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On the scaling of Polar Codes:
II. The behavior of un-polarized channels

S. Hamed Hassani, Kasra Alishahi and Rudiger Urbanke

Abstract—We provide upper and lower bounds on the es-
cape rate of the Bhattacharyya process corresponding to polar
codes and transmission over the the binary erasure channel.
More precisely, we bound the exponent of the number of sub-
channels whose Bhattacharyya constant falls in a fixed interval
[a, b]. Mathematically this can be stated as bounding the limit
limn→∞

1

n
lnP(Zn ∈ [a, b]), where Zn is the Bhattacharyya

process. The quantityP(Zn ∈ [a, b]) represents the fraction of
sub-channels that are still un-polarized at timen.

I. I NTRODUCTION AND MAIN RESULT

The construction of polar codes ([1]) is done by exploring
a phenomenon called channel polarization in which from a
BMS channelW , N = 2n sub-channels{W (i)

2n }1≤i≤2n are
constructed with the property that almost a fraction ofI(W ) of
them tend to become noise-less (i.e., have capacity close to1)
and a fraction of1−I(W ) of them tend to become completely
noisy (i.e., have capacity close to0). Hence, asn grows large,
nearly all the sub-channels are in one of the following two
states: highly noisy or highly noiseless. The constructionof
these channels is done recursively, using a transform called
channel splitting. Channel splitting is a transform which takes
a BMS channelW as input and outputs two BMS channels
W+ andW−. We denote this transform byW → (W+,W−).
To analyze the behavior of the sub-channels, a probabilistic
approach is introduced in [1] and [2]. In this regard, the
polarization process of a BMS channelW , denoted byWn, is
defined byW0 =W and

Wn+1 =

{
W+

n ;with probability 1
2 ,

W−
n ;with probability 1

2 .
(1)

As a result at timen the processWn uniformly and randomly
outputs a sub-channel from a set of2n possible sub-channels
which are precisely the sub-channels{W (i)

2n }1≤i≤2n .1 The
Bhattacharyya process of channelW is then defined by
Zn = Z(Wn), whereZ() denotes the Bhattacharyya constant.
It was shown in [1] that the processZn is a super-martingale
that converges to a random variableZ∞. The value ofZ∞ is
either 0 (representing the fraction of noiseless sub-channels)
or 1 (representing the fraction of noisy sub-channels) with
PW (Z∞ = 0) = I(W ). We call the two values0 and 1 the
fixed pointsof the processZn meaning that asn tends to
infinity, with probability one the processZn ends up in one
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1For more details, please refer to [3]

of the these two fixed points. The asymptotic behavior of the
processZn around the points0 and1 has been studied in [2]
and [3]. However at each timen there still exists a positive
probability, although very small, that the processZn takes
a value not so close to the fixed points. The main objective
of this paper is to study these vanishing probabilities. More
precisely, let0 < a < b < 1 be constants. The quantity
PW (Zn ∈ [a, b]) represents the probability that the value of
Zn is away from the two fixed points0 and 1 or in other
words hasescapedfrom the fixed points. For a channelW
we define the upper escape rateλWu and the lower escape rate
λWl as 2

λWu = lim
[a,b]→(0,1)

lim sup
n→∞

1

n
logPW (Zn ∈ [a, b]) (2)

λWl = lim
[a,b]→(0,1)

lim inf
n→∞

1

n
logPW (Zn ∈ [a, b]). (3)

It is easy to see that the above defined quantities are well
defined. Also, whenλWu = λWl = λW , we say that the escape
rate of the channelW exists and is equal toλW . In words, as
n goes large, one expects that

2λ
W
l n / PW (Zn ∈ [a, b]) / 2λ

W
u n.

In the context of polar codes, the quantityPW (Zn ∈ [a, b])
represents the ratio of the sub-channels that have not “polar-
ized“ at timen. In this paper we consider the case when the
channelW is a binary erasure channel (BEC). In the analysis
of polar codes, the analysis of binary erasure channels is more
significant than other BMS channels. This is because firstly the
Bhattacharyya processZn = Z(Wn) corresponding to a BEC
channel with erasure probabilityz (BEC(z)) is relatively more
easier to analyze and it can be described in a closed numerical
form ([1]) asZ0 = z and

Zn+1 =

{
Zn

2 ;with probability 1
2 ,

2Zn − Zn
2 ;with probability 1

2 .
(4)

Secondly the quantities corresponding to BEC channels often
provide bounds for general BMS channels. Let the functions
pa,bn (z) andθa,bn (z) be defined as3

pa,bn (z) = Pz(Zn ∈ [a, b]), (5)

θa,bn (z) =
1

n
log pa,bn (z). (6)

2All the logarithms in this paper are in base 2.
3To keep things simple, instead ofPBEC(z)(Zn ∈ [a, b]) we writePz(Zn ∈

[a, b]).
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As a result the upper and lower escape rate for the channel
BEC(z) can be stated as

λBEC(z)
u = lim

a→0,b→1
lim sup
n→∞

θa,bn (z) (7)

λ
BEC(z)
l = lim

a→0,b→1
lim inf
n→∞

θa,bn (z). (8)

In the sequel, we slightly modify the definition of the escape
rates given in (7) and (8) and consider the following quantities,

λu(z, a, b, δ) = lim sup
n→∞

sup
x∈[z−δ,z+δ]

θa,bn (x) (9)

λl(z, a, b, δ) = lim inf
n→∞

sup
x∈[z−δ,z+δ]

θa,bn (x). (10)

whereδ ∈ (0, 1) is chosen in a way that[z− δ, z+ δ] ⊆ (0, 1)
(we call such a pair of(z, δ) a consistent pair). In words, we
allow a small perturbation, namelyδ, in the erasure proba-
bility of the channel and define the escape rates accordingly.
Therefore, when the value ofδ tends to0, the above quantities
are a good estimate of the ones given in (7) and (8). In this
paper we first show that

Lemma 1:The value ofλu(z, a, b, δ) and λl(z, a, b, δ) is
the same for all choices ofa, b and (z, δ) such thata ≤ b2.
We denote the two values byλBEC

u andλBEC
l respectively.

Numerical simulations show that the values of upper and
lower escape rate are both equal to−0.2758 for all the BEC
channels. In this paper we provide upper and lower bounds on
the values ofλBEC

u andλBEC
l .

Theorem 2:We have

− 0.2786 ≈ 1

2 ln 2
− 1 ≤ λBEC

l ≤ λBEC
u ≤ −0.2669. (11)

The outline of the paper is as follows. In Section II we
introduce the basic notations, definitions and tools used inthis
paper. Section III contains the proof of the main results of
this paper followed by section IV that contains further proofs
regarding the auxiliary lemmas stated in the paper.

II. D EFINITIONS, NOTATIONS AND PRELIMINARY LEMMAS

In this section we first give a different but entirely equivalent
description of the processZn given in (4) with the help of a
collection of maps denoted byφωn

for n ∈ N. From this we
also derive the relation between the quantity1

n
log Pz(Zn ∈

[a, b]) and the mapsφωn
. We then continue by analyzing the

functionspa,bn (z) andθa,bn (z) defined in (5) and (6) and derive
the relations between the functionsθa,bn for different values of
n andz.

A. analyzing the random mapsφωn

Let {Bn}n∈N be a sequence of iid Bernoulli(1
2 ) random

variables. Denote by(F ,Ω,P) the probability space generated
by this sequence and let(Fn,Ωn,Pn) be the probability space
generated by(B1, · · · , Bn). We now couple the processZn

with the sequence{Bn}n∈N. We start byZ0 = z and

Zn+1 =

{
Zn−1

2 ; if Bn = 1,
2Zn−1 − Zn−1

2 ; if Bn = 0.
(12)

Also, consider the two mapsT0, T1 : [0, 1] −→ [0, 1] defined
as

T0(x) = 2x− x2, T1(x) = x2. (13)

The value ofZn is obtained by applyingTBi
on the value

of Zn−1, i.e., Zn = TBn
(Zn−1). The same rule applies for

obtaining the value ofZn−1 form Zn−2 and so on. Thinking
this through recursively, the value ofZn is obtained from the
starting point of the process,Z0 = z, via the following maps.

Definition 3: For each n ∈ N and a realization
(b1, · · · , bn) , ωn ∈ Ωn define the mapφωn

by

φωn
= Tbn ◦ Tbn−1 ◦ · · ·Tb1 .

Let Φn be the set of all suchn-step maps. Thus eachφωn
∈

Φn is with a one-to-one correspondence with a realization
(b1, · · · , bn) of Ωn.
As a result, an equivalent description of the processZn is as
follows. At time n the value ofZn is obtained by picking
uniformly at random one of the functions inφωn

∈ Φn and
assigning the valueφωn

(z) to Zn. Consequently we have,

Pz(Zn ∈ [a, b]) =
∑

φωn∈Φn

1

2n
I(φωn

(z) ∈ [a, b]) (14)

=
∑

φωn∈Φn

1

2n
I(z ∈ φ−1

ωn
([a, b])).

Therefore, in order to analyze the behavior of the quantity
1
n
logPz(Zn ∈ [a, b]) as n grows large, characterizing the

asymptotic behavior of the random mapsφωn
is necessary.

Continuing the theme of Definition 3, one can correspond to
each realization of the infinite sequence{Bn}n∈N, denoted
by {bn}n∈N, a sequence of mapsφω1(z), φω2(z), · · · , where
ωi , (b1, · · · , bi). We call the sequence{φωk

}k∈N the
corresponding sequence of maps for the realization{bk}k∈N.
We also use the realization{bk}k∈N and its corresponding
{φωk

}k∈N interchangeably. We now focus more on the asymp-
totic characteristics of the functionsφωn

. Firstly, sinceφωn
(z)

has the same law asZn starting atz, we conclude that for
z ∈ (0, 1) with probability one, the quantitylimk→∞ φωk

(z)
takes on a value in the set{0, 1} . In Figure 1 the the functions
φωn

are plotted for a random realization. As it is apparent from
Figure 1, the functionsφωn

seem to converge point-wise to a
step function. This is justified in the following lemma.

Lemma 4 (Almost every realization has a threshold point):
For almost every realizations ofω , {bk}k∈N ∈ Ω, there
exists a pointz∗ω ∈ [0, 1], such that

lim
n→∞

φωn
(z) →

{
0 z ∈ [0, z∗ω)
1 z ∈ (z∗ω, 1]

Moreover,z∗ω has uniform distribution on[0, 1]. We call the
point z∗ω the threshold point of the realization{bk}k∈N or
the threshold point of its corresponding sequence of maps
{φωk

}k∈N.

Looking more closely at (14), by the above lemma we
conclude that asn grows large, the mapsφωn

that activate
the identity function I(.) must have their threshold point
sufficiently close toz.
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Fig. 1. The functionsφωn associated to a random realization are plotted.
As we see asn grows large, the functionsφωn converge point-wise to a step
function.

B. Properties of the functionsθn and pn

In this part we focus on the asymptotic value of functions
θa,bn (z) andpa,bn (z) given by (5) and (6). The following lemma
states that the choice ofa andb is not important.

Lemma 5 (Equality of the limsups and liminfs):For two
intervals [a, b], [c, d] ∈ (0, 1), such thata ≤ b2 and c ≤ d2

and for a consistent pair(z, δ) we have

λu(z, a, b, δ) = λu(z, c, d, δ),

and
λl(z, a, b, δ) = λl(z, c, d, δ).

Therefore, without loss of generality we can fix the value of
a to 1

4 and the value ofb to 3
4 and prove all the statements

that appear in the sequel assuming this specific choice ofa

andb. However by Lemma 5 there is no loss of generality in
the original statement of the main results of the paper. Also,
in the sequela andb represent this specific choice mentioned
above and we will drop the superscriptsa, b whenever it is
clear from the context.

Lemma 6 (Inequalities between the functionsθn): For n ∈
N andz ∈ (0, 1) we have

(a)

θn+1(z) +
1

n+ 1
≥ θn(z).

(b)

θn+1(z) +
1

n+ 1
≥ max{θn(z2), θn(2z − z2)}.

Lemma 6 relates the values of the functionsθn on different
point of the interval(0, 1) together. The result of Lemma 6 can
be formalized more generally in the following way. We first
define the setsFn

z andBn
z for z ∈ (0, 1) andn ∈ N. These

sets and their asymptotic properties are among the main tools
in proving the main results.

Definition 7: Let z ∈ (0, 1). Let Fn
z = {φωk

(z) | k ≤
n, φωk

∈ Φk} andBn
z = {φ−1

ωk
(z) | k ≤ n, φωk

∈ Φk}. We
call the setsFn

z andBn
z the nth forward and backward sets

due toz. Further we call the setsFz = ∪nF
z
n andBz = ∪nB

z
n

the forward and backward sets due toz. In general for an
arbitrary setA ∈ (0, 1), by the forward set due toA, denoted
by FA, we meanFA =

⋃

z∈A Fz. The backward set due toA,
denoted byBA, is defined similarly. From Lemma 6 we can
easily conclude the following.

Corollary 8: Let z ∈ (0, 1) andm,n ∈ N.

1) For x ∈ Fm
z we have

θn+m(z) +
m

n
≥ θn(x).

2) For y ∈ Bm
z we have

θn+m(y) +
m

n
≥ θn(z).

III. PROOF OF THE MAIN RESULTS

A. Proof of Lemma 1

Consider the sequence{an}n∈N defined as

an := sup
z∈[ 14 ,

3
4 ]

θn(z). (15)

We claim that for any consistent pair(z, δ), we have

λu(z,
1

4
,
3

4
, δ) = lim sup

n→∞
an (16)

λl(z,
1

4
,
3

4
, δ) = lim inf

n→∞
an. (17)

Clearly the above statement together with Lemma 5 complete
the proof of Lemma 1. To prove the claim we use the following
lemma.

Lemma 9:Let [c, d] and [e, f ] be non-empty intervals in
(0, 1). There exist am ∈ N such that forx ∈ [c, d] we have
Bm

x ∩ [e, f ] 6= ∅.
Now fix a pair(z, δ) and let the sequence{un}n∈N be defined
as

un = sup
x∈[z−δ,z+δ]

θn(x).

By Lemma 9 there exists am ∈ N such that forx ∈ [z −
δ, z+ δ] we haveBm

x ∩ [ 14 ,
3
4 ] 6= ∅. As a result, by Corollary 8

part (b) forn ∈ N we have

an+m ≥ un − m

n
. (18)

Similarly as above, there exists ak ∈ N such that forn ∈ N

un+k ≥ an − k

n
, (19)

and the claim can easily be followed from (18) and (19).
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B. Proof of Theorem 2

1) Lower bound: We first consider the average of the
functionspn(z) over (0, 1) and use it to provide bounds for
λBEC
l . More precisely, let the sequence{bn}n∈N be defined by

bn :=
1

n
log[

∫ 1

0

Pz(Zn ∈ [a, b])dz]. (20)

We have
Lemma 10:λBEC

l ≥ lim infn→∞ bn.

We now proceed by finding a lower bound on the quantity
lim infn→∞ bn. By (5) we have:

∫ 1

0

Pz(Zn ∈ [a, b])dz =

∫ 1

0

[
∑

φωn

1

2n
I(z ∈ φ−1

ωn
[a, b])]dz

=
∑

φωn

1

2n
[

∫ 1

0

I(z ∈ φ−1
ωn

[a, b])dz]

= E|φ−1
ωn

[a, b]|.

Thus by taking1
n
log() from both sides we have:

bn =
1

n
log

∫ 1

0

Pz(Zn ∈ [a, b])dz =
1

n
lnE|φ−1

ωn
[a, b]|(21)

≥ E
1

n
log |φ−1

ωn
[a, b]|

The value of limn→∞ E 1
n
ln |φ−1

ωn
[a, b]| is computed by the

following lemma.
Lemma 11:We have:

lim
n→∞

E
1

n
log |φ−1

ωn
[a, b]| = 1

2 ln 2
− 1.

As a result of the above lemma and (21) we have

λBEC
l ≥ lim inf

n→∞
bn ≥ 1

2 ln 2
− 1.

2) Upper bound:Let the processQn be defined asQn =
√

Zn(1− Zn). Following the lead of [2, Lemma 1], we have

Qn+1 = Qn.

{ √

Zn(1 + Zn) ; if Bn = 1,
√

(2 − Zn)(1− Zn) ; if Bn = 0.

As a result,

E[Qn+1 |Qn]

≤ Qn

2
max
z∈[0,1]

{
√

(2 − z)(1− z) +
√

z(1 + z)}

≤ Qn

√
3

2
.

Thus by noting thatE(Q0) ≤ 1 we get

E(Qn) ≤ (

√
3

2
)

n

.

Hence by the Markov inequality, it is easy to see that for
0 < a < b < 1 there is someα = α(a, b) > 0 such that:

Pz(Zn ∈ [a, b]) ≤ α(

√
3

4
)n.

Therefore, forz ∈ (0, 1)

1

n
logPz(Zn ∈ [a, b]) ≤ 1

2
log

3

4
+

logα

n
.

Hence by tendingn to infinity we get

lim sup
n→∞

1

n
logPz(Zn ∈ [a, b]) ≤ 1

2
log

3

4
.

The above idea can be generalized in the following way: let
α, β ≥ 0 and defineQn = Zα

n (1 − Zn)
β . Going along the

same lines as above, we get

Qn+1 = Qn.

{
Zα
n (1 + Zn)

β ; if Bn = 1,
(2− Zn)

α(1 − Zn)
β ; if Bn = 0.

Let λ(α, β) be defined as

ζ(α, β) =
1

2
max
z∈[0,1]

{zα(1 + z)β + (2− z)α(1− z)β}. (22)

We have

E(Qn) ≤ ζ(α, β)
n
.

And as a result

lim sup
n→∞

1

n
logPz(Zn ∈ [a, b]) ≤ log ζ(α, β).

Minimizing the value ofζ(α, β) over all the values ofα and
β, we get

lim sup
n→∞

1

n
logPz(Zn ∈ [a, b]) ≤ −0.2669.

IV. A PPENDIX

A. Proof of Lemma 4

Recall that for a realizationω = {bk}k∈N ∈ Ω we define
ωn = (b1, · · · , bn). The mapsT0 andT1 and hence the maps
φωn

s are increasing on[0, 1]. Thusφωn
(z) → 0 implies that

φωn
(z′) → 0 for z′ ≤ z and φωn

(z) → 1 implies that
φωn

(z′) → 1 for z′ ≥ z. Moreover, we know that for almost
every z ∈ (0, 1), limn→∞ φωn

(z) is either0 or 1 for almost
every realization{φωn

}n∈N. Hence it suffices to let

z∗ω = inf{z : φωn
(z) → 1}.

To prove the second part of the lemma, notice that

z = Pz(Z∞ = 1)

= Pz(φωn
(z) → 1)

= Pz(inf{z : φωn
(z) → 1} ≤ z)

= Pz(z∗ω < z).

Which shows thatz∗ω is uniformly distributed on[0, 1].
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B. Proof of Lemma 5

Using (14), we can writepa,bn+m as follows:

p
a,b
n+m(z) =

∑

φωn+m

1

2n+m
I(z ∈ φ−1

ωn+m
[a, b])

=
∑

φωm

1

2m

∑

φωn

1

2n
I(z ∈ φ−1

ωn
(φ−1

ωm
[a, b]))

=
∑

φωm

1

2m

∑

φωn

1

2n
I(z ∈ φ−1

ωn
[φ−1

ωm
(a), φ−1

ωm
(b)]).

Thus by the union bound we get

2mpa,bn+m(z) ≥ Pz(Zn ∈
⋃

φωm

[φ−1
ωm

(a), φ−1
ωm

(a)]).

now since a ≤ b2, it can easily be verified that
⋃

φωm
[φ−1

ωm
(a), φ−1

ωm
(a)] contains a closed interval which asm

grows large, its Lebesgue measure approaches one. As a result
there exits ak ∈ N such that[c, d] ⊆ ⋃

φωk

[φ−1
ωk

(a), φ−1
ωk

(a)]

and as a result forn ∈ N we have

2kpa,bn+k(z) ≥ pc,dn (z).

and sinceθa,bn (z) = 1
n
log pa,bn , we easily get

θ
a,b
n+k(z) +

k

n+ k
≥ θc,dn (z). (23)

Similarly, sincec ≤ d2 there exists al ∈ N such that for
n ∈ N we have

θ
c,d
n+l(z) +

l

n+ l
≥ θa,bn (z). (24)

Now the proof of the lemma follows by (23), (24) and tending
n to infinity.

C. Proof of Lemma 9

We first need the following lemma.
Lemma 12 (Denseness of the forward and backward sets):

Let (a, b) ⊆ (0, 1) be a non-empty interval andz ∈ (0, 1),
(a) Forz ∈ (0, 1) the setBz is dense in[0, 1].
(a) Assuming(a, b) ⊆ (0, 1) is a non-empty interval, the set

Ua,b = ∪n∈N ∪φωn∈Φn
φ−1
ωn

(a, b) is a dense and open
subset of(0, 1).

(c) The set of pointsz ∈ (0, 1) for which the setFz is dense
in (0, 1), is a dense subset of(0, 1).

Proof: For part (a), let(c, d) be a non-empty interval in
(0, 1). We must find a functionφωl

∈ Φl such thatφ−1
ωl

(z) ∈
(c, d) or equivalentlyz ∈ φωl

(c, d). But as(c, d) is non-empty
and the set of threshold points is dense in(0, 1), there exists
a threshold pointz∗ω ∈ (c, d). Let {φωn

} be the realization
which corresponds toz∗ω. Sinceφωn

(c) → 0 andφωn
(d) → 1,

there exists some member of this realization, namelyφωl
, such

that z ∈ φωl
(c, d). This completes the proof of part (a). The

proof of part (b) follows from part (a) and the fact that the
setUa,b is an countable union of open sets. To prove part (c),
Consider the set

A =
⋂

a,b∈Q∩(0,1)
a<b

Ua,b,

where byQ we mean the set of rational numbers. For each
z ∈ A the setFz is dense in(0, 1). According to part (b), all
the setsUa,b are dense and open in(0, 1) . As a result, since
[0, 1] is a compact space, the set A is also dense in(0, 1) by
the Baire category theorem.
Let z ∈ [c, d]. According to Lemma 12 part (a), sinceBz is
dense in(0, 1), there exists aφωlz

∈ Φlz such thatφ−1
ωlz

(z) ∈
(e, f). Now since the functionφ−1

ωlz
is continuous then there

exists a neighborhoodUz aroundz such thatφ−1
ωlz

(Uz) ∈ (e, f)

and as a result forn ≥ lz andy ∈ Uz we haveBlz
y ∩[e, f ] 6= ∅.

Also, since[c, d] ⊆ ∪z∈[c,d]Uz and[c, d] is compact, then there
exist z1, · · · , zl ∈ [c, d] such that[c, d] ⊆ ∪l

i=1Uzi . The result
now follows by lettingm = max1≤i≤llzi.

D. Proof of Lemma 6

For part (a) we have

Pz(Zn+1 ∈ [a, b]) =
1

2
Pz2

(Zn ∈ [a, b])

+
1

2
P2z−z2

(Zn ∈ [a, b])].

Hence,

2pa,bn+1(z) ≥ max{pa,bn (z2), pa,bn (2z − z2)},

and as a result,

1

n+ 1
log pa,bn+1(z) +

1

n+ 1

≥ n

n+ 1
max{ 1

n
log pa,bn (z2),

1

n
log pa,bn (2z − z2)}

≥ max{ 1
n
log pa,bn (z2),

1

n
log pa,bn (2z − z2).

The proof of part (a) now follows by noting thatθa,bn =
1
n
log pa,bn . For part (b), using (14), we can writepa,bn+1 as

follows: Let a1 = 1 −
√
1− a, b1 = 1 −

√
1− b, a2 =

√
a,

b2 =
√
b. We have

p
a,b
n+1(z) =

∑

φn+1

1

2n+1
I(z ∈ φ−1

n+1[a, b])

=
∑

φωn

1

2n
[
I(z ∈ φ−1

ωn
[a1, b1]) + I(z ∈ φ−1

ωn
[a2, b2])

2
].

Hence it is easy to see that:

p
a,b
n+1(z) = pa,bn (z)+

1

2
[pa,a2

n (z)+pb,b1n (z)−pa,a1
n (z)−pb,b2n (z)],

or equivalently

p
a,b
n+1(z) =

1

2
(pn(z)

a2,b1 + pa1,b2
n (z)).

Now by assigninga = 1
4 and b = 3

4 we havea2 ≤ b1.
Therefore[a, b] ⊆ [a1, b1] ∪ [a2, b2] and

2pa,bn+1(z) ≥ pa,bn (z), (25)

Hence part (b) can be easily followed in a similar way to part
(a).
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E. Proof of Lemma 14

In order to computelimn→∞ E 1
n
ln |φ−1

ωn
[a, b]|, we define a

reverse stochastic process{Z̄n}n∈N∪{0} via the inverse maps
T−1
0 , T−1

1 . Pick a sequence of i.i.d. symmetric Bernoulli
random variablesB1, B2, · · · and defineZ̄n = ψωn

(z) where
ωn , (b1, · · · , bn) ∈ Ωn and

ψωn
= T−1

bn
◦ T−1

bn−1
◦ · · · ◦ T−1

b1
. (26)

Lemma 13:The Lebesgue measure (or the uniform prob-
ability measure) on[0, 1], denoted byν, is the unique, and
hence ergodic, invariant measure for the Markov processZ̄n.

Proof: First note that ifZ̄n is distributed according to the
Lebesgue measure, then

P(Z̄n+1 < t) =
1

2
P(Z̄n+1 < T0(t)) +

1

2
P(Z̄n < T1(t))

=
1

2
t2 +

1

2
(2t− t2) = t.

This proves the invariance of the Lebesgue measure. In order
to prove the uniqueness, we will show that for anyz ∈ (0, 1),
Z̄n converges weakly to a uniformly distributed random point
in [0, 1], i.e.,

Z̄(z)
n = ψωn

(z) → ν. (27)

Knowing that, uniqueness would be proved since for any
invariant measureρ,

ρ(.) = Pρ(Z̄n ∈ .) =

∫

P(Z̄n ∈ .)ρ(dz) → ν(.). (28)

To prove (27), note thatψωn
has the same (probability) law as

φ−1
ωn

and we know thatφ−1
ωn

(z) → z∗ω almost surely and hence
weakly butz∗ω is distributed according toν, which proves the
statement.

Theorem 14:We have:

lim
n→∞

E
1

n
ln |φ−1

ωn
[a, b]| = 1

2
− ln 2. (29)

Proof: We have:

|ψn[a, b]| = ψn(a)− ψn(b) = ψ′
n(c)(b − a),

for somec ∈ (a, b). And by chain rule,

ψ
′

n(c) = (T−1

bn
◦ T

−1

bn−1
◦ · · · ◦ T

−1

b1
)′(c)

= T
−1

b1

′

(c).T−1

b2

′

(T−1

b1
(c)). · · · .T−1

bn

′

(T−1

bn−1
◦ · · · ◦ T

−1

σ1
(c))

= T
−1

b1

′

(ψ0(c)).T
−1

b2

′

(ψ1(c)). · · · .T
−1

bn

′

(ψn−1(c))).

Or after taking logarithm,

1

n
ln(ψ′

ωn
(c)) =

1

n

n∑

j=1

lnT−1
bj

′
(ψj−1(c)).

But according to the ergodic theorem, the last expres-
sion should (almost surely) converge to the expectation of
lnT−1

B1

′
(z), wherez is assumed to be distributed according

to ν. This can be easily computed as

Eν [lnT−1
B1

′
(z)] =

1

2

∫ 1

0

ln(
√
x)′dx+

1

2

∫ 1

0

ln(1−
√
1− x)′dx

=
1

2
− ln 2.

This completes the proof.

F. Proof of Lemma 10

Definec = lim infn→∞ bn and letγ be an arbitrary positive
value. Our aim is to show thatλBEC

l ≥ c − 2γ. Sincec =
lim infn→∞ bn, there exists aK ∈ N such that forn ≥ K we
havebn ≥ c− γ. In other words forn ≥ K we have

∫ 1

0

Pz(Zn ∈ [a, b])dz > 2n(c−γ).

Hence for anyn > max{K, 1
γ
} there exists azn ∈

(2n(c−2γ), 1 − 2n(c−2γ)) such that θ(zn) ≥ c − γ. For
n > 2max{K, 1

γ
} define en = ⌊n − log2(−n(c − γ))⌋ and

consider the functionθen(z) and the particular pointzen .
Consider the setBn−en

zen
. By Lemma 8, for anyy ∈ Bn−en

zen
we have:

θn(y) ≥ θen(zen)−
n− en

en
. (30)

On the other hand, consider the functionsT−1
0 (z) = z

1
2 and

T−1
1 (z) = 1−

√
1− z. We have

n−entimes
︷ ︸︸ ︷

T−1
0 ◦ · · ·T−1

0 (2n(c−γ)) = (2n(c−γ))
1

2n−en

≥ 2n(c−γ)× 1
−n(c−γ)

=
1

2
.

Similarly it is easy to see that if we applyn − en times the
functionT−1

1 on 1− 2n(c−γ), the resulting value is less than
1
2 . As a result, it is easy to see thatBn−en

zen
∩ [ 14 ,

3
4 ] 6= ∅. We

further have:limn→∞
n−en
en

→ 0 or there exists aK ′ ∈ N

such that forn ≥ K ′ we haven−en
en

< γ . Therefore, by (30)
there exits ayn ∈ Bn−en

zen
∩ [ 14 ,

3
4 ] such that:

θn(yn) ≥ c− γ − γ.

Hence forn ≥ max{K ′,K} we have

sup
z∈[ 14 ,

3
4 ]

θn(z) ≥ θn(yn) ≥ c− 2γ.
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