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Abstract

Detecting and analyzing directional structures in images is important in many applications since one-dimensional

patterns often correspond to important features such as object contours or trajectories. Classifying a structure as

directional or non-directional requires a measure to quantify the degree of directionality and a threshold, which needs

to be chosen based on the statistics of the image. In order to do this, we model the image as a random field. So

far, little research has been performed on analyzing directionality in random fields. In this paper, we propose a

measure to quantify the degree of directionality based on the random monogenic signal, which enables a unique

decomposition of a 2D signal into local amplitude, local orientation, and local phase. We investigate the second-

order statistical properties of the monogenic signal for isotropic, anisotropic, and unidirectional random fields. We

analyze our measure of directionality for finite-size sample images, and determine a threshold to distinguish between

unidirectional and non-unidirectional random fields, which allows the automatic classification of images.

Index Terms

Anisotropy, monogenic signal, quaternions, Riesz transform, stationary random field, unidirectional.

I. INTRODUCTION

The detection and analysis of directional structure in images is crucial to many applications since one-dimensional

patterns often correspond to important image features such as object contours or trajectories. Detecting one-

dimensional patterns and estimating their orientation is particularly important; see, for instance, the detection of

ship wakes in Synthetic Aperture Radar (SAR) images [1], optical flow estimation [2], [3] and its application

to myocardial motion estimation [4], the analysis of texture by estimating multidimensional orientation [3], the

efficient coding of local differential structures in images [5], image encoding, labeling and reconstruction [6], and

the analysis of superimposed directional patterns, which may occur in X-ray projection imaging [7].

Many of the techniques developed for orientation estimation assume that there is indeed a directional structure to

be estimated. In the absence of such a directional structure, they will therefore still produce an estimated direction—

which would be meaningless. In order to address this problem, several measures for the degree of directionality

have been defined: In [8] the authors propose a measure called “intrinsic dimensionality,” which is related to the
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degrees of freedom of an image [9]. The intrinsic dimensionality of a constant image is zero; if the image can be

expressed as a univariate function of a linear combination of the coordinates, its dimensionality is one; otherwise it

is two. Another measure related to the intrinsic dimensionality is the Gaussian curvature [10]. A different measure

aimed at detecting edges and corners is presented in [11]. Finally, [12] introduces a measure called “coherency”

because it is normalized to values between 0 and 1. The coherency is closely related to the measure proposed in

our paper, yet [12] does not provide a detailed statistical analysis. Such an analysis is needed because having a

normalized measure for the degree of directionality alone may not help us classify a structure as directional or

nondirectional: For example, is a structure with degree of directionality equal to, say, 0.6 directional or not? A

meaningful answer to this question can only be given based on sound statistical arguments, for a specified null

model. Moreover, having a threshold based on statistical arguments will allow us to automatically classify images,

which is essential when dealing with large amounts of data, for instance, in the detection of ship wakes in the ocean

[1]. In order to derive a threshold, we model the image as a stationary random field and then phrase our problem

as a hypothesis test: “Is there a directional structure or not?” Deciding this question requires not only a measure

for directionality but also a threshold, based on the statistics of the image, above which a structure can indeed be

regarded as directional.

There has been little work on detecting and analyzing directional structures in random fields. A random field is

a stochastic process whose argument is a multidimensional vector. In our case, the argument is a 2D vector, and a

spatial 2D random field may also be called a random image. Random fields are useful models for applications in

areas as diverse as geophysics [13], [14], oceanography [15], and medical imaging [16]. A fundamental characteristic

of a spatial random field is the degree of rotational invariance of its second-order statistical properties [17, p. 57].

A spatially isotropic random field exhibits perfect rotational invariance as its spatial covariance displays circular

contour levels. Fields that are not isotropic are called anisotropic. A common subclass is the class of geometrically

anisotropic fields [17, p. 61] that have covariances with elliptical rather than circular contours. Taking this idea to

the extreme, we arrive at unidirectional random fields, where there exists a rotation so that there is variation only

in one of the two axes. Figure 1 shows samples of three random images: isotropic, geometrically anisotropic, and

unidirectional. This shows the kinds of features present in a field as it becomes more anisotropic.

A large fraction of the work in statistics has focussed on isotropic random fields—which is at least partially due

to the fact that these have convenient mathematical properties—and many spatial models utilize isotropy [18]. Yet

isotropic random fields are obviously unsuitable to model directional structures. In order to deal with anisotropic

random fields, there are a number of models [17]–[19], the most common of which is geometric anisotropy. However,

for highly directional random fields, it would seem that the most appropriate model should be one that consists of

unidirectional components.

In the deterministic case, there exist quite a few papers that deal with the estimation of local orientation, e.g.,

[1]–[3], [5], [7], [12], [20]. For a brief summary of some elementary techniques, we refer the reader to Section

V-B. We use an approach based on the random monogenic signal, which allows us to define a statistical measure

for the degree of unidirectionality and to construct statistical tests for the presence of directional structure. The
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monogenic signal [21] enables the unique decomposition of a two-dimensional real image f(x), with x = [x1, x2]
T ,

into a local amplitude, a local orientation, and a local phase. It is arguably the most compelling 2D-generalization

of the analytic signal, which enables the unique decomposition of a real signal x(t) = a(t) cosφ(t) into local

amplitude a(t) and local phase φ(t). The monogenic signal has received considerable attention, with applications in

image processing ranging from contour detection and local structure analysis [22], [23], stereo, motion estimation,

and image registration [24], [25] to image segmentation and phase-contrast imaging [26]. There have also been

extensions of the concept to a multiresolution monogenic signal in the wavelet domain [12], [27].

As we will review in Section II, the monogenic signal is constructed by complementing the original signal

f(x) with its two Riesz transforms g(x) and h(x) [28]. It can either be represented as a three-dimensional vector

[f(x), g(x), h(x)]T or as a quaternion m(x) = f(x) + ig(x) + jh(x) + k · 0, where the k-part remains zero. So

far, work on monogenic signals has focussed only on the deterministic case. Aside from our own conference paper

[29], we are not aware of any work that has been performed on a random monogenic signal. In Section III, we

investigate the second-order statistical properties of random monogenic signals for stationary random fields, and in

Section IV, we examine these properties for the special and important cases of isotropic, geometrically anisotropic,

and unidirectional random fields.

In Section V, we introduce a measure to quantify the degree of unidirectionality for a random field. A related

local measure of unidirectionality, which is appropriate for deterministic signals, has been defined in [12]. We

also provide a thorough statistical analysis of our measure. In particular, we show that, for an infinite-size sample

image, it is identically one only for unidirectional random fields and zero for isotropic random fields, with values

in between for other degrees of anisotropy. For a finite-size sample, this measure of directionality is no longer

guaranteed to be one. We determine its finite sample expectation, by carefully expanding the properties depending

on the size of the image, and a threshold to distinguish between unidirectional and non-unidirectional fields. Finally,

in Section VI, we illustrate the performance of our measure on simulated and real random fields.

II. PRELIMINARIES

A. Quaternion random vectors

In the one-dimensional case, it is common practice to encode the signal and its Hilbert transform in one complex-

valued analytic signal. While this is not strictly necessary (obviously one could also work with a 2D vector instead),

this practice is universally accepted because it illuminates and simplifies matter significantly. If we would like to

do something similar with the monogenic signal, we need to employ the algebra of quaternions.

In this section, we provide a brief review of quaternion algebra and the second-order analysis of quaternion

random vectors (see, e.g., [30]). Quaternions are 4D hypercomplex numbers, first proposed by Hamilton [31], and

defined as

q = a+ bi+ cj + dk, (1)
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where a, b, c, and d are real numbers and i, j, and k are imaginary units satisfying

ij = k = −ji jk = i = −kj (2)

ki = j = −ik i2 = j2 = k2 = ijk = −1. (3)

It is easy to check that quaternions form an algebra H that is non-commutative, i.e., for q1, q2 ∈ H, generally q1q2 6=
q2q1. The conjugate of q is defined as q∗ = a− bi− cj − dk and the norm is |q| = √qq∗ =

√
a2 + b2 + c2 + d2,

which satisfies |q1q2| = |q1||q2|. The inverse of q, for q 6= 0, is q−1 = q∗/|q|2, the inner product between q1 and

q2 is Re(q1q2), and two quaternions are orthogonal if their inner product is zero. Finally, the involution of q over

a pure unit quaternion η is given by q(η) = −ηqη. For a more complete review of quaternions, we refer the reader

to [32].

The second-order statistical analysis of a zero-mean complex random vector x is based on the covariance matrix

Rx,x = cov{x,x} = E[xxH ] and the complementary covariance matrix Rx,x∗ = cov{x,x∗} = E[xxT ] [33].

A common assumption in complex-valued signal processing is propriety, which is characterized by vanishing

complementary covariance. This can be visualized as rotational invariance because, in the proper case, x and

xejα have the same second-order moments for arbitrary real angle α. While propriety can often be justified, there

are also many situations where it is a very poor model of the underlying physics [33].

To completely characterize the second-order statistics of a zero-mean quaternion random vector q, we need the

covariance matrix and three complementary covariance matrices [30]. There is some freedom in how to choose

these complementary covariance matrices. We will employ the most useful choice

Rq,q = cov{q,q}, Rq,q(η) , = cov{q,q(η)} Rq,q(η′) , = cov{q,q(η′)} Rq,q(η′′) = cov{q,q(η′′)}, (4)

where η, η′ and η′′ are three orthogonal pure unit quaternions, for instance, η = i, η′ = j, η′′ = k. Because there

are three complementary covariance matrices, there are different kinds of propriety for quaternion random vectors

[30]. The only kind of interest to us is Cη-propriety. A quaternion random vector is Cη-proper if and only if both

Rq,q(η′) and Rq,q(η′′) vanish. This obviously depends on an appropriate choice of η. If q is Cη-proper for some

η, it is generally improper for a different choice of η. In our case, the choice of η will be linked to the directional

structure of the random field.

B. Monogenic signal

The monogenic signal was introduced by Felsberg and Sommer in [21], but it had already seen some prior

use in applied mathematics [34], [35] and geophysics [36]. It is a convenient method of defining an amplitude

and a vector-valued phase at any point in space [21], and can be considered an appropriate generalization of the

analytic signal [28]. The continuous monogenic signal is defined using the continuous Riesz transform [28]. The

Riesz transform enjoys a number of convenient mathematical properties, chief among them the commutativity with

spatial translations and dilations, and equivariance with respect to rotation [28]. These properties make the Riesz
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transform a very compelling candidate for separating information about structural and energetic aspects of a 2D

signal. There are two Riesz transforms in 2D, which are defined by1

R(l)f(x) =
1

2π

∫∫
f(y)

yl − xl
‖x− y‖3 dy = (r(l) ∗ f)(x), l = 1, 2, (5)

where r(l)(x) = −xl/(2π‖x‖3), x = [x1, x2]T , and y = [y1, y2]T . The monogenic signal is formed by placing the

two Riesz transforms into the i- and j-parts of a quaternion-valued signal, leaving the k-part empty:

m(x) =Mf(x) = f(x) + ig(x) + jh(x), (6)

where g(x) = R(1)f(x) and h(x) = R(2)f(x). The Riesz transforms are most easily described in the 2D Fourier

domain, where the Riesz transform kernels are defined by

R(1)(k) = −i k1‖k‖ = −i cos(κ), (7)

R(2)(k) = −i k2‖k‖ = −i sin(κ). (8)

In this equation, k = [k1, k2]T = k[cos(κ), sin(κ)]T is the 2D wavenumber, and κ = arg k is the corresponding

angle in the 2D plane. If the transformation is implemented over the entire real plane, the monogenic signal can

be calculated either in the spatial domain using (5) or, equivalently, in the 2D Fourier domain using (7) and (8).

For a sampled lowpass image {fn,n′ = f(xn,n′), n, n
′ = −N/2, . . . , N/2−1},2 assumed w.l.o.g. to be sampled

at a unit sampling period, the Riesz transforms have to be calculated discretely. Analogously to the discrete-time

Fourier transform (DTFT) and the discrete Fourier transform (DFT), we need to define both a discrete-space Riesz

transform, which is continuous in the wavenumber domain, and a discrete Riesz transform, which is discrete and

periodic in both space and wavenumber domains. To emphasize the difference between the two, we sometimes refer

to the discrete Riesz transform as the periodic discrete Riesz transform.

The impulse response of the discrete-space Riesz transform for a non-periodic discrete-space signal is

r(l)(xn,n′) = − i

(2π)2

∫ π

−π

∫ π

−π

kl√
k21 + k22

ei(k1n+k2n
′) dk, l = 1, 2. (9)

The first Riesz transform of the random field fn,n′ is obtained as the convolution

g(xn,n′) =

∞∑

l,l′=−∞
r(1)(xl−n,l′−n′)f(xl,l′). (10)

and the second Riesz transform h(xn,n′) is obtained analogously by convolving f(xn,n′) with r(2)(xn,n′). Using

the 2D DFT, given by

F (k) =

N/2−1∑

n,n′=−N/2
f(xn,n′)e

−i(k1n+k2n′), (11)

with kl uniformly spaced in (−π, π], the periodic impulse response of the discrete Riesz transform is defined by

r̃(l)(xn,n′) = − i

N2

∑

k

kl√
k21 + k22

ei(k1n+k2n
′), l = 1, 2. (12)

1By default, when we do not state the limits of an integral, they are −∞ and ∞.
2Without loss of generality, we assume that N is even.
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The first Riesz transform of f(xn,n′) is then obtained as the circular convolution

g̃(xn,n′) =

N/2−1∑

l,l′=−N/2
r̃(1)(xl−n mod N,l′−n′ mod N )f(xl,l′), (13)

where l − n mod N denotes l − n modulo N and the second Riesz transform h̃(xn,n′) is obtained analogously

by circularly convolving f(xn,n′) with r̃(2)(xn,n′). In practice, if implemented numerically, we always calculate

the periodic discrete Riesz transform. This has a direct implication on the measure of unidirectionality we propose,

because it introduces an additional error due to periodic filtering.

III. SECOND-ORDER STATISTICAL CHARACTERIZATION OF THE MONOGENIC SIGNAL

Consider a zero-mean random field f(x) with covariance function rff (x, ξ) = cov{f(x), f(x − ξ)}, where

cov(a, b) = E[ab∗] is the covariance operator, x is a global spatial position and ξ a local spatial offset. If rff (x, ξ) =

rff (ξ), ∀x, i.e., the covariance function only depends on the spatial offset ξ, then f(x) is called (wide-sense)

stationary. Nonstationary random fields are difficult to analyze, and most of the properties we will derive do not

hold for this general case. Moreover, many nonstationary random fields of interest can be locally approximated as

stationary for a small enough patch [37]. Therefore, from now on we only consider stationary random fields, which

is also the kind of random field that most of the statistical literature focuses on [38].

In order to characterize the second-order moments of the random monogenic signal, we obtain the covariances

of the random field and its Riesz transforms. To do so, let us consider the spectral representation [39] of the

random field f(x), whose spectral process is Zf (k). The spectral process is a complex-valued random measure

with uncorrelated increments (since f(x) is stationary), i.e., cov{dZf (k), dZf (k′)} = Sff (k)δ(k − k′) dk dk′,

where Sff (k) is the power spectral density of f(x). Then, the spectral representation of f(x) is

f(x) =

∫∫
dZf (k)eik

Tx. (14)

The covariance function and the power spectral density are therefore 2D Fourier transform pairs:

rff (ξ) =

∫∫
Sff (k)eik

T ξ dk. (15)

Taking into account the spectral representation of the Riesz transforms, we may express their covariances as

rgg(ξ) =

∫∫
cos2(κ)Sff (k)eik

T ξ dk, (16)

rhh(ξ) =

∫∫
sin2(κ)Sff (k)eik

T ξ dk, (17)

and we note that

rff (ξ) = rgg(ξ) + rhh(ξ). (18)

This is an important property because it is a relationship between the three covariances, which we can use to

simplify the statistical description of the monogenic signal. It can be shown that (18) only holds for stationary but

June 7, 2018 DRAFT



7

not for nonstationary random fields. Additionally, we find that the cross-covariances are given by

rfg(ξ) = −i
∫∫

cos(κ)Sff (k)eik
T ξ dk, (19)

rfh(ξ) = −i
∫∫

sin(κ)Sff (k)eik
T ξ dk, (20)

rgh(ξ) =
1

2

∫∫
sin(2κ)Sff (k)eik

T ξ dk, (21)

which satisfy

rgf (ξ) = −rfg(ξ), rhf (ξ) = −rfh(ξ), rhg(ξ) = rgh(ξ). (22)

This provides a complete second-order statistical characterization of the monogenic signal with six auto- and cross-

covariances.

So far we have characterized the monogenic signal in terms of its (real) components, but now we shall obtain the

quaternion-valued characterization. Section II-A has shown that in general a covariance and three complementary

covariances, all quaternion-valued, are necessary to completely characterize a random quaternion. However, since

the monogenic signal does not have a k-part, it is obvious that two complementary covariances suffice. As we will

see shortly, for stationary random fields we only need one complementary covariance due to (18).

Let us start with the covariance of the monogenic signal, given by

rmm(ξ) = cov{m(x),m(x− ξ)} = 2rff (ξ)− 2irfg(ξ)− 2jrfh(ξ). (23)

This covariance function only specifies three of the six real covariances. In order to access the remaining three real

covariances, one may be tempted to use the standard complementary covariance. However, it is straightforward

to show that rmm∗(ξ) = cov{m(x),m∗(x − ξ)} = 0 for all stationary random fields, so this complementary

covariance does not provide any useful information. Consider instead the covariance between m(x) and m(i)(x)

rmm(i)(ξ) = 2rgg(ξ)− 2irfg(ξ) + 2krgh(ξ), (24)

which specifies a further two real covariances. Recalling now that rhh(ξ) = rff (ξ) − rgg(ξ) gives us access to

the final remaining real covariance, rmm(ξ) and rmm(i)(ξ) together contain the same information as the six real

covariance functions. We remark that instead of rmm(i)(ξ), one can also use [30]

rmm(η)(ξ) = cov{m(x),m(η)(x− ξ)}, (25)

where η is any pure unit quaternion with zero k-part. The additional freedom of being able to choose an arbitrary

basis provides flexibility that we shall use later.

IV. ISOTROPY AND DIRECTIONALITY

A fundamental characteristic of a random field is the degree of rotational invariance of its second-order statistical

properties [17, p. 57]. A spatially isotropic random field exhibits perfect rotational invariance as its covariance

displays circular contour levels. Fields that are not isotropic are called anisotropic. A common subclass is the class
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(a) Isotropic (b) Anisotropic (c) Unidirectional

Fig. 1: Sample images of random fields

Figure ?? shows a random realization of a isotropic random field, where it can be seen that there is not a preferred

direction. Then, if we rotate an isotropic random field, it retains the same statistical properties under any rotation.

We now derive the covariances for isotropic random fields to show that an isotropic random field is completely

described by just one quaternion-valued covariance. Let the spatial lag be expressed as ξ = ξ[cos(θ), sin(θ)]T , and

let Sff (k) = Sff (k) be the power spectral density of f(x). Hence, rff (ξ) is given by

rff (ξ) =

∫∫
Sff (k)e

ikT ξ dk =

∫ ∞

0

∫ π

−π

Sff (k)e
ikT ξ kdkdκ

= 2π

∫ ∞

0

Sff (k)J0(kξ) kdk = 2πH−1
0 (Sff , ξ), (26)

where we have used polar coordinates to solve the integral, Jα(·) denotes the Bessel function of the first kind and

order α, and H−1
α (Sff , ·) is the inverse Hankel transform of Sff and order α [19]. Following similar derivations,

the covariances of the Riesz transforms become

rgg(ξ) = 2π cos2(θ)H−1
0 (Sff , ξ)−

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (27)

rhh(ξ) = 2π sin2(θ)H−1
0 (Sff , ξ) +

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (28)

and, as expected, they fulfill rff (ξ) = rgg(ξ) + rhh(ξ). Finally, the cross-covariances are given by

rfg(ξ) = −2π cos(θ)H−1
1 (Sff , ξ), (29)

rfh(ξ) = −2π sin(θ)H−1
1 (Sff , ξ), (30)

rgh(ξ) = sin(2θ)

[
πH−1

0 (Sff , ξ)−
1

ξ
H−1

1 (k−1Sff , ξ)

]
. (31)

From the previous equations, it is clear that the six covariances are just functions of three quantities, namely

H−1
0 (Sff , ·), H−1

1 (Sff , ·) and H−1
1 (k−1Sff , ·). Therefore, we may characterize, as previously stated, an isotropic

random using one properly selected quaternion-valued covariance, for instance, rmm(i)(ξ).
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(a) Isotropic (b) Anisotropic (c) Unidirectional

Fig. 1: Sample images of random fields

Figure ?? shows a random realization of a isotropic random field, where it can be seen that there is not a preferred

direction. Then, if we rotate an isotropic random field, it retains the same statistical properties under any rotation.

We now derive the covariances for isotropic random fields to show that an isotropic random field is completely

described by just one quaternion-valued covariance. Let the spatial lag be expressed as ξ = ξ[cos(θ), sin(θ)]T , and

let Sff (k) = Sff (k) be the power spectral density of f(x). Hence, rff (ξ) is given by

rff (ξ) =

∫∫
Sff (k)e

ikT ξ dk =

∫ ∞

0

∫ π

−π

Sff (k)e
ikT ξ kdkdκ

= 2π

∫ ∞

0

Sff (k)J0(kξ) kdk = 2πH−1
0 (Sff , ξ), (26)

where we have used polar coordinates to solve the integral, Jα(·) denotes the Bessel function of the first kind and

order α, and H−1
α (Sff , ·) is the inverse Hankel transform of Sff and order α [19]. Following similar derivations,

the covariances of the Riesz transforms become

rgg(ξ) = 2π cos2(θ)H−1
0 (Sff , ξ)−

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (27)

rhh(ξ) = 2π sin2(θ)H−1
0 (Sff , ξ) +

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (28)

and, as expected, they fulfill rff (ξ) = rgg(ξ) + rhh(ξ). Finally, the cross-covariances are given by

rfg(ξ) = −2π cos(θ)H−1
1 (Sff , ξ), (29)

rfh(ξ) = −2π sin(θ)H−1
1 (Sff , ξ), (30)

rgh(ξ) = sin(2θ)

[
πH−1

0 (Sff , ξ)−
1

ξ
H−1

1 (k−1Sff , ξ)

]
. (31)

From the previous equations, it is clear that the six covariances are just functions of three quantities, namely

H−1
0 (Sff , ·), H−1

1 (Sff , ·) and H−1
1 (k−1Sff , ·). Therefore, we may characterize, as previously stated, an isotropic

random using one properly selected quaternion-valued covariance, for instance, rmm(i)(ξ).
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(a) Isotropic (b) Anisotropic (c) Unidirectional

Fig. 1: Sample images of random fields

Figure ?? shows a random realization of a isotropic random field, where it can be seen that there is not a preferred

direction. Then, if we rotate an isotropic random field, it retains the same statistical properties under any rotation.

We now derive the covariances for isotropic random fields to show that an isotropic random field is completely

described by just one quaternion-valued covariance. Let the spatial lag be expressed as ξ = ξ[cos(θ), sin(θ)]T , and

let Sff (k) = Sff (k) be the power spectral density of f(x). Hence, rff (ξ) is given by

rff (ξ) =

∫∫
Sff (k)e

ikT ξ dk =

∫ ∞

0

∫ π

−π

Sff (k)e
ikT ξ kdkdκ

= 2π

∫ ∞

0

Sff (k)J0(kξ) kdk = 2πH−1
0 (Sff , ξ), (26)

where we have used polar coordinates to solve the integral, Jα(·) denotes the Bessel function of the first kind and

order α, and H−1
α (Sff , ·) is the inverse Hankel transform of Sff and order α [19]. Following similar derivations,

the covariances of the Riesz transforms become

rgg(ξ) = 2π cos2(θ)H−1
0 (Sff , ξ)−

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (27)

rhh(ξ) = 2π sin2(θ)H−1
0 (Sff , ξ) +

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (28)

and, as expected, they fulfill rff (ξ) = rgg(ξ) + rhh(ξ). Finally, the cross-covariances are given by

rfg(ξ) = −2π cos(θ)H−1
1 (Sff , ξ), (29)

rfh(ξ) = −2π sin(θ)H−1
1 (Sff , ξ), (30)

rgh(ξ) = sin(2θ)

[
πH−1

0 (Sff , ξ)−
1

ξ
H−1

1 (k−1Sff , ξ)

]
. (31)

From the previous equations, it is clear that the six covariances are just functions of three quantities, namely

H−1
0 (Sff , ·), H−1

1 (Sff , ·) and H−1
1 (k−1Sff , ·). Therefore, we may characterize, as previously stated, an isotropic

random using one properly selected quaternion-valued covariance, for instance, rmm(i)(ξ).

May 4, 2012 DRAFT

(c) Unidirectional

Fig. 1: Sample images of random fields

of geometrically anisotropic fields [17, p. 61] that have covariances with elliptical rather than circular contours.

Taking this idea to the extreme, we arrive at unidirectional random fields, where there exists a rotation so that there

is variation only in one of the two axes. Figure 1 shows samples of three random images: isotropic, geometrically

anisotropic, and unidirectional. In this section we provide formal definitions of these three types of random fields.

A. Isotropy

Definition 4.1: A second-order stationary random field f(x) is isotropic if the covariance of the field is finite

and only depends on the magnitude of the lag, that is if rff (ξ) = CI

(√
ξT ξ

)
[38].

Figure 1a shows a sample of an isotropic random field. We observe that it does not show any preferential treatment

of any given image orientation. That is, if we rotate an isotropic random field, it retains its statistical properties for

arbitrary rotation angle. We now derive the covariances of the monogenic signal for an isotropic random field. Let

the spatial lag be expressed as ξ = ξ[cos(θ), sin(θ)]T , and let Sff (k) = Sff (k) be the power spectral density of

f(x). Hence, rff (ξ) is given by

rff (ξ) =

∫∫
Sff (k)eik

T ξ dk =

∫ ∞

0

∫ π

−π
Sff (k)eik

T ξ kdkdκ

= 2π

∫ ∞

0

Sff (k)J0(kξ) kdk = 2πH−10 (Sff , ξ), (26)

where we have used polar coordinates to solve the integral, Jα(·) denotes the Bessel function of the first kind and

order α, and H−1α (Sff , ·) is the inverse Hankel transform of Sff and order α [40]. Following similar derivations,

the covariances of the Riesz transforms become

rgg(ξ) = 2π cos2(θ)H−10 (Sff , ξ)−
cos(2θ)

ξ
H−11 (k−1Sff , ξ), (27)

rhh(ξ) = 2π sin2(θ)H−10 (Sff , ξ) +
cos(2θ)

ξ
H−11 (k−1Sff , ξ), (28)
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and, as expected, they fulfill rff (ξ) = rgg(ξ) + rhh(ξ). Finally, the cross-covariances are given by

rfg(ξ) = −2π cos(θ)H−11 (Sff , ξ), (29)

rfh(ξ) = −2π sin(θ)H−11 (Sff , ξ), (30)

rgh(ξ) = sin(2θ)

[
πH−10 (Sff , ξ)−

1

ξ
H−11 (k−1Sff , ξ)

]
. (31)

From the previous equations, it is clear that the six real covariances are functions of only three quantities, namely

H−10 (Sff , ·), H−11 (Sff , ·) and H−11 (k−1Sff , ·). To obtain these forms we used simplifying relationships between

H−10 (·), H−11 (·) and H−12 (·). Therefore, we may characterize the second-order statistics of a monogenic signal for

an isotropic random field using one properly selected quaternion-valued covariance, which gives us access to the

three unknown quantities. We can, for instance, use rmm(i)(ξ).

B. Geometric anisotropy

Definition 4.2: A second-order stationary random field f(x) is geometrically anisotropic if the covariance of the

field is finite and only depends on the magnitude of the deformed lag as rff (ξ) = CA(
√

ξTDξ), for some 2× 2

symmetric positive definite matrix D that satisfies det(D) = 1.

Figure 1b shows a sample of an anisotropic random field. We can see that there is a preferred direction, which is

clearly visible as we have chosen a matrix D with large condition number. Now we will investigate the statistical

properties of the monogenic signal for a geometrically anisotropic random field. The covariance of f(x) is given

by

rff (ξ) = 2πH−10 (Sff , ξ̃), (32)

where ξ̃ =
√
σ1ξ21 + σ−11 ξ22 , with σ1 being the largest eigenvalue of D. The proof can be found in Appendix A.

Contrary to isotropic random fields, we generally need two quaternion-valued covariances to completely characterize

the statistics of a geometrically anisotropic random field. To see this, let us consider the covariance of the first

Riesz transform, given by

rgg(ξ) =

∞∑

l=−∞
eil(ξ̃+π/2)al(σ1, α)Hl(Sff , ξ̃), (33)

where al(σ1, α) are the Fourier coefficients of

β(σ1, α) =
cos(α) cos(κ)

√
σ2
1 cos2(κ) + sin2(κ)∓ sin(α) sin(κ)

√
cos2(κ) + σ−21 sin2(κ)

σ1 cos2(κ) + σ−11 sin2(κ)
, (34)

α is the angle of the dominant eigenvector of D, and the sign depends on the determinant of the eigenvector matrix

of D (i.e., whether it is a rotation or a reflection matrix). The proof is also presented in Appendix A. Hence, just

considering rgg(ξ), we see that at least two quaternion-valued covariance functions are required. One could argue

that some (or almost all) of the coefficients al(σ1, α) might be zero and, therefore, the correlation would depend

only on a few Hl(Sff , ξ̃), as in the isotropic case. To show that this is not true, Figure 2 depicts the function

β(σ1, α) for σ1 = 0.5, and α = 0 and α = π/2. We can see that several Fourier coefficients are needed to express
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Fig. 2: Plot of β(σ1, α) for σ1 = 0.5, and α = 0 and α = π/2.

β(σ1, α) even for this simple case. For arbitrary values of σ1 and α, simulations have shown that there does not

exist a simple Fourier expansion of the function.

C. Unidirectionality

As the condition number of D in the geometric anisotropic model increases, the random field appears more

and more directional. However, no matter what finite condition number is selected, the random field is still an

aggregation of more than one wavenumber coefficient. We therefore introduce an idealized third class of random

field, namely purely directional signals.

Definition 4.3: A second-order stationary random field f(x) is purely unidirectional if its covariance takes the

form rff (ξ) = CU (nT ξ), where n = [n1, n2]T = [cos(ν), sin(ν)]T is a unit-norm vector in the direction of the

random field.

A realization of a unidirectional random field is shown in Figure 1c. Using the spectral representation, a unidirec-

tional random field may be expressed as

f(x) =

∫
dZf (k′)eik

′nTx, (35)

where k′ is a signed version of the wavenumber k, and cov{dZf (k′), dZf (k′′)} = Sff (k′)δ(k′ − k′′) dk′ dk′′. As

we can see, the unidirectional signal is thus a one-dimensional signal embedded in two dimensions [8], [41], [42].

The spectral representation allows us to write the Riesz transforms as

g(x) = cos(ν)s(x), h(x) = sin(ν)s(x), (36)

where

s(x) = −i
∫ ∞

−∞
sgn(k′)dZf (k′)eik

′nTx (37)

June 10, 2014 DRAFT

Fig. 2: Plot of β(σ1, α) for σ1 = 0.5, and α = 0 and α = π/2.

β(σ1, α) even for this simple case. For arbitrary values of σ1 and α, simulations have shown that there does not

exist a simple Fourier expansion of the function.

C. Unidirectionality

As the condition number of D in the geometric anisotropic model increases, the random field appears more

and more directional. However, no matter what finite condition number is selected, the random field is still an

aggregation of more than one wavenumber coefficient. We therefore introduce an idealized third class of random

field, namely purely directional signals.

Definition 4.3: A second-order stationary random field f(x) is purely unidirectional if its covariance takes the

form rff (ξ) = CU (nT ξ), where n = [n1, n2]T = [cos(ν), sin(ν)]T is a unit-norm vector in the direction of the

random field.

A realization of a unidirectional random field is shown in Figure 1c. Using the spectral representation, a unidirec-

tional random field may be expressed as

f(x) =

∫
dZf (k′)eik

′nTx, (35)

where k′ is a signed version of the wavenumber k, and cov{dZf (k′), dZf (k′′)} = Sff (k′)δ(k′ − k′′) dk′ dk′′. As

we can see, the unidirectional signal is thus a one-dimensional signal embedded in two dimensions [8], [41], [42].

The spectral representation allows us to write the Riesz transforms as

g(x) = cos(ν)s(x), h(x) = sin(ν)s(x), (36)

where

s(x) = −i
∫ ∞

−∞
sgn(k′)dZf (k′)eik

′nTx (37)
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is a partial Hilbert transform in direction n [21]. It is easy to show that the covariances are

rgg(ξ) = cos2(ν)rff (ξ), rhh(ξ) = sin2(ν)rff (ξ). (38)

The cross-covariances are

rfh(ξ) = tan(ν)rfg(ξ), rgh(ξ) =
1

2
sin(2ν)rff (ξ), (39)

where

rfg(ξ) = i cos(ν)

∫ ∞

−∞
sgn(k′)Sff (k′)eik

′nT ξdk. (40)

Similar to the case of isotropic random fields, we do not need five real covariances to characterize a unidirec-

tional random field, but only two. Thus, only one quaternion-valued covariance suffices, for instance rmm(ξ). A

consequence of this correlation structure is that unidirectional random fields are Cη-proper:

Theorem 1 (Characterization of a unidirectional random field): The monogenic signal of a random field f(x)

is Cη-proper, where η = cos(ν)i + sin(ν)j, if and only if f(x) is stationary and unidirectional with direction

n = [n1, n2]T = [cos(ν), sin(ν)]T .

Proof: See Appendix B.

This result shows an analogy between the monogenic signal of a stationary unidirectional random field and the

analytic signal of a stationary process, which is complex proper [33]. That is, the complementary covariance of the

analytic signal x+(t) for a stationary complex process x(t) is zero, i.e., cov{x+(t), x∗+(t− τ)} = 0,∀τ .

V. TEST FOR UNIDIRECTIONALITY

In this section, we propose a measure for the degree of unidirectionality in a random field and estimate its

preferred direction. We then use this measure to build a test for whether there is sufficient statistical evidence to

classify a random field as unidirectional.

A. Measure of unidirectionality

It follows directly from (36) that the monogenic signal of a unidirectional random field may be expressed as

m(x) = f(x) + ηs(x), (41)

where s(x) is the partial Hilbert transform in the direction η of the field. This means that m(η)(x) = m(x) for the

unit quaternion η = cos(ν)i+ sin(ν)j. Therefore, the quantity

min
η
E

[
1

2

∣∣∣m(x)−m(η)(x)
∣∣∣
2
]

(42)

is zero if f(x) is unidirectional and greater than zero if it is not. To see the validity of this statement for any

stationary random field, we shall outline some simplifications. We may rewrite (42) as

min
η
E

[
1

2

∣∣∣m(x)−m(η)(x)
∣∣∣
2
]

= min
η
E

[
1

2
|m(x)|2 +

1

2
|m(η)(x)|2 − Re

(
m(x)m(η)∗(x)

)]
. (43)
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Taking into account that |m(η)(x)| = |m(x)| the previous expression equates to

min
η
E

[
1

2

∣∣∣m(x)−m(η)(x)
∣∣∣
2
]

= min
η
E
[
|m(x)|2 − Re

(
m(x)m(η)∗(x)

)]
. (44)

Now, taking into account the definition of the covariances for a stationary random field, we find that

min
η
E

[
1

2

∣∣∣m(x)−m(η)(x)
∣∣∣
2
]

= min
η

[rmm(0)− Re (rmm(η)(0))] = rmm(0)−max
η

Re (rmm(η)(0)) . (45)

Based on this mean-squared error, we propose to use

U =
2 max

η
Re (rmm(η)(0))

rmm(0)
− 1 (46)

as a measure of unidirectionality. We will see momentarily that this measure is normalized to values between 0

and 1. The maximum U = 1 is attained if the field is unidirectional, i.e., m(η)(x) = m(x). We now simplify the

expression (46) for U . We start by considering the numerator. Expressing the involution over η in terms of the

involutions over the canonical basis {i, j, k}, after some tedious algebra the numerator becomes

max
η

Re (rmm(η)(0)) = max
n,‖n‖=1

nTRn, (47)

with R =


 Re (rmm(i)(0)) Imk (rmm(i)(0))

−Imk (rmm(j)(0)) Re (rmm(j)(0))


 ,

where Imk (q) is the k-component of the quaternion q. Hence, it is easy to show that (46) can be written as

U =
2λMAX(R)

rmm(0)
− 1, (48)

where λMAX(R) is the largest eigenvalue of R and the direction n is given by the dominant eigenvector. Taking

into account that the matrix R is given by

R =


rff (0) + rgg(0)− rhh(0) 2rgh(0)

2rgh(0) rff (0)− rgg(0) + rhh(0)


 , (49)

we use the closed-form expression for the largest eigenvalue of R to write

U =

√
r2gg(0) + r2hh(0)− 2rgg(0)rhh(0) + 4r2gh(0)

rff (0) + rgg(0) + rhh(0)
. (50)

Using the properties of the covariances, U finally becomes

U =

√
(rgg(0)− rhh(0))2 + 4r2gh(0)

2rff (0)
, (51)

which is similar to the coherency index measure introduced in [12] for deterministic images. It is now obvious that

U is lower-bounded by 0, so U ∈ [0, 1]. To shed some light on U , let us determine which signals minimize and

maximize U .

To achieve U = 0, we need rgg(0)− rhh(0) = 0 and rgh(0) = 0. This is equivalent to
∫∫

cos(2κ)Sff (k) dk = 0,

∫∫
sin(2κ)Sff (k) dk = 0. (52)
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Combining both conditions we have ∫∫
Sff (k)e−i2κ dk = 0, (53)

which may be rewritten as ∫ ∞

0

a2(k)k dk = 0, (54)

where

a2(k) =

∫ π

−π
Sff (k)e−i2κ dκ (55)

is the second Fourier coefficient of Sff (k) = Sff (k, κ). For an isotropic random field, the power spectral density

is Sff (k) = Sff (k), yielding
∫∫

Sff (k)e−i2κ dk =

∫ ∞

0

Sff (k) kdk

∫ π

−π
e−i2κ dκ. (56)

It is clear that the integral in κ is zero, and provided that Sff (k) satisfies
∫ ∞

0

Sff (k) kdk <∞, (57)

the measure of unidirectionality for an isotropic random field is indeed zero. It may be tempting to think that

isotropic random fields are the only fields that attain the lower bound of 0. However, from the form of e−i2κ we

see that to achieve U = 0 a sufficient condition is

Sff (−k1, k2) = Sff (k1, k2) (58)

and

Sff (k1,−k2) = Sff (k1, k2) . (59)

Thus, any function that exhibits parity invariance independently in either of the two arguments, e.g., a separable

function, also leads to U = 0. One may thus argue that, in some sense, separable covariances are as far from being

unidirectional as isotropic covariances. While U = 0 is only a necessary but not sufficient condition for a random

field to be isotropic, U = 1 is indeed necessary and sufficient for a field to be unidirectional. The proof of this

statement follows along the lines of Appendix B.

B. Relationship with previously proposed measures for unidirectionality

In this section we will review some related measures for the degree of unidirectionality (and also estimators of

the direction), and state the similarities to and differences from our work. We first consider the Gaussian curvature

[10]. This is given by the determinant of the Hessian matrix, which contains all second-order partial derivatives.

Assuming that the partial derivatives are continuous, the Gaussian curvature is

GC(x) = det


f11(x) f12(x)

f12(x) f22(x)


 , flp(x) =

∂2

∂xl∂xp
f(x), l, p = 1, 2,

which is a function of x. It remains unclear how to obtain a single (global) and normalized measure for the degree

of unidirectionality. Thus, in its current form, GC(x) cannot be used to test for unidirectionality.
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A similar measure that employs partial derivatives uses a tensor-based estimator of the orientation [20]. The main

idea behind this approach is that the gradient of a unidirectional image is orthogonal to the direction, which is

estimated as the eigenvector corresponding to the minimum eigenvalue of the matrix

S =




∫
f21 (x)dx

∫
f1(x)f2(x)dx

∫
f1(x)f2(x)dx

∫
f22 (x)dx


 ,

where fl(x) = (∂/∂xl)f(x), l = 1, 2, represents the partial derivative with respect to the lth dimension. At

first glance, this estimate may seem similar to our proposed estimate of the direction, which is the eigenvector

corresponding to the largest eigenvalue of the matrix R in (47). However, the matrix R is composed of the

covariances of the image and its Riesz transforms. Moreover, although one could imagine using the minimum

eigenvalue of S as a measure for the degree of unidirectionality, it is not clear how to normalize this measure and

determine the threshold for a test.

Finally, let us turn to the approach in [12], which proposes a deterministic counterpart of our measure. In this

approach, the direction is estimated as the direction that maximizes the integral of the partial Hilbert transform

[43]. This idea boils down to finding the principal eigenvector of

J =



∫
g2(x)dx

∫
g(x)h(x)dx

∫
g(x)h(x)dx

∫
h2(x)dx


 .

Based on this matrix, [12] defines a degree of unidirectionality, termed the coherency index, as

χ =
λMAX(J)− λMIN(J)

λMAX(J) + λMIN(J)
,

which is bounded between 0 and 1. After substituting expressions for the eigenvalues, the coherency has a form

similar to our measure. Nevertheless, there are a few important differences. First of all, while the definition in [12]

may seem ad-hoc, we provide a clear interpretation as a normalized mean square error. Moreover, our measure is

based on a stochastic formulation, which allows us to perform statistical analysis and to model the effect of finite

sample sizes. Based on this analysis we will be able to derive a threshold to test for unidirectionality, which is the

topic of the next section.

C. Determining the threshold

In order to test whether there is statistical evidence to classify a random field as unidirectional, we need to

determine a threshold for our measure of unidirectionality U . This threshold needs to take into account that, in

practice, we only observe a single finite patch of a random field and therefore work with the periodic discrete Riesz

transform. Recall that m̃(x) is the periodic monogenic signal. We may estimate our measure of unidirectionality

from a given realization of the random field of size N ×N as

Û =
2λMAX(R̂)

r̂m̃m̃(0)
− 1, (60)

where

R̂ =


 Re (r̂m̃m̃(i)(0)) Imk (r̂m̃m̃(i)(0))

−Imk (r̂m̃m̃(j)(0)) Re (r̂m̃m̃(j)(0))


 , (61)
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Algorithm 1: Detector of unidirectionality using the monogenic signal.
Input: Bound for the false alarm probability ε, and lower cutoff frequency λl.

1 Compute the periodic Riesz transforms g̃(x) and h̃(x)

2 Use f(x), g̃(x) and h̃(x) to estimate the covariances r̂ff (0), r̂g̃g̃(0), r̂h̃h̃(0), and r̂g̃h̃(0)

3 Obtain Û using (63)

4 Determine η such that the right hand side of (64) equals ε

if Û ≥ 1− η then
f(x) is unidirectional

else
f(x) is not unidirectional

the cross-covariances are

r̂m̃m̃(�)(0) =
1

N2

∑

n,n′

m̃(xn,n′)m̃
(�)∗(xn,n′), (62)

and m̃(�)(x) stands for either m̃(x), m̃(i)(x) or m̃(j)(x). Then, the estimated measure of unidirectionality may be

expressed as

Û =
2λMAX(R̂)

r̂m̃m̃(0)
− 1 =

√
r̂2g̃g̃(0) + r̂2

h̃h̃
(0)− 2r̂g̃g̃(0)r̂h̃h̃(0) + 4r̂2

g̃h̃
(0)

r̂ff (0) + r̂g̃g̃(0) + r̂h̃h̃(0)
, (63)

and the estimated preferred direction is given by the dominant eigenvector of R̂. In order to determine a threshold

for Û , we need to determine the probability of false alarm, which requires knowing the distribution of the statistic

Û under the null hypothesis “the random field is unidirectional”. As one may expect, deriving the distribution of

Û is far from trivial. However, for a bandpass random field, we are able to establish the following approximation

of the false alarm probability.

Theorem 2: Consider a finite realization of a random field of size N × N whose power spectral density is

bandpass with lower cutoff frequency λl. Using the estimated measure of directionality Û to test whether the field

is unidirectional, the threshold 1− η is determined such that the false alarm probability satisfies

P
(
Û ≤ 1− η

)
≤ 1

Nη

[
4

π2

1

λl
− 4

9
λl +

1

3
− 4

π2

]
. (64)

Moreover, for unidirectional random fields, Û → 1 as N → ∞, and the error 1 − Û that is due to considering a

finite patch of the random field decays with 1/N .

Establishing these results is very involved and requires lengthy derivations. Readers that are not interested in the

technical details may therefore wish to skip the remainder of this section and simply apply the algorithm presented

as Alg. 1. Note that selecting the threshold (Line 4 in Alg. 1) may alternatively be done based on the estimated

power spectral density.

June 7, 2018 DRAFT



16

D. Derivations

In order to establish Theorem 2, we proceed as follows. We first consider a deterministic plane wave and evaluate

the error that is due to the finite size of the random field. We then generalize this result to a random plane wave,

and finally to a unidirectional random field, which we write as an infinite sum of random plane waves. We begin

with the following lemma.

Lemma 1: Considering a deterministic plane wave, given by

f(x) = A cos(k0n
Tx + φ), (65)

where A, φ, and k0 = 2πλ0 are given numbers, we have

U2 , 1− Û =

N/2−1∑

λ1=−N/2

N/2−1∑

λ2=−N/2
C(λ1, λ2) +O(1/N2), (66)

where

C(λ1, λ2) =
2

N4

[
(λ1n2 − λ2n1)2

λ21 + λ22

]
sin2(πN(λ0n1 − λ1))

sin2(π(λ0n1 − λ1))

sin2(πN(λ0n2 − λ2))

sin2(π(λ0n2 − λ2))
, (67)

with ki = 2πλi.

Proof: See Appendix C.

Let us now analyze (66) more carefully. To do so, we decompose λ0nlN as λ0nlN = bλ0nlNe + cl, where

bλ0nlNe and cl are the integer and fractional parts of λ0nlN , respectively. Defining the transformed indices

jl = kl − bλ0nlNe, we may write C(λ1, λ2) = C̃(j1, j2). We can consider different regions for the orders of

magnitude of the transformed indices and analyze C̃(j1, j2). For small values of both indices, i.e., jl = O(1),

the function becomes C̃(j1, j2) = O(1/N2). For large values of only one of the indices, i.e., j1 = O(1) and

j1 = O(N) or vice-versa, we find that C̃(j1, j2) = O(1/N2). Finally, for large values of both indices jl = O(N),

we have C̃(j1, j2) = O(1/N4). Now, defining the sets Jαα′ = {(j1, j2) : j1 = O(Nα), j2 = O(Nα′)}, we may

decompose U2 as

U2 = B01 + B10 − B00 + B11, (68)

where each term is given by

Bαα′ =
∑

(j1,j2)∈Jαα′
C̃(j1, j2). (69)

Finally, taking into account that the size of the sets Jαα′ is |Jαα′ | = Nα+α′ , it is easy to prove that B01 = O(1/N)

and B10 = O(1/N), whereas B00 = O(1/N2) and B11 = O(1/N2). Hence, the error is

U2 = B01 + B10 +O(1/N2) = O(1/N), (70)

that is, it decays linearly with N . Hence, from the previous analysis we find a simpler expression for U2, which is

given in the following lemma.

Lemma 2: For a deterministic plane wave, the error due to the finite periodic discrete Riesz transform is

U2 =
2

N

[
sin2(πc2)G(λ0, n1, n2) + sin2(πc1)G(λ0, n2, n1)

]
+O(1/N2), (71)
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where G(λ0, n1, n2) = G+(λ0, n1, n2) + G−(λ0, n1, n2) and

G±(λ0, n1, n2) = n21

∫ 1/2

0

1

λ20n
2
1 + (λ0n2 ± λ)2

λ2

sin2(πλ)
dλ. (72)

The convergence rate with which Û → 1 as N →∞ is therefore linear in N .

Proof: See Appendix D.

So far, we have only considered a deterministic plane wave. In the following, we will generalize our results to a

random plane wave with random amplitude, phase, and direction but fixed frequency. If we would like to test the

null hypothesis that a realization of a random field is a plane wave vs. the alternative that it is not unidirectional,

we need to choose a threshold for Û (or U2 = 1 − Û). In order to determine the probability of false alarm, we

would need to know the distribution of U2 under the null hypothesis. As deriving this distribution seems extremely

difficult, we instead obtain a conservative bound on the probability of false alarm using Markov’s inequality [44].

Concretely, Markov’s inequality states that

P (U2 ≥ η) ≤ E[U2]

η
(73)

for a positive random variable U2. Hence, we have to find E[U2] for a random plane wave, which is presented in

the following theorem.

Theorem 3: The expectation of U2 for a random plane wave is

E[U2] =
1

N

(
4

π2

1

λ0
− 4

9
λ0 +

1

3
− 4

π2

)
. (74)

Proof: See Appendix E.

Now, using Theorem 3 and Markov’s inequality, we may bound the probability of U2 exceeding η as

P (U2 ≥ η) ≤ 1

Nη

(
4

π2

1

λ0
− 4

9
λ0 +

1

3
− 4

π2

)
, (75)

which is only valid when the right-hand side is smaller than one. The following theorem generalizes this result to

unidirectional random fields with arbitrary PSD S(λ), where λ = k/2π.

Theorem 4: The expectation of U2 for a unidirectional random field is

E [U2] =
1

N

∫ 1/2

0

[
4

π2

1

λ
− 4

9
λ+

1

3
− 4

π2

]
S(λ) dλ

∫ 1/2

0

S(λ) dλ

+O(1/N2). (76)

Proof: See Appendix F.

This shows that, for unidirectional random fields, the rate with which E[Û ] → 1 as N → ∞ is 1/N , just like

it was for deterministic plane waves. Unfortunately, E[Û ] still depends on the power spectral density (PSD) of the

random field. Since this quantity is generally unknown, we should bound E[Û ] to obtain an expression that does

not depend on the PSD. In the derivations for the random plane wave, we already required that the frequency of

the plane wave was not too low or too high. We shall therefore assume that the random field is bandpass.
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Lemma 3: The expectation E[U2] may be bounded as

E[U2] ≤ 1

N

[
4

π2

1

λl
− 4

9
λl +

1

3
− 4

π2

]
+O(1/N2), (77)

where λl is the lowest frequency. Equality in (77) is attained if the PSD takes the form

S(λ) = σ2δ(λ− λl). (78)

On the other hand, if the PSD has support at higher frequencies, then (77) is a strict inequality.

Proof: Let us define

S̃(λ) =
S(λ)

∫ λh

λl

S(λ) dλ

, (79)

where λl and λh denote the lowest and highest frequency component of the PSD. Observing that S̃(λ) integrates

to one, E[U2] may be written as3

E [U2] =
1

N

[∫ λh

λl

(
4

π2

1

λ
− 4

9
λ

)
S̃(λ) dλ+

1

3
− 4

π2

]
. (80)

Now consider the integral ∫ λh

λl

(
4

π2

1

λ
− 4

9
λ

)
S̃(λ) dλ. (81)

By taking into account that the function in parentheses is monotonically decreasing and positive on the considered

interval, we may write
∫ λh

λl

(
4

π2

1

λ
− 4

9
λ

)
S̃(λ) dλ ≤

(
4

π2

1

λl
− 4

9
λl

)∫ λh

λl

S̃(λ) dλ =
4

π2

1

λl
− 4

9
λl, (82)

and the proof follows.

Theorem 2 is now obtained by applying Markov’s inequality.

VI. NUMERICAL RESULTS

In this section, we present simulation results illustrating the behavior of our measure of directionality, which we

analyzed theoretically in the previous section. First, we examine the statistical behavior of our measure for different

kinds of random fields. Then, we apply our measure to a real-world problem, where we detect unidirectional patches

on the surface of Venus.

A. Statistical behavior of U

We generated samples of isotropic, geometrically anisotropic, and purely unidirectional random fields. The PSD

of the isotropic and geometrically anisotropic random fields is a shifted (band-pass) Matérn covariance function

[38], given by

Sff (λ) =
σ2Γ(ν + 1)(4ν)ν

πΓ(ν)(πρ)2ν
[
4ν/(πρ)2 +

(√
λTDλ− λ0

)2]ν+1 ,

3For the sake of notational simplicity we ignore the term O(1/N2).
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Fig. 3: Estimated PDF of the three different kinds of random fields with N = 64.

where k = 2πλ, Γ(·) denotes the Gamma-function, and D = I2 for the isotropic field, and

D =
1√

0.2775


 1 0.85

0.85 1




for the anisotropic random field. The purely unidirectional random field has PSD

Sff (λ) =
σ2Γ(ν + 1)(4ν)ν

πΓ(ν)(πρ)2ν
[
4ν/(πρ)2 + (λ− λ0)

2
]ν+1

along the line λ = λn. For all fields, we chose ν = 1.5, ρ = 20, σ2 = 1 and λ0 = 0.1 as the center frequency.

We computed our estimated measure of unidirectionality Û and estimated the probability density functions (PDFs)

of Û for the three different kinds of random fields of size 64× 64 from 10, 000 realizations. The results are shown

in Figure 3. We can see that the isotropic random fields have Û close to zero, and the unidirectional random fields

have Û close to one, in some cases even identically one. These cases happen when the direction is aligned with

one of the coordinate axes, i.e., ν = 0 or ν = π/2. The PDFs of isotropic and unidirectional random fields are

clearly separated and, while the PDFs of anisotropic and unidirectional random fields are closer, they are still easily

distinguished. For larger values of N , the PDFs are even more clearly separated. As N increases so does their

separation.

Next, we would like to corroborate the results of Section V-C. Consider first a random plane wave, with fixed

amplitude, random phase and direction. Figure 4 shows the value of E[Û ] predicted by Theorem 3, and the estimate

obtained from Monte Carlo simulations, as a function of the frequency λ0. We can see that there is good agreement

except at low frequencies. When λ0 becomes small, e.g. when λ0 = O(1/N) the higher-order error terms in

Section V-D become appreciable, see e.g. Lemma 4. The intuitive understanding of this is that when the image

contains variation over spatial scales larger than the patch we have observed, this will inevitably produce problems

with our estimation methods. We therefore assume we have observed a patch large enough to characterize the
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have Û close to one, in some cases even identically one. These cases happen when the direction is aligned with

one of the coordinate axes, i.e., ν = 0 or ν = π/2. The PDFs of isotropic and unidirectional random fields are

clearly separated and, while the PDFs of anisotropic and unidirectional random fields are closer, they are still easily

distinguished. For larger values of N , the PDFs are even more clearly separated. As N increases so does their

separation.

Next, we would like to corroborate the results of Section V-C. Consider first a random plane wave, with fixed

amplitude, random phase and direction. Figure 4 shows the value of E[Û ] predicted by Theorem 3, and the estimate
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Fig. 5: Expectation of 1− Û for a unidirectional random field.

important structure of the random field.

Finally, we consider unidirectional random fields, which are generated as explained at the beginning of this section.

Figure 5 shows the expectation of 1− Û , obtained through Monte Carlo simulations, the theoretical approximation

given by Theorem 4, and the upper bound given by (77). For the upper bound, we have assumed that the lowest

frequency component in the PSD is at λl = 0.05. We can see that the theoretical approximation is very good. While

the bound is not very tight, it does display the same behavior with respect to the size N . That is, it decays with

1/N , just like the Monte Carlo simulations. By using an estimated PSD in Theorem 4, we obtain a tighter bound,

which is shown in magenta.
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B. Application

We now present an application of our measure where we would like to detect unidirectional patches on the surface

of the planet Venus. The image we consider is depicted in Figure 6. We would not expect the entire image to be

unidirectional, but there are clearly some unidirectional patches. We therefore apply our measure of unidirectionality

in a sliding-window fashion. For each pixel in the image, we calculate Û for a 16×16 neighborhood centered around

that pixel. Three such neighborhoods are marked with a square in Figure 6, and shown in greater magnification in

Figure 7. The arrows in Figure 6 indicate the estimated direction of the three patches.

Looking at the three patches in Figure 7 in detail, we see that Patch a (which corresponds to the bottom left

square in Figure 6), is almost unidirectional and Patch c (which corresponds to the bottom right square), has a

strong unidirectional component. Patch b, on the other hand, is the least unidirectional of the three patches. These

observations match the estimated degrees of unidirectionality. The measure of unidirectionality can therefore be

used to process large volumes of data automatically, and regions classified as unidirectional can then be scrutinized

manually later. This is of strong interest, for instance, in the earth sciences, see e.g. [45].

VII. CONCLUSIONS

In this paper, we have introduced the random monogenic signal as a means to detect and analyze directional

structures in images. Our main contribution compared to previous approaches is the statistical analysis of a measure

of unidirectionality, which may be used to test an image for the presence of unidirectional components. Such a

statistical test enables the automatic processing and classification of large volumes of data, which is of importance,

for instance, in the earth sciences.

There are two main possible extensions of our work. First, we were only able to derive a rather loose bound on

the detection threshold, so a tighter bound would be desirable. Second, directional structures are usually limited to

smaller patches, and random fields may exhibit directionality only in certain frequency ranges in the wavenumber

domain. Thus, a space- and wavenumber-localized version of our test should be the focus of future research.

APPENDIX A

DERIVATION OF THE COVARIANCES OF A GEOMETRICALLY ANISOTROPIC RANDOM FIELD

The covariance function of a geometrically anisotropic random field is rff (ξ) = CA(
√
ξTDξ), so its power

spectral density may be expressed as Sff (k) = Sff

(√
kTD−1k

)
. Let us find an alternative expression for

rff (ξ) =

∫∫
Sff

(√
kTD−1k

)
eik

T ξdk. (83)

Using a square root matrix of D, which satisfies D = D1/2DT/2, we introduce the change of variables

k′ = D−1/2k,⇒ k = D1/2k′,⇒ dk = |det(D1/2)|dk′ = dk′, (84)

where D−1/2 = Σ−1/2UT , with Σ and U the matrix of eigenvalues and eigenvectors of D, respectively. Therefore,

the covariance becomes

rff (ξ) =

∫∫
Sff (‖k′‖) eik′TDT/2ξdk′. (85)
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Fig. 6: Topography of Venus.

Letting ξ̃ = DT/2ξ = UΣ1/2ξ = [ξ̃ cos(θ̃), ξ̃ sin(θ̃)]T and k′ = [k′ cos(κ′), k′ sin(κ′)]T , it is possible to write

rff (ξ) as

rff (ξ) =

∫ ∞

0

∫ 2π

0

Sff (k′) eik
′ξ̃ cos(κ′−θ̃)k′dk′dκ′ = 2πH−10 (Sff , ξ̃). (86)

The covariance of g(x) is given by

rgg(ξ) =

∫∫
cos(κ)Sff

(√
kTD−1k

)
eik

T ξdk, (87)

and considering the change of variables

k′ = UTk,⇒ k = Uk′,⇒ dk = |det(U)|dk′ = dk′, (88)

we find that

rgg(ξ) =

∫∫
cos(κ)Sff

(√
k′TΣ−1k′

)
eik
′TUT ξdk′. (89)
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U = 0.90646

(a) Patch a: Û = 0.906

U = 0.41297

(b) Patch b: Û = 0.412

U = 0.7842

(c) Patch c: Û = 0.784

Fig. 7: Several patches of Venus, as outlined in Figure 6.

We would like to eliminate cos(κ). To this end, we need to rewrite cos(κ) as a function of the new variable. Any

2× 2 orthogonal matrix may be expressed as either

U1 =


cos(α) − sin(α)

sin(α) cos(α)


 or U2 =


cos(α) sin(α)

sin(α) − cos(α)


 , (90)

where U1 represents a rotation and U2 a reflection. Thus, we find that

cos(κ)

sin(κ)


 = U1


cos(κ′)

sin(κ′)


 =


cos(α) cos(κ′)− sin(α) sin(κ′)

sin(α) cos(κ′) + cos(α) sin(κ′)


 , (91)


cos(κ)

sin(κ)


 = U2


cos(κ′)

sin(κ′)


 =


cos(α) cos(κ′) + sin(α) sin(κ′)

sin(α) cos(κ′)− cos(α) sin(κ′)


 . (92)

The covariance then becomes

rgg(ξ) = cos(α)

∫∫
cos(κ)Sff

(√
kTΣ−1k

)
eik

TUT ξdk

∓ sin(α)

∫∫
sin(κ)Sff

(√
kTΣ−1k

)
eik

TUT ξdk, (93)

where the negative sign corresponds to the rotation matrix and the positive sign to the reflection matrix. Now, let

us apply the change of variables

k′ = Σ−1/2k,⇒ k = Σ1/2k′,⇒ dk = |det(Σ1/2)|dk′ = dk′ (94)

to obtain

rgg(ξ) = cos(α)

∫∫
cos(κ)Sff (‖k′‖) eik′TΣ1/2UT ξdk′

∓ sin(α)

∫∫
sin(κ)Sff (‖k′‖) eik′TΣ1/2UT ξdk′, (95)
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where we notice that this expression also involves cos(κ) and sin(κ). These are given by

cos(κ) =
k1√
k21 + k22

=
σ
1/2
1 k′1√

σ1k
′2
1 + σ2k

′2
2

=
cos(κ′)√

cos2(κ′) + σ−21 sin2(κ′)
, (96)

sin(κ) =
k2√
k21 + k22

=
σ
1/2
2 k′2√

σ1k
′2
1 + σ2k

′2
2

=
sin(κ′)√

σ2
1 cos2(κ′) + sin2(κ′)

. (97)

so the covariance finally becomes

rgg(ξ) =

∫∫
β(σ1, α)Sff (k) eik

T ξ̃dk, (98)

where

β(σ1, α) =
cos(α) cos(κ)

√
σ2
1 cos2(κ) + sin2(κ)∓ sin(α) sin(κ)

√
cos2(κ) + σ−21 sin2(κ)

σ1 cos2(κ) + σ−11 sin2(κ)
. (99)

Let us consider the Fourier series of β(λ1, α), given by

β(σ1, α) =

∞∑

l=−∞
al(σ1, α)eilκ, (100)

where the Fourier coefficients are

al(σ1, α) =
1

2π

∫ π

−π
β(σ1, α)e−ilκ dκ. (101)

Note that we cannot guarantee that the number of non-zero Fourier coefficients is finite for any given choice of λ1

and α. Plugging the Fourier series into the covariance, we get

rgg(ξ) =

∞∑

l=−∞
al(σ1, α)

∫ ∞

0

Sff (k) kdk

∫ π

−π
eilκ+ikξ̃ cos(κ−ξ̃)dκ. (102)

Finally, considering the change of variable

κ′ =
π

2
+ ξ̃ − κ,⇒ κ =

π

2
+ ξ̃ − κ′,⇒ dκ = dκ′, (103)

we may rewrite the covariance as4

rgg(ξ) =

∞∑

l=−∞
ileilξ̃al(σ1, α)

∫ ∞

0

Sff (k) kdk

∫ π

−π
eikξ̃ sin(κ

′)−ilκ′dκ′

=

∞∑

l=−∞
ileilξ̃al(σ1, α)

∫ ∞

0

Sff (k) Jl(kξ̃)kdk (104)

which yields

rgg(ξ) =

∞∑

l=−∞
ileilξ̃al(σ1, α)Hl(Sff , ξ̃). (105)

4Note that we do not need to change the integral limits due to the periodicity of the involved functions.
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APPENDIX B

PROOF OF THEOREM 1

If f(x) is unidirectional, we have seen that its monogenic signal admits the representation

m(x) = f(x) + ηs(x), (106)

where η = cos(ν)i + sin(ν)j. Define the second quaternion η′ = − sin(ν)i + cos(ν)j, and augment the system

with k. Then

m(η′)(x) = m(k)(x) = m∗(x). (107)

We know that any stationary random field satisfies

cov{m(x),m∗(x− ξ)} = 0, (108)

and so the sample from the monogenic unidirectional signal is Cη-proper.

To prove the converse of the statement we assume that we have the monogenic signal of a stationary random

field, and that any finite sample from it is Cη-proper. Because it is a monogenic signal it has the form

m(x) = f(x) + ig(x) + jh(x), (109)

without a k-component. Signals that are Cη-proper satisfy

rmm(η′)(ξ) = cov
{
m(x),m(η′)(x− ξ)

}
= 0, rmm(k)(ξ) = cov

{
m(x),m(k)(x− ξ)

}
= 0. (110)

The second statement is true because we have a stationary monogenic signal, and therefore provides no additional

information as m(k)(x) = m∗(x). We write the monogenic signal in the basis {η, η′, k} as

m(x) = f(x) + η (cos(ν)g(x) + sin(ν)h(x)) + η′ (− sin(ν)g(x) + cos(ν)h(x)) . (111)

We therefore find that

rmm(η′)(ξ) = rff (ξ)− cos(2ν)[rgg(ξ)− rhh(ξ)]− 2 sin(2ν)rgh(ξ)

+ η′[sin(ν)2rfg(ξ)− 2 cos(ν)rfh(ξ)] + k{[rgg(ξ)− rhh(ξ)] sin(2ν)− 2rgh(ξ) cos(2ν)}. (112)

Since we are assuming Cη-propriety, the complementary covariance satisfies rmm(η′)(ξ) = 0, which yields

tan(ν) =
rfh(ξ)

rfg(ξ)
, (113)

rhh(ξ) = sin2(ν)rff (ξ), (114)

rgg(ξ) = cos2(ν)rff (ξ), (115)

rgh(ξ) = sin(ν) cos(ν)rff (ξ). (116)
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Consider a finite patch of the random field and assemble the samples of the random field and its Riesz transforms

into the vectors f , g = agf + bgf
⊥
g and h = ahf + bhf

⊥
h . The covariance matrices of the vectors g and h are

cov {g,g} = a2gcov {f , f}+ b2gcov
{
f⊥g , f

⊥
g

}
= cos2(ν)cov {f , f} , (117)

cov {h,h} = a2hcov {f , f}+ b2hcov
{
f⊥h , f

⊥
h

}
= sin2(ν)cov {f , f} , (118)

which implies that the covariance matrices satisfy

cov
{
f⊥g , f

⊥
g

}
= cov

{
f⊥h , f

⊥
h

}
= cov {f , f} , (119)

and the scalars satisfy a2g + b2g = cos2(ν) and a2h + b2h = sin2(ν). Taking into account the covariance matrices

between f and g, and between f and h, it is straightforward to show that ag = ah = 0, which implies that

b2g = cos2(ν), and b2h = sin2(ν). Now, using the covariance matrix between g and h, we have that bg = cos(ν),

and bh = sin(ν). We shall call f⊥g = s. Then, the Riesz transforms are g = cos(ν)s, and h = sin(ν)s. As we

can write the sampled monogenic signal in this form for arbitrary sample length, we have g(x) = cos(ν)s(x), and

h(x) = sin(ν)s(x), or in the frequency domain

G(k) = −i cos(κ)F (k) = cos(ν)S(k), (120)

H(k) = −i sin(κ)F (k) = sin(ν)S(k). (121)

Finally, for this to hold for all k, we must have

F (k) ∝ δ(κ− (ν ±mπ)) (122)

S(k) = −i sgn
(
nTk

)
F (k). (123)

This shows that the only monogenic stationary random field that is Cη-proper is the unidirectional field.

APPENDIX C

PROOF OF LEMMA 1

Similar to r̂m̃m̃(�)(0), we define r̂ff (0) as5

r̂ff (0) =
1

N2

∑

n,n′

f2(xn,n′). (124)

The covariance of the periodic discrete Riesz transform g̃(x) is estimated as

r̂g̃g̃(0) =
1

N2

∑

n,n′

g̃2(xn,n′) = r̂gg(0) + (r̂g̃g̃(0)− r̂gg(0)) = r̂gg(0) + ∆rg̃g̃, (125)

with

∆rg̃g̃ =
1

N2

∑

n,n′

g̃2(xn,n′)−
1

N2

∑

n,n′

g2(xn,n′), (126)

5There are similar definitions for r̂gg(x), r̂hh(x), and r̂gh(x).
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and the covariances r̂h̃h̃(0) and r̂g̃h̃(0) are obtained analogously. Performing a Taylor series expansion of Û in

terms of ∆rg̃g̃,∆rh̃h̃ and ∆rg̃h̃, we find that

Û = 1−
2n22∆r̂g̃g̃ + 2n21∆r̂h̃h̃ − 4n1n2∆r̂g̃h̃

rff (0)
+O

(
max(∆r3

(̃·)(̃·))
)
, (127)

where O
(

max(∆r3
(̃·)(̃·))

)
stands for higher-order terms of ∆rg̃g̃,∆rh̃h̃ and ∆rg̃h̃. We now need to quantify the

deviation error U2 = 1− Û . Let us start by writing the Fourier transforms of g(x) and g̃(x), which are given by

G(k) = R(1)(k)F (k) = G+(k) +G−(k) (128)

and

G̃(k) = R̃(1)(k)F (k) = G̃+(k) + G̃−(k), (129)

respectively. Here, G±(k) and G̃±(k) are the infinite-length discrete-space and periodic discrete first Riesz trans-

forms corresponding to the positive and negative frequencies, respectively. These are given by

G±(k) = −in1
A

2
eiφei

(N−1)[(k0n1∓k1)+(k0n2∓k2)]
2

sin(N/2(k0n1 ∓ k1))

sin(1/2(k0n1 ∓ k1))

sin(N/2(k0n2 ∓ k2))

sin(1/2(k0n2 ∓ k2))
, (130)

and

G̃±(k) = −i k1√
k21 + k22

A

2
eiφei

(N−1)[(k0n1∓k1)+(k0n2∓k2)]
2

sin(N/2(k0n1 ∓ k1))

sin(1/2(k0n1 ∓ k1))

sin(N/2(k0n2 ∓ k2))

sin(1/2(k0n2 ∓ k2))
. (131)

We notice that the main difference between G±(k) and G̃±(k) is the first term, which is n1 for the former and

k1/
√
k21 + k22 for the latter. The term n1 comes from obtaining the Riesz transform of a complex exponential,

which may be done in closed form. The term k1/
√
k21 + k22 is precisely the filter that has to be applied to obtain a

Riesz transform. Now, the Parseval-Rayleigh relationship allows us to express r̂gg(0) in the frequency domain as

r̂gg(0) =
1

N4

∑

k1,k2

∣∣G+(k) +G−(k)
∣∣2 =

1

N4

∑

k1,k2

{∣∣G+(k)
∣∣2 +

∣∣G−(k)
∣∣2
}

+O(1/N2)

= r̂+gg(0) + r̂−gg(0) +O(1/N2), (132)

and similar expressions hold for r̂g̃g̃(0), r̂+g̃g̃(0) and r̂−g̃g̃(0). Therefore, the error term for the positive and negative

frequencies becomes

∆r̂±g̃g̃ = r̂±g̃g̃(0)− r̂±gg(0) =
A2

4N4

∑

λ1,λ2

[
λ21

λ21 + λ22
− n21

]
sin2(πN(λ0n1 ∓ λ1))

sin2(π(λ0n1 ∓ λ1))

sin2(πN(λ0n2 ∓ λ2))

sin2(π(λ0n2 ∓ λ2))
, (133)

where we have used ki = 2πλi, and the overall error is

∆r̂g̃g̃ = ∆r̂+g̃g̃ + ∆r̂−g̃g̃ =
A2

2N4

∑

λ1,λ2

[
λ21

λ21 + λ22
− n21

]
sin2(πN(λ0n1 − λ1))

sin2(π(λ0n1 − λ1))

sin2(πN(λ0n2 − λ2))

sin2(π(λ0n2 − λ2))
+O(1/N2).

(134)

Applying the same procedure, we obtain similar expressions for the remaining error terms. The error in the covariance

of h(x) is

∆r̂h̃h̃ =
A2

2N4

∑

k1,k2

[
λ22

λ21 + λ22
− n22

]
sin2(πN(λ0n1 − λ1))

sin2(π(λ0n1 − λ1))

sin2(πN(λ0n2 − λ2))

sin2(π(λ0n2 − λ2))
+O(1/N2), (135)
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and for the cross-covariance it is

∆r̂g̃h̃ =
A2

2N4

∑

λ1,λ2

[
λ1λ2
λ21 + λ22

− n1n2
]

sin2(πN(λ0n1 − λ1))

sin2(π(λ0n1 − λ1))

sin2(πN(λ0n2 − λ2))

sin2(π(λ0n2 − λ2))
+O(1/N2). (136)

Finally, the proof is concluded by inserting (134), (135) and (136) into (127) and taking into account that rff (0) =

A2/2.

APPENDIX D

PROOF OF LEMMA 2

Let us consider B01, which is given by

B01 =
2

N4

N/2−1∑

|j2|=Nβ

L∑

j1=−L

{(c1/N + j1/N)n2 − (c2/N + j2/N)n1}2
(λ0n1 + c1/N + j1/N)2 + (λ0n2 + c2/N + j2/N)2

× sin2(π(c1 + j1))

sin2(π(c1/N + j1/N))

sin2(π(c2 + j2))

sin2(π(c2/N + j2/N))
, (137)

where L � N and β is a real number close to one, but smaller. Taking into account c1, j1 � N and sin(x) ≈ x

for small x, we find that

B01 =
2

N2

L∑

j1=−L

sin2(π(c1 + j1))

(π(c1 + j1))2

N/2−1∑

|j2|=Nβ

(c2/N + j2/N)2n21
λ20n

2
1 + (λ0n2 + c2/N + j2/N)2

sin2(π(c2 + j2))

sin2(π(c2/N + j2/N))
. (138)

It is easy to verify that for a relatively small value of L, the first sum in the above expression is almost one for

every value of c1. Moreover, sin2(π(c2 + j2)) = sin2(πc2), which yields

B01 ≈
2

N2

N/2−1∑

|j2|=Nβ

(c2/N + j2/N)2n21
λ20n

2
1 + (λ0n2 + c2/N + j2/N)2

sin2(πc2)

sin2(π(c2/N + j2/N))
. (139)

The above sum may be considered as a Riemann integral, and therefore

B01 ≈
2

N
n21 sin2(πc2)

∫ 1/2

|λ2|=Nβ−1

(c2/N + λ2)2

λ20n
2
1 + (λ0n2 + c2/N + λ2)2

1

sin2(π(c2/N + λ2))
dλ2. (140)

Applying the change of variable λ = c2/N + λ2, and observing that Nβ−1 ≈ 0, we find that

B01 ≈
2

N
n21 sin2(πc2)

[∫ 1/2

0

1

λ20n
2
1 + (λ0n2 + λ)2

λ2

sin2(πλ)
dλ+

∫ 1/2

0

1

λ20n
2
1 + (λ0n2 − λ)2

λ2

sin2(πλ)
dλ

]
.

(141)

Finally, the proof follows from the symmetry of B10 with respect to B01.

APPENDIX E

PROOF OF THEOREM 3

In this appendix, we obtain

E[U2] = E[sin2(πc2)G(λ0, n1, n2)] + E[sin2(πc1)G(λ0, n2, n1)], (142)
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where the expectation is with respect to ν, with n = [n1, n2]T = [cos ν, sin ν]T . We first note that we may assume

that ci is a random variable uniformly distributed on [−1/2, 1/2] and independent of ν, which is approximately

true for large values of N . Then, E[U2] becomes

E[U2] = E[sin2(πc2)]E[G(λ0, n1, n2)] + E[sin2(πc1)]E[G(λ0, n2, n1)]

=
1

2
E[G(λ0, n1, n2) + G(λ0, n2, n1)]. (143)

We should therefore obtain a closed-form expression for the integrals G(λ0, n1, n2) and G(λ0, n2, n1). We shall

start with the individuals integrals, which are solved in the following lemma.

Lemma 4: The integral G±(λ0, n1, n2) is approximately given by

G±(λ0, n1, n2) ≈ n21
6

+ |n1|
(

1

λ0π2
+
λ0
3

(
2n22 − 1

))[
arctan

(
1

2λ0|n1|
± n2
|n1|

)
∓ arctan

(
n2
|n1|

)]

∓ λ0n
2
1n2

3
log

(
1± n2

λ0
+

1

4λ20

)
. (144)

Proof: As far as we know, there is no analytic solution for the integral (72). Hence, we may consider the

second-order Taylor series only of the second term of the integrand, and thus

G±(λ0, n1, n2) ≈ n21
π2

∫ 1/2

0

1

λ2 ± 2λ0n2λ+ λ20

(
1 +

π2λ2

3

)
dλ, (145)

which may be split as

G±(λ0, n1, n2) ≈ n21
π2

∫ 1/2

0

1

λ2 ± 2λ0n2λ+ λ20
dλ+

n21
3

∫ 1/2

0

λ2

λ2 ± 2λ0n2λ+ λ20
dλ. (146)

By applying a partial fraction expansion to the integrand of the second integral, we may find the primitive functions,

e.g., in [46], and by substituting the integration limits the proof follows.

Once we have these integrals we may find their sum, which is presented next.

Lemma 5: G(λ0, n1, n2) is given by

G(λ0, n1, n2) = G+(λ0, n1, n2) + G−(λ0, n1, n2) =
n21
3

+
λ0n

2
1n2

3
log




1− 4λ0n2
1 + 4λ20

1 +
4λ0n2

1 + 4λ20


+

|n1|
(

1

λ0π2
+
λ0
3

(
2n22 − 1

))[
arctan

(
4λ0|n1|
4λ20 − 1

)
+ π

]
. (147)

Proof: It is easy to show that

G(λ0, n1, n2) = G+(λ0, n1, n2)+G−(λ0, n1, n2) =
n21
3

+
λ0n

2
1n2

3

[
log

(
1− n2

λ0
+

1

4λ20

)
− log

(
1 +

n2
λ0

+
1

4λ20

)]
+

|n1|
(

1

λ0π2
+
λ0
3

(
2n22 − 1

))[
arctan

(
1

2λ0|n1|
+

n2
|n1|

)
+ arctan

(
1

2λ0|n1|
− n2
|n1|

)]
. (148)

Now, using

arctan (a) + arctan (b) = arctan

(
a+ b

1− ab

)
(modπ) (149)

the proof follows.
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Plugging in the values of G(λ0, n1, n2) and G(λ0, n2, n1) in E[U2], it becomes

E[U2] =
1

6
+
λ0
6
E


n

2
1n2 log




1− 4λ0n2
1 + 4λ20

1 +
4λ0n2

1 + 4λ20





+

λ0
6
E


n

2
2n1 log




1− 4λ0n1
1 + 4λ20

1 +
4λ0n1

1 + 4λ20





+

(
1

2λ0π2
− λ0

6

)
E

[
|n1| arctan

(
4λ0|n1|
4λ20 − 1

)]
+
λ0
3
E

[
|n1|n22 arctan

(
4λ0|n1|
4λ20 − 1

)]
+

(
1

2λ0π2
− λ0

6

)
E

[
|n2| arctan

(
4λ0|n2|
4λ20 − 1

)]
+
λ0
3
E

[
|n2|n21 arctan

(
4λ0|n2|
4λ20 − 1

)]
+

(
1

2λ0π
− λ0π

6

)
E [|n1|] +

λ0π

3
E
[
|n1|n22

]
+

(
1

2λ0π
− λ0π

6

)
E [|n2|] +

λ0π

3
E
[
|n2|n21

]
. (150)

To prove the theorem we need to find each of the above expectations w.r.t. ν, which we will take as uniformly

distributed between 0 and π.

Lemma 6: The value of the first expectation is

E


n

2
1n2 log




1− 4λ0n2
1 + 4λ20

1 +
4λ0n2

1 + 4λ20





 = −λ0 +

4

3
λ30. (151)

Proof: The expectation may be rewritten as

E


n

2
1n2 log




1− 4λ0n2
1 + 4λ20

1 +
4λ0n2

1 + 4λ20





 =

1

π

∫ π

0

cos2(ν) sin(ν) log




1− 4λ0 sin(ν)

1 + 4λ20

1 +
4λ0 sin(ν)

1 + 4λ20


 dν

=
1

4π

∫ π

0

sin(ν) log




1− 4λ0 sin(ν)

1 + 4λ20

1 +
4λ0 sin(ν)

1 + 4λ20


 dν

︸ ︷︷ ︸
I1

+
1

4π

∫ π

0

sin(3ν) log




1− 4λ0 sin(ν)

1 + 4λ20

1 +
4λ0 sin(ν)

1 + 4λ20


 dν

︸ ︷︷ ︸
I2

.

(152)

For the sake of notational simplicity let us define a = 4λ0/(1 + 4λ20). We may therefore write

I1 =
1

4π

∫ π

0

sin(ν) log

(
1− a sin(ν)

1 + a sin(ν)

)
dν, (153)

and, using for instance [46], it is easy to show that

I1 =
1

2a

[√
1− a2 − 1

]
= −λ0. (154)

On the other hand, we have

I2 =
1

4π

∫ π

0

sin(3ν) log

(
1− a sin(ν)

1 + a sin(ν)

)
dν, (155)

whose solution is

I2 =
1

6a3

(
4− 3a2 − a4 − 5a2 + 4√

1− a2
)

=
4

3
λ30, (156)

which concludes the proof.
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Lemma 7: The value of the second expectation is

E


n

2
2n1 log




1− 4λ0n1
1 + 4λ20

1 +
4λ0n1

1 + 4λ20





 = −λ0 +

4

3
λ30. (157)

Proof: The proof follows along similar lines as the previous lemma.

Lemma 8: The value of the third expectation is

E

[
|n1| arctan

(
4λ0|n1|
4λ20 − 1

)]
= −2λ0. (158)

Proof: The expectation is given by

E

[
|n1| arctan

(
4λ0|n1|
4λ20 − 1

)]
=

1

π

∫ π

0

| cos(ν)| arctan

(
4λ0| cos(ν)|

4λ20 − 1

)
dν. (159)

It is clear that the integrand is symmetric with respect to π/2, which yields

1

π

∫ π

0

| cos(ν)| arctan

(
4λ0| cos(ν)|

4λ20 − 1

)
dν =

2

π

∫ π/2

0

cos(ν) arctan

(
4λ0 cos(ν)

4λ20 − 1

)
dν, (160)

or equivalently

2

π

∫ π/2

0

cos(ν) arctan

(
4λ0 cos(ν)

4λ20 − 1

)
dν =

2

π

∫ π/2

0

cos(ν) arctan (b cos(ν)) dν, (161)

where b = 4λ0/(4λ
2
0 − 1). Now, using [46], the integral can be written as

2

π

∫ π/2

0

cos(ν) arctan (b cos(ν)) dν =
1

b

(√
b2 + 1− 1

)
. (162)

Substituting the value of b, the proof follows.

Lemma 9: The fourth expectation is given by

E

[
|n1|n22 arctan

(
4λ0|n1|
4λ20 − 1

)]
= −λ0

2
− 2

3
λ30. (163)

Proof: The expectation is given by

E

[
|n1|n22 arctan

(
4λ0|n1|
4λ20 − 1

)]
=

1

π

∫ π

0

| cos(ν)| sin2(ν) arctan

(
4λ0| cos(ν)|

4λ20 − 1

)
dν, (164)

and taking into account the symmetry around π/2, it may be rewritten as

E

[
|n1|n22 arctan

(
4λ0|n1|
4λ20 − 1

)]
=

2

π

∫ π/2

0

cos(ν) sin2(ν) arctan

(
4λ0 cos(ν)

4λ20 − 1

)
dν =

1

2π

∫ π/2

0

cos(ν) arctan

(
4λ0 cos(ν)

4λ20 − 1

)
dν

︸ ︷︷ ︸
I3

− 1

2π

∫ π/2

0

cos(3ν) arctan

(
4λ0 cos(ν)

4λ20 − 1

)
dν

︸ ︷︷ ︸
I4

. (165)

The solution to I3 follows from the previous lemma, and the solution to I4 is

I4 =
1

12b3

(
3b2 + 4− b4 + 5b2 + 4√

b2 + 1

)
, (166)

which follows from [46].
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Similarly, we find that

E

[
|n2| arctan

(
4λ0|n2|
4λ20 − 1

)]
= E

[
| sin(ν)| arctan

(
4λ0| sin(ν)|

4λ20 − 1

)]
= −2λ0, (167)

E

[
|n2|n21 arctan

(
4λ0|n2|
4λ20 − 1

)]
= E

[
| sin(ν)| cos2(ν) arctan

(
4λ0| sin(ν)|

4λ20 − 1

)]
= −λ0

2
− 2λ30

3
. (168)

The last expectations are given by

E [|n1|] = E [| cos(ν)|] =
2

π
, (169)

E
[
|n1|n22

]
= E

[
| cos(ν)| sin2(ν)

]
=

2

3π
, (170)

E [|n2|] = E [| sin(ν)|] =
2

π
, (171)

E
[
|n2|n21

]
= E

[
| sin(ν)| cos2(ν)

]
=

2

3π
. (172)

Finally, taking into account all individual integrals and after a lot of tedious algebra, the proof follows.

APPENDIX F

PROOF OF THEOREM 4

We shall start with the Fourier transform of f(x), which is

F (λ) =
∑

n,n′

f(xn,n′)e
−2πiλTxn,n′ , (173)

where k = 2πλ. Using the spectral representation of the random field, it becomes6

F (λ) =

∫ 1/2

0

dZf (λ)eiπ(N−1)[(λn1−λ1)+(λn2−λ2)]
sin(Nπ(λn1 − λ1))

sin(π(λn1 − λ1))

sin(Nπ(λn2 − λ2))

sin(π(λn2 − λ2))

+

∫ 0

−1/2
dZf (λ)eiπ(N−1)[(λn1−λ1)+(λn2−λ2)]

sin(Nπ(λn1 − λ1))

sin(π(λn1 − λ1))

sin(Nπ(λn2 − λ2))

sin(π(λn2 − λ2))

= F+(λ) + F−(λ). (174)

Moreover, it will be useful to know (to easily compare with r̂gg(0) and r̂hh(0))

E [r̂ff (0)] = rff (0) =
1

N2
E


∑

n,n′

f2(xn,n′)


 =

1

N4

∑

λ

{
E
[∣∣F+(λ)

∣∣2
]

+ E
[∣∣F−(λ)

∣∣2
]

+ E
[
F+∗(λ)F−(λ)

]
+ E

[
F+(λ)F−∗(λ)

]}
, (175)

where we have applied the Parseval-Rayleigh relationship, and the expectations, unless otherwise stated, assume a

fixed direction. Taking into account that the spectral process is proper, i.e.,

cov{dZf (λ), dZf (λ)} = Sff (k) dλ dλδ(λ− λ), (176)

cov{dZf (λ), dZf (−λ)} = cov{dZf (λ), dZ∗f (λ)} = 0, (177)

6Contrary to the spectral representation in previous sections, the limits of the integral are ±1/2 rather than ±∞ since we are considering

sampled (discrete) random fields.
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where we have used the fact that f(x) is real, we find that

E
[∣∣F−(λ)

∣∣2
]

= E
[∣∣F+(λ)

∣∣2
]
, (178)

and

E
[
F+(λ)F−∗(λ)

]
= E

[
F+∗(λ)F−(λ)

]
= 0. (179)

This yields

E [r̂ff (0)] =
2

N4

∑

λ

∫ 1/2

0

S(λ)dλ
sin2(πN(λn1 − λ1))

sin2(π(λn1 − λ1))

sin2(πN(λn2 − λ2))

sin2(π(λn2 − λ2))
. (180)

Let us continue with the periodic discrete Riesz transform

G̃(λ) = −i λ1√
λ21 + λ22

F (λ) = −i λ1√
λ21 + λ22

[
F+(λ) + F−(λ)

]
, (181)

and its square ∣∣∣G̃(λ)
∣∣∣
2

=
λ21

λ21 + λ22

∣∣F+(λ) + F−(λ)
∣∣2 , (182)

which allows us to write

r̂g̃g̃(0) =
1

N2

∑

n,n′

g̃2(xn,n′) =
1

N4

∑

λ

∣∣∣G̃(λ)
∣∣∣
2

=

1

N4

∑

λ

λ21
λ21 + λ22

(∣∣F+(λ)
∣∣2 + F+(λ)F−∗(λ) + F+∗(λ)F−(λ) +

∣∣F−(λ)
∣∣2
)
. (183)

On the other hand, using g(x) = n1s(x), we find that

r̂gg(0) =
1

N2

∑

n,n′

g2(xn,n′) =
n21
N4

∑

λ

|S(λ)|2 . (184)

Moreover, it is easy to show that S(λ) = −iF+(λ) + iF−(λ), which yields

r̂gg(0) =
n21
N4

[∑

λ

(∣∣F+
N (λ)

∣∣2 +
∣∣F−N (λ)

∣∣2
)]

+O
(
N−2

)
. (185)

The expectation of the error between the covariance of the infinite-length discrete-space and the periodic discrete

Riesz transforms becomes

E[∆rgg] = E[r̂g̃g̃(0)]− E[r̂gg(0)] =

2

N4

∑

λ

∫ 1/2

0

(
λ21

λ21 + λ22
− n21

)
sin2(πN(λn1 − λ1))

sin2(π(λn1 − λ1))

sin2(πN(λn2 − λ2))

sin2(π(λn2 − λ2))
S(λ) dλ. (186)

Similar terms may be obtained for E[∆rhh] and E[∆rgh].

Using the Taylor series of Û given in (127), U2 is given by

U2 =
2n22∆r̂g̃g̃ + 2n21∆r̂h̃h̃ − 4n1n2∆r̂g̃h̃

r̂ff (0)
+O

(
max(∆r3

(̃·)(̃·))
)
. (187)

Let us now write r̂ff (0) = E [r̂ff (0)] + δr̂ff (0) and perform a Taylor series expansion of 1 + δr̂ff (0)/E [r̂ff (0)]

to find that

U2 =
2n22∆r̂g̃g̃ + 2n21∆r̂h̃h̃ − 4n1n2∆r̂g̃h̃

E [r̂ff (0)]

(
1− δr̂ff (0)

E [r̂ff (0)]

)
+O

(
max(∆r3

(̃·)(̃·))
)
. (188)
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Now, taking the expectation of U2 it follows that

E [U2] =
2n22E[∆r̂g̃g̃] + 2n21E[∆r̂h̃h̃]− 4n1n2E[∆r̂g̃h̃]

E [r̂ff (0)]
+O

(
max(∆r3

(̃·)(̃·))
)
. (189)

Plugging in the values for ∆r̂g̃g̃, . . ., it becomes

E [U2] =
2

E [r̂ff (0)]

∫ 1/2

0




N/2−1∑

λ1=−N/2

N/2−1∑

λ2=−N/2
C(λ1, λ2)


S(λ)dλ+O(1/N2), (190)

where C(λ1, λ2) is defined in Lemma 1, with the exception that λ0 is substituted by λ. Now, using Lemma 2, it

is possible to rewrite E [U2] as

E [U2] =
2

NE [r̂ff (0)]

∫ 1/2

0

[
sin2(πc2)G(λ, n1, n2) + sin2(πc1)G(λ, n2, n1)

]
S(λ)dλ+O(1/N2). (191)

Finally, taking the expectation also with respect to the direction, it becomes clear, using Lemmas 4, 5 and Theorem

3, that the expectation is

E [U2] =
1

N

∫ 1/2

0

[
4

π2

1

λ
− 4

9
λ+

1

3
− 4

π2

]
S(λ)dλ

∫ 1/2

0

S(λ)dλ

+O(1/N2), (192)

where we have used

E [r̂ff (0)] = rff (0) = 2

∫ 1/2

0

S(λ)dλ. (193)

This is equivalent to (180) because the method of moments estimator is unbiased for the variance.
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