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The Performance of Successive Interference

Cancellation in Random Wireless Networks

Xinchen Zhang and Martin Haenggi

Abstract

This paper provides a unified framework to study the performance of successive interference

cancellation (SIC) in wireless networks with arbitrary fading distribution and power-law path loss.

An analytical characterization of the performance of SIC isgiven as a function of different system

parameters. The results suggest that the marginal benefit ofenabling the receiver to successively decode

k users diminishes very fast withk, especially in networks of high dimensions and small path loss

exponent. On the other hand, SIC is highly beneficial when theusers are clustered around the receiver

and/or very low-rate codes are used. Also, with multiple packet reception, a lower per-user information

rate always results in higher aggregate throughput in interference-limited networks. In contrast, there

exists a positive optimal per-user rate that maximizes the aggregate throughput in noisy networks.

The analytical results serve as useful tools to understand the potential gain of SIC in heterogeneous

cellular networks (HCNs). Using these tools, this paper quantifies the gain of SIC on the coverage prob-

ability in HCNs with non-accessible base stations. An interesting observation is that, for contemporary

narrow-band systems (e.g.,LTE and WiFi), most of the gain of SIC is achieved by cancelinga single

interferer.

Index Terms

Stochastic geometry, Poisson point process, successive interference cancellation, heterogeneous

networks

I. INTRODUCTION

Although suboptimal in general, successive interference cancellation (SIC) is a promising

technique to improve the efficiency of the wireless networkswith relatively small additional
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complexity [1], [2]. However, in a network without centralized power control,e.g., ad hoc

networks, the use of SIC hinges on the imbalance of the received powers from different users

(active transmitters), which depends on the spatial distribution of the users as well as many

other network parameters. Therefore, it is important to quantify the gain of SIC with respect to

different system parameters.

This paper provides a unified framework to study the performance of SIC ind-dimensional

wireless networks. Modeling the active transmitters in thenetwork by a Poisson point process

(PPP) with power-law density function (which includes the uniform PPP as a special case), we

show how the effectiveness of SIC depends on the path loss exponent, fading, coding rate, and

user distribution. As an application of the technical results, we study the performance of SIC in

heterogeneous cellular networks (HCNs) in the end of the paper.

A. Successive Interference Cancellation and Related Work

As contemporary wireless systems are becoming increasingly interference-limited, there is an

ascending interest in using advanced interference mitigation techniques to improve the network

performance in addition to the conventional approach of treating interference as background noise

[1]–[8]. One important approach is successive interference cancellation (SIC). First introduced

in [9], the idea of SIC is to decode different users sequentially, i.e., the interference due to the

decoded users is subtracted before decoding other users. Although SIC is not always the optimal

multiple access scheme in wireless networks [2], [4], it is especially amenable to implementation

[10]–[12] and does attain boundaries of the capacity regions in multiuser systems in many cases

[2], [13], [14].

Conventional performance analyses of SIC do not take into account the spatial distribution

of the users. The transmitters are either assumed to reside at given locations with deterministic

path loss, see,e.g., [15] and the references therein, or assumed subject to centralized power

control which to a large extent compensates for the channel randomness [16], [17]. To establish

advanced models that take into account the spatial distribution of the users, recent papers attempt

to analyze the performance of SIC using tools from stochastic geometry [18], [19]. In this context,

a guard-zonebased approximation is often used to model the effect of interference cancellation

due to the well-acknowledged difficulty in tackling the problem directly [1]. According to this

approximation, the interferers inside a guard-zone centered at the receiver are assumed canceled,
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and the size of the guard-zone is used to model the SIC capability. Despite many interesting

results obtained by this approximation, it does not provideenough insights on the effect of

received power ordering from different transmitters, which is essential for successive decoding

[16]. For example, if there are two or more (active) transmitters at the same distance to the

receiver, it is very likely that none of them can be decoded given the fact that the decoding

requires a reasonable SINR,e.g.,no less than one, while the guard-zone model would assume

they all can be decoded if they are in the guard zone. Therefore, the guard-zone approach

provides a good approximation only for canceling one or at most two interferers. Furthermore,

most of the work in this line of research considers Rayleigh fading and/or uniformly distributed

networks. In contrast, this paper uses an exact approach to tackle the problem directly for a

more general type (non-uniform) of networks with arbitraryfading distribution.

Besides SIC, there are many other techniques that can potentially significantly mitigate the

interference in wireless networks including interferencealignment [5] and dirty paper coding [6].

Despite the huge promise in terms of performance gain, thesetechniques typically rely heavily

on accurate channel state information at the transmitters (CSIT) and thus are less likely to impact

practical wireless systems in the near future [7], [8]. Also, many recent works study interference

cancellation based on MIMO techniques in the context of random wireless networks,e.g., [8],

[20] and references therein. These (linear) interference cancellation techniques should not be

considered as successive interference cancellation (SIC), although they can be combined with

SIC to achieve (even) better performance [21].

B. Contributions and Organization

This paper considers SIC as a pure receiver end technique1, which does not require any

modifications to the conventional transmitter architecture. With a general framework for the

analysis ofd-dimensional Poisson networks, the primary focus of this paper is on 2-d networks2,

where all the nodes are transmitting at the same rate.

1In general, SIC can be combined with (centralized) power control, which can significantly boost its usefulness. However,

this places extra overhead in transmitter coordination andis beyond the discussion of this paper.

2Although the most interesting case is the planar networks (d = 2) and it may be helpful to always think of the 2-d case

while reading this paper, it is worth noting that the cased = 1 is also of interest as it has natural applications in vehicular

networks.
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The main contributions of this paper are summarized as follows:

• We show that fading does not affect the performance of SIC in alarge class of interference-

limited networks, including uniform networks as a special case (Section III). However, in

noisy networks, fading always reduces the decoding probability (Section VI).

• We provide a set of closed-form upper and lower bounds on the probability of successively

decoding at leastk users. These bounds are based on different ideas and are reasonably

tight in different regimes (Section IV).

• In interference-limited networks, when the per-user information rate goes to 0, we show

that the aggregate throughput at the receiver is upper bounded by 1
β
−1, whereβ is a simple

function of the path loss exponent, network density and network dimensionality. A Laplace

transform-based approximation is also found for the aggregate throughput at the receiver

for general per user information rate (Section V-B).

• We observe that in interference-limited network the aggregate throughput at a typical re-

ceiver is a monotonically decreasing function of the per user information rate, while in

noisy networks (Section V-B), there exists an optimal positive per-user rate that maximizes

the aggregate throughput (Section VI).

• We provide an example to illustrate how the results of this paper can be applied to het-

erogeneous cellular networks (HCNs). The results demonstrate that SIC can boost the

coverage probability in heterogeneous networks with overloaded or closed-access base

stations (Section VII). However, SIC is not very helpful in terms of average throughput

for typical system parameters. Moreover, for typical contemporary OFDM-based systems,

most of the gain of SIC comes from canceling a single interferer (Section VII-E).

The rest of the paper is organized as follows: Section II describes the system models and

the metrics we are using in this paper. Section III introduces the path loss process with fading

(PLPF)-based (narrow band) framework which facilitates the analysis in the rest of the paper. In

Section IV, we provide a set of bounds on the probability of decoding at leastk users in system.

These bounds directly lead to bounds on the expected gain of SIC presented in Section V. We

discuss the effect of noise in Section VI. Section VII applies the results to the downlink of

HCNs. The paper is concluded in Section VIII.
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II. SYSTEM MODEL AND METRICS

A. The Power-law Poisson Network with Fading (PPNF)

Let the receiver be at the origino and the active transmitters (users) be represented by a

marked Poisson point process (PPP)Φ̂ = {(xi, hxi
)} ⊂ R

d × R
+, wherex is the location of a

user,hx is the iid (power) fading coefficient associated with the link from x to o, andd is the

number of dimensions of the space. When the ground processΦ ⊂ R
d is a homogeneous PPP,

the network is termed ahomogeneous Poisson networkwhich is often the focus of stochastic

geometry-based network analyses.

In this work, we consider a slightly generalized verison of the Poisson network defined as

follows:

Definition 1. The Power-law Poisson Network with Fading (PPNF) is a Poisson network (to-

gether with the fading marks) with density functionλ(x) = a‖x‖b, a > 0, b ∈ (−d, α − d),

where‖x‖ is the distance fromx ∈ R
d to the origin andα is the path loss exponent.

In Def. 1, the conditionb ∈ (−d, α−d) is necessary in order to maintain a finite total received

power ato and will be revisited later. By the definition, we see that when b = 0, the PPNF

becomes a homogeneous Poisson network with intensitya. Further, the construction of the PPNF

provides the flexibility in studying networks with different clustering properties. For example,

Fig. 1 shows realizations of three 2-d PPNFs with differentb; Fig. 1a represents a network

clustered aroundo whereas the network in Fig. 1c is sparse around the receiver at o. In general,

the smallerb, the more clustered the network is at the origin withb = 0 representing the uniform

network (e.g.,Fig. 1b).

B. SIC Model and Metrics

Considering the case where all the nodes (users) transmit with unit power, we recall the

following standard signal-to-interference ratio (SIR)-based single user decoding condition.

Definition 2 (Standard SIR-based Single User Decoding Condition). In an interference-limited

network, a particular user atx ∈ Φ can be successfully decoded (without SIC) iff

SIRx =
hx‖x‖−α

∑

y∈Φ\{x} hy‖y‖−α
> θ,
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Fig. 1: Realizations of two non-uniform PPP with intensity functionλ(x) = 3‖x‖b with differentb, wherex denotes

an active transmitter ando denotes the receiver at the origin.

wherehx‖x‖−α is the received signal power fromx,
∑

y∈Φ\{x} hy‖y‖−α is the aggregate inter-

ference from the other active transmitters, andθ is the SIR decoding threshold3.

Similarly, in the case of perfect interference cancellation, once a user is successfully decoded,

its signal component can be completely subtracted from the received signal. Assuming the

decoding order is always from the stronger users to the weaker users4, we obtain the following

decoding condition for the case with SIC.

Definition 3 (SrIR-based Decoding Condition with SIC). With SIC, a userx can be decoded

if all the users inIc = {y ∈ Φ : hy‖y‖−α > hx‖x‖−α} are successfully decoded and the

signal-to-residual-interference ratio (SrIR) atx

SrIRx =
hx‖x‖−α

∑

y∈Φ\{x}\Ic hy‖y‖−α
> θ.

Consequently, consider the ordering of all nodes inΦ such thathxi
‖xi‖−α > hxj

‖xj‖−α

, ∀i < j.5 The number of users that can be successively decoded isN iff hxi
‖xi‖−α >

3This model will be generalized in Section VI to include noise.

4It is straightforward to show that this stronger-to-weakerdecoding order maximizes the number of decodable users and thus

the aggregate throughput (defined later) despite the fact that it is not necessarily theonly optimal decoding order.

5This ordering is based on received power, which is differentfrom the spatial ordering (based only onΦ). This is one of the

differentiating features of this work compared with the guard-zone-based analyses ine.g., [1].
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θ
∑∞

j=i+1 hxj
‖xj‖−α, ∀j ≤ N and hxN+1

‖xN+1‖−α ≤ θ
∑∞

j=N+2 hxj
‖xj‖−α. Note that the

received power ordering is only introduced for analysis purposes. As is unnecessary, we do

not assume that the received power ordering is knowna priori at the receiver.

One of the goals of this paper is to evaluateE[N ], i.e., the mean number of users that can be

successively decoded, with respect to different system parameters, and the distribution ofN in

the form

pk , P(N ≥ k),

i.e., the probability of successively decoding at leastk users at the origin. To make the dependence

on the point process explicit, we sometimes usepk(Φ̂).

Since SIC is inherently a multiple packet reception (MPR) scheme [15], we can further define

the aggregate throughput (or, sum rate) to be the total information rate received at the receiver

o. Since all the users in the system transmit at the same ratelog(1 + θ), the sum rate is

R = E[log(1 + θ)N ] = log(1 + θ)E[N ]. (1)

Another important goal of this paper is to evaluateR as a function of different system parameters.

Note that this definition of the aggregate throughput countsthe information received from all

the active transmitters in the network. Alternatively, onecould define an information metric on

a subset of (interested) transmitters and the analyses willbe analogous. One of such instances

is the heterogeneous network application discussed in Section VII.

III. T HE PATH LOSSPROCESS WITHFADING (PLPF)

We use the unified framework introduced in [22] to jointly address the randomness from

fading and the random node locations. We define the path loss process with fading (PLPF) as

Ξ , {ξi = ‖xi‖α
hxi

, xi ∈ Φ}, where the indexi is introduced in the way such thatξi < ξj for all

i < j. Then, we have the following lemma, which follows from the mapping theorem [19, Thm.

2.34].

Lemma 1. The PLPFΞ = {‖xi‖α
hxi

}, where{(xi, hxi
)} is a PPNF, is a one-dimensional PPP on

R
+ with intensity measureΛ([0, r]) = aδcdr

β
E[hβ]/β, whereδ , d/α, β , δ + b/α ∈ (0, 1)

and h is a fading coefficient.



8

In Lemma 1, the conditionβ ∈ (0, 1) corresponds to the conditionb ∈ (−d, α − d) in the

definition of the PPNF; it is necessary since otherwise the aggregate received power ato is

infinite almost surely. More specifically, whenb > α−d the intensity measure of the transmitter

process grows faster than the path loss with respect to the network size, which results in infinite

received power at origin, (i.e., far users contribute infinite power); whenb < −d, the PLPF is not

locally finite (with singularity ato), and thus the number of transmitters that contribute to the

received powermorethan any arbitrary value is infinite almost surely, (i.e., near users contribute

infinite power).

Since for all ξi ∈ Ξ ⊂ R
+, ξ−1

i can be considered as thei-th strongest received power

component (ato) from the users inΦ, when studying the effect of SIC, it suffices to just

consider the PLPFΞ. For a PLPFΞ mapped fromΦ̂, if we let pk(Ξ) be the probability of

successively decoding at leastk users in the network̂Φ, we have the following proposition.

Proposition 1 (Scale-invariance). If Ξ and Ξ̄ are two PLPFs with intensity measuresΛ([0, r]) =

rβ andµ([0, r]) = Crβ, respectively, whereC is any positive constant, thenpk(Ξ) = pk(Ξ̄), ∀k ∈
N.

Proof: Consider the mappingf(x) = C−1/βx. Then f(Ξ) is a PPP onR+ with intensity

measureCxβ of the set[0, x]. Let N be the sample space ofΞ, i.e., the family of all countable

subsets ofR+. Then, we can define a sequence of indicator functionsχk : N → {0, 1}, k ∈ N,

such that

χk(φ) =







1, if ξ−1
i > θIi, ∀i ≤ k

0, otherwise,
(2)

whereIi =
∑∞

j=i+1 ξ
−1
j , φ = {ξi} and ξi < ξj, ∀i < j. Note thatχk(·) is scale-invariant,i.e.,

χk({ξi}) = χk({C ′ξi}), ∀C ′ > 0. Then, we have

pk(Ξ) = PΞ(Yk) = E[χk(Ξ)]
(a)
= E[χk(f(Ξ))]

(b)
= E[χk(Ξ̄)] = PΞ̄(Yk) = pk(Ξ̄),

whereYk = {φ ∈ N : ξ−1
i > θIi, ∀i ≤ k}, PΞ is the probability measure onN with respect to

the distribution ofΞ, (a) is due to the scale-invariance property ofχk(·) and (b) is because both

f(Ξ) and Ξ̄ are PPPs onR+ with intensity measureµ([0, r]) = Crβ.

Prop. 1 shows that the absolute value of the density is not relevant as long as we restrict our

analysis to the power-law density case. Combining it with Lemma 1, where it is shown that, in
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terms of the PLPF, the only difference introduced by different fading distributions is a constant

factor in the density function, we immediately obtain the following corollary.

Corollary 1 (Fading-invariance). In an interference-limited PPNF, the probability of successively

decodingk users (at the origin) does not depend on the fading distribution as long asE[hβ ] < ∞.

Furthermore, it is convenient to define a standard PLPF as follows:

Definition 4. A standard PLPF (SPLPF)Ξβ is a one-dimensional PPP onR+ with intensity

measureΛ([0, r]) = rβ, whereβ ∈ (0, 1).

Trivally based on Prop. 1 and Cor. 1, the following fact significantly simplifies the analyses

in the rest of the paper.

Fact 1. The statistics ofN in a PPNF are identical to those ofN in Ξβ for any fading distribution

and any values ofa, b, d, α, with β = δ + b/α = (d+ b)/α.

IV. BOUNDS ON THEPROBABILITY OF SUCCESSIVEDECODING

Despite the unified framework introduced in Section III, analytically evaluatingpk requires the

joint distribution of the received powers from thek strongest users and the aggregate interference

from the rest of the network, which is daunting even for the simplest case of a one-dimensional

homogeneous PPP. In this section, we derive bounds onpk. Due to the technical difficulty of

deriving a bound that is tight for all network parameters, weprovide different tractable bounds

tight for different system parameters. These bounds complement each other and collectively

provide insights on howpk depends on different system parameters. The relations between

different bounds are summarized in Table I at the end of this section.

A. Basic Bounds

The following lemma introduces basic upper and lower boundsonpk in terms of the probability

of decoding thek-th strongest user assuming thek − 1 strongest users do not exist. Although

not being bounds in closed-form, the bounds form the basis for the bounds introduced later.

Lemma 2. In a PPNF, the probability of successively decodingk users is bounded as follows:
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• pk ≥ (1 + θ)−
βk(k−1)

2 P(ξ−1
k > θIk)

• pk ≤ θ−
βk(k−1)

2 P(ξ−1
k > θIk)

whereΞβ = {ξi} is the corresponding SPLPF andIk ,
∑∞

j=k+1 ξ
−1
j .

Proof: See App. A.

The idea behind of Lemma 2 is to first decomposepk by Bayes’ rule intoP(ξi > Ii, ∀i ∈
[k − 1] | ξ−1

k > Ik)P(ξ
−1
k > Ik), and then to bound the first term. An important observation is

that conditioned onξk, the distribution ofξi/ξk, ∀i < k is the same as that of thei-th order

statistics ofk − 1 iid random variable with cdfF (x) = xβ
1[0,1](x). This observation allows us

to boundP(ξi > Ii, ∀i ∈ [k − 1] | ξ−1
k > Ik) using tools from the order statistics of uniform

random variables [23] sinceF (x) is also the cdf ofU
1
β , whereU is a uniform random variable

with support[0, 1].

Sincelimθ→∞
θ

1+θ
= 1, it is observed that both the upper and lower bounds in Lemma 2are

asymptotically tight whenθ → ∞, for all β ∈ (0, 1) andk ∈ N. Further, as will be shown later,

the bounds are quite informative for moderate and realisticvalues ofθ.

The importance of Lemma 2 can be illustrated by the followingattempt of expressingpk in

a brute-forceway. Lettingfξ1,ξ2,··· ,ξk,Ik(·) be the joint distribution (pdf) ofξ1, ξ2, ·, ξk andIk, we

have

pk =

∫ ∞

0

1
θy
∫

0

1

θ(y+x
−1
k

)
∫

0

1

θ(y+
∑k

i=k−1
x
−1
i

)
∫

0

· · ·

1

θ(y+
∑k

i=2
x
−1
i

)
∫

0

fξ1,ξ2,··· ,ξk,Ik(x1, x2, · · · , xk, y)dx1dx2 · · ·dxkdy.

(3)

There are two main problems with using (3) to study the performance of SIC: First, the joint

distribution offξ1,ξ2,··· ,ξk,Ik(·) is hard to get as pointed out also in [1]. Second, even if the joint

distribution is obtained by possible numerical inverse-Laplace transform, thek+ 1 fold integral

is very hard to be numerically calculated, and it is very likely that the integration is even more

numerically intractable than a Monte Carlo simulation6. Even if the above two problems are

solved, the closely-coupledk + 1 fold integral in (3) is very hard to interpret, and thus offers

little design insights on the performance of SIC.

6In this case, it is desirable to integrate by Monte Carlo methods. But that can only bring down the complexity to the level

of simulations.
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B. The Lower Bounds

1) High-rate lower bound:Lemma 2 provides bounds onpk as a function ofP(ξ−1
k > θIk).

In the following, we give the high-rate lower bounds7 by lower boundingP(ξ−1
k > θIk).

Lemma 3. Thek-th smallest element inΞβ, ξk, has pdf

fξk(x) =
βxkβ−1

Γ(k)
exp(−xβ).

Thanks to the Poisson nature ofΞ (Lemma 1), the proof of Lemma 3 is analogous to the one

of [24, Thm. 1] where the result is only about the distance (fading is not considered).

Lemma 4. For Ξβ = {ξi}, P(ξ−1
k > θIk) is lower bounded by

∆1(k) ,
1

Γ(k)

(

γ

(

k,
1− β

θβ

)

− θβ

1− β
γ

(

k + 1,
1− β

θβ

))

,

whereγ(·, ·) is the lower incomplete gamma function.

The proof the Lemma 4 is a simple application of the Markov inequality and can be found in

App. B. In principle, one could use methods similar to the onein the proof of Lemma 4 to find

the higher-order moments ofIρ and then obtain tighter bounds by applying inequalities involving

these moments,e.g., the Chebyshev inequality. However, these bounds cannot be expressed in

closed-form, and the improvements are marginal.

Combining Lemmas 2 and 4, we immediately obtain the following proposition.

Proposition 2 (High-rate lower bound). In the PPNF,pk ≥ (1 + θ)−
βk(k−1)

2 ∆1(k).

Since∆1(k) is monotonically decreasing withk, the lower bound in Prop. 2 decays super-

exponentially withk2.

2) Low-rate lower bound:The lower bound in Prop. 2 is tight for largeθ. However, it

becomes loose whenθ is small. This is because Prop. 2 estimatespk by approximating the

relation betweenξi andIi with the relation betweenξi andξi+1. This approximation is accurate

whenξ−1
i+1 ≈ θIi+1. But whenθ → 0, ξ−1

i+1 ≫ θIi+1 happens frequently, making the bound loose.

7The high-rate lower bound also holds in the low-rate case,i.e., θ is small. The bound is named as such since in the low-rate

case we will provide another (tighter) bound.
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The following proposition provides an alternative lower bound particularly tailored for the small

θ regime.

Proposition 3 (Low-rate lower bound). In the PPNF, fork < 1/θ + 1, pk is lower bounded by

pLR
k

,
1

Γ(k)

(

γ

(

k,
1− β

θ̃β

)

− θ̃β

1− β
γ

(

k + 1,
1− β

θ̃β

)

)

,

whereLR meanslow-rateand θ̃ , θ
1−(k−1)θ

.

In order to avoid the limitation of estimatingIi by ξi when θ → 0, the low-rate lower

bound in Prop. 3 is not based on Lemma 2. Instead, we observe that Ii =
∑k

j=i+1 ξ
−1
j + Ik <

(k − i)ξ−1
i + Ik, ∀i < k and thus the probability ofξ−1

i > θIi can be estimated by the joint

distribution of ξi and Ik. Recursively apply this estimate for alli < k leads to the bound as

stated. The proof of Prop. 3 is given in App. B. Note that the bound in Prop. 3 is only defined

for k < 1/θ + 1. Yet, in the low rate regime (θ → 0), this is not a problem. As will be shown

in Section V, whenθ → 0, this bound behaves much better than the one in Prop. 2.

C. The Upper Bound

Similar to the high-rate lower bound, we derive an upper bound by upper boundingP(ξ−1
k >

θIk).

Lemma 5. For Ξβ = {ξi}, P(ξ−1
k > θIk) is upper bounded by

∆2(k) , γ̄(k, 1/c) +
e

(1 + c)k
Γ̄(k, 1 + 1/c),

wherec = θβγ(1−β, θ)−1+e−θ, γ̄(z, x) = γ(z,x)
Γ(z)

and Γ̄(z, x) = Γ(z,x)
Γ(z)

are thenormalized lower

and upper incomplete gamma function, andΓ(·, ·) is theupper incomplete gamma function.

The proof of Lemma 5 (see App. B) relies on the idea of constructing an artificial Rayleigh

fading coefficient and compare the outage probability in theoriginal (non-fading) case and the

fading case. Combining Lemmas 5 and 2 yields the following proposition.

Proposition 4 (Combined upper bound). In the PPNF, we havepk ≤ pk , θ̄−
β
2
k(k−1)∆2(k),

where θ̄ = max{θ, 1}.
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For θ > 1, similar to the high-rate lower bound in Prop. 2, the upper bound in Prop. 4 decays

super-exponentially withk2, i.e.,− log pk ∝ k2, which suggests that, in this regime, the marginal

gain of adding SIC capability (i.e., the ability of successively cancelling more users) diminishes

very fast.

D. The Sequential Multi-user Decoding (SMUD) Bounds

The bounds derived in Sections IV-B and IV-C apply to allθ > 0. This subsection provides

an alternative set of bounds constructed based on a different idea. These bounds are typically

much tighter than the previous bounds in the sequential multi-user decoding (SMUD) regime

defined as follows.

Definition 5. A receiver with SIC capability is in the sequential multi-user decoding (SMUD)

regime if the decoding thresholdθ ≥ 1.

It can be observed that in the SMUD regime multiple packet reception (MPR) can be only

carried out with the help of SIC, whereas outside this regime, i.e.,θ < 1, MPR is possible without

SIC, i.e., by parallel decoding (this argument is made rigorous by Lemma 10 in App. C). This

important property of the SMUD regime enables us to show the following (remarkable) result

which gives a closed-form expression forP(ξ−1
k > θIk).

Theorem 1. For θ ≥ 1,

P(ξ−1
k > θIk) =

1

θkβΓ(1 + kβ)
(

Γ(1− β)
)k
, (4)

whereΓ(·) is the gamma function. Moreover, the RHS of (4) is an upper bound onP(ξ−1
k > θIk)

whenθ < 1.

With details of the proof in App. C, the main idea of Thm. 1 liesin the observation that,

in the SMUD regime, there can beat mostone k-element user set, where the received power

from any one of thek users is larger thanθ times the interference from the rest of the network.

This observation, combined with the fading-invariance property shown in Cor. 1, enables us

to separate thek intended users from the rest of the network underinduced(artificial) fading

without worrying about overcounting. Conversely, withθ < 1, overcounting cannot be prevented,

which is why the same method results in an upper bound.
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Fig. 2: Comparison ofP(ξ−1

k > θIk) between simulation and the analytical value according to Cor. 3 for k =

1, 2, 3, 4, 5.

Combining Thm. 1 with Lemma 2, we obtain another set of boundson pk.

Proposition 5 (SMUD bounds). For θ ≥ 1 andΞβ = {ξi}, we have

pk ≥ 1

(1 + θ)
β
2
k(k−1)θkβΓ(1 + kβ)

(

Γ(1− β)
)k

and

pk ≤ 1

θ
β
2
k(k+1)Γ(1 + kβ)

(

Γ(1− β)
)k
.

More generally, for allθ > 0, we have

pk ≤ 1

θ̄
β
2
k(k−1)θkβΓ(1 + kβ)

(

Γ(1− β)
)k
, (5)

where θ̄ = max{θ, 1}.

Note that the SMUD upper bound in Prop. 5 is valid also forθ < 1. The name of the bounds

only suggests that these bounds are tightest in the SMUD regime.

E. Two General Outage Results

Takingk = 1, we obtain the following corollary of Thm. 1, which gives theexact probability

of decoding the strongest user in a PPNF forθ > 1 and a general upper bound of the probability

of decoding the strongest user.
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Corollary 2. For θ ≥ 1, we have

p1 = P(ξ−1
1 > θI1) =

sinc β

θβ
, (6)

and the RHS is an upper bound onP(ξ−1
1 > θI1) whenθ < 1.

It is worth noting that the closed-form expression in Cor. 2 has been discovered in several

special cases. For example, [25] derived the equality part of (6) in the Rayleigh fading case,

and [26] showed that the equality is true for arbitrary fading distribution. However, none of the

existing works derives the results in Cor. 2 in as much generality as here. More precisely, we

proved that (6) holds for arbitrary fading (including the non-fading case) ind-dimensional PPNF

(including non-uniform user distribution).

Whenβ = 1
2
, (4) can be further simplified, and we have the following corollary.

Corollary 3. Whenβ = 1/2,

P(ξ−1
k > θIk) =

1

(πθ)
k
2Γ(k

2
+ 1)

, (7)

and the RHS is an upper bound onP(ξ−1
k > θIk) whenθ < 1.

Fig. 2 compares the (7) with simulation results fork = 1, 2, 3, 4, 5. We found that the estimate

in Cor. 3 is quite accurate forθ > −4 dB, which is consistent with the observation in [25], where

only the casek = 1 is studied.

F. Comparison of the Bounds

Focusing onk = 1, 2, 3, Fig. 3 plots the combined upper bounds, high-rate lower bounds,

SMUD upper bounds as a function ofθ. We see thatpk decays very rapidly withθ, especially

whenk is large, which suggests that the benefit of decoding many users can be very small under

high-rate codes.

As is shown in the figure, the SMUD bounds are generally tighter than the combined upper

bound. However, these bounds are less informative whenθ ≪ 1, where the upper bound exceeds

one at about−5 dB. After that, we have to rely on the combined upper bound to estimatepk.

Note that the combined upper bound behaves slightly differently for θ > 1 and θ < 1 when

k > 1. This is because the combined upper bound in Prop. 4 becomes∆2(k) whenθ < 1. More
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Fig. 3: Combined upper bound (Prop. 4), high-rate lower bound (Prop. 2), and SMUD upper bound (Prop. 5) for

pk (k = 1, 2, 3, from top to bottom) in a 2-d uniform network with path loss exponentα = 3.

precisely, the combined upper bound ignores the ordering among thek strongest users and only

considersP(ξ−1
k > θIk) whenθ < 1.

The bounds derived above highlight the impact of clusteringon the effectiveness of SIC.

Fig. 4a compares the bounds on probability of successively decoding 1, 2 and 3 users for

different network clustering parametersb, using the combined upper and high-rate lower bounds

derived in Sections IV-B and IV-C. The corresponding SMUD bounds on the same quantities

derived in Section IV-D are plotted in Fig. 4b, where the upper and lower bounds for the case

k = 1 are both tight and overlapping. Comparing Figs. 4a and 4b, wefind the SMUD bounds

are a huge improvement over the combined upper bound and high-rate lower bound despite its

limitation. While the bounds in Fig. 4 are derived using rather different techniques and provide

different levels of tightness for different values ofθ, both figures capture the important fact that

the more clustered the network, the more useful SIC.

Table I summarizes and compares the three lower bounds and two upper bounds derived in

this section. In general, the SMUD bounds are the best estimates if θ ≥ 1. However, there is

no SMUD lower bound defined forθ < 1 and the SMUD upper bound becomes trivial (exceeds

one) for θ ≪ 1. This is the reason why we need the other bounds to complementthe SMUD

bounds.
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TABLE I: Comparison of Different Bounds onpk: LR stands for low-rate; HR stands for high-rate.

Lower Bounds Upper Bounds

HR LR SMUD Combined SMUD

Given in Prop. 2 Prop. 3 Prop. 5 Prop. 4 Prop. 5

Based on the Basic bounds Yes No Yes Yes Yes

Valid/nontrivial when θ ∈ R
+ k < θ−1 + 1 θ ≥ 1 θ ∈ R

+ θ 6≪ 1

limθ→0(·) = 1 Yes Yes N/A Yes No

Typical Best Estimate Region θ 6≪ 1 θ ≪ 1 θ ≥ 1 θ ≪ 1 θ 6≪ 1
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(a) Combined upper bound and high-rate lower bound.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b

p k

 

 

SMUD (exact), k=1
SMUD bounds, k=2
SMUD bounds, k=3

(b) SMUD estimates.

Fig. 4: Upper and lower bounds forpk (k = 1, 2, 3) in a 2-d network with with path loss exponentα = 4, θ = 1

and density functionλ(x) = a‖x‖b. b = 0 is the uniform case. Upper bounds are in solid lines, and lower bounds

in dashed lines.

V. THE EXPECTED GAIN OF SIC

A. The Mean Number of Successively Decoded Users

With the bounds onpk, we are able to derive bounds onE[N ], the expected number of users

that can be successively decoded in the system, sinceE[N ] =
∑∞

k=1 pk.

Proposition 6. In the PPNF, we haveE[N ] ≥∑K
k=1(1 + θ)−

β
2
k(k−1)∆1(k) for all K ∈ N.

On the one hand, Prop. 6 follows directly from Prop. 2 whenK → ∞. On the other hand,

since for largeθ, pk decays very fast withk, a tight approximation can be obtained for small
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integersK. In fact, the error term
∑∞

k=K+1(1 + θ)−
β
2
k(k−1)∆1(k) can be upper bounded as

∞
∑

k=K+1

(1 + θ)−
β
2
k(k−1)∆1(k) ≤ ∆1(K)

∞
∑

k=K+1

(1 + θ)−
β
2
k(k−1)

≤ ∆1(K)

∫ ∞

K

(1 + θ)−
β
2
x(x−1)dx

=
(1 + θ)

β
8∆1(K)

√
π

√

2β log(1 + θ)
erfc

(

(K − 1

2
)

√

β

2
log(1 + θ)

)

, (8)

whereerfc(·) is the complementary error function. By inverting (8), one can control the numerical

error introduced by choosing an finiteK. Due to the tail property of complementary error function

and the monotonicity of∆1(k), it is easy to show that the error term decays super-exponentially

with K2 whenK ≫ 1 and thus a finiteK is a good approximation for the caseK → ∞ .

On the other hand,

(1 + θ)
β
8∆1(K)

√
π

√

2β log(1 + θ)
erfc

(

(K − 1

2
)

√

β

2
log(1 + θ)

)

∼
√

π

2β
θ−

1
2 , asθ → 0, (9)

where we use the fact thatlimθ→0∆1(K) = 1 and limx→0 erfc(x) = 1. (9) suggests that when

θ → 0, for any finiteK, the errormayblow up quickly, which is verified numerically. Therefore,

in the smallθ regime, we need another, tighter, bound, and this is where the low-rate lower bound

in Prop. 3 helps.

Proposition 7. In the PPNF, we haveE[N ] ≥∑⌊1/θ⌋
k=1 pLR

k
.

A rigorous upper bound can be derived similarly but with morecaution as we cannot simply

discard a number of terms in the sum. The following lemma presents a bound based on Prop. 4.

Proposition 8. In the PPNF,E[N ] is upper bounded by

e1+K

√
2π

(cK)1−K

cK − 1
+

e

c
(1 + c)1−K +

K−1
∑

k=1

θ̄−
β
2
k(k−1)∆2(k),

for all K ∈ N ∩ [e/c,∞), whereθ̄ = max{θ, 1}.

The proof Prop. 8 is based on upper bounding the tail terms of the infinite sum and can be

found in App. D. Likewise, we can build a SMUD upper bound based on Prop. 5 as follows.
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Proposition 9 (SMUD upper bound). The mean number of decodable users is upper bounded

by

EN ≤
K−1
∑

k=1

(

C(k)

Γ(1− β)

)k
1

Γ(1 + kβ)
+

1

Γ(1 +Kβ)

(

C(K)

Γ(1− β)

)K
Γ(1− β)

Γ(1− β)− C(K)
,

whereC(k) , θ−β θ̄−
β
2
(k−1).

The idea of the proof Prop. 9 closely resembles that of Prop. 8and is thus omitted from the

paper.

Fig. 5 compares the bounds provided in Props. 6, 7, 8 and 9 withsimulation results in a

uniform 2-d network withα = 4. Although the low-rate lower bound can be calculated for all

θ < 1, it is only meaningful whenθ is so small that the lower bound in Prop. 6 fails to capture

the rate at whichEN grows with decreasingθ. Thus, we only plot the low-rate lower bound for

θ < −5 dB.

As is shown in the figure,EN increases unboundedly with the decreasing ofθ, which further

confirms that SIC is particularly beneficial for low-rate applications in wireless networks, such

as node discovery, cell search,etc.

Fig. 5 also shows the different merits of the different closed-form bounds presented above.

The bounds of Props. 6 and 8 behave well in most of the regime where the practical systems

operate. In the lower SIR regime,i.e., when θ → 0, the low-rate lower bound outperforms the

lower bound in Prop. 6 which does not capture the asymptotic behavior ofEN . The SMUD

bound in Prop. 9 provides a tighter alternative to the upper bound in Prop. 8 and is especially

tight for θ > 1.

B. The Aggregate Throughput

Although a smallerθ results in more effective SIC, it also means the informationrate at each

transmitter is smaller. Thus, it is interesting to see how the aggregate throughput defined in (1)

changes with respect toθ. One way of estimate the aggregate throughput is by using Props. 6,

7, 8 and 9.

Fig. 6 shows the total information rate as a function ofθ with analytical bounds and simulation.

Again, we only show the low-rate lower bounds forθ < −5 dB. In this case, we see that the

lower bound of the aggregate throughput becomes a non-zero constant whenθ → 0 just like
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Fig. 5: The mean number of users that can be successively decoded in a 2-d uniform network with path loss

exponentα = 4. Here, the upper bound, lower bound, low-rate lower bound, SMUD upper bound refer to the

bounds in Props. 6, 8, 7 and 9, respectively.

the upper bound. Therefore, our results indicate that whilethe aggregate throughput diminishes

whenθ → ∞, it converges to a finite non-zero value whenθ → 0. In particular, by using Prop. 8

and lettingθ → 0, we can upper bound the asymptotic aggregate throughput by2
β
− 2, which

turns out to be a loose bound.

Nevertheless, it is possible to construct a better bound which improves (reduces) the bound

by a factor of2 and is numerically shown to be asymptotically tight (as is also shown in Fig. 6

and will be proved below). To show this better bound, we introduce the following lemma whose

proof can be found in App. D.

Lemma 6. The Laplace transform ofξkIk is

LξkIk(s) =
1

(c(s) + 1)k
, (10)

wherec(s) = sβγ(1− β, s)− 1 + e−s.

Then, we have the following asymptotic bound on the aggregate throughput.

Proposition 10.The aggregate throughputR = log(1+θ)E[N ] is (asymptotically) upper bounded

by

lim
θ→0

R ≤ 1

β
− 1. (11)
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Fig. 6: Aggregate throughput ato in a 2-d uniform network with with path loss exponentα = 4, i.e.,β = δ = 2/α =

1/2. The upper bound, lower bound, low-rate lower bound and SMUDupper bound come from Props. 8, 6, 7 and 9

respectively. In this case, the asymptotic upper bound (Prop. 10) is 1/β − 1 = 1 nats/s/Hz and is plotted with

dashed line labeled by a left-pointing triangle.

Proof: First, we have

E[N ] =

∞
∑

k=1

pk ≤
∞
∑

k=1

P(ξkIk < 1/θ) =

∞
∑

k=1

∫ 1/θ

0

fξkIk(x)dx =

∫ 1/θ

0

∞
∑

k=1

fξkIk(x)dx. (12)

In general, the RHS of (12) is not available in closed-form since fξkIk , the pdf of ξkIk, is

unknown. However, whenθ → 0, this quantity can be evaluated in the Laplace domain. To see

this, consider a sequence of functions(fn)
∞
n=1, wherefn(x) = 1

n

∑n
k=1 fξkIk(x), ∀x > 0 and,

obviously,
∫∞
0

fn(x)dx = 1 for all n. Thus,

1 = lim
θ→0

∫ 1/θ

0
fn(x)dx

∫∞
0

e−θxfn(x)dx
= lim

θ→0

∫ 1/θ

0

∑∞
k=1 fξkIk(x)dx

∫∞
0

e−θx
∑∞

k=1 fξkIk(x)dx
, ∀n ∈ N (13)

where
∫ ∞

0

e−θx

∞
∑

k=1

fξkIk(x)dx =

∞
∑

k=1

∫ ∞

0

e−θxfξkIk(x)dx =

∞
∑

k=1

LξkIk(θ).

Comparing (12) and (13) yields that

lim
θ→0

E[N ]
∑∞

k=1LξkIk(s)|s=θ

≤ 1,
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whereLξkIk(s) is given by Lemma 6. Therefore, we have

lim
θ→0

log(1 + θ)E[N ] ≤ lim
θ→0

θ

∞
∑

k=1

LξkIk(θ) = lim
θ→0

θ

c(θ)
.

The proof is completed by noticing thatlimθ→0
θ

c(θ)
= 1−β

β
.

In the example considered in Fig. 6, we see the bound in Prop. 10 matches the simulation

results. Along with this example, we testedβ = 1/3 andβ = 2/3, and the bound is tight in both

cases, which is not surprising. Because, in the proof of Prop. 10, the only slackness introduced

is due to replacingpk with P(ξ−1
k > θIk), and it is conceivable that, for every givenk, this

slackness diminishes in the limit, sincelimθ→0 P(ξ
−1
k > θIk) = limθ→0 pk = 1. Thus, estimating

E[N ] by
∑∞

k=1 P(ξ
−1
k > θIk) is exact in the limit.

Many simulation results (including the one in Fig. 6) suggest that the aggregate throughput

monotonically increases with decreasingθ. Assuming this is true, Prop. 10 provides an upper

bound on the aggregate throughput in the network for allθ. We also conjecture that this bound

is asymptotically tight and thus can be achieved by driving the code rate at every user to0,

which is also backed by simulations (e.g.,see Fig. 6).

Since the upper bound is a monotonically decreasing function of β we can design system

parameters to maximize the achievable aggregate throughput provided that we can manipulate

β to some extent. For example, sinceβ = δ + b/α and δ = d/α, one can try to reduceb to

increase the upper bound. Note thatb is a part of the density function of theactive transmitters

in the network and can be changed by independent thinning of the transmitter process [19], and a

smallerb means the active transmitters are more clustered around thereceiver. This shows that a

MAC scheme that introduces clustering has the potential to achieve higher aggregate throughput

in the presence of SIC.

C. A Laplace Transform-based Approximation

Lemma 6 gives the Laplace transform ofξkIk, which completely characterizesP(ξ−1
k > θIk),

an important quantity in boundingpk, E[N ] and thusR. As analytically inverting (10) seems

hopeless, a numerical inverse Laplace transform naturallybecomes an alternative to provide

more accurate system performance estimates. However, the inversion (numerical integration in

complex domain) is generally difficult to interpret and offers limited insights into the system

performance.
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Fig. 7: Simulated and approximated, by (14), aggregate throughput ato in a 2-d uniform network.

On the other hand,LξkIk(θ) = P(H > θξkIk) for an unit-mean exponential random variable

H. This suggests to useLξkIk(θ) to approximateP(ξ−1
k > θIk). We would expect such an

approximation to work for (at least) smallθ. Because, first, it is obvious that for eachk, this

approximation is exact asθ → 0 since in that case both the probabilities go to 1; second and

more importantly, Prop. 10 shows that the approximatedR based on this idea is asymptotically

exact.

According to such an approximation, we have

R ≈ log(1 + θ)

c(θ)
=

log(1 + θ)

θβγ(1− β, θ)− 1 + e−θ
. (14)

This approximation is compared with simulation results in Fig. 7, where we considerβ = 1/3,

1/2 and 2/3. As shown in the figure, the approximation is tight from -20 dBto 20 dB which

covers the typical values ofθ. Also, as expected, the approximation is most accurate in the small

θ regime8, which is known to be the regime where SIC is most useful [1], [4], [27].

VI. THE EFFECT OFNOISE

In many wireless network outage analyses, the consideration of noise is neglected mainly

due to the argument that most networks are interference-limited (without SIC). However, this is

8 The fact that the approximation is also accurate for very large θ is more of a coincidence, as the construction of the

approximation ignores ordering requirement within the strongest (decodable)k users and is expected to be fairly inaccurate

whenθ → ∞ (see Lemma 2).
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not necessarily the case for a receiver with SIC capability,especially when a large number of

transmitters are expected to be successively decoded. Since the users to be decoded in the later

stages have significantly weaker signal power than the usersdecoded earlier, even if for the first

a few users interference dominates noise, after decoding a number of users, the effect of noise

can no longer be neglected.

Fortunately, most of the analytical bounds derived before can be adapted to the case where

noise is considered. If we let̃N be the number of users that can be successively decoded in

the presence of noise of powerW , we can definepWk , P(Ñ ≥ k) to be the probability of

successively decoding at leastk users in the presence of noise. Considering the (ordered) PLPF

Ξ = {ξi = ‖x‖α
hx

} as before, we can writepWk as

pWk , P
(

ξ−1
i > θ(Ii +W ), ∀i ≤ k

)

,

and we have a set of analogous bounds as in the noiseless case.

Lemma 7. In a noisy PPNF, the probability of successively decodingk users is bounded as

follows:

• pWk ≥ (1 + θ)−
βk(k−1)

2 P(ξ−1
k > θ (Ik +W ))

• pWk ≤ θ−
βk(k−1)

2 P(ξ−1
k > θ(Ik +W ))

whereΞβ = {ξi} is the corresponding SPLPF andIk ,
∑∞

j=k+1 ξ
−1
j .

Proof: The proof is analogous to the proof of Lemma 2 with two major distinctions: First,

we need to redefine the eventAi to be {ξ−1
i > θ(Ii + W )}. Second, Fact 1 does not hold

in the noisy case, and thus the original PLPF (instead of the normalized SPLPF) needs to be

considered. However, fortunately, this does not introduceany difference on the order statistics

of the first k − 1 smallest elements inΞ conditioned on theξk, and thus the proof can follow

exactly the same as that of Lemma 2.

Thanks to Lemma 7, boundingpWk reduces to boundingP(ξ−1
k > θ (Ik +W )). Ideally, we can

boundP(ξ−1
k > θ (Ik +W )) by reusing the bounds we have onP(ξ−1

k > θIk). Yet, this method

does not yield closed-form expressions (in most cases such bounds will be in an infinite integral

form). Thus, we turn to a very simple bound which can still illustrate the distinction between

the noisy case and the noiseless case.
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Lemma 8. In a noisy PPNF, we have

P(ξ−1
k > θ (Ik +W )) ≤ γ̄(k,

ā

θβW β
), (15)

where ā = aδcdE[h
β ]/β, β = δ + b/α, and δ = d/α.

Proof: First, note thatP(ξ−1
k > θ (Ik +W )) ≤ P(ξk < 1

θW
) which equals the probability

that there are no fewer thank elements of the PLPF smaller than1/θW . By Lemma 1, the

number of elements of the PLPF in(0, 1/θW ) is Poisson distributed with mean̄a/θβW β, and

the lemma follows.

Although being a very simple bound, Lemma 8 directly leads tothe following proposition

which contrasts what we observed in the noiseless network.

Proposition 11. In a noisy PPNF, the aggregate throughput goes to 0 asθ → 0.

Proof: Combining Lemma 7 and Lemma 8, we have

E[N ] =
∞
∑

k=1

pWk ≤
∞
∑

k=1

P(ξ−1
k > θ (Ik +W )) ≤

∞
∑

k=1

γ̄(k,
ā

θβW β
) = ā/θβW β.

In other words,E[N ] is upper bounded by the mean number of elements of the PLPF in

(0, 1/θW ). Then, it is straightforward to show thatlimθ→0R ≤ limθ→0 āθ
1−β/W β, and the

RHS equals zero sinceβ ∈ (0, 1).

Since it is obvious thatlimθ→∞R = 0, we immediately obtain the following corollary.

Corollary 4. There exists at least one optimalθ > 0 that maximizes the aggregate throughput

in a noisy PPNF.

As is shown in the proof of Prop. 11,̄a/θβW β is an upper bound onE[N ]. We can obtain

an upper bound on the aggregate throughput by taking the minimum of log(1 + θ)ā/θβW β and

the upper bound shown in Fig. 6. Fig. 8 compares the upper bounds with simulation results,

considering different noise power levels. This figure showsthat the noisy bound becomes tighter

and the interference bound becomes looser asθ → 0. This is because asθ decreases the receiver

is expected to successively decode a larger number of users.The large amount of interference

canceled makes the residual interference (and thus the aggregate throughput) dominated by noise.

In this sense, the optimal per-user rate mentioned in Cor. 4 provides the rightbalancebetween

interference and noise in noisy networks.
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Fig. 8: Aggregate throughput ato in a 2-d uniform network with noise. Here, the path loss exponentα = 4. Three

levels of noise are considered:W = 0.1, W = 1 andW = 10.

Thanks to Lemma 8, we see that Prop. 1 clearly does not hold fornoisy networks. Nevertheless,

there is still a monotonicity property in noisy networks, analogous to the scale-invariance property

in noiseless networks, as stated by the following proposition.

Proposition 12 (Scale-monotonicity). For two PLPFΞ and Ξ̄ with intensity measureΛ([0, r]) =

a1r
β and µ([0, r]) = a2r

β, wherea1 and a2 are positive real numbers anda1 ≤ a2, we have

pWk (Ξ) ≤ pWk (Ξ̄), ∀k ∈ N.

Proof: See App. D.

Combining Lemma 1 and Prop. 12 yields the following corollary, sinceE[hβ ] ≤ 1 given that

E[h] = 1 (recall thatβ ∈ (0, 1)).

Corollary 5. In a noisy PPNF, fading reducespWk , the mean number of users that can be

successively decoded, and the aggregate throughput.

Since random power control,i.e., randomly varying the transmit power at each transmitter

under some mean and peak power constraint [28], [29], can be viewed as a way of manipulating

the fading distribution, Cor. 5 also indicates that (iid) random power control cannot increase the

network throughput in a noisy PPNF.
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VII. A PPLICATION IN HETEROGENEOUSCELLULAR NETWORKS

A. Introduction

The results we derived in the previous sections apply to manytypes of wireless networks. One

of the important examples is the downlink of heterogeneous cellular networks (HCNs). HCNs

are multi-tier cellular networks where the marcro-cell base stations (BSs) are overlaid with low

power nodes such as pico-cell BSs or femto-cell BSs. This heterogeneous architecture is believed

to be part of the solution package to the exponentially growing data demand of cellular users

[30], [31]. However, along with the huge cell splitting gainand deployment flexibility, HCNs

come with the concern that the increasing interference may diminish or even negate the gain

promised by cell densification. This concern is especially plausible when some of the tiers in

the network can have closed subscriber groups (CSG),i.e., some BSs only serve a subset of the

users and act as pure interferers to other users.

There are multiple ways of dealing with the interference issues in HCNs including exploiting

MIMO techniques [8], [20], coordinated multi-point processing (CoMP) [32], [33] and inter-cell

interference coordination (ICIC) [34]–[36]. In addition,successive interference cancellation is

also believed to play an important part in dealing with the interference issues in HCNs [37].

In this section, leveraging tools developed in the previoussections, we will analyze the

potential benefit of SIC in ameliorating the interference within and across tiers. The key difference

between the analysis in this section and those in Section V isthat in HCNs, the receiver (UE)

is only interested in being connected tooneof the transmitters (BSs) whereas in Section V, we

assumed that the receiver is interested in the message transmitted from all of the transmitters.

We model the base stations (BSs) in aK-tier HCN by a family of marked Poisson point

processes (PPP){Φ̂i, i ∈ [K]}, whereΦ̂i = {(xj , h
(i)
xj , t

(i)
xj )} represents the BSs of thei-th tier,

Φi = {xj} ⊂ R
2 are uniform9 PPPs with intensityλi, h

(i)
x is the iid (subject to distribution

f
(i)
h (·)) fading coefficient of the link fromx to o, and t

(i)
x is the type of the BS and is an iid

Bernoulli random variable withP(t(i)x = 1) = π(i) andP(t
(i)
x = 0) = 1 − π(i). If t

(i)
x = 1, we

call the BSx accessibleand otherwisenon-accessible. Using tx to model the accessibility of

the BSs enables us the incorporate the effect of some BS beingconfigured with CSG and thus

9Although we only consider uniformly distributed BSs in thissection, with the results in previous sections, generalizing the

results to non-uniform (power-law density) HCNs is straightforward.
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Fig. 9: A 2-tier HCN with 10% of Tier 1 (macrocell) BSs (denoted by+) overloaded and 30% of Tier 2 (femtocell)

BSs (denoted by×) configured as closed. A box is put on the BS whenever it is non-accessible (i.e.,either configured

as closed or overloaded). Theo at origin is a typical receiver.

acts as pure interferers to the typical UE.10 For a typical receiver (UE) ato, the received power

from BS x ∈ Φi is P (i)h
(i)
x ‖x‖−α, whereP (i) is the transmit power at BSs of tieri, andα is

the path loss exponent. Also note that since this section focuses on 2-d uniform networks, we

haveβ = 2/α. An example of a two tier HCN is shown in Fig. 9.

An important quantity that will simplify our analysis in theK-tier HCN is theequivalent

access probability(EAP) defined as below.

Definition 6. Let

Z ,

K
∑

i=1

λiE[(h
(i))β](P (i))β.

The equivalent access probability(EAP) is the following weighted average of the individual

access probabilitiesπ(i):

η =
1

Z

K
∑

i=1

π(i)λiE[(h
(i))β](P (i))β.

Thanks to the obvious similarity between this HCN model and our PPNF model introduced

in Section II, we can define themarkedPLPF as follows.

10 In addition to modeling the CSG BSs, the non-accessible BSs can also be interpreted as overloaded/biased BSs [30] or

simply interferers outside the cellular system.



29

Definition 7. The marked PLPFcorresponding to the tieri network isΞ̂i = {( ‖x‖α
hxP (i) , tx) : x ∈

Φi}, with Ξi , { ‖x‖α
hxP (i) : x ∈ Φi} being the (ground) PLPF.

Furthermore, we denote the union of theK marked PLPFs and ground PLPFs asΞ̂ ,
⋃K

i=1 Ξ̂i

andΞ ,
⋃K

i=1 Ξi, respectively. Then, we have the following lemma.

Lemma 9. The PLPF corresponding to theK-tier heterogeneous cellular BSs is a marked

inhomogeneous PPP̂Ξ = {(ξi, tξi)} ⊂ R
+ × {0, 1}, where the intensity measure ofΞ = {ξj} is

Λ([0, r]) = Zπrβ and the markstξ are iid Bernoulli withP(tξ = 1) = η.

Based on the mapping theorem, the independence betweentix and the fact that the superposition

of PPPs is still a PPP, the proof of Lemma 9 is straightforwardand thus omitted from the paper.

Despite the simplicity of the proof, the implication of Lemma 9 is significant: the effect of the

different transmit powers, fading distributions and access probabilities of theK-tiers of the HCN

can all be subsumed by the two parametersZ andη.

B. The Coverage Probability

An important quantity in the analysis of the downlink of heterogeneous cellular networks is the

coverage probability, which is defined as the probability ofa typical UE successfully connecting

to (at least) one of the accessible BSs (after possibly canceling some of the non-accessible BSs).

1) Without SIC:Using the PLPF framework we established above and assuming that the UE

cannotdo SIC and the system is interference-limited, we can simplify the coverage probability

in theK-tier cellular network to

Pc = P

(

ξ−1
∗

∑

ξ∈Ξ\{ξ∗} ξ
−1

> θ

)

, (16)

whereξ∗ , argmaxξ∈Ξ tξξ
−1, andθ is the SIR threshold.

Note that the coverage probability in (16) does not yield a closed-form expression in general

[38]. However, forθ ≥ 1, we can deduce

Pc = ηp1 =
η sinc β

θβ
, (17)

by combining Cor. 2 with the fact that the marks{ti} are independent fromΞ. More precisely,

when θ ≥ 1 (SMUD Regime), it is not possible for the UE to decode any BS other than the
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strongest BS without SIC11. Thus, the coverage probability without SIC is the product of the

probability that the strongest BS being accessibleη and the probability of decoding the strongest

BS p1.

2) With SIC: Similar to (16), we can define the coverage probability when the UE has SIC

capability. In particular, the coverage probabilityP SIC
c is the probability that after canceling a

number of non-accessible BSs, the signal to (residual) interference ratio from the any of the

accessible BSs is aboveθ. Formally, with the help of the PLPF, we define the following event

of coverage which happens with probabilityP SIC
c .

Definition 8 (Coverage with (infinite) SIC capability). A UE with infinite SIC capability is

coverediff there existsl ∈ N and k ∈ {i : ti = 1} such thatξ−1
i > θIi, ∀i ≤ l and ξ−1

k > θI !kl ,

whereI !kl ,
∑j 6=k

j≥l+1 ξ
−1
j .

In words, Def. 8 says that the UE is covered if and only if thereexists an integer pair(k, l),

such that thek-th strongest BS is accessible and can be decoded after successively cancelingl

BSs.

With the help of PLPF and the parameters we defined in the analysis of the PPNF, the following

lemma describes this probability in a neat formula.

Proposition 13. In the K-tier heterogeneous cellular network, the coverage probability of a

typical UE with SIC is

P SIC
c =

∞
∑

k=1

(1− η)k−1ηpk,

wherepk = pk(Ξ) is the probability of successively decoding at leastk users in a PLPF onR+

with intensity measureΛ([0, r]) = Zπrβ.

Proof: See App. E.

Thanks to Prop. 13 we can quantify the coverage probability of the HCN downlink using the

bounds onpk we obtained in Section IV. In particular, based on Prop. 2, a lower bound can be

11Intuitively, decoding any BS weaker than the strongest BS implies that this BS is stronger than the strongest BS and causes

contradiction. This argument can be made rigorous by applying Lemma 10 (in App. C) for the casek = 1.
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found as

P SIC
c ≥

K
∑

k=1

(1− η)k−1η(1 + θ)−
βk(k−1)

2 ∆1(k), (18)

where the choice ofK affects the tightness of the bound. Although a rigorous upper bound

cannot be obtained by simply discarding some terms from the sum, we can easily upper bound

the tail terms of it. For example, based on Prop. 4 we have

P SIC
c ≤

K
∑

k=1

(1− η)k−1ηθ̄−
β
2
k(k−1)∆2(k) + (1− η)K+1, (19)

where θ̄ = max{θ, 1} and (1 − η)K+1 bounds the residual terms in the infinite sum. Likewise,

the SMUD upper bound onpk in Section IV-D leads to

P SIC
c ≤ η

1− η

K−1
∑

k=1

(

(1− η)C(k)

Γ(1− β)

)k
1

Γ(1 + kβ)

+
η

1− η

1

Γ(1 +Kβ)

(

(1− η)C(K)

Γ(1− β)

)K
Γ(1− β)

Γ(1− β)− (1− η)C(K)
, (20)

whereC(k) , θ−β θ̄−
β
2
(k−1).

Besides these bounds, we can also use the approximation established in Section V-C to obtain

an approximation on the coverage probability in closed-form. In particular, we had

pk ≈ LξkIk(s)|s=θ =
1

(c(θ) + 1)k
,

wherec(θ) = θβγ(1− β, θ)− 1 + e−θ. Combing this with Prop. 13, we have

P SIC
c ≈ η

1− η

∞
∑

k=1

(

1− η

1 + c(θ)

)k

=
η

η + c(θ)
. (21)

In Fig. 10, we compare these bounds and the approximation with simulation results. These

bounds give reasonably good estimates on the coverage probability throughout the full range of

the SIR thresholdθ. In comparison with the coverage probability when no SIC is available, we

see that a significant gain can be achieved by SIC when the SIR thresholdθ is between−10 dB

and−5 dB. This conclusion is, of course, affected byη. The effect ofη will be further explored

in Section VII-E.
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Fig. 10: The coverage probability (with infinite SIC capability) as a function of SIR thresholdθ in HCNs with

η = 0.6 andα = 4. The (Laplace-transform-based) approximation, high-rate lower bound, combined upper bounds

of P SIC
c and SMUD upper bound is calculated according to (21), (18), (19) and (20), respectively. The coverage

probability in the case without SIC (a problem also studied in [25], [38]) is also plotted for comparison, where the

θ ≥ 0 dB part is analytically obtained by (17) and theθ < 0 dB part is based on simulation.

C. The Effect of the Path Loss Exponentα

When θ ≥ 1, we can also lower bound the coverage probability using the SMUD bound in

Prop. 5, which leads to

P SIC
c ≥ η

1− η

K
∑

k=1

1

(1 + θ)
β
2
k(k−1)Γ(1 + kβ)

(

1− η

θβΓ(1− β)

)k

, ∀K ≥ 1, (22)

where we take a finite sum in the place of an infinite one. The error term associated with this

approximation is upper bounded as
∞
∑

k=K+1

1

(1 + θ)
β
2
k(k−1)Γ(1 + kβ)

(

1− η

θβΓ(1− β)

)k

≤ 1

Γ(1 + (K + 1)β)

CK+1
2

1− C2

, (23)

whereC2 =
1−η

(1+θ)
β
2 KθβΓ(1−β)

. Since (23) decays super-exponentially withK, a smallK typically

ends up with a quite accurate estimate.

Fig. 11 plots the coverage probability as a function of the path loss exponentα. Here, the

coverage probability without SICP SIC
c is given by (17). The figure shows that the absolute gain

of coverage probability due to SIC is larger for larger path loss exponentα. Although our model

here does not explicitly consider BS clustering, by the construction of the PLPF in Section III,
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Fig. 11: Comparison between coverage probability with and without SIC in HCNs withη = 0.8, θ = 1. Here, the

upper and lower bounds are based on (20) and (22), respectively.

we can expect a larger gain due to SIC for clustered BSs. Further numerical results also show

that the gain is larger whenη is smaller,i.e., there are more non-accessible BSs.

D. Average Throughput

Reducing the SIR thresholdθ decreases the throughput of the UE under coverage. Similar to

our analyses to the aggregate throughput, we can define the average throughput as

T , log(1 + θ)P SIC
c .

For the case without SIC, the definition is simplified asT , log(1+θ)Pc. The average throughput

is different from the aggregate throughput defined in Section V-B in that we do not allow multiple

packet reception in this case.

Fig. 12 shows how the average throughput change as a functionof θ with the same set of

parameters as in Fig. 10. Comparing these two figures, we find that while SIC is particularly

useful in terms of coverage in combination with low-rate codes (lowθ), the usefulness of SIC in

terms of average throughput can be marginal. For this particular set of parameters, the average

throughput is maximized atθ about5 dB, a regime where SIC is not very useful. On the positive

side, as we will show in Section VII-E, for suchθ, most of the gain of SIC can be obtained by

simply canceling a very small number of non-accessible BSs.
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Fig. 12: The average throughput as a function of SIR threshold θ in HCNs with η = 0.6 andα = 4. The (Laplace-

transform-based) approximation, lower bound and upper bounds ofP SIC
c is calculated according to (21), (18), (19)

and (20), respectively. The non-outage throughput in the case without SIC is plotted for comparison, where the

θ ≥ 0 dB part is analytically obtained by (17) and theθ < 0 dB part is based on simulation.

E. Finite SIC Capabilty

In real cellular network settings, the assumption that the UEs have the ability to successively

decode an infinite number of interferers is impractical and conceivably unnecessary in achieving

the coverage gain. Thus, it is important to evaluate the performance gain of SIC when the UEs

have only a limited ability of interference cancellation. Since the latency is likely to be the most

critical factor in practical systems, we consider the case where the UE can cancel at mostn− 1

interferers. Formally, we define the event of coverage for a UE with n-layer SIC capability as

follows.

Definition 9 (Coverage withn-layer SIC capability). A UE withn-layer SIC capability iscovered

iff there existsl ∈ [n− 1] and k ∈ {i : ti = 1} such thatξ−1
i > θIi, ∀i < l and ξ−1

k > θI !kl .

Comparing Def. 8 with Def. 9, we see that the only difference is that the integer pair(k, l)

has to satisfyl ≤ n − 1 which enforces the finite SIC capability constraint. We willuseP SIC
c,n

to denote the coverage probability for a typical UE withn-layer SIC capability. As two special

cases, we haveP SIC
c,1 = Pc andP SIC

c,∞ = P SIC
c .

Following a similar procedure in the proof of Prop. 13, we finda lower bound onP SIC
c,n which
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is exact whenθ ≥ 1.

Proposition 14. In the K-tier heterogeneous cellular network, the coverage probability of a

typical UE withn-layer SIC capability is

P SIC
c,n ≥

n
∑

k=1

(1− η)k−1ηpk, (24)

where the equality holds whenθ ≥ 1.

the proof of Prop. 14 is analogous to that of Prop. 13 with extra care about the possibility

that an accessible BS can be decoded without cancelingall the nonaccessible BSs stronger than

it. Details of proof can be found in App. E. Comparing Props. 13 and 14, it is obvious that the

inequality in Prop. 14 is asymptotically tight asn → ∞. More precisely, sinceP SIC
c ≥ P SIC

c,n , we

have
n
∑

k=1

(1− η)k−1ηpk ≤ P SIC
c,n ≤

∞
∑

k=1

(1− η)k−1ηpk,

and the difference between the upper and lower bound decays (at least) exponentially withn.

Thus, the lower bound in Prop. 14 converges to the true value at least exponentially fast withn.

Combining Props. 13 and 14 with the results given before, we can estimate the performance

gain of SIC in the HCN downlink. In the following, we focus on two different scenarios to

analyze the performance of finite SIC capability.

1) The High SIR Case:First, we focus on the SMUD regime (θ ≥ 1). Thanks to Prop. 5,

this case has extra tractability sinceP(ξ−1
k > θIk) can be expressed in closed-form. Thus, by

applying Prop. 14, we obtain a set of upper bounds on the coverage probability with finite SIC

capability

P SIC
c,n ≤ η

1− η

n
∑

k=1

1

Γ(1 + kβ)

(

1− η

θ
β
2
(k+1)Γ(1− β)

)k

. (25)

For infinite SIC capability, by the same procedure, a closed-form upper bound on the coverage

probability can also be obtained whenα = 4 (β = 1
2
)

P SIC
c =

∞
∑

k=1

(1− η)k−1ηpk

≤
∞
∑

k=1

(1− η)k−1η
(πθ)−k/2

Γ(k/2 + 1)
(26)

=
η

1− η

(

exp
((1− η)2

πθ

)

(

1 + erf
(1− η√

πθ

)

)

− 1

)

. (27)
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Fig. 13: Comparison between the upper bound on the coverage probabilities and the simulated coverage probability

of HCNs with different levels of SIC capability whenα = 4. The upper bounds onP SIC
c,n is calculated according to

(25) for n = 1, 2 (coverage probability is higher for largern; note that whenn = 1 the bound is tight). The upper

bound onP SIC
c is calculated by (27). The simulated value ofP SIC

c,n is plotted forn = 1, 2, 10. Whenθ = 2 dB, the

curves forn = 2 andn = 10 almost completely overlap.

Fig. 13 plots the coverage probability with different levels of SIC capability as a function of

η for θ =0 dB and 2 dB. Here, we plot the upper bounds onP SIC
c,n according to (25) forn = 1, 2,

the upper bound onP SIC
c according to (27), and simulated value ofP SIC

c,n for n = 1, 2, 10. The

problem ofn = 1 is already studied in [25].

Takingn = 1 andβ = 1/2 in (25) and comparing it with (17) shows that the upper bound in

(25) is tight forn = 1. This explains why the lowest solid lines (upper bound onP SIC
c,1 ) and the

lowest dashed lines (simulatedP SIC
c,1 ) in Fig. 13 overlap.

Fig. 13 shows thatP SIC
c,n −P SIC

c,1 , the absolute coverage probability gain of SIC, is much larger

when η is close to1/2 than whenη is close to0 or 1. This phenomenon can be observed

within a much wider range of system parameters. Intuitively, this observation can be explained

as follows: On the one hand, whenη → 1, most of the BSs in the network are accessible. Thus,

SIC will not significantly improve the coverage probability, i.e., there isno one to cancel. On

the other hand, whenη → 0, most of the BSs in the network are non-accessible. In this case,

UE coverage can only be significantly improved if many BSs areexpected to be successively

canceled. As is shown in Section V, the number of BSs that can be successively decoded is
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fundamentally limited by the choice ofθ, and in this particular case (θ ≥ 1), very few, if any,

non-accessible BSs are expected to be canceled, leaving very little space for SIC to improve the

coverage probability,i.e., the UE isunable to cancel.

Moreover, it is worth noting that withθ ≥ 1 andβ = 1/2, most of the gain of SIC is achieved

by the ability of canceling only a single non-accessible BS.This is consistent with observations

reported in [1] where a different model for SIC is used and thetransmission capacity is used

as the metric. The fundamental reason of this observation can be explained by Prop. 14. The

difference in coverage probability between infinite SIC capability and the capability of canceling

n− 1 UEs is
∑∞

k=n+1(1− η)k−1ηpk, which, due to the super-exponential decay ofpk (Prop. 5),

decays super-exponentially withn. Thus, most of the additional coverage probability comes

from canceling a small number of non-accessible BSs. Sinceθ affects the rate at whichpk

decays, we can expect that the ability of successively decoding more than one non-accessible

BS becomes even less useful for largerθ, which is also demonstrated in Fig. 13. This observation

also implies that whenβ = 1/2, P SIC
c ≈ P SIC

c,2 ≈ η
π
( 2√

θ
+ 1−η

θ
) thanks to (26). Whenθ = 0 dB,

this approximation coincides with the upper bound onP SIC
c,2 plotted in Fig. 13. Thus, its tightness

can be observed by comparing the bound with simulatedP SIC
c,10 in the caseθ = 0 dB.

Of course, with the same logic and analytical bounds,e.g., the one in Prop. 2 or the one in

Prop. 3, we would expect that the ability to successively decode a large number of BSs does

help if β → 0 and/orθ → 0. β → 0 could happen if the path loss exponentα is very large

and/or the BSs are clustered around the receiver and/or the network dimension is low (e.g. for

vehicular networks, it is reasonable to taked = 1). θ → 0 happens when very low-rate codes

are used.

2) Other Realistic Cases:Since the different values ofθ and β can result in different

usefulness of the finite SIC capability at the HCN downlink, it is worthwhile to discuss the

most realistic parameter choices in contemporary systems.

The exact values ofθ andβ depends on many facts including modulation and coding schemes,

receiver sensitivity, BS densities and propagation environment. However, in practical OFDM-

type HCNs (e.g.,LTE and 802.11 networks), the SIR thresholdθ is typically larger than−3 dB

and often more than0 dB [38]12. For the indoor propagation,α is typically between 3 and 4.

12The smallθ regime is more applicable to wide-band systems,e.g.,CDMA or UWB systems.
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Fig. 14: Comparison between the upper bound on the coverage probabilities and the simulated coverage probability

of HCNs with different path loss exponentsα when θ = 0 dB. TheP SIC
c,1 is calculated by (28) (note that when

n = 1 the bound is tight,i.e., “≤” becomes “=”). The upper bound onP SIC
c is given by (29).

Therefore, the system parameters used in the high SIR case (Fig. 13) are already reasonably

realistic.

To have a closer look at the impact ofα, we fix θ = 1. Then, (25) can be simplified as

P SIC
c,n ≤ η

1− η

n
∑

k=1

1

Γ(1 + kβ)

(

1− η

Γ(1− β)

)k

. (28)

which in the case ofn → ∞ gives an upper bound on the coverage probabilty with infiniteSIC

capability,

P SIC
c ≤ η

1− η

(

Eβ,1

(

1− η

Γ(1− β)

)

− 1

)

, (29)

whereEa,b(z) =
∑∞

k=0
zk

Γ(ak+b)
is the Mittag-Leffler function. Without resorting to the Mittag-

Leffler function, one could also approximateP SIC
c using (28) for smalln. This is justified by the

super-exponential decay of 1
Γ(1+kβ)

(

1−η
Γ(1−β)

)k

. For example, whenβ = 1/2, using second order

approximation we getP SIC
c ≈ (3− η)η/π.

Fig. 14 compares the coverage probabilities with differentlevels of SIC capability for different

path loss exponentsα when θ = 1. As expected, asα decreases, both the coverage probability

and the gain of additional SIC capability decrease. The former is due to the fact that with a

smallerα the far BSs contribute more to the interference. The latter can be explained by the
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Fig. 15: Coverage probability of HCNs with SIR thresholdθ ≥ −5 dB with α = 4. The solid lines are calculated for

n = 1, 2 according to (28) (the lines are higher for largern), which are an upper bounds onP SIC
c,n whenθ ≥ 0 dB.

For θ ≤ 0, these lines should be considered as approximations. The upper bound onP SIC
c is calculated by (29).

The simulated value ofP SIC
c,n is plotted forn = 1, 2, 10. For η ≤ 0.9, the curves forn = 2 andn = 10 almost

completely overlap throught the simulated SIR range.

fact that whenα is smaller, the received power from different BSs are more comparable, leaving

less structure in the received signal that can be exploited by SIC.

Similarly, we can apply the bounds in (28) and (29) to even smaller α which may apply

to outdoor environments, and conceivably the gain of SIC will becomes even more marginal.

Therefore,SIC is more useful in an indoor environment.

Generally speaking, accurately estimatingP SIC
c,n is more difficult whenθ < 1. One of the

reasons is that the upper bound in Thm. 1 becomes increasingly loose asθ decreases. However,

within the realistic parameters,i.e., θ > −3 dB, the values calculated by (28)13 and (29) are still

informative as is shown in Fig. 15. This figure shows the coverage probability as a function of

θ ≥ −5 dB for η = 0.3, 0.6, 0.9. We found that most of the conclusions we drew forθ ≥ 1 still

hold whenθ ≥ −5 dB. For example, we can still see that most of the gain of SIC comes from

canceling a single interferer and that the gain is larger when η is close to0.5.

Quantitatively, we found that whenη is relatively small (η = 0.3, 0.6) the analytical results

13 (28) can only be considered as an approximation onP SIC
c,n when θ < 1 since Prop. 14 only gives a lower bound in this

regime.
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still track the results obtained by simulation closely forθ > −3 dB. The analytical results are

less precise whenη is large. However, largeη characterizes a regime where most of the BSs are

accessible. In this case, it is conceivable that SIC is oftenunnecessary, which can be verified by

either the simulation results or the analytical results in Fig. 15. Therefore, overall, the analytical

results generates enough quantitative insights for the most interesting set of parameters.

VIII. C ONCLUSIONS

Using a unified PLPF-based framework, this paper analyzes the performance of SIC ind-

dimensional fading networks with power law density functions. We show that the probability

of successively decoding at leastk users decays super-exponentially withk2 if high-rate codes

are used, and that it decays especially fast under small pathloss exponent in high dimensional

networks, which suggests the marginal gain of adding more SIC capability diminishes very fast.

On the other hand, SIC is shown to be especially beneficial if very low-rate codes are used, the

active transmitters are clustered around the receiver, or the dimensionality of the network is low,

e.g.,d = 1.

Since SIC can be considered not only as an interference mitigation technique but also as a

multiple packet reception (MPR) scheme, we also investigate the performance gain of SIC in

terms of aggregate throughput at the receiver, counting information rate from all the decodable

transmitters. We observe that, in interference-limited networks, the aggregate throughput (or,

sum rate) is a monotonically decreasing function of the per-user information rate and the

asymptotic sum rate is1
β
− 1 as the per-user information rate goes to0, where β = b+d

α
,

α is the path loss exponent andb determines the network geometry (clustering). Sinceb can

be manipulated by distance-dependent access control or power control [19], the result shows

that properly designed MAC or power control schemes can significantly increase the network

performance when combined with SIC and low-rate codes (e.g., in CDMA or ultra wide band

(UWB) systems).

On the other hand, in noisy networks, there exists at least one positive optimal per-user

rate which maximizes the aggregate throughput. Moreover, different from interference-limited

networks where fading does not affect the performance of SIC[27], we prove fading to be

harmful in noisy networks. This suggests communication schemes that eliminate (average out)

the channel randomness are desirable in noisy networks withSIC capability.
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By a simple example, we demonstrate how the technical results in this paper can be used to

generate insights in designing heterogeneous cellular networks (HCNs) with SIC capability at the

UE side. The results suggests that the choice of code rate cansignificantly impact the usefulness

of the capability of successively cancel a large number of interferers in the downlink of HCNs.

In particular, SIC in combination with low rate codes can boost the coverage probability of the

HCNs to a large extent. However, in terms of average non-outage throughput, the usefulness of

SIC is relatively marginal. Plugging in some realistic parameters of contemporary narrow band

cellular systems, we observe that, in uniform 2-d HCNs, mostof the gain of SIC comes from

canceling a single interferer at the UE side.

APPENDIX A

PROOF OFLEMMA 2

Proof: By Fact 1,pk can be evaluated by consideringΞβ. In particular, if we define the

eventAi = {ξ−1
i > θIi}, the probability of successively decoding at leastk users can be written

aspk = P(
⋂k

i=1Ai).

DefiningBi , {ξ−1
i > (1 + θ)ξ−1

i+1}, we first show
(

⋂k−1
i=1 Bi ∩Ak

)

⊂ ⋂k
i=1Ai by induction.

Consider the following statement:
(

k−1
⋂

i=n

Bi ∩ Ak

)

⊂
k
⋂

i=n

Ai, n ≤ k − 1. (30)

(30) is true forn = k − 1, since, for allω ∈ Bk−1 ∩ Ak, we have

ξ−1
k−1(ω)

(a)
> ξ−1

k (ω) + θξ−1
k (ω)

(b)
> θIk(ω) + θξ−1

k (ω) = θIk(ω),

where (a) is due toω ∈ Bk−1, and (b) is due toω ∈ Ak. In other words, the fact thatω ∈ Bk−1∩Ak

suggestsω ∈ Ak−1 ∩Ak proves (30) forn = k − 1.

Then, assuming (30) is true forn ≥ 2, we can similarly show that it is also true forn− 1 by

(again) considering an (arbitrary) realization of the PLPFω ∈ ⋂k−1
i=n−1Bi ∩ Ak. Since

ξ−1
n−1(ω)

(c)
> ξ−1

n (ω) + θξ−1
n (ω)

(d)
> θIn(ω) + θξ−1

n (ω) = θIn(ω),

where (c) is due toω ∈ Bn−1, and (d) is due toω ∈ ⋂k−1
i=n Bi and the assumption that (30) holds

for n, we haveω ∈ An. This proves (30) to be true forn−1 sinceω ∈ ⋂k−1
i=n Bi∩Ak ⊂ ⋂k

i=nAk
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by assumption. Then, by induction, (30) is shown to be true for n = 1, and thus

pk ≥ P

(

k−1
⋂

i=1

Bi ∩ Ak

)

= Eξk

[

P

(

k−1
⋂

i=1

Bi ∩Ak | ξk
)]

= Eξk

[

P

(

k−1
⋂

i=1

Bi

)

P (Ak) | ξk
]

, (31)

where the last equality is because of the conditional independence betweenBi, ∀i ∈ [k−1] and

Ak given ξk. Here, by definition,P
(

⋂k−1
i=1 Bi

)

= P

(

ξi
ξi+1

< (1 + θ)−1, ∀i < k
)

.

Due to the Poisson property, conditioned onξk, k ≥ 2,14 we haveξi
ξk

d
= Xi:k−1, ∀1 ≤ i ≤ k−1,

where
d
= means equality in distribution,X is a random variable with cdfF (x) = xβ

1[0,1](x),

andXi:k−1 is the i-th order statistics ofk − 1 iid random variables with the distribution ofX,

i.e., the i-th smallest one amongk − 1 iid random variables with the distribution ofX.

SinceXβ ∼ Uniform(0, 1), we can apply a result from the order statistics of uniform random

variables [23]. In particular, ifU ∼ Uniform(0, 1), then
(

Ui:k−1

Ui+1:k−1

)i

∼ Uniform(0, 1) and
(

Ui:k−1

Ui+1:k−1

)i

is iid for all 1 ≤ i ≤ k − 2. Therefore,

P

(

ξi
ξi+1

< (1 + θ)−1, ∀i < k | ξk
)

=

k−1
∏

i=1

P(U < (1 + θ)−iβ) = (1 + θ)−
β
2
k(k−1), (32)

where the last inequality is due to
(

Xi:k−1

Xi+1:k−1

)iβ d
= U, ∀i ∈ [k − 2]. The lower bound is thus

proved by combining (31) and (32).

Defining B̂i = {ξ−1
i > θξ−1

i+1} in the place ofBi, we can derive the upper bound in a very

similar way.

APPENDIX B

PROOFS OFLEMMA 4, PROP. 3, AND LEMMA 5

Proof of Lemma 4: In order to establish the lower bound, we first calculate the mean of

the interferenceIk conditioned onξk = ρ, and then derive the bound based on the Markov

inequality. DenotingIk | {ξk = ρ} as Iρ, we can calculate the conditional mean interference by

Campbell’s Thm. [19]

E[Iρ] = E

[

∑

x∈Ξ∩[ρ,∞)

x−1

]

=

∫ ∞

ρ

x−1Λ(dx) =
aβ

1− β
ρβ−1.

14 ξk = x implies havingk − 1 points on the interval[0, x).
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Thus, by the Markov inequality,

P(ξ−1
k > θIk | ξk = ρ) = P(ρ−1 > θIρ) ≥ 1− θρE[Iρ].

The lower bound can be refined as[1− θρE[Iρ]]
+, where[·]+ = max{0, ·}. Deconditioning over

the distribution ofξk (given by Lemma 3) yields the stated lower bound.

Proof of Prop. 3: Using Fact 1, we work withΞβ = {ξi}. For alln ∈ [k−1], k < 1/θ+1,

we have

P

({

ξ−1
n >

θIn
1− (n− 1)θ

}

∩ {ξi > θIi, n < i ≤ k}
)

(a)
≥ P

({

ξ−1
n+1 >

θIn
1− (n− 1)θ

}

∩ {ξi > θIi, n < i ≤ k}
)

(b)
= P

({

ξ−1
n+1 >

θIn+1

1− nθ

}

∩ {ξi > θIi, n < i ≤ k}
)

(c)
= P

({

ξ−1
n+1 >

θIn+1

1− nθ

}

∩ {ξi > θIi, n+ 1 < i ≤ k}
)

,

where (a) is because of the ordering ofΞ, (b) is due toIn = ξ−1
n+1 + In+1, and (c) is due to

the fact that
{

ξ−1
n+1 >

θIn+1

1−nθ

}

⊂
{

ξ−1
n+1 > θIn+1

}

. Using the inequality above sequentially for

n = 1, 2, · · · , k − 1 yields

pk ≥ P

(

ξ−1
k >

θIk
1− (k − 1)θ

)

,

where a lower bound for the RHS is given by Lemma 4 (substituting θ with θ̃).

Proof of Lemma 5:For a non-fading 1-d network, the Laplace transform of the aggregate

interference from[ρ,∞) can be calculated by the probability generating functional(PGFL) of

the PPP [39]. Similarly, the Laplace transform ofIρ , Ik | {ξk = ρ} is

LIρ(s) = exp

(

−
∫ ∞

ρ

(1− e−sr−1

)Λ(dr)

)

= exp

(

−
(

sβ
∫ sρ−1

0

r−βerdr − ρβ(1− e−sρ−1

)
)

)

,

(33)

whereΛ(·) is the intensity measure of the SPLPFΞβ (see Def. 4).

Let H be an exponential random variable with unit mean and independent of PLPFΞ. We

can relateP(ξ−1
k > θIk) with LIk(s) as

P(ξ−1
k > θIk) = eP(H > 1)P(ξ−1

k > θIk)
(a)
= eP(ξ−1

k > θIk, H > 1)

≤ eP(Hξ−1
k > θIk)

(b)
= eEξk [LIk|ξk(θξk)]

(c)
= Eξk

[

exp
(

−[cξβk − 1]+
)]

,
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where (a) is due to the independence betweenH andΞ, (b) is due to the well-known relation

between the Laplace transform of the interference and the success probability over a link subject

to Rayleigh fading [39], (c) makes use of the PGFL in (33), taking into account the fact that

P(ξ−1
k > θIk) ≤ 1. With the distribution ofξk given by Lemma 3, the proposition is then proved

by straightforward but tedious manipulation.

APPENDIX C

PROOF OFTHM . 1

First, we introduce the following lemma which is necessary in proving Thm. 1.

Lemma 10 (Unique Decodeable Set). Consider an arbitraryk-element index setK ⊂ N and an

increasingly ordered setΞ = {ξi}. ξ−1
i > θ

∑

j 6∈K ξ−1
j always impliesξ−1

i > θ
∑

j>k ξ
−1
j , ∀i ≤ k.

Moreover, ifθ ≥ 1 and ξ−1
i > θ

∑

j 6∈K ξ−1
j , thenK = [k].

Proof: The first part of the lemma is obviously true whenK = [k]. If not, for anyl ∈ K\[k],
we haveξ−1

i > ξl, ∀i ∈ [k] by the ordering ofΞ. For the same reason, we have
∑

j 6∈K ξ−1
j >

∑

j 6∈[k] ξ
−1
j . As ξ−1

l > θ
∑

j 6∈K ξ−1
j , we haveξ−1

i >
∑

j 6∈[k] ξ
−1
j , ∀i ∈ [k].

To show the second part, consider an arbitraryl ∈ K. Since all elements inΞ are positive and

θ ≥ 1, ξ−1
l > θ

∑

j 6∈K ξ−1
j implies ξl < ξj , ∀j 6∈ K, and consequentlyK = [k].

Lemma 10 states a general property of infinite countable subsets of the real numbers. Consider

the case ofk = 1. The second part of Lemma 10 shows that ifθ ≥ 1, there is at most one user (ξ1)

that can be decoded without the help of SIC, and this is alwaystrue even after an arbitrary number

of cancellations. In other words, multiple packet reception (MPR) is not feasible through parallel

decoding. This is exactly the reason whyθ ≥ 1 is defined as sequential multi-user decoding

(SMUD) regime.

With Lemma 10, we now give the proof of Thm. 1.

Proof of Thm. 1: Consider the SPLPF (which is essentially a 1-d PPP)Φ ⊂ R
+ with

intensity measureΛ([0, r]) = rβ. For each elementx ∈ Φ we introduce an iid markhx with

exponential distribution with unit mean. Since the markshx can be interpreted as an artificial

fading random variable, in the following, we will refer thismarked process as a path loss process
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with induced fading (PLPIF)̂Φ ⊂ R
+ × R

+.15 Similar as before, based on̂Φ, we can construct

a PLPFΞ(Φ̂) = {ξ̂i} by letting ξ̂i =
x
hx
, ∀x ∈ Φ, where, without loss of generality, we assume

the indicesi are introduced such thatΞ(Φ̂) is increasingly ordered.

By Cor. 1, we see thatpk(Ξ(Φ̂)) = pk(Ξβ). Using the same technique in the proof of Prop. 1,

we can easily show that

P(ξk > θIk) = P(ξ̂k > θÎk), ∀k ∈ N, (34)

where Îk =
∑∞

i=k+1 ξ̂
−1
i .16 Therefore, in the following, we focus on the PLPIF̂Φ.

First, considering ak-tuple of positive numbersy = (yi)
k
i=1 ∈ (R+)k, with a slight abuse of

notation, we say(yi)ki=1 ⊂ Φ if and only if yi ∈ Φ, ∀i ∈ [k]. Conditioned ony ⊂ Φ, we denote

the interference from the rest of the network
∑

x∈Φ\y hxx
−1 as I !y. Since{yi, i ∈ [k]} is a set

of Lebesgue measure zero, by Slivnyak’s theorem, we haveI !y
d
= I =

∑

x∈Φ hxx
−1. Thus,

L!y
I (s) , E[exp(−sI !y)] = LI(s) = exp

(

−Eh

(
∫ ∞

0

(

1− exp(−shr−1)drβ
)

))

= exp

(

− sβ

sinc β

)

, (35)

where sinc x = sin(πx)
πx

and the derivation exploits the fact thathx are iid exponential random

variables with unit mean.

Second, letN̂ be the sample space ofΦ̂ and consider the indicator function̄χk : (R+×R
+)k×

N̂ → {0, 1} defined as follows

χ̄k

(

(xi, hxi
)ki=1, φ̂

)

=







1, if hxi
x−1
i > θ

∑

y∈φ\{xj , j∈[k]} hyy
−1, ∀i ∈ [k]

0, otherwise,

whereφ ⊂ R
+ is the ground pattern of the marked point patternφ̂. In words,χ̄k

(

(xi, hxi
)ki=1, φ̂

)

is one iff k of the users in the network(xi)
k
i=1 all have received power larger thanθ times the

15The purpose of the induced fading may not be clear at the moment. In particular, since we have already seen that one of the

purposes of constructing the PLPF is to ‘eliminate’ fading as an explicit source of randomness, constructing a PLPIF mayseem

to be one step backwards. However, this is not the case due to the following subtlety: the PLPF incorporates the randomness

from anarbitrary distribution into a 1-d PPP, while the PLPIF is designed to facilitate the analysis by considering aparticular

fading random variable,i.e., a unit mean exponential random variable.

16Note that we donot have ξ̂i = ξi
hξi

in general. In fact, the ordering ofΦ will not be used in the rest of the proof.
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interference from the rest of the network. Then, for anyφ̂ andk ∈ N,

1{ξ̂k>θÎk}(φ̂) = 1{ξ̂i>θÎk, ∀i∈[k]}(φ̂)
(a)
≤ 1

k!

6=
∑

x1,...,xk∈φ
χ̄k

(

(xi, hxi
)ki=1, φ̂

)

, (36)

where 6= meansxi 6= xj , ∀i 6= j and (a) is due to the first part of Lemma 10. Also, the second

part of Lemma 10 shows that whenθ ≥ 1 the equality in (a) holds.

Therefore, we have

P(ξ̂k
−1

> θÎk) = E[1{ξ̂k>θÎk}(Φ̂)]
(b)
≤ 1

k!
E

[ 6=
∑

x1,...,xk∈Φ
χ̄k

(

(xi, hxi
)ki=1, Φ̂

)

]

=
1

k!
EΦ

[ 6=
∑

x1,...,xk∈Φ
E

[

χ̄k

(

(xi, hxi
)ki=1, Φ̂

)

]

]

(c)
=

1

k!
EΦ

[ 6=
∑

x: x1,...,xk∈Φ
L!x

I (θ

k
∑

i=1

xi)

]

(d)
=

1

k!

∫

(R+)k
L!x

I (θ

k
∑

i=1

xi)Λ
(k)(dx),

where (b) is due to (36) and the equality holds whenθ ≥ 1, (c) holds sincehy are iid exponentially

distributed with unit mean for ally ∈ Φ, and (d) is due to the definition ofΛ(k)(·), the k-

th factorial moment measure ofΦ [19, Chapter 6]. SinceΦ is a PPP with intensity function

λ([0, r]) = rβ, we haveΛ(k)(dx) =
∏

i∈[k] dx
β
i . Applying (34) and (35), we have

P(ξ−1
k > θIk) ≤

1

k!

∫

(R+)k
exp

(

− θβ

sinc β
‖x‖ 1

β

)

dx.

where‖ · ‖p denotes theLp norm, and the equality holds whenθ ≥ 1. The integral on the RHS

can be further simplified into closed-form by using the general formulas in [40, eqn. 4.635],

which completes the proof.

APPENDIX D

PROOFS OFPROP. 8, LEMMA 6, AND PROP. 12

Proof of Prop. 8: By Prop. 4, we haveE[N ] ≤∑∞
k=1∆2(k). The proposition then follows

by summing up the firstK − 1 terms of the infinite series and upper bounding the residue part.
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Specifically, we have
∞
∑

k=K

γ(k, 1/c)

Γ(k)
= e−1/c

∞
∑

k=K

∞
∑

j=0

(1/c)j+k

(j + k)!

(a)
≤ exp(−1/c)√

2π

∞
∑

k=K

∞
∑

j=0

(e/c)j+k

(j + k)j+k+ 1
2

≤ exp(−1/c)√
2π

∞
∑

k=K

(e/c)k

Kk

∞
∑

j=0

(e/c)j

(j +K)j+
1
2

,

where (a) uses Stirling’s approximation forn!, i.e.,
√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n. Moreover,

∑∞
j=0

(e/c)j

(j+K)j+
1
2

≤ e +
∑∞

j=1
(e/c)j

jj+
1
2

since K ≥ 1. Using Stirling’s approximation again on
∑∞

j=0
(e/c)j

jj+
1
2

yields
∞
∑

k=K

γ(k, 1/c)

Γ(k)
≤ exp(K + 1)√

2π

(cK)1−K

cK − 1
.

Furthermore, we have
∞
∑

k=K

e

(1 + c)k
Γ(k, 1 + 1/c)

Γ(k)
≤

∞
∑

k=K

e

(1 + c)k
=

e

c
(1 + c)1−K ,

which completes the proof.

Proof of Lemma 6: As in the proof of Lemma 5, we considerIρ , Ik | {ξk = ρ}
and the Laplace transform ofIρ is given in (33). Then, considering another random variable

ρIρ , ξkIk | {ξk = ρ}, we have

LρIρ(s) = E[e−sξkIk | ξk = ρ] = LIρ(sρ) = exp(−c(s)ρβ), (37)

where c(s) = sβγ(1 − β, s) − 1 + e−s. Using the results in Lemma 3, we can calculate the

Laplace transform ofξkIk,

LξkIk(s) = Eξk [LρIρ(s) | ξk = ρ] =

∫ ∞

0

βxkβ−1

Γ(k)
e−(1+c(s))xβ

dx =
1

(1 + c(s))k
.

Proof of Prop. 12: The proof is similar to that of Prop. 1. Consider the mapping,f(x) =

(a1/a2)
1/βxβ. Then,f(Ξ) is a PPP onR+ with intensity measurea2xβ over the set[0, x] for all

x > 0. As before, letN be the sample space ofΞ, i.e., the family of all countable subsets of

R
+. Consider an indicator functionχW

k (φ) : N → {0, 1}, k ∈ N such that

χW
k (φ) =







1, if ξ−1
i > θ(Ii +W ), ∀i ≤ k

0, otherwise,

whereφ = {ξi} and ξi < ξj, ∀i < j.
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Note thatχW
k (φ) ≤ χW

k (Cφ), ∀C ∈ (0, 1), whereCφ = {Cξi}. To show that, assume

that χW
k (φ) = 1, i.e., ξ−1

i > θ(
∑∞

j=i+1 ξ
−1
j + W ), ∀i ≤ k, which is equivalent to(Cξi)

−1 >

θ(
∑∞

j=i+1(Cξj)
−1 + C−1W ), ∀i ≤ k. It follows thatχW

k (Cφ) = 1 sinceC−1W > W .

Therefore, we have

pk(Ξ) = E[χW
k (Ξ)]

(a)
≤ E[χk (f(Ξ))]

(b)
= E[χk

(

Ξ̄
)

] = pk(Ξ̄),

where (a) is due toa1 < a2 and thus(a1/a2)1/β < 1 and (b) is because bothf(Ξ) and Ξ̄ are

PPPs onR+ with intensity measureµ([0, r]) = a2r
β.

APPENDIX E

PROOFS OFPROPS. 13 AND 14

Proof of Prop. 13: Without loss of generality, we consider the marked PLPF corresponding

to theK-tier heterogeneous cellular BSŝΞ = {(ξi, ti)}, where the indexi is introduced such

that {ξi} are increasingly ordered. Letϑk : N → {0, 1}, k ∈ N, be an indicator function such

that

ϑk(φ) ,







1, if ∃l ∈ N s.t.χl(φ) = 1 and ξ−1
k > θI !kl

0, otherwise,
(38)

whereχk(·) is defined in (2). Furthermore, we define a random variableM = min{i : ti = 1},

whereti is the mark of thei-th element inΞ̂. Note that since, according to Lemma 9,ti are iid

(also independent fromΞ), M is geometrically distributed with parameterη and is independent

of Ξ. Then, it is easy to check with Def. 8 that the coverage probability can be written as

P SIC
c = P(ϑM(Ξ)) = EM [P(ϑM (Ξ) | M)] ,

where the probability inside the expectation is the probability of decoding theM-th strongest

BS (with the help of SIC) conditioned on the fact that this BS is the strongest accessible BS.

Moreover, we haveϑk(·) = χk(·), ∀k ∈ N. To see this, we first notice that, by the definition

of the two functions,χk(φ) = 1 ⇒ ϑk(φ) = 1. Conversely, assumingϑk(φ) = 1, which by

definition means∃l ∈ N s.t.χl(φ) = 1 andξ−1
k > θI !kl , we immediately notice thatχk(φ) = 1 if

l ≥ k. If l < k, we haveξ−1
l+1 ≥ ξ−1

k > θI !kl ≥ θIl+1, i.e.,χl+1(φ) = 1, which, by induction, leads

to the fact thatχk(φ) = 1. Since bothχk(·) andϑk(·) are indicator functions on the domain of

all countable subsets ofR+, we have established the equivalence of the two functions.
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Therefore, we haveP SIC
c = EM [P(χM(Ξ) | M)] = EM [pM ], which completes the proof.

Proof of Prop. 14: Similar to the definition ofϑk(·) in (38). We define

ϑn,k(φ) ,







1, if ∃l < n s.t.χl(φ) = 1 and ξ−1
k > θI !kl

0, otherwise.
(39)

Then, we have

P SIC
c,n

(a)
= EM [P(ϑn,M(Ξ) | M)]

(b)
=

∞
∑

k=1

η(1− η)k−1
P(ϑn,k(Ξ))

(c)
≥

n
∑

k=1

η(1− η)k−1
P(χk(Ξ))

(d)
=

n
∑

k=1

η(1− η)k−1pk.

where (a) is due to Def. 9, (b) is due to the independence between the marks and the processΞ

and (d) is due to the definition ofpk. To show (c), we note thatϑn,k(·) = χk(·) for all k ≤ n,

which can be shown in a way analogous to the way we establish the equivalence betweenϑk(·)
andχk(·) in the proof of Prop. 13. In addition, whenθ ≥ 1, for all k > n > l, ξ−1

k < θ
∑j 6=k

j≥l+1 ξ
−1
j

almost surely. In other words,P(ϑn,k(·)) = 0 for all k > n and the equality in (c) is attained for

θ ≥ 1.
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