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Abstract

Data processing lower bounds on the expected distortion are derived in the finite–alphabet
semi–deterministic setting, where the source produces a deterministic, individual sequence, but
the channel model is probabilistic, and the decoder is subjected to various kinds of limitations,
e.g., decoders implementable by finite–state machines, with or without counters, and with or
without a restriction of common reconstruction with high probability. Some of our bounds are
given in terms of the Lempel–Ziv complexity of the source sequence or the reproduction se-
quence. We also demonstrate how some analogous results can be obtained for classes of linear
encoders and linear decoders in the continuous alphabet case.

Index Terms: Data processing theorem, finite–state machine, Lempel–Ziv algorithm, redun-
dancy, delay, common reconstruction.

1 Introduction

In a series of articles from the seventies and the eighties of the twentieth century, Ziv [10],[11],[12],

and Ziv and Lempel [3], [13], have created a theory of universal source coding for individual se-

quences using finite–state machines. In particular, the work [10] focuses on universal, fixed–rate,

(almost) lossless compression of individual sequences using finite–state encoders and decoders,

which was then further developed to the famous Lempel–Ziv algorithm [3], [13]. In [11], the frame-

work of [10] was extended to lossy coding for both noiseless and noisy transmission (subsections II.A

and II.B of [11], respectively), and later further extended in other directions, such as incorporation

of side information in the context of almost lossless compression, where the side information data
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is also modeled as an individual sequence [12], in other words, an individual–sequence counterpart

of Slepian–Wolf coding [8] was studied in [12] (see also a later extension to the lossy case [7]).

The main trigger for this paper stems from the coding theorem for noisy transmission in [11,

Subsection II.B]. We begin by revisiting the assertion and the proof of the converse part of this

theorem (Theorem 3 and eqs. (12) and (13) in [11]), which provides a lower bound on the distortion

in a semi–deterministic setting, where the source emits a deterministic (individual) sequence, but

the channel model is probabilistic as usual (in particular, it is a discrete memoryless channel) and

the encoder and decoder are limited to be finite–state machines with no more than s states and a

given overall delay, which we shall denote by d. While this theorem is essentially correct, it turns

out that there are certain imprecise steps in its proof (see Appendix for details) and moreover, in

relation to our corrections to this proof, the assertion of the theorem itself can be strengthened

and sharpened. The revisited converse theorem imposes no limitations on the encoder,1 and allows

the decoder to be equipped with a modulo–ℓ counter (ℓ – positive integer) in addition to its s

states of memory, which means that within each period of length ℓ, the decoder is allowed to be

time–varying, as opposed to the time–invariant model used in [11] and in related papers.2 Also,

our lower bound on the distortion depends, not only on the number of states s (as in [11]), but also

on the allowed delay d (as well as on some additional redundancy terms).

Beyond the above described revisit of Theorem 3 of [11], we also derive additional lower bounds

on the expected distortion in the semi–deterministic setting. One of them is associated with a

restriction of a common reconstruction (with high probability) at both encoder and decoder, which

is a setup that has recently received some attention in other contexts, like the Wyner–Ziv problem

(see e.g., [9]), with motivations in medical imaging, etc. In addition, some of our bounds are

given in a more explicit form, in terms of the Lempel–Ziv complexity of the source sequence or

the reproduction sequence. This may be interesting in the sense that the Lempel–Ziv complexity

usually arises when the finite–state structure is imposed on the encoder, whereas in our case, it is

imposed on the decoder. Finally, we demonstrate how some analogous results can be obtained for

1The assumption that the encoder is a finite–state machine is not really used in [11] either,
2One might argue that a finite–state machine with s states and a modulo–ℓ counter is just a particular finite–state

machine with a total number of s · ℓ states. While this argument is true, in principle, the idea is that this partition
of the total number of allowed states between those that are allocated to implement a clock (the counter) and those
that are allocated to memory of past input data (the remaining s states) give us more detailed and more refined
results.
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classes of linear encoders and linear decoders in the continuous alphabet case.

It should be emphasized that our focus in this paper is primarily on lower bounds and converse

theorems, and not quite on achievability schemes. Most of our bounds can be asymptotically

approached by conceptually simple, separation–based schemes, in the spirit of the one proposed in

[11] or with certain modifications and variations on the same ideas.

The outline of this paper is as follows. In Section 2, we establish notation conventions and for-

malize the semi–deterministic setting under consideration. In Section 3, we derive a lower bound

on the distortion without the common reconstruction requirement, and in Section 4, we derive the

parallel lower bound under common reconstruction. In both sections, we also derive the aforemen-

tioned alternative lower bounds, which can be calculated more easily. Finally, in Section 5, we

give an outline of an analogue of the main result of Section 2 for continuous alphabets and linear

encoders and decoders.

2 Problem Formulation and Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted

by calligraphic letters. Similarly, random vectors, their realizations, and their alphabets, will

be denoted, respectively, by capital letters, the corresponding lower case letters, and calligraphic

letters, all superscripted by their dimensions. For example, the random vector Y n = (Y1, . . . , Yn),

(n – positive integer) may take a specific vector value yn = (y1, . . . , yn) in Yn, the n–th order

Cartesian power of Y, which is the alphabet of each component of this vector. For i ≤ j (i, j –

positive integers), xji will denote the segment (xi, . . . , xj), where for i = 1 the subscript will be

omitted.

Let u = (u1, u2, . . .) be an individual source sequence of symbols in a finite alphabet U of

cardinality |U| = J . The sequence u is encoded using a general encoder, whose output at time t is

xt ∈ X , where X is another finite alphabet3 of size |X | = K. The sequence x = (x1, x2, . . .) is fed

3In the general formulations of the joint source–channel coding problem, the source and the channel are allowed
to operate at different rates, and then, in the case of block codes, source blocks of a given length may be mapped into
channel blocks of a different length. This degree of freedom, however, is essentially available here too, by redefining
U and X to be superalphabets of the appropriate sizes.
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into a discrete memoryless channel (DMC), characterized by the matrix of single-letter transition

probabilities {P (y|x), x ∈ X , y ∈ Y}, where the output alphabet Y is a finite alphabet of size

|Y| = L. The channel output y = (y1, y2, . . .) is in turn fed into a finite–state decoder, which is

defined by the following recursive equations:

vt−d = f(zt, yt), t = d+ 1, d+ 2, . . . (1)

zt+1 = g(zt, yt), t = 1, 2, . . . (2)

where zt ∈ Z is the decoder state at time t, Z being a finite set of states of size s, vt−d ∈ V is

the reconstructed sequence, delayed by d time units (d – positive integer) and f : Z × Y → V and

g : Z×Y → Z are the output function and the next–state function, respectively. The reconstruction

alphabet V of size M .

A slightly more sophisticated model allows the decoder to be equipped with a modulo–ℓ counter,

in addition to its state variable. This means that the functions f and g are allowed to be time–

varying within each period of length ℓ. In particular, in this case, the decoding equations would

admit the form:

τ = t mod ℓ, t = 1, 2, . . . (3)

vt−d = fτ (zt, yt), t = d+ 1, d + 2, . . . (4)

zt+1 = gτ (zt, yt), t = 1, 2, . . . (5)

In some applications, one may be interested in a common reconstruction at both the encoder

and decoder (with high probability). In our context, this means that for a certain positive integer,

which we will choose to be ℓ, there is a deterministic function q : U ℓ → Vℓ such that

lim
n→∞

ℓ

n

n/ℓ−1
∑

i=0

Pr{V iℓ+ℓ
iℓ+1 6= q(uiℓ+ℓ

iℓ+1)} = 0, (6)

where here and throughout the sequel, probabilities and expectations are defined with respect to

(w.r.t.) the randomness of the channel. This means that there is a target reconstruction v̂n,

obtained by n/ℓ successive applications of q(·), i.e., v̂iℓ+ℓ
iℓ+1 = q(uiℓ+ℓ

iℓ+1), i = 0, 1, 2, . . . , n/ℓ − 1, such

that V n is very close to v̂n in the sense of eq. (6). For example, in the traditional coding theorem of

joint source–channel coding, this is achieved by separate source– and channel coding, where v̂iℓ+ℓ
iℓ+1

are rate–distortion reproduction codewords of uiℓ+ℓ
iℓ+1, respectively.

4



For a given distortion measure ρ : U × V → IR, we are interested in deriving lower bounds

on the minimum achievable expected distortion, 1
n

∑n
t=1 E{ρ(ut, Vt)}, as functions of the alphabet

sizes, the number of stated s, the allowed delay d, and the period ℓ, if applicable, with/without

a modulo–ℓ counter at the decoder, and with/without the requirement of common reconstruction

with high probability.

Throughout our assertions and derivations, we will make heavy use of the following additional

notation. Assume, without essential loss of generality, that ℓ divide n and consider the segmentation

of each n–vector to n/ℓ non–overlapping blocks of length ℓ, that is,

un = (u0,u1, . . . ,un/ℓ−1), ui = (uiℓ+1, uiℓ+2, . . . , uiℓ+ℓ), i = 0, 1, . . . , n/ℓ− 1,

and similar definitions for xn, yn, and vn, where vn−d+1, vn−d+2, . . . , vn (which are not yet recon-

structed at time t = n) are defined as arbitrary symbols in V. Let us define the empirical joint

probability mass function

P̂UℓXℓY ℓV ℓZ(u
ℓ, xℓ, yℓ, vℓ, z) =

ℓ

n

n/ℓ−1
∑

i=0

I(ui = uℓ,xi = xℓ,yi = yℓ,vi = vℓ, ziℓ+1 = z), (7)

where I(·) is the indicator function of an event. Correspondingly, unless specified otherwise, U ℓ, Xℓ,

Y ℓ, V ℓ and Z are understood to be random variables jointly distributed according to P̂UℓXℓY ℓV ℓZ

and all information measures associated with them will be denoted as in the customary notation

conventions of the information theory literature, but with “hats”, for example, Ĥ(U ℓ) is the em-

pirical entropy associated with U ℓ, Î(Xℓ;Y ℓ) is the empirical mutual information between Xℓ and

Y ℓ, and so on. Accordingly, the ℓ–th order empirical rate distortion function, associated with un

and distortion measure ρ, is defined as

R̂Uℓ(D) = min

{

1

ℓ
Î(U ℓ; Ṽ ℓ) : Eρ(U ℓ; Ṽ ℓ) ≤ D

}

, (8)

where Ṽ ℓ is a generic random variable (not to be confused with V ℓ, which is defined empiri-

cally), taking on values in Vℓ, the mutual information Î(U ℓ; Ṽ ℓ) and expected distortion Eρ(U ℓ, Ṽ ℓ)

are defined w.r.t. P̂UℓPṼ ℓ|Uℓ, and the minimization is across all conditional distributions PṼ ℓ|Uℓ .

Here, ρ(U ℓ, Ṽ ℓ) is defined additively over the corresponding components of both vectors. Similarly,

D̂Uℓ(R) is the corresponding distortion–rate function, which is the inverse of R̂Uℓ(D), and which is

defined as

D̂Uℓ(R) = min

{

1

ℓ
Eρ(U ℓ, Ṽ ℓ) : Î(U ℓ; Ṽ ℓ) ≤ ℓR

}

. (9)

5



In the sequel, we will define some additional empirical rate–distortion functions and distortion–rate

functions, with certain modifications of the above definitions.

3 Distortion Bounds Without Common Reconstruction

We begin from the simpler case where there is no requirement of common reconstruction. Our first

result is the following:

Theorem 1 Consider the communication setting described in Section 2. Let un be an individual

sequence, let C be the capacity of the discrete memoryless channel, and let the overall coding–

decoding delay be d. Then, for every decoder with s states and a modulo–ℓ counter,

1

n

n
∑

t=1

E{ρ(ut, Vt)} ≥ D̂Uℓ

(

C +
2 log s+ d logM

ℓ
+ δ1(ℓ, n)

)

, (10)

where

δ1(ℓ, n) =
(JK)ℓ logL√

n
+

(JKL)ℓ log e

2n
+ o

(

1√
n

)

. (11)

The interesting term, in the argument of the function D̂Uℓ(·), is the second one, namely, the term

(2 log s + d logM)/ℓ, which seemingly plays a role of an effective “extra capacity” contributed

by the state variable, that carries memory of past data from block to block and by the allowed

delay. This happens because the lower bound holds for every individual sequence un and every

encoder and decoder in the allowed class, including ones that happen to be ‘tailored’ to un in a

certain sense (for example, the finite–state machine at the decoder may be designed to periodically

produce a certain pattern that happens to be repetitive in un). The dependence on ℓ is much

more complicated, because ℓ appears also in the additional term δ1(ℓ, n), and more importantly, in

the function D̂Uℓ(·) itself. The lower bound is not necessarily a monotonically decreasing function

of ℓ, but this should not be surprising since the real optimum performance need not have such a

monotonicity property either. For example, if un happens to be periodic (or almost periodic) with

period ℓ, it seems plausible that it will be reproduced better by a decoder with a modulo–ℓ counter

than by one with a modulo–(ℓ+1) counter, which obviously cannot keep the synchronization with

un. In the absence of a modulo–ℓ counter at the decoder, Theorem 1 still applies, but then ℓ

becomes just a parameter of the bound, with no apparent operative significance, and since the real
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distortion, 1
n

∑n
t=1 E{ρ(ut, Vt)}, is then independent of ℓ, one may maximize the lower bound w.r.t.

ℓ over a certain set of divisors of n, for which n/ℓ is still appreciably large, such that the o(1/
√
n)

term would remain negligible.

Proof of Theorem 1. First, observe that since P̂UℓXℓY ℓV ℓZ is a legitimate probability distribution,

all the rules of manipulating information measures (the chain rule, condition reduces entropy,

etc.) hold as usual. We will make use of the fact that vℓ−d
i = (viℓ+1, . . . , viℓ+ℓ−d) is a deterministic

function of yi and ziℓ+1 and therefore (U ℓ,Xℓ) → Y ℓ → V ℓ−d is a Markov chain under P̂UℓXℓY ℓV ℓ|Z ,

where V ℓ−d is random vector formed by the first ℓ − d components of V ℓ (and similarly, below,

V ℓ
ℓ−d+1 will denote the vector formed by the remaining d components). We then have the following

chain of inequalities

Î(U ℓ;V ℓ−d|Z) ≤ Î(U ℓ;Y ℓ|Z) (12)

≤ Î(U ℓ,Xℓ;Y ℓ|Z) (13)

= Ĥ(Y ℓ|Z)− Ĥ(Y ℓ|U ℓ,Xℓ, Z) (14)

≤ Ĥ(Y ℓ)− Ĥ(Y ℓ|U ℓ,Xℓ) + Î(Z;Y ℓ|U ℓ,Xℓ) (15)

≤ Ĥ(Y ℓ)− Ĥ(Y ℓ|U ℓ,Xℓ) + log s. (16)

On the other hand,

Î(U ℓ;V ℓ−d|Z) = Ĥ(U ℓ|Z)− Ĥ(U ℓ|V ℓ−d, Z) (17)

≥ Ĥ(U ℓ)− Î(Z;U ℓ)− Ĥ(U ℓ|V ℓ−d) (18)

≥ Ĥ(U ℓ)− log s− Ĥ(U ℓ|V ℓ)− Î(V ℓ
ℓ−d+1;U

ℓ|V ℓ−d) (19)

≥ Î(U ℓ;V ℓ)− log s− d logM, (20)

and so

Î(U ℓ;V ℓ) ≤ Ĥ(Y ℓ)− Ĥ(Y ℓ|U ℓ,Xℓ) + 2 log s+ d logM. (21)

Taking now the expectation of both sides, we get

EÎ(U ℓ;V ℓ) ≤ EĤ(Y ℓ)−EĤ(Y ℓ|U ℓ,Xℓ) + 2 log s+ d logM

≤ H(Y ℓ)−EĤ(Y ℓ|U ℓ,Xℓ) + 2 log s+ d logM (22)
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where in the second line, H(Y ℓ) is the entropy of Y ℓ that is induced by P̂Xℓ and the real channel

PY ℓ|Xℓ . Here we have used the fact that Ĥ(Y ℓ) is a concave functional of P̂Y ℓ|Xℓ . As for the

evaluation of EĤ(Y ℓ|U ℓ,Xℓ), we invoke the following result (see [1], [2] and [19, Proposition 5.2]

therein, as well as [6, Appendix A]): Let P̂n be the first order empirical distribution associated with

an n–sequence drawn from a memoryless m–ary source P . Then,

n ·ED(P̂n‖P ) =
(m− 1) log e

2
+ o(1), (23)

which is equivalent to

EĤ = H − (m− 1) log e

2n
− o

(

1

n

)

, (24)

where Ĥ is the corresponding empirical entropy and H is the true entropy. We now apply this

result to the ‘source’ P (yℓ|uℓ, xℓ) ≡ P (yℓ|xℓ) for every pair (uℓ, xℓ) that appears more than ǫn/ℓ

times as ℓ–blocks along the (deterministic) sequence pair (un, xn).

EĤ(Y ℓ|U ℓ,Xℓ) (25)

= E







∑

uℓ,xℓ

P̂UℓXℓ(uℓ, xℓ)Ĥ(Y ℓ|U ℓ = uℓ,Xℓ = xℓ)







(26)

≥
∑

{uℓ,xℓ: P̂
UℓXℓ(uℓ,xℓ)≥ǫ}

P̂UℓXℓ(uℓ, xℓ)EĤ(Y ℓ|U ℓ = uℓ,Xℓ = xℓ) (27)

=
∑

{uℓ,xℓ: P̂
UℓXℓ(uℓ,xℓ)≥ǫ}

P̂UℓXℓ(uℓ, xℓ)

[

H(Y ℓ|Xℓ = xℓ)− (Lℓ − 1) log e

2nP̂UℓXℓ(uℓ, xℓ)/ℓ
− o

(

ℓ

nǫ

)

]

(28)

≥
∑

{uℓ,xℓ: P̂
UℓXℓ(uℓ,xℓ)≥ǫ}

P̂UℓXℓ(uℓ, xℓ)H(Y ℓ|Xℓ = xℓ)− ℓ(JKL)ℓ log e

2n
− o

(

ℓ

nǫ

)

(29)

≥
∑

uℓ,xℓ

P̂UℓXℓ(uℓ, xℓ)H(Y ℓ|Xℓ = xℓ)−
∑

{uℓ,xℓ: P̂
Uℓ,Xℓ(uℓ,xℓ)<ǫ}

P̂UℓXℓ(uℓ, xℓ)H(Y ℓ|Xℓ = xℓ)

−ℓ(JKL)ℓ log e

2n
− o

(

ℓ

nǫ

)

(30)

≥ H(Y ℓ|Xℓ)− ǫ(JK)ℓ · ℓ logL− ℓ(JKL)ℓ log e

2n
− o

(

ℓ

nǫ

)

(31)

= H(Y ℓ|Xℓ)− ℓ · δ0(ǫ, ℓ, n), (32)

where we have defined

δ0(ǫ, ℓ, n) = ǫ(JK)ℓ logL+
(JKL)ℓ log e

2n
+ o

(

1

nǫ

)

. (33)
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Taking ǫ = 1/
√
n, we define:

δ1(ℓ, n) = δ0

(

1√
n
, ℓ, n

)

=
(JK)ℓ logL√

n
+

(JKL)ℓ log e

2n
+ o

(

1√
n

)

. (34)

On substituting the inequality

EĤ(Y ℓ|U ℓ,Xℓ) ≥ H(Y ℓ|Xℓ)− ℓδ1(ℓ, n) (35)

into eq. (22), we get

EÎ(U ℓ;V ℓ) ≤ I(Xℓ;Y ℓ) + 2 log s+ d logM + ℓδ1(ℓ, n) (36)

≤ ℓC + 2 log s+ d logM + ℓδ1(ℓ, n). (37)

Now, denoting by Ê the empirical expectation (w.r.t. P̂UℓXℓY ℓV ℓZ), we obviously have

EÎ(U ℓ;V ℓ) ≥ ℓ ·ER̂Uℓ

(

1

ℓ
Êρ(U ℓ, V ℓ)

)

(38)

= ℓ ·ER̂Uℓ

(

1

n

n
∑

t=1

ρ(ut, Vt)

)

(39)

≥ ℓ · R̂Uℓ

(

1

n

n
∑

t=1

Eρ(ut, Vt)

)

, (40)

where in the last line, we have used the convexity of the rate–distortion function. Finally, we get

R̂Uℓ

(

1

n

n
∑

t=1

Eρ(ut, Vt)

)

≤ C +
2 log s+ d logM

ℓ
+ δ1(ℓ, n), (41)

or
1

n

n
∑

t=1

Eρ(ut, Vt) ≥ D̂Uℓ

(

C +
2 log s+ d logM

ℓ
+ δ1(ℓ, n)

)

. (42)

This completes the proof of Theorem 1. ✷

While the lower bound of Theorem 1 is not quite explicit (primarily because of the complicated

dependence of the function D̂Uℓ(·) on ℓ when un is arbitrary), we next propose an alternative lower

bound, which is simpler and more explicit. The price of this simplicity, however, is a possible loss

of tightness, The idea is based on the Shannon lower bound. Suppose that U = V is a group and

the distortion measure ρ(u, v) depends only on the difference u − v for a well defined subtraction

operation on the group (e.g., subtraction modulo J). Accordingly, we denote ρ(u, v) = ̺(v − u).
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We define the function Φ(D) to be the maximum entropy of a random variable W over an alphabet

of size J , subject to the constraint E̺(W ) ≤ D. We also define

Ψ(x) =

{

0 x < 0
Φ−1(x) x ≥ 0

(43)

Then, our next result is the following.

Theorem 2 Consider the communication setting described in Section 2. Let un be an individual

sequence, let C be the capacity of the discrete memoryless channel, and let the overall coding–

decoding delay be d. Then, for every decoder with s states and a modulo–ℓ counter,

1

n

n
∑

t=1

E{̺(Vt − ut)} ≥ Ψ

(

c(un) log c(un)

n
− C − 2 log s+ d logM

ℓ
− δ2(ℓ, n)

)

, (44)

where c(un) is the number of phrases associated with incremental parsing [13] of un and

δ2(ℓ, n) = δ1(ℓ, n) +
2ℓ(1 + log J)2

(1− ǫn) log n
+

2ℓJ2ℓ log J

n
+

1

ℓ
, (45)

ǫn being a positive sequence tending to zero as n → ∞.

An important feature of this bound is that the dependence on ℓ is now fairly explicit as it appears

only in the expression δ2(ℓ, n) + (2 log s + d logM)/ℓ, and so, the effect of the choice of ℓ can be

better understood. Indeed, for decoders that are not equipped with a counter, the maximization

of the bound over ℓ, which is equivalent to the minimization of δ2(ℓ, n) + (2 log s + d logM)/ℓ,

is easier now. In particular, it is clear that ℓ should be o(log n) for this expression to vanish as

n → ∞. Another interesting point here is that the bound depends on un only via its Lempel-Ziv

complexity, c(un) log c(un)/n. This is not a trivial fact, because the Lempel–Ziv complexity refers

to the compressibility of un using finite–state encoders, whereas here, the encoder is not limited to

be a finite–state machine – only the decoder has such a limitation.

Proof of Theorem 2. Defining V ℓ − U ℓ as the component-wise difference between the two vectors,

we have:

ℓ · R̂Uℓ(D) = Ĥ(U ℓ)−max{H(U ℓ|V ℓ) : E̺(V ℓ − U ℓ) ≤ ℓD} (46)

= Ĥ(U ℓ)−max{H(V ℓ − U ℓ|V ℓ) : E̺(V ℓ − U ℓ) ≤ ℓD} (47)
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= Ĥ(U ℓ)−max{H(W ℓ|V ℓ) : E̺(W ℓ) ≤ ℓD} (48)

≥ Ĥ(U ℓ)−max{H(W ℓ) : E̺(W ℓ) ≤ ℓD} (49)

≥ Ĥ(U ℓ)−max

{

ℓ
∑

i=1

H(Wi) :
ℓ
∑

i=1

E̺(Wi) ≤ ℓD

}

(50)

≥ Ĥ(U ℓ)−max

{

ℓ
∑

i=1

Φ(E̺(Wi)) :
ℓ
∑

i=1

E̺(Wi) ≤ ℓD

}

(51)

≥ Ĥ(U ℓ)−max

{

ℓ · Φ
(

1

ℓ

ℓ
∑

i=1

E̺(Wi)

)

:
ℓ
∑

i=1

E̺(Wi) ≤ ℓD

}

(52)

= Ĥ(U ℓ)− ℓ · Φ(D), (53)

where in the last two lines, we have used concavity and the monotonicity of Φ(·), respectively. Now,
it is shown in [5, eq. (21)] (see also [4]) that

Ĥ(U ℓ) ≥ ℓ ·
[

c(un) log c(un)

n
− δ(ℓ, n)

]

, (54)

where

δ(ℓ, n) =
2ℓ(1 + log J)2

(1− ǫn) log n
+

2ℓJ2ℓ log J

n
+

1

ℓ
, (55)

ǫn being a positive sequence tending to zero, and c(un) is the number of phrases in un resulting

from Lempel–Ziv incremental parsing. Thus,

ER̂Uℓ

(

1

n

∑

−t = 1nρ(Vt − ut)

)

≥ c(un) log c(un)

n
−EΦ

(

1

n

n
∑

t=1

̺(Vt − ut)

)

− δ(ℓ, n) (56)

≥ c(un) log c(un)

n
− Φ

(

1

n

n
∑

t=1

E̺(Vt − ut)

)

− δ(ℓ, n). (57)

and we end up with

Φ

(

1

n

n
∑

t=1

E̺(Vt − ut)

)

≥ c(un) log c(un)

n
− C − 2 log s+ d logM

ℓ
− δ2(ℓ, n) (58)

or
1

n

n
∑

t=1

E̺(Vt − ut) ≥ Ψ

(

c(un) log c(un)

n
−C − 2 log s+ d logM

ℓ
− δ2(ℓ, n)

)

. (59)

This completes the proof of Theorem 2. ✷

4 Distortion Bounds Under Common Reconstruction

Consider next the case where, in addition to the above–mentioned limitations on the decoder, an

additional constraint is imposed, which is the constraint of almost deterministic reconstruction at
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the level of ℓ–blocks. This setting is formalized as follows. For a given vanishing sequence ǫn ∈ [0, 1],

we insist that

EP̂r{V ℓ 6= V̂ ℓ} ≡ ℓ

n

n/ℓ−1
∑

i=0

Pr{V iℓ+ℓ
iℓ+1 6= v̂iℓ+ℓ

iℓ+1} ≤ ǫn, (60)

where V̂ ℓ = q(U ℓ) (and v̂iℓ+ℓ
iℓ+1 = q(uiℓ+ℓ

iℓ+1)), for some deterministic function q, is the target recon-

struction. We will assume, in this section, that ρmax
∆
= maxu,v ρ(u, v) < ∞. Our lower bound for

this case is given by the following theorem.

Theorem 3 Consider the communication setting described in Section 2. Let un be an individual

sequence, let C be the capacity of the discrete memoryless channel, and let the overall coding–

decoding delay be d. Then, for every decoder with s states, a modulo–ℓ counter and a common

reconstruction constraint defined as in eq. (60):

1

n

n
∑

t=1

E{ρ(ut, Vt)} ≥ D̃Uℓ

(

C +
2 log s+ d logM

ℓ
+ δ2(ℓ, n) + 2∆(ǫn)

)

− ρmaxǫn, (61)

where ∆(ǫn) = h2(ǫn) + ǫnℓ log J , h2(·) being the binary entropy function, and

D̃Uℓ(R) = min
q

{

1

ℓ
Êρ(U ℓ, q(U ℓ)) : Ĥ(q(U ℓ)) ≤ ℓR

}

. (62)

Proof of Theorem 3. First, under the assumption of common reconstruction (60), one readily finds,

using Fano’s inequality, that

EĤ(V ℓ|U ℓ) ≤ ∆(ǫn), (63)

where the concavity of the function ∆(·) was used in order to insert the expectation into the

argument of this function in order to get the real probability of error. Thus,

EÎ(U ℓ;V ℓ) = EĤ(V ℓ)−EĤ(V ℓ|U ℓ) (64)

≥ EĤ(V ℓ)−∆(ǫn). (65)

Now,

EĤ(V ℓ) ≥ Ĥ(V̂ ℓ)−EĤ(V̂ ℓ|V ℓ) (66)

≥ Ĥ(V̂ ℓ)−∆(ǫn) (67)

and so,

EÎ(U ℓ;V ℓ) ≥ Ĥ(V̂ ℓ)− 2∆(ǫn). (68)

12



Now, observe that

1

n

n
∑

t=1

ρ(ut, v̂t) = Ê

{

1

ℓ
ρ(U ℓ, q(U ℓ))

}

(69)

=
1

ℓ

∑

{(uℓ,vℓ): q(uℓ)=vℓ}

P̂Uℓ,V ℓ(uℓ, vℓ)ρ(uℓ, vℓ) +

1

ℓ

∑

{(uℓ,vℓ): q(uℓ)6=vℓ}

P̂Uℓ,V ℓ(uℓ, vℓ)ρ(uℓ, q(uℓ)) (70)

≤ 1

ℓ

∑

uℓ,vℓ

P̂Uℓ,V ℓ(uℓ, vℓ)ρ(uℓ, vℓ) + ρmax ·
∑

{(uℓ,vℓ): q(uℓ)6=vℓ}

P̂Uℓ,V ℓ(uℓ, vℓ) (71)

=
1

n

n
∑

t=1

ρ(ut, Vt) + ρmax · P̂r{V ℓ 6= V̂ ℓ} (72)

and so, taking the expectation of both sides, we get

1

n

n
∑

t=1

ρ(ut, v̂t) ≤
1

n

n
∑

t=1

Eρ(ut, Vt) + ρmaxǫn. (73)

Thus, defining

R̃Uℓ(D) = min
q

{1
ℓ
Ĥ(q(U ℓ)) : Êρ(U ℓ, q(U ℓ)) ≤ ℓD}, (74)

we readily have

EÎ(U ℓ;V ℓ) ≥ Ĥ(q(U ℓ))− 2∆(ǫn) (75)

≥ ℓR̃Uℓ

(

1

n

n
∑

t=1

ρ(ut, v̂t)

)

− 2∆(ǫn) (76)

≥ ℓR̃Uℓ

(

1

n

n
∑

t=1

Eρ(ut, Vt) + ρmaxǫn

)

− 2∆(ǫn). (77)

This means, of course, that

1

n

n
∑

t=1

Eρ(ut, Vt) ≥ D̃Uℓ

(

C +
2 log s+ d logM

ℓ
+ δ2(ℓ, n) +

2∆(ǫn)

ℓ

)

− ρmaxǫn, (78)

completing the proof of Theorem 3. ✷

Here too, performance can be expressed in terms of Lempel–Ziv complexity, as Ĥ(q(U ℓ))/ℓ ≥
[c(v̂n) log c(v̂n)]/n − δ′(ℓ, n), where δ′(ℓ, n) is defined just like δ(ℓ, n), but with J replaced by M .

Thus,

EÎ(U ℓ;V ℓ) ≥ ℓRLZ

(

1

n

n
∑

t=1

Eρ(ut, Vt) + ρmaxǫn

∣

∣

∣

∣

un
)

− 2∆(ǫn)− δ′(ℓ, n), (79)
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where

RLZ(D|un) = min
q

{

c(v̂n) log c(v̂n)

n
: v̂iℓ+ℓ

iℓ+1 = q(uiℓ+ℓ
iℓ+1),

i = 0, 1, . . . , n/ℓ− 1,
1

n

n
∑

i=1

ρ(ut, v̂t) ≤ D

}

. (80)

Note that in Section 3, we were able to get bounds on the expected distortion, thanks to the

convexity of R̂Uℓ(·) and the concavity of Φ(·), whereas now, we obtained such a bound by using the

proximity between the actual expected distortion and the distortion between un and its intended

reconstruction v̂n.

5 Linear Encoders and Decoders

So far, we have dealt with finite alphabets only. It is possible to derive analogous results for

continuous alphabets, if the encoder and decoder are limited to be linear. In this section, we

provide a brief outline how this can be done, by presenting a parallel result to the Theorem 1.

Consider the following structure: The encoder is given by

xt =
∞
∑

i=1

aixt−i +
∞
∑

i=0

biut−i, (81)

where {ai} and {bi} are real–valued parameters, chosen such that the encoder would satisfy a

certain input constraint. The finite–state decoder we had before4 is replaced by a decoder with the

same structure, except that now f and g are linear functions (i.e., state–space representation):

vt−d = αzt + βyt (82)

zt+1 = γzt + δyt. (83)

We will assume, for the sake of simplicity, that ut, xt, yt, vt and zt are all real–valued variables

(scalars), although our discussion can be generalized to the vector case (ut, vt ∈ IRk, xt, yt ∈ IRm,

zt ∈ IRp, k, m and p positive integers), in which case, {ai}, {bi}, α, β, γ and δ become matrices of the

corresponding dimensions. The channel is assumed to be a discrete–time AWGN, i.e., Yt = xt+Nt,

where Nt is a stationary, i.i.d. zero–mean Gaussian process with variance σ2.

4For simplicity, we now refer to the one without the modulo-ℓ counter.
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Consider first5 the case where {ut} is a zero–mean, stationary Gaussian process, independent

of {Nt}, and so, its notation is temporarily changed to {Ut}. Consequently, all other signals in

the system become random processes, and accordingly, their notation here will use capital letters.

Due to the linearity of the systems, {(Ut,Xt, Yt, Vt, Zt), − ∞ < t < ∞} are jointly Gaussian

processes. We assume that these processes are jointly stationary. We also assume that the system

is non–degenerated6 in the sense that

ǫ2Z
∆
= lim

n→∞
mmse{Z1|Un

1 ,X
n
1 , Y

n
1 } > 0 (84)

and similarly

ǫ2V
∆
= lim

n→∞
mmse{V0|V −1

−n , U
d
−n} > 0, (85)

where mmse{A|B} = E[A−E(A|B)]2 designates the minimum mean squared error in estimating a

random variable A from another random variable B, and where the limits obviously exist due to the

non–increasing monotonicity of mmse{Z1|Un
1 ,X

n
1 , Y

n
1 } and mmse{V0|V −1

−n , U
d
−n} as functions on n.

The parameters ǫ2Z and ǫ2V are constants that depend on the auto-correlation function of the source,

on the noise variance of noise, σ2, and on the parameters of the encoder and decoder, {ai}, {bi},
α, β, γ and δ. Obviously, ǫ2Z ≤ σ2

Z and ǫ2V ≤ σ2
V , where σ2

Z and σ2
V are the variances of Zt and Vt,

respectively. We define U ℓ = (U1, . . . , Uℓ), X
ℓ = (X1, . . . ,Xℓ), Y

ℓ = (Y1, . . . , Yℓ), V
ℓ = (V1, . . . , Vℓ),

and Z = Z1. We begin similarly as in eqs. (12), but the last step must be modified slightly:

I(U ℓ;V ℓ−d|Z) ≤ I(U ℓ;Y ℓ|Z) (86)

≤ I(U ℓ,Xℓ;Y ℓ|Z) (87)

= h(Y ℓ|Z)− h(Y ℓ|U ℓ,Xℓ, Z) (88)

≤ h(Y ℓ)− h(Y ℓ|U ℓ,Xℓ) + I(Z;Y ℓ|U ℓ,Xℓ) (89)

= h(Y ℓ)− h(Y ℓ|Xℓ) +
1

2
log

mmse{Z|U ℓ,Xℓ}
mmse{Z|U ℓ,Xℓ, Y ℓ} (90)

≤ I(Xℓ;Y ℓ) +
1

2
log

σ2
Z

ǫ2Z
(91)

≤ ℓC +
1

2
log

σ2
Z

ǫ2Z
. (92)

5This assumption will be dropped soon.
6For example, if γ = δ = 0 and hence Zt ≡ 0, or if α = β = 0 and hence Vt ≡ 0, the system is obviously

degenerated.
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On the other hand,

I(U ℓ;V ℓ−d|Z) = h(U ℓ|Z)− h(U ℓ|V ℓ−d, Z) (93)

≥ h(U ℓ|Z)− h(U ℓ|V ℓ−d) (94)

= h(U ℓ)− I(Z;U ℓ)− h(U ℓ|V ℓ)− I(V ℓ
ℓ−d+1;U

ℓ|V ℓ−d) (95)

= h(U ℓ)− h(U ℓ|V ℓ)− I(Z;U ℓ)−
ℓ
∑

i=ℓ−d+1

I(Vi;U
ℓ|V i−1) (96)

≥ I(U ℓ;V ℓ)− 1

2
log

σ2
Z

ǫ2Z
− d

2
log

σ2
V

ǫ2V
, (97)

and so,

I(U ℓ;V ℓ) ≤ ℓC + log
σ2
Z

ǫ2Z
+

d

2
log

σ2
V

ǫ2V
. (98)

This is quite analogous to the bounds we obtained in the finite–alphabet case, but now log s and

logM are replaced by log σZ

ǫZ
and log σV

ǫV
, respectively, thus σZ

ǫZ
and σV

ǫV
play roles of effective alphabet

sizes (or effective resolution levels) of the variables Zt and Vt, respectively. Now, clearly, in the

Gaussian case, I(U ℓ;V ℓ) depends on the joint density of (U ℓ, V ℓ) only via the covariance matrix of

this random vector. Equivalently, consider the class of Gaussian channels from U ℓ to V ℓ, defined

by

V ℓ = GU ℓ +W ℓ (99)

where G is a deterministic ℓ × ℓ matrix and W ℓ is a zero–mean Gaussian vector, independent of

U ℓ, with covariance matrix ΣW . Denoting the covariance matrix of U ℓ by ΣU , then

I(U ℓ;V ℓ) =
1

2
log

det(GΣUG
T +ΣW )

det(ΣW )
=

1

2
log det(I +Σ−1

W GΣUG
T ) (100)

Thus, defining

Rℓ(D) = min
G,ΣW

{

1

2ℓ
log det(I +Σ−1

W GΣUG
T ) : Eρ(U ℓ, V ℓ) ≤ ℓD

}

, (101)

where ρ designates the quadratic distortion measure (or any other distortion measure that such

that Eρ(U ℓ, V ℓ) depends only on the covariance matrix of (U ℓ, V ℓ)), we have

Rℓ(D) ≤ C +
1

ℓ
log

σ2
Z

ǫ2Z
+

d

2ℓ
log

σ2
V

ǫ2V
, (102)

or
1

n

n
∑

t=1

Eρ(Ut, Vt) ≥ Dℓ

(

C +
1

ℓ
log

σ2
Z

ǫ2Z
+

d

2ℓ
log

σ2
V

ǫ2V

)

, (103)
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Now, the l.h.s. of (102) depends only on the covariance matrix of the source, whereas C (or

I(Xℓ;Y ℓ)) depends only on the covariance matrix ΣX of Xℓ and the covariance matrix ΣN of

the noise vector, which we have taken to be σ2I. Since the encoding and decoding systems are lin-

ear, the auto-correlation cross–correlation functions of their outputs depend only on those of their

inputs (for a given linear encoder and decoder), no matter whether these processes are Gaussian or

not. The expected distortion also depends on the joint density of U ℓ, V ℓ) only via the variances and

covariances of their components. Consequently, at this point, the Gaussian assumption becomes

immaterial. The source U ℓ may have any pdf with a given covariance matrix ΣU . In particular,

we can take ΣU to be the empirical covariance matrix of a deterministic source sequence un. In

this case, in the above chains of inequalities, all information measures should be replaced by their

empirical counterparts, which depend on the empirical covariances instead of the true covariances.

The only exception is that, similarly as in the finite alphabet case, in eq. (86), it is no longer

true that ĥ(Y ℓ|Xℓ, U ℓ) = ĥ(Y ℓ|Xℓ), since there might be empirical correlations between the source

vector and the noise vector. However, Eĥ(Y ℓ|Xℓ, U ℓ) tends to h(Y ℓ|Xℓ) by the weak law of large

numbers, so as before, upon taking expectations, one can obtain a distortion bound analogous to

the one we obtained in the finite–alphabet case. In particular, for the quadratic distortion measure,

we have:

1

n

n
∑

t=1

Eρ(ut, Vt) ≥ min
G,ΣW







1

n

n/ℓ−1
∑

i=0

Eρ(uiℓ+ℓ
iℓ+1, Guiℓ+ℓ

iℓ+1 +W iℓ+ℓ
iℓ+1) :

1

2ℓ
log det(I +Σ−1

W GΣ̂UG
T ) ≤ C +

1

ℓ
log

σ2
Z

ǫ2Z
+

d

2ℓ
log

σ2
V

ǫ2V
+ ǫn

}

(104)

= min
G,ΣW

{

tr{(G − I)Σ̂U (G
T − I) +

1

ℓ
ΣW } :

1

2ℓ
log det(I +Σ−1

W GΣ̂UG
T ) ≤ C +

1

ℓ
log

σ2
Z

ǫ2Z
+

d

2ℓ
log

σ2
V

ǫ2V
+ ǫn

}

, (105)

where Σ̂U = ℓ
n

∑n/ℓ−1
i=0 uiu

T
i is the empirical covariance of the source, W iℓ+ℓ

iℓ+1 is a zero–mean random

vector with covariance matrix ΣW and ǫn is the vanishing difference between Eĥ(Y ℓ|Xℓ, U ℓ)/ℓ

and h(Y |X). The point here is that for the purpose of obtaining a lower bound on the distortion

attainable by linear encoders and decoders, we are replacing the optimization over infinitely many

parameters {ai}, {bi}, α, β, γ, and δ, by optimization over two ℓ × ℓ matrices, G and ΣW , at the

possible rate loss of 1
ℓ log

σ2

Z

ǫ2
Z

+ d
2ℓ log

σ2

V

ǫ2
V

+ ǫn, which vanishes as ℓ and n grow. Thus, the parameter
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ℓ trades off the quality of the bound (its tightness) with the complexity of the optimization.

Note that here our bounds are a bit weaker than in the finite–alphabet case, in the sense that

they depend on the competing linear system with parameters {ai}, {bi}, α, β, γ and δ (via ǫ2V and

ǫ2Z). However, the dependence on these parameters becomes weaker and weaker as ℓ grows without

bound.

Appendix

Some Concerns About the Proof of Theorem 3 in [11].

First, it should be pointed out that in [11, p. 140], the encoder was also assumed to be a finite–

state machine, and so, in this appendix, following the notation of [11], the state of the encoder is

denoted by zt and the state of the decoder is denoted by z′t.

In [11], the joint probability distribution of all random variables was defined (in our notation)

to be

P̂UℓXℓY ℓV ℓZZ′(uℓ, xℓ, yℓ, vℓ, z, z′)

= P (z, z′)P̂Uℓ(uℓ)P̂Xℓ|Uℓ,Z(x
ℓ|uℓ, z)P (yℓ|xℓ)P̂V ℓ|Xℓ,Z′(vℓ|xℓ, z′), (A.1)

where P (z, z′) is the expectation of the joint empirical distribution of the state of the encoder,

denoted here by Z, and the state of the decoder, denoted here by Z ′, at the beginnings of all ℓ-

blocks, and P (yℓ|xℓ) is the real conditional probability associated with the channel. First, observe

that according to this definition, U ℓ is taken to be independent of Z and Z ′, which is inconsistent

with the fact that the encoder state Z varies in response to the source and that there might be

empirical dependencies between successive ℓ–blocks of the source. Also, according to this definition,

Y ℓ is independent of Z ′ given Xℓ, which similarly to the earlier comment, does not seem to settle

with the fact that Z ′ responds to the decoder input Y ℓ.

Another issue is the use of the data processing theorem when it comes to empirical distributions.

For example, the equality [11, p. 141, top] Î(Z,U ℓ,Xℓ;V ℓ) = Î(Z,Xℓ;V ℓ) is questionable because

there might be incidental empirical dependencies between U ℓ and V ℓ given (Z,Xℓ).

Finally, we have concerns regarding the way in which the delay was handled in [11], where

the decoder output vt−d was simply renamed vt. It should be kept in mind that while the data
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processing theorem applies to l–blocks of {ut}, {xt}, {yt} and {vt−d}, the distortion is measured

between ut and vt, and so, the discrepancy between the {vt} and its delayed version {vt−d} is real

and cannot be handled by simple renaming. Indeed, in [11], the lower bound does not depend on

d, a fact which is in contrast to the expectation that the larger is d, the better is the performance

that can be achieved.
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