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Abstract

We study certain combinatorial aspects of list-decoding, motivated by the exponential gap between
the known upper bound (ofO(1/γ)) and lower bound (ofΩp(log(1/γ))) for the list-size needed to list
decode up to error fractionp with rateγ away from capacity, i.e.,1 − h(p) − γ (herep ∈ (0, 1

2
) and

γ > 0). Our main result is the following:

• We prove that in any binary codeC ⊆ {0, 1}n of rate1 − h(p)− γ, there must exist a setL ⊂ C
of Ωp(1/

√
γ) codewords such that the average distance of the points inL from their centroid is at

mostpn. In other words, there must existΩp(1/
√
γ) codewords with low “average radius.”

The standard notion of list-decoding corresponds to working with the maximumdistance of a
collection of codewords from a center instead ofaveragedistance. The average-radius form is in
itself quite natural; for instance, the classical Johnson bound in fact implies average-radius list-
decodability.

The remaining results concern the standard notion of list-decoding, and help clarify the current state of
affairs regarding combinatorial bounds for list-decoding:

• We give a short simple proof, over all fixed alphabets, of the above-mentionedΩp(log(1/γ)) lower
bound. Earlier, this bound followed from a complicated, more general result of Blinovsky.

• We show that onecannotimprove theΩp(log(1/γ)) lower bound via techniques based on identi-
fying the zero-rate regime for list-decoding of constant-weight codes (this is a typical approach for
negative results in coding theory, including theΩp(log(1/γ)) list-size lower bound). On a positive
note, ourΩp(1/

√
γ) lower bound for average-radius list-decoding circumventsthis barrier.

• We exhibit a “reverse connection” between the existence of constant-weight and general codes
for list-decoding, showing that the best possible list-size, as a function of the gapγ of the rate to
the capacity limit, is the same up to constant factors for both constant-weight codes (with weight
bounded away fromp) and general codes.

• We give simple second moment based proofs that w.h.p. a list-size ofΩp(1/γ) is needed for list-
decodingrandomcodes from errors as well as erasures. Forrandom linearcodes, the correspond-
ing list-size bounds areΩp(1/γ) for errors andexp(Ωp(1/γ)) for erasures.
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1 Introduction

The list-decoding problem for an error-correcting codeC ⊆ Σn consists of finding the set of all codewords
of C with Hamming distance at mostpn from an input stringy ∈ Σn. Though it was originally introduced
in early work of Elias and Wozencraft [6, 15] in the context ofestimating the decoding error probability
for random error models, recently the main interest in list-decoding has been for adversarial error models.
List decoding enables correcting up to a factor two more worst-case errors compared to algorithms that are
always restricted to output a unique answer, and this potential has even been realized algorithmically [10, 8].

In this work, we are interested in some fundamental combinatorial questions concerning list-decoding,
which highlight the important tradeoffs in this model. Fixp ∈ (0, 12) and a positive integerL. We say that
a binary codeC ⊆ {0, 1}n is (p, L) list-decodable if every Hamming ball of radiuspn has less thanL
codewords. Here,p corresponds to the error-fraction andL to the list-size needed by the error-correction
algorithm. Note that(p, L) list-decodability imposes a sparsity requirement on the distribution of codewords
in the Hamming space. A natural combinatorial question thatarises in this context is to place bounds on the
largest size of a code meeting this requirement. In particular, an outstanding open question is to characterize
the maximum rate (defined to be the limiting ratio1n log |C| asn → ∞) of a (p, L) list-decodable code.

By a simple volume packing argument, it can be shown that a(p, L) list-decodable code has rate at most
1 − h(p) + o(1). (Throughout, forz ∈ [0, 12 ], we useh(z) to denote the binary entropy function atz.)
Indeed, picking a random centerx, the Hamming ballB(x, pn) contains at least|C| ·

( n
pn

)

2−n codewords
in expectation. Bounding this by(L− 1), we get the claim. On the positive side, in the limit of largeL, the
rate of a(p, L) list-decodable code approaches the optimal1 − h(p). More precisely, for anyγ > 0, there
exists a(p, 1/γ) list-decodable code of rate at least1−h(p)−γ. In fact, a random code of rate1−h(p)−γ
is (p, 1/γ) list-decodable w.h.p. [16, 7], and a similar result holds for random linear codes (with list-size
Op(1/γ)) [9]. In other words, a dense random packing of2(1−h(p)−γ)n Hamming balls of radiuspn (and
therefore volume≈ 2h(p)n each) is “near-perfect” w.h.p. in the sense that no point is covered by more than
Op(1/γ) balls.

The determination of the best asymptotic code rate of binary(p, L) list-decodable codes asp, L are held
fixed and the block length grows is wide open for every choice of p ∈ (0, 12 ) and integerL > 1. However,
we do know that for each fixedp ∈ (0, 12), this rate approaches1 − h(p) in the limit asL → ∞. To
understand this rate of convergence as a function of list-sizeL, following [9], let us defineLp,γ to be the
minimum integerL such that there exist(p, L) list-decodable codes of rate1− h(p)− γ for infinitely many
block lengthsn (the quantityγ is the “gap” to “list-decoding capacity”). In [1], Blinovsky showed that a
(p, L) list-decodable code has rate at most1− h(p)− 2−Θp(L). In particular, this implies that for any finite
L, a(p, L) list-decodable code has rate strictly below the optimal1−h(p). Stated in terms ofLp,γ, his result
implies the corollaryLp,γ > Ωp(log(1/γ)) for ratesγ-close to capacity. We provide a short and simple proof
of this corollary in Section 4. Our proof works almost as easily over non-binary alphabets. (Blinovsky’s
subsequent proof for the non-binary case in [3, 4] involved substantial technical effort. However, his results
also give non-trivial bounds for every finiteL, as opposed to just the growth rate ofLp,γ .)

Observe the exponential gap (in terms of the dependence onγ) between theO(1/γ) upper bound and
Ωp(log(1/γ)) lower bounds on the quantityLp,γ. Despite being a basic and fundamental question about
sphere packings in the Hamming space and its direct relevance to list-decoding, there has been no progress
on narrowing this asymptotic gap in the 25 years since the works of Zyablov-Pinsker [16] and Blinovsky [1].
This is the motivating challenge driving this work.
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1.1 Prior work on list-size lower bounds

We now discuss some lower bounds (besides Blinovsky’s general lower bound) on list-size that have been
obtained in restricted cases.

Rudra shows that theOp(1/γ) bound obtained via the probabilistic method for random codes is, in
fact, tight up to constant factors [14]. Formally, there existsL = Ωp(1/γ) such that a random code of
rate1 − h(p) − γ is not (p, L) list-decodable w.h.p. His proof uses near-capacity-achieving codes for the
binary symmetric channel, the existence of which is promised by Shannon’s theorem, followed by a second
moment argument. We give a simpler proof of this result via a more direct use of the second moment
method. This has the advantage that it works uniformly for random general as well as random linear codes,
and for channels that introduce errors as well as erasures.

Guruswami and Vadhan [12] consider the problem of list-sizebounds when the channel may corrupt
close to half the bits, that is, whenp = 1

2 −ε, and more generallyp = 1−1/q−ε for codes over an alphabet
of sizeq. (Note that decoding is impossible if the channel could corrupt up to a half fraction of bits.) They
show that there existsc > 0 such that for allε > 0 and all block lengthsn, any(12 − ε, c/ε2) list-decodable
code containsOε(1) codewords. Forp bounded away from12 (or 1 − 1/q in theq-ary case), their methods
do not yield any nontrivial list-size lower bound as a function of gapγ to list-decoding capacity.

1.2 Our main results

We have already mentioned our new proof of theΩ(log(1/γ)) list-size lower bound for list-decoding general
codes, and the asymptotically optimal list-size lower bound for random (and random linear) codes.

Our main result concerns an average-radius variant of list-decoding. This variant was implicitly used in
[1, 12] en route their list-size lower bounds for standard list-decoding. In this work, we formally abstract
this notion: a code is(p, L) average-radius list-decodableif for every L codewords, theaveragedistance
of their centroid from theL codewords exceedspn. Note that this is a stronger requirement than(p, L)
list-decodability where only themaximumdistance from any center point to theL codewords must exceed
pn.

We are able to prove nearly tight bounds on the achievable rate of a(p, L) average-radius list-decodable
code. To state our result formally, denote byL

avg
p,γ the minimumL such that there exists a(p, L) average-

radius list-decodable code family of rate1 − h(p) − γ. A simple random coding argument shows that a
random code of1 − h(p) − γ is (p, 1/γ) average-radius list-decodable (matching the list-decodability of
random codes). That is,Lavg

p,γ 6 1/γ. Our main technical result is a lower bound on the list-size that is
polynomially related to the upper bound, namelyL

avg
p,γ > Ωp(γ

−1/2).

We remark that the classical Johnson bound in coding theory in fact proves the average-radius list-
decodability of codes with good minimum distance —namely, abinary code of relative distanceδ is (J(δ−
δ/L), L) average-radius list-decodable, whereJ(z) = (1 −

√
1− 2z)/2 for z ∈ [0, 12 ]. (This follows from

a direct inspection of the proof of the Johnson bound [11].) Also, one can show that if a binary code is
(12 − 2iε,O(1/(22iε2)) list-decodable for alli = 0, 1, 2, . . ., then it is also(12 − 2ε,O(1/ε2)) average-
radius list-decodable [5]. This shows that at least in the high noise regime, there is some reduction between
these notions. Further, a suitable soft version of average-radius list-decodability can be used to construct
matrices with a certain restricted isometry property [5]. For these reasons, we feel that average-radius
list-decodability is a natural notion to study, even beyondtreating it as a vehicle to understand (standard)
list-decoding. In fact, somewhat surprisingly, one of ourconstructionsof traditional list-decodable codes
with a strong weight requirement on the codewords proceeds naturally via average-radius list-decodability;
see Theorem 18 and the discussion following it for details.
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1.3 Our other results

We also prove several other results that clarify the landscape of combinatorial limitations of list-decodable
codes. Many results showing rate limitations in coding theory proceed via a typical approach in which they
pass to a constant weightλ ∈ (p, 12 ]; i.e., they restrict the codewords to be of weight exactlyλn. They
show that under this restriction, a code with the stated properties must have a constant number of codewords
(that is, asymptoticallyzero rate). Mapping this bound back to the unrestricted setting one gets a rate upper
bound of1− h(λ) for the original problem. For instance, the Elias-Bassalygo bound for rateR vs. relative
distanceδ is of this nature (hereλ is picked to be the Johnson radius for list-decoding for codes of relative
distanceδ).

The above is also the approach taken in Blinovsky’s work [1] as well as that of [12]. We show that
such an approach does not andcannotgive any bound better than Blinovsky’sΩp(log(1/γ)) bound forLp,γ.
More precisely, for anyλ > p + 2−bpL for somebp > 0, we show that there exists a(p, L) (average-
radius) list-decodable code of rateΩp,L(1). Thus in order to improve the lower bound, wemustbe able to
handle codes of strictly positive rate, and cannot deduce the bound by pinning down the zero-rate regime of
constant-weight codes. This perhaps points to why improvements to Blinovsky’s bounds have been difficult.
On a positive note, we remark that weareable to effect such a proof for average-radius list-decoding (some
details follow next).

To describe the method underlying our list-size lower boundfor average-radius list-decoding, it is con-
venient to express the statement as an upper bound on rate in terms of list-sizeL. Note that a list-size lower
bound ofL > Ωp(1/

√
γ) for (p, L) average-radius list-decodable codes of rate1 − h(p) − γ amounts to

proving an upper bound of1− h(p) − Ωp(1/L
2) on the rate of(p, L) average-radius list-decodable codes.

Our proof of such an upper bound proceeds by first showing a rate upper bound ofh(λ)−h(p)− ap/L
2 for

such codes when the codewords are all restricted to all have weightλn, for a suitable choice ofλ, namely
λ = p+a′p/L. To map this bound back to the original setting (with no weight restrictions on codewords), one
simply notes that every(p, L) average-radius list-decodable code of rateR contains as a subcode, a translate
of a constantλn-weight code of rateR− (1− h(λ)). (The second step uses a well-known argument.)

Generally speaking, by passing to a constant-weight subcode, one can translate combinatorial results
on limitations of constant-weight codes to results showinglimitations for the case of general codes. But
this leaves open the possibility that the problem of showinglimitations of constant-weight codes may be
harder than the corresponding problem for general codes, orworse still, have a different answer making it
impossible to solve the problem for general codes via the methodology of passing to constant-weight codes.
We show that for the problem of list-decoding this is fortunately not the case, and there is, in fact, a “reverse
connection” of the following form: A rate upper bound of1 − h(p) − γ for (p, L) list-decodable codes

implies a rate upper bound ofh(λ) − h(p) −
(

λ−p
1

2
−p

)

γ for (p, L) list-decodable codes whose codewords

must all have Hamming weightλn. A similar claim holds also for average-radius list-decodability, though
we don’t state it formally.

1.4 Our proof techniques

Our proofs in this paper employ variants of the standard probabilistic method. We show an extremely simple
probabilistic argument that yields aΩp(log(1/γ)) bound on the list-size of a standard list-decodable code;
we emphasize that this is qualitatively the tightest known bound in this regime.

For the “average-radius list-decoding” problem that we introduce, we are able to improve this list-size
bound toΩp(1/

√
γ). The proof is based on the idea that instead of picking the “bad list-decoding center”

x uniformly at random, one can try to pick it randomly very close to a designated codewordc∗, and this
still gives similar guarantees on the number of near-by codewords. Now since the quantity of interest is
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the average radius, this close-by codeword gives enough savings for us. In order to estimate the probability
that a typical codewordc belongs to the list aroundx, we write this probability explicitly as a function of
the Hamming distance betweenc∗ andc, which is then lower bounded using properties of hypergeometric
distributions and Taylor approximations for the binary entropy function.

For limitations of list-decoding random codes, we define a random variableW that counts the number
of “violations” of the list-decoding property of the code. We then show thatW has a exponentially large
mean, around which it is concentrated w.h.p. This yields that the code cannot be list-decodable with high
probability, for suitable values of rate and list-size parameters.

1.5 Organization

We define some useful notation and the formal notion of average-radius list-decodability in Section 2. Our
main list-size lower bound for average-radius list-decoding appears in Section 3. We give our short proof
of Blinovsky’s lower bounds for binary and general alphabets in Section 4. Our results about the zero-error
rate regime for constant-weight codes and the reverse connection between list-decoding bounds for general
codes and constant-weight codes appear in Section 5. Finally, our list-size lower bounds for random codes
are stated in Section 6; for reasons of space, the proofs for these bounds appear in the appendix.

2 Preliminaries and notation

2.1 List decoding

We recall some standard terminology regarding error-correcting codes.

Let [n] denote the index set{1, 2, . . . , n}. For q > 2, let [q] denote the set{0, 1, . . . , q − 1}. A q-ary
coderefers to any subsetC ⊆ [q]n, wheren is theblocklengthof C. We will mainly focus on the special
case of binary codes corresponding toq = 2. The rateR = R(C) is defined to belog |C|

n log q . Forx ∈ [q]n and
S ⊆ [n], the restriction ofx to the coordinates inS is denotedx|S . LetSupp(x) := {i ∈ [n] : xi 6= 0}. A
subcodeof C is a subsetC ′ of C. We say thatC is aconstant-weight codewith weightw ∈ [0, n], if all its
codewords have weight exactlyw. (Such codes are studied in Section 5.)

For x, y ∈ [q]n, define theHamming distancebetweenx andy, denotedd(x, y), to be the number of
coordinates in whichx andy differ. The(Hamming) weightof x, denotedwt(x), is d(0, x), where0 is the
vector in[q]n with zeroes in all coordinates. The(Hamming) ballof radiusr centered atx, denotedB(x, r),
is the set{y ∈ [q]n : d(x, y) 6 r}. In this paper, we also need the following notions of distance of a (small)
“list” L of vectors from a “center”x:

Definition 1. Given a centerx ∈ [q]n and a nonempty listL ⊆ [q]n, define the maximum and average
distances ofL fromx respectively by:

Dmax(x,L) := max{d(x, c) : c ∈ L}, and

Davg(x,L) := Ec∈L

[

d(x, c)
]

=
1

|L|
∑

c∈L

d(x, c).

It is well-known (cf., e.g., Lemma 5 in [12]) that the average-radius of a list is minimized by thecoordi-
natewise majority(or centroid) of the list:

Fact 2. LetL = {c1, c2, . . . , cL} ⊆ {0, 1}n be an arbitrary list of codewords, and leta ∈ {0, 1}n be its
centroid; that is, for any coordinatej, the jth entry ofa is the majority of the corresponding entries of
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c1, c2, . . . , cL (breaking ties arbitrarily). Then

Davg(a,L) = min
a′∈{0,1}n

Davg(a
′,L).

Next, we formalize the error recovery capability of the codeusing list-decoding.

Definition 3. Fix 0 < p < 1
2 and a positive integerL. LetC be aq-ary code with blocklengthn.

1. C is said to be(p, L) list-decodableif for all x ∈ [q]n, the ballB(x, pn) contains at mostL − 1
codewords ofC. Equivalently, for anyx and any listL ⊆ C of size at leastL, we haveDmax(x,L) >
pn.

2. C is said to be(p, L) average-radius list-decodableif for any centerx and anyL-tupleL of codewords,
we haveDavg(x,L) > pn.

For constant-weight codes, it is convenient to augment the above notation with the weight parameter:

Definition 4. Let p, L, q, n,C be as in Definition 3, and let0 < λ 6
1
2 . C is said to be(λ; p, L) (average-

radius) list-decodableif C is (p, L) (average-radius) list-decodable, and every codeword inC has weight
exactlyλn.

We remark that the list-decodability property is standard in literature. Moreover, while the notion of
average-radius list-decodability is formally introducedby this paper, it is already implicit in [1, 2, 12]. The
following proposition asserts that this is a syntacticallystronger property than standard list-decodability:

Proposition 5. If C is (p, L) average-radius list-decodable, thenC is (p, L) list-decodable.

Proof: The claim follows from the observation that the maximum distance of a list from a centerx always
dominates its average distance fromx. ✷

In particular, any limitation we establish for list-decodable codes also carries over for average-radius
list-decodable codes.

Following (and extending) the notation in [9], we make the following definitions to quantify the tradeoffs
in the different parameters of a code: the rateR, the error-correction radiusp, the list-sizeL, and the weight
λ of the codewords (for “constant weight” codes). Further, for general codes (without the constant-weight
restriction), it is usually more convenient to replace the rateR by the parameterγ := 1 − h(p) − R; this
measures the “gap” to the “limiting rate” or the “capacity” of 1− h(p) for (p,O(1)) list-decodable codes.

Fix p, λ ∈ (0, 12 ] such thatp < λ, 0 6 R 6 1, and a positive integerL.

Definition 6. 1. Say that the triple(p, L;R) is achievable for list-decodable codesif there exist(p, L)
list-decodable codes of rateR for infinitely many lengthsn.

DefineRp,L to be the supremum overR such that(p, L;R) is achievable for list-decodable codes,
and defineγp,L := 1 − h(p) − Rp,L. Similarly, defineLp,γ to be the least integerL such that
(p, L; 1 − h(p)− γ) is achievable.

2. (For constant weight codes.)Say that the4-tuple (λ; p, L;R) is achievable if there exists(λ; p, L)
list-decodable codes of rateR. DefineRp,L(λ) to be the supremum rateR for which the4-tuple
(λ; p, L;R) is achievable.

We can also define analogous quantities for average-radius list-decoding (denoted by a superscriptavg),
but to prevent notational clutter, we will not explicitly doso. Throughout this paper,p is treated as a fixed
constant in(0, 12 ), and we will not attempt to optimize the dependence of our bounds onp.
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2.2 Standard distributions and functions

In this paper, we use ‘log’ for logarithms to base2 and ‘ln’ for natural logarithms. Also, to avoid cumber-
some notation, we often denotebz by expb(z). Standard asymptotic notations (O, o, andΩ) is employed
throughout this paper; we sometimes subscript this notation by a parameter (typicallyp) to mean that the
hidden constant could depend arbitrarily on the parameter.

Our proofs make a heavy ofhypergeometric distributions, which we review here for the sake of com-
pleteness as well as to set the notation. Suppose a set contains n objects, exactlym < n of which are
marked, and suppose wesamples < n objects uniformly at random from the setwithout replacement. Let
the random variableT count the number of marked objects in the sample; thenT follows the hypergeometric
distribution with parameters(n,m, s). A simple counting argument shows that, fort 6 min{m, s},

Pr[T = t] =

(m
t

)(n−m
s−t

)

(n
s

) .

We will denote the above expression byf(n,m, s, t). By convention,f(n,m, s, t) is set to0 if n <
max{m, s} or t > min{m, s}.

Our proofs rely on the following two properties of hypergeometric random variables. While these claims
are standard, we have included a proof in Appendix A.1 for completeness.

Fact 7 (Interchange property). For all integersn,m, s with n > max{m, s}, the hypergeometric distri-
bution with parameters(n,m, s) is identical to that with parameters(n, s,m). That is, for allt, we have
f(n,m, s, t) = f(n, s,m, t).

Fact 8. Supposen,m,m′, s are integers such thatm > m′ and n > max{m, s}. Then the hypergeo-
metric distribution with parameters(n,m, s) stochastically dominatesthe hypergeometric distribution with
parameters(n,m′, s). That is, for allτ , we have

∞
∑

t=τ

f(n,m, s, t) >

∞
∑

t=τ

f(n,m′, s, t).

Throughout this paper, we are especially concerned with theasymptotic behaviour of binomial coeffi-
cients, which is characterized in terms of the binary entropy function, defined ash(z) := −z log z − (1 −
z) log(1− z). We will use the following standard estimate without proof.

Fact 9. Fix z ∈ (0, 1), and supposen → ∞ such thatzn is an integer. Then

2h(z)n−o(n)
6

(

n

zn

)

6

zn
∑

i=0

(

n

i

)

6 2h(z)n.

3 Bounds for average-radius list-decodability

In this section, we prove that the largest asymptotic rate of(p, L) average-radius list-decodable binary codes
is bounded by

1− h(p)− 1

L
− o(1) 6 Rp,L 6 1− h(p)− ap

L2
+ o(1),

whereap is a constant depending only onp. (Herep is a fixed constant bounded away from0 and 1
2 .) Note

that the corresponding upper and lower bounds onγ := 1−h(p)−R are polynomially related, ignoring the
dependence onp.

We first state the rate lower bound.
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Theorem 10. Fix p ∈ (0, 12 ) and a positive integerL. Then, for allε > 0 and all sufficiently large lengths
n, there exists a(p, L) average-radius list-decodable code of rate at least1− h(p)− 1/L− ε.

Proof: We will show that a random code of the desired rate is(p, L) average-radius list-decodable w.h.p.
Consider a random codeC : {0, 1}Rn → {0, 1}n of rateR := 1−h(p)−1/L−ε; i.e., for eachx ∈ {0, 1}Rn,
we pickC(x) independently and uniformly at random from{0, 1}n. For anya ∈ {0, 1}n and any distinct
L-tuple{x1, . . . , xL} ⊆ {0, 1}Rn, we are interested in bounding the probability of the event thatD 6 Lpn,
whereD :=

∑L
i=1 d(a,C(xi)).

To estimate this probability, letA be the{0, 1}-string of lengthLn obtained by concatenatinga repeat-
edly L times. Similarly, letY be the{0, 1}-string obtained by concatenatingC(x1), . . . , C(xL). In this
notation, note thatD is simply the Hamming distance betweenA andY . Now, Y is distributed uniformly
at random in{0, 1}Ln independently of the choice ofA, hence the probability thatD 6 pLn is at most
exp2 ((h(p)− 1)Ln) (Fact 9).

Finally, by a union bound over the choice ofa and{x1, . . . , xL}, the code fails to be(p, L) average-
radius list-decodable with probability at most

2n
(

2Rn

L

)

· exp2 ((h(p)− 1)Ln) 6 exp2 (n+ (R+ h(p)− 1)Ln) = exp2 (−εLn) ,

for the given choice ofR, establishing the claim. ✷

We now show an upper bound of1− h(p)− ap/L
2 on the rate of a(p, L) average-radius list-decodable

code. As stated in the Introduction, the main idea behind theconstruction is that instead of picking the “bad
list decoding center”x uniformly at random, we pick it randomlyvery close to a designated codewordc∗

(which itself is a uniformly random element fromC). Now as long as we are guaranteed to find a list of
L− 1 other codewords near the center, we can includec∗ in our list to lower its average radius.

However formalizing the above intuition into a proof is nontrivial, since our restriction of the centerx to
be very close toc∗ introduces statistical dependencies while analyzing the number of codewords nearx. We
are able to control these dependencies, but this requires some heavy calculations involving hypergeometric
distributions and the entropy function.

We are now ready to state our main result establishing a rate upper bound for(p, L) average-radius list-
decodable codes. In fact, the bulk of the work is to show an analogous upper bound for the special case of a
constant-weight codeC, i.e., all codewords have weight exactlyλn, for someλ ∈ (p, 12 ). We can then map
this bound for general codes using a standard argument (given in Lemma 12).

Theorem 11(Main theorem). Fix p ∈ (0, 12), and letL be a sufficiently large positive integer. Then there
existap, a′p > 0 (depending only onp) such that the following holds (for sufficiently large lengthsn):

1. If C is a(p, L) average-radius list-decodable code, thenC has rate at most1−h(p)−ap/L
2+ o(1).

2. For λ := p + a′p/L, if C is a (λ; p, L) average-radius list-decodable code, thenC has rate at most
h(λ) − h(p) − ap/L

2 + o(1).

As already mentioned in Section 1.3, the second claim readily implies the first via the following well-
known argument (a partial converse to this statement for list-decoding will be given in Section 5):

Lemma 12. Letλ ∈ (p, 12 ] be such thatλn is an integer. IfC is a(p, L) average-radius list-decodable code
of rateR = 1 − h(p) − γ, then there exists a(λ; p, L) average-radius list-decodable code of rate at least
h(λ)− h(p)− γ − o(1).
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Proof: For a random centerx, the expected number of codewordsc ∈ C with d(x, c) = λn is exactly
|C| ·

( n
λn

)

2−n. For the assumed value of rateR, using Fact 9, this is at least

exp2 ((h(λ)− h(p)− γ − o(1))n) .

Then there exists anx such that the subcodeC ′ ⊆ C consisting of all codewords at a distanceλn from x
has rate at leasth(λ)− h(p)− γ − o(1). The claim follows by translatingC ′ by−x. ✷

Before we proceed to the proof of the first part of Theorem 11, we will establish the following folklore
result, whose proof illustrates our idea in a simple case.

Lemma 13(A warm-up lemma). Fix p, λ so thatp < λ 6 1
2 . Then, ifC is a (λ; p, L) list-decodable code,

thenC has rate at mosth(λ) − h(p) + o(1).

Proof: The main idea behind the proof is that a random center of aparticular weight(carefully chosen) is
close to a large number of codewords in expectation. Pick a random subsetS ⊆ [n] of coordinates of size
αn, with α := (λ − p)/(1 − 2p), and letS := [n] r S. (The motivation for this choice ofα will be clear
shortly.) Define the centerx be theindicator vectorof S; i.e.,Supp(x) = S.

Consider the setL of codewordsc ∈ C such thatwt(c|S) > (1− p)αn; this is our candidate bad list of
codewords. Then eachc ∈ L is close toc:

d(x, c) = (αn −wt(c|S)) + wt(c|S) 6 αpn+ (λ− α(1− p))n = (λ− α(1− 2p))n,

which equalspn for the given choice ofα. Hence the size ofL is a lower bound on the list-size of the code.

We complete the proof by computingE |L|. For any fixedc ∈ C, the random variablewt(c|S) follows
the hypergeometric distribution with parameters(n, λn, αn), which is identical to the hypergeometric dis-
tribution with parameters(n, αn, λn) (see Fact 7). Hence the probability thatc is included in the listL is at
least

f(n, αn, λn, α(1− p)n) :=

( αn
(1−p)αn

)( (1−α)n
(λ−α(1−p))n

)

( n
λn

) =

( αn
pαn

)( (1−α)n
p(1−α)n

)

( n
λn

) ,

where the second step uses the identityλ− (1 − p)α = p(1 − α), which holds for our particular choice of
α. Asn → ∞, this is equal to

exp2 (αnh(p) + (1− α)nh(p) − h(λ)n − o(n)) = exp2((h(p)− h(λ) − o(1))n).

Thus, by linearity of expectations, the expected size ofL is at least|C| · exp2((h(p)− h(λ)− o(1))n).
On the other hand, the(p, L) list-decodability ofC says that|L| 6 L (with probability1). Comparing these
lower and upper bounds onE |L| yields the claim. ✷

Proof of Theorem 11 (part 2): At a high level, we proceed as in the proof of Lemma 13, but in addition
to the bad listL of codewords, we will a special codewordc∗ ∈ C such thatd(x, c∗) is much smaller than
the codewords inL. Then definingL∗ to consist ofc∗ and(L− 1) other codewords fromL, we see that the
averagedistance ofL∗ is much smaller than before, thus enabling us to obtain an improved rate bound.

We now provide the details. Pick a uniformly random codewordc∗ ∈ C. Let S ⊆ [n] be a random
subset ofSupp(c∗) of sizeβn, where the parameterβ is chosen appropriately later1 (this plays the role of
α in Lemma 13). Also, letx be the indicator vector ofS.

As before, consider the setL of codewordsc ∈ C such thatwt(c|S) > (1 − p)|S|. For a fixedc ∈ C,
the random variablewt(c|S) follows the hypergeometric distribution with parameters(λn, (λ − δ)n, βn),

1At this point, the reader might find it useful to think of bothλ − p andβ asΘ(1/L); roughly speaking, this setting translates
to a rate upper bound ofh(λ)− h(p)− Ω(β/L).
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whereδ = δ(c∗, c) is defined byd(c∗, c) := 2δn. (Observe that the normalization ensures that0 6 δ 6 λ
for all pairsc∗, c ∈ C.) To see this, notice that we are samplingβn coordinates fromSupp(c∗) without
replacement, and thatwt(c|S) simply counts the number of coordinates picked fromSupp(c∗) ∩ Supp(c)
(the size of this intersection is exactly(λ− δ)n). Thus, conditioned onc∗, the probability that a fixedc ∈ C
is included inL is

Q(δ) :=

βn
∑

w=(1−p)βn

f(λn, (λ− δ)n, βn,w). (1)

By linearity of expectations, and taking expectations overc∗, the expected size ofL can be written as

Ec∗∈C

[

∑

c∈C

Q(δ(c∗, c))

]

= |C| ·E Q(δ(c∗, c)), (2)

wherebothc∗ andc are picked uniformly at random fromC. The following lemma provides a lower bound
on this expectation.

Lemma 14. For A1 := (1− p) log
(

1−p
λ

)

+ p log
(

p
1−λ

)

andA2 =
2
p2

, we have

E Q(δ(c∗, c)) > exp2
(

−(A1β +A2β
2 + o(1))n

)

,

where the expectation is taken over pairsc∗, c of codewords.

Remark. In the above estimate, the coefficientA1 is tight for all values ofp andλ (assumingβ → 0 keeping
p andλ fixed), butA2 can be improved significantly. For our purposes, it suffices thatA2 depends onp
alone, and not onλ or β. ✷

Proof: By a standard application of the Cauchy-Schwarz inequality, we can show thatE δ 6 λ(1 − λ). To
see this, letfj denote the fraction of codewords ofC that have1 in thejth coordinate. The weight constraint
on the codewords implies that

∑n
j=1 fj = λn. Therefore,

Ec∗,c [d(c∗, c)] =

n
∑

j=1

2fj(1− fj) = 2

n
∑

j=1

fj − 2

n
∑

j=1

f2
j

6 2

n
∑

j=1

fj −
2

n





n
∑

j=1

fj





2

= 2λn− 2λ2n,

and so,E δ 6 λ(1 − λ). Now, by Markov’s inequality, the probability thatδ 6 λ(1 − λ) + 1/n is at least
1− λ(1−λ)

λ(1−λ)+ 1

n

>
1
n .

Moreover, using Fact 8 (withτ := β(1−p)), we know thatQ(δ) is a monotonically decreasing function
of δ. Therefore,

E Q(δ(c∗, c)) >
1

n
·Q(λ(1 − λ) + o(1))

>
1

n
· f
(

λn, (λ2 − o(1))n, βn, β(1 − p)n
)

.

The rest of the proof consists of lower bounding the right hand side. Asn → ∞, using Fact 9, we get
E Q(δ) > exp2(εn − o(n)), where

ε := λ2 · h
(

(1− p)β

λ2

)

+ λ(1− λ) · h
(

pβ

λ(1− λ)

)

− λ · h
(

β

λ

)

.
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We are interested in lower bounding the exponentε, and we do this by bounding each of the above entropy
terms individually using Fact 24 (see Appendix A.2), and canceling common terms. We just mention the
final bound ignoring the intermediate steps:

ε > β

(

(1− p) log
λ2

1− p
+ p log

λ(1− λ)

p
− log λ

)

− β2(log e)

(

(1− p)2

λ2
+

p2

λ(1− λ)

)

.

Noting that

(1− p) log
λ2

1− p
+ p log

λ(1− λ)

p
− log λ = (1− p) log

λ

1− p
+ p log

1− λ

p
= −A1,

and

(log e)

(

(1− p)2

λ2
+

p2

λ(1− λ)

)

6 (log e)

(

1

p2
+ 1

)

6
2

p2
,

we get the claim. ✷

We now return to the proof of Theorem 11. From (2) and Lemma 14,if the codeC has rate at least
A1β +A2β

2 + o(1) (for a suitableo(1) term), the listL has size at leastL in expectation. Fix some choice
of c∗ andS such that|L| > L. LetL∗ be any list containingc∗ andL− 1 other codewords fromL; we are
interested inDavg(x,L∗). Clearly,d(x, c∗) = (λ − β)n. On the other hand, forc ∈ L∗

r {c∗}, we can
bound its distance fromx as:d(x, c) 6 βpn+ (λ− β(1− p))n = (λ− β(1− 2p))n, where the two terms
are respectively the contribution byS and[n]r S. Averaging theseL distances, we get that

Davg(x,L∗) 6 (λ− β(1− 2p + 2p/L))n.

Now, we pickβ so that this expression is at mostpn; i.e., set

β :=
λ− p

1− 2p+ 2p/L
. (3)

(Compare with the choice ofα in Lemma 13.) For this choice ofβ, the listL∗ violates the average-radius
list-decodability property ofC.

Thus the rate of a(p, L) average-radius list-decodable code is upper bounded byR 6 A1β+A2β
2+o(1),

whereβ is given by (3). Further technical manipulations brings this to the following more convenient form:
If L > 2p

1−2p , then

R 6 (h(λ) − h(p))− B1(λ− p)

L
+B2(λ− p)2 + o(1).

for B1 := 1
2p andB2 := 3

p2(1−2p)2 ; see Lemma 26 in Appendix A.2 for a proof. Note that the secondterm
dominates the third wheneverλ− p is small enough. In particular, for

λ := p+
B1

2B2L
= p+

p3(1− 2p)2

12L
,

the rate is upper bounded by

R 6 h(λ)− h(p)− B2
1

4B2L2
+ o(1) = h(λ) − h(p)− p4(1− 2p)2

48L2
+ o(1).

✷
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4 Bounds for (standard) list-decodability

In this section, we consider the rate vs. list-size tradeofffor the traditional list-decodability notion. For the
special case when the fraction of errors is close to1

2 , [12] showed that any code family of growing size
correcting up to12 − ε fraction of errors must have a list-sizeΩ(1/ε2), which is optimal up to constant
factors. Whenp is bounded away from1/2, Blinovsky [1, 3] gives the best known bounds on the rate of
a (p, L) list-decodable code. His results imply (see [14] for the calculations) that any(p, L) list-decodable
code of rate1 − h(p) − γ has list-sizeL at leastΩp(log(1/γ)). We give a short and simple proof of this
latter claim in this section.

Theorem 15([1, 3]). 1. SupposeC is (λ; p, L) list-decodable code withλ = p + 1
2p

L. Then|C| 6
2L2/p, independent of its blocklengthn. (In particular, the rate approaches0 asn → ∞.)

2. Any(p, L) list-decodable code has rate at most1− h(p)− Ωp(p
L).

Proof:

1. For the sake of contradiction, assume that|C| > 2L2/p. Pick a randomL-tuple of codewords (without
replacement)L = {c1, c2, . . . , cL}, and letS be the set of indicesi ∈ [n] such that eachcj ∈ L has1
in theith coordinate. Definex to be the indicator vector ofS. Note thatd(x, cj) = wt(cj)−wt(x) =
λn− |S|. SoDmax(x,L) is alsoλn− |S|, and hence,EDmax(x,L) = λn−E |S|. Thus to obtain a
contradiction, it suffices to show thatE |S| > (λ− p)n = 1

2p
Ln.

Let M := |C| be the total number of codewords ofC, and letMi be the number of codewords ofC
with 1 in theith position. Then the probability thati ∈ S is equal tog(Mi)/

(M
L

)

, where the function

g : R
>0 → R

>0 is defined byg(z) :=
(max{z,L−1}

L

)

. By standard closure properties of convex
functions,g is convex onR. (Specifically,z 7→ max{z, L− 1} is convex overR, and restricted to its
image, namely, the interval[L − 1,∞), the functionz 7→

(z
L

)

is convex. Hence their composition,
namelyg, is convex as well.)

We are now ready to boundE |S|:

1

n
E |S| (a)= 1

(M
L

) · 1
n

n
∑

i=1

g(Mi)
(b)

>
1
(M
L

) · g
(

1

n

n
∑

i=1

Mi

)

=
g(λM)
(M
L

)

(c)
=

(λM
L

)

(M
L

) .

Here we have used (a) the linearity of expectations, (b) Jensen’s inequality, and (c) the fact that
λM > 2L2 > L− 1. We complete the proof using a straightforward approximation of the binomial
coefficients.

1

n
E |S| > (λM − L)L

ML
= λL

(

1− L

λM

)L

> λL

(

1− L2

λM

)

>
1

2
λL

>
1

2
pL.

2. By Lemma 12, the rate of ageneral(p, L) list-decodable code is upper bounded by1−h
(

p+ 1
2p

L
)

+
o(1), which, by Fact 23 (see Section A in the Appendix), is at most1− h(p)− 1

4(1− 2p) · pL+ o(1).

✷

The above method can be adapted forq-ary codes with an additional trick:

Theorem 16. 1. SupposeC is a q-ary (λ; p, L) list-decodable code withλ = p + 1
2Lp

L. Then|C| 6
2L2/λ.

2. SupposeC is a q-ary (p, L) list-decodable code. Then there exists a constantb = bp,q > 0 such that
the rate ofC is at most1− hq(p)− Ωq,p

(

1
Lp

L
)

.
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Our proof of this theorem uses the following lemma due to Erd¨os (see Section 2.1 of [13] for a reference.)
This result was implicitly established in our proof of Theorem 15, so we will omit a formal proof.

Lemma 17(Erdös 1964). SupposeA is a set system over the ground set[n], such that eachA ∈ A has size
at leastλn. Then, if|A| > 2L2/λ, then there exist distinctA1, A2, . . . , AL in A such that

⋂L
i=1 Ai has size

at least12nλ
L.

Proof of Theorem 16:

1. Towards a contradiction, assume|C| > 2L2/λ. Consider the set systemA := {Supp(c) : c ∈ C}.
By Lemma 17, there exists anL-tuple{c1, c2, . . . , cL} of codewords such that the intersection of their
support, sayS, has size at least12nλ

L >
1
2np

L. Arbitrarily partition the coordinates inS intoL parts,
sayS1, . . . , SL so that eachSj has size at least12Lp

Ln.

Now consider a centerx such thatx agrees withcj on all coordinatesi ∈ Sj; for i /∈ S, setxi to be
zero. Then, clearly,d(x, cj) 6 wt(cj) − |Sj | = λn − 1

2Lp
L · n = pn. Thus the list{c1, . . . , cL}

contradicts the(p, L) list-decodability ofC.

2. From aq-ary generalization of Lemma 12 (proof omitted), the rate ofa (p, L) q-ary list-decodable
code is at least1 − hq

(

p+ 1
2Lp

L
)

. ForL large enough, this is at most1 − hq(p) − Ωq,p

(

1
2Lp

L
)

,
which implies the claim.

✷

5 Constant-weight vs. General codes

In this section, we will understand the rate vs. list-size trade-offs for constant-weight codes, that is, codes
with every codeword having weightλn, whereλ ∈ (p, 12 ] is a parameter. (Settingλ = 1

2 roughly corre-
sponds to arbitrary codes having no weight restrictions.) As observed earlier, a typical approach in coding
theory to establish rate upper bounds is to study the problemunder the above constant-weight restriction.
One then proceeds to show a strong negative result of the flavor that a code with the stated properties must
have a constant size (and in particularzerorate). For instance, the first part of Theorem 15 above is of this
form. Finally, mapping this bound to arbitrary codes, one obtains a rate upper bound of1 − h(λ) for the
original problem. (Note that Lemma 12 provides a particularformal example of the last step.)

In particular, Blinovsky’s rate upper bound (Theorem 15) of1−h(p)−2−O(L) for (p, L) list-decodable
codes follows this approach.2 More precisely, he proves that, under the weight-λ restriction, such code must
have zero rate for allλ 6 p + 2−bpL for somebp < ∞. One may then imagine improving the rate upper
bound to1 − h(p) − L−O(1) simply byestablishing the latter result for correspondingly highervalues ofλ
(i.e., up top + L−O(1)). We show that this approach cannot work by establishing that (average-radius) list-
decodable codes of positive (though possibly small) rates exist as long asλ−p > 2−O(L). Thus Blinovsky’s
result identifies the correctzero-rate regimefor the list-decoding problem; in particular, his bound is also
the best possible if we restrict ourselves to this approach.In this context, it is also worth noting that for
average-radius list-decodable codes, Theorem 11 already provides a better rate upper bound than what the
zero-rate regime indicates, thus suggesting that the “zero-rate regime barrier” is not an inherent obstacle,
but more a limitation of the current proof techniques.

In the opposite direction, we show that the task of establishing rate upper bounds for constant weight
codes is not significantly harder than the general problem. Formally, we state that that if the “gap to list-

decoding capacity” for general codes isγ, then the gap to capacity for weight-λn codes isat least
(

λ−p
1

2
−p

)

γ.

2For notational ease, we suppress the dependence onp in theO andΩ notations in this informal discussion.
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Stated differently, if our goal is to establish aL−O(1) lower bound on the gapγ, then we do not lose by first
passing to a suitableλ (that is not too close top).

5.1 Zero-rate regime

Theorem 18. Fix p ∈ (0, 12), and setb = bp := 1
2

(

1
2 − p

)2
. Then forL >

1
2b log

(

32
b

)

and all sufficiently
large n, there exists a(λ; p, L) average-radius list-decodable code of rate at leastR − o(1), with λ 6

p+ 5e−bL andR := min{e−2bL, e−bL/(6L)} = Ωp,L(1).

Proof: The basic idea of the proof is that a random code is(p, L) average-radius list-decodable, even if the
codewords are biased to have weight close topn. We then use expurgation to ensure that all codewords have
the same weight. We now provide the details. Setε := e−bL andλ′ := p + 4ε; verify that for the assumed
values ofL, we have12 − λ′ >

1
2

(

1
2 − p

)

. Choose a random codeC : {0, 1}Rn → {0, 1}n in the following
way. For eachx ∈ {0, 1}Rn, each coordinate ofC(x) chosen independently to be1 with probabilityλ′ (and
0 with the complementary probability).

Firstly, for a fixedx ∈ {0, 1}Rn, by Chernoff bound, its encodingC(x) has weight in the interval
(λ′ ± ε)n with probability at least1 − 2 exp(−2ε2n) > 1 − exp2(−2ε2n + o(n)). By union bound, this
holds for allx with probability at least1− exp2(Rn− 2ε2n+ o(n)).

Next, we consider the event thatC is (p, L) average-radius list-decodable. Specifically, we require that
for everyL-tuple of messagesX := {x1, . . . , xL} ⊆ {0, 1}Rn and every centera ∈ {0, 1}n, the encodings
of the xis arepn-far from a on average. It is easy to bound the probability of this event for a fixedpair
(a,X), and naively, we might hope to achieve this forall such pairs by a simple union bound. However, this
does not quite work, since the union bound overa contributes a2n factor loss to the probability and results
in a trivial bound. To get around this issue, we note that for any list of messagesX, it suffices to control
the above event for a specific choice ofa, namely, an arbitrarycentroidof the encodings ofx1, . . . , xL; we
then finish the argument by a union bound over allX. Since the centroid minimizes the average distance of
a center to a given list (see Fact 2), the code is now guaranteed to be(p, L) average-radius list-decodable.

Fix anL-list X := {x1, . . . , xL} of messages, leta denote the centroid of their encodings. For a fixed

j ∈ [n], by Chernoff bound, the probability that thejth entry ofa is 1 is at mostexp2
(

−2
(

1
2 − λ′

)2
L
)

,

which is at most

exp2

(

−1

2

(

1

2
− p

)2

L

)

= exp(−bL) = ε.

Moreover, the entries ofa in then coordinates are all independent, and hence, by another application of the
Chernoff bound (in the multiplicative form), the weight ofa is at most2εn, except with probability at most
exp2(−εn/3). Assuming that this event holds, for eachx ∈ X,

d(a, x) > wt(x)− wt(a) > (λ′ − ε)n − 2εn > (λ′ − 4ε)n =: pn,

and hence the average distance ofX from a is also more thanpn. Finally, by a union bound overX, we can
conclude that the code is(p, L) average-radius list-decodable, except with probabilityexp2(RLn− εn/3).

Thus, forR = min{ε2, ε/(6L)}, with probability1− o(1), the random codeC satisfies the following:

• Each codeword inC has weight at most(λ′ + ε)n. Note thatλ′ + ε = p+ 5ε = p+ 5e−bL.

• C is (p, L) average-radius list-decodable.

Fix any C with the above properties. This satisfies all our requirements, except that its codewords
could have varying weights. Fortunately, however, this is easily fixed, since, by the pigeonhole principle,C
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contains a constant-weight subcodeC ′ of size at least|C|/(n+ 1), and hence of rateR− o(1). Now, if w0

denotes the weight of the codewords ofC ′, then note thatw0 6 (p + 5e−bL)n, establishing the claim with
λ := w0/n. ✷

Note that thestatementof Theorem 18 also yields as a corollary(λ; p, L) list-decodable codes of positive
rate withλ exponentially close top, since standard list-decodability is only a weaker requirement. However,
interestingly, the aboveproof does not work directly because we do not have a simple analogue of Fact 2
identifying the best center that minimizes the maximum radius of a list. Indeed, the authors are not aware of
any proof of this result except going through average-radius list-decodability.

5.2 A reverse connection between constant-weight and arbitrary codes

Lemma 19. Fix p, λ such that0 < p < λ 6
1
2 . Then in the notation of Definition 6, ifγ := 1−h(p)−Rp,L,

then

h(λ) − h(p)− γ 6 Rp,L(λ) 6 h(λ)− h(p)−
(

λ− p
1
2 − p

)

γ.

Proof: The left inequality is essentially the content of Lemma 12; we show the second inequality here. The
manipulations in this proof are of a similar flavor to those inLemma 13, but the exact details are different.

SupposeC is a(λ; p, L) list-decodable code of blocklengthn and rateR, such that each codeword inC
has weight exactlyλn. Pick a random subsetS ⊆ [n] of coordinates of sizeα2n, withα2 := (λ−p)/(12−p),
and letS := [n]r S. (Interestingly, our setting ofα2 differs from the parameterα employed in the proof of
Lemma 13 only by a factor of2. The motivation for this choice ofα2 will become clear shortly.) Consider
the subcodeC ′ consisting of codewordsc ∈ C such thatwt(c|S) > α2n/2. For our choice ofα2, one can
verify that if c ∈ C ′, thenc has weight at mostp(1−α2)n = p|S| when restricted toS (this is the motivation
behind our choice ofα2).

Consider the restriction ofC ′ to the coordinates inS, C ′|S := {c|S : c ∈ C ′}. Our key observation
is thatC ′|S , as a code of blocklengthα2n, is (p, L) list-decodable. Suppose not. Then there exists a center
x′ ∈ {0, 1}S and a size-L list L ⊆ C such thatd(x′, c|S) 6 pα2n for all c ∈ L. Now, extendx′ to
x ∈ {0, 1}n such thatx agrees withx′ on (the coordinates in)S and is zero on the remaining coordinates.
ThenL violates the(p, L) list-decodability ofC, since for everyc ∈ L,

d(x, c) = d(x′, c|S) + wt(c|S) 6 pα2n+ p(1− α2)n = pn.

Therefore,C ′|S must be(p, L) list-decodable, and hence, by the hypothesis of the lemma, its size is at most
exp2((1 − h(p) − γ + o(1))α2n) with probability1. (It is crucial for this proof that the blocklength ofC ′

is α2n, which is significantly smaller thann.)

Now, for a fixedc ∈ C, the random variablewt(c|S) follows the hypergeometric distribution with
parameters(n, λn, α2n), which is identical to the hypergeometric distribution with parameters(n, α2n, λn).
Hence, the probability thatc is included inC ′ is at least

f(n, α2n, λn, α2n/2) =

( α2n
α2n/2

)( (1−α2)n
(λ−α2/2)n

)

( n
λn

)

(∗)
=

( α2n
α2n/2

)( (1−α2)n
p(1−α2)n

)

( n
λn

)

> exp2 (α2n+ h(p)(1 − α2)n− h(λ)n − o(n)) .
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In the step marked(∗), we have used the the identityλ− α2/2 = p(1− α2), which holds for our particular
choice ofα2. Summing this over allc ∈ C, the expected size ofC ′|S is at least

exp2 (Rn+ α2n+ h(p)(1− α2)n− h(λ)n − o(n)) .

Finally, comparing the upper and lower bound on the expectedsize ofC ′|S , we get

R+ α2 + (1− α2)h(p)− h(λ)− o(1) 6 (1− h(p)− γ)α2 + o(1),

which can be rearranged to give the desired boundR 6 h(λ)− h(p)− α2γ + o(1). ✷

6 List-size bounds for random codes

In this section, we establish optimal (up to constant factors) bounds on the list-size of random codes, both
general as well as linear.3 Results of this vein were already shown by Rudra for the errors case [14], based on
the large near-disjoint packings of Hamming balls implied by Shannon’s capacity theorems. Here we give
a direct proof based on the second moment method.4 In addition, our proofs extend easily to give list-size
bounds forlist-decodable codes for erasure channelsas well.

Throughout this section and Appendix B, we work with randomq-ary codes – both general and linear.
A randomq-ary code(for q > 2) is simply a random mapC : [q]k → [q]n where, for eachx ∈ [q]k, its
imageC(x) is pickedindependently and uniformly at randomfrom [q]n. On the other hand, aq-ary random
linear codeis a random linear mapC : Fk

q → F
n
q obtained in the following way. We fix an arbitrarybasis

(typically, but not necessarily, the standard basis) for the vector spaceFk
q , and theencoding of the basis

vectorsis chosen independently and uniformly at random fromF
n
q ; the encoding mapC naturally extends

for all messages inFk
q via linearity.

6.1 Proof idea

Our results proceed directly via the second moment method. Towards this goal, we define a random variable
W that counts the number ofwitnesses(i.e., a bad list of codewords together with the center) thatcertify
the violation of the(p, L) list-decodability property. Thus the code is(p, L) list-decodable if and only if
W = 0. We then show that (a)W has large expectation (i.e.,E W is exponential inn), but (b) its variance
is relatively small (i.e.,Var W/(EW )2 is exponentially small inn). Then using the Chebyshev inequality
(Fact 28), we can conclude thatW > 0, except with an exponentially small probability, which is what we
set out to show.

As a particular example, consider the case of random generalcodes under errors. In this case, the
“potential violations” of the list-decoding property are indexed by pairs(a,X), wherea ∈ {0, 1}n is an
arbitrary center, andX is an arbitrary distinctL-tuple of messages{x1, x2, . . . , xL} ⊆ {0, 1}k . We thus
define the indicator random variableI(a,X) for the event thatd(a,C(x)) 6 pn for all x ∈ X, and let
W :=

∑

a,X I(a,X). The mean and variance estimates forW follow by standard calculations. See the
formal proofs for details.

3In contrast to Sections 3–5, our results on random codes are stated as bounds on the list-size in terms of the rate. Recall that a
rate upper bound of1− hq(p)− Ωq,p(1/L) corresponds to a list-size bound ofΩq,p(1/γ) for codes of rate1− hq(p)− γ.

4We remark that the argument in [14] is also based on the secondmoment method, but applied to a more complicated random
variable.
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6.2 Error list-decodability bounds

We state our bounds for standard list-decodable codes (under errors), deferring the complete proofs to Ap-
pendices B.1 and B.2.

Theorem 20. Fix q > 2, 0 < p < 1− 1/q andγ > 0.

1. A randomq-ary code of rate1 − hq(p) − γ is
(

p,
1−hq(p)

2γ

)

list-decodable with probability at most

expq (−Ωp,γ(n)).

2. A randomq-ary linearcode of rate1− hq(p)− γ is
(

p,
δq,p
2γ

)

list-decodable with probability at most

expq (−Ωp,γ(n)). Here,δq,p is a constant depending on onlyq andp.

6.3 Erasure list-decodability bounds

The technique outlined in Section 6.1 also extends to give list-size bounds for randomq-ary codes under
theerasure model, which we now review briefly. In this model, the output alphabet is the usual alphabet[q]
augmented with a specialerasure symbol‘?’. For a stringa ∈ ([q] ∪ {?})n, defineSupp∗(a) to be the set
of indicesi such thatai 6= ?. Also, we say thata, b ∈ ([q] ∪ {?})n agreewith each other ifai = bi for all
i ∈ Supp∗(a) ∩ Supp∗(b).

Definition 21. A codeC ⊆ [q]n is said to be(p, L) erasure list-decodableif for all a ∈ ([q] ∪ {?})n
satisfying|Supp∗(a)| = (1− p)n, at mostL− 1 codewords ofC (treated as strings over([q]∪{?})) agree
with a.

We are now ready to state our bounds for random (general and linear) codes under erasures. Note the
exponential gap between the list-sizes of linear and general random codes under erasures.

Theorem 22. Fix q > 2, 0 < p < 1 andγ > 0.

1. A randomq-ary code of rate1 − p − γ is
(

p, 1−p
2γ

)

erasure list-decodable with probability at most

expq (−Ωp,γ(n)).

2. Let q be a prime power. A randomq-ary linear code of rate1 − p − γ is
(

p, 1q · exp2
(

p(1−p)
16γ

))

erasure list-decodable with probability at mostexp2 (−Ωp(n)).

The proofs for the above two bounds appear respectively in Appendices B.3 and B.4.
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A Technical results on standard functions

A.1 Properties of hypergeometric distributions

Proof of Fact 7: We consider a modification of the experiment in the definitionof the hypergeometric
distribution. Consider a set ofn distinguishable objects that are marked by two players, Alice and Bob.
Alice picksm objects uniformly at random and marks it ‘A’. Simultaneously, Bob pickss objects uniformly
at random and marks it ‘B’. Moreover, the choices of Alice andBob areindependentof each other. We
claim that the number of objectsT marked bybothAlice and Bob follows the hypergeometric distribution
with parameters(n,m, s). Indeed,conditionedon the subsetA of objects selected by Alice, the number
of objectsfromA that are picked by Bob follows the hypergeometric distribution with parameters(n,m, s)
(independent ofA); we now obtain the claim by unconditioning onA.
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Note that the above experiment is symmetric w.r.t. Alice andBob, and hence the same argument shows
thatT follows the hypergeometric distribution with parameters(n, s,m) as well. The lemma now follows.
✷

Proof of Fact 8: Consider an urn containingn balls, of which exactlym′ are black,m − m′ are green,
and the remaining are white. Samples balls from the urn without replacement. Then, the numberB of
black balls picked follows the hypergeometric distribution with parameters(n,m′, s), whereas the number
N of nonwhite (i.e., black or green) balls picked follows the hypergeometric distribution with parameters
(n,m, s). Since, for any outcome, it holds thatN > B, the probability thatN > τ is at least that of the
event thatB > τ , which is what we wanted to show. ✷

Remark. The joint random variable(B,N) is astochastic couplingbetween the two hypergeometric distri-
butions.✷

A.2 Properties of the binary entropy function

In this section, we will prove some standard properties of the binary entropy function used in this paper.

Fact 23. For anyp, λ such that0 < p < λ 6
1
2 , we have

h(λ)− h(p) >
1

2
(1− 2p) · (λ− p).

Proof: We begin with the identity

h(λ) − h(p) =

∫ λ

p
h′(z) dz = (log e)

∫ λ

p
ln

(

1− z

z

)

dz.

Foru > 1, we havelnu >
u−1
u , which implies that for0 < z 6

1
2 ,

ln

(

1− z

z

)

>

1−z
z − 1
1−z
z

=
1− 2z

1− z
> (1− 2z).

Therefore,

h(λ) − h(p) > (log e)

∫ λ

p
(1− 2z) dz = (log e)(1 − λ− p)(λ− p) > (log e)

(

1

2
− p

)

(λ− p),

which establishes the claim.

✷

Fact 24. For all z ∈ (0, 1), we havez log(1/z) + (log e)(z − z2) 6 h(z) 6 z log(1/z) + (log e)z.

Proof: After expanding the definition ofh(·), the above inequality reduces to

z − z2 6 −(1− z) ln(1− z) 6 z.

We can equivalently write this as

ln(1− z) 6 −z, and ln

(

1 +
z

1− z

)

6
z

1− z
,
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both of which are special cases of the standard inequalityln(1 + z) 6 z valid for all realz. ✷

Next, we show how to massage the rate upper bound given in Theorem 11 in Section 3 into a more

convenient form. For the remainder of the section, we setA1 := (1 − p) log
(

1−p
λ

)

+ p log
(

p
1−λ

)

, and

A2 :=
2
p2 .

Lemma 25.

A1 6 (1− 2p) · h(λ)− h(p)

λ− p
+

5

p
(λ− p).

Proof: We begin with

A1 = (1− p) log

(

1− p

λ

)

+ p log

(

p

1− λ

)

6 (1− p) log

(

1− p

p

)

+ p log

(

p

1− λ

)

= (1− 2p) log

(

1− p

p

)

+ p log

(

1− p

1− λ

)

= (1− 2p)h′(p) + p log

(

1− p

1− λ

)

.

To complete the proof, we bound each term separately. First,

h′(p) = h′(λ)−
∫ λ

p
h′′(z) dz = h′(λ) +

∫ λ

p

log e

z(1− z)
dz

6 h′(λ) +

∫ λ

p

4

z
dz 6 h′(λ) +

4(λ− p)

p
.

Also, by the concavity ofh, h(λ) − h(p) > h′(λ)(λ − p), soh′(p) 6
h(λ)−h(p)

λ−p + 4(λ−p)
p . On the other

hand, applying the inequalityln z 6 z − 1 with z = 1−p
1−λ , we get

log

(

1− p

1− λ

)

6 (log e)
λ− p

1− λ
6 4(λ− p) 6

λ− p

p2
,

sincep < 1
2 ande < 4. Plugging these in the upper bound forA1 gives the claim. ✷

Lemma 26. Fix ε ∈
(

0, 1−2p
2p

)

, and setβ := (λ− p)/(1− 2p + 2pε). Then

A1β +A2β
2
6 h(λ)− h(p)−B1ε(λ− p) +B2(λ− p)2

for B1 :=
1
2p andB2 :=

3
p2(1−2p)2

. (Note thatB1 andB2 are independent ofλ andε.)

Proof: From Lemma 25, we have

A1β 6

[

(1− 2p) · h(λ)− h(p)

λ− p
+

5(λ− p)

p

]

· λ− p

1− 2p + 2pε

6
1− 2p

1− 2p + 2pε
· (h(λ) − h(p)) +

5(λ− p)2

p(1− 2p)
.
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Assuming0 < ε < 1−2p
2p , we can upper bound this by

A1β 6
1− 2p − pε

1− 2p
· (h(λ) − h(p)) +

5(λ− p)2

p(1− 2p)

= h(λ)− h(p)− h(λ)− h(p)

1− 2p
· pε+ 5(λ− p)2

p(1− 2p)

6 h(λ)− h(p)− pε(λ− p)

2
+

5(λ− p)2

p(1− 2p)

using Fact 23. Also,A2β
2 6

2(λ−p)2

p2(1−2p)2 . Thus,

A1β +A2β
2
6 h(λ)− h(p)− pε(λ− p)

2
+

5(λ− p)2

p(1− 2p)
+

2(λ− p)2

p2(1− 2p)2

6 h(λ)− h(p)− pε(λ− p)

2
+

3(λ− p)2

p2(1− 2p)2
.

✷

B List-decoding bounds for random codes

Throughout this section, we fix the parametersq, p, andn. Fora ∈ [q]n, letBq(a, pn) be theq-ary Hamming
ball with centera and radiuspn. Let µ denote the fraction of points of[q]n that are inside a Hamming ball
of radiuspn; i.e.,µ = |Bq(a, pn)|/qn for an arbitrarya ∈ [q]n. We need the following estimate onµ (this
generalizes Fact 9 for larger alphabet sizes):

Fact 27. Asn → ∞, expq((hq(p)− 1− o(1))n) 6 µ 6 expq((hq(p)− 1)n).

We also need the following simple corollary of Chebyshev’s inequality:

Fact 28. LetW be a nonnegative random variable. Then,W = 0 with probability at mostVar W
(E W )2 .

B.1 Proof of part 1 of Theorem 20 (random general codes under errors)

Consider a random codeC : [q]k → [q]n, wherek := (1 − hq(p) − γ)n. Fix a positive integerL, to be
specified later. For any centera ∈ [q]n, and any (ordered) list ofL messagesX := (x1, x2, . . . , xL) ⊆ [q]k,
let I(a,X) be the indicator random variable for the event that the encoding ofx falls inside the ballBq(a, pn)
for all x ∈ X. Moreover, defineW :=

∑

a,X I(a,X). Clearly, the codeC is (p, L) list-decodable if and
only if W > 0.

For a fixed centera and a fixed messagex, the event that the encoding ofx falls insideBq(a, pn) occurs
with probabilityµ; since the encodings of distinct messages are statistically independent,Pr I(a,X) = µL.
Also, assumingk > L + 1, the number of possible(a,X) pairs is at least12q

kL · qn, since the number of
orderedL-listsX of distinct messages is

qk(qk − 1) · · · (qk − L+ 1) > qkL

(

1−
L−1
∑

i=0

i

qk

)

= qkL

(

1−
(L
2

)

qk

)

> qkL
(

1− 2L

2k

)

>
1

2
qkL.
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Therefore, by linearity of expectations,E W > 1
2µ

LqnqkL.

We now upper bound the variance ofW . For two lists of messagesX andY , define theintersection
parameterl = l(X,Y ) := |X ∩ Y |. If X andY are disjoint (equivalently, ifl(X,Y ) = 0), then the events
I(a,X) andI(b, Y ) are independent for any pair of centersa, b. Therefore,

Var W =
∑

X,Y

∑

a,b

(E [I(a,X)I(b, Y )]−E [I(a,X)] · E [I(b, Y )])

=
∑

X∩Y 6=∅

∑

a,b

(E [I(a,X)I(b, Y )]−E [I(a,X)] ·E [I(b, Y )])

6
∑

X∩Y 6=∅

∑

a,b

E [I(a,X)I(b, Y )]

=
∑

X∩Y 6=∅

∑

a,b

Pr [I(a,X) = 1 andI(b, Y ) = 1].

=
L
∑

l=1

∑

|X∩Y |=l

∑

a,b

Pr [I(a,X) = 1 andI(b, Y ) = 1].

For convenience, we convert the inner summation into an expectation by randomizing over the centers
a, b:

Var W 6 q2n
L
∑

l=1

∑

|X∩Y |=l

Pra,b,C [I(a,X) = 1 andI(b, Y ) = 1]. (4)

Here, in addition to the randomness of the code, the centersa andb are picked uniformly at random from
[q]n.

Fix 0 < l 6 L, and a pair(X,Y ) such that|X ∩ Y | = l. Fix an arbitraryz ∈ X ∩ Y ; such a
z is guaranteed to exist sinceX andY intersect. Now, the eventE that I(a,X) = I(b, Y ) = 1 can be
equivalently expressed as the conjunction of the events

• Botha, b fall insideBq(C(z), pn);

• For eachx ∈ X r z, the encoding ofx falls insideBq(a, pn); and

• Fory ∈ Y rX, the encoding ofy falls insideBq(b, pn).

The first event occurs with probabilityµ2, and conditioned on the choice ofa and b, the second and
third events occur with probabilitiesµL−1 andµL−l respectively (and they are independent givena and
b). Therefore the probability ofE is µ2L−l+1. Finally, by an easy counting, the number of pairs(X,Y ) with
|X ∩ Y | = l is at mostL2Lqk(2L−l). Thus, we can bound the variance ofW as

Var W 6 q2n
L
∑

l=1

L2Lqk(2L−l)µ2L−l+1.

Dividing by (E W )2, we get

Var W

(E W )2
6

L
∑

l=1

4L2L(qkµ)−lµ.

21



For our choice of parameters, we haveqkµ = q−γn, and hence

Var W

(E W )2
6

L
∑

l=1

L4Lqγlnµ 6 L4L+1qγLnq−(1−hq(p))n.

This quantity isexpq (−Ωp,γ(n)) for L :=
1−hq(p)

2γ , and hence we are done by Fact 28.

B.2 Proof of part 2 of Theorem 20 (random linear codes under errors)

We follow the same outline as in Appendix B.1, so we will only highlight the differences. LetC be a random
linear code of blocklengthn anddimensionk = (1− hq(p)− γ)n. We consider pairs(a,X) as before, but
we now allow onlylinearly independent list of messagesX. Moreover, the definition ofW is unchanged,
except that we sum over only the admissibleX. Finally, we modify the definition of the parameterl to
take linearity into account. For a pair of listsX andY (each of which is linearly independent), we define
l = l(X,Y ) := dim(Span(X) ∩ Span(Y )) (where, for any setZ of message vectors,Span(Z) denotes its
linear span). Note thatl = 0 if and only if theyX andY are linearly independent of each other.

For any linearly independent setX, the encodings of vectors inX are statistically independent, and
henceE I(a,X) = µL. Once again, the number of linearly independent listsX is again at least12q

kL;
indeed, the number of such lists is

(qk − 1)(qk − q) · · · (qk − qL−1) > qkL

(

1−
L−1
∑

i=0

qi−k

)

> qkL
(

1− qL−k
)

>
1

2
qkL.

Therefore, as before,EW >
1
2(q

kµ)Lqn.

As before, the eventsI(a,X) andI(b, Y ) are statistically independent wheneverX andY are linearly
independent, i.e.,l = 0. Therefore, as before, we can bound the variance ofW by

Var W 6 q2n
L
∑

l=1

∑

l(X,Y )=l

Pra,b,C [E ],

whereE is the event thatI(a,X) = 1 andI(b, Y ) = 1. Now, fix anl such that1 6 l 6 L, and fix a pairX,Y
such thatdim(Span X ∩ Span Y ) = l. Then,Y can be partitioned asY = Y0 ∪ Y1, with (a) |Y0| = l and
|Y1| = L− l, (b)X is linearly independent fromY1, and (c)Y0 ⊆ Span(X ∪ Y1). Fix an arbitraryy0 ∈ Y0.
Then, by the span condition, we can writey0 =

∑

u∈X∪Y1
θu · u for some set ofscalars{θu}u∈X∪Y1

. Note
that it is possible thaty0 lies in the span ofX. But, sinceY is an independent set,y0 cannotbe written as a
linear combination of vectors fromY1 alone; in particular, there exists someu ∈ X with θu 6= 0.

In order to upper bound the probability ofE , we estimate the probability thatC(y0) ∈ Bq(b, pn), after
conditioningon the subeventE ′ thatC(u) ∈ Bq(a, pn) for all u ∈ X, andC(u) ∈ Bq(b, pn) for all u ∈ Y1.
(It is easy to check that the latter event occurs with probability µ|X∪Y1| = µ2L−l.)

At this point, it is convenient to re-center the vectors inX ∪ Y1 as follows: Foru ∈ X, defineC ′(u) :=
C(u)− a, and foru ∈ Y1, defineC ′(u) := C(u)− b. After conditioning onE ′, the random variablesC ′(u)
(for u ∈ X ∪Y1) are i.i.d. and are uniformly distributed inside the ballBq(0, pn); furthermore, they are also
independent of the choice ofa andb. In terms of these new random variables, we can write

C(y0)− b =
∑

u∈X∪Y1

θu · C ′(u) +

(

∑

u∈X

θu

)

a+





∑

u∈Y1

θu − 1



 b.
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We claim that conditioned onE ′, C(y0) − b ∈ Bq(0, pn) occurs with probability at mostq−Ω(n). We
discuss two cases:

1. Suppose
∑

u∈X θu 6= 0, or
∑

u∈Y1
θu 6= 1. Then, conditioned on the choice ofC ′(u)s, the random

variableC(y0)−b is distributed uniformly at random insideFn
q and hence falls insideBq(0, pn) with

probabilityµ.

2. Suppose that
∑

u∈X θu = 0, and
∑

u∈Y1
θu = 1. In this case, we have

C(y0)− b =
∑

u∈X∪Y1 : θu 6=0

θu · C ′(u). (5)

Thus, ifm := |{u : θu 6= 0}|, thenC(y0) − b is a sum ofm points sampled independently and
uniformly from the ballBq(0, pn). Also, as observed earlier, there exists someu ∈ X such that
θu 6= 0; moreover, since

∑

u∈X θu = 0, there are at leasttwou’s in X with θu 6= 0; i.e.,m > 2. We
now bound the probability ofE conditioned onE ′ using the following fact:

Lemma 29. For everyq > 2 and everyp ∈ (0, 12), there existsδ = δq,p such that the following holds
all large enough integersn. If m > 2, and ifv1, v2, . . . , vm arem independent and uniformly random
samples fromBq(0, pn), then the probability thatv1 + v2 + · · · + vm ∈ Bq(0, pn) is bounded by
nO(m) · q−δn.

We skip a formal proof of this lemma. A special case of this statement corresponding tom = q = 2
can be found in [9] (see Lemma 7), and the proof given there generalizes to give our claim with
syntactic modifications.

We now return to the proof of Theorem 20. Sincem 6 2L = On→∞(1), Lemma 29 implies that,
conditioned onE ′, the stated eventE also occurs with probability at mostq−δn+O(L logn) = q−δn+o(n).
(Without loss of generality, we may chooseδ small enough so that this bound is larger thanµ.)

Therefore, the conditional probability ofE is at most the maximum of the two cases, namelyexpq(−δq,pn+
o(n)). To complete the variance bound, we need an estimate on the number of pairs(X,Y ) such that
l(X,Y ) = l. PartitionY asY0 ∪ Y1 as before. Now,X ∪ Y1 can be picked in at mostqk(2L−l) ways. Also,
for eachy ∈ Y0, we can writey as a linear combination of vectors inX ∪ Y1 in at mostq2L−l 6 q2L ways.
Thus the total number of pairs(X,Y ) with l(X,Y ) = l is at mostq2Ll · qk(2L−l). Thus, the variance can be
bounded as

Var W 6 q2n
L
∑

l=1

q2Ll · qk(2L−l)µ2L−lq−δn+o(n)

6

L
∑

l=1

4(E W )2 · q2Ll
(

qkµ
)−l

q−an+o(n)

6 4(E W )2 ·
L
∑

l=1

q2Llqγln−an+o(n)

6 4Lq2L
2

qγLn−an+o(n) · (E W )2.

Therefore, as before, the probability thatW = 0 is also at mostexpq(γLn − an + o(n)). Thus, setting
L := δ/(2γ), the claim follows.
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B.3 Proof of part 1 of Theorem 22 (random general codes under erasures)

Consider a random codeC : [q]k → [q]n, wherek = (1 − p − γ)n. Let A be the set of potential inputs
to the decoding algorithm, that is,A := {a ∈ ([q] ∪ {?})n : |Supp∗(a)| = (1 − p)n}. We modify the
definition ofW as follows. For everya ∈ A and orderedL-list X of messages, defineI(a,X) to be the
indicator random variable for the event that, for allx ∈ X, the encodingC(x) of x agrees witha; finally,
in the definition ofW , we consider only(a,X) pairs of the above form. As in the errors case, the code is
(p, L) erasure list-decodable if and only ifW = 0.

For everya ∈ A andx ∈ [q]k, the encoding ofx agrees witha with probabilityq−(1−p)n, and hence by
independence, the probability thatI(a,X) = 1 is expq (−(1− p)Ln). Therefore,

E W > q−(1−p)Ln ·
(

n

np

)

q(1−p)n · 1
2
qkL,

where the second factor is the number of possiblea, and the third term is a lower bound on the number of
X ’s. Moreover, proceeding as before, we can bound the variance ofW by

VarW 6

L
∑

l=1

∑

|X∩Y |=l

∑

a,b

Pr [E ] , (6)

whereE is the event thatI(a,X) = I(b, Y ) = 1.

Now, fix an arbitrary pair(X,Y ) with |X ∩ Y | = l > 0. Observe that the eventE implies that botha
andb agree with the encodingC(u) of someu ∈ X ∩ Y (indeed, such au is guaranteed to exist). Since
C(u) is a string over[q] (i.e., it does not contain any ‘?”s), it follows thata andb must themselves agree
with each other. Moreover, the eventE requires that (a)C(x) agrees witha for all x ∈ X r Y , (b) C(y)
agrees withb for all y ∈ Y r X, and (c)C(z) agrees withbotha andb for z ∈ X ∩ Y . Therefore, the
probability ofE is at most

expq (−|S||X r Y | − |T ||Y rX| − |S ∪ T ||X ∩ Y |) = expq (−2(1− p)(L− l)n− |S ∪ T |l) ,
whereS := Supp∗(a) andT := Supp∗(b). Now, for a given pair(S, T ), the number of pairs of centers
(a, b) such that (a)Supp∗(a) = S, (b) Supp∗(b) = T , and (c)a andb agree with each other (i.e.,a|S∩T =
b|S∩T ), is equal toq|S∪T |. Thus, the inner summation in (6),

∑

a,b

Pr [I(a,X) = 1 andI(b, Y ) = 1] =
∑

S,T

expq (−2(1− p)(L− l)n− |S ∪ T |(l − 1))

6

(

n

pn

)2

expq (−2(1− p)(L− l)n− (1− p)n(l − 1))

=

(

n

pn

)2

q−(1−p)(2L−l−1)n.

Finally, plugging in this estimate in (6),

Var W 6

L
∑

l=1

L2Lqk(2L−l) · q−(1−p)(2L−l−1)

(

n

np

)2

= (E W )2 ·
L
∑

l=1

4L2L · q((1−p)n−k)l−(1−p)n

6 (E W )2 · 4L2L+1 · qγnL−(1−p)n.

Thus, forL := 1−p
2γ , the variance ofW is o((E W )2), and hence we are done.
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B.4 Proof of part 2 of Theorem 22 (random linear codes under erasures)

We first note that if a linear code contains a list ofL linearly independentcodewords agreeing with some
a ∈ A, then its list-size is at leastqL−1. Indeed, ifc1, c2, . . . , cL are codewords agreeing witha, then, in fact,
so does every‘affine’ linear combinationof the codewords; i.e., every vector of the formθ1c1 + · · ·+ θLcL
where theθi are scalars satisfyingθ1+ θ2+ · · ·+ θL = 1. Note that the number of such linear combinations
is exactlyqL−1.

Consider a random linear codeC of blocklengthn and dimensionk = (1 − p − γ)n. Recall thatA is
the set of stringsa overFq ∪{?} such that|Supp∗(a)| = (1−p)n. Fora ∈ A and any linearly independent
L-list X of messages, defineI(a,X) to be the indicator random variable for the event thatC(x) agrees with
a for all x ∈ X, and letW :=

∑

a,X I(a,X).

For fixeda andX, it is easy to see thatE I(a,X) = expq (−(1− p)Ln), and therefore (as in Ap-
pendix B.3),

E W > q−(1−p)Ln ·
(

n

np

)

q(1−p)n · 1
2
qkL.

For a pair of listsX andY (each of which is linearly independent), definel = l(X,Y ) := dim(Span(X)∩
Span(Y )). It is easy to check that ifl = 0 (i.e.,X andY are linearly independent), the random variables
I(a,X) andI(b, Y ) are statistically independent. Therefore, we can bound thevariance ofW by

Var W 6

L
∑

l=1

∑

l(X,Y )=l

∑

a,b

Pr [E ],

whereE is the event thatI(a,X) = 1 andI(b, Y ) = 1.

Fix a pairX,Y such thatdim(Span X ∩ Span Y ) = l > 0. As in Subsection B.2, we partition
Y asY0 ∪ Y1, where (a)|Y0| = l and |Y1| = L − l, (b) X is linearly independent fromY1, and (c)
Y0 ⊆ Span(X ∪ Y1). Moreover, picky0 ∈ Y0 arbitrarily, so thaty0 =

∑

u∈X∪Y1
θu · u for some scalars

{θu}u∈X∪Y1
. Note thatθx 6= 0 for at least onex ∈ X.

Now, fix a pair of stringsa, b ∈ A, and letS := Supp∗(a) andT := Supp∗(b). We are interested
in the probability ofE for this choice ofa andb. (Note that for general codes, this event implies that the
stringsa andb had to agree with each other; this is not so for linear codes.)For anyx ∈ X, conditioned
on the event thatC(x)|S = a|S , the random variableC(x)|TrS is uniformly distributed overFTrS

q . Since
y0 =

∑

x∈X θx ·x+
∑

y∈Y1
θy ·y (with θx 6= 0 for somex ∈ X), it follows thatC(y0)|TrS is also uniformly

distributed overFTrS
q . Hence, conditioned on the event thatC(x) agrees witha for all x ∈ X andC(y)

agrees withb for all y ∈ Y1, the probability thatC(y0) agrees withb is at mostq−|TrS|. Hence,

∑

a,b

Pr [E ] 6
∑

S,T

q−(1−p)n|X∪Y1|q−|TrS| · q|S|+|T |,

= q−(1−p)n(2L−l)q2(1−p)n ·
∑

S,T

q−|TrS|,

6 q−(1−p)n(2L−l)q2(1−p)n ·
∑

S,T

2−|TrS|,

= q−(1−p)n(2L−l)q2(1−p)n

(

n

np

)2

ES,T

[

2−|TrS|
]

.

Here, the expectation is overS, T ⊆ [n] of size(1 − p)n, chosen independently and uniformly at random.

25



By Lemma 30 below, this quantity can be bounded by

q−(1−p)n(2L−l)q2(1−p)n

(

n

np

)2

· exp2
(

−1

8
p(1− p)n+ o(n)

)

.

Plugging this in our upper bound for the variance, we have

VarW 6

L
∑

l=1

q2Llqk(2L−l) · q−(1−p)n(2L−l)q2(1−p)n

(

n

np

)2

· 2− 1

8
p(1−p)n+o(n)

6 4(E W )2
L
∑

l=1

q2Llq((1−p)n−k)l · 2− 1

8
p(1−p)n+o(n)

6 4Lq2L
2

qγnL2−
1

8
p(1−p)n+o(n) · (EW )2

Thus, for

L :=
p(1− p)

16γ log q
,

this ratio iso(1). Thus, the code contains a bad list ofL linearly independentmessages w.h.p.; this implies
that its list-size is at leastqL−1.

Lemma 30. If S, T are independently and uniformly random subsets of[n] of size(1− p)n, then

ES,T

[

2−|TrS|
]

6 exp2

(

−p(1− p)n

8
+ o(n)

)

.

Proof: We prove this by thresholding on|T r S|. It can be easily checked that the random variable|T r S|
has the hypergeometric distribution with parameters(n, pn, (1 − p)n), and hence its mean isp(1 − p)n.
Hence, since hypergeometric random variables are concentrated around their mean, we expect that|TrS| >
1
8p(1− p), except with an exponentially small probability.

We now justify the above intuition by explicit calculations. For anyt, the probability that|T rS| = t is
equal to

f(n, (1− p)n, pn, t) :=

((1−p)n
t

)( pn
pn−t

)

( n
pn

) =

((1−p)n
t

)(pn
t

)

( n
pn

) .

For t 6 1
8p(1− p)n, this can be upper bounded by2εn+o(n), where

ε := (1− p)h
(p

8

)

+ ph

(

1− p

8

)

− h(p).

We are interested in upper bounding the exponentε. We will assume thatp 6 1/2; the argument in the
p > 1/2 case is symmetric (by replacingp by 1− p). By concavity ofh(·),

ε 6 h

(

(1− p) · p
8
+ p · 1− p

8

)

− h(p) 6 h(p/4) − h(p).

By Fact 24,

ε 6

[

p

4
log

(

4

p

)

− p log

(

1

p

)]

+ (log e)
[p

4
− (p− p2)

]

.

For0 < p 6 1/2, the first term is negative, and henceε 6 (log e)
(

p2 − 3p
4

)

6 −1
4p log e 6 −p(1−p)

4 .
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Thus, summing over allt 6 1
8p(1 − p)n, the event|T r S| 6 1

8p(1 − p)n occurs with probability at

mostexp2
(

−p(1−p)n
4 + o(n)

)

. Hence, the desired expectation is bounded as

E

[

2−|TrS|
]

6 Pr

[

|T r S| 6 1

8
p(1− p)n

]

· 1 + exp2

(

−1

8
p(1− p)n

)

,

establishing the claim. ✷
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