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Abstract—We observe a length-n sample generated by an
unknown, stationary ergodic Markov process (model) over a finite
alphabet A. Given any string w of symbols from A we want
estimates of the conditional probability distribution of symbols
following w, as well as the stationary probability of w. Two
distinct problems that complicate estimation in this setting are
(i) long memory, and (ii) slow mixing which could happen even
with only one bit of memory.

Any consistent estimator in this setting can only converge
pointwise over the class of all ergodic Markov models. Namely,
given any estimator and any sample size n, the underlying model
could be such that the estimator performs poorly on a sample
of size n with high probability. But can we look at a length-n
sample and identify if an estimate is likely to be accurate?

Since the memory is unknown a-priori, a natural approach is to
estimate a potentially coarser model with memory kn = O(logn).
As n grows, pointwise consistent estimates that hold eventually
almost surely (e.a.s.) are known so long as the scaling of kn is
not superlogarithmic in n. Here, rather than e.a.s. convergence
results, we want the best answers possible with a length-n
sample. Combining results in universal compression with Aldous’
coupling arguments, we obtain sufficient conditions on the length-
n sample (even for slow mixing models) to identify when naive (i)
estimates of the conditional probabilities and (ii) estimates related
to the stationary probabilities are accurate; and also bound the
deviations of the naive estimates from true values.

Index Terms—Context-tree weighting, Coupling, Markov pro-
cesses, Pointwise consistency, Universal compression.

I. INTRODUCTION

WE explore the question of estimating a stationary er-
godic A-ary Markov process (model) from a length-n

sample generated by it. Ideally, given any string w of symbols
from A we want an estimate of the conditional probability
distribution of symbols following w, as well as the stationary
probability of w. As with PAC-learning setup [1], estimates
should come with an accuracy guarantee which holds with a
certain confidence.

For the simpler, finite alphabet i.i.d. sources, empirical
probabilities estimated from length-n samples are well under-
stood. The deviation of empirical estimates from true values
is characterized by the Chernoff bound [2] and generalized
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by Hoeffding bounds [3]. On the other hand, Markov sources
contain additional biases which have to do with the mixing
of the source, or how quickly all states of the process are
explored.

Roughly speaking, an aperiodic, ergodic source has mixed
(or explored all states properly) when the empirical counts
of states in the sample reflects their stationary probabilities.
Given a source has mixed, it is therefore possible to estimate
the transition probabilities using the stationary probabilities.
Indeed, most estimation (theoretical or in practice) follows
this sequence of logic. Most theoretical results prove that the
empirical counts of states reflect their stationary probabilities
eventually almost surely, and build on this to obtain transition
probabilities.

In this paper, we are interested in the regime when the
source has not yet mixed. This breaks the usual approach—
when the empirical counts of states do not reflect stationary
probabilities, is it at all possible to estimate the transition
probabilities? And when the counts of states are not near their
stationary probabilities, what do they actually signify?

Motivation: Information aggregation on the Internet
In this paper we focus on the theoretical underpinnings of

Markov estimation in slow mixing regime. However, it may
be instructive to consider the following problem that places
estimation in the slow mixing setting in a concrete context.

There is implicit but not well-modeled bias in widely
adopted means of obtaining news and other information on
the Internet. Rather than one news channel disseminating
information over TV or radio as in times not too long ago,
there is a very broad choice today among news sources.
While it is desirable that citizens are exposed to a variety
of information sources that is not what really happens in,
say, a political context. Depending on political persuasion,
one starts off with perhaps the conservative Fox News web
portal or maybe the liberal New York Times. These sites
would then link to various blogs, more news web sites, and
so on—but perhaps mostly on the same side of the political
spectrum. Even in webpages that do not clearly fall into either
side, probabilities with which links are chosen are reflective
of the user opinions. Common browsing habits are therefore
not likely to explore the diversity of views on the Internet,
but rather be confined to sections of the network and perhaps
consider certain opinions or news more than others. Of course,
not all news is polarized—sports scores, for example, are not.

Contrast the above with a browsing model that motivates a
different view of the Internet—the Google PageRank. Here the
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hypothetical user follows links at random from the page she
is currently on. In addition, the user may jump to a random
page on the Internet with a specified (reset) probability. Such
a random walk is fast-mixing [4], rendering its allied global
properties like PageRank easy to compute. While PageRank’s
efficacy in search tasks is quite self-evident, it does not capture
opinions of specific users. Both the NYT and Fox News may
have high PageRank but very few in the United States would
rate/use both these portals highly.

Any walk on a graph with a randomized aspect to it natu-
rally defines a Markov process made of symbols corresponding
to the vertices of the graph. To study the polarization of views
on a topic, suppose we represent each page by a finite-alphabet
signature relevant to the topic at hand. For example, at the
very simplest, consider representing each page by a bit that
represents the presence or absence of a particular combination
of keywords. Secondly, we make the modeling assumption
that browsing history captures users preferences—namely, if
we were given the sum total of a user’s browsing histories, we
could obtain the probabilities with which the user may follow
various pages.

We therefore model the problem with a Markov process p
defined by a full binary tree whose leaves are represented by
a suffix-free set T ⊂ {0, 1}∗. The leaves of T are the states
(browsing histories) of the process and Yi is the i′th page
visited. Let cT (Y 0

−∞) be the longest suffix of Y 0
−∞ in T , then

p(Y n1 |Y 0
−∞) =

n∏
i=1

p(Yi|cT (Y i−1−∞ )).

All users adhere to this general unknown model p, but users are
distinguished by modeling their distinct opinions/preferences
as the transition probabilities corresponding to different states
(browsing histories) of the process above. It can be shown
(e.g.,, via the Dobrushin coefficient) that the more polarized
user opinions are, the slower mixing p is. Note that here, it
is reasonable to assume that the incremental information an
additional page in the browser history provides diminishes
with the amount of history we already have.

Given a topic, how would one describe the polarization of
opinion or information of that topic? In our formalization,
quantifying polarization amounts to obtaining the transition
and stationary probabilities of the process p above. To eluci-
date, we ask two questions.

What user profiles can we tell apart? We do not know T—
the browsing contexts that fix user preferences and click
probabilities. So, with a finite amount of browsing data, the
best we can ask for is to estimate the click probabilities
pT ,q (Y1|w) for contexts w where w ∈ {0, 1}kn for some
number kn that depends on the amount n of browsing data
we have. As we will see, in the slow mixing case, not all
contexts that appear in the browsing data may be amenable to
modeling these probabilities.

What is the global picture? The stationary probabilities of
w that appear in the browsing data, reflecting how prevalant
the distinguishable user profiles are (how relevant each one
is).

If we were to translate our theoretical approach in this
paper to a one line layman summary of how to quantify

polarization, we would ask how much common information
should different users see before they begin to agree. While we
have described the motivation that lies behind the slow mixing
formulation, this paper focuses on the general theoretical and
statistical underpinnings of the two problems above (transition
and stationary probabilities of slow mixing Markov processes)
rather than the details of how to aggregate information.

Outline of problem

We first consider two complications while estimating
Markov processes in the slow mixing setting.

Difficulties: The first complication is that irrespective of
how large the size of the sample at hand, n, is we may not
be in a position to reliably provide estimates of the stationary
probabilities.

Consider a length-n sample obtained from the following
binary Markov source with memory one. The transition prob-
ability from 1 to 0 in a memory-1 source is ε � 1/n. By
changing the transition probability from 0 to 1 appropriately,
we can vary the stationary probabilities of 1s and 0s in a wide
range without changing how a length-n sample will look like.
As specific examples, consider two binary, one-bit memory
Markov sources; the first assigns the transition probability
from 0 to 1 to be ε, while the second assigns 2ε. An easy
computation (see also Example 4 in Section IV) shows that the
stationary probabilities of 1 and 0 are (1/2,1/2) and (2/3,1/3)
respectively.

But, if we start from the context 1, with high probability
both sources will yield a sequence of n 1s. We cannot
distinguish between the two sources above with a sample
of this size, and therefore it is futile to estimate stationary
probabilities from this sample. This particular regime where
the number of times each state (1 and 0 in this example)
appears do not reflect their stationary probabilities is often
formalized as the slow mixing case, see [5].

The second complication is that no matter what the sample
size n is, with high probability the set of all strings w (of any
fixed length) in a length-n sample may have arbitrarily small
mass under the stationary distribution.

To see this, observe that a memory-1 binary source that
transitions from 1 to 0 with probability 1 − ε and 0 to 1
with probability ε/m has the stationary probability of 1 to
be 1/(m+ 1) (see Example 2 in Section IV). Yet if ε� 1/n,
starting from state 1 we see a sequence of n 1s with high
probability. By making m large enough, the probability of 1
(and therefore of any sequence of 1s) can be made arbitrarily
small, illustrating the conundrum.

Problem: If the source cannot always be well estimated
as above, we would like to give the best possible answer from
the length-n sample—one which may also depend on how the
data looks. Say, for the sake of a concrete example, that we
have a sample x1, with n − log n 1s followed by a string of
log n 0s. Perhaps, this may have come from a one-bit memory,
slow mixing Markov source as in Example 4. As we saw, it is
futile to estimate stationary probabilities in this case. Contrast
this sample with a new sample x2, also with n − log n 1s
and log n 0s, but x2 has 0s spread uniformly in the sequence.
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Unlike with x1, upon seeing x2 we may want to conclude that
we have an i.i.d. source with a high probability for 1.

We therefore ask how best to estimate properties of an
ergodic, yet potentially slow mixing Markov process from a
sample of size n. As the above example shows, we have an
estimation problem where any estimator can only converge
pointwise to the true values, rather than uniformly over the
model class. Rather than e.a.s. guarantees, given a realization
of a Markov process we attempt to provide deviation bounds
for transition and stationary probabilities of substrings seen
in the sample. We insist that our bounds, while being model
dependent as is to be expected, must however be calculated
using only parameters which are well-approximated from the
data at hand.

If the Markov source is completely arbitrary, such bounds
will essentially be trivial. Therefore, we make an assumption
justified by the motivation we consider—that the information
provided by a symbol i positions in the past given everything
in between diminishes with i. However, we do not assume a-
priori knowledge on the depth of context tree of the process,
nor do we assume that the conditional probabilities given the
pasts are bounded uniformly away from zero.

Results

We provide a short background on Markov processes in
Section III, while Section V contains a formal summary of
results.

At a high level, these results show how to look at a data
sample and identify properties of the process that are amenable
to accurate estimation from the sample even if the source is
slow mixing. They also allow us to sometimes (depending on
how the data looks) conclude that certain naive estimators of
transition probabilities (Section X, Theorem 2), or stationary
probabilities (Section XII, Theorem 7) happen to be accurate
even if the process is slow mixing.

Contrary to most prior work, we first obtain estimates on
transition probabilities. To do so, we use universal compres-
sion approaches that do not require that empirical counts of
states be close to their stationary probability. Interpreting the
empirical counts of states from the approximate transition
probabilities is complicated by the fact that stationary proba-
bilities can be very sensitive functions of the transition prob-
abilities. What then can we say about empirical counts from
the few approximate transition probabilities obtained from the
sample? We use a coupling argument [6] in Section XII to
answer this question.

Finally, since our results do not rely on empirical counts
of strings reaching their stationary probabilities, they could be
strengthened using other arguments in literature in cases where
we know that the counts do reflect stationary probabilities.

Estimation and compression

In the set of all Markov sources, mixing properties only af-
fect estimation, and is irrelevant to universal compression [7],
[8]. We have already seen how slow mixing rendered estima-
tion of stationary probabilities impossible in general if we are
only allowed a fixed length sample, no matter how large the

sample size is. But the sequences on which estimation was
impossible lend themselves to good universal compression.

This must give us a little pause since in the finite alphabet
i.i.d. case, universal compression and estimation go hand in
hand. Specifically, we will compare two cases—(i) the set
of all i.i.d. binary models, and (ii) the set of all binary
Markov models with memory one. The first i.i.d. collection
is well compressible and universal compression algorithms
with only sublinear redundancy Θ(log n) exist1. Here, it is
also possible to estimate the underlying distribution using
a good universal compressor. Specific examples include the
Krichevsky-Trofimov [9] (also known as the add 1/2 rule)
or Laplace [10], [11] (add 1 rule) approaches. As a more
complex example, the Good-Turing estimator (see [12]) can
also be interpreted as being obtained from such a universal
description [13] in a more general setting—where data is
exchangeable, rather than i.i.d..

In the second Markov case as well, universal compression
algorithms [14] can compress the data well, again with redun-
dancy that is only sublinear as Θ(log n). But universal com-
pression algorithms cannot be used to always infer stationary
properties of the source, as illustrated in the examples above.
Put another way, while we may not be able to always estimate
stationary properties of sources, we can compress sequences
generated by slow mixing sources well.

II. PRIOR WORK

A. Prior work on compression of Markov processes

For Markov processes with known memory k, optimal
redundancy rates for the universal compression and estimation
have been established, see e.g., [15] for an overview and
also [16], [17], [18]. These universal compression results
imply consistent estimators for probabilities of sequences.
Moreover, the rate of convergence of these estimators can be
bounded uniformly over the entire memory−k Markov model
class e.g., [19], [20], [14], [21]. This rate typically depends
exponentially on k and diminishes with the sample length
as log n/n. We point out two complications when confronted
with our problem.

First, we deal with the case of unbounded memory—namely
no a − priori bound on k. For the set of all finite memory
Markov sources, only weakly universal [22] compression
schemes—those that convergence in a pointwise sense—can be
built (see [23] for a particularly nice construction). Namely, the
convergence of the weak universal algorithms varies depending
on the true unseen memory of the source. However, as we will
see in Example 3, it may be impossible to estimate the memory
of the source from a finite length sample. There has been a lot
of work on the topic of estimating the memory of the source
consistently when a prior bound on the memory is unknown,
see [24], [25], [26], [27]—but as one would expect, given a
finite length sample no estimator developed will always have
a good answer.

Second, despite the positive result for estimation of the
probabilities of sequences, as mentioned in the introduction

1A function fn = Θ(gn) if fn = O(gn) and gn = O(fn).
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there can not be estimators for transition and stationary
probabilities whose rate of convergence is uniform over the
entire model class. This negative observation follows simply
because of the way we are forced to sample from slow mixing
processes—and this is a complication compression does not
encounter. For instance, in the example outlined above in the
introduction, both samples x1 and x2 can be well compressed
by universal estimators, but estimation is a whole different
ballgame.

The complications above apart, the nature of questions we
ask is different as well. Rather than consistency results, or
establishing process-dependent rates of convergence for the
case where the memory can be unbounded, we ask how to
give the best possible answer with a given sample of length
n. It is not to say, however, that the above compression
results are irrelevant to our problem. Far from it, one of our
results, Theorem 2 in Section X builds on (among other things)
the universal compression results obtained for k−memory
processes.

B. Prior work on estimation of Markov processes

Estimation for Markov processes has been extensively stud-
ied and falls into three major categories (i) consistency of
estimators e.g., [28], [29], [24], [25], [30], (ii) guarantees on
estimates that hold eventually almost surely e.g., [31], [32],
and (iii) guarantees that hold for all sample sizes but which de-
pend on both transition and stationary probabilities e.g., [26],
[27], [33], [34]. The list above is not exhaustive, rather it
focuses on the work closest to the approaches we take.

As mentioned earlier, performance of any estimator cannot
not be bounded uniformly over all Markov models, something
reflected in the line (iii) of research and in our work. While
unavoidable, it poses a problem since the deviation bounds
now depend on the unknown model. How then do we say if
our estimate is doing well? Our thrust in this paper focuses
on exactly this question—it is not just about consistency,
rather that we want to gauge from the observed sample if our
estimator is doing well relative to the unknown probability law
in force.

In [30] a survey on consistent estimators for conditional
probabilities of Markov processes is provided. For instance,
given a realization of a Markov process, they provide a
sequence of estimators for transition probabilities along some
of time steps which converges almost surely to the true values.

Consistent estimators for the order of Markov processes
have been studied in prior literature e.g., [35], [32], [36], [37].
In [32], [36], the penalized maximum likelihood technique
is used to provide a consistent order estimator. In [37], a
different consistent order estimator based on empirical counts
is proposed which minimizes the asymptotic underestimation
exponent while keeping the overestimation exponent at a
certain level. Using the same technique, in [38] an optimal
order estimator is provided, however they assume a prior upper
bound on the memory of underlying process.

In [24], estimation of the minimal context tree of the
Markov process is addressed. Two different information cri-
teria, namely Bayesian Information Criterion and Minimum

Description Length are used, and consistency of estimation of
the underlying context tree was established provided that the
depth of hypothetical trees grow as o(log n).2 Moreover, it was
shown in [25] that when the process has finite memory, the
o(log n) condition is not necessary for estimation consistency.

In [26], [27], [34], exponential upper bounds on probability
of incorrect estimation of (i) conditional and stationary prob-
abilities and (ii) the underlying context tree, are provided for
variants of Rissanen’s algorithm context and penalized max-
imum likelihood estimator. The introduced deviation bounds
depend on the model parameters (e.g., minimum stationary
probability of all contexts pmin, depth of the tree and conti-
nuity rate coefficients) of underlying process.

One particular paper that we would like to highlight is [33],
where the problem of estimating a stationary ergodic process
by finite memory Markov processes based on an n-length
sample of the process is addressed. A measure of distance
between the true process and its estimation is introduced and
a convergence rate with respect to that measure is provided.
However, the bounds proved there hold only when the infimum
of conditional probabilities of symbols given the pasts are
bounded away from zero.

In this paper, we see entropy estimation as a means of
motivating the main problems to be posed. The best known
results in the extensive research on entropy rate estimation for
Markov processes are again related to Lempel-Ziv universal
lossless data compression methods [39]. See [30] for a survey
of other work as well.

III. MARKOV PROCESSES

Most notation, while standard, is included for completeness.

A. Alphabet and strings
A is a finite alphabet with cardinality |A|, A∗ =

⋃
k≥0Ak

and A∞ denotes the set of all semi-infinite strings of symbols
in A.

We denote the length of a string u = u1, . . . ,ul ∈ Al by
|u|, and use uji = (ui, · · · , uj). The concatenation of strings
w and v is denoted by wv. A string v is a suffix of u, denoted
by v � u, if there exists a string w such that u = wv. A set
T of strings is suffix-free if no string of T is a suffix of any
other string in T .

B. Trees
As in [14] for example, we use full A−ary trees to represent

the states of a Markov process. We denote full trees T as a
suffix-free set T ⊂ A∗ of strings (the leaves) whose lengths
satisfy Kraft’s lemma with equality. The depth of the tree T
is defined as κ(T ) = max{ |u| : u ∈ T }. A string v ∈ A∗
is an internal node of T if either v ∈ T or there exists u ∈ T
such that v � u. The children of an internal node v in T , are
those strings (if any) av, a ∈ A which are themselves either
internal nodes or leaves in T .

For any internal node w of a tree T , let Tw = {u ∈ T :
w � u} be the subtree rooted at w. Given two trees T1 and
T2, we say that T1 is included in T2 (T1 � T2), if all the leaves
in T1 are either leaves or internal nodes of T2.

2A function fn = o(gn) if limn→∞ fn/gn = 0.
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Fig. 1. (a) States and parameters of a binary Markov process in Example 1,
(b) Same Markov process reparameterized to be a complete tree of depth 2.
We can similarly reparameterize the process on the left with a complete tree
of any depth larger than 2.

C. Models

Let P+(A) be the set of all probability distributions on A
such that every probability is strictly positive.

Definition 1. A context tree model is a finite full tree
T ⊂ A∗ with a collection of probability distributions q(·|s) ∈
P+(A) assigned to each s ∈ T . We will refer to the elements
of T as states (or contexts), and q(T ) = {q(a|s) : s ∈ T , a ∈
A} as the set of state transition probabilities. 2

Every model (T , q(T )) allows for an irreducible, aperiodic3

and ergodic [40] Markov process with a unique stationary
distribution π satisfying

πQ = π, (1)

where Q is the standard transition probability matrix formed
using q(T ). Let pT ,q be the unique stationary Markov process
{. . . , Y0, Y1, Y2, . . .} which takes values in A satisfying

pT ,q (Y1|Y 0
−∞) = q(Y1|s),

where s is the unique suffix s � Y 0
−∞ in T denoted by

cT (Y 0
−∞). Namely the mapping cT maps any (long enough)

sequence to its unique suffix in T . When the argument of cT
is an internal node of T , we leave the image of the mapping
undefined.

As a note, when we write out actual strings in transition
probabilities as in q(0|1000), the state 1000 is the sequence
of bits as we encounter them when reading the string left
to right. If 0 follows · · · 1100, the next state is a suffix of
· · · 11000, and if 1 follows · · · 1100, the next state is a suffix
of · · · 11001.

Observation 1. A useful observation is that any model
(T , q(T )) yields the same Markov process as a model
(T ′, q(T ′)) where T � T ′ and for all s′ ∈ T ′, q(·|s′) =
q(·|cT (s′)). 2

Example 1. Let (T , q(T )) be a binary Markov process with
T = {11, 01, 0} and q(1|11) = 1

4 , q(1|01) = 1
3 , q(1|0) =

3
4 as shown in Fig. 1. (a). Observe that Fig. 1. (b) shows
the same Markov process as a model (T ′, q(T ′)) with T ′ =
{11, 01, 10, 00} satisfying conditions in Observation 1. 2

3Irreducible since q(·|s) ∈ P+(A), aperiodic since any state s ∈ T can
be reached in either |s| or |s|+ 1 steps.

A couple of points about the notation. For any string u,
not just strings in T , we will use stationary probability of
u, π(u), to mean pT ,q (Y

|u|
1 = u). If s ∈ T , our notation is

redundant—the transition probability q(a|s) and pT ,q (a|s) are
synonymous. However, if u /∈ T , we will only use pT ,q (a|u)
and avoid using q(a|u).

IV. DIFFICULTIES IN ESTIMATION

It is quite possible all strings in a finite sample, no matter
how large, have arbitrarily small mass under the stationary
distribution. We illustrate this in Example 2 below. Our results,
particularly Theorem 7 incorporates this phenomenon, and we
try to provide the best results despite this apparent difficulty.

Example 2. Let A = {0, 1} and T = {0, 1} with q(1|1) =
1 − ε, and q(1|0) = ε

m . For ε > 0 and a constant m ∈ R
with m > ε, this model represents a stationary ergodic Markov
process pT ,q with stationary distributions π(1) = 1

m+1 , π(0) =
m
m+1 . Note that π(1) can be arbitrarily small for sufficiently
large m.

Now suppose we have a length-n sample with ε� 1/n. If
we start from 1, with high probability we see a sequence of
n consecutive 1’s. For instance, if ε = 1/nj for some j ≥ 2,
then with probability ≥ 1−1/n under pT ,q , we see a sequence
of n consecutive 1’s. Clearly, the stationary probability of any
sequence of 1’s is ≤ 1

m+1 , and this can be made arbitrarily
small by choosing m large enough. 2

The next example illustrates one pitfall of having no bound
on the memory. We therefore require that dependencies die
down by requiring that conditional probabilities satisfy (6) in
Section VIII.

Example 3. Let T = Ak denote a full tree with depth k and
A = {0, 1}. Assume that q(1|0k) = 2ε and q(1|10k−1) = 1−ε
with ε > 0, and let q(1|s) = 1

2 (where 0k indicates a string
with k consecutive zeros) for all other s ∈ T . Let pT ,q
represent the stationary ergodic Markov process associated
with this model. Observe that stationary probability of being
in state 0k is 1

2k+1−1 while all other states have stationary
probability 2

2k+1−1 . Let Y n1 be a realization of this process
with initial state 1k � Y 0

−∞. Suppose k � ω(log n). 4 With
high probability we will never find a string of k − 1 zeros
among n samples, and every bit is generated with probability

4A function fn = ω(gn) if limn→∞ fn/gn =∞.

1

1

0

1− ε

ε
m

April 29, 2014 DRAFT

Fig. 2. Markov processes in Example 2 with stationary probabilities π(1) =
1

m+1
and π(0) = m

m+1
.
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Fig. 3. Markov process in Example 3. With high probability, we cannot
distinguish pT ,q from an i.i.d. Bernoulli(1/2) process if the sample size n
satisfies k � ω(logn).

1/2. Thus with samples of size n, no matter how large n may
be, with high probability we cannot distinguish certain long-
memory processes from even an i.i.d. Bernoulli(1/2) process.

2

The third example illustrates complications arising from
mixing properties while estimating stationary probabilities.

Example 4. Let A = {0, 1} and T = {0, 1} with q(1|1) =
1 − ε, and q(1|0) = ε. For ε > 0, this model represents a
stationary ergodic Markov process with stationary distributions
π(1) = 1

2 , π(0) = 1
2 . Let T ′ = {0, 1} with q′(1|1) = 1 −

ε, q′(1|0) = 2ε. Similarly, for ε > 0 this model represents a
stationary ergodic Markov process with stationary distributions
π′(1) = 2

3 , π
′(0) = 1

3 .
Suppose we have a length-n sample and suppose ε� 1/n.

If we start from 1 (or 0), both models will yield a sequence
of n 1’s (or 0’s) with high probability. Therefore, the length
n samples from the two sources look identical. Hence no
estimator could distinguish between these two models with
high probability if ε � o(1/n), and therefore no estimator
can obtain their stationary probabilities either. 2

Finally there is, of course, no guarantee that the counts of

1

1

0

1− ε

ε

1

0

1− ε

2ε

(a) (b)

April 29, 2014 DRAFT

Fig. 4. Markov processes in Example 4 with stationary probabilities (a)
π(1) = π(0) = 1

2
(b) π′(1) = 2

3
, π′(0) = 1

3
. Given a sample with size n

with ε� o(1/n), we cannot distinguish between these two models.

1

10

11 01

1

1
2

1

1
2

1
2

ε

1

0

1

0

0

11− ε

ε

(b)(a)
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Fig. 5. (a) Markov in Example 5, (b) Same process when ε = 0 .

short strings are more amenable to interpretation than longer
ones in a long-memory, slow mixing process.

Example 5. Let T = {11, 01, 10, 00} with q(1|11) = ε,
q(1|01) = 1

2 , q(1|10) = 1−ε, q(1|00) = ε. If ε > 0, then pT ,q
is a stationary ergodic binary Markov process. Let π denote the
stationary distribution of this process. A simple computation
shows that π(11) = 1

7−6ε , π(01) = 2−2ε
7−6ε , π(10) = 2−2ε

7−6ε
and π(00) = 2−2ε

7−6ε , and π(1) = 1
7−6ε + 2−2ε

7−6ε = 3−2ε
7−6ε and

π(0) = 2−2ε
7−6ε + 2−2ε

7−6ε = 4−4ε
7−6ε .

Suppose we have a length n sample. If ε� 1
n , then π(1) ≈

3
7 and π(0) ≈ 4

7 . If the initial state belongs to {11, 01, 10}, the
state 00 will not be visited with high probability in n samples,
and it can be seen that the counts of 1 or 0 will not be near the
stationary probabilities π(1) or π(0). For this sample size, the
process effectively acts like the irreducible, aperiodic Markov
chain in Fig. 5. (b) which can be shown to be fast mixing.
Therefore the counts of 01, 10 and 11 approach the stationary
probabilities of the chain in Fig. 5. (b), namely π(01)

π(1)+π(10) ,
π(10)

π(1)+π(10) , and π(11)
π(1)+π(10) , much quicker than the counts of

1 and 0 will approach π(1) or π(0). Indeed, this observation
guides our search for results in Section XII. 2

V. SUMMARY OF RESULTS

We observe a length n sample from a stationary, ergodic,
A−ary Markov source pT ,q , where both T and q(T ) are
unknown. Using this sample, we want (i) to approximate as
best as possible, the parameter set q(T ) (ii) the stationary
probabilities π(s) of strings s ∈ T , and (iii) to estimate or at
least obtain heuristics of the entropy rate of the process.

Two distinct problems complicate estimation of q(T ) and
the stationary probabilities. First is the issue that the memory
may be too long to handle—in fact, if the source has long
enough memory it may not be possible, with n samples,
to distinguish the source even from a memoryless source
(Example 3). Second, even if the source has only one bit
of memory, it may be arbitrarily slow mixing (Example 4).
No matter what n is, there will be sources against which our
estimates perform very poorly.

Given Y 0
−∞, we get the sample sequence Y n1 from the

(unknown) model, namely Yi is generated with probabilities
q(Yi|cT (Y i−1−∞ )). Since we do not know T , a natural way
to proceed is to estimate conditional probabilities of form
pT ,q (Y1|u), where u ∈ Akn are strings of a given length
kn. Thus, we obtain a potentially coarser model with states
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T̃ = Akn for some known kn. With the benefit of hindsight,
we take kn = O(log n)5 and write kn = αn log n for some
function αn = O(1). This scaling of kn also reflects well
known conditions for consistency of estimation of Markov
processes in [24].

For convenience, we rephrase the above problem by defining
an aggregation of a Markov process in Section VII at depth kn.
The aggregation of the true model can be thought of a coarse
approximation of the true model—the aggregated model has
memory kn and (unknown) parameters associated with u ∈
Akn , q̃(a|u), set to pT ,q (a|u). We denote the aggregated model
by p

T̃ ,q̃
(with states T̃ and parameters q̃(T̃ )). In Proposition 1,

we show that the entropy rate corresponding to the aggregated
model p

T̃ ,q̃
is an upper bound on the entropy rate of the true

model pT ,q .
The catch is that we do not get to see observations corre-

sponding to the aggregated model. We need to estimate the
aggregated model p

T̃ ,q̃
using the observations from the true,

underlying model pT ,q . Therefore the task is not the same as
estimating a model with memory kn.

Naive estimates: To obtain the parameters of the aggre-
gated process, q̃(T̃ ), suppose we use a naive estimator that
proceeds as though the sample was in fact generated from p

T̃ ,q̃
.

Namely the naive estimator is based on the premise that the
subsequence of symbols in the sample following any w ∈ T̃
is i.i.d.. Consider the following illustration.

Suppose the binary Markov sample is 1101010100. Let
Y 0
−∞ = · · · 00. We want to estimate the aggregated parameters

at depth 2—the conditional probability that a follows given
a two bit string. In particular, say we want the aggregated
parameters associated with string 10, q̃(a|10) = pT ,q (a|10).
The subsequence following 10 in the sample is 1110. Then
the naive estimate of q̃(1|10), denoted by q̂(1|10), is 3/4 and
the naive estimate of q̃(0|10), denoted by q̂(0|10), is 1/4.

There are two ways the naive estimate may still work. (i)
The counts of 101 and 100 reflect their stationary probabilities,
which automatically means that the count of 10 represents its
stationary probability as well. (ii) The subsequence 1110 that
follows 10 is i.i.d.. Case (i) is not valid since we have not
assumed that the source has mixed. Case (ii) would only hold
if the string 10 ∈ T as well or if the sample was from the
aggregated source at depth 2—neither assumption is justified
at this point. Therefore, in general there is no reason why
the naive approach even makes sense. However, assuming
dependencies die down as below, we show that certain naive
estimates still capture the conditional probabilities accurately.

Dependencies die down: However, it is reasonable given
our motivation that the influence of prior symbols dies down
as we look further into the past—the incremental value of
an additional page in browser history diminishes when the
amount of history we already have access to increases.

We formalize this notion in Section VIII with a function
d(i) that controls how symbols i locations apart can influence
each other, and require

∑
i≥1 d(i) < ∞. Let Md be the set

of all models pT ,q that satisfy for all u ∈ A∗ and all b, b′ ∈ A

5A function fn = O(gn) if ∃n0 ∈ N and ∃M > 0 such that fn ≤Mgn
for n ≥ n0.

and for all a ∈ A.∣∣∣∣ pT ,q (a|bu)

pT ,q (a|b′u)
− 1

∣∣∣∣ ≤ d(|u|).

It can be easily shown that the mutual information between
bits i apart, conditioned on all bits between them, is upper
bounded by log(1 + d(i)). Note that there is no bound on the
memory of models in Md. Moreover, the function d does not
constrain mixing properties of the processes as we show in
Section VIII.

Conditional probabilities: For sources pT ,q ∈ Md, we
show how to obtain (from the data sample) G̃ ⊆ T̃ , a set
of good states6 or good length-kn strings (Definition 4) from
sample sequence. These are strings that will be amenable to
concentration results, and hence the adjective “good”. These
results do not depend on empirical counts of strings being
near their stationary probabilities, nor do they require that the
subsequence following a string w ∈ T̃ be i.i.d..

Main Result 1: In Theorem 2, we show that with proba-
bility (under the underlying unknown pT ,q ) ≥ 1− 1

2|A|
kn+1 logn

(conditioned on any past Y 0
−∞), for all states w ∈ T̃ simulta-

neously

‖q̃(·|w)− q̂(·|w)‖
1
≤ 2

√
(ln 2)(|A|kn+1 log n+ nδkn)

Nw
. (2)

Here, δkn =
∑
i≥kn d(i), Nw is the number of occurrences

of string w in the sample and q̂(.|w) is the naive estimator of
q̃(.|w) as described above. Note that (2) automatically yields
sharper estimates for those strings w whose counts are larger.

For example, if d(i) = γi for some 0 < γ < 1
2 , then

δkn = γkn

1−γ . By choosing kn = γ log n, the accuracy of q̂(·|w)

is Θ
(√

n1+γ log γ

Nw

)
. In particular, for a strings appearing at least

n
logn times, the accuracy of estimation in (2) is better than
Θ
(√

nγ log γ log n
)
.

The above estimation result is built on two facts: (i) de-
pendencies dying down and (ii) universal compression results
on Md built on the fact that length-n sequences generated
by Markov sources with memory kn can be universally com-
pressed if kn = O(log n).

A related curiosity arises due to the fact that the above
result does not depend on empirical frequencies being close
to stationary probabilities. The result above is sometimes tight
for strings w while being vacuous for their suffixes w′. For
example, it could be that we estimate parameters associated
with a string w of length Θ(log n) (say w is a string of ten
0’s) but not those associated with w′ where w′ � w (say
w′ is a string of five 0’s). Finally, since the above result
is what can be obtained without any knowledge of mixing
properties, (2) could be strengthened using other arguments in
literature in cases where we may know that empirical counts
reflect stationary probabilities.

Stationary probabilities of strings: In general, stationary
probabilities of strings can be a very sensitive function of
the transition probabilities. We now have the approximate

6Strings in T̃ may not be states of pT ,q , but we abuse this notation for
convenience.
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transition probabilities associated with strings in G̃. With this
little bit of information we have gleaned from the sample, can
we even hope to say anything about stationary probabilities of
w ∈ G̃? How then do we interpret the empirical counts Nw

of various strings w?

To answer this question, we calculate a parameter η
G̃

in (8)
which resembles the Dobrushin’s ergodicity coefficient of
Markov processes, but which can be estimated well using (2).
Suppose {δi}i≥1 is summable as well, and let ∆j =

∑
i≥j δi.

Main Result 2: In Theorem 7 we show under a minor
technical condition that for all t > 0, Y 0

−∞ and w ∈ G̃
the counts of w in the sample, Nw, concentrates though not
necessarily around π(w). We show that

pT ,q (|Nw − ñ
π(w)

π(G̃)
| ≥ t|Y 0

−∞) ≤ 2 exp

(
− (t− B)2

2ñB2
)
, (3)

where B ≈ 4 max {`n, kn}/[ηkn
G̃

(1 − ∆kn)]. Here, `n is the
smallest integer such that ∆`n ≤ 1

n , ñ is the total count
of good states in the sample and π denotes the stationary
distribution of pT ,q . Note once again that pT ,q is the prob-
ability law under the underlying unknown model in Md. The
above estimation result (3) uses a coupling argument [6] to
bound martingale differences of a natural Doob martingale
construction in Section XII.

When dependencies d(i) decay exponentially, we will have
`n = Θ(log n). Suppose ñ = O(n) and we want our
confidence to approach 1 polynomially in n. If η

G̃
specified in

Section XII is Θ(1) and sufficiently large, it implies reasonable
mixing within the good states. In this case, there will be
0 < β < 1

2 such that for all w ∈ G̃, Nw/ñ is within (logn)2

n1/2−β

from the ratio π(w)/π(G̃) with the required confidence. In
case η

G̃
turns out to be too small to yield good deviation

bounds, one can either shrink G̃ to include a subset of states
that mix well, or move to smaller values for kn (but still
scaling as Θ(log n)).

To summarize, note that kn, ∆kn and `n (the later two
related to how fast dependencies die down) are known a −
priori. But ñ is a random variable found from the sample.
So is η

G̃
, but one that can be well estimated from the sample

using (2). The result (3) is a natural deviation bound where the
confidence (right side of (3)) is a random variable generated
from the model pT ,q , but one that can be well estimated from
the sample (the confidence in (3) is a decreasing function of
η
G̃

). To use (3) when confronted with a sample, we lower
bound η

G̃
by η̄

G̃
with confidence ≥ 1− 1

2|A|
kn+1 logn

using (2)
to conservatively obtain a further upper bound on the left side
of (3).

Remark All logarithms are base 2. We use bold font w
or s for strings. Typically s is a generic state or context of a
process, while w is used for a “good” state as a mnemonic. A
subscript s usually refers to an instance of the Markov process
whose past corresponds to s—for example, Ns (for the count
of s in the sample—the number of times the sample had s as
its immediate past). 2

VI. BACKGROUND

A. Context tree weighting

Context tree weighting is a universal data compression
algorithm for Markov sources [14], [21] that captures several
insights on how Markov processes behave in non-asymptotic
regimes. Let yn1 be sequence of symbols from an alphabet A.
Let T̂ = AK for some positive integer K. For all s ∈ T̂ and
a ∈ A, let nsa be the number of a’s which appear exactly
after the string s in yn1 . The depth-K context tree weighting
constructs a distribution pc satisfying 7

pc(y
n
1 |y0−K+1) ≥ 2−|A|

K+1 logn
∏
s∈T̂

∏
a∈A

(
nsa∑
a∈A nsa

)nsa

.

The above inequality is not the strongest, but its form is
convenient for use. Note that no Markov source with memory
K could have given a higher probability to yn1 than∏

s∈T̂

∏
a∈A

(
nsa∑
a∈A nsa

)nsa

.

So, if |A|K log n = o(n), then pc underestimates any memory-
K Markov probability by only a subexponential factor. There-
fore, K = O(log n) is going to be the case of particular
interest.

B. Coupling for Markov processes

We adopt the coupling [6] technique in Section XII to esti-
mate stationary probabilities. Coupling is an elegant approach
to interpret counts of certain strings in a sample. Let pT ,q be
our Markov source generating sequences from an alphabet Ã.

A coupling µ for pT ,q is a special kind of joint probability
distribution on the sequences {Ym, Ȳm}m≥1 where Ym ∈ Ã
and Ȳm ∈ Ã. µ has to satisfy the following property:
individually taken, the sequences {Ym} and {Ȳm} have to be
faithful evolutions of pT ,q . Specifically, for m ≥ 0, we want

µ(Ym+1|Y m−∞, Ȳ m−∞) = pT ,q (Ym+1|Y m−∞)

= pT ,q (Ym+1|cT (Y m−∞)), (4)

and similarly for {Ȳm}.
In the context of this paper, we think of {Ym} and {Ȳm}

as copies of pT ,q that were started with two different states
s, s′ ∈ T respectively, but the chains evolve jointly as µ
instead of independently. For any r and w ∈ Ãr, Nw

(respectively N̄w) is the number of times w forms the context
of a symbol in a length-n time frame, {Yi}ni=1 given Y 0

−∞

7Note that the bound holds for n ≥ 2.
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(respectively {Ȳi}ni=1 given Ȳ 0
−∞). Then, for any µ 8,∣∣EpT ,q [Nw|Y 0

−∞]− EpT ,q [N̄w|Ȳ 0
−∞]

∣∣
=

∣∣∣∣ n∑
i=1

Eµ
[
1
(
cÃr (Y

i
−∞) = w

)
− 1

(
cÃr (Ȳ

i
−∞) = w

)]∣∣∣∣
≤

n∑
i=1

∣∣∣∣Eµ[1(cÃr (Y i−∞) = w
)
− 1

(
cÃr (Ȳ

i
−∞) = w

)]∣∣∣∣
≤

n∑
i=1

µ
(
cÃr (Y

i
−∞) 6= cÃr (Ȳ

i
−∞)

)
,

where the first equality follows from (4).
The art of a coupling argument stems from the fact that

µ is completely arbitrary apart from having to satisfy (4).
If we can find any µ such that the chains coalesce, namely
µ
(
cÃr (Y

i
−∞) 6= cÃr (Ȳ

i
−∞)

)
becomes small as i increases,

then we know that EpT ,q [Nw|Y 0
−∞] cannot differ too much

from EpT ,q [N̄w|Ȳ 0
−∞].

Now if, in addition, such a coalescence holds no matter what
Ȳ 0
−∞ is, we could then pick Ȳ 0

−|T | according to the stationary
distribution of pT ,q . Then N̄w would be close to the stationary
count of w, and from the coupling argument above, so is Nw.
For tutorials, see e.g., [41], [5], [42].

VII. MODEL AGGREGATION

A. Entropy Rate

The entropy rate of a stationary Markov process pT ,q ,
denoted by HT , is defined as [43]

HT = −
∑
s∈T

π(s)
∑
a∈A

q(a|s) log q(a|s) def
=
∑
s∈T

π(s)Hs.

B. Aggregations

Since the memory is unknown a-priori, a natural approach,
known to be consistent, is to use a potentially coarser model
with depth kn. Here, kn increases logarithmically with the
sample size n, and reflects [24] well known results on con-
sistent estimation of Markov processes. We show that coarser
models formed by properly aggregating states of the original
context tree model are useful in upper bounding entropy rates
of the true process.

Definition 2. Suppose T̃ = Ak for some positive integer
k. The aggregation of pT ,q at level k, denoted by p

T̃ ,q̃
, is a

stationary Markov process with state transition probabilities
given by

q̃(a|s) = pT ,q (a|s) =

∑
v∈Ts π(v)q(a|v)∑

v′∈Ts π(v′)
, (5)

for all s ∈ T̃ and a ∈ A, where π is the stationary distribution
associated with pT ,q . Using Observation 1, wolog, no matter

8
For any event E, the indicator function is defined as

1(E) =

{
1 if E holds,
0 otherwise.

.
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Fig. 6. (a) Markov process in Example 6, (b) Aggregated model at depth 1.
From Observation 1, the model on the left can be reparameterized to be a
complete tree at any depth ≥ 2. We can hence ask for its aggregation at any
depth. Aggregations of the above model on the left at depths ≥ 2 will hence
be the model itself.

what T̃ is, we will assume pT ,q has states T such that T̃ � T .
2

Example 6. This example illustrates the computations in
Definition above. Let pT ,q be a binary Markov process with
T = {11, 01, 0} and q(1|11) = 1

4 , q(1|01) = 1
3 , q(1|0) =

3
4 . For this model, we have π(11) = 4

25 , π(01) = 9
25 and

π(0) = 12
25 . Fig. 6. (b) shows an aggregated process p

T̃ ,q̃
with

T̃ = {1, 0}. Notice that q̃(1|1) =
(

4
25

1
4+ 9

25
1
3

)
/( 4

25+ 9
25 ) = 4

13
and q̃(1|0) = 3

4 . 2

Lemma 1. Let pT ,q be a stationary Markov process with
stationary distribution π. If p

T̃ ,q̃
aggregates pT ,q then it has a

unique stationary distribution π̃ and for every w ∈ T̃

π̃(w) =
∑
v∈Tw

π(v).

Proof See Appendix A. 2

C. Upper Bound

Suppose p
T̃ ,q̃

aggregates pT ,q , and let the entropy rate of
the aggregated process be HT̃ . Then,

Proposition 1. HT ≤ HT̃ .
Proof See Appendix B. 2

Remark In this paper, we are particularly concerned with
the slow mixing regime. As our results will show, in general it
is not possible to obtain a simple upper bound on the entropy
rate using the data (given a particular starting state) and taking
recourse to the Proposition above. Instead, we introduce the
partial entropy rate that can be reliably obtained from the data

H
G̃

=
∑
w∈G̃

π(w)

π(G̃)
Hw,

where G̃ ⊆ T̃ will be a set of good states that we show
how to identify. Recall that π(G̃) may be arbitrarily small in
a finite sample, hence we must expect to compute H

G̃
and

not π(G̃)H
G̃

. The partial entropy rate is not necessarily an
upper bound, but in slow mixing cases it is sometimes the
best heuristic possible. We systematically handle the entropy
rates of slow mixing processes using the estimation results
below in different paper. 2



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX 2014 10

VIII. DEPENDENCIES IN THE MODEL

As noted before in Example 3, if the dependencies could
be arbitrary in a Markov process, we will not estimate the
model accurately no matter how large the sample is. Keeping
in mind Observation 1, we formalize dependencies dying down
by means of a function d : Z+ → R+ with

∑∞
i=1 d(i) <∞.

Let Md be the set of all models pT ,q that satisfy for all
u ∈ A∗ and all b, b′ ∈ A and for all a ∈ A.∣∣∣∣ pT ,q (a|bu)

pT ,q (a|b′u)
− 1

∣∣∣∣ ≤ d(|u|). (6)

Note that our collection Md has bounded memory iff there
exists a finite K such that d(i) = 0 for all i > K.
Remark We emphasize that the restriction {d(i)}i≥1 does
not preclude slow mixing processes in Md—we clarify this
point in following example. The restriction {d(i)}i≥1 we use
is related to the notion of “continuity rate” of stochastic
processes used in [44], [34], [45], [33]. 2

Example 7. Let pT ,q be a context tree model with T =
{0, 1} and transition probabilities q(1|1) = 1 − ε, q(1|0) = ε
as in Fig. 4. (a). A simple calculation shows that the stationary
probability of being at state 0 or 1 is 1

2 . Note that even with
very strong restriction on d, namely d(i) = 0 for i ≥ 1,
(T , q(T )) belongs to Md regardless of the value of ε.

While we do not need the notions of φ-mixing and β-
mixing coefficients for stationary stochastic processes [46] in
the rest of the paper, we compute them for this example as an
illustration that {d(i)}i≥1 are unrelated to mixing.

Recall that the j′th φ-mixing coefficient

φj ≥ max
Y0∈{0,1}

max
Yj∈{0,1}

∣∣pT ,q (Yj |Y0)− pT ,q (Yj)
∣∣

≥
∣∣pT ,q (Yj = 1|Y0 = 1)− pT ,q (Yj = 1)

∣∣
≥ pT ,q (Yj = 1, Yj−1 = 1, · · · , Y1 = 1|Y0 = 1)

− pT ,q (Yj = 1)

= (1− ε)j − 1

2
.

Similarly, the j′th β−mixing coefficient

βj ≥ EY0

[
max

Yj∈{0,1}
|pT ,q (Yj |Y0)− pT ,q (Yj)|

]
= (1− ε)j − 1

2
.

No matter what ε > 0 is, pT ,q ∈ Md even under stringent
restriction d(i) = 0 for i ≥ 1. But, any (β, φ)-mixing
coefficient can be made arbitrarily as close to 1

2 as possible
by picking ε small enough. Therefore, the condition (6) we
impose does not preclude slow mixing. 2

As mentioned in the last section, we will focus on set of
the aggregated parameters at depth kn, q̃(Akn) where kn =
αn log n. If kn is large enough, these aggregated parameters
start to reflect the underlying parameters q(T ). Indeed, by
using an elementary argument in Section X we will show that
both the underlying and aggregated parameters will then be
close to the empirically observed values for states that occur
frequently enough—even though the sample we use comes

from the true model pT ,q instead of the aggregated model
p
T̃ ,q̃

.
Remark In the context of information aggregation on the
Internet, suppose we have a browser history of the i prior
webpages (or more appropriately domains) visited. What is
the incremental value of the (i+ 1)′th document in the past?
It is reasonable to assume that as i increases, the incremental
value of another past document diminishes. It is easy to see
using elementary arguments that in a Markov process {Yi},
i ∈ Z within the class Md that

I(Y0, Yi+1|Y i1 ) ≤ log(1 + d(i)),

namely the function d controls the incremental value of
one additional data point in the history. It is interesting to
note that not all Markov processes even in practical settings
need to satisfy this observation (in fact problems in DNA
folding specifically cannot make this assumption), but that this
assumption is sufficient for statistical estimation problems to
be well posed. 2

Proposition 2. Let {d(i)}i≥1 be a sequence of real numbers
such that there exists some n0 ∈ N for which, 0 ≤ d(i) ≤ 1
for all i ≥ n0. Then, ∀j ≥ n0, we have

1−
∑
i≥j

d(i) ≤
∏
i≥j

(1− d(i)) ≤ 1∏
i≥j(1 + d(i))

.

Proof See Appendix C. 2

Proposition 3. Let pT ,q ∈ Md. Suppose p
T̃ ,q̃

aggregates
pT ,q with T̃ = Akn . If

∑
i≥kn d(i) ≤ 1, then for all w ∈ T̃

and a ∈ A(
1−

∑
i≥kn

d(i)

)
max
s∈Tw

q(a|s) ≤ q̃(a|w) ≤ mins∈Tw q(a|s)(
1−∑i≥kn d(i)

) .
Proof Recall that Tw are nodes of T that are descendants of
w ∈ T̃ . See Appendix D. 2

IX. NAIVE ESTIMATORS

Even in the slow mixing case, we want to see if any
estimator can be accurate at least partially. In particular, we
consider the naive estimator that operates on the assumption
that samples are from the aggregated model p

T̃ ,q̃
. There is no

reason that the naive estimates should reflect the parameters
associated with the true model pT ,q . Even in the slow mixing
case, we want to see if any estimator can be accurate at least
partially. In particular, we consider the naive estimator that op-
erates on the assumption that samples are from the aggregated
model p

T̃ ,q̃
. Without our assumption on dependencies falling

off, there is no a-priori reason that the naive estimates should
reflect the parameters associated with the true model pT ,q .

Definition 3. Given a sample sequence Y n1 , let T̃ = Akn
with kn = αn log n for some function αn = O(1). For s ∈ T̃
let Ys be the sequence of symbols that follows the string s.
Hence, the length of Ys is

Ns =

n∑
i=1

1{cT̃ (Y i−1−∞ ) = s}.
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Therefore the number of a′s in Ys is

nsa =

n∑
i=1

1{cT̃ (Y i−∞) = sa}.

Observer that Ns =
∑
a∈A nsa. The naive estimate of the

aggregated parameters is

q̂(a|s) =
nsa
Ns

. 2

Remark Note that Ys is i.i.d. only if s ∈ T , the
set of states for the true model. In general, since we do
not necessarily know if any of nsa reflect the stationary
frequencies, there is no obvious reason why q̂(a|s) shall
reflect q̃(a|s). 2

Since the process could be slow mixing, not all parameters
are going to be accurate. Rather, there will be a set of good
states in which we can do estimation properly.

Let δj =
∑
i≥j d(i). Note that δj → 0 as j → ∞ and that

−δj log δj → 0 as δj → 0.

Definition 4. Given a sample sequence with size n from
pT ,q , let

G̃ =
{
w ∈ T̃ : Nw ≥ max {nδkn log

1

δkn
, |A|kn+1 log2 n}

}
.

Note that the set G̃ is obtained only using the sample and the
known function d. We call the set G̃ “good” in an anticipatory
fashion because we are going to prove concentration results
for estimates attached to these states.

Secondly, since we include arbitrary slow mixing sources,
there is no way to estimate all conditional probabilities with
a sample of length n. Therefore, while the definition of G̃
above may not be the tightest, some notion of good states is
unavoidable. 2

Remark Throughout this paper, we assume that we start
with some past Y 0

−∞, and we see n samples Y n1 from pT ,q .
All confidence probabilities are conditional probabilities on
Y n1 obtained from underlying unknown model pT ,q , given past
symbols Y 0

−∞. The results in Sections X, XII hold for all Y 0
−∞

(not just with probability 1). In addition, if the history is not
available, we can consider the first kn sample as the history
and compute the empirical counts from the n− kn remaining
samples. In other words, we can consider our length-n sample
as if we observe Y n−kn−kn+1 where Y 0

−kn+1 can be thought as
the needed history in computing the naive estimators. Since
kn = O(log n) is negligible compared to n, in the rest we
skip this complication in computing empirical counts for the
sake of simplification. 2

X. ESTIMATE OF TRANSITION PROBABILITIES

Let T̃ = Akn . Using samples from pT ,q , we consider the
estimation of parameters q̃(T̃ ) of the aggregated model at
depth kn, and derive deviation bounds on the estimates in
Theorem 2. However, before going to the proof of theorem,
we want to make the following important remark.

Remark Observe that because we do not assume the
source has mixed, the theorem below does not imply that
the parameters are accurate for contexts shorter than kn. We
may therefore be able handle longer states’ parameters (say a
sequence of ten 0s), without being able to infer those attached
to their suffixes (say a sequence of five 0s).

This is perhaps counterintuitive at first glance. To see why
this could happen, note that the result below shows what
can be obtained without using anything about the mixing
properties of the source—namely, it does not rely on empirical
frequencies of various strings being close to their stationary
probabilities. Therefore, results on longer strings do not auto-
matically translate to results on shorter ones. Secondly, longer
strings have attached conditional probabilities closer to the true
conditional probabilities with which the source generates the
data—therefore, there is less bias to counter.

This is contrary to most prior work which obtain bounds
on transition probabilities subsequent to concentration of em-
pirical counts of strings around their stationary probabilities.
Additional information about the mixing of the source would
further strengthen the following results. 2

Theorem 2. Let Y n1 be generated by an unknown model
pT ,q ∈ Md. Let kn = αn log n. Given any Y 0

−∞, with
probability under pT ,q ≥ 1 − 1

2|A|
kn+1 logn

, for all w ∈ T̃
simultaneously

D
(
q̂(·|w)‖q̃(·|w)

)
≤ 2(|A|kn+1 log n+ nδkn)

Nw
.

Proof As before, let δkn =
∑
i≥kn d(i) and let n be large

enough that δkn ≤ 1
2 . Note that Proposition 3 implies that for

all sequences yn1 ∈ An and all Y 0
−∞

pT ,q (y
n
1 |Y 0
−∞) ≤ 1

(1− δkn)n

∏
w∈T̃

∏
a∈A

q̃(a|w)nwa

≤ 4nδkn
∏
w∈T̃

∏
a∈A

q̃(a|w)nwa ,

where nwa was defined in Definition 3 and the second
inequality is because ( 1

1−t )
n ≤ 4nt whenever 0 ≤ t ≤ 1

2 .
Now, let Bn be the set of all sequences that satisfy

4nδkn
∏
w∈T̃

∏
a∈A

q̃(a|w)nwa ≤
∏

w∈T̃
∏
a∈A q̂(a|w)nwa

22|A|kn+1 logn
.

Using a depth-kn context tree weighting algorithm [21] we
obtain a distribution pc satisfying9

pc(y
n
1 |Y 0
−∞) ≥

∏
w∈T̃

∏
a∈A q̂(a|w)nwa

2|A|kn+1 logn
.

Now, for all sequences yn1 ∈ Bn, we have

pc(y
n
1 |Y 0
−∞) ≥

∏
w∈T̃

∏
a∈A q̂(a|w)nwa

2|A|kn+1 logn

≥ 4nδkn
∏

w∈T̃
∏
a∈A q̃(a|w)nwa22|A|

kn+1 logn

2|A|kn+1 logn

≥ pT ,q (yn1 |Y 0
−∞)2|A|

kn+1 logn.

9While we use the context tree weighting algorithm, any worst case optimal
universal compression algorithm would do for this theorem to follow.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX 2014 12

Thus, Bn is the set of sequences yn1 such that pc assigns a
much higher probability than pT ,q . Such a set Bn can not
have high probability under pT ,q .

pT ,q (Bn) =

pT ,q

{
yn1 : pc(y

n
1 |Y 0
−∞) ≥ pT ,q (yn1 |Y 0

−∞)2|A|
kn+1 logn

}
≤

∑
yn1 ∈Bn

pc(y
n
1 |Y 0
−∞)2−|A|

kn+1 logn

≤ 2−|A|
kn+1 logn.

Therefore, with probability ≥ 1 − 2−|A|
kn+1 logn, (no matter

Y 0
−∞) we have∏

w∈T̃

∏
a∈A

q̃(a|w)nwa ≥
∏

w∈T̃
∏
a∈A q̂(a|w)nwa

22|A|kn+1 logn 4nδkn
,

which implies simultaneously for all w ∈ T̃∏
a∈A

q̃(a|w)nwa ≥
∏
a∈A q̂(a|w)nwa

22|A|kn+1 logn 4nδkn
.

The above equation implies that q̃ and q̂ are close distributions,
since we can rearrange (and divide both sides by Nw) to
obtain:∑

a∈A

nwa
Nw

log
q̂(a|w)

q̃(a|w)
= D

(
q̂(·|w)‖q̃(·|w)

)
≤ 2(|A|kn+1 log n+ nδkn)

Nw
,

where the first equality follows by writing out the value of the
naive estimate, q̂(a|w) = nwa/Nw. 2

Corollary 3. Let Y n1 be generated by an unknown model
pT ,q ∈ Md. Let kn = αn log n. Given any Y 0

−∞, with
probability under pT ,q ≥ 1 − 1

2|A|
kn+1 logn

, for all w ∈ T̃
simultaneously

‖q̃(·|w)− q̂(·|w)‖
1
≤ 2

√
(ln 2)(|A|kn+1 log n+ nδkn)

Nw
.

Proof The proof follows immediately from Theorem 2 and
Pinsker’s inequality (see e.g., [43])

D
(
q̂(·|w)‖q̃(·|w)

)
≥ 1

2 ln 2
‖q̃(·|w)− q̂(·|w)‖2

1
. 2

Remark We emphasize that the above results depend on
Y 0
−∞ hold for all history Y 0

−∞. 2

Remark For all w ∈ T̃ with |A| = 2, by Corollary 3, we
have

‖q̃(.|w)− q̂(.|w)‖1 ≤2
√

(2 ln 2)2kn+1 logn
Nw

if kn ≥ log(
nδkn
2 logn ),

2
√

(2 ln 2)nδkn
Nw

otherwise.
.

If d(i) = γi for some 0 < γ < 1
2 , then δkn = γkn

1−γ and by

choosing kn = γ log n, the accuracy of above estimation is

Θ

(√
n1+γ log γ

Nw

)
.

Therefore if Nw = n
logn , then the accuracy of the estimation

will be Θ
(√

nγ log γ log n
)
.

If 1
2 < γ < 1, then the accuracy will be

Θ

(√
nγ log n

Nw

)
.

Therefore if Nw = n
logn , then the accuracy of the estimation

will be Θ(n
γ−1
2 log n).

If d(i) = 1
ir for some r > 2, then δkn ≈ kn

1−r and by
choosing kn = 1

r log n− log log n, the accuracy will be

Θ

(√
n

kn
r−1Nw

)
.

Therefore, if Nw = n
logn , then the accuracy of the estimation

will be Θ
(√

1
(logn)r−2

)
.

Good states G̃ in Definition (4) identify all strings w in the
sample whose transition probabilities are accurate to at least

1√
logn

. It is quite possible that for all w ∈ G̃, the accuracy is
significantly better. 2

When the dependencies among strings die down exponen-
tially, we can strengthen Theorem 2 with a more careful
calculations to get a stronger convergence rate polynomial in
n.

Theorem 4. Suppose d(i) = γi for some 0 < γ < 1. Let ζ
be a nonnegative constant. Let kn = logn

log
|A|
γ

. In analogy with

G̃, we define

F̃ ,

{
w ∈ T̃ : Nw ≥ n

ζ+
log |A|

log |A|−log γ

}
.

Then, conditioned on any past Y 0
−∞, with probability under

pT ,q greater than 1 − 2−|A|
kn+1

logn simultaneously for all
w ∈ F̃

‖q̃(.|w)− q̂(.|w)‖
1
≤ 2

√
ln 2 ·

(
(1− γ)|A| log n+ 1

)
(1− γ)nζ

.

Proof The proof of Theorem 4 is similar to Theorem 2, but
involves more careful but elementary algebra specific to the
exponential decay case using the value of kn and F̃ noted in
the statement. Note that ζ <

log 1
γ

log
|A|
γ

for the Theorem not to

be vacuously true. 2

Remark According to definition of good states in Theo-
rem 4 and the fact that T̃ = Akn , we obtain

|F̃ | ≤ n−
log γ

log |A|−log γ , |T̃ | = n
log |A|

log |A|−log γ

implying that if γ ≤ 1/|A|, all states of T̃ can potentially be
good. 2

Remark The rate of convergence in Theorem 2 is the
minimum that hold for all strings of length kn simultaneously,
not just good strings– and strings that appear more often will
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have stronger bounds automatically. Specifically, strings that
appear nβ times for any β > 0 have convergence rates that are
polynomial in n for the exponential decay case. We emphasize
that our results are not too off because even in i.i.d. case, the
Chernoff bounds do not provide much stronger relative to the
bounds we obtain in the exponential decay case. 2

XI. ESTIMATION ALONG A SEQUENCE OF STOPPING
TIMES

As we saw in the prior section, the aggregated parameters
q̃(·|w) associated with any good state w ∈ G̃ can be
approximated from the sample. From Example 4, we know that
the stationary probabilities may be a very sensitive function
of the parameters associated with states. How do we tell,
therefore, if the few conditional probabilities we estimated can
say anything at all about stationary probabilities?

We explore these questions in the next two sections. In order
to interpret the counts of various strings w in the sample, we
first study the process {Yi}i≥1 from pT ,q restricted to states in
G̃ in this section. Some of the observations regarding stopping
times in this section are well known, see for example [47].

In Section XII, we use these observations with a coupling
argument to derive Theorem 7 that provides deviation bounds
on the counts of strings. Note that any deviation result must
also keep in mind the fundamental difficulty that the prob-
ability under the stationary distribution of all strings in the
observed sample could be arbitrarily small, no matter the size
of the sample, as illustrated in Example 2.

A. Restriction of pT ,q to G̃

To find deviation bounds for stationary distribution of good
states, we construct a new process {Zm}m≥1, Zm ∈ T from
the process {Yi}i≥1. At the outset, note that Zm ∈ T , where
T is unknown. We use this process {Zm}m≥1 as an analytical
tool, and we will not need to actually observe it. We will need
to know if the process is aperiodic, but that can be resolved
by only looking at G̃.

If Yim is the (m + 1)th symbol in the sequence {Yi}i≥1
such that cT̃ (Y im−∞) ∈ G̃, then Zm = cT (Y im−∞). The strong
Markov property [48] allows us to characterize {Zm}m≥1
as a Markov process with transitions that are lower bounded
by those transitions of the process {Yi}i≥1 that can be well
estimated by the Theorems above. More specifically, let

T0 = min {j ≥ 0 : cT̃ (Y j−∞) ∈ G̃},
and let Z0 = cT (Y T0

−∞). For all m ≥ 1, Tm is the (m+ 1)′th
occurrence of a good state in the sequence {Yi}i≥1, namely

Tm = min {j > Tm−1 : cT̃ (Y j−∞) ∈ G̃},
and Zm = cT (Y Tm−∞). Note that Tm is a stopping time [5], and
therefore {Zm}m≥1 is a Markov chain by itself 10. Let B̃ =

{s ∈ T̃ : s /∈ G̃}. The transitions between states w,w′ ∈ G̃

10Note that strong Markov property implies that the Markov property holds
at stopping times.

are then the minimal, non-negative solution of the following
set of equations in {Q(w|s) : s ∈ Akn ,w ∈ G̃}
Q(w|w′) = pT ,q

(
cT̃ (Y 1

−∞) = w|cT̃ (Y 0
−∞) = w′

)
+
∑
s∈B̃

Q(w|s)pT ,q
(
cT̃ (Y 1

−∞) = s|cT̃ (Y 0
−∞) = w′

)
.

An important point to note here is that if w and w′ are good
states,

Q(w|w′) ≥ pT ,q
(
cT̃ (Y 1

−∞) = w|cT̃ (Y 0
−∞) = w′

)
,

and the lower bound above can be well estimated from the
sample as shown in Theorem 2.

Definition 5. We will call {Zm}m≥1, the restriction of pT ,q
to G̃. 2

B. Properties of {Zm}m≥1
Property 1. A few properties about {Zm}m≥1 are in order.
{Zm}m≥1 is constructed from an irreducible process {Yi}i≥1,
thus {Zm}m≥1 is irreducible as well. Since {Yi}i≥1 is positive
recurrent, so is {Zm}m≥1. But despite {Yi}i≥1 being aperi-
odic, {Zm}m≥1 could be periodic as in the Example below.
But periodicity of {Zm}m≥1 can be determined by G̃ alone
(because T , while unknown, is a full, finite A-ary tree). 2

Example 8. Let {Yi}i≥1 be a process generated by context
tree model pT ,q with T = {11, 01, 10, 00} and q(1|11) =
1
2 , q(1|01) = ε, q(1|10) = 1 − ε, q(1|00) = 1

2 . If ε > 0,
then pT ,q represents a stationary aperiodic Markov process.
If {Zm}m≥1 be the restriction of process {Yi}i≥1 to G̃ =
{01, 10}, the restricted process will be periodic with period 2.

2

Property 2. Suppose {Zm}m≥1 is aperiodic. Let πY and
πZ denote the stationary distribution of the processes {Yi}i≥1
and {Zm}m≥1, respectively, with n samples of a sequence
{Yi}i≥1 yielding mn samples of {Zm}m≥1. Similarly, let
πZ(w) denote the stationary probability of the event that w
is a suffix of samples in the process {Zm}m≥1. Then for all
w,w′ ∈ G̃ (note that πY (w′) > 0)

πY (w)

πY (w′)

wp1
=

lim
n→∞

∑n
i=1

1(cT̃ (Y
i
−∞)=w)

n

lim
n→∞

∑n
i=1

1(cT̃ (Y
i
−∞)=w′)

n

=
lim

mn→∞

∑mn
j=1

1(w�Zj)
mn

lim
mn→∞

∑mn
j=1

1(w′�Zj)
mn

wp1
=

πZ(w)

πZ(w′)
.

2

XII. ESTIMATE OF STATIONARY PROBABILITIES

Thus far, we have identified a set G̃ ⊆ Akn of good strings
using n observations from pT ,q . For strings w ∈ G̃, we have
been able to estimate approximately the conditional distri-
butions, conditioned on past strings w—namely P (Y |w), or
equivalently the aggregated parameters q̃(·|w). As mentioned
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before, it is not clear if this information we have obtained
from the sample will allow us to say anything at all about
the stationary probabilities of strings w ∈ G̃. This section
develops on this question, and shows how to interpret naive
counts of w ∈ G̃ in the sample.

A. Outline

Our main result in this section is Theorem 7, a concentration
result on the counts Nw. This follows essentially as a martin-
gale convergence bound. Consider the process restricted to the
good states G̃, namely, {Zi}i≥0. In Definition 6, we consider
the natural Doob martingale Vm

def
= E[Nw|Z0, Z1, . . . ,Zm].

In Subsection XII-C, we give a bound on the differences
|Vm − Vm+1| using a variation of the coupling argument.
In Subsection XII-D, we construct a specific coupling that
is analyzed in XII-F to provide a bound on the martingale
differences. Theorem 7 then follows from Azuma’s inequality.

B. Preliminaries

For any (good) state w, let Gw ⊂ A be the set of letters
that take w to another good state,

Gw = {a ∈ A : cT̃ (wa) ∈ G̃}. (7)

Our confidence in the empirical counts of good states match-
ing their (aggregated) stationary probabilities follows from a
coupling argument, and depends on the following parameter

η
G̃

= min
u,v∈G̃

∑
a∈Gu∩Gv

min {q̃(a|u), q̃(a|v)}, (8)

where q̃(a|u) is as defined before in (5) for aggregated model
parameters. The parameter η

G̃
is closely related to the notion

of Dobrushin’s ergodicity coefficient of Markov processes
(see e.g., [26]). The parameter η

G̃
is different from standard

Dobrushin’s ergodicity coefficient in two aspects. First, notice
that in (8), u and v might not be the states of pT ,q . Second, the
summation index runs over those alphabets which take both
states u and v to any other good state in G̃. Note that for
any state s ∈ T of the original process pT ,q , if u � s, using
Proposition 3

q̃(a|u) ≤ q(a|s)
1− δ|u|

. (9)

Remark Recall that the deviation bounds in Theorems 2
and 4 hold simultaneously for all contexts in G̃. The above
definition only depends on parameters associated with G̃.
Hence we can estimate η

G̃
from the sample with the same

confidence and (twice the) error given in those Theorems. 2

The counts of various w ∈ G̃ then concentrates as shown
in the Theorem 7, and how good the concentration is can be
estimated as a function of η

G̃
(and δkn ) and the total number

of times states in G̃ occur in the sample. Now G̃ as well as
η
G̃

are well estimated from the sample—thus we can look at
the data to interpret the empirical counts of various substrings
of the data.

Let
∆j =

∑
i≥j

δi.

For the following results, we require {δi}i≥1 to be summable.
Thus, ∆j is finite for all j and decreases to 0 as j increases.
If d(i) ∼ γi, then ∆j also diminishes as γj . But if d(i) ∼
1
ir diminishes polynomially, then ∆j diminishes as 1/jr−2.
If d(i) = 1/i2+η for any η > 0, we therefore satisfy the
summability of {δi}i≥1. However, d(i) can also diminish as
1/(i2 poly (log i)) for appropriate polynomials of log i for the
counts of good states to converge. In what follows, we assume
that δi ≤ 1

i .

Definition 6. Let G̃ be the set of good states from Definition
4. Let ñ be total count of all good states in the sample and
`n denote the smallest integer such that ∆`n ≤ 1

n . To analyze
the naive counts of w ∈ G̃, we define

Vm
def
= E[Nw|Z0, Z1, . . . ,Zm],

where Nw is as in Definition 3. 2

Observe that {Vm}ñm=0 is a Doob martingale. Note that

V0 = E[Nw|Z0] and Vñ = Nw.

Once again, note that we do not have to observe the restriction
process {Zm}m≥1 at any point, nor do we have to observe the
martingale V except for noting Vñ = Nw.
Remark To prove Theorem 7, we first bound the dif-
ferences |Vm − Vm−1| of the martingale using a coupling
argument in Lemma 5. Since the memory of the process pT ,q
could be large, our coupled chains may not actually coalesce
in the usual sense. But they get “close enough” that the chance
they diverge again within n samples is less than 1/n. Once we
bound the differences in the martingale {Vm}ñm=0, Theorem 7
follows as an easy application of Azuma’s inequality. 2

C. The Coupling Argument
Since for all m ≥ 1

|Vm−Vm−1| = |E[Nw|Z0, . . . ,Zm]− E[Nw|Z0, . . . ,Zm−1]|
≤ max
Z′m,Z

′′
m

∣∣∣E[Nw|Z0, . . . ,Z
′

m]− E[Nw|Z0, . . . ,Z
′′

m]
∣∣∣ ,

we bound the maximum change in Nw if the mth good state
was changed into another (good) state.

Suppose there are sequences {Z ′j}nj=m (starting from state
Z
′

m) and {Z ′′j }nj=m (starting from state Z
′′

m), both faithful
copies of the restriction of pT ,q to G̃ but coupled with a
joint distribution µ to be described below. From the coupling
argument of Section VI-B, we have for w ∈ G̃ (hence
|w| = kn) for all µ

|E[Nw|Z0, . . . ,Z
′

m]− E[Nw|Z0, . . . ,Z
′′

m]|

≤
n∑

j=m+1

µ(Z
′

j

kn
6≈Z ′′j ), (10)

where we use

Z
′

j

kn≈Z ′′j for cAkn (Z
′

j) = cAkn (Z
′′

j ).

We will bound the right side of (10) above using properties
of µ that we describe. Note that the summation goes up to
n since no matter what Z

′

m and Z
′′

m are, a length-n sample
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can have at most n good states on the right side of (10). The
coupling technique is a convenient “thought experiment” that
culminates in Theorem 7 giving a deviation bound on the naive
counts of states. We do not actually have to generate the two
chains as part of the estimation algorithm, nor do we need to
observe the martingale V , except for noting Vñ = Nw.

In Subsection XII-D below, we describe µ, highlight some
properties of the described coupling in Subsection XII-E, and
use the said properties to obtain a bound on the martingale
difference in Subsection XII-F.

D. Description of Coupling µ

Suppose we have Z
′

j and Z
′′

j . This subsection describes
how to obtain next sample Z

′

j+1 and Z
′′

j+1 of the two coupled
chains, namely how to sample from

µ(Z
′

j+1, Z
′′

j+1|Z
′

j , Z
′′

j ).

Recall from section VI-B that individually taken, both Z
′

j+1

and Z
′′

j+1 are faithful evolutions of the restriction of pT ,q to G̃.
However, given Z

′

j and Z
′′

j , Z
′

j+1 and Z
′′

j+1 are not necessarily
independent.

To obtain Z
′

j+1 and Z
′′

j+1, starting from states Z
′

j and
Z
′′

j we run copies {Y ′ji}i≥1 and {Y ′′ji}i≥1
11of coupled chains

individually faithful to pT ,q . If l is the smallest number such
that

cT̃ (Z
′

jY
′

j1 · · ·Y
′

jl) ∈ G̃,
then

Z
′

j+1 = cT (Z
′

jY
′

j1 · · ·Y
′

jl).

Similarly for Z
′′

j+1.
1) Sampling from the joint distribution µ(Y

′

j1, Y
′′

j1|Z
′

j , Z
′′

j ):
dummy

While the following description appears verbose, Fig. 7. (b)
represents the description pictorially. Specifically, the chains
{Y ′ji}i≥1 and {Y ′′ji}i≥1 are coupled as follows. We generate a

number Uj1 uniformly distributed in [0, 1]. Given (Z
′

j and Z
′′

j )

with suffixes u and v respectively in G̃, we let Gu ∈ A (and
Gv similarly) be the set of symbols in A defined as in (7).
We split the interval from 0 to 1 as follows: for all a ∈ A, we
assign intervals r(a) of length min {q(a|u), q(a|v)}, in the
following order: we first stack the above intervals correspond-
ing to a ∈ Gu∩Gv (in any order) starting from 0, and then we
put in the intervals corresponding to all other symbols. Now
let,

(Y
′

j1, Y
′′

j1) = (a, a) if Uj1 ∈ r(a).

Let

C(A) =
∑
a′∈A

r(a′) =
∑
a′∈A

min {q(a′|Z ′j), q(a′|Z
′′

j )}, (11)

be the part of the interval is already filled up. Thus if
Uj1 < C(A), equivalently with probability C(A), the two
chains output the same symbol. We use the rest of the interval

11Note that {Y ′ji}i≥1
and {Y ′′ji}i≥1

are sequences of symbols from A,
generated according to transitions defined by pT ,q .

1

0

1

u

q(a1|u) = 0.7

q(a2|u) = 0.3

0

1

v

q(a1|v) = 0.4

q(a2|v) = 0.6

0

1

u

r(a1) = 0.4

r(a2) = 0.3

ru(a1) = 0.3

0

1

v

r(a1) = 0.4

r(a2) = 0.3

rv(a2) = 0.3 1− C(A)

C(A)

(a) (b)

April 29, 2014 DRAFT

Fig. 7. (a) The conditional probabilities with which Y
′
j1 and Y

′′
j1 have to

be chosen respectively are q(·|u) and q(·|v). The line on the left determines
the choice of Y

′
j1 and the one on the right the choice of Y

′′
j1. For example,

if Uj1 is chosen uniformly in [0,1], the probability of choosing Y
′
j1 = a1 is

q(a1|u). Instead of choosing Y
′
j1 and Y

′′
j1 independently, we will reorganize

the intervals in the lines so as to encourage Y
′
j1 = Y

′′
j1. (b) Reorganizing

the interval [0, 1] according to the described construction. Here r(a1) =
min {q(a1|u), q(a1|v)} and similarly for r(a2). If Uj1 falls in the interval
corresponding to r(a1), then (Y

′
j1, Y

′′
j1) = (a1, a1). If Uj1 > C(A) in

this example, then (Y
′
j1, Y

′′
j1) = (a1, a2). When Uj1 is chosen uniformly in

[0,1], the probability Y
′
j1 outputs any symbol is the same as in the picture on

the left, similarly for Y
′
j2.

[C(A), 1] in any valid way to satisfy the fact that Y
′

j1 is
distributed as pT ,q (·|Z

′

j) and Y
′′

j1 is distributed as pT ,q (·|Z
′′

j ).
For one standard approach, for all a assign

ru(a) = (q(a|u)− q(a|v))+ = max {q(a|u)− q(a|v), 0}
and similarly rv(a). Note that only one of ru(a) and rv(a) can
be strictly positive and that for all a, r(a) + ru(a) = q(a|u)
while r(a) + rv(a) = q(a|v). Therefore,∑

a′∈A
ru(a′) =

∑
a′∈A

rv(a′) = 1− C(A).

An example of such construction for binary alphabet is illus-
trated in Fig. 7 in which we have assumed Gu ∩Gv = {a1}.
We will keep two copies of the interval [C(A), 1], and if
Uj1 > C(A) we output (Y

′

j1, Y
′′

j1) based on where Uj1 falls
in both copies. We will stack the first copy of [C(A), 1]
with intervals of length ru(a) for all a and the second copy
of [C(A), 1] with intervals length rv(a) for all a. We say
Uj1 ∈ (ru(a), rv(a′)) if Uj1 ∈ ru(a) in the first copy and
Uj1 ∈ rv(a′) in the second copy,

(Y
′

j1, Y
′′

j1) = (a, a′) if Uj1 ∈ (ru(a), rv(a′)).

Note in particular that

µ(Y
′

j1|Z
′

j , Z
′′

j ) = pT ,q (Y
′

j1|Z
′

j).

and similarly for Y
′′

j1. If cT̃ (Z
′

jY
′

j1) ∈ G̃ and cT̃ (Z
′′

j Y
′′

j1) ∈ G̃,
we have Z

′

j+1 and Z
′′

j+1. There is therefore no need for further
samples Y

′

j2 and Y
′′

j2 onwards.
2) Sampling from µ({Y ′ji, Y

′′

ji}i≥2|Z
′

jY
′

j1, Z
′′

j Y
′′

j1): dummy

In case at least one of the following holds: cT̃ (Z
′

jY
′

j1) /∈ G̃
or cT̃ (Z

′′

j Y
′′

j1) /∈ G̃, then the following subsection explains
how to proceed.
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1) If Y
′

j1 = Y
′′

j1 but only one of cT̃ (Z
′

jY
′

j1) ∈ G̃ and
cT̃ (Z

′′

j Y
′′

j1) ∈ G̃, then we have one of Z
′

j+1 and Z
′′

j+1.
To get the other, we continue (according to transitions
defined by pT ,q ) only its corresponding chain till we get
a good state.

2) If Y
′

j1 = Y
′′

j1, cT̃ (Z
′

jY
′

j1) /∈ G̃ and cT̃ (Z
′′

j Y
′′

j1) /∈ G̃,
we need to continue both chains. We generate Y

′

j2, Y
′′

j2

as we did for the first samples—by generating a new
random number Uj2 uniform in [0, 1], and by coupling
as in Fig. 7. (b) and the two distributions q(·|Z ′jY

′

j1)

and q(·|Z ′′j Y
′′

j1). And continue in this fashion so long as
the samples in the two chains remain equal but do not
hit good contexts. This will be case that will be most
important for us later on.

3) If Y
′

jl 6= Y
′′

jl at any point and neither chain has seen
a good state yet, we just run the chains independently
from that point on for how long it takes each to hit a
good aggregated state.

Once again we have

µ(Y
′

j(r+1)|Z
′

jY
′

j1, . . . ,Y
′

jr,Z
′′

j Y
′′

j1, . . . ,Y
′′

jr)

= pT ,q (Y
′

j(r+1)|Z
′

jY
′

j1, . . . ,Y
′

jr),

and similarly for Y
′′

j(r+1).

E. Some Observations on Coupling
For any r, let Z

′

r ∼ Z
′′

r denote the following event that
happens to be a subset of case where we do not need Y

′

r2 and
Y
′′

r2 onwards,{
Y
′

r1 = Y
′′

r1 and cT̃ (Z
′

rY
′

r1) ∈ G̃ and cT̃ (Z
′′

r Y
′′

r1) ∈ G̃
}
.

Recall the definition of η
G̃

from (8).

Observation 2. µ(Z
′

r ∼ Z
′′

r |Z
′

r−1, Z
′′

r−1) ≥ η
G̃

(1− δkn).
Proof Combining (8) and (9), we have

µ(Z
′

r ∼ Z
′′

r |Z
′

r−1, Z
′′

r−1) =
∑
a∈A

min {q(a|Z ′r−1), q(a|Z ′′r−1)}

≥ η
G̃

(1− δkn).

2

Furthermore, if Z
′

i ∼ Z
′′

i for the kn consecutive samples,
j − kn + 1 ≤ i ≤ j, then we have

Z
′

j

kn≈Z ′′j .

To proceed, once Z
′

j

kn≈Z ′′j , we would like the two chains to
coalesce tighter in every subsequent step, namely we want for
all 1 ≤ l ≤ n, Z

′

j+l

kn+l≈ Z
′′

j+l. Starting from Z
′

j

kn≈Z ′′j , we can

have Z
′

j+1

kn+1≈ Z
′′

j+1 if
1) Z

′

j+1 ∼ Z
′′

j+1, or
2) if the chains {Y ′ji}i≥1 and {Y ′′ji}i≥1 evolve through a

sequence of m > 1 steps before hitting a context in G̃
on the m′th step with Y

′

jl = Y
′′

jl for each l ≤ m.

Observation 3. Suppose Z
′

j

kn≈Z ′′j . While sampling from µ

for the samples Z
′

j+1 and Z
′′

j+1, suppose Y
′

ji = Y
′′

ji for i ≥ 1.

If m is the first time the first chain hits a good context, namely
m is the smallest number such that

cAkn (Z
′

j{Y
′

ji}mi=1) ∈ G̃,
it follows that the second chain also hits a good context at the
same time, namely

cAkn (Z
′′

j {Y
′

ji}mi=1) = cAkn (Z
′′

j {Y
′′

ji}mi=1) ∈ G̃.

Note that we may not be able to say the above if Z
′

j

kn
6≈Z ′′j .

Furthermore, now we also have Z
′

j+1

kn+m≈ Z
′′

j+1. 2

Let us now bound how likely this sort of increasingly tighter
merging is. Because of the way we have set up our coupling,
the probability

µ(Y
′

j1 = Y
′′

j1|Z
′

j

kn≈Z ′′j ) =
∑
a∈A

min
{
q(a|Z ′j), q(a|Z

′′

j )
}

≥
∑
a∈A

q̃
(
a|cT̃ (Z

′

j)
)

(1− δkn)

= 1− δkn ,
where q and q̃ are the conditional probabilities associated with
pT ,q and p

T̃ ,q̃
respectively. Similarly

µ
(
Y
′

j(l+1) = Y
′′

j(l+1)

∣∣Z ′j kn≈Z ′′j , {Y
′

ji}li=1 = {Y ′′ji}li=1

)
≥ 1− δkn+l.

It is important to note that the above statement holds whether

cAkn (Z
′

j{Y
′

ji}
l

i=1
) ∈ G̃ or cAkn (Z

′

j{Y
′

ji}
l

i=1
) /∈ G̃,

and is simply a consequence of dependencies dying down.
Therefore (no matter what m is),

µ(Z
′

j

kn+1≈ Z
′′

j |Z
′

j−1
kn≈Z ′′j−1) ≥

∞∏
l=kn

(1− δl)
(i)

≥ 1−∆kn ,

where the inequality in (i) is by Proposition 2.

The above equation, while accurate, is not the strongest
we can say with essentially the same argument. We are now
going to progressively make stronger statements with the same
arguments. First, note that we obtain for all `, the event

{∃ `′ ≤ ` s.t. Z
′

j+`′
kn+`≈ Z

′′

j+`′},
can happen by going through a sequence of tighter and tighter
coalesced transitions of pT ,q (no matter in how many of those
steps we saw contexts in G̃). Therefore,

µ(∃ `′ ≤ ` s.t. Z
′

j+`′
kn+`≈ Z

′′

j+`′ |Z
′

j

kn≈Z ′′j ) ≥
∞∏
l=kn

(1− δl)

≥ 1−∆kn .

And we can easily strengthen the above to say for all `,

µ(Z
′

j+`

kn+`≈ Z
′′

j+`|Z
′

j

kn≈Z ′′j ) ≥ 1−∆kn ,

for the same reason. Indeed, we can further strengthen the
above statement to note:
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Observation 4. If Z
′

j

`≈Z ′′j for any ` ≥ kn, the chance of
ever diverging,

µ(∃l > 0 s.t. Z
′

j+l

`

6≈Z ′′j+l|Z
′

j

`≈Z ′′j ) ≤ ∆`. 2

This motivates following definition of coalescence when
dealing with finite length-n samples.

Definition 7. We say the chains {Z ′i}i≥1 and {Z ′′i }i≥1 have
coalesced if for any j,

Z
′

j

max {kn ,`n}≈ Z
′′

j ,

where as in Definition 6, `n is the smallest number satisfying
∆`n ≤ 1/n. Note that our definition of coalescence differs
from regular literature which requires the equality in above
definition. 2

F. Deviation bounds on stationary probabilities

Definition 8. Let

B def
= B(kn, `n, ηG̃)

def
= 1 +

4 max {`n, kn}
ηkn
G̃

(1−∆kn)
,

where `n is as in Definition 7 and η
G̃

is from (8). 2

Remark The above quantity B will be a determining
factor in how well we can estimate stationary probabilities. At
this point, it may be useful to estimate the order of magnitude
of the various terms. First, kn = αn log n as mentioned before.
The parameter η

G̃
< 1. The results below hold when η

G̃
is not

too small, it should be a constant such that ηkn
G̃

= ω(1/
√
n).

Since kn = αn log n, we typically can take αn as large as a
small constant in light of the above.

While the results below do not require it, it is helpful to
keep the case ñ = O(n) in mind while interpreting the results
below.

Note that if the dependencies die down exponentially,
namely d(i) = γi for some 0 < γ < 1, then `n =
dlog

(
n/(1− γ)2

)
/ log 1/γe. If the dependencies die down

polynomially, namely d(i) = 1/ir for some r > 2, then

`n = d2 +
(

n
(r−1)(r−2)

) 1
r−2 e. 2

Lemma 5. Let {Vm}ñm=0 be the Doob martingale described
in Definition 6. For all m ≥ 1,

|Vm − Vm−1| ≤ B(kn, `n, ηG̃),

where B(kn, `n, ηG̃) is as defined in Definition 8.
Proof Recall that

|Vm−Vm−1| = |E[Nw|Z0, . . . ,Zm]− E[Nw|Z0, . . . ,Zm−1]|
≤ max
Z′m,Z

′′
m

∣∣∣E[Nw|Z0, . . . ,Z
′

m]− E[Nw|Z0, . . . ,Z
′′

m]
∣∣∣

≤
n∑

j=m+1

µ(Z
′

j

kn
6≈Z ′′j ).

Let τ be the smallest number bigger than m such that
Z
′

τ

`n≈Z ′′τ . For any positive integer t′, the probability τ > t′`n
can be upper bounded by splitting the t′`n samples of the
two chains {Z ′j}

m+t′`n

j=m+1
and {Z ′′j }

m+t′`n

j=m+1
into blocks of length

`n. While the approach remains the same, we consider two
calculations: (i) kn ≤ `n and (ii) kn ≥ `n below.

If kn ≤ `n, the probability the two chains coalesce in any
single block is, using Observation 3 for kn times and then
Observation 4

≥ ηkn
G̃

(1− δkn)kn(1−∆kn)

(i)

≥ ηkn
G̃

(1− 1

kn
)kn(1−∆kn)

≥ ηkn
G̃

(1−∆kn)/4,

where (i) is because δkn ≤ 1
kn

.
Thus,

µ(τ > t′`n) ≤
(

1− ηkn
G̃

(1−∆kn)/4
)t′
.

Furthermore, Eτ − m can be bounded using the expected
number of blocks before the chains merge in any single block,
thus,

Eτ ≤ m+
4`n

ηkn
G̃

(1−∆kn)
.

Then for all j ≥ m+ 1

µ(Z
′

j

`n
6≈Z ′′j ) = µ(Z

′

j

`n
6≈Z ′′j and τ < j) + µ(Z

′

j

`n
6≈Z ′′j and τ ≥ j)

(i)

≤ ∆`n + µ(Z
′

j

`n
6≈Z ′′j and τ ≥ j)

≤ 1

n
+ µ(τ ≥ j),

where inequality (i) above follows because Z
′

τ

`n≈Z ′′τ by defi-
nition and from Observation 4. Finally we upper bound (10),

n∑
j=m+1

µ(Z
′

j

kn
6≈Z ′′j ) ≤

n∑
j=m+1

µ(Z
′

j

`n
6≈Z ′′j )

≤ n · 1

n
+

n∑
j=m+1

µ(τ ≥ j)

≤ 1 + Eτ −m

≤ 1 +
4`n

ηkn
G̃

(1−∆kn)
. (12)

If kn > `n, we follow an identical line of argument with
the exception that we divide the processes into blocks of kn
samples, and τ as the first time the two processes satisfy
Z
′

τ

kn≈Z ′′τ . We then bound

µ(Z
′

j

kn
6≈Z ′′j ) = µ(Z

′

j

kn
6≈Z ′′j and τ < j) + µ(Z

′

j

kn
6≈Z ′′j and τ ≥ j)

≤ 1

n
+ µ(τ ≥ j),

and finally obtain
n∑

j=m+1

µ(Z
′

j

kn
6≈Z ′′j ) ≤ n · 1

n
+

n∑
j=m+1

µ(τ ≥ j)

≤ 1 +
4kn

ηkn
G̃

(1−∆kn)
.

Corollary 6. Let {Vm}ñm=0 be the Doob martingale de-
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scribed in Definition 6. Then∣∣∣∣V0 − ñπ(w)

π(G̃)

∣∣∣∣ ≤ B(kn, `n, ηG̃),

where B(kn, `n, ηG̃) is as defined in Definition 8.
Proof We bound the value of V0 = E[Nw|Z0] by a coupling
argument identical to Lemma 5. Suppose {Z ′m} and {Z ′′m}
are coupled copies of the restriction of pT ,q to G̃, where
{Z ′m} starts from state Z0, while {Z ′′m} starts from a state
chosen randomly according to the stationary distribution of
{Zm}. The same analysis holds and the Corollary follows
using Property 2 in section XI. 2

Theorem 7. Let (T , q(T )) be an unknown model in Md.
If {Zm}m≥1 is aperiodic, then for any t > 0, Y 0

−∞ and w ∈ G̃
we have

pT ,q (|Nw − ñ
π(w)

π(G̃)
| ≥ t|Y 0

−∞) ≤ 2 exp

(
− (t− B)2

2ñB2
)
,

where B = B(kn, `n, ηG̃) is as defined in (8).
Proof Note that aperiodicity of the restriction {Zm}m≥1
of pT ,q to G̃ does not require an observation of {Zm}m≥1.
We can check for this property using only G̃ as noted in
Property 1.

Theorem follows by Lemma 5, Corollary 6 and using
Azuma’s inequality. 2

Remark The theorem only has at most constant confi-
dence if t ≤

√
ñB. Generally speaking,

B ≈ max {kn, `n}
ηkn
G̃

(1−∆kn)
.

For at least constant confidence, the deviation of the counts of
w from π(w)/π(G̃) is therefore

t

ñ
≈ max {kn, `n}√

ñηkn
G̃

(1−∆kn)
.

For the exponential decay of dependencies, if ñ = O(n), we
have both kn and `n of the order of log n. Therefore, if η

G̃
is

large enough that ηkn
G̃
≥ n−β , namely

η
G̃
≥ log n

2βkn

for some constant β < 1/2, the accuracy to which we
can estimate the stationary probability ratio π(w)/π(G̃) in
Theorem 7 is

≈ log n

n1/2−β
.

2

We conclude with a couple of remarks and conjectures.
It is to be noted that for the concentration bounds on

stationary probabilities to hold, we must have
∑
δi < ∞,

something that was unnecessary for the transition probabilities.
At this point, lacking a matching lower bound on deviation,
we cannot say if this is an artifact of our arguments or if this is
an interesting nuance that holds. However, we conjecture that
estimating stationary probabilities is harder—that for the case∑
δi is not finite, we may be able to estimate only transition

probabilities without ever estimating stationary probabilities.

Finally, to actually use Theorem 7, we further lower bound
η
G̃

by estimates of aggregate transition probabilities derived
from the data using Theorem 2 (or 4). With the effect that
the model dependent right side in Theorem 7 is replaced
by another upper bound—potentially worse, but entirely data
dependent. The new data-only dependent upper bound holds
with a reduced confidence obtained by a union bound on the
confidences of Theorems 2 (or 4) and 7.

Note also that the accuracy to which η
G̃

can be estimated
is the same order of magnitude as the bound on the `1
distance (between the naive and aggregated parameters) given
in Theorems 2 (or 4). The accuracy in Theorems 2 (or 4)
suffices, since we intend to use Theorem 7 when η

G̃
scales

� 1
logn (as mentioned before, we like η

G̃
to be Θ(1)). While

it is unclear if this scaling is a necessary for η
G̃

, we believe
this could be mildly improved on.

XIII. CONCLUSIONS

We have shown how to use data generated by potentially
slow mixing Markov sources to identify those states for which
naive approaches will estimate both parameters and functions
related to stationary probabilities. To do so, we require that
the underlying Markov source have dependencies that are not
completely arbitrary, but die down eventually. In such cases,
we show that even while the source may not have mixed
(explored the state space properly), certain properties related
to contexts w, namely q̃(.|w) or π(w)/π(G̃) can be well
estimated, if |w| grows as Θ(log n). Surprisingly, we saw that
it is quite possible that estimates related to contexts w may be
good, even when estimates for suffixes of w fail—the reason
being Theorem 2 depends not on the source mixing, but on the
dependencies dying off. We also noted a couple of unanswered
questions in our arguments—stationary probabilities seem to
be harder to estimate, and we do not yet have a necessary
condition on how large the parameter η

G̃
has to be for us to

expect results.
This work also uncovers a lot of open problems. The

above results are sufficient to say that some estimates are
approximately accurate with high confidence. A natural, but
perhaps difficult, question is whether we can give necessary
conditions on how the data must look for a given estimate to
be accurate. This work also forms a cog in the growing under-
standing of the information theoretic underpinnings involving
estimation problems with memory. Finally, these results add to
the understanding of model classes that only admit estimators
converging pointwise over the class (namely at rates that could
be arbitrarily slow depending on the underlying model), but
are special in the sense that it is possible to say if the algorithm
is doing well or not.

APPENDIX A
PROOF OF LEMMA 1

For all w ∈ T̃ , let F (w) be the set of states w′ ∈ T̃ that
reach w in one step, i.e.,

F (w) = {w′ ∈ T̃ : ∃a ∈ A s.t. w � w′a}.
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Let Q̃ be the transition probability matrix formed by the states
of p

T̃ ,q̃
. First notice that by definition, for all w,w′ ∈ T̃ ,

Q̃(w|w′) =

{
q̃(a|w′) if w′ ∈ F (w),

0 if w′ /∈ F (w)

where q̃ is as in Definition 2. Since pT ,q is irreducible and
aperiodic, p

T̃ ,q̃
will also be irreducible and aperiodic. Thus,

there is a unique stationary distribution π̃ corresponding to
p
T̃ ,q̃

, i.e., unique solution for

π̃(w) =
∑
w′∈T̃

π̃(w′)Q̃(w|w′) ∀w ∈ T̃ . (13)

We will consider a candidate solution of the form

π̃(w) =
∑
v∈Tw

π(v), (14)

for every w ∈ T̃ and show that this candidate will satisfy (13).
Then, the claim will follow by uniqueness of the solution. To
show this, note that for all w ∈ T̃ ,∑
w′∈T̃

π̃(w′)Q̃(w|w′)

=
∑

w′∈F (w)

π̃(w′)q̃(a|w′)

=
∑

w′∈F (w)

[ ∑
v∈Tw′

π(v)

]∑
v∈Tw′

π(v)q(a|v)∑
v′∈Tw′

π(v′)

=
∑

w′∈F (w)

∑
v∈Tw′

π(v)q(a|v)

(i)
=
∑
s∈Tw

π(s)

(ii)
= π̃(w),

where (i) holds because⋃
w′∈F (w)

Tw′ = Tw,

and (ii) follows from the definition of the proposed solution
given in (14).

APPENDIX B
PROOF OF PROPOSITION 1

Note that for all w ∈ T̃ , Tw = {s ∈ T : w � s}. Since
T̃ � T , we have

HT̃ =
∑
w∈T̃

π̃(w)
∑
a∈A

q̃(a|w) log
1

q̃(a|w)

≥
∑
w∈T̃

π̃(w)
∑
a∈A

∑
v∈Tw

[
π(v)∑

v′∈Tw π(v′)
q(a|v) log

1

q(a|v)

]
(a)
=
∑
w∈T̃

∑
a∈A

∑
v∈Tw

π(v)q(a|v) log
1

q(a|v)

=
∑
w∈T̃

∑
v∈Tw

π(v)
∑
a∈A

q(a|v) log
1

q(a|v)

=
∑
s∈T

π(s)
∑
a∈A

q(a|s) log
1

q(a|s) = HT ,

where the first inequality follows because

q̃(a|w) =

∑
v∈Tw π(v)q(a|v)∑

v′∈Tw π(v′)
,

and because g(x) = x log 1
x is concave for x ∈ [0, 1]. The

equality (a) follows since π̃(w) =
∑

v∈Tw π(v).

APPENDIX C
PROOF OF PROPOSITION 2

Wolog, let d(i) be decreasing, and consider a distribution q
over N such that ∑

j≥i

q(j) = d(i).

Let {Xn}n≥1 be a sequence of i.i.d. random variables dis-
tributed according to q and let Ei = P (Xi ≥ i). Therefore,
Ei are independent with P(Ei) = d(i). Then,

P(
⋃
i≥j

Ei) = 1−
∏
i≥j

(1− d(i)).

Since
P(
⋃
i≥j

Ei) ≤
∑
i≥j

P(Ei) =
∑
i≥j

d(i),

we have
1−

∑
i≥j

d(i) ≤
∏
i≥j

(1− d(i)).

Since by assumption 0 ≤ d(i) ≤ 1 for all i ≥ n0, the second
inequality can easily be derived by the fact that∏

i≥j

(1− d2(i)) ≤ 1. 2

APPENDIX D
PROOF OF PROPOSITION 3

Let w ∈ T̃ and fix a ∈ A. Note that for T̃ = Akn , by
assumption we have for all b′, b′′ ∈ A∣∣∣∣ q(a|b′w)

q(a|b′′w)
− 1

∣∣∣∣ ≤ d(kn). (15)
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According to Lemma 1, q̃(a|w) is weighted average of
q(a|bw), b ∈ A. Hence,

min
b∈A

q(a|bw) ≤ q̃(a|w) ≤ max
b∈A

q(a|bw). (16)

Combining (15) with (16) and straightforward elementary
algebra shows that ∀b ∈ A

q̃(a|w)
(
1− d(kn)

)
≤ q(a|bw) ≤

(
1 + d(kn)

)
q̃(a|w).

Proceeding inductively, for all s ∈ Tw we have( ∏
i≥kn

(
1− d(i)

))
q̃(a|w) ≤ q(a|s)

≤
( ∏
i≥kn

(
1 + d(i)

))
q̃(a|w).

Now, Proposition 2 implies that(
1−

∑
i≥kn

d(i)

)
max
s∈Tw

q(a|s) ≤ q̃(a|w) ≤ mins∈Tw q(a|s)(
1−∑i≥kn d(i)

) .
2
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