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Abstract—In this paper, Bayesian quickest change detection
problems with sampling right constraints are considered. Specif-
ically, there is a sequence of random variables whose probability
density function will change at an unknown time. The goal is
to detect this change in a way such that a linear combination
of the average detection delay and the false alarm probability is
minimized. Two types of sampling right constrains are discussed.
The first one is a limited sampling right constraint, in which the
observer can take at mostN observations from this random
sequence. Under this setup, we show that the cost function can
be written as a set of iterative functions, which can be solved
by Markov optimal stopping theory. The optimal stopping rule
is shown to be a threshold rule. An asymptotic upper bound
of the average detection delay is developed as the false alarm
probability goes to zero. This upper bound indicates that the
performance of the limited sampling right problem is close to that
of the classic Bayesian quickest detection for several scenarios
of practical interest. The second constraint discussed in this
paper is a stochastic sampling right constraint, in which sampling
rights are consumed by taking observations and are replenished
randomly. The observer cannot take observations if there are
no sampling rights left. We characterize the optimal solution,
which has a very complex structure. For practical applications,
we propose a low complexity algorithm, in which the sampling
rule is to take observations as long as the observer has sampling
rights left and the detection scheme is a threshold rule. We show
that this low complexity scheme is first order asymptotically
optimal as the false alarm probability goes to zero.

Index Terms—Bayesian quickest change-point detection, sam-
pling right constraint, sequential detection.

I. I NTRODUCTION

Quickest change-point detection aims to detect an abrupt
change in the probability distribution of a stochastic process
with a minimal detection delay. Bayesian quickest detection
[1], [2] is one of the most important formulations. In the
classic Bayesian setup, there is a sequence of random vari-
ables {Xn, n = 1, 2, . . .} with a geometrically distributed
change-pointΛ. Before the change-pointΛ, the sequence
X1, . . . , XΛ−1 is assumed to be independent and identi-
cally distributed (i.i.d.) with probability density function (pdf)
f0(x), and afterΛ, the sequence is assumed to be i.i.d. with
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pdf f1(x). The goal is to find an optimal stopping timeτ ,
at which the change is declared, that minimizes the detection
delay under a false alarm constraint.

In recent years, this technique has found a lot of ap-
plications in wireless sensor networks [3]–[9] for network
intrusion detection [10], seismic sensing [11], structural health
monitoring, etc. In such applications, sensors are deployed to
monitor their surrounding environment for abnormalities.Such
abnormalities, which are modeled as change-points, typically
imply certain activities of interest. For example, a sensor
network may be built into a bridge to monitor its structural
health condition. In this case, a change may imply that a
certain structural problem, such as an inner crack, has occurred
in the bridge. In this context, the false alarm probability and
the detection delay between the time when a structural problem
occurs and the time when an alarm is raised are of interest.

In the classic quickest change detection setups, one can
observe the underlying signal at each time slot. In the above
mentioned applications, however, the situation is different.
Taking samples and computing statistics cost energy. Sensors
are typically powered by batteries with limited capacity and/or
are charged randomly with renewable energy. Hence in these
applications, it is unlikely that one can take samples at all
time slots. For example, for sensors powered by a battery, they
are subjected to a limited energy constraint. Hence, they have
only limited energy to make a fixed number of observations.
For sensors powered by renewable energy, they are subjected
to a stochastic energy constraint. The sensors cannot take
observations unless there are energy left in the battery.

In this paper, motivated by above applications, we extend
the classic Bayesian quickest change-point detection by im-
posing casual energy constraints. Specifically, we relax the
assumption in the classic Bayesian setup that the observer can
observe the underlying signal freely at any time slots. Instead,
we assume that an observation can be taken only if the sensor
has energy left in its battery. The sensor has the freedom to
choose the sampling time, but it has to plan its use of energy
carefully due to the energy constraint. The goal of the sensor
is to find the optimal sampling strategy (or the optimal energy
utility strategy) and the optimal stopping rule to minimizethe
average detection delay under a false alarm constraint. The
optimal solutions of the proposed problems are obtained by
dynamic programming (DP). However, the optimal solutions
in general do not have a close form expression due to the
iterative nature of DP. Although the optimal solutions can be
solved numerically, numerical method provides us little insight
of the optimal solutions. Hence, in this paper, we also conduct
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asymptotic analysis and design low-complexity asymptotically
optimal schemes.

In particular, we consider two types of constraints in this
paper. The first one is a limited observation constraint. Specif-
ically, the sensor is allowed to take at mostN observations.
After taking each observation, the sensor needs to decide
whether to stop and declare a change, or to continue sampling.
If the sensor decides to continue, it also then needs to
determine the next sampling time. In this paper, we develop the
optimal stopping rule and the sampling rule for this problem.
The optimal stopping rule is shown to be a threshold rule,
and the optimal sampling time of thenth observation is the
one minimizing the most updated cost function. An asymptotic
upper bound of the average detection delay is developed as the
false alarm probability goes to zero. The derived upper bound
indicates that the average detection delay is close to that of
the setup without energy constraint [12] whenN is sufficiently
large or whenf0 andf1 are close to each other.

The second constraint being considered is a stochastic
energy constraint. This constraint is designed for sensorspow-
ered by renewable energy. In this case, the energy stored in the
sensor is consumed by taking observations and is replenished
by a random process. The sensor cannot store extra energy if
its battery is full, and the sensor cannot take observationsif
its battery is empty. Hence, the sensor needs to find a strategy
to use its energy efficiently. Under this constraint, we develop
the optimal stopping rule and the optimal sampling rule. The
complexity of the optimal solution, however, is very high. To
address this issue, we design a low complexity algorithm in
which the sensor takes observations as long as there is energy
left in its battery and the sensor detects the change by usinga
threshold rule. We show that this simple algorithm is first order
asymptotically optimal as the false alarm probability goesto
zero.

Although these problem formulations are originally mo-
tivated by wireless sensor networks, their applications are
not limited to this area. For example, in clinical trials, itis
desirable to quickly and accurately obtain the efficiency of
certain medicine or therapy with limited number of tests, since
it might be very costly and sometime even health-damaging to
conduct a test. Hence, the limited observation constraint can
be applied in this scenario. Therefore, in the remainder of this
paper, instead of using application specific concepts such as
“sensor” and “energy constraint”, we use general terms such
as “observer” and “sampling right constraint”.

The problems considered in this paper are related to recent
works on the quickest change-point detection problem that
take the observation cost into consideration. In particular, [13]
assumes that each observation is worth either1 if it is observed
or 0 if it is skipped. [13] is interested in minimizing both
the Bayesian detection delay and the total cost made by tak-
ing observations. Moreover, [13] considers both discrete and
continuous time case and shows the existence of the optimal
stopping rule-sampling strategy pair. [14], which considers
the Bayesian quickest change-point detection problem with
sampling right constraints in the continuous time scenario,

is also relevant to our paper. [14] considers two cases: the
observer has a fixed sampling rights or the observer’s sampling
rights arrive according to a Poisson process. [14] characterizes
the optimal solution for these problems. Compared with [13],
[14], our paper focuses the discrete time case, and provides
low complexity asymptotically optimal solutions as well as
optimal solutions.

We also briefly mention other related papers. The first
main line of existing works considers the problem under a
Bayesian setup. In particular, [10] considers a wireless network
with multiple sensors monitoring the Bayesian change in the
environment. Based on the observations from sensors at each
time slot, the fusion center decides how many sensors should
be activated in the next time slot to save energy. [15] takes the
average number of observations taken before the change-point
into consideration, and it provides the optimal solution along
with low-complexity but asymptotically optimal rules. [16] is
a recent comprehensive survey that summarizes the current
development on the Bayesian quickest change-point detection
problem. There are also some existing works consider the
problem under minmax setting. For example, [17] considers
the non-Bayesian quickest detection with a stochastic sampling
right constraint. [18], [19] extend the constraint of the average
number of observations into non-Bayesian setups and sensor
networks. [20] is a recent survey on the quickest change-
point detection problem which comprehensively summarizes
the progress made on both Bayesian and non-Bayesian setups.

The remainder of this paper is organized as follows. Our
mathematical model for the Bayesian quickest change-point
detection problem with sampling right constraints is described
in Section II. Section III presents the optimal solution and
the asymptotic upper bound for the limited sampling right
problem. Section IV provides the optimal and the asymp-
totically optimal solution for the stochastic sampling right
problem. Numerical examples are given in Section V. Finally,
Section VI offers concluding remarks.

II. M ODEL

Let {Xk, k = 1, 2, . . .} be a sequence of random variables
with an unknown change-pointΛ. {Xk}’s are i.i.d. with pdf
f0(x) before the change-pointΛ, and i.i.d. with pdff1(x)
afterΛ. The change-pointΛ is modeled as a geometric random
variable with parameterρ, i.e., for 0 < ρ < 1, 0 ≤ π < 1,

P (Λ = λ) =

{

π λ = 0
(1− π)ρ(1 − ρ)λ−1 λ = 1, 2, . . .

. (1)

We usePπ to denote the probability measure under which
Λ has the above distribution. We will denote the expectation
under this measure byEπ. Additionally, we will usePλ andEλ

to denote the probability measure and the expectation under
the event{Λ = λ}.

We assume that the observer initially hasN sampling
rights, and her sampling rights are consumed when she takes
observations and are replenished randomly. The sampling right
replenishing procedure is modeled as a stochastic process
ν = {ν1, ν2, . . . , νk, . . . }, whereνk is the amount of sampling
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rights collected by the observer at time slotk. Specially,
νk ∈ V = {0, 1, 2, . . .}, in which {νk = 0} implies that
she obtains no sampling right at time slotk and {νk = i}
implies that she collectsi sampling rights atk. We use
pi = P ν(νk = i) to denote its probability mass function (pmf).
We assume that{νk} is i.i.d. overk.

The observer can decide when to spend her sampling rights
to take observations. Letµ = {µ1, µ2, . . . , µk, . . . } be the
sampling strategy withµk ∈ {0, 1}, in which{µk = 1} means
that she spends one sampling right on taking observation at
time slot k and {µk = 0} means that no sampling right is
spent atk and hence no observation is taken.

We are interested in the case that the observer has a finite
sampling right capacityC. Let Nk be the amount of sampling
rights at the end of time slotk. Nk evolves according to

Nk = min{C,Nk−1 + νk − µk} (2)

with N0 = N . The observer’s strategyµ must obey a causality
constraint:the observer cannot take an observation at time slot
k if she has no sampling right at that time slot.Hence, the
admissible strategy set can be written as

U = {µ : Nk ≥ 0, k = 1, 2, . . . .} . (3)

The observer spends sampling rights to take observations.
We denote the observation sequence as{Zk, k = 1, 2, . . .}
with

Zk =

{

Xk if µk = 1
φ if µk = 0

,

in which φ denotes no observation.
We call an observationZk a non-trivial observation if

µk = 1, i.e., if the observation is taken from the environment.
Denote ti as the time instance that the observer makes the
ith observation, thenµti = 1 and the non-trivial observation
sequence can be denoted as{Xt1 , Xt2 , . . . , Xtn , . . .}.

The observation sequence{Zk} generates the filtration
{Fk}k∈N with

Fk = σ(Z1, · · · , Zk, {Λ = 0}), k = 1, 2, . . . .

andF0 contains the sample spaceΩ and{Λ = 0}.

ν Z

μ δ

N ν Z N

μ δδ

νk

k-1

k+1 k+2kk

kk

k+1 k+1

k+1 k+1

time slot k time slot k+1

Fig. 1. The observer’s decision flow

Figure 1 illustrates the observer’s decision flow. At each
time slot k, the observer has to make two decisions: the
sampling decisionµk and the terminal decisionδk ∈ {0, 1}.
These two decisions are based on different information. First,
the observer needs to decide whether she should spend a
sampling right to take an observation (µk = 1) or not (µk = 0)
after she obtains the information ofνk. In general,µk depends

casually on the observation process, the sampling strategyand
the sampling right replenishing process, i.e.,

µk = gk(Z
k−1
1 , νk1 , µ

k−1
1 ), (4)

in which Z
k−1
1 denotes{Z1, . . . , Zk−1}, νk1 and µk−1

1 are
defined in a similar manner, andgk is the sampling strategy
function used atk. After making each observationZk (whether
it is a non-trival observation in the case ofµk = 1 or it is a
trivial observation in the case ofµk = 0), the observer needs
to decide whether she should stop sampling and declare that
a change has occurred (δk = 1), or to continue the sampling
procedure (δk = 0). Therefore,δk is aFk measurable function.
We introduce a random variableτ to denote the time when the
observer decides to stop, i.e.,{τ = k} if and only if {δk = 1},
thenτ is a stopping time with respect to the filtration{Fk}.

We notice that the distribution ofZk is related to both
Xk and µk. Unlike the classic Bayesian setup which only
takes the expectation with respect toPπ , in our setup we
should take the expectation with respect to bothPπ andP ν .
Hence, we use the superscriptν over the probability measure
and the expectation to emphasize that we are working with a
probability measure taken the distribution of the processν into
consideration. Specifically, we useP ν

π andE
ν
π to denote the

probability measure and the expectation underΛ, respectively;
and we useP ν

λ andEν
λ under the event{Λ = λ}.

In this paper, our goal is to design a strategy pair(τ, µ)
to minimize the detection delay subject to a false alarm
constraint. In particular, the average detection delay (ADD)
is defined as

ADD(π,N, τ, µ) = E
ν
π

[

(τ − Λ)+
]

,

wherex+ = max{0, x}, and the probability of the false alarm
(PFA) is defined as

PFA(π,N, τ, µ) = P ν
π (τ < Λ).

With the initial probabilityπ0 = π and the initial sampling
right N0 = N , we want to solve the following optimization
problem:

(P1) min
µ∈U ,τ∈T

ADD(π,N, τ, µ)

subject toPFA(π,N, τ, µ) ≤ α.

in which T is the set of all stopping times with respect to the
filtration {Fk} andα is the false alarm level. By Lagrangian
multiplier, for eachα the optimization problem (P1) can be
equivalently written as

(P2) J(π,N) = inf
µ∈U ,τ∈T

U(π,N, τ, µ),

where

U(π,N, τ, µ) , E
ν
π

[

c(τ − Λ)+ + 1{τ<Λ}

]

(5)

for an appropriately chosen constantc. We would like to
characterizeJ(π,N) in this paper.
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III. PROBLEMS WITH THE L IMITED SAMPLING RIGHT

CONSTRAINT

We first consider a special case thatp0 = P ν(νk = 0) = 1,
that is, other than the initial sampling rights, there will be no
additional sampling rights arriving at the observer. Henceshe
can take at mostN0 = N observations from the sequence
{Xk} for the detection purpose. Therefore, we name the
sampling right causality constraint as a limited sampling right
constraint in this case.

From (2) and (3), it is easy to verify that there are at
mostN nonzero elements inµ. Hence, instead of considering
µ = {µk} with infinite elements, we can describe the sampling
strategy by the sampling time sequenceµ = {t1, . . . , tη},
wheretη is the time instance that the observer takes the last
observation, andη is the number of observations taken by the
observer when she stops. Hence, in this paper we termη as the
sample size, and we notice thatη is a random variable whose
realization varies from different trials. The admissible strategy
set (3) can be equivalently written asUN = {µ : η ≤ N} in
this case.

In addition, as indicated in Section II, in general we need to
take the expectation with respect to bothPπ andP ν . However,
in this special case we only need to take expectation with re-
spect toPπ since the processν has no randomness. Therefore,
E
ν
π and P ν

π can be replaced byEπ and Pπ respectively. In
particular, the cost function can be written as

U(π,N, τ, µ) = Eπ

[

c(τ − Λ)+ + 1{τ<Λ}

]

. (6)

A. Optimal Solution

Let πk be the posterior probability that a change has
occurred at thekth time instance, namely

πk = P (Λ ≤ k|Fk), k = 0, 1, . . . . (7)

Using Bayes’ rule,πk can be shown to satisfy the recursion

πk =

{

Φ0(πk−1), if µk = 0
Φ1(Xk, πk−1), if µk = 1

, (8)

in which

Φ0(πk−1) = πk−1 + (1− πk−1)ρ, (9)

and

Φ1(Xk, πk−1)

=
Φ0(πk−1)f1(Xk)

Φ0(πk−1)f1(Xk) + (1 − Φ0(πk−1))f0(Xk)
. (10)

It turns out thatπk is a sufficient statistic for this problem,
as the next result demonstrates.

Proposition 1. For each sampling strategyµ and stopping
rule τ

U(π,N, τ, µ) = Eπ

[

1− πτ + c

τ−1
∑

k=0

πk

]

. (11)

Proof: An outline of the proof is provided as follows:

U(π,N, τ, µ) = Eπ

[

c(τ − Λ)+ + 1{τ<Λ}

]

= Eπ

[

c(τ − Λ)1{τ≥Λ} + 1{τ<Λ}

]

= Eπ

[

c
τ−1
∑

k=0

1{Λ≤k} + 1{τ<Λ}

]

= Eπ

[

c

τ−1
∑

k=0

πk + (1− πτ )

]

.

A detailed proof follows closely to that of Proposition 5.1
of [21] and is omitted for brevity.

We first have the following lemma characterizing some
properties of the optimal(τ, µ):

Lemma 1. Let µ = {t1, . . . , tη} be an admissible sampling
strategy, andτ be a stopping time. Ifη < N andτ > tη, then
(τ, µ) is not optimal.

Proof: The proof is provided in Appendix A.
This result implies that if the observer has any sampling

rights left, it is not optimal for him to stop at time slotk
without taking an observation atk. In other words, the only
scenario in which the observer may stop sometime after an
observation is taken occurs when she has exhausted all her
sampling rights. From this lemma, we immediately have the
following result.

Corollary 1. If µ∗ = {t∗1, . . . , t
∗
η∗} is the optimal sampling

strategy, then on the event{η∗ < N}, we haveτ∗ = t∗η∗ .

We solve (P2) by using the dynamic programming principle.
Similar to the approach used in [22], we define a functional
operatorG as

GV (π) = min

{

1− π, inf
m≥1

Eπ

[

c
m−1
∑

k=0

πk + V (πm)

]}

, (12)

in which

π0 = π,

πk = π +
k

∑

i=1

(1− π)ρ(1 − ρ)i−1, k = 1, · · ·m− 1,

πm =
Φ0(πm−1)f1(Xm)

Φ0(πm−1)f1(Xm) + (1 − Φ0(πm−1))f0(Xm)
.

Using this functional operator, we can introduce a set of
iteratively defined functions:

V0(π) = min
m≥0

[

c

m−1
∑

k=0

πk + 1− πm

]

, (13)

Vn(π) = GVn−1(π), n = 1, . . . , N. (14)

The operatorG converts (P2) to a Markov stopping problem.
Specifically, we have the following result:

Theorem 1. For all n = 0, · · · , N , π0 = π ∈ [0, 1), we have

J(π, n) = Vn(π).



5

Furthermore, by lettingt∗0 = 0, the optimal sampling time for
(P2) can be determined by

t∗n+1 − t∗n = argmin
m≥1

Eπt∗n

[

c

m−1
∑

k=0

πk + VN−n−1(πm)

]

, (15)

for n = 0, 1, . . . , N − 1. The optimal sampling size is given
as

η∗ = inf
{

0 ≤ n ≤ N : πt∗n ∈ Sn

}

, (16)

in whichSn is the stopping domain defined as

Sn,

{

πtn : 1− πtn≤ inf
m≥1

Eπtn

[

c

m−1
∑

k=0

πk + VN−n−1(πm)

]}

,

for n = 0, · · · , N − 1, and SN , [0, 1]. In addition, the
optimal stopping time is given as

τ∗ = t∗η∗ +m∗
1{η∗=N}, (17)

where

m∗ = argmin
m≥0

Eπt∗
N

[

c

m−1
∑

k=0

πk + 1− πm

]

.

Proof: The proof is provided in Appendix B.

Remark 1. Theorem 1 indicates that the observer cannot
decide the sampling timetn+1 until she takes thenth ob-
servation. The conditional expectation on the right hand side
of (15) is a function ofπtn , which can only be obtained after
making thenth observation. Hence, the optimal sampling time
is characterized by the sampling interval, which is the timethat
the observer should wait after she makes thenth observation,
on the left hand side of(15).

Remark 2. Using Theorem 1, we now give a heuristic
explanation of the operatorG and the iterative function(14).
In particular, Vn(π) is the minimum cost when there are only
n sampling rights left. We could choose either to stop, which
costs1 − π, or to continue and take another observation at
m that minimizes the expectation of the future cost. Therefore,
the minimizerm in the definition of the operatorG is the next
sampling time, andπk ’s in G are the posterior probabilities
that are consistent with the expressions(7)-(10).

Let
π̄ = 1− π, ρ̄ = 1− ρ,

it is easy to verify that

m−1
∑

k=0

πk = m−
π̄

ρ
(1− ρ̄m), (18)

πm =
(1− π̄ρ̄m)f1(Xm)

(1 − π̄ρ̄m)f1(Xm) + (π̄ρ̄m)f0(Xm)
. (19)

HenceGV (π) can be simplified as

GV (π) = min {1− π,

inf
m≥1

{

c

(

m−
π̄

ρ
(1− ρ̄m)

)

+ Eπ [V (πm)]

}}

, (20)

andV0(π) can be simplified as

V0(π) = min
m≥0

[

c

(

m−
π̄

ρ
(1 − ρ̄m)

)

+ π̄ρ̄m
]

. (21)

Based on this form, the optimal stopping time can be further
simplified to a threshold rule. We define

πU
n = inf{π ∈ [0, 1]|1− π = VN−n(π)},

for n = 0, . . . , N , and the threshold rule is described in the
following theorem.

Theorem 2. For eachn ≤ N , Vn(π) is a concave function
of π and Vn(1) = 0. Furthermore, the optimal stopping rule
for theN sampling right problem can be given as a threshold
rule. Specifically,

η∗ = min{n : πt∗n ∈ Sn}, (22)

where

Sn = {πtn : πtn ≥ πU
n } (23)

for n = 0, . . . , N − 1 andSN = [0, 1]. Moreover, ifη∗ < N ,
thenτ∗ = tη∗ ; if η∗ = N , then

τ∗ = inf
{

k ≥ tN : πk ≥ πU
N

}

. (24)

Proof: The proof is provided in Appendix C.

Remark 3. We notice thatη∗ is a threshold rule ifη∗ <
N , but it is not a threshold rule ifη∗ = N in Theorem 2.
Henceη∗ = N is true even ifπt∗

N
< πU

N . This is consistent
with our intuition that the observer cannot take more thanN
observations. However, on the event{πt∗

N
< πU

N}, the optimal
stopping rule is still a threshold rule due to the fact thatV0(π)
is concave andV0(π) is bounded by1− π.

Although Theorem 2 simplifies the optimal stopping rule
into a threshold rule, the optimal strategy still has a very
complex structure as the optimal sampling rule is in general
difficult to characterize. From (15), one can see that the opti-
mal sampling rule depends onVn(π). GenerallyVn(π) does
not have a close form for a general value ofn, and it could only
be calculated numerically. For reader’s convenience, Table I
summarizes the numerical procedure for the calculation of
the optimal solution. Although the problem can be solved
numerically, numerical calculation provides little insight for
the optimal solution. This motivates us to conduct asymptotic
analysis in the next subsection.

B. Asymptotic Upper Bound

In this subsection, we investigate if there are any scenarios
under which the performance of the limited sampling right
problem would approach to the performance of the classic
Bayesian detection.

The performance of the classic Bayesian case, in which the
observer can take observations at every time slot, is certainly
a lower bound of the performance of theN sampling right
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TABLE I
OPTIMAL ALGORITHM FORN SAMPLING RIGHT PROBLEM

Offline Procedure:

step0: CalculateV0(π) = min
m≥0

[

c
m−1
∑

k=0

πk + 1− πm

]

.

CalculateW0(π,m) = c
(

m− π̄
ρ
(1− ρ̄m)

)

+ Eπ [V0(πm)].

CalculateπU
N

= inf{π ∈ [0, 1]|1− π = V0(π)}.
stepn: Given Wn−1(π,m), calculateVn(π) = min{1− π, infm Wn−1(π,m)}.

Given Vn(π), calculateWn(π,m) = c
(

m − π̄
ρ
(1− ρ̄m)

)

+ Eπ[Vn(πm)].

CalculateπU
N−n = inf{π ∈ [0, 1]|1− π = Vn(π)},

for n = 1, 2, . . . , N.

Online Procedure:
step0: If π0 ≥ πU

0
, the observer stops. Otherwise, continues.

Find the sampling intervalt1 = argminmWN (π0, m).
Take observationXt1 and calculateπt1 by (10).

stepn: If πtn ≥ πU
n , the observer stops. Otherwise, continues.

Find the sampling intervaltn+1 − tn = argminmWN−n(πn,m).
Take observationXtn+1 and calculateπtn+1 by (10),
for n = 1, 2, . . . , N − 1.

stepN : If πtN ≥ πU
N

, the observer stops. Otherwise, continues.
Updates the posterior probability by (9) at every time slot,stops whenπU

N
is exceeded.

problem. In this case, the asymptotic performance is given in
[12]. Hence we have

ADD(π,N, τ∗, µ∗)

≥
| logα|

D(f1||f0) + | log(1− ρ)|
(1 + o(1)), (25)

whereD(f1||f0) is the Kullback-Leibler (KL) divergence of
f1 andf0.

We consider a uniform sampling strategy with a threshold
stopping rule. In particular, the observer adopts a sampling
strategyµ = {ς, 2ς, . . . , ης}, i.e., she takes observations every
ς symbols, and she adopts a stopping ruleτ = inf{nς : πnς ≥
1 − α, n ∈ N}. The performance of this uniform sampling
strategy serves as an upper bound of the performance of the
N sampling right problem. In particular, we have the following
proposition:

Proposition 2. (Asymptotic Upper Bound) Asα → 0, if the
number of sampling rights satisfies

N ≥
| logα|

| log(1− ρ)|ς
(26)

for some constantς < ∞, then

ADD(π,N, τ∗, µ∗)

≤
| logα|ς

D(f1||f0) + | log(1− ρ)|ς
(1 + o(1)). (27)

Proof: The proof is provided in Appendix D.

Remark 4. In the conventional asymptotic analysis, one is
interested in the average detection delay whenα → 0. For
the limited observation case (0 ≤ N < ∞), it is easy to find
that

ADD(π,N, τ∗, µ∗) =
| logα|

| log(1− ρ)|
(1 + o(1)). (28)

However, this result brings little information since this ADD
can be achieved by any sampling strategy with the threshold

rule τ = inf{k, πk ≥ 1 − α}. (28) could only indicate the
order of the average detection delay of the limited sampling
right problem. In order to obtain an informative result, in
Proposition 2, we consider an alternative condition(26).
This condition is weaker than the limited sampling rights
constraint, but is stronger than the condition that the observer
has infinity many sampling rights, which is assumed in the
classic Bayesian setting.

Remark 5. One can notice from(26) that N → ∞ when
α → 0 for any givenρ. However, this is different from the
classic Bayesian quickest detection. In the classic Bayesian
problem, the observer has so many sampling rights that she
can take observation at every time slot. But(26) cannot
guarantee the observer can achieve the false alarm constraint
at her last sampling right if she takes sample at every time
instance. It guarantees only that one can achieve the false
alarm constraint by the uniform sampling with intervalς .

From Proposition 2, we can identify scenarios under which
the performance of theN sampling right problem is close to
that of the classic Bayesian problem. Here we give two such
cases. In the first case, whenN satisfies (26) withς = 1,
from (25) and (27), we can see that the upper bound and
the lower bound are identical, and hence the ADD of theN
sampling right problem will be close to that of the classic
Baysian problem. For a problem with a finite sampling rights
N , this condition can be achieved whenρ → 1. Intuitively,
in the largeρ case, even a few samples can lead to a small
false alarm probability, hence theN sampling right problem
is close to the classic Bayesian problem. In another scenario,
if D(f1||f0) close to0, i.e. f0 andf1 are very close to each
other, the difference between the ADD of theN sampling
right problem and that of the classic Bayesian problem is on
the ordero(logα). Intuitively, in this scenario, the information
provided by the likelihood ratios of observations is quite
limited, and therefore, the decision making mainly depends
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on the prior probability of the change-pointΛ.

IV. PROBLEMS WITH THE STOCHASTIC SAMPLING RIGHT

CONSTRAINT

In this section, we study the optimal solution for the
problem in the general setup whenν is a stochastic process
described in Section II.

A. Optimal Solution

Denote the posterior probability as

πk = P ν
π (τ ≤ k|Fk).

Following the similar procedure as in Proportion 1, for any
µ andτ , we can convert the cost function into following form:

U(π,N, τ, µ) = E
ν
π

[

1− πτ + c

τ−1
∑

k=0

πk

]

. (29)

This problem can be solved by the backward induction
method. In particular, we first solve a finite horizon problem,
then we extend the solution to the infinite horizon problem
by a limit argument. Hence, we first consider a finite horizon
problem with a horizonT , that is, we consider the case that
the observer must stop at a time no later thanT . We define

JT
k (πk, Nk) , inf

µT
k+1∈UT

k+1,τ∈T T
k

U(πk, Nk, τ, µ
T
k+1),

with

U(πk, Nk, τ, µ
T
k+1) , E

ν
πk

[

1− πτ + c

τ−1
∑

i=k

πi

]

,

in whichµT
k = {µk, µk+1, . . . , µT } is the strategy adopted by

the observer fromk to T , UT
k = {µT

k : Ni ≥ 0, ∀i = k, . . . , T }
is the admissible set of sampling strategies, andT T

k = {τ ∈
T : k ≤ τ ≤ T } is the set of admissible stopping times. We
notice that by settingk = 0, JT

0 (π0, N0) is the cost function
for the finite horizon problem with a horizonT .

We then introduce a set of iteratively defined functions. Let

V T
T (πT , NT ) = 1− πT ,

and fork = T − 1, T − 2, . . . , 0, we define

WT
k+1(πk, Nk, νk+1)

= min
{

E
ν
πk
[V T

k+1(πk+1, Nk+1)|νk+1, µk+1 = 0],

E
ν
πk
[V T

k+1(πk+1, Nk+1)|νk+1, µk+1 = 1]
}

,

V T
k (πk, Nk)

= min{1− πk, cπk + E
ν [WT

k+1(πk, Nk, νk+1)]}.

This set of functions convert the finite horizon problem
into a Markov stopping problem. Specifically, we have the
following theorem:

Theorem 3. For all k = 1, 2, . . . , T , we have

JT
k (πk, Nk) = V T

k (πk, Nk).

Furthermore, the optimal sampling strategy is given as

µ∗
k = argmin

µk∈{0,1}

E
ν
πk−1

[V T
k (πk, Nk)|νk, µk].

The optimal stopping rule is given as

τ∗ = inf {0 ≤ k ≤ T : 1− πk

≤ cπk + E
ν [WT

k+1(πk, Nk, νk+1)]
}

.

Proof: This proof is provided in Appendix E.

Remark 6. Using Theorem 3, we now give a heuristic
explanation of the iterative functionsWT

k+1 andV T
k . In each

time slot, as shown in Figure 1, the observer needs to make two
decisions: the sampling decisionµk and the terminal decision
δk. Both decisions affect the cost function, however these two
decisions are based on different information. In particular, the
observer decides whether to take an observation or not at time
slot k after she knows how many sampling rights has been
collected at time slotk. Hence,µk is a function ofνk, πk−1

andNk−1. Whenµk is decided, the observer could determine
the way thatπk and Nk evolve, and hence the decisionδk
is a function ofπk and Nk. Actually, the iterative function
V T
k is the cost function associated withδk, andWT

k is that
associated withµk. At the end of time slotk, the observer
could choose either to stop, which costs1−πk, or to continue.
Sinceµk+1 is the next decision afterδk, the future cost inV T

k

is E
ν [WT

k+1]. On the other hand, sinceδk+1 is the decision
after µk+1, hence the observer choosesµk+1 based on the
rule that the future cost is minimized, that is the conditional
expectation ofV T

k+1 is minimized, which leads the expression
of WT

k+1.

In the following, we use a limit argument to extend
the above conclusion to the infinite horizon problem. Since
V T
k (πk, Nk) ≥ 0 and

V T+1
k (πk, Nk) ≤ V T

k (πk, Nk),

which is true due to the fact that all strategies admissible for
horizonT are also admissible for horizonT +1. As the result,
the limit of V T

k (πk, Nk) as T → ∞ exists. Furthermore, as
πk andNk are homogenous Markov chains, the form of the
limit function is the same for different values ofk, which we
define as

V (πk, Nk) , lim
T→∞

V T
k (πk, Nk).

Similarly, we have

W (πk, Nk, νk+1) , lim
T→∞

WT
k+1(πk, Nk, νk+1).

By the monotone convergence theorem, the iterative func-
tions can be written as

W (πk, Nk, νk+1)

= min
{

E
ν
πk
[V (πk+1, Nk+1)|νk+1, µk+1 = 0],

E
ν
πk
[V (πk+1, Nk+1)|νk+1, µk+1 = 1]

}

,

V (πk, Nk)

= min{1− πk, cπk + E
ν [W (πk, Nk, νk+1)]}.
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Hence, we have the following conclusion for the infinite
horizon problem.

Theorem 4. The optimal sampling strategy for (P2) is given
as

µ∗
k = argmin

µk∈{0,1}

E
ν
πk−1

[V (πk, Nk)|νk, µk]. (30)

The optimal stopping rule is given as

τ∗ = inf {k ≥ 0 : 1− πk ≤ cπk + E
ν [W (πk, Nk, νk+1)]} . (31)

B. Asymptotically Optimal Solution

The optimal solution for the stochastic sampling problem
has a very complex structure. In this subsection, we propose
a low complexity algorithm and show that it is asymptotically
optimal whenα → 0. The proposed algorithm is

µ̃∗
k =

{

1 if Nk−1 + νk ≥ 1
0 if Nk−1 + νk = 0

, (32)

and

τ̃∗ = inf{k ≥ 0|πk ≥ 1− α}. (33)

That is, the observer adopts a greedy sampling strategy in
which she takes observations as long as she has sampling
rights left, and she declares that the change has occurred when
the posterior probability exceeds a pre-designed threshold.
In the following, we show the asymptotic optimality of this
algorithm in two steps. In the first step, we derive a lower
bound on the average detection delay for any sampling strategy
and any stopping rule. In the second step, we show that
(µ̃∗, τ̃∗) achieves this lower bound asymptotically, which then
implies that(µ̃∗, τ̃∗) is asymptotically optimal. To proceed, we
define the likelihood ratio of the observation sequence{Zk}
as

L(Zk) =

{

f1(Xk)
f0(Xk)

, if µk = 1

1, if µk = 0
, (34)

and denotel(Zk) = logL(Zk) as the log likelihood ratio.
The lower bound on the detection delay is presented in the
following theorem:

Theorem 5. Asα → 0,

inf
µ∈U ,τ∈T

ADD(π,N, τ, µ)

≥
| logα|

p̃D(f1||f0) + | log(1− ρ)|
(1 + o(1)), (35)

with p̃ , E
ν [µ̃∗].

Proof: This proof is provided in Appendix F.
To study the asymptotic optimality of(µ̃∗, τ̃∗), we need to

impose some additional assumptions onf1 and f0. Specifi-
cally, for anyε > 0, we define the random variable

T (λ)
ε , sup

{

n ≥ 1 :
∣

∣

∣

1

n

λ+n−1
∑

i=λ

l(Zi)− p̃D(f1||f0)
∣

∣

∣ > ε

}

,

in which the supremum of an empty set is defined as0. Under
the sampling strategỹµ∗, we make additional assumptions that

E
ν
λ

[

T (λ)
ε

]

< ∞ ∀ε > 0 and∀λ ≥ 1 (36)

and

E
ν
π

[

T (Λ)
ε

]

=

∞
∑

λ=1

E
ν
λ

[

T (λ)
ε

]

P (Λ = λ) < ∞, ∀ε > 0. (37)

With these assumptions, we have following result:

Theorem 6. If (36) and (37) hold, then(µ̃∗, τ̃∗) is asymptot-
ically optimal asα → 0. Specifically,

ADD(π,N, τ̃∗, µ̃∗)

=
| logα|

p̃D(f1||f0) + | log(1− ρ)|
(1 + o(1)). (38)

Proof: This proof is provided in Appendix G.

Remark 7. More general assumptions corresponding to(36)
and (37) are termed as “r-quick convergence” and “average-
r-quick convergence” [12], respectively. In particular,(36)
and (37) are special cases forr = 1. The “r-quick con-
vergence” was originally introduced in [23] and has been
used previously in [24], [25] to show the asymptotic optimality
of the sequential multi-hypothesis test. The “average-r-quick
convergence” was introduced in [12] to show asymptotic opti-
mality of the Shiryaev-Roberts (SR) procedure in the Bayesian
quickest change-point problem.

Remark 8. The above theorems indicate thatN0 does not
affect the asymptotic optimality. Since the detection delay goes
to infinity asα → 0, a finite initialN0, which could contribute
only a finite number of observations, does not reduce the
average detection delay significantly. However, the sampling
right capacityC could affect the average detection delay since
p̃ is a function ofC and ν.

Remark 9. Since there is no penalty on the observation cost
before the change-point, one may expect the observer to take
observations as early as possible for the quickest detection
purpose, and hence expect the greedy sampling strategy to be
exactly optimal. However, taking observations too aggressively
before the change-point will affect how many sampling rights
the observer can use after the change-point, although thereis
no penalty on the observations cost before the change-point.
Theorem 4 shows that the optimal sampling strategy should be
a function ofπk, Nk andνk. Intuitively, an observer will save
the sampling rights for future use when she has little energy
left (Nk is small) or when she is pretty sure that the change-
point has not occurred yet (πk is small). To use the greedy
sampling at the very beginning may reduce the observer’s
sampling rights at the time when the change occurs, hence
increase the detection delay. Therefore, the greedy sampling
strategy is onlyfirst order asymptotically optimalbut not
exactly optimal.

Remark 10. In our recent work [17], we also show that the
greedy sampling strategy is asymptotically optimal for the
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non-Bayesian quickest change-point detection problem with
a stochastic energy constraint. Here, we provide a high-
level explanation why the greedy sampling strategy performs
well for both Bayesian and non-Bayesian case. In asymptotic
analysis of both cases (either PFA goes to zero or the average
run length to false alarm goes to infinity), the detection delay
goes to infinity, hence the observer needs infinitely many
sample rights after the change-point. These sample rights
mainly come from the replenishing procedureνk. After the
change-point, the greedy sampling strategy is the most efficient
way to consume the sampling rights collected by the observer.
Before the change-point, the greedy sampling might not be the
best strategy, but the penalty incurred by this sub-optimality in
terms of the detection delay is at mostC (the finite sampling
right capacity of the observer), which is negligible when the
detection delay goes to infinity.

V. NUMERICAL SIMULATION

In this section, we give some numerical examples to il-
lustrate the analytical results of the previous sections. In
these numerical examples, we assume that the pre-change
distribution f0 is Gaussian with mean 0 and varianceσ2.
The post-change distributionf1 is Gaussian distribution with
mean 0 and varianceP + σ2. In this case, the KL diver-
gence isD(f1||f0) = 1

2

[

log 1
1+P/σ2 + P

σ2

]

. And we denote

SNR = 10 log(P/σ2).
The first set of simulations are related to the limited

sampling problem. In the first scenario, we illustrate the
relationship between ADD and PFA with respect toN . In this
simulation, we takeπ0 = 0, ρ = 0.1 andSNR = 0dB, from
which we know thatD(f1||f0) ≈ 0.15 and| log(1−ρ)| ≈ 0.11
in this case. The simulation results are shown in Figure 2. In
this figure, the blue line with squares is the simulation result
for N = 30, the green line with stars and the red line with
circles are the results forN = 15 andN = 8, respectively.
The black dash line is the performance of the classic Bayesian
problem, which serves as a lower bound for the performance
of our problem. The black dot dash line is the performance of
the uniform sampling case with sampling intervalς = 11 (One
can verify this value by puttingα = 10−5 andN = 8 into
(26)), which serves as an upper-bound for the performance
of our problem. As we can see, these three lines lie between
the upper bound and the lower bound. Furthermore, the more
sampling rights the observer has, the shorter detection delay
the observer can achieve, and the closer the performance is to
the lower bound.

In the second scenario, we discuss the relationship between
ADD and PFA with respect to differentρ. In this simulation,
we setπ0 = 0, N = 8 and SNR = 0dB. The simulation
results are shown in Figure 3. In this figure, the red line with
circles is the performance withρ = 0.2, the green line with
stars and the blue line with squares are the performances with
ρ = 0.5 andρ = 0.8, respectively. The three black dash lines
from the top to the bottom are the lower bounds obtained by
the classic Bayesian case withρ = 0.2, ρ = 0.5 andρ = 0.8,
respectively. From this figure we can see that, asρ increases,

20 30 40 50 60 70 80 90
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Classical Bayesian Case
Uniform Sampling ς=11

Fig. 2. PFA v.s. ADD underSNR = 0dB andρ = 0.1

the distance between the performance of our scheme and the
lower bound is reduced. For the caseρ = 0.8, the performance
of N = 8 is almost the same as that of the lower bound, which
verifies our analysis that whenρ is large, the performance of
limited sampling right problem is close to that of the classic
one.
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ρ = 0.2
ρ = 0.5
ρ = 0.8

Fig. 3. PFA v.s. ADD underSNR = 0dB andN = 8

In the third scenario, we consider the case whenf0 andf1
are close to each other. In the simulation, we set theSNR =
−5dB and ρ = 0.4. One can verify thatD(f1||f0) = 0.02,
which is only about4% of the value| log(1 − ρ)|. In this
simulation, we setN = 15 andς = 2 to achieve a false alarm
probability 10−5. The simulation results are shown in Figure
4. As we can see, the distance between the upper bound, which
is the black dot dash line obtained by the uniform sampling
with ς = 2, and the lower bound, which is the black dash
line obtained by the classic Bayesian case, is quite small,
and therefore the performance of the limited sampling right
problem (the blue line with squares) is quite close to the lower
bound.

In the last simulation, we examine the asymptotic optimality
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Fig. 4. PFA v.s. ADD underSNR = −5dB andρ = 0.4

of (µ̃∗, τ̃∗) for the stochastic sampling right problem. In the
simulation, we setC = 3, and we assume that the amount of
sampling right is taken from the setV = {0, 1, . . . , 4}. In this
case, the probability transition matrix of the Markov chainNk

underµ̃∗ is given as

P =









p0 + p1, p2, p3, p4
p0, p1, p2, p3 + p4
0, p0, p1,

∑4
i=2 pi

0, 0, p0,
∑4

i=1 pi









.

In the simulation, we setp0 = 0.85, p1 = 0.1, p2 = 0.03,
p3 = 0.01, p4 = 0.01, then the stationary distribution is
w̃ = [0.7988, 0.0988, 0.0624, 0.0390]T and p̃ = 1 − p0w̃0 =
0.3610. Furthermore, we setσ2 = 1 and SNR = 5dB.
The simulation result is shown in Figure 5. In this figure
the red line with squares is the performance of the proposed
strategy(τ̃∗, µ̃∗), and the black dash line is calculated by
| logα|/(p̃D(f1||f0)+ | log(1− ρ)|). As we can see, along all
the scales, these two curves are parallel to each other, which
confirms that the proposed strategy,(τ̃∗, µ̃∗), is asymptotically
optimal asα → 0 since the constant difference can be ignored
when the detection delay goes to infinity.

VI. CONCLUSION

In this paper, we have analyzed the Bayesian quickest
change detection problem with sampling right constraints.Two
types of constraints have been considered. The first one is a
limited sampling right constraint. We have shown that the cost
function of theN sampling right problem can be characterized
by a set of iterative functions, each of them could be used
for determining the next sampling time or the stopping time.
The second constraint is a stochastic sampling right constraint.
Under this constraint, we have shown that the greedy sampling
strategy coupled with a threshold stopping rule is first order
asymptotically optimal asα → 0.

In terms of future work, it will be interesting to design
a low complexity algorithms for the limited sampling right
problem. It will also be interesting to develop higher order
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1
||f

0
)+|log(1−ρ)|)

performance of proposed strategy

Fig. 5. PFA v.s. ADD under strategy(τ̃∗, µ̃∗)

asymptotically optimal solutions for the stochastic sampling
right problem. We will also extend the current work to the
distributed sensor network setting.

APPENDIX A
PROOF OFLEMMA 1

Let µ = (t1, · · · , tη) be a sampling strategy andτ = ts
be a stopping time suchts > tη and η < N . Notice that
t1, · · · , tη are time instances at which observations are taken,
and ts is the time instance at which no sample is taken but
the observer announces that a change has occurred. Sinceη <
N , meaning that there is at least one sampling right left, we
construct another strategỹµ = (t1, · · · , tη, ts) and τ̃ = ts +
m∗, in which we will take another observation at timets and
then claim that a change has occurred at timets +m∗. Here
m∗ is chosen as

m∗ = argmin
m≥0

H(πts ,m),

in which

H(π,m) , Eπ

[

c

m−1
∑

k=0

πk + 1− πm

]

with

π0 = π,

πk = π +
k

∑

i=1

(1− π)ρ(1 − ρ)i−1

= π + (1− π)[1− (1− ρ)k], k = 1, . . .m.
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Then, we have

U(π,N, τ̃ , µ̃) = Eπ

[

c

ts+m∗−1
∑

k=0

πk + 1− πts+m∗

]

= Eπ

[

c

ts−1
∑

k=0

πk +H(πts ,m
∗)

]

≤ Eπ

[

c

ts−1
∑

k=0

πk +H(πts , 0)

]

= Eπ

[

c

ts−1
∑

k=0

πk + 1− πts

]

= U(π,N, τ, µ).

Hence, by taking one more observation at timets and then
deciding whether a change has occurred or not can reduce the
cost. This implies that if there are sampling rights left, itis
not optimal to claim a change without first taking a sample.

APPENDIX B
PROOF OFTHEOREM 1

We show this theorem by induction: it is clear thatJ(π, 0) =
V0(π). SupposeJ(π, n − 1) = Vn−1(π), we show that
J(π, n) = Vn(π).

Firstly, we show thatJ(π, n) ≥ Vn(π). If the optimal
sampling strategy for (11) istη = 0, then the optimal stopping
time is τ = 0 by Corollary 1. In this case, it is easy to
verify that J(π, n) = Vn(π) = 1 − π. Hence the conclusion
J(π, n) ≥ Vn(π) holds trivially. If the optimal strategytη 6= 0,
then any given strategyµ = {t1, · · · , tη} with t1 = 0 is not
optimal, since it simply reduces the set of admissible strategies
without bringing any benefit. In the following we consider the
sampling strategy withtη 6= 0 andt1 6= 0.

Let µ = {t1, · · · , tη} be any sampling strategy witht1 6= 0
in Un, then we construct another sampling strategyµ̃ via µ̃ =
{t2, · · · , tη}, which is inUn−1. We have

U(π, n, τ, µ)

= Eπ

[

1− πτ + c

τ−1
∑

k=0

πk

]

= Eπ

[

c

t1−1
∑

k=0

πk + 1− πτ + c

τ−1
∑

k=t1

πk

]

= Eπ

[

c

t1−1
∑

k=0

πk + U(πt1 , n− 1, τ, µ̃)

]

≥ Eπ

[

c

t1−1
∑

k=0

πk + J(πt1 , n− 1)

]

≥ inf
m≥1

Eπ

[

c

m−1
∑

k=0

πk + Vn−1(πm)

]

≥ min

{

1− π, inf
m≥1

Eπ

[

c

m−1
∑

k=0

πk + Vn−1(πm)

]}

.(39)

Since this is true for anyµ ∈ Un with t1 6= 0, and we also
know that the strategyµ with t1 = 0 could not be optimal
unlesstη = 0, then we have

J(π, n) = inf
µ

U(π, n, τ, µ) ≥ GVn−1(π) = Vn(π).

Secondly, we show thatJ(π, n) ≤ Vn(π). Assume the
optimal sampling strategy isµ∗ = {t∗1, t

∗
2, . . . , t

∗
η∗} ∈ Un and

the optimal stopping time isτ∗, another strategy is denoted
asµ = {t1, t̃2, . . . , t̃η} with stopping timeτ̃ , wheret1 is an
arbitrary sampling time,̃µ = {t̃2, . . . , t̃n} with τ̃ is the optimal
strategy achievesJ(πt1 , n−1) = U(πt1 , n−1, τ̃ , µ̃). We have

J(π, n) ≤ Eπ

[

c

t1−1
∑

k=0

πk + J(πt1 , n− 1)

]

because(τ̃ , µ) is not optimal. Since the above inequality holds
for everyt1, we have

J(π, n) ≤ inf
m≥0

Eπ

[

c

m−1
∑

k=0

πk + Vn−1(πm)

]

≤ inf
m≥1

Eπ

[

c
m−1
∑

k=0

πk + Vn−1(πm)

]

.

Moveover, we have

J(π, n)
(a)

≤ J(π, 0) = inf
τ
Eπ

[

1− πτ + c

τ−1
∑

k=0

πk

]

(b)

≤ 1− π,

in which (a) is true because the admissible strategy set of
J(π, n) is larger than that ofJ(π, 0), and (b) is true because
τ = 0 is not necessarily optimal forJ(π, 0). Therefore, we
have

J(π, n) ≤ min

{

1− π, inf
m≥1

Eπ

[

c

m−1
∑

k=0

πk + Vn−1(πm)

]}

= Vn(π).

Then we can conclude thatJ(π, n) = Vn(π).
The optimality of (15) can be verified by putting it into

(39), whose inequalities will then become equalities. Further,
we can obtain

VN−n(πt∗n) = min
{

1− πt∗n ,

Eπt∗n



c

t∗n+1−1
∑

k=0

πk + VN−n−1(πt∗
n+1

)











.

Notice that{πt∗n} is a Markov chain, hence (16) can be imme-
diately obtained by the Markov optimal stopping theorem. By
Corollary 1, on{η∗ < N} we haveτ∗ = t∗η∗ . On {η∗ = N},
by (13) it is easy to verify that

τ∗ − t∗η∗ = argmin
m≥0

Eπt∗
N

[

c

m−1
∑

k=0

πk + 1− πm

]

.

Let

m∗ = argmin
m≥0

Eπt∗
N

[

c

m−1
∑

k=0

πk + 1− πm

]

,
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then

τ∗ = (t∗η∗ +m∗)1{η∗=N} + t∗η∗1{η∗<N}

= t∗η∗ +m∗
1{η∗=N}.

APPENDIX C
PROOF OFTHEOREM 2

It is easy to see that0 ≤ Vn(π) ≤ 1 for any n ≤ N ,
and Vn(1) = 0. We next prove the concavity ofVn(π) by
inductive arguments. ClearlyV0(πk) is a concave function of
πk andV0(1) = 0. SupposeVn−1(πk) is a concave function
of πk, we show thatVn(πk) is a concave function.

We denote

An(π) = Eπ[Vn−1(πm)],

and we show thatAn(π) is a concave function.
Let π1

k ∈ [0, 1] andπ2
k ∈ [0, 1] and θ ∈ [0, 1], then for any

fixed m, we have

θAn(π
1
k) + (1− θ)An(π

2
k)

= θEπ1
k
[Vn−1(π

1
k+m)] + (1− θ)Eπ2

k
[Vn−1(π

2
k+m)]

=

∫

(θVn−1(π
1
k+m)f(xk+m|π1

k,m)

+(1− θ)Vn−1(π
2
k+m)f(xk+m|π2

k,m))dxk+m

=

∫

[ϑVn−1(π
1
k+m) + (1− ϑ)Vn−1(π

2
k+m)]

[θf(xk+m|π1
k,m) + (1 − θ)f(xk+m|π2

k,m)]dxk+m

(a)

≤

∫

Vn−1(ϑπ
1
k+m + (1− ϑ)π2

k+m)

[θf(xk+m|π1
k,m) + (1 − θ)f(xk+m|π2

k,m)]dxk+m

in which

ϑ =
θf(xk+m|π1

k,m)

θf(xk+m|π1
k,m) + (1 − θ)f(xk+m|π2

k,m)
,

and (a) is due to the inductive assumption thatVn−1(·) is a
concave function. Now, define

π3
k = θπ1

k + (1− θ)π2
k,

we can verify that

π3
k+m =

[1− (1 − π3
k)(1− ρ)m]f1(Yk+m)

[1− (1 − π3
k)(1− ρ)m]f1(Yk+m) + (1− π3

k)(1− ρ)mf0(Yk+m)

= ϑπ1
k+m + (1− ϑ)π2

k+m.

At the same time, we have

θf(xk+m|π1
k,m) + (1− θ)f(xk+m|π2

k,m) = f(xk+m|π3
k,m).

Hence,

θAn(π
1
k) + (1− θ)An(π

2
k) ≤ Eπ3

k

[

Vn−1(π
3
k+m)

]

= An(π
3
k).

Therefore,An(π) = Eπ [Vn−1(πm)] is a concave function. As
the result,infm {Eπ [Vn−1(πm)]} is also concave since it is
the minimum of concave function. Then,

c

(

m−
π̄k

ρ
(1− ρ̄m)

)

+ inf
m≥1

Eπk
[Vn−1(πk+m)] (40)

is also a concave function ofπk. Further,Vn(πk) is a concave
function of πk since it is the minimum of two concave
functions.

By the fact that{Vn(π), n = 1, . . . , N} is a family of
concave functions,{Vn(π), n = 1, . . . , N} are dominated by
1 − π and Vn(1) = 0, we immediately conclude thatτ is a
threshold rule. By Corollary 1 and Theorem 1, we can easily
obtain (22) and (24).

APPENDIX D
PROOF OFPROPOSITION2

In the proof, we assumeπ0 = 0. This assumption will not
affect the asymptotic result but will simplify the mathematical
derivation.

We consider a uniform sampling scheme with sample in-
terval ς . Since it is not optimal for the observer to take
an observation everyς time slots, the ADD of the uniform
sampling scheme is larger than that of the optimal strategy.
Define

Γ , min{n : nς ≥ Λ}. (41)

The random variableΓ acts as the change-point when there
is uniform sampling, since from observing{Xς , X2ς , . . .}, we
cannot tell whether the change happens atΛ or at Γς . In the
following, we derive the ADD when we use{Xkς} to detect
Γ, and we use the following stopping rule

γ = min{n : πnς > 1− α}. (42)

In the first step, we relax the condition (26) and consider that
N = ∞. We notice that the problem of detectingΓ based on
{Xkς} is still under the Bayesian framework. The distribution
of Γ is given as

q0 = P (Γ = 0) = 0,

qk = P (Γ = k) = (1− ρ)(k−1)ς [1− (1− ρ)ς ] .

From (2.6) and (3.1) in [12], we have

d = lim
k→∞

− logP (Γ ≥ k + 1)

k
= ς | log(1− ρ)|.

And on {Γ = k}

1

n

k+n−1
∑

i=k

l(Xiς) → D(f1||f0) as n → ∞,

where l(Xiς) = log f1(Xiς)/f0(Xiς) is the log-likelihood
ratio. Then, by Theorem 3 in [12], we have

E [γ − Γ|γ ≥ Γ] ≤
| logα|

D(f1||f0) + ς | log(1− ρ)|
(1 + o(1)). (43)

In the second step, we take (26) into consideration and we
show thatP (N ≥ γ) → 1 as α → 0. This result indicates
that (26) can guarantee that the observer has enough sampling
rights so that she can always stop with some sampling rights
left. Therefore, (43) still holds with probability1 when we
take the constraint (26) into consideration.
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By (26), we have
(

1

1− ρ

)Nς

≥
1

α
or (1− ρ)Nς ≤ α. (44)

Therefore,

P (Γ ≥ N) =

∞
∑

n=N+1

P (Γ = n) = (1− ρ)Nς < α,

and it is clear thatP (Γ ≥ N) → 0 whenα → 0.
In the following, we showP (γ > N > Γ) → 0 asα → 0.

Notice that

{γ > N} ⇔ {max{π0, . . . , πNς} < 1− α}

⇔ ∩N
i=0{πiς < 1− α}.

Following (3.7) in [16], we can rewriteπi as

πiς =
Rρ,i

Rρ,i +
1

1−(1−ρ)ς

, (45)

in which

Rρ,i =
i

∑

k=1

i
∏

j=k

[

1

(1− ρ)ς
L(Xjς)

]

, (46)

whereL(Xjς) =
f1(Xjς )
f0(Xjς )

is the likelihood ratio. One can show
(45) and (46) by inductive argument using (19) andRρ,i =
(1 +Rρ,i−1)

1
(1−ρ)ς L(Xiς). Therefore, we have

Rρ,N =

N
∑

k=1

N
∏

j=k

[

1

(1− ρ)ς
L(Xjς)

]

=

[

1

(1− ρ)ς

]N N
∑

k=1

[(1− ρ)ς ]k−1
N
∏

j=k

L(Xjς)

≥
1

α

N
∑

k=1

[(1− ρ)ς ]k−1
N
∏

j=k

L(Xjς).

Finally, we have

P (γ > N > Γ) ≤ P (γ > N)

= P
(

∩N
i=0{πiς < 1− α}

)

≤ P (πNς < 1− α)

= P

(

Rρ,N <
1− α

α

1

1− (1− ρ)ς

)

≤ P





N
∑

k=1

qk

N
∏

j=k

L(Xjς) < 1− α



 .(47)

By (26) we haveN → ∞ whenα → 0, hence

N
∑

k=1

qk

N
∏

j=k

L(Xjς) →
∞
∑

k=1

qk

∞
∏

j=k

L(Xjς)

= Eπ

[

∞
∏

k=Γ

L(Xkς)

]

= ∞.

Therefore

P (γ > N > Γ) ≤ P (γ > N) → 0.

Then

P (N ≥ γ) = 1− P (Γ ≥ N)− P (γ > N > Γ)

→ 1. (48)

As α → 0, we have

Eπ [γ − Γ|γ ≥ Γ] =
Eπ [(γ − Γ)+]

1− P (γ < Γ)
→ Eπ

[

(γ − Γ)+
]

.

Let τ , inf{nς : πnς > 1−α} = γς . Since0 ≤ Γς−Λ ≤ ς−1
and ς < ∞, we obtain

Eπ

[

(τ − Λ)+
]

≤
| logα|ς

D(f1||f0) + | log(1− ρ)|ς
(1 + o(1)) + (ς − 1).

=
| logα|ς

D(f1||f0) + | log(1− ρ)|ς
(1 + o(1)). (49)

Since the uniform sampling scheme and the stopping timeτ
are not optimal, the detection delay of the optimal strategy
(τ∗, µ∗) is less thanEπ [(τ − Λ)+]. Hence the conclusion of
Proposition 2 holds.

APPENDIX E
PROOF OFTHEOREM 3

We show this theorem by induction: it is easy to
see that JT

T (πT , NT ) = V T
T (πT , NT ). Suppose that

JT
k+1(πk+1, Nk+1) = V T

k+1(πk+1, Nk+1), we show
JT
k (πk, Nk) = V T

k (πk, Nk).
We immediately obtain thatJT

k (πk, Nk) ≤ V T
k (πk, Nk)

sinceJT
k (πk, Nk) is defined as the minimum cost overT T

k

and UT
k+1. In the following, we show thatJT

k (πk, Nk) ≥
V T
k (πk, Nk).
By the recursive formulae ofV T

k andWT
k+1, we can obtain

V T
k (πk, Nk)

= min
{

1− πk, cπk + E
ν [WT

k+1(πk, Nk, νk+1)]
}

= min







1− πk, cπk +

∞
∑

j=0

pjW
T
k+1(πk, Nk, j)







= min {1− πk, cπk+
∞
∑

j=0

pj min
{

E
ν
πk
[V T

k+1(πk+1, Nk+1)|νk+1 = j, µk+1 = 0],

E
ν
πk
[V T

k+1(πk+1, Nk+1)|νk+1 = j, µk+1 = 1]
}}

. (50)
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On the other hand, forJT
k (πk, Nk) we have

JT
k (πk, Nk)

= inf
µT
k+1

∈UT
k+1

,τ∈T T
k

E
ν
πk

[

1− πτ + c

τ−1
∑

i=k

πi

]

= inf
µT
k+1∈UT

k+1,τ∈T T
k

[

E
ν
πk

[

1− πτ + c

τ−1
∑

i=k

πi

]

1{τ=k}+

E
ν
πk

[

1− πτ + c
τ−1
∑

i=k

πi

]

1{τ≥k+1}

]

= inf
µT
k+1∈UT

k+1,τ∈T T
k

[

(1− πk) 1{τ=k}+

E
ν
πk

[

1− πτ + cπk + c

τ−1
∑

i=k+1

πi

]

1{τ≥k+1}

]

= min {1− πk, cπk+

inf
µT
k+1∈UT

k+1,τ∈T T
k+1

E
ν
πk

[

1− πT + c

T−1
∑

i=k+1

πi

]}

= min {1− πk, cπk+

inf
µT
k+1∈UT

k+1,τ∈T T
k+1

E
ν
πk

[

E
ν
πk+1

[

1− πT + c
T−1
∑

i=k+1

πi

]]}

= min {1− πk, cπk+

inf
µT
k+1∈UT

k+1,τ∈T T
k+1

E
ν
πk

[

U(πk+1, Nk+1, τ, µ
T
k+2)

]

}

. (51)

At the same time, we have

E
ν
πk

[

U(πk+1, Nk+1, τ, µ
T
k+2)

]

=

∞
∑

j=0

pjE
ν
πk

[

U(πk+1, Nk+1, τ, µ
T
k+2)

∣

∣

∣

∣

∣

νk+1 = j

]

(a)

≥
∞
∑

j=0

pj min {

E
ν
πk

[

U(πk+1, Nk+1, τ, µ
T
k+2)

∣

∣

∣

∣

∣

νk+1 = j, µk+1 = 0

]

,

E
ν
πk

[

U(πk+1, Nk+1, τ, µ
T
k+2)

∣

∣

∣

∣

∣

νk+1 = j, µk+1 = 1

]}

,

(52)

in which (a) holds because
E
ν
πk

[

U(πk+1, Nk+1, τ, µ
T
k+2)|νk+1 = j

]

is a linear
combination of
E
ν
πk

[

U(πk+1, Nk+1, τ, µ
T
k+2)|νk+1 = j, µk+1 = i

]

for
i = 0, 1. Substituting (52) into (51), and using inequalities
inf(a + b) ≥ inf a + inf b, inf min{a, b} ≥ min{inf a, inf b}

and inf E[·] ≥ E[inf(·)], we obtain

JT
k (πk, Nk)

≥ min







1− πk, cπk +

∞
∑

j=0

pj min {

E
ν
πk

[

inf
µT
k+1∈UT

k+1,T∈T T
k+1

U(πk+1, Nk+1, τ, µ
T
k+2)

∣

∣

∣

∣

∣

νk+1 = j,

µk+1 = 0] ,

E
ν
πk

[

inf
µT
k+1∈UT

k+1,T∈T T
k+1

U(πk+1, Nk+1, τ, µ
T
k+2)

∣

∣

∣

∣

∣

νk+1 = j,

µk+1 = 1]}

=

∞
∑

j=0

pj min {

E
ν
πk

[

JT
k+1(πk+1, Nk+1)

∣

∣

∣

∣

∣

νk+1 = j, µk+1 = 0

]

,

E
ν
πk

[

JT
k+1(πk+1, Nk+1)

∣

∣

∣

∣

∣

νk+1 = j, µk+1 = 1

]}

. (53)

Since we assume that JT
k+1(πk+1, Nk+1) =

V T
k+1(πk+1, Nk+1), by (50) and (53) we can obtain

JT
k (πk, Nk) ≥ V T

k (πk, Nk).

APPENDIX F
PROOF OFTHEOREM 5

In this proof, we can consider the case thatN0 = C, i.e.,
the observer has a maximum amount of sampling rights at the
beginning. The lower bound for the ADD of this case will
certainly be the lower bound for the ADD of the case with
N0 < C. The proof of Theorem 5 requires several supporting
propositions and Theorem 1 in [12], which are presented as
follows.

Proposition 3. Eν [µ̃∗] exists, and0 < E
ν [µ̃∗] ≤ 1.

Proof: The outline of this proof is described as follows:
by (2), one can show thatNk is a regular Markov chain
under µ̃∗. Denote the stationary distribution ofNk as w̃ =
[w̃0, w̃1, . . . , w̃C ]

T , wherew̃i is the stationary probability for
the stateNk = i. By the definition ofµ̃∗, it is easy to verify
thatEν [µ̃∗

k] = 1−p0w̃0 ask → ∞. Hence the statement holds.
The detailed proof of this proposition follows that of Lemma
5.1 in [17], hence we omit the proof here for brevity.

Proposition 4. GivenΛ = λ, we have

lim
r→∞

P ν
λ

{

1

r
max
0<h≤r

λ+h
∑

i=λ

l(Zi) ≥ (1 + ε)p̃D(f1||f0)

}

→ 0

∀ε > 0, (54)

wherep̃ = E[µ̃∗].

Proof: Following the proof of Proposition C.1 in [17], we
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can obtain that the inequality

1

r

r+λ−1
∑

i=λ

l(Zi) ≤ p̃D(f1||f0), asr → ∞, (55)

holds almost surely underP ν
λ for anyλ ≥ 1.

For anyε > 0, define

T̂ (λ)
ε = sup

{

r ≥ 1

∣

∣

∣

∣

∣

1

r

λ+r−1
∑

i=λ

l(Zi) > (1 + ε)p̃D(f1||f0)

}

.

Due to (55), we have

P ν
λ

{

T̂ (λ)
ε < ∞

}

= 1,

which indicates

lim
r→∞

P ν
λ

{

1

r
max
0<h≤r

k+h
∑

i=k

l(Zi) ≥ (1 + ε)p̃D(f1||f0)

}

→ 0.

Let q = p̃D(f1||f0). From (2.6) in [12] we have

d = − lim
k→∞

logP (Λ ≥ k + 1)

k
= | log(1− ρ)|. (56)

To prove Theorem 5, we need Theorem 1 in [12] , which
is restated as follows:

Lemma 2. ( [12], Theorem 1)Let {Zk} be a sequence of
random variables with a random change-pointΛ. Under{Λ =
λ}, the conditional distribution ofZk is f0(·|Z

k−1
1 ) for k < λ

and is f1(·|Z
k−1
1 ) for k ≥ λ. DenoteP∞ as the probability

measure under{Λ = ∞}. Denotel(Zk) as

l(Zk) = log
f1(Zk|Z

k−1
1 )

f0(Zk|Z
k−1
1 )

.

Let

d = − lim
k→∞

logP (Λ ≥ k + 1)

k
.

If the condition

lim
r→∞

Pλ

{

1

r
max
0<h≤r

m+h
∑

i=λ

l(Zi) ≥ (1 + ε)q

}

→ 0,

∀ε > 0 and∀λ ≥ 1 (57)

holds for some constantq > 0. Denoteqd = q + d. Then, for
all r > 0 asα → 0,

inf
τ
Eλ[(τ − λ)r|τ ≥ λ] ≥

(

| logα|

qd

)r

(1 + o(1)).

inf
τ
Eπ [(τ − Λ)r|τ ≥ Λ] ≥

(

| logα|

qd

)r

(1 + o(1)).

Proof: Please refer to [12].
In our case, for any arbitrary but given sampling strategy

µ, the conditional density

f0(Zk|Z
k−1
1 ) = f0(Xk)P ({µk = 1}) + δ(φ)P ({µk = 0}) ,

f1(Zk|Z
k−1
1 ) = f1(Xk)P ({µk = 1}) + δ(φ)P ({µk = 0}) ,

where δ(φ) is the Dirac delta function. Therefore, the log
likelihood ratio in Theorem 2 is

l(Zk) = log
f1(Zk|Z

k−1
1 )

f0(Zk|Z
k−1
1 )

=

{

log f1(Zk)
f0(Zk)

, if µk = 1

0, if µk = 0
,

which is consistent with the definition in (34). Moreover,
for any sampling strategy, (57) holds for the constantq =
p̃D(f1||f0). Correspondingly,qd = p̃D(f1||f0)+ | log(1−ρ)|.
Therefore, by choosingr = 1, and combining Lemma 2 with
Propositions 3 and 4, we have:

inf
µ∈U ,τ∈T

E
ν
π[τ − Λ|τ ≥ Λ]

≥
| logα|

p̃D(f1||f0) + | log(1 − ρ)|
(1 + o(1)).

Since

E
ν
π[τ − Λ|τ ≥ Λ] =

E
ν
π[(τ − Λ)+]

1− P ν
π (τ < Λ)

≤
E
ν
π[(τ − Λ)+]

1− α
,

asα → 0, we have

inf
µ∈U ,τ∈T

E
ν
π[(τ − Λ)+] ≥

| logα|

p̃D(f1||f0) + | log(1 − ρ)|
(1 + o(1)).

APPENDIX G
PROOF OFTHEOREM 6

In this appendix we prove that the proposed strategy
(τ̃∗, µ̃∗) can achieve the lower bound presented in Theorem 5.
In this proof, we can consider the case thatN0 = 0, i.e., the
observer does not have any sampling rights at the beginning.
If the lower bound of the ADD can be achieved by this case,
then it must be achievable for the case withN0 > 0. Define

Rk , log
πk

1− πk
.

The proposed stopping rule can be expressed in terms ofRk

as

τ̃∗ = inf

{

k ≥ 0 : Rk ≥ log
1− α

α

}

.

Let b , log 1−α
α . As α → 0, we haveb = | logα|(1 + o(1)).

By (8), (9), (10) and (34), it is easy to verify that

Rk = Rk−1 + l(Zk) + | log(1− ρ)|+ log

(

1 + ρ
1− πk−1

πk−1

)

.

Using this recursive formula repeatedly, we obtain

Rk =

k
∑

i=1

l(Zi) + k| log(1− ρ)|+ log

(

π0

1− π0
+ ρ

)

+

k
∑

i=2

log

(

1 + ρ
1− πi−1

πi−1

)

.

We notice that the third item in the above expression is a
constant. Since the thresholdb in the proposed stopping rule
will go to infinity as α → 0, this constant item can be
ignored in the asymptotic analysis. For simplicity, we assume
log( π0

1−π0
+ ρ) = 0 in the rest of this appendix.



16

Let

Sk ,

k
∑

i=1

l(Zi) + k| log(1 − ρ)|,

τs , inf{k ≥ 0 : Sk ≥ b}.

It is easy to seẽτ∗ ≤ τs since Rk ≥ Sk. The following
proposition indicates thatτs can achieve the lower bound
presented in Theorem 5, henceτ̃∗ is asymptotically optimal.

Proposition 5. As b → ∞,

E
ν
π [τs − Λ|τs ≥ Λ]

≤
b

p̃D(f1||f0) + | log(1− ρ)|
(1 + o(1)). (58)

Proof: On the event{Λ = λ}, we can decomposeSn into
two parts ifn ≥ λ:

Sn = Sλ−1
1 + Sn

λ , (59)

where

Sλ−1
1 ,

λ−1
∑

i=1

l(Zi) + (λ− 1)| log(1− ρ)|,

Sn
λ ,

n
∑

i=λ

l(Zi) + (n− λ+ 1)| log(1− ρ)|.

We first show that asr → ∞

1

r
Sλ+r−1
λ

a.s.
→ p̃D(f1||f0) + | log(1 − ρ)|. (60)

Let r̂ be the number of non-zero elements in
{µλ, µλ+1, . . . , µλ+r−1}, then asr → ∞, we have

r̂

r
=

1

r

λ+r−1
∑

i=λ

µi
a.s.
→ E[µ] = p̃.

Let {a1, . . . , ar̂} be a sequence of time slots in which the
observer takes observations afterλ. That is,λ ≤ a1 < . . . <
ar̂ ≤ λ + r − 1 and µai

= 1. By the strong law of large
numbers, aŝr → ∞

1

r̂

r̂
∑

i=1

l(Xai
)
a.s.
→ D(f1||f0).

Then we have

1

r
Sλ+r−1
λ =

1

r

[

λ+r−1
∑

i=λ

l(Zi) + r| log(1 − ρ)|

]

=
r̂

r

1

r̂

r̂
∑

i=1

l(Xai
) + | log(1− ρ)|

a.s.
→ p̃D(f1||f0) + | log(1− ρ)|.

In the following, we denoteqd = p̃D(f1||f0) + | log(1− ρ)|.
By (59), we can rewriteτs as

τs = inf
{

j > 0 : Sj
λ ≥ b− Sλ−1

1

}

.

Hence,

Sτs−1
λ < b− Sλ−1

1 . (61)

Define the random variable

T̃ (λ)
ε , sup

{

n ≥ 1 : |n−1Sλ+n
λ − qd| > ε

}

.

By (60), we haveT̃ (λ)
ε < ∞ almost surely. By (36) and (37),

it is easy to verify thatEν
λ[T̃

(λ)
ε ] < ∞ andEν

π [T̃
(Λ)
ε ] < ∞.

On the event
{

τs > T̃
(λ)
ε + (λ− 1)

}

, we have

Sτs−1
λ > (τs − λ+ 1)(qd − ε),

hence

τs − λ+ 1 <
Sτs−1
λ

qd − ε
<

b− Sλ−1
1

qd − ε
. (62)

Then we have

τs − λ+ 1

<
b− Sλ−1

1

qd − ε
1{

τs>T̃
(λ)
ε +(λ−1)

} + T̃ (λ)
ε 1{

τs≤T̃
(λ)
ε +(λ−1)

}

<
b− Sλ−1

1

qd − ε
+ T̃ (λ)

ε .

Taking the conditional expectation on both sides, sinceT̃
(λ)
ε <

∞, then asα → 0 (b → ∞) we have

E
ν
λ[τs − λ|τs ≥ λ]

≤
b

qd − ε
−

E
ν
λ[S

λ−1
1 |τs ≥ λ]

qd − ε
+ E

ν
λ[T̃

(λ)
ε |τs ≥ λ]

=
b

qd − ε
(1 + o(1))−

E
ν
λ[S

λ−1
1 |τs ≥ λ]

qd − ε
.

Therefore,

E
ν
π [τs − Λ|τs ≥ Λ]

=
1

P ν
π (τs ≥ Λ)

E
ν
π [τs − Λ; τs ≥ Λ]

=
1

P ν
π (τs ≥ Λ)

∞
∑

λ=1

P (Λ = λ)Eν
λ[τs − λ|τs ≥ λ]P ν

λ (τs ≥ λ)

≤
b

qd − ε
−

E
ν
π

[

SΛ−1
1 |τs ≥ Λ

]

qd − ε
+ E

ν
π[T̃

(Λ)
ε |τs ≥ Λ]

=
b

qd − ε
(1 + o(1))−

E
ν
π

[

SΛ−1
1 |τs ≥ Λ

]

qd − ε
. (63)

In the following, we show thatEν
π [S

Λ−1
1 |τs ≥ Λ] is finite. Let

r̃ be the number of nonzero elements in{µ1, . . . , µλ−1}, and
denote{b1, . . . , br̃} as the time slots that the observer takes
observation beforeλ, we have

E
ν
λ

[

Sλ−1
1

] (a)
= E

ν
∞

[

Sλ−1
1

]

= E
ν
∞

[

λ−1
∑

i=1

l(Zi)

]

+ (λ− 1)| log(1− ρ)|

= E∞

[

r̃
∑

i=1

l(Xbi)

]

+ (λ− 1)| log(1− ρ)|

= −r̃D(f0||f1) + (λ− 1)| log(1− ρ)|,
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where (a) is true becauseP ν
∞ and P ν

λ are the same for
observations taken beforeλ. Sincer̃ < λ andD(f0||f1) ≥ 0,
we have

− λD(f0||f1) < E
ν
λ

[

Sλ−1
1

]

< λ| log(1 − ρ)|.

Since

E
ν
π [S

Λ−1
1 ] =

∞
∑

k=1

E
ν
λ

[

Sλ−1
1

]

P (Λ = λ),

we have

−
D(f0||f1)

1− ρ
< E

ν
π

[

SΛ−1
1

]

<
| log(1− ρ)|

1− ρ
.

Therefore,Eν
π[S

λ−1
1 ] is bounded. We notice that asα → 0,

{τs ≥ Λ} approaches to an almost sure event. Then

E
ν
π

[

SΛ−1
1 |τs ≥ Λ

]

→ E
ν
π

[

SΛ−1
1

]

asα → 0.

By (63) we obtain

E
ν
π[τs − Λ|τs ≥ Λ] ≤

b

qd − ε
(1 + o(1)). (64)

Since the above equation holds for anyε > 0, then

E
ν
π[τs − Λ|τs ≥ Λ] ≤

b

qd
(1 + o(1)).

Using the above proposition and the factτ̃∗ ≤ τs, we have

E
ν
π

[

(τ̃∗ − Λ)+
]

≤ E
ν
π

[

(τs − Λ)+
]

= E
ν
π[τs − Λ|τs ≥ Λ][1− P (τs < Λ)]

≤
b

qd
(1 − α)(1 + o(1))

=
b

qd
(1 + o(1)).
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