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The Performance of Successive Interference

Cancellation in Random Wireless Networks

Xinchen Zhang and Martin Haenggi

Abstract

This paper provides a unified framework to study the perforeeaof successive interference
cancellation (SIC) in wireless networks with arbitrary ifagl distribution and power-law path loss.
An analytical characterization of the performance of SIQgigen as a function of different system
parameters. The results suggest that the marginal benefitadifiing the receiver to successively decode
k users diminishes very fast with, especially in networks of high dimensions and small pa#s lo
exponent. On the other hand, SIC is highly beneficial wheruegs are clustered around the receiver
and/or very low-rate codes are used. Also, with multiplekeaceception, a lower per-user information
rate always results in higher aggregate throughput in fetence-limited networks. In contrast, there
exists a positive optimal per-user rate that maximizes tfgremate throughput in noisy networks.

The analytical results serve as useful tools to understamgatential gain of SIC in heterogeneous
cellular networks (HCNs). Using these tools, this papemtjiias the gain of SIC on the coverage prob-
ability in HCNs with non-accessible base stations. An ie$&ng observation is that, for contemporary
narrow-band system®(g.,LTE and WiFi), most of the gain of SIC is achieved by cancelingingle

interferer.

Index Terms

Stochastic geometry, Poisson point process, succesdggeirence cancellation, heterogeneous

networks

I. INTRODUCTION

Although suboptimal in general, successive interfereraecellation (SIC) is a promising

technique to improve the efficiency of the wireless netwaonkth relatively small additional
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complexity [1], [2]. However, in a network without centradid power controle.g., ad hoc
networks, the use of SIC hinges on the imbalance of the redgpowers from different users
(active transmitters), which depends on the spatial distion of the users as well as many
other network parameters. Therefore, it is important tongjfiathe gain of SIC with respect to
different system parameters.

This paper provides a unified framework to study the perforweaof SIC ind-dimensional
wireless networks. Modeling the active transmitters in tleéwvork by a Poisson point process
(PPP) with power-law density function (which includes theform PPP as a special case), we
show how the effectiveness of SIC depends on the path losserp, fading, coding rate, and
user distribution. As an application of the technical resule study the performance of SIC in

heterogeneous cellular networks (HCNSs) in the end of thempap

A. Successive Interference Cancellation and Related Work

As contemporary wireless systems are becoming incregsintgrference-limited, there is an
ascending interest in using advanced interference mibigaéchniques to improve the network
performance in addition to the conventional approach aitting interference as background noise
[1]-[8]. One important approach is successive interfegec@ncellation (SIC). First introduced
in [9], the idea of SIC is to decode different users sequiytiae., the interference due to the
decoded users is subtracted before decoding other uséisugh SIC is not always the optimal
multiple access scheme in wireless networks [2], [4], itspexially amenable to implementation
[10]-[12] and does attain boundaries of the capacity regiommultiuser systems in many cases
[2], [13], [14].

Conventional performance analyses of SIC do not take intmwatt the spatial distribution
of the users. The transmitters are either assumed to resigigesn locations with deterministic
path loss, seee.g., [15] and the references therein, or assumed subject toateett power
control which to a large extent compensates for the chammelamness [16]| [17]. To establish
advanced models that take into account the spatial disimitbof the users, recent papers attempt
to analyze the performance of SIC using tools from stocbgstometry([18],[[19]. In this context,
a guard-zonebased approximation is often used to model the effect offertence cancellation
due to the well-acknowledged difficulty in tackling the piein directly [1]. According to this

approximation, the interferers inside a guard-zone cedtat the receiver are assumed canceled,



and the size of the guard-zone is used to model the SIC c#gabiespite many interesting
results obtained by this approximation, it does not proved®ugh insights on the effect of
received power ordering from different transmitters, vishis essential for successive decoding
[16]. For example, if there are two or more (active) trangengt at the same distance to the
receiver, it is very likely that none of them can be decodecmjithe fact that the decoding
requires a reasonable SINB.g.,no less than one, while the guard-zone model would assume
they all can be decoded if they are in the guard zone. Thexetbie guard-zone approach
provides a good approximation only for canceling one or astntwo interferers. Furthermore,
most of the work in this line of research considers Raylemgtirfg and/or uniformly distributed
networks. In contrast, this paper uses an exact approacackbetthe problem directly for a
more general type (non-uniform) of networks with arbitréaging distribution.

Besides SIC, there are many other techniques that can @hersignificantly mitigate the
interference in wireless networks including interfereatignment[[5] and dirty paper coding/[6].
Despite the huge promise in terms of performance gain, tteedmiques typically rely heavily
on accurate channel state information at the transmit@$$T) and thus are less likely to impact
practical wireless systems in the near future [7], [8]. Als@ny recent works study interference
cancellation based on MIMO techniques in the context of camavireless networkse.g.,[8],
[20] and references therein. These (linear) interfererargcellation techniques should not be
considered as successive interference cancellation ,(&ltpough they can be combined with

SIC to achieve (even) better performancel [21].

B. Contributions and Organization

This paper considers SIC as a pure receiver end tecl@niqvm'ch does not require any
modifications to the conventional transmitter architegtlVith a general framework for the
analysis ofd-dimensional Poisson networks, the primary focus of thiggpas on 2-d networ

where all the nodes are transmitting at the same rate.

In general, SIC can be combined with (centralized) powettrohnwhich can significantly boost its usefulness. However
this places extra overhead in transmitter coordination iariteyond the discussion of this paper.

2pAlthough the most interesting case is the planar netwodks: (2) and it may be helpful to always think of the 2-d case
while reading this paper, it is worth noting that the calse- 1 is also of interest as it has natural applications in vehicul

networks.



The main contributions of this paper are summarized asvisiio

« We show that fading does not affect the performance of SIClarge class of interference-
limited networks, including uniform networks as a speciase (Section_Ill). However, in
noisy networks, fading always reduces the decoding prdibatBection[V1).

« We provide a set of closed-form upper and lower bounds on thlegbility of successively
decoding at least users. These bounds are based on different ideas and aomabbs
tight in different regimes (Sectidn]V).

« In interference-limited networks, when the per-user infation rate goes to 0, we show
that the aggregate throughput at the receiver is upper kmhby% —1, whereg is a simple
function of the path loss exponent, network density and agtwlimensionality. A Laplace
transform-based approximation is also found for the aggeethroughput at the receiver
for general per user information rate (Section V-B).

« We observe that in interference-limited network the aggreghroughput at a typical re-
ceiver is a monotonically decreasing function of the per ustormation rate, while in
noisy networks (Section_ViB), there exists an optimal pesiper-user rate that maximizes
the aggregate throughput (Sectlod VI).

« We provide an example to illustrate how the results of thipgpacan be applied to het-
erogeneous cellular networks (HCNs). The results dematestthat SIC can boost the
coverage probability in heterogeneous networks with oaeléd or closed-access base
stations (Sectiof_VII). However, SIC is not very helpful ierms of average throughput
for typical system parameters. Moreover, for typical comgerary OFDM-based systems,
most of the gain of SIC comes from canceling a single interféBectiori VII-E).

The rest of the paper is organized as follows: Secfion Il dless the system models and
the metrics we are using in this paper. Secfioh Il introdutee path loss process with fading
(PLPF)-based (narrow band) framework which facilitatess ahalysis in the rest of the paper. In
Sectior 1V, we provide a set of bounds on the probability afatkng at least: users in system.
These bounds directly lead to bounds on the expected gaihCop&sented in SectidnlV. We
discuss the effect of noise in Sectipn] VI. Section] VIl appltee results to the downlink of
HCNs. The paper is concluded in Sectlon VIII.



[I. SYSTEM MODEL AND METRICS
A. The Power-law Poisson Network with Fading (PPNF)

Let the receiver be at the origin and the active transmitters (users) be represented by a
marked Poisson point process (PRP)= {(z;, h,,)} C R? x R*, wherez is the location of a
user, i, is the iid (power) fading coefficient associated with the&klfirom z to o, andd is the
number of dimensions of the space. When the ground prokessR? is a homogeneous PPP,
the network is termed Aomogeneous Poisson netwawkich is often the focus of stochastic
geometry-based network analyses.

In this work, we consider a slightly generalized verison loé Poisson network defined as

follows:

Definition 1. The Power-law Poisson Network with Fading (PPNF) is a Paissetwork (to-
gether with the fading marks) with density functiate) = a|z||®, a > 0, b € (—d,a — d),

where ||z|| is the distance from: € R? to the origin anda is the path loss exponent.

In Def.[1, the conditiorb € (—d, «—d) is necessary in order to maintain a finite total received
power ato and will be revisited later. By the definition, we see that wte= 0, the PPNF
becomes a homogeneous Poisson network with inteasRurther, the construction of the PPNF
provides the flexibility in studying networks with differenlustering properties. For example,
Fig. 1 shows realizations of three 2-d PPNFs with differgnfig. [1a represents a network
clustered around whereas the network in Fig. ]1c is sparse around the receiverlia general,
the smallem, the more clustered the network is at the origin with 0 representing the uniform
network €.g.,Fig.[1B).

B. SIC Model and Metrics

Considering the case where all the nodes (users) transrtht umit power, we recall the

following standard signal-to-interference ratio (SIRJskd single user decoding condition.

Definition 2 (Standard SIR-based Single User Decoding Conditibman interference-limited
network, a particular user at € ® can be successfully decoded (without SIC) iff

hallel =,
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Fig. 1: Realizations of two non-uniform PPP with intensitnétion\(x) = 3||z||® with differentb, wherex denotes

an active transmitter ane denotes the receiver at the origin.

whereh,[|z[|~* is the received signal power from >_ . (., hyllyl[|~* is the aggregate inter-

ference from the other active transmitters, ahis the SIR decoding threshald

Similarly, in the case of perfect interference cancellationce a user is successfully decoded,
its signal component can be completely subtracted from #uoeived signal. Assuming the
decoding order is always from the stronger users to the wa&t@g, we obtain the following

decoding condition for the case with SIC.

Definition 3 (SrIR-based Decoding Condition with SIOWVith SIC, a user: can be decoded
if all the users inZ, = {y € ® : hylly||~* > h,||z||~*} are successfully decoded and the
signal-to-residual-interference ratio (SriR) at

halel

SriR, = .
> yeavopz Mwllyll =

Consquuently, consider the ordering of all nodestirsuch thath,,|z;||™* > hy,|z;[|~®

, Vi < j8 The number of users that can be successively decoded iff h,, |z~ >
3This model will be generalized in SectibnlVI to include noise
“It is straightforward to show that this stronger-to-weattecoding order maximizes the number of decodable usershaisd t
the aggregate throughput (defined later) despite the fattitls not necessarily thenly optimal decoding order.
5This ordering is based on received power, which is diffefearn the spatial ordering (based only d). This is one of the

differentiating features of this work compared with the igliaone-based analyses érmg., [1].



0> bzl Vi < N and hyyllevgal| ™ < 0300 v hayllz]| 7. Note that the
received power ordering is only introduced for analysisppses. As is unnecessary, we do
not assume that the received power ordering is knavwgmiori at the receiver.
One of the goals of this paper is to evalu&iigV], i.e., the mean number of users that can be
successively decoded, with respect to different systerampeters, and the distribution of in
the form
pe 2 P(N > k),

i.e.,the probability of successively decoding at Iefasisers at the origin. To make the dependence
on the point process explicit, we sometimes pg@i)).

Since SIC is inherently a multiple packet reception (MPRjesue [15], we can further define
the aggregate throughput (or, sum rate) to be the totalnmdtion rate received at the receiver

o. Since all the users in the system transmit at the samdagte + ¢), the sum rate is
R = Ellog(1 + 0)N] = log(1 + 6)E[N]. (1)

Another important goal of this paper is to evalu&as a function of different system parameters.
Note that this definition of the aggregate throughput codinésinformation received from all
the active transmitters in the network. Alternatively, arwaild define an information metric on
a subset of (interested) transmitters and the analysedwilinalogous. One of such instances

is the heterogeneous network application discussed indBeVdll

[1l. THE PATH LOSSPROCESS WITHFADING (PLPF)

We use the unified framework introduced in [[22] to jointly eekk the randomness from
fading and the random node locations. We define the path lmgegs with fading (PLPF) as
E2{g = %,xi € @}, where the index is introduced in the way such thgt < ¢; for all
i < j. Then, we have the following lemma, which follows from theppeng theorem[[19, Thm.
2.34].

Lemma 1. The PLPF= = {{ZI°} ‘where{(x;, h,,)} is @ PPNF, is a one-dimensional PPP on
R* with intensity measuré\ ([0, r]) = adcqr’E[hP]/B3, whered = d/a, B = 6 +b/a € (0,1)

and h is a fading coefficient.



In Lemmal[1, the conditior € (0,1) corresponds to the conditione (—d,« — d) in the
definition of the PPNF; it is necessary since otherwise thgreggate received power atis
infinite almost surely. More specifically, whén> « — d the intensity measure of the transmitter
process grows faster than the path loss with respect to tiweoresize, which results in infinite
received power at originj.€., far users contribute infinite power); whén< —d, the PLPF is not
locally finite (with singularity ato), and thus the number of transmitters that contribute to the
received powemorethan any arbitrary value is infinite almost sureiyg(, near users contribute
infinite power).

Since for all§; € = ¢ R*, &' can be considered as thieh strongest received power
component (at) from the users in®, when studying the effect of SIC, it suffices to just
consider the PLPF=. For a PLPFZ mapped fromd, if we let pr(Z) be the probability of

successively decoding at ledstusers in the network, we have the following proposition.

Proposition 1 (Scale-invariance)lf = and= are two PLPFs with intensity measurag|0, r]) =
r? and ([0, r]) = CrP, respectively, wher€' is any positive constant, then(Z) = p.(=), Vk €
N.

Proof: Consider the mapping(z) = C~'/#z. Then f(Z) is a PPP orR* with intensity
measureC'z’ of the set0, z]. Let N be the sample space &f i.e., the family of all countable

subsets ofR*. Then, we can define a sequence of indicator functignsN — {0,1}, k € N,

such that
1, if &t >0L, Vi<k
Xi(9) = . (2)
0, otherwise,
where [; = Z;‘;Mf.‘l, = {¢} and§; < &, Vi < j. Note thaty,(-) is scale-invarianti.e.,

xe({&Y) = 1 ({C'€}), YC' > 0. Then, we have
pe(E) = P=(Y2) = B[ (B)] LBl (£ ()] 2 B[k (E)] = P=(Y) = pr(2),

whereY, = {¢ € N : &1 > 01, Vi < k}, Pz is the probability measure o with respect to

the distribution of=, (a) is due to the scale-invariance propertyy@f-) and (b) is because both

f(Z) andZ are PPPs ofR* with intensity measure([0, r]) = Cr”. |
Prop.[1 shows that the absolute value of the density is nevaat as long as we restrict our

analysis to the power-law density case. Combining it wittmbea[1, where it is shown that, in



terms of the PLPF, the only difference introduced by diffefading distributions is a constant

factor in the density function, we immediately obtain thédeing corollary.

Corollary 1 (Fading-invariance)in an interference-limited PPNF, the probability of sucsigsly

decodingk users (at the origin) does not depend on the fading distidoLas long asE[h”] < oo.

Furthermore, it is convenient to define a standard PLPF &=afsi

Definition 4. A standard PLPF (SPLPFJ; is a one-dimensional PPP oR™ with intensity
measureA ([0, r]) = r?, wheres € (0,1).

Trivally based on Progd.]1 and Caid. 1, the following fact sfigaintly simplifies the analyses
in the rest of the paper.

Fact 1. The statistics ofV in a PPNF are identical to those df in =5 for any fading distribution
and any values of, b, d, o, with 8 =0+ b/a = (d+b)/a.

IV. BOUNDS ON THEPROBABILITY OF SUCCESSIVEDECODING

Despite the unified framework introduced in Secfioh IlI, lstieally evaluatingp;. requires the
joint distribution of the received powers from thestrongest users and the aggregate interference
from the rest of the network, which is daunting even for thepest case of a one-dimensional
homogeneous PPP. In this section, we derive boundg,oDue to the technical difficulty of
deriving a bound that is tight for all network parameters, previde different tractable bounds
tight for different system parameters. These bounds camg¢ each other and collectively
provide insights on howp, depends on different system parameters. The relationsebatw
different bounds are summarized in Talble | at the end of thisian.

A. Basic Bounds

The following lemma introduces basic upper and lower boumds;, in terms of the probability
of decoding thek-th strongest user assuming the- 1 strongest users do not exist. Although

not being bounds in closed-form, the bounds form the basish® bounds introduced later.

Lemma 2. In a PPNF, the probability of successively decodingsers is bounded as follows:
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e o> (140" PET > 01
Bk(k—1)

.« o < OTEEP(E > 00
where=; = {&} is the corresponding SPLPF anfl = > &

Proof: See App[A. u

The idea behind of Lemmid 2 is to first decompageby Bayes’ rule intoP(¢; > I;, Vi €
k=1 | & > )Pt > I,,), and then to bound the first term. An important observation is
that conditioned org;, the distribution of¢; /¢, Vi < k is the same as that of theth order
statistics ofk — 1 iid random variable with cdff’(z) = 2”1y (x). This observation allows us
to boundP(¢; > I, Vi € [k —1] | 5,;1 > [;;) using tools from the order statistics of uniform
random variables [23] sincg(z) is also the cdf of/7, whereU is a uniform random variable
with support[0, 1].

Sincelimg_, o % =1, it is observed that both the upper and lower bounds in Leinrage2
asymptotically tight wher — oo, for all 5 € (0,1) andk € N. Further, as will be shown later,
the bounds are quite informative for moderate and realstiones of6.

The importance of Lemmia 2 can be illustrated by the followatigmpt of expressing, in
a brute-forceway. Letting f, ¢,.... ¢,.7,(-) be the joint distribution (pdf) o, &, -, §; and I, we

have
L 1 1 o
gy 0wty D 0w+TE e Ak e D)
o
Pr = / / / / s / f51,§2,...,§k,1k ($17 T,y Ty y)d$1d$2 <+ Ao dy.
0
0 0 0 0

3)
There are two main problems with usifgd (3) to study the perforce of SIC: First, the joint
distribution of f¢, ¢, .. ¢,.7, () iS hard to get as pointed out also in [1]. Second, even if tird jo
distribution is obtained by possible numerical invers@laae transform, thé + 1 fold integral
is very hard to be numerically calculated, and it is very ljkinat the integration is even more
numerically intractable than a Monte Carlo simulﬁoﬁven if the above two problems are
solved, the closely-couplet + 1 fold integral in [3) is very hard to interpret, and thus offer

little design insights on the performance of SIC.

®In this case, it is desirable to integrate by Monte Carlo mesh But that can only bring down the complexity to the level

of simulations.
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B. The Lower Bounds

1) High-rate lower bound:Lemmal2 provides bounds gn as a function ofP(¢, " > 61;).

In the following, we give the high-rate lower boqu&y lower boundingP(¢; ' > 61,,).

Lemma 3. The k-th smallest element i&3, &, has pdf

ﬁxkzﬁ—l

T (k)

fe,(z) = exp(—z?).

Thanks to the Poisson nature ®f(Lemmall), the proof of Lemnid 3 is analogous to the one

of [24, Thm. 1] where the result is only about the distancei(fg is not considered).

Lemma 4. For Z5 = {&}, P(&. " > 01,) is lower bounded by

s g (10 52) 125 (1152)

where~(-, -) is thelower incomplete gamma function.

The proof the Lemmal4 is a simple application of the Markowiredity and can be found in
App.[B. In principle, one could use methods similar to the onthe proof of Lemmal4 to find
the higher-order moments éf and then obtain tighter bounds by applying inequalitiesiving
these moments.g.,the Chebyshev inequality. However, these bounds cannokpessed in
closed-form, and the improvements are marginal.

Combining Lemmas]2 arld 4, we immediately obtain the follguvmoposition.

Proposition 2 (High-rate lower bound)In the PPNFp, > (1 + 9)‘@&(@.

Since A (k) is monotonically decreasing with, the lower bound in Prof.] 2 decays super-
exponentially with#?.

2) Low-rate lower bound:The lower bound in Prod.2 is tight for largeé However, it
becomes loose whefi is small. This is because Prop. 2 estimapgsby approximating the
relation betweery; and I; with the relation betweeg; and¢; ;. This approximation is accurate

Whengijrl1 ~ 0I;,1. But whenf — 0, 5;}1 > 01,1 happens frequently, making the bound loose.

The high-rate lower bound also holds in the low-rate case,f is small. The bound is hamed as such since in the low-rate

case we will provide another (tighter) bound.
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The following proposition provides an alternative loweuhd particularly tailored for the small

0 regime.

Proposition 3 (Low-rate lower bound)In the PPNF, fork < 1/0 + 1, p is lower bounded by

! 1-7 %} 1-5
2 g (1 (4 157) - o (01 57))

In order to avoid the limitation of estimating by & when 6 — 0, the low-rate lower
bound in Prop[13 is not based on Lemfa 2. Instead, we obseavd,;th Ef:mfj_l + I, <
(k— i)t + I, Vi < k and thus the probability of, ' > 6I; can be estimated by the joint
distribution of ¢; and ;. Recursively apply this estimate for all< % leads to the bound as
stated. The proof of Prop] 3 is given in Agp. B. Note that tharzbin Prop[ B is only defined
for k < 1/60 + 1. Yet, in the low rate regimed(— 0), this is not a problem. As will be shown

in Section VY, whery — 0, this bound behaves much better than the one in Piop. 2.

s
>
[¢)
=
@D
—
Py
3
[¢]
QD
=]
n
Q
2
L
>
@D
QD
>
Q_ S~—
™
[
-
o
Y

C. The Upper Bound

Similar to the high-rate lower bound, we derive an upper loooy upper boundin@(&; ' >

01,).

Lemma 5. For Z5 = {&}, (&, > 01,) is upper bounded by

Ao(k) 2 5(k,1/c) + T(k,1+1/c),

€
(1+c)*
I'(z,z)

wherec = 09(1—5,0)—1+e7?, 3(z,2) = Vp(fj;) andT(z,z) = r are thenormalized lower

and upperincomplete gamma function, and-, -) is theupperincomplete gamma function.

The proof of Lemmal5 (see Appl B) relies on the idea of consitrgaan artificial Rayleigh
fading coefficient and compare the outage probability indhginal (non-fading) case and the

fading case. Combining Lemmbk 5 ddd 2 yields the followingppsition.

Proposition 4 (Combined upper bound)n the PPNF, we have,, < p, = é‘g’“(’f‘”Ag(k),

wheref = max{#, 1}.
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For 6 > 1, similar to the high-rate lower bound in Prap. 2, the uppearrtubin Prop[ 4 decays
super-exponentially with?, i.e., — log p,, o k2, which suggests that, in this regime, the marginal
gain of adding SIC capabilityi.e., the ability of successively cancelling more users) dintias

very fast.

D. The Sequential Multi-user Decoding (SMUD) Bounds
The bounds derived in Sectiohs TV-B and [V-C apply to @t 0. This subsection provides

an alternative set of bounds constructed based on a diffedea. These bounds are typically
much tighter than the previous bounds in the sequentialitasd#tr decoding (SMUD) regime

defined as follows.

Definition 5. A receiver with SIC capability is in the sequential multeuslecoding (SMUD)
regime if the decoding threshotd> 1.

It can be observed that in the SMUD regime multiple packeepgon (MPR) can be only
carried out with the help of SIC, whereas outside this regimed < 1, MPR is possible without
SIC, i.e., by parallel decoding (this argument is made rigorous by Leidfd in App.[C). This
important property of the SMUD regime enables us to show ttewing (remarkable) result

which gives a closed-form expression B¢, ' > 01;).

Theorem 1. For 6 > 1,

B 1

R (1L + kB)(D(1 — B))"
wherel'(+) is the gamma function. Moreover, the RHS[0f (4) is an uppenbanP (¢! > 01,

P& > 01)) (4)

whend < 1.

With details of the proof in Appl_IC, the main idea of Thim. 1 liesthe observation that,
in the SMUD regime, there can ks mostone k-element user set, where the received power
from any one of the: users is larger thaf times the interference from the rest of the network.
This observation, combined with the fading-invarianceperty shown in Cor[]1, enables us
to separate thé intended users from the rest of the network uniheluced (artificial) fading
without worrying about overcounting. Conversely, witk< 1, overcounting cannot be prevented,

which is why the same method results in an upper bound.
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Fig. 2: Comparison oﬁ”(&,:l > 01;) between simulation and the analytical value according ta Bdor k =
1,2,3,4,5.

Combining Thm[L with LemmA&l2, we obtain another set of bowmlg,.

Proposition 5 (SMUD bounds) For > 1 and =3 = {¢;}, we have
1
(1+ 0)ZEE=DgRT (1 + kB) (T (1 — B))

D >

k

and
1
FRDT (1 4 EB) (T(1 - 8))

More generally, for alld > 0, we have

pkée -

1

: 5
f2+-DORSD (1 + kB) (D(1 — B))" ©)

Pe <
where = max{#,1}.

Note that the SMUD upper bound in Pr@p. 5 is valid alsofer 1. The name of the bounds
only suggests that these bounds are tightest in the SMUDneegi

E. Two General Outage Results

Taking £ = 1, we obtain the following corollary of Thn] 1, which gives thract probability
of decoding the strongest user in a PPNF#&or 1 and a general upper bound of the probability

of decoding the strongest user.
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Corollary 2. For § > 1, we have

sinc 3
65 7

and the RHS is an upper bound &<, > 01;) whend < 1.

p =P > 00) = (6)

It is worth noting that the closed-form expression in Cdr. & been discovered in several
special cases. For example, [25] derived the equality pa@loin the Rayleigh fading case,
and [26] showed that the equality is true for arbitrary faddistribution. However, none of the
existing works derives the results in Cbl. 2 in as much gditeras here. More precisely, we
proved that[(B) holds for arbitrary fading (including thenAading case) ini-dimensional PPNF
(including non-uniform user distribution).

When = % (4) can be further simplified, and we have the following dtlarg.

Corollary 3. Wheng =1/2,

1
(r0)2T(E + 1)’
and the RHS is an upper bound &, ' > 01,) whend < 1.

P(§ " > 01) = (7)

Fig.[2 compares thél(7) with simulation results foe 1,2, 3,4, 5. We found that the estimate
in Cor.[3 is quite accurate f@r > —4 dB, which is consistent with the observation(in|[25], where

only the case: = 1 is studied.

F. Comparison of the Bounds

Focusing onk = 1,2, 3, Fig.[3 plots the combined upper bounds, high-rate lowembsu
SMUD upper bounds as a function &f We see thap, decays very rapidly witld, especially
whenk is large, which suggests that the benefit of decoding mamg usa be very small under
high-rate codes.

As is shown in the figure, the SMUD bounds are generally tigtitan the combined upper
bound. However, these bounds are less informative when1, where the upper bound exceeds
one at about-5 dB. After that, we have to rely on the combined upper boundstoratep;,.
Note that the combined upper bound behaves slightly diftirefor ¢ > 1 andd < 1 when
k > 1. This is because the combined upper bound in Rrbp. 4 becam@s whené < 1. More
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-

—— upper bounds
10 " - = =lower bounds
-'-'SMUD upper bounds
O simulation

10° ;
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Fig. 3: Combined upper bound (Prdg. 4), high-rate lower lo(Rrop[2), and SMUD upper bound (Pr&p. 5) for
pr (k= 1,2,3, from top to bottom) in a 2-d uniform network with path losperenta = 3.

precisely, the combined upper bound ignores the orderingngnthek strongest users and only
considersP(¢, 1 > 61;) whenf < 1.

The bounds derived above highlight the impact of clustewngthe effectiveness of SIC.
Fig. [4a compares the bounds on probability of successivetoding 1, 2 and 3 users for
different network clustering parametérsusing the combined upper and high-rate lower bounds
derived in Section§ TV-B and IVAC. The corresponding SMUDubds on the same quantities
derived in Section IV-D are plotted in Fig. 4b, where the upped lower bounds for the case
k = 1 are both tight and overlapping. Comparing Figs. 4alafd 4bfineethe SMUD bounds
are a huge improvement over the combined upper bound andr&iighower bound despite its
limitation. While the bounds in Fid.l4 are derived using eatHifferent techniques and provide
different levels of tightness for different values &fboth figures capture the important fact that
the more clustered the network, the more useful SIC.

Table[l summarizes and compares the three lower bounds amdigper bounds derived in
this section. In general, the SMUD bounds are the best etgnfd > 1. However, there is
no SMUD lower bound defined far < 1 and the SMUD upper bound becomes trivial (exceeds
one) ford < 1. This is the reason why we need the other bounds to completherSMUD

bounds.



TABLE I: Comparison of Different Bounds opy: LR stands for low-rate; HR stands for high-rate.

Lower Bounds Upper Bounds
HR LR SMUD | Combined| SMUD
Given in Prop.[2 Prop.[3 Prop.[®| Prop[4 | Prop[%
Based on the Basic boundg Yes No Yes Yes Yes
Valid/nontrivial when eRY | k<o t+1| 60>1 0 cRT 0«1
limg_,o(-) =1 Yes Yes N/A Yes No
Typical Best Estimate Region 0 <« 1 01 0>1 01 0«1

0.9r

O upper/lower bounds, k=1
O upper/lower bounds, k=2
A upper/lower bounds, k=3

0.8F N v
0.7F \\ i

0.6 M \

0.4r o
0.3 \
0.2 .

01f AR

o SMUD (exact), k=1
O SMUD bounds, k=2
A SMUD bounds, k=3

(a) Combined upper bound and high-rate lower bound.

(b) SMUD estimates.
Fig. 4: Upper and lower bounds fer. (k = 1,2,3) in a 2-d network with with path loss exponeft= 4, § = 1
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and density function\(z) = a||z||”. b = 0 is the uniform case. Upper bounds are in solid lines, and ldwends

in dashed lines.

V. THE EXPECTED GAIN OF SIC

A. The Mean Number of Successively Decoded Users

With the bounds om,, we are able to derive bounds @jN], the expected number of users

that can be successively decoded in the system, &ht¢ = > /" py.

Proposition 6. In the PPNF, we hav&[N] > S (1 + 6)~55k-DA, (k) for all K € N.

On the one hand, Propl 6 follows directly from Prép. 2 whén— oco. On the other hand,

since for larged, p, decays very fast wittk, a tight approximation can be obtained for small
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integersK. In fact, the error ternd_;" (1 + 6)~=2*¢=-DA, (k) can be upper bounded as

o0 o0

> (1+6)" 2 =D, (k) < Ay (K) > (14 @)~ 2k

k=K+1 k=K+1

SAl(K)/w(1+9) §oe1) gy

K

_ (1 +9)§A1(K)ﬁerfc (
25 1og(1+ 0)

whereerfc(-) is the complementary error function. By inverting (8), oaa control the numerical

K — %) glog(l —1—9)) , (8)

error introduced by choosing an finifé. Due to the tail property of complementary error function
and the monotonicity oA\, (k), it is easy to show that the error term decays super-expiatignt
with K2 when K > 1 and thus a finiteX’ is a good approximation for the ca$e — oo .
On the other hand,
(1+ 9)§A1<K)ﬁ erfc ((K — 1) b log(1 + 9)) ~ \/ze—%, asf — 0, 9)
261og(1 +6) 27V 2 26
where we use the fact théin, ,o A;(K) = 1 andlim,_,qerfc(z) = 1. (9) suggests that when

0 — 0, for any finite K, the errormayblow up quickly, which is verified numerically. Therefore,
in the smalld regime, we need another, tighter, bound, and this is wher&oth-rate lower bound
in Prop.[3 helps.

Proposition 7. In the PPNF, we hav&[N] > S11/% pLR.

A rigorous upper bound can be derived similarly but with mcaetion as we cannot simply

discard a number of terms in the sum. The following lemmaentssa bound based on Pr@p. 4.

Proposition 8. In the PPNFE[N] is upper bounded by

K (cK)I7E e — - B
(14 )Y R EDA (R,
V2r cK =1 ¢ p

for all K € NN [e/c,00), wheref = max{6, 1}.

The proof Prop[18 is based on upper bounding the tail terméeirfinite sum and can be
found in App.[D. Likewise, we can build a SMUD upper bound lohea Prop[b as follows.
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Proposition 9 (SMUD upper bound) The mean number of decodable users is upper bounded

by

ck)y \* 1 1 C(K) \* TO-p)
ENSZ(F@—@) T+ k) T KB) (F(l—ﬁ)> M5~ C(K)

The idea of the proof Propl 9 closely resembles that of Rriegmdis thus omitted from the
paper.

Fig. [B compares the bounds provided in Prdgs.16,]7, 8[and 9 simtlulation results in a
uniform 2-d network witha = 4. Although the low-rate lower bound can be calculated for all
6 < 1, it is only meaningful wher# is so small that the lower bound in Prap. 6 fails to capture
the rate at whiclEN grows with decreasing. Thus, we only plot the low-rate lower bound for
0 < —5 dB.

As is shown in the figureiE N increases unboundedly with the decreasing,ofhich further
confirms that SIC is particularly beneficial for low-rate pations in wireless networks, such
as node discovery, cell searattc

Fig.[8 also shows the different merits of the different ctbéerm bounds presented above.
The bounds of Prop§] 6 and 8 behave well in most of the regimeravthe practical systems
operate. In the lower SIR regimee., whené — 0, the low-rate lower bound outperforms the
lower bound in Propl]6 which does not capture the asymptaiwabior of EN. The SMUD
bound in Prop[© provides a tighter alternative to the upmemb in Prop[ 8 and is especially
tight for 6 > 1.

B. The Aggregate Throughput

Although a smalle# results in more effective SIC, it also means the informatete at each
transmitter is smaller. Thus, it is interesting to see how dlggregate throughput defined [ih (1)
changes with respect #h One way of estimate the aggregate throughput is by usingsH
[7,[8 and’®.

Fig.[6 shows the total information rate as a functior @fith analytical bounds and simulation.
Again, we only show the low-rate lower bounds < —5 dB. In this case, we see that the

lower bound of the aggregate throughput becomes a non-zerstant wherd — 0 just like
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Fig. 5: The mean number of users that can be successivelyddeéda a 2-d uniform network with path loss
exponenta = 4. Here, the upper bound, lower bound, low-rate lower boudUB upper bound refer to the
bounds in Prop4.]6.] 8] 7 ahdl 9, respectively.

the upper bound. Therefore, our results indicate that whieaggregate throughput diminishes
whenf — oo, it converges to a finite non-zero value whens 0. In particular, by using Propl 8
and lettingd — 0, we can upper bound the asymptotic aggregate throughp%t by, which
turns out to be a loose bound.

Nevertheless, it is possible to construct a better bounathwhnproves (reduces) the bound
by a factor of2 and is numerically shown to be asymptotically tight (as soahown in Figl 6
and will be proved below). To show this better bound, we ittice the following lemma whose
proof can be found in Apg.ID.

Lemma 6. The Laplace transform of. [, is
Lon(s) = ————.
(c(s) + 1)
wherec(s) = s%y(1 — 8,s) — 1 +e~*.

(10)

Then, we have the following asymptotic bound on the aggestf@bughput.

Proposition 10. The aggregate throughpuit = log(1+-0)E[N] is (asymptotically) upper bounded
by

6—0

1
1mR§B—L (11)
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Fig. 6: Aggregate throughput atin a 2-d uniform network with with path loss exponent 4, i.e.,f =6 =2/a =
1/2. The upper bound, lower bound, low-rate lower bound and SMigper bound come from Props.[8[6, 7 &nd 9
respectively. In this case, the asymptotic upper boundp(BI8) is1/8 — 1 = 1 nats/s/Hz and is plotted with

dashed line labeled by a left-pointing triangle.

Proof: First, we have

1/§ >
Zpk <ZP &l < 1/0) = / fer (x d:c—/ ngk,k . (12)

In general, the RHS of_.(12) is not avallable in closed-formcsif, ;,, the pdf of &1y, is
unknown. However, whefi — 0, this quantity can be evaluated in the Laplace domain. To see
this, consider a sequence of functiofj$ ), ,, where f,(z) = £ >/, fe, 1. (z), Yz > 0 and,
obviously, [;° f.(z)dz = 1 for all n. Thus,

o hde USSR fon(@)de

— i Vn e N 13
6—>0f e-@xfn )dx 0—>0f e—0 Zk:1 f&klk( ) , Vn € (13)

where

/ S fon(@)de =3 / e fer(@)de = Loy, (0)
0 — 1 70 k=1

Comparing [(IR) and(13) yields that

lim E[N] <1
1 — )
60> 071 Le1,(5)]s=0
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where L, ;, (s) is given by Lemmal6. Therefore, we have

= 0
. <1 = lim —
lim log(1 + 0)E[N] < },{1}]9;£5k1k(9) W o)

0 _ 15 [ |
c(0) B "
In the example considered in Fig. 6, we see the bound in Pi@pndiches the simulation

The proof is completed by noticing thétn,_,

results. Along with this example, we testéd= 1/3 and g = 2/3, and the bound is tight in both
cases, which is not surprising. Because, in the proof of Ft8pthe only slackness introduced
is due to replacing, with P(¢;' > 61,), and it is conceivable that, for every givén this
slackness diminishes in the limit, sintie,_, P(gk‘l > 01}) = limg_,o pr = 1. Thus, estimating
E[N] by >0 P(&. ! > 01;) is exact in the limit.

Many simulation results (including the one in Fig. 6) sudghat the aggregate throughput
monotonically increases with decreasifigAssuming this is true, Prop. 110 provides an upper
bound on the aggregate throughput in the network fof.alive also conjecture that this bound
is asymptotically tight and thus can be achieved by driving tode rate at every user to
which is also backed by simulations.§.,see Fig[b).

Since the upper bound is a monotonically decreasing fumabios we can design system
parameters to maximize the achievable aggregate throtiginpuided that we can manipulate
f to some extent. For example, sinBe= ¢ + b/o and§ = d/«, one can try to reducé to
increase the upper bound. Note thas a part of the density function of thective transmitters
in the network and can be changed by independent thinningeafransmitter process [19], and a
smallerb means the active transmitters are more clustered arourrécke/er. This shows that a
MAC scheme that introduces clustering has the potentiathieae higher aggregate throughput

in the presence of SIC.

C. A Laplace Transform-based Approximation

Lemmal® gives the Laplace transform&fl,, which completely characterizé¢, ' > 61;),
an important quantity in bounding,, E[N] and thusR. As analytically inverting[(10) seems
hopeless, a numerical inverse Laplace transform natukmlyomes an alternative to provide
more accurate system performance estimates. Howevemyvkesion (numerical integration in
complex domain) is generally difficult to interpret and offdimited insights into the system

performance.
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Fig. 7: Simulated and approximated, thy1(14), aggregateuitrput ato in a 2-d uniform network.

On the other handf,, ;, (0) = P(H > 6¢,1;) for an unit-mean exponential random variable
H. This suggests to usé; ;, (6) to approximateP(¢, " > 61I,,). We would expect such an
approximation to work for (at least) smadll Because, first, it is obvious that for eaghthis
approximation is exact aé — 0 since in that case both the probabilities go to 1; second and
more importantly, Prog._10 shows that the approximdteldased on this idea is asymptotically
exact.

According to such an approximation, we have
log(1 + 6) log(1 + 0)
~ = : 14
R c(0) 08y(1—3,0) — 1+ e (14)

This approximation is compared with simulation results ig. &, where we conside$ = 1/3,

1/2 and 2/3. As shown in the figure, the approximation is tight from -20 @B20 dB which
covers the typical values @éf Also, as expected, the approximation is most accurateeirstmall

0 regim@, which is known to be the regime where SIC is most useful 4], [27].

VI. THE EFFECT OFNOISE

In many wireless network outage analyses, the considerationoise is neglected mainly

due to the argument that most networks are interferenagelinfwithout SIC). However, this is

8 The fact that the approximation is also accurate for vergdar is more of a coincidence, as the construction of the
approximation ignores ordering requirement within themsgest (decodable} users and is expected to be fairly inaccurate

whend — oo (see Lemmal2).
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not necessarily the case for a receiver with SIC capab#ipecially when a large number of

transmitters are expected to be successively decodede 8irausers to be decoded in the later
stages have significantly weaker signal power than the wkesrsded earlier, even if for the first

a few users interference dominates noise, after decodingréder of users, the effect of noise

can no longer be neglected.

Fortunately, most of the analytical bounds derived bef@e lbe adapted to the case where
noise is considered. If we leV be the number of users that can be successively decoded in
the presence of noise of pow&r, we can defingy)’ = P(N > k) to be the probability of
successively decoding at ledsusers in the presence of noise. Considering the (orderedfPL

= = {& = “I°} as before, we can writg}!” as
Y AP(E >0+ W), Vi < k),
and we have a set of analogous bounds as in the noiseless case.

Lemma 7. In a noisy PPNF, the probability of successively decodingsers is bounded as
follows:

e Pl > (140) T R > 0 (L + W)

e Pl OB > 00+ W)

where=Z; = {&} is the corresponding SPLPF anfl = >, &7

Proof: The proof is analogous to the proof of Lemira 2 with two majatidctions: First,
we need to redefine the evedt to be {¢' > 6(I; + W)}. Second, Fadil1 does not hold
in the noisy case, and thus the original PLPF (instead of trenalized SPLPF) needs to be
considered. However, fortunately, this does not introdaice difference on the order statistics
of the firstk — 1 smallest elements i& conditioned on the,, and thus the proof can follow
exactly the same as that of Lemina 2. [

Thanks to Lemmal7, bounding” reduces to boundinB (¢, ' > 6 (I, + W)). Ideally, we can
boundP(¢, ' > 6 (I, + W)) by reusing the bounds we have B, ' > 01,.). Yet, this method
does not yield closed-form expressions (in most cases smghds will be in an infinite integral
form). Thus, we turn to a very simple bound which can stilisirate the distinction between

the noisy case and the noiseless case.
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Lemma 8. In a noisy PPNF, we have

a

PIE > 0T+ W) < (K, 5),

(15)
wherea = adcsE[RP]/B, 8 =6 +b/a, and§ = d/a.

Proof: First, note thatP(¢; ' > 6 (I, + W)) < P(& < 4) Which equals the probability
that there are no fewer than elements of the PLPF smaller thaid!V. By Lemmall, the
number of elements of the PLPF i, 1/01V) is Poisson distributed with meary9°W?*, and
the lemma follows. u

Although being a very simple bound, Lemrha 8 directly leadshi following proposition

which contrasts what we observed in the noiseless network.
Proposition 11. In a noisy PPNF, the aggregate throughput goes to @ as 0.

Proof: Combining Lemmal7 and Lemnia 8, we have

EINI =) p) <D P >0+ W) <> Ak, 963/5) =a/0°WP.
k=1 k=1

k=1

In other words,E[N] is upper bounded by the mean number of elements of the PLPF in
(0,1/0W). Then, it is straightforward to show thditn, ., R < limy_,caf'~"?/W?#, and the
RHS equals zero sincgé € (0,1). ]

Since it is obvious thalim,_.., R = 0, we immediately obtain the following corollary.

Corollary 4. There exists at least one optimal> 0 that maximizes the aggregate throughput

in a noisy PPNF.

As is shown in the proof of Prop.JLL,/0°W# is an upper bound oft|N]. We can obtain
an upper bound on the aggregate throughput by taking themaimiof log(1 + §)a/0°W* and
the upper bound shown in Figl 6. Fig. 8 compares the upperdsowith simulation results,
considering different noise power levels. This figure shtived the noisy bound becomes tighter
and the interference bound becomes looset as0. This is because asdecreases the receiver
is expected to successively decode a larger number of uBeeslarge amount of interference
canceled makes the residual interference (and thus thegeaggrthroughput) dominated by noise.
In this sense, the optimal per-user rate mentioned in[Coro¥igies the righbalancebetween

interference and noise in noisy networks.
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Fig. 8: Aggregate throughput atin a 2-d uniform network with noise. Here, the path loss exqmin = 4. Three

levels of noise are consideredd = 0.1, W =1 and W = 10.

Thanks to Lemmgl8, we see that Pridp. 1 clearly does not holtbisy networks. Nevertheless,
there is still a monotonicity property in noisy networksakigous to the scale-invariance property

in noiseless networks, as stated by the following propmsiti

Proposition 12 (Scale-monotonicity)For two PLPFZ= and Z with intensity measura ([0, r]) =
ar? and p([0,7]) = apr”, wherea, and a, are positive real numbers andy < a,, we have
i (E) <pi (B), VEEN.

Proof: See App[D. [
Combining Lemmall and Prop.]12 yields the following corgllainceE[1”] < 1 given that
E[h] =1 (recall thats € (0, 1)).

Corollary 5. In a noisy PPNF, fading reduces}’, the mean number of users that can be

successively decoded, and the aggregate throughput.

Since random power control,e., randomly varying the transmit power at each transmitter
under some mean and peak power constraint [28], [29], candveed as a way of manipulating
the fading distribution, Cof.]l5 also indicates that (iidhdam power control cannot increase the

network throughput in a noisy PPNF.
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VII. APPLICATION IN HETEROGENEOUSCELLULAR NETWORKS
A. Introduction

The results we derived in the previous sections apply to niygogs of wireless networks. One
of the important examples is the downlink of heterogeneallsilar networks (HCNs). HCNs
are multi-tier cellular networks where the marcro-celldatations (BSs) are overlaid with low
power nodes such as pico-cell BSs or femto-cell BSs. Thisrbgéneous architecture is believed
to be part of the solution package to the exponentially gngndata demand of cellular users
[30], [31]. However, along with the huge cell splitting gaamd deployment flexibility, HCNs
come with the concern that the increasing interference niayngsh or even negate the gain
promised by cell densification. This concern is especialjugpible when some of the tiers in
the network can have closed subscriber groups (C5&)some BSs only serve a subset of the
users and act as pure interferers to other users.

There are multiple ways of dealing with the interferenceiéssin HCNs including exploiting
MIMO techniques!([8],[[20], coordinated multi-point prosgsy (CoMP) [32], [33] and inter-cell
interference coordination (ICIC) [34]—[36]. In additioauccessive interference cancellation is
also believed to play an important part in dealing with thierference issues in HCNs [37].

In this section, leveraging tools developed in the previsastions, we will analyze the
potential benefit of SIC in ameliorating the interferencéwm and across tiers. The key difference
between the analysis in this section and those in Settlontkiaisin HCNs, the receiver (UE)
is only interested in being connecteddne of the transmitters (BSs) whereas in Secfidn V, we
assumed that the receiver is interested in the messagenittets from all of the transmitters.

We model the base stations (BSs) inkatier HCN by a family of marked Poisson point
processes (PPR)b;, i € [K]}, whered; = {(z;, h{!),t%))} represents the BSs of thieh tier,
¢, = {z;} C R? are uniforrH PPPs with intensity\,;, h) is the iid (subject to distribution
f}Ei)(~)) fading coefficient of the link from to o, and 9 is the type of the BS and is an iid
Bernoulli random variable witlP(t) = 1) = 7@ andP(t{) = 0) =1 — 7@ If ¢{) = 1, we
call the BSx accessibleand otherwisenon-accessibleUsing ¢, to model the accessibility of

the BSs enables us the incorporate the effect of some BS eimiigured with CSG and thus

®Although we only consider uniformly distributed BSs in tlsisction, with the results in previous sections, generajizhe

results to non-uniform (power-law density) HCNs is straigiward.
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Fig. 9: A 2-tier HCN with 10% of Tier 1 (macrocell) BSs (dendtey +) overloaded and 30% of Tier 2 (femtocell)

BSs (denoted by) configured as closed. A box is put on the BS whenever it isaumessiblei(e., either configured

as closed or overloaded). Theat origin is a typical receiver.

acts as pure interferers to the typical @El?or a typical receiver (UE) at, the received power

from BS z € ®; is POr{||z||~, where P®) is the transmit power at BSs of tigr and o is

the path loss exponent. Also note that since this sectionsix on 2-d uniform networks, we

haves = 2/«a. An example of a two tier HCN is shown in Figl 9.

An important quantity that will simplify our analysis in th&-tier HCN is theequivalent

access probabilitfEAP) defined as below.

Definition 6. Let

= i NE[(h®)P1 (PP,

The equivalent access probabilifeAP) is the following weighted average of the individual

access probabilities®:

K
1 i i i
n= 2 E :W( ))\Z-E[(h( ))6](]3( ))B_
=1

Thanks to the obvious similarity between this HCN model and BPNF model introduced

in Section_I], we can define

thmarked PLPF as follows.

10 |n addition to modeling the CSG BSs, the non-accessible Bsatso be interpreted as overloaded/biased BSs [30] or

simply interferers outside the cellular system.
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Definition 7. The marked PLPFcorresponding to the tiet network is=; = {(

®;}, with =, 2 {27 . = € @;} being the (ground) PLPF.

ll[|* .
thm,tx) cx €

Furthermore, we denote the union of themarked PLPFs and ground PLPFs=$ | JX | =
and= £ |JX, =, respectively. Then, we have the following lemma.

Lemma 9. The PLPF corresponding to th&-tier heterogeneous cellular BSs is a marked
inhomogeneous PPE = {(&,%,)} € Rt x {0,1}, where the intensity measure 8f= {¢,} is
A([0,7]) = Zmr? and the markg; are iid Bernoulli withP(t; = 1) = 7.

Based on the mapping theorem, the independence betjyeen the fact that the superposition
of PPPs is still a PPP, the proof of Lemira 9 is straightforvaard thus omitted from the paper.
Despite the simplicity of the proof, the implication of Leraff is significant: the effect of the
different transmit powers, fading distributions and asga@®babilities of they-tiers of the HCN
can all be subsumed by the two parametérandr.

B. The Coverage Probability

An important quantity in the analysis of the downlink of hetgeneous cellular networks is the
coverage probability, which is defined as the probabilitaaypical UE successfully connecting
to (at least) one of the accessible BSs (after possibly ¢tiagceome of the non-accessible BSs).

1) Without SIC:Using the PLPF framework we established above and assuimatghe UE
cannotdo SIC and the system is interference-limited, we can siynfiie coverage probability
in the K-tier cellular network to

¢ >
P=P| =—2——>0], (16)
(Zses\{s*}g '

where¢, £ argmax,.=t:£!, andd is the SIR threshold.
Note that the coverage probability in (16) does not yieldaseti-form expression in general
[38]. However, forf > 1, we can deduce

7 sinc 3
65 7’

by combining Cor[ 2 with the fact that the marks} are independent frorR. More precisely,
when# > 1 (SMUD Regime), it is not possible for the UE to decode any Blepthan the

P.=np = (17)
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strongest BS without SB Thus, the coverage probability without SIC is the producthe
probability that the strongest BS being accessip#nd the probability of decoding the strongest
BS p;.

2) With SIC: Similar to (16), we can define the coverage probability whesm WE has SIC
capability. In particular, the coverage probabililBP'C is the probability that after canceling a
number of non-accessible BSs, the signal to (residualyference ratio from the any of the
accessible BSs is above Formally, with the help of the PLPF, we define the followingeet

of coverage which happens with probabili8?'“.

Definition 8 (Coverage with (infinite) SIC capability)A UE with infinite SIC capability is
coverediff there existd € N andk € {i : t; = 1} such that¢; ' > 0I;, Vi <l and &' > 01/,

ke A NTJ#FR -1
where [;* = > =7/ £

In words, Def[8 says that the UE is covered if and only if thexests an integer paifk, (),
such that the:-th strongest BS is accessible and can be decoded afterssiwag canceling
BSs.

With the help of PLPF and the parameters we defined in the sisadythe PPNF, the following

lemma describes this probability in a neat formula.

Proposition 13. In the K-tier heterogeneous cellular network, the coverage praiigbof a
typical UE with SIC is

o

PIC=>"(1—n)" 'y,

k=1
wherep, = pr(Z) is the probability of successively decoding at lefastsers in a PLPF oR™

with intensity measurd ([0, 7]) = Znr”.

Proof: See App[E. u
Thanks to Prod._13 we can quantify the coverage probabifithh® HCN downlink using the

bounds orp, we obtained in Section1V. In particular, based on Ptdp. Z)veel bound can be

Hintuitively, decoding any BS weaker than the strongest Bfligs that this BS is stronger than the strongest BS and sause

contradiction. This argument can be made rigorous by apgliiemm&ID (in Appl_IC) for the cade= 1.
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found as
_ Bk(k—1)

K
PIC>N "1 —n) 140" = Ay(k), (18)
k=1

where the choice of{ affects the tightness of the bound. Although a rigorous uggmeind
cannot be obtained by simply discarding some terms from tine sve can easily upper bound

the tail terms of it. For example, based on Piigp. 4 we have
K
PSS < Y (1= )t HHED Ay (k) + (1= )<, (19)
k=1

wheref = max{#,1} and (1 — n)%*! bounds the residual terms in the infinite sum. Likewise,
the SMUD upper bound op, in Section1V-D leads to

sc_ 1 = ((1-nCEN" 1
& SEZ( L) T
7 1 (1-n)CE)\" r(1-p)
+1—77F(1+K6)< N ) M5 - -noE) &

whereC(k) 2 =85 k-D),
Besides these bounds, we can also use the approximatidiigistal in Sectiof V- to obtain

an approximation on the coverage probability in closednfoln particular, we had

1
~ L s=0 = T ———— %
Pk §k1k<s>| 0 (C(@) i 1)k
wherec() = 6°y(1 — 3,0) — 1 + e~%. Combing this with Prof._13, we have
0 1 k
psic M (777) __n 21
¢ l—nz 1+ ¢(0) n+ c(0) (21)

k=1
In Fig.[10, we compare these bounds and the approximatidm sumulation results. These
bounds give reasonably good estimates on the coveragehilitbthroughout the full range of
the SIR threshold. In comparison with the coverage probability when no SiCvailable, we
see that a significant gain can be achieved by SIC when the8&holdd is between-10 dB
and —5 dB. This conclusion is, of course, affected hyThe effect ofy will be further explored
in SectionVII-E.
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Fig. 10: The coverage probability (with infinite SIC capéb)l as a function of SIR threshold in HCNs with

n = 0.6 anda = 4. The (Laplace-transform-based) approximation, higk-taiver bound, combined upper bounds
of PSI© and SMUD upper bound is calculated according[fd (ZI)] (1B3) @nd [(2D), respectively. The coverage
probability in the case without SIC (a problem also studredl5], [38]) is also plotted for comparison, where the

6 > 0 dB part is analytically obtained by ({L7) and the< 0 dB part is based on simulation.

C. The Effect of the Path Loss Exponent

When# > 1, we can also lower bound the coverage probability using tM&B bound in

Prop.[%, which leads to

K k

1 1—

psc> 1 < L ) VK > 1, (22)
1—n 4= (14 6)2k¢6-Dr(1 4 k) \O°T(1 - 5)

where we take a finite sum in the place of an infinite one. Therdarm associated with this

approximation is upper bounded as

[e.e]

> : ( T )k< 1 e
oo (L+ 9)§k<k—1>r(1 +EB) \PT(1=5)) “TA+(K+1)8)1-C

whereCy = ] . Since [2B) decays super-exponentially with a small K typically
(1+0)2%08r(1-8)
ends up with a quite accurate estimate.
Fig. [11 plots the coverage probability as a function of ththgdass exponent.. Here, the
coverage probability without SICS'C is given by [17). The figure shows that the absolute gain
of coverage probability due to SIC is larger for larger paisslexponent. Although our model

here does not explicitly consider BS clustering, by the tmietion of the PLPF in Section]ll,



33

0.8

—— without SIC -
- - - SIC upper bound PR
0.7H -~ SIC lower bound el ,

©
o))
T

o
»
:

Coverage Probability
o
(%]

0.3r

25 3 35 4 4.5 5 5.5 6
a

Fig. 11: Comparison between coverage probability with aittiaut SIC in HCNs withn = 0.8, § = 1. Here, the
upper and lower bounds are based [od (20) (22), resdgctive

we can expect a larger gain due to SIC for clustered BSs. &urthmerical results also show

that the gain is larger when is smaller,i.e., there are more non-accessible BSs.

D. Average Throughput

Reducing the SIR thresholtldecreases the throughput of the UE under coverage. Sinilar t

our analyses to the aggregate throughput, we can define énage/throughput as
T 2 log(1 + 0) P3'°.

For the case without SIC, the definition is simplifiediag: log(1+4-6) P.. The average throughput
is different from the aggregate throughput defined in Saf#d|in that we do not allow multiple
packet reception in this case.

Fig. [12 shows how the average throughput change as a funatiénwith the same set of
parameters as in Fig. 10. Comparing these two figures, we fiadwhile SIC is particularly
useful in terms of coverage in combination with low-rate e@dlowd), the usefulness of SIC in
terms of average throughput can be marginal. For this paaticset of parameters, the average
throughput is maximized & about5 dB, a regime where SIC is not very useful. On the positive
side, as we will show in Sectidn VIIE, for su¢h most of the gain of SIC can be obtained by

simply canceling a very small number of non-accessible BSs.
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Fig. 12: The average throughput as a function of SIR threskhéh HCNs withn = 0.6 anda = 4. The (Laplace-
transform-based) approximation, lower bound and uppentswf PS'C is calculated according td (R1), (18], {19)
and [20), respectively. The non-outage throughput in trse agithout SIC is plotted for comparison, where the

6 > 0 dB part is analytically obtained by ({L7) and the< 0 dB part is based on simulation.

E. Finite SIC Capabilty

In real cellular network settings, the assumption that tiks Have the ability to successively
decode an infinite number of interferers is impractical aodceivably unnecessary in achieving
the coverage gain. Thus, it is important to evaluate theopeidnce gain of SIC when the UEs
have only a limited ability of interference cancellatiom& the latency is likely to be the most
critical factor in practical systems, we consider the cabere the UE can cancel at most- 1
interferers. Formally, we define the event of coverage forEavdth n-layer SIC capability as

follows.

Definition 9 (Coverage witm-layer SIC capability) A UE withn-layer SIC capability isovered
iff there existd € [n — 1] andk € {i : t; = 1} such that¢; ! > 0I;, Vi <l and &, ' > 01"

Comparing Def[B with Defl19, we see that the only differere¢hiat the integer paifk, ()
has to satisfyl < n — 1 which enforces the finite SIC capability constraint. We widle P>)°
to denote the coverage probability for a typical UE withiayer SIC capability. As two special
cases, we hav&>© = P, and P2IS = P3'C,

Following a similar procedure in the proof of Prép] 13, we fintbwer bound orP?)¢ which
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is exact wherp > 1.

Proposition 14. In the K-tier heterogeneous cellular network, the coverage praiigbof a

typical UE withn-layer SIC capability is
P3C > (1 =0 "npx, (24)
k=1

where the equality holds wheh> 1.

the proof of Prop[14 is analogous to that of Priop. 13 withaxtire about the possibility
that an accessible BS can be decoded without cancalirntge nonaccessible BSs stronger than
it. Details of proof can be found in Appl] E. Comparing Prdp3.ahd[ 14, it is obvious that the
inequality in Prop["TH is asymptotically tight as— co. More precisely, sincé>'© > PSIC, we

have

n

S =) e < PEC <N (1)
k=1 k=1
and the difference between the upper and lower bound deedyeast) exponentially with.

Thus, the lower bound in Prop.]14 converges to the true vdlleaat exponentially fast with.

Combining Propd._13 arld 14 with the results given before, are estimate the performance
gain of SIC in the HCN downlink. In the following, we focus owd different scenarios to
analyze the performance of finite SIC capability.

1) The High SIR CaseFirst, we focus on the SMUD regimé ¢ 1). Thanks to Prop.]5,
this case has extra tractability sinBé¢, ' > 01,) can be expressed in closed-form. Thus, by
applying Prop[ 14, we obtain a set of upper bounds on the ageeprobability with finite SIC
capability

n

k
1 1—79
pSc < . (25)
" T 1-n 4= T(1+kB) \ g3¢+0D(1 — B)

For infinite SIC capability, by the same procedure, a cldseah upper bound on the coverage

probability can also be obtained when=4 (5 = 1)

(26)

- <exp =y (1 tof (%)) - 1) . (27)




36

SIC
e — Pc,n upper bound

pSic upper bound ‘9 - 0 dB———>

o
o

c

+ Pf'lc simulation

o
2

2 7 - x-PS'C simulation
e
3 . ) )
S 0.4l (o] PCI10 simulation
a
>
203
6=2dB
©o2

0.1r

0.2 0.4 0.6 0.8 1

Fig. 13: Comparison between the upper bound on the coverapalplities and the simulated coverage probability
of HCNs with different levels of SIC capability when= 4. The upper bounds oﬁ’j',? is calculated according to
(29) for n = 1,2 (coverage probability is higher for larger note that whem = 1 the bound is tight). The upper
bound onP5'C is calculated by[(27). The simulated value Bf\C is plotted forn = 1,2,10. Whend = 2 dB, the

curves forn = 2 andn = 10 almost completely overlap.

Fig.[13 plots the coverage probability with different levelf SIC capability as a function of
n for 6 =0 dB and 2 dB. Here, we plot the upper boundstjf according to[(2b) fon = 1,2,
the upper bound o> according to[(27), and simulated value BP\° for n = 1,2,10. The
problem ofn =1 is already studied in_[25].

Takingn =1 and g = 1/2 in (25) and comparing it with_(17) shows that the upper bound i
(28) is tight forn = 1. This explains why the lowest solid lines (upper bounde{F) and the
lowest dashed lines (simulatgeP|°) in Fig.[I3 overlap.

Fig.[I3 shows thaP?/C — P2I°, the absolute coverage probability gain of SIC, is muchdearg
when 7 is close to1/2 than whenn is close to0 or 1. This phenomenon can be observed
within a much wider range of system parameters. Intuitivedis observation can be explained
as follows: On the one hand, when— 1, most of the BSs in the network are accessible. Thus,
SIC will not significantly improve the coverage probabilite., there isno one to cancelOn
the other hand, when — 0, most of the BSs in the network are non-accessible. In thsg,ca
UE coverage can only be significantly improved if many BSs expected to be successively

canceled. As is shown in Sectiéd V, the number of BSs that easuzcessively decoded is
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fundamentally limited by the choice &f and in this particular casé ¢ 1), very few, if any,
non-accessible BSs are expected to be canceled, leavinditiderspace for SIC to improve the
coverage probabilityi.e., the UE isunable to cancel

Moreover, it is worth noting that with > 1 and g = 1/2, most of the gain of SIC is achieved
by the ability of canceling only a single non-accessible BSis is consistent with observations
reported in [[1] where a different model for SIC is used and th@smission capacity is used
as the metric. The fundamental reason of this observatianbeaexplained by Prof. 14. The
difference in coverage probability between infinite SICataipty and the capability of canceling
n—1UEsis} 2 . (1—n)*'np,, which, due to the super-exponential decaypiProp.[5),
decays super-exponentially with. Thus, most of the additional coverage probability comes
from canceling a small number of non-accessible BSs. Sihedfects the rate at whiclh,
decays, we can expect that the ability of successively degaahore than one non-accessible
BS becomes even less useful for largewhich is also demonstrated in Fig.]13. This observation
also implies that wher = 1/2, P?'° ~ P3° ~ g(% + L121) thanks to [[26). Wherd = 0 dB,
this approximation coincides with the upper boundiH° plotted in Fig[IB. Thus, its tightness
can be observed by comparing the bound with simuld@gf in the case) = 0 dB.

Of course, with the same logic and analytical bouralg,,the one in Prop.J2 or the one in
Prop.[3, we would expect that the ability to successivelyodeca large number of BSs does
help if 5 — 0 and/or® — 0. 3 — 0 could happen if the path loss exponents very large
and/or the BSs are clustered around the receiver and/oretveork dimension is lowd.g. for
vehicular networks, it is reasonable to take= 1). # — 0 happens when very low-rate codes
are used.

2) Other Realistic CasesSince the different values of and § can result in different
usefulness of the finite SIC capability at the HCN downlintkjsi worthwhile to discuss the
most realistic parameter choices in contemporary systems.

The exact values af and depends on many facts including modulation and coding sekem
receiver sensitivity, BS densities and propagation emnvitent. However, in practical OFDM-
type HCNs é.9.,LTE and 802.11 networks), the SIR threshélds typically larger than-3 dB
and often more tha dB [38. For the indoor propagationy is typically between 3 and 4.

12The small@ regime is more applicable to wide-band systemg,, CDMA or UWB systems.
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Fig. 14: Comparison between the upper bound on the coverapalplities and the simulated coverage probability
of HCNs with different path loss exponentswhend = 0 dB. The P\ is calculated by[(28) (note that when
n = 1 the bound is tightj.e., “<” becomes *"). The upper bound orPS'C is given by [29).

Therefore, the system parameters used in the high SIR cégdI) are already reasonably
realistic.
To have a closer look at the impact of we fix ¢ = 1. Then, [25) can be simplified as

siC n . 1 1—-n g
b = T 2 T h9) (F(l—ﬁ)) | %)

which in the case ofi — oo gives an upper bound on the coverage probabilty with infigi@

U 1—n
o< 1 (o () ). )

whereE, ,(z) = > 1, F(#k—kb) is the Mittag-Leffler function. Without resorting to the ND-

capability,

Leffler function, one could also approximaf'c using [28) for smalh. This is justified by the

(1-8
approximation we gef’S'° ~ (3 — n)n/r.

k
super-exponential decay ?’Eliw) (Fl‘” )> . For example, wher = 1/2, using second order
Fig.[14 compares the coverage probabilities with diffetemls of SIC capability for different
path loss exponents whenf = 1. As expected, aa decreases, both the coverage probability
and the gain of additional SIC capability decrease. The &oria due to the fact that with a

smaller o the far BSs contribute more to the interference. The latser lse explained by the
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Fig. 15: Coverage probability of HCNs with SIR threshélg: —5 dB with o = 4. The solid lines are calculated for
n = 1,2 according to[(ZB) (the lines are higher for larggr which are an upper bounds d?f'}f whené > 0 dB.
For § < 0, these lines should be considered as approximations. Therdmpund onPS'C is calculated by[(29).
The simulated value OPCS,IT? is plotted forn = 1,2,10. Forn < 0.9, the curves form = 2 andn = 10 almost

completely overlap throught the simulated SIR range.

fact that when is smaller, the received power from different BSs are moragarable, leaving
less structure in the received signal that can be exploije8IG.

Similarly, we can apply the bounds in_(28) and](29) to evenllema which may apply
to outdoor environments, and conceivably the gain of SIG kdcomes even more marginal.
Therefore,SIC is more useful in an indoor environment

Generally speaking, accurately estimatiﬁ’g,'@C is more difficult whenf < 1. One of the
reasons is that the upper bound in Thi. 1 becomes increpdouage a¥) decreases. However,
within the realistic parameterse., # > —3 dB, the values calculated by (23)and [29) are still
informative as is shown in Fig. 115. This figure shows the cagerprobability as a function of
0 > —5dB for n = 0.3,0.6,0.9. We found that most of the conclusions we drew flor 1 still
hold when# > —5 dB. For example, we can still see that most of the gain of Si@efrom
canceling a single interferer and that the gain is largernspés close to0.5.

Quantitatively, we found that when is relatively small { = 0.3,0.6) the analytical results

13 (28) can only be considered as an approximation/3tf whend < 1 since Prop[ZI4 only gives a lower bound in this

regime.
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still track the results obtained by simulation closely for- —3 dB. The analytical results are
less precise when is large. However, large characterizes a regime where most of the BSs are
accessible. In this case, it is conceivable that SIC is aftamecessary, which can be verified by
either the simulation results or the analytical resultsio [E5. Therefore, overall, the analytical

results generates enough quantitative insights for the mteyesting set of parameters.

VIIl. CONCLUSIONS

Using a unified PLPF-based framework, this paper analyzegpérformance of SIC ini-
dimensional fading networks with power law density funooWe show that the probability
of successively decoding at ledstusers decays super-exponentially withif high-rate codes
are used, and that it decays especially fast under smalllpsshexponent in high dimensional
networks, which suggests the marginal gain of adding mo@cabability diminishes very fast.
On the other hand, SIC is shown to be especially beneficiatny low-rate codes are used, the
active transmitters are clustered around the receiveheodimensionality of the network is low,
e.g.,.d=1.

Since SIC can be considered not only as an interference atidgig technique but also as a
multiple packet reception (MPR) scheme, we also investiglaé performance gain of SIC in
terms of aggregate throughput at the receiver, countimngrnmétion rate from all the decodable
transmitters. We observe that, in interference-limitetmoeks, the aggregate throughput (or,
sum rate) is a monotonically decreasing function of the ys&r information rate and the
asymptotic sum rate i% — 1 as the per-user information rate goes(owhere § = bZ—d
« is the path loss exponent amddetermines the network geometry (clustering). Sihcean
be manipulated by distance-dependent access control oerpowwntrol [19], the result shows
that properly designed MAC or power control schemes canifgigntly increase the network
performance when combined with SIC and low-rate codeg.,in CDMA or ultra wide band
(UWB) systems).

On the other hand, in noisy networks, there exists at least mositive optimal per-user
rate which maximizes the aggregate throughput. Moreov#ferent from interference-limited
networks where fading does not affect the performance of R}, we prove fading to be
harmful in noisy networks. This suggests communicatiorestds that eliminate (average out)

the channel randomness are desirable in noisy networksSi@Ethcapability.
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By a simple example, we demonstrate how the technical segulthis paper can be used to
generate insights in designing heterogeneous cellularanks (HCNs) with SIC capability at the
UE side. The results suggests that the choice of code ratsigaificantly impact the usefulness
of the capability of successively cancel a large number wrfarers in the downlink of HCNSs.
In particular, SIC in combination with low rate codes can $taihe coverage probability of the
HCNs to a large extent. However, in terms of average nongeutaroughput, the usefulness of
SIC is relatively marginal. Plugging in some realistic paeters of contemporary narrow band
cellular systems, we observe that, in uniform 2-d HCNs, nobdghe gain of SIC comes from

canceling a single interferer at the UE side.

APPENDIX A

PROOF OFLEMMA [2
Proof: By Fact[1,p, can be evaluated by consideriag. In particular, if we define the
eventd; = {¢! > 01,3}, the probability of successively decoding at lelstsers can be written
aspy = P(ﬂf:l Ay).
Defining B; £ {&' > (14 0)&.4}, we first show(ﬂf:‘f BN Ak> C ﬂle A; by induction.
Consider the following statement:

k—1 k
(ﬂBiﬂAk>CﬂAi,n§k—1. (30)

i=n i=n

(30) is true forn = k — 1, since, for allw € B,_; N A, we have
_ (@  _ _ (b) _
Ei(w) > &1 (W) + 06 (w) > 0T (w) + 06 (w) = 01, (w),

where (a) isdue te € B,_;, and (b) is due ta € A,. In other words, the fact that € B,_1NA
suggestsu € A, N A, proves [(30) forn = k — 1.
Then, assuming (30) is true far> 2, we can similarly show that it is also true far— 1 by

(again) considering an (arbitrary) realization of the PLPE ﬂk‘l B; N A,. Since

i=n—1
(W) D 6 (W) + 06 (@) 2 01, (w) + 06, () = 01, (),

where (c) is due to € B,,_1, and (d) is due taw € ﬂf_‘i B; and the assumption that (30) holds

for n, we havew € A,,. This proves[(30) to be true for—1 sincew € /= B;,N A, c N, A
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by assumption. Then, by induction, {30) is shown to be truenfe- 1, and thus

k—1 k—1
pkzlt”(mBiﬂAk):Egk P(ﬂBiﬁAMgk)]
1=1 1=1
(ﬂB) (Ar) |§k], (31)

where the last equality is because of the conditional indéeece betwee®;, Vi € [k — 1] and

A, given&,. Here, by definition}P (ﬂk ! B) P ( <(1+06)""Vi< k)
Due to the Poisson property, conditioned&n k& > 2] we haveﬁ—l Xig—1, V1 <i<k-1,

= Efk

where £ means equality in distributionX is a random variable with cdf’(z) = 271 y)(),
and X;.,._; is thei-th order statistics ok — 1 iid random variables with the distribution of,
i.e., the i-th smallest one among — 1 iid random variables with the distribution of.

Since X? ~ Uniform(0, 1), we can apply a result from the order statistics of uniformdiam
variables [[23]. In particular, iU ~ Uniform(0, 1), then <%>Z ~ Uniform(0,1) and
(%)Z is iid for all 1 < i < k — 2. Therefore,

k—1

(5’ (1+9)‘1,Vi<k\§k) [P <@+6)77) = (146)"2+E=D (32

§Z+1 =1

iB
where the last inequality is due téﬁkkll) 4 U, Vi € [k — 2]. The lower bound is thus
proved by combining[{31) and (B2).
Defining B; = {& > 0¢.4} in the place ofB;, we can derive the upper bound in a very

similar way. m

APPENDIX B

PROOFS OFLEMMA [4, PROR [3, AND LEMMA

Proof of Lemmad 4: In order to establish the lower bound, we first calculate tlEmmof
the interferencel, conditioned oné, = p, and then derive the bound based on the Markov
inequality. Denotingl;, | {¢, = p} as1,, we can calculate the conditional mean interference by
Campbell's Thm.[[19]

E[l,] = E = [T A ) = P
I B A e

z€EN[p,00)

14 ¢, = = implies havingk — 1 points on the interval0, z).
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Thus, by the Markov inequality,
P&t > 00, | & = p) = P(p~" > 01,) > 1 — 6pE[L,).

The lower bound can be refined @s— 6pE[/,]]*, where[-]* = max{0, -}. Deconditioning over
the distribution of¢, (given by Lemma ) yields the stated lower bound. [ |
Proof of Prop[B: Using Fact 1, we work wittE; = {¢;}. Foralln € [k—1], k <1/0+1,

we have

P({gn > (9[ 1)8} N{& > 01, n<i< k})

( _1)9}0{§i>01},n<z’§k})
(1

({ o> 91"“ }m{&- >0, n+1<i< k:}),

where (a) is because of the orderlng ®f (b) is due tol, = &, !, + 41, and (c) is due to

O

P

v

eln—i-l

Iz
=

1-—
{ n+1
{ n+1

}ﬁ{62>91“n<l<k‘}>

| Iz

the fact that{gnH > 91";;} C {5;1 > 9[n+1}. Using the inequality above sequentially for

n=12--- k—1yields

01
> —1
p’“—P(fk ~ 1—(k—1)9)’
where a lower bound for the RHS is given by Lemima 4 (substigudi with 6). [ |
Proof of Lemmal5: For a non-fading 1-d network, the Laplace transform of thgregate

interference fromjp, o) can be calculated by the probability generating functiqRabFL) of
the PPPI[39]. Similarly, the Laplace transform pf2 I, | {&. = p} is

L (s) = exp (— /p 00(1 - e_s’”l)A(dr))
- (33)
— exp <—<sﬂ /0 rPerdr — pP(1 — e—wl))> :

whereA(-) is the intensity measure of the SPLEE (see Def[4).
Let H be an exponential random variable with unit mean and inddgnof PLPF=. We
can relateP(¢, ' > 01) with £;, (s) as

P&t > 01) = eP(H > 1P > 01,) L eP(7' > 01, H > 1)

< eP(HE > 01) @ eBg,[L1,16,(06)] @ B, [exp (—leg) —1]7)]



44

where (a) is due to the independence betw&eand =, (b) is due to the well-known relation
between the Laplace transform of the interference and tbeess probability over a link subject
to Rayleigh fading[[39], (c) makes use of the PGFL [inl(33),rtgkinto account the fact that
P(¢; 1 > 01),) < 1. With the distribution of¢, given by Lemmad13, the proposition is then proved

by straightforward but tedious manipulation. [ |

APPENDIX C

PROOF OFTHM.[1

First, we introduce the following lemma which is necessaryioving Thm[1.

Lemma 10 (Unique Decodeable Setonsider an arbitraryk-element index sé€ C N and an
increasingly ordered s&f = {&;}. &' > 0, &' always implies; ! > 0., &7, Vi < k.

Moreover, ifd > 1 and& ! >0 &7, thenkC = [k].

J>k

Proof: The first part of the lemma is obviously true whign= [k]. If not, for any! € KC\[k],
we have¢; > &, Vi € [k] by the ordering of=. For the same reason, we haye, 5].‘1 >
Y& ASET >0 &, we havesT > YT &7 Vi e (]

To show the second part, consider an arbitdagy/C. Since all elements i& are positive and
0>1,6" >0 & " impliesg < ¢, Vj ¢ K, and consequentlic = []. |

Lemma 10 states a general property of infinite countableetalus the real numbers. Consider
the case of = 1. The second part of Lemmal10 shows that it 1, there is at most one use |
that can be decoded without the help of SIC, and this is alwragseven after an arbitrary number
of cancellations. In other words, multiple packet recap(i®PR) is not feasible through parallel
decoding. This is exactly the reason why> 1 is defined as sequential multi-user decoding
(SMUD) regime.

With Lemmal10, we now give the proof of Thi. 1.

Proof of Thm[Il: Consider the SPLPF (which is essentially a 1-d PBPY R* with
intensity measure\([0,r]) = r”. For each element € ® we introduce an iid mark, with
exponential distribution with unit mean. Since the makkscan be interpreted as an artificial

fading random variable, in the following, we will refer tmsarked process as a path loss process



45

with induced fading (PLPIFp C R x R+ Similar as before, based @b, we can construct
a PLPFZ(d) = {&;} by letting &; = w, Vo € @, where, without loss of generality, we assume
the indicesi are introduced such that(®) is increasingly ordered.
By Cor.[1, we see thqtk(E(ci))) = pr(E5). Using the same technique in the proof of Pidp. 1,
we can easily show that
P(& > 01;) = P(& > 01;), Vk € N, (34)

where [}, = Yokt é{l Therefore, in the following, we focus on the PLPIF
First, considering a-tuple of positive numbers = (y;)%_, € (R*)*, with a slight abuse of
notation, we sayy;)*_, C ® if and only if y; € ®, Vi € [k]. Conditioned ony C ®, we denote

the interference from the rest of the netwdrk, 4, , h,x~! asIv. Since{y;, i € [k]} is a set

of Lebesgue measure zero, by Slivnyak’s theorem, we #avé T = Y, cq oL, Thus,
LY (s) 2 Elexp(—sIY)] = L;(s) = exp (_Eh </ (1- eXp(—shT_l)drﬁ)>)
0
SB
- (‘ i ) ’ (35)
sinc 3

sin(mx)
T

variables with unit mean.

wheresincx = and the derivation exploits the fact that are iid exponential random

Second, lef\" be the sample space ®fand consider the indicator functigp, : (R x R*)* x
N = {0,1} defined as follows

L i a7 > 0 g ey ot Vi € [K]

Xk («TwhmZ)f: 7(5 =
( ! ) 0, otherwise

where¢ C R* is the ground pattern of the marked point pattérin words, X (24, ha, )i, 0)

is one iff k of the users in the networke;)*_, all have received power larger thétimes the

5The purpose of the induced fading may not be clear at the morireparticular, since we have already seen that one of the
purposes of constructing the PLPF is to ‘eliminate’ fadisgaa explicit source of randomness, constructing a PLPIF seayn
to be one step backwards. However, this is not the case dueettoliowing subtlety: the PLPF incorporates the randoranes
from anarbitrary distribution into a 1-d PPP, while the PLPIF is designed tilifate the analysis by consideringparticular

fading random variablg,e., a unit mean exponential random variable.

Note that we dmot haveé; = h—fg— in general. In fact, the ordering @ will not be used in the rest of the proof.
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interference from the rest of the network. Then, for ényndk: €N,

£
~ ~ @ 1 B ~
1{£k>9fk}(¢) = 1{5}>9fk, Vie[k}}(¢) < Al Z Xk((xia hmi)f:17¢)7 (36)
T1yeTLED

where# meansr; # z;, Vi # j and (a) is due to the first part of Lemral 10. Also, the second
part of Lemmd_10 shows that whén> 1 the equality in (a) holds.

Therefore, we have

~—1 ~ ~
P& > 05) = ElLg 05,y (9)) < E

£
Z Xk«x“h%)f:l?(i))]

+
— %Eq) Z E |:)zk ((l'za hm)?:l’ (i))]

X: T1,..., 0, €D 1=1

k
1 :
@ L¥O> " 2)A® (dx),
i=1

k! J ey
where (b) is due td (36) and the equality holds when 1, (c) holds sincé, are iid exponentially
distributed with unit mean for aly € ®, and (d) is due to the definition of*)(.), the k-
th factorial moment measure df [19, Chapter 6]. Sinc& is a PPP with intensity function
A([0,7]) = 77, we haveA® (dx) = [,y dz’. Applying (32) and[(35), we have

1 6°
P& > 01) < — — L ) dx.
(gk - k) — k! /(R+)k P < SinCﬂHXHB) X
where]|| - ||, denotes the., norm, and the equality holds whén> 1. The integral on the RHS

can be further simplified into closed-form by using the gahéormulas in [40, eqn. 4.635],

which completes the proof. [ |

APPENDIX D
PrROOFS OFPROR [8, LEMMA [6], AND PrOP [12

Proof of Prop[8: By Prop.[4, we hav&[N] < >"°, Ay(k). The proposition then follows
by summing up the firsk’' — 1 terms of the infinite series and upper bounding the residue pa
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Specifically, we have

vkl/c 1/ (1/c)itk (a)eXp l/c 2 (efc)ith
Y T R >y

k=K j=0 k=K j= (J+ kT

_exp(=1/e) - T (e/c)® i (e/c)

T Ve I KR Ry *2

Y

where (a) uses Stirling’s approximation fol i.e.,v/2mn "t 1/2e" < nl < en™t/2e". Moreover,
00 (e/c)j (e/c . . T , . . .
Zj (J+K)J+% < e+ Z s since K > 1. Using Stirling’s approximation again on

Zj"o (/) yields

+1

f: v(k, 1/c exp(K +1) (cK)'K
i F 2 cK —1"°

Furthermore, we have

= e TI(k 1+1/c
Z(

1+ c¢)F

1—|—c) ,

k=K k

which completes the proof. [ |

K

Proof of Lemmdl6: As in the proof of Lemmdl5, we considdy, = I | {& = p}
and the Laplace transform df, is given in [38). Then, considering another random variable
pl, £ &Ii | {& = p}, we have

Lo, (s) =Ele " | & = p] = L1, (sp) = exp(—c(s)p”), (37)

wherec(s) = sPv(1 — 8,s) — 1 + e~*. Using the results in Lemmid 3, we can calculate the
Laplace transform of; I,

[e'e) ﬁxkﬁ—l

— — o —(14c(s))z? _ 1
‘ka—’k(s) Eﬁk[ pfp( ) | Sk ,0] /0 F(l{?) e dz

(T+e(s)™
[
Proof of Prop[[I2: The proof is similar to that of Prop] 1. Consider the mappifig;) =
(a1/a)?xP. Then, f(Z) is a PPP oR* with intensity measure,z” over the sef0, z] for all
x > 0. As before, let\V' be the sample space & i.e., the family of all countable subsets of
R*. Consider an indicator functio}” (¢) : N'— {0,1}, k € N such that

L, if& >0 +W), Vi<k
xi (¢) =
0, otherwise,

where¢ = {§;} and¢; < &;, Vi < j.
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Note thatx}'(¢) < x/V (C9¢), VC € (0,1), where Cp = {C&}. To show that, assume
that x;"(¢) = 1, i.e, & > 0(3 72, &1 + W), Vi <k, which is equivalent tqC¢;)~" >
03521 (C&) ™+ C7'W), Vi < k. It follows that x;" (C) = 1 sinceC~'W > W,

Therefore, we have

n(E) = ERY E)] S Bl (FE)] 2E ()] = pl

[1]

)7

where (a) is due ta; < a, and thus(a,/ay)'/? < 1 and (b) is because botf(=) and = are

PPPs oriR* with intensity measure([0, r]) = aqr”. u

APPENDIX E

PROOFS OFPROPS [I3 AND [14

Proof of Prop [18: Without loss of generality, we consider the marked PLPFesponding
to the K-tier heterogeneous cellular BS5= {(&;,t;)}, where the index is introduced such
that {&;} are increasingly ordered. L&, : N — {0,1}, k € N, be an indicator function such
that

(38)

Bu(g) 2 1, if A eNsty(p) =1and¢, ' > 01*
(6) 2
0, otherwise,

where x,(+) is defined in[(R). Furthermore, we define a random varidlfle= min{i : t; = 1},
wheret, is the mark of the-th element in=. Note that since, according to Lemimat9are iid
(also independent frorR), M is geometrically distributed with parameterand is independent

of =. Then, it is easy to check with Déf| 8 that the coverage prilibalban be written as
P =Py (T)) = En [P(In(E) | M)],

where the probability inside the expectation is the proligibof decoding theM/-th strongest

BS (with the help of SIC) conditioned on the fact that this BShe strongest accessible BS.
Moreover, we havel,(-) = xx(-), Vk € N. To see this, we first notice that, by the definition

of the two functions,yx(¢) = 1 = Jx(¢) = 1. Conversely, assuming,(¢) = 1, which by

definition meansii € N s.t. y;(¢) = 1 and§; ' > 01;%, we immediately notice thag,(¢) = 1 if

[ >k If I <k, wehaveg ! > &' > 01 > 014, i.e., xii1(¢) = 1, which, by induction, leads

to the fact thaty,(¢) = 1. Since bothy,(-) andd(-) are indicator functions on the domain of

all countable subsets @&*, we have established the equivalence of the two functions.
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Therefore, we havé®S'® = E,; [P(xu(Z) | M)] = E[pas], which completes the proof. m
Proof of Prop[14: Similar to the definition ofd;(-) in (38). We define

1, if 3l <n s.t. =1and& !t > 01k
0, otherwise.

Then, we have

PSC QR [P, (E) | M) S 01— n)*'P(0,.(2))

where (a) is due to Def] 9, (b) is due to the independence leehilee marks and the process
and (d) is due to the definition gf,. To show (c), we note that, x(-) = xx(-) for all £ < n,
which can be shown in a way analogous to the way we establéskedbivalence betweet,(-)
andy(-) in the proof of Prop13. In addition, whéh> 1, forall k > n > [, &' < 6 52978 &t

j>l+1
almost surely. In other word®,(v,, x(-)) = 0 for all £ > n and the equality in (c) is attained for

0>1. [ |
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