ∩ CD(P†) ∩ CT(P†),

and that the set of links {as, bs, s ∈ S} separates the source node φ from the sink node η in G†,

h†(1′, 2′|as, bs, s ∈ S) = h†(as, bs, s ∈ S|1′, 2′) = 0. (192)

Consequently,

h†(as, bs, s ∈ S) ≥ h†(1′, 2′) (193)

(i)
= h†(1′) + h†(2′) (194)

(ii)

≥ λ†(1) + λ†(2) (195)

= 2
∑
s∈S

λ(s) (196)

where (i) follows from the fact that h† ∈ Γ̄∗(P†) ∩ CI(P†) and (ii) follows from (184).

Similarly, the set of links {as, cs, s ∈ S} separates the source node φ from the sink node η∗ in G†. Hence,

h†(as, cs, s ∈ S) ≥ 2
∑
s∈S

λ(s). (197)

Therefore, all the inequalities in (189) and (190) are in fact equalities. In particular,

h†(as) = h†(bs) = h†(cs) = λ(s), ∀s ∈ S (198)

and

h†(as, bs, s ∈ S) =
∑
s∈S

(h†(as) + h†(bs)), (199)

h†(as, cs, s ∈ S) =
∑
s∈S

(h†(as) + h†(cs)). (200)

By (199), h†(as, s ∈ S) =
∑
s∈S h

†(as). Hence,

g(S) =
∑
s∈S

g(s)

and g ∈ CI(P). Furthermore, as

g(s) = h†(as) = λ(s), ∀s ∈ S (201)

g(e) = h†(e) ≤ ω(e), ∀e ∈ E , (202)

November 2, 2018 DRAFT

53

we prove that

(λ, ω) ∈ CL(projP[g]).

Now, it remains to show that g ∈ CD(P). First, consider any s ∈ S and u ∈ D(s). By (199)–(200),

h†
(
bS\s ∧ aS , bs

)
= 0.

As h† ∈ Γ̄∗(P†) ∩ CT(P†), h†(cs | as, bs) = h†(in(u) | aS) = 0. Hence,

h†(bS\s ∧ aS , bs, cs, in(u)) = 0. (203)

Together with the decoding constraint (for the receiver τs,u)

h†(as | bS\s, cs, in(u)) = 0,

we can prove that

h†(as | cs, in(u)) = 0.

Finally, using (200) and that h†(in(u) | aS) = 0, we have h†(as | in(u)) = 0. Thus,

g(as | in(u)) = h†(as | in(u)) = 0

and g ∈ CD(P). The first claim is proved.

To prove the second claim, suppose (λ, ω) is 0-achievable with respect to P. By definition, there exists a sequence

of zero-error network codes

{Y nf , f ∈ S ∪ E}

for P, and a sequence of positive constants cn such that

lim
n→∞

cnH(Y ne) ≤ lim
n→∞

cnH|SP(Y ne)| ≤ ω(e) (204)

lim
n→∞

cnH(Y ns) = lim
n→∞

cnH|SP(Y ns)| ≥ λ(s). (205)

Assume without loss of generality that

SP(Y ns) = {0, . . . , |SP(Y ns)| − 1}.

For each n, define a new set of random variables

{Unf , f ∈ S† ∪ E†}

such that for any s ∈ S and u ∈ D(s),

1) Unas,Y
n
s ;

2) Une ,Y
n
e ;

3) {Unbs , s ∈ S} is a set of mutually independent random variables such that each of which is uniformly distributed

over {0, . . . , |SP(Y ns)| − 1} and

H
(
UnaS , U

n
E , U

n
bS

)
=
∑
f∈S

Unbf +H
(
UnaS , U

n
E
)

;

November 2, 2018 DRAFT

54

4) Uncs,U
n
as + Unbs mod |Y ns |;

5) Unds,u,U
n
as ;

6) Un
1′
,(Unbf , f ∈ S);

7) Un
2′
,(Unaf , f ∈ S).

It can then be proved directly that {Unf , f ∈ S† ∪ E†} is a sequence of zero-error network codes for the network

coding problem P†. Consequently, T (λ, ω) is 0-achievable with respect to P†. The theorem is proved.

APPENDIX C

PROOF OF THEOREM 7.3

We first prove the first claim. Let

(λ‡, ω‡),T ‡(λ, ω) ∈ CL(projP‡(h
‡)) (206)

for some

h‡ ∈ Γ̄∗(P‡) ∩ CI(P‡) ∩ CT(P‡) ∩ CD(P‡) ∩ CS(P‡). (207)

By (175)-(206), for all e ∈ E , s ∈ S and u ∈ D(s),∑
i∈S

λ(i) = λ‡(1
′
) ≤ h‡(1

′
) (208)

λ(s) = ω‡(as) ≥ h‡(as) (209)

λ(s) = ω‡(bs) ≥ h‡(bs) (210)

λ(s) = ω‡(cs) ≥ h‡(cs) (211)

λ(s) = ω‡(ds,u) ≥ h‡(ds,u) (212)

λ(s) = ω‡(ws,u) ≥ h‡(ws,u) (213)∑
i∈S,i6=s

λ(i) = ω‡(es) ≥ h‡(es) (214)

ω(e) = ω‡(e) ≥ h‡(e). (215)

Using (208)–(215), we have

h‡(1
′
) ≥

∑
s∈S

λ(s) =
∑
s∈S

ω‡(as) ≥
∑
s∈S

h‡(as)
(i)

≥ h‡(aS). (216)

where (i) follows from that h‡ ∈ Γ̄∗(P‡) and hence is a polymatroid. Similarly,

h‡(1
′
) ≥

∑
s∈S

λ(s) =
∑
s∈S

ω‡(bs) ≥
∑
s∈S

h‡(bs) ≥ h‡(bS). (217)

Recall that h‡ is a rank function in the space H[S‡ ∪ E‡ ∪ V‡]. Let g be its “projection” on H[S ∪ E] such that

for any α ⊆ E and β ⊆ S,

g(α, β),h‡(α, ai, i ∈ β | V‡ \ {φ}). (218)

November 2, 2018 DRAFT

55

In the following, we will prove that

(λ, ω) ∈ CL(projP[g])

and

g ∈ Γ̄∗(P) ∩ CI(P) ∩ CT(P) ∩ CD(P).

First, as h‡ ∈ Γ̄∗(P‡), it is obvious that

g ∈ Γ̄∗(P).

Second, notice that the network G‡ contains G as a subnetwork. Therefore, by h‡ ∈ Γ̄∗(P‡) ∩ CT(P‡),

g ∈ CT(P).

Now, as h‡ ∈ CI(P‡) ∩ CS(P‡), we have

h‡(1
′
,V‡) = h‡(1

′
) +

∑
u∈V‡

h‡(u) (219)

h‡
(

1
′
∧ aS

)
= 0 (220)

h‡
(

1
′
∧ bS

)
= 0. (221)

By (219), we can deduce that

h‡
(

1
′
, φ ∧ V‡ \ {φ}

)
= 0. (222)

Due to the topology constraint (for the links {as, bs, s ∈ S}),

h‡(aS , bS | 1
′
, φ) = 0. (223)

Hence,

h‡
(
aS , bS , 1

′
∧ V‡ \ {φ}

)
= 0 (224)

On the other hand, the decoding constraint h‡ ∈ CD(P) (for the sink node η), we have

h‡(1
′
| aS , bS) = 0. (225)

Together with (220)–(221), (and with the fact that h‡ is a polymatroid) (225) implies that

h‡(aS) ≥ h‡(1
′
) (226)

h‡(bS) ≥ h‡(1
′
). (227)

By the upper bounds on h‡(aS) and h‡(bS) in (216)–(217), we can in fact prove that

h‡ (aS ∧ bS) = 0 (228)

h‡(aS , bS) =
∑
s∈S

(h‡(as) + h‡(bs)). (229)

h‡(as, s ∈ S) =
∑
s∈S

h†(as) (230)

h‡(as) = h‡(bs) = λ(s), ∀s ∈ S. (231)

November 2, 2018 DRAFT

56

Now, for any s ∈ S,

g(s) = h‡(as | V‡ \ {φ})
(i)
= h‡(as)

= λ(s)

where (i) follows from (224). Also, for any e ∈ E ,

g(e) = h‡(e | V‡ \ {φ})

≤ h‡(e)

≤ ω(e).

Therefore, (λ, ω) ∈ CL(projP[g]).

By definition,

g(S) = h‡(aS | V‡ \ {φ})
(i)
= h‡(aS) =

∑
s∈S

h‡(as) ≥
∑
s∈S

h‡(as | V‡ \ {φ}) =
∑
s∈S

g(s) ≥ g(S) (232)

where (i) is due to (224). Thus, g ∈ CI(P).

Our last step is to prove that g ∈ CD(P). As

h‡(cs) + h‡(es) ≤
∑
s∈S

λs = h‡(1
′
),

the decoding constraint h‡(1
′ | cs, es) = 0 (for the receiver ψs) implies that

h‡(cs | 1
′
) = 0 (233)

and

h‡(cs) = λ(s) (234)

By (220)–(221) and (229)

h‡(cs ∧ as) = h‡(cs ∧ bs) = h‡(as ∧ bs) = 0 (235)

On the other hand, by (219), h‡
(
γs ∧ 1

′
, φ
)

= 0. By (223) and (233), we have h‡ (γs ∧ as, bs, cs) = 0. Together

with one of the topology constraint (for the link cs)

h‡(cs | as, bs, γs) = 0, (236)

we have

h‡(cs | as, bs) = 0. (237)

By (234) and (231), we can prove that

h‡(cs | as, bs) = h‡(as | cs, bs) = h‡(bs | as, cs) = 0. (238)

November 2, 2018 DRAFT

57

Similarly, focusing on the receiver τs,u, the decoding constraint h
(

1
′ | ws,u, es

)
= 0 and that h‡(ws,u) ≤ λ(s)

imply that

h‡(ws,u | 1
′
) = 0 (239)

and

h‡(ws,u) = λ(s). (240)

By (221), h‡(ws,u ∧ bs) = 0. On the other hand, by (224) and (220)

h‡(1
′
∧ aS ,V‡ \ {φ}) = h‡(1

′
, aS ∧ V‡ \ {φ}) = 0. (241)

Furthermore, by the topology constraint

h‡(ds,u | aS ,V‡ \ {φ}) = 0 (242)

Therefore, together with (239), we have

h‡
(

1
′
, ws,u ∧ ds,u, aS

)
= 0. (243)

Similarly, by (224) and (228),

h‡(bS ∧ aS ,V‡ \ {φ}) = h‡(aS , bS ∧ V‡ \ {φ}) = 0 (244)

and hence

h‡ (bS ∧ ds,u, aS) = 0. (245)

Consequently, we have

h‡(ws,u ∧ bs) = h‡(ws,u ∧ ds,u) = h‡(ds,u ∧ bs) = 0. (246)

On the other hand, by the topology constraint,

h‡(ws,u | bs, ds,u, θs,u) = 0. (247)

Again, by (224), h‡
(

1
′
, bs, ds,u ∧ θs,u

)
= 0. Then, by (247), we can prove that

h‡(ws,u | bs, ds,u) = 0. (248)

Using (240), (246) and (248) and (212) and (231), we can prove that

h‡(ws,u | bs, ds,u) = h‡(ds,u | bs, ws,u) = h‡(bs | ws,uds,u) = 0 (249)

and

h‡(ds,u) = λ(s). (250)

November 2, 2018 DRAFT

58

Finally, notice that

h‡ (bs ∧ asds,u)
(i)
= 0 (251)

h‡ (ws,u, cs ∧ asds,u)
(ii)
= 0 (252)

h‡ (bs ∧ wscs)
(iii)
= 0 (253)

where (i), (ii) and (iii) follow respectively (245), (243) and (221). By (238) and (249), we have

h‡(bs | ws,ucs, asds,u) = 0 (254)

h‡(asds,u | bs, ws,ucs,) = 0. (255)

Together with (251)–(253), we can prove that

h‡(asds,u) = h‡(bs) = λ(s) = h‡(ds,u).

Thus, h‡(as | ds,u) = 0 and

g(as | in(u)) = h‡(as | in(u),V‡ \ {φ}) = 0.

Thus, g ∈ CD(P) and the first claim is proved.

We will now prove the second claim. The idea of the proof is similar to that in the incremental multicast scenario.

Suppose (λ, ω) is 0-achievable with respect to P. By definition, there exists a sequence of zero-error network codes

{Y nf , f ∈ S ∪ E}

for P, and a sequence of positive constants cn such that

lim
n→∞

cnH(Y ne) ≤ lim
n→∞

cnH|SP(Y ne)| ≤ ω(e) (256)

lim
n→∞

cnH(Y ns) = lim
n→∞

cnH|SP(Y ns)| ≥ λ(s). (257)

Assume without loss of generality that SP(Y ns) (i.e., the support of Y ns) is equal to {0, . . . , |SP(Y ns)| − 1}. For

each n, construct the following set of random variables

{Uf , f ∈ S‡ ∪ E‡ ∪ V‡}

such that for all e ∈ E , s ∈ S and u ∈ D(s),

1) Unas = Unds,u = Y ns ;

2) Une = Y ne ;

3) Unbs is uniformly distributed over SP(Y ns) for all s ∈ S and that

H
(
UnaS , U

n
E , U

n
bS

)
=
∑
f∈S

Unbf +H
(
UnaS , U

n
E
)

;

4) Unws,u
= Uncs = Y nas + Y nbs mod |SP(Y ns)|;

5) Unes,(Y nci , i ∈ S \ s)

6) Un
1′

= (Y ncs , s ∈ S);

November 2, 2018 DRAFT

59

7) Unv = 1 (i.e., Uv = 1 is a deterministic random variable) for all v ∈ V‡;

Again, it can be verified directly that

{Unf , f ∈ S‡ ∪ E‡ ∪ V‡}

is a strongly secure zero-error network codes for P‡. Consequently, T (λ, ω) is 0-achievable with respect to P ‡,

subject to strong secrecy constraint.

REFERENCES

[1] X. Yan, R. W. Yeung, and Z. Zhang, “The capacity region for multi-source multi-sink network coding,” in IEEE Int. Symp. Inform. Theory,

2007.

[2] R. Yeung, A First Course in Information Theory. Kluwer Academic/Plenum Publisher, 2002.

[3] F. Matus, “Infinitely many information inequalities,” in Proceedings ISIT 2007, June 2007, (Nice, France), 2007, pp. 41–44.

[4] T. H. Chan and A. Grant, “Dualities between entropy functions and network codes,” IEEE Trans. Inform. Theory, vol. 54, no. Oct, pp.

4470–4487, 2008.

[5] S.-Y. R. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[6] N. Cai and R. Yeung, “Secure network coding,” in IEEE Int. Symp. Inform. Theory, 2002.

[7] N. Harvey, R. Kleinberg, and A. Lehman, “On the capacity of information networks,” IEEE Trans. Inform. Theory, vol. 52, pp. 2345–2364,

June 2006.

[8] G. Kramer and S. A. Savari, “Edge-cut bounds on network coding rates,” J. Netw. Syst. Manage., vol. 14, pp. 49–67, March 2006.

[9] S. Thakor, A. Grant, and T. Chan, “Network coding capacity: A functional dependence bound,” in 2009 Proc. on IEEE International

Symposium on Information Theory, July 2009, pp. 263–267.

[10] R. Yeung, “A framework for linear information inequalities,” IEEE Trans. Inform. Theory, vol. 43, no. 6, pp. 1924–1934, Nov. 1997.

[11] T. H. Chan, “Recent progresses in characterising information inequalities,” Entropy Journal, vol. 13, pp. 379–401, 2011.

[12] Z. Zhang and R. W. Yeung, “On the characterization of entropy function via information inequalities,” IEEE Trans. Inform. Theory, vol. 44,

pp. pp. 1440–1452, 1998.

[13] L. Song, R. Yeung, and N. Cai, “Zero-error network coding for acyclic networks,” IEEE Trans. Inform. Theory, vol. 49, no. 12, pp.

3129–3139, Dec. 2003.

[14] T. H. Chan and R. W. Yeung, “On a relation between information inequalities and group theory,” IEEE Trans. Inform. Theory, vol. 48,

pp. 1992–1995, 2002.

[15] J. Oxley, Matroid Theory. Oxford University Press, 1992.

[16] Y. Wu, P. A. Chou, and K. Jain, “A comparison of network coding and tree packing,” in IEEE Int. Symp. Inform. Theory, Chicago, USA,

2004.

[17] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216,

July 2000.

[18] A. Shamir, “How to share a secret,” Comm. ACM, vol. 22, pp. 612–613, 1979.

[19] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley, 1991.

[20] N. Cai and R. W. Yeung, “Secure network coding,” to appear in IEEE Trans. Inf. Theory, 2011.

[21] ——, “A security condition for multi-source linear network coding,” in IEEE Int. Symp. Inform. Theory, 2007.

November 2, 2018 DRAFT

	I Introduction
	II Background
	II-A Unconstrained Network Coding for Broadcast Networks
	II-B Existing Results

	III Tightness of Yeung's Outer Bound
	III-A Tools: Quasi-Uniform Random Variables
	III-B Proof for Theorem ??
	III-C Generalisation – non-colocated sources

	IV Linear Network Codes
	V Routing
	V-A Routing-only schemes
	V-B Heterogeneous networks: Partial routing constraints

	VI Secure Network Codes
	VI-A Weak Secrecy
	VI-B Strong Secrecy
	VI-C Secret Sharing

	VII Challenges in characterising achievable tuples
	VII-A Incremental Multicast
	VII-B Secure Multicast

	VIII Conclusion
	Appendix A: Proof of Proposition ??
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of Theorem ??
	References

