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Abstract

We study certain combinatorial aspects of list-decodingtivated by the exponential gap between
the known upper bound (@(1/+)) and lower bound (of2,,(log(1/+))) for the list-size needed to list
decode up to error fractiop with rate~y away from capacity, i.el — h(p) — v (herep € (0, %) and
~ > 0). Our main result is the following:

e \We prove that in any binary code C {0, 1}" of ratel — h(p) — -, there must exist a s&t C C'
of Q,(1/,/7) codewords such that the average distance of the poinigriom their centroid is at
mostpn. In other words, there must exist,(1/,/7) codewords with low “average radius.”

The standard notion of list-decoding corresponds to warkinth the maximumdistance of a
collection of codewords from a center insteachwéragedistance. The average-radius form is in
itself quite natural; for instance, the classical Johnsouarld in fact implies average-radius list-
decodability.

The remaining results concern the standard notion of Bsieding, and help clarify the current state of
affairs regarding combinatorial bounds for list-decoding

o We give a short simple proof, over all fixed alphabets, of theva-mentione€, (log(1/v)) lower
bound. Earlier, this bound followed from a complicated, engeneral result of Blinovsky.

e We show that oneannotimprove the2,,(log(1/+)) lower bound via techniques based on identi-
fying the zero-rate regime for list-decoding of constarmtigit codes (this is a typical approach for
negative results in coding theory, including fag(log(1/+)) list-size lower bound). On a positive
note, ourQ2,(1/,/7) lower bound for average-radius list-decoding circumvéhmitsbarrier.

e We exhibit a “reverse connection” between the existenceoottant-weight and general codes
for list-decoding, showing that the best possible lisesis a function of the gap of the rate to
the capacity limit, is the same up to constant factors fohlwotnstant-weight codes (with weight
bounded away from) and general codes.

o We give simple second moment based proofs that w.h.p. aiistof(2,,(1/~) is needed for list-
decodingandomcodes from errors as well as erasures. iaadom linearcodes, the correspond-
ing list-size bounds ar@,,(1/+) for errors ancxp(£2,(1/~)) for erasures.
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1 Introduction

The list-decoding problem for an error-correcting céde€ Y. consists of finding the set of all codewords
of C' with Hamming distance at mogt from an input stringy € >". Though it was originally introduced

in early work of Elias and Wozencraft![6, 115] in the contextestimating the decoding error probability
for random error models, recently the main interest indistoding has been for adversarial error models.
List decoding enables correcting up to a factor two more tacase errors compared to algorithms that are
always restricted to output a unique answer, and this patdras even been realized algorithmically][10, 8].

In this work, we are interested in some fundamental combira@tquestions concerning list-decoding,
which highlight the important tradeoffs in this model. Fix (0, %) and a positive integef.. We say that
a binary codeC' C {0,1}" is (p, L) list-decodable if every Hamming ball of radigs. hasless thanL
codewords. Heregp corresponds to the error-fraction ando the list-size needed by the error-correction
algorithm. Note thatp, L) list-decodability imposes a sparsity requirement on te&iution of codewords
in the Hamming space. A natural combinatorial questiondhiaes in this context is to place bounds on the
largest size of a code meeting this requirement. In pagticah outstanding open question is to characterize
the maximum rate (defined to be the limiting ragdog |C| asn — o0) of a(p, L) list-decodable code.

By a simple volume packing argument, it can be shown ttiat &) list-decodable code has rate at most

1 — h(p) + o(1). (Throughout, forz € [0, 3], we useh(z) to denote the binary entropy function &)
Indeed, picking a random centey the Hamming balB(z, pn) contains at leasC| - (p’;L)Q—" codewords

in expectation. Bounding this by — 1), we get the claim. On the positive side, in the limit of lafgethe
rate of a(p, L) list-decodable code approaches the optiinal 2(p). More precisely, for anyy > 0, there
exists &p, 1/~) list-decodable code of rate at ledst h(p) —~. In fact, a random code of rate- h(p) — v

is (p,1/~) list-decodable w.h.p[[16] 7], and a similar result holdsrendom linear codes (with list-size
0,(1/7)) [@]. In other words, a dense random packing26f~"(»)=7)" Hamming balls of radiugn (and
therefore volumex 2" each) is “near-perfect” w.h.p. in the sense that no poinbiered by more than

0,(1/~) balls.

The determination of the best asymptotic code rate of biyar) list-decodable codes asL are held
fixed and the block length grows is wide open for every choice @ (0, %) and integer, > 1. However,
we do know that for each fixegp € (0, %), this rate approachek — h(p) in the limit asL — oo. To
understand this rate of convergence as a function of igt5j following [9], let us defineL, , to be the
minimum integerL such that there exigp, L) list-decodable codes of rate- h(p) — ~ for infinitely many
block lengthsn (the quantityy is the “gap” to “list-decoding capacity”). In[1], Blinovgkshowed that a
(p, L) list-decodable code has rate at mbst h(p) — 2-9»(L) In particular, this implies that for any finite
L, a(p, L) list-decodable code has rate strictly below the optimalh(p). Stated in terms of,, -, his result
implies the corollary,, , > Q,(log(1/7)) for ratesy-close to capacity. We provide a short and simple proof
of this corollary in Sectionl4. Our proof works almost as kasver non-binary alphabets. (Blinovsky’s
subsequent proof for the non-binary case i [3, 4] involvalosgantial technical effort. However, his results
also give non-trivial bounds for every finife, as opposed to just the growth ratelgf,.)

Observe the exponential gap (in terms of the dependeneg batween the)(1/+) upper bound and
Q,(log(1/7)) lower bounds on the quantit, ,. Despite being a basic and fundamental question about
sphere packings in the Hamming space and its direct relevianest-decoding, there has been no progress
on narrowing this asymptotic gap in the 25 years since thé&swoirZyablov-Pinskel [16] and Blinovskyl[1].
This is the motivating challenge driving this work.



1.1 Prior work on list-size lower bounds

We now discuss some lower bounds (besides Blinovsky’s géf@ver bound) on list-size that have been
obtained in restricted cases.

Rudra shows that thé,(1/~) bound obtained via the probabilistic method for random sadge in
fact, tight up to constant factors [14]. Formally, thereséxi. = 2,(1/v) such that a random code of
ratel — h(p) — v is not (p, L) list-decodable w.h.p. His proof uses near-capacity-aatgecodes for the
binary symmetric channel, the existence of which is prothisg Shannon’s theorem, followed by a second
moment argument. We give a simpler proof of this result via@erdirect use of the second moment
method. This has the advantage that it works uniformly fodcem general as well as random linear codes,
and for channels that introduce errors as well as erasures.

Guruswami and Vadhan [12] consider the problem of list-&i@ands when the channel may corrupt
close to half the bits, that is, when= % — ¢, and more generally = 1 —1/q — e for codes over an alphabet
of sizeq. (Note that decoding is impossible if the channel couldwgairup to a half fraction of bits.) They
show that there exists> 0 such that for alE > 0 and all block lengths:, any(% —¢,c¢/e?) list-decodable
code containg). (1) codewords. Fop bounded away fron% (or1 —1/qin theg-ary case), their methods
do not yield any nontrivial list-size lower bound as a fuontof gapy to list-decoding capacity.

1.2 Our main results

We have already mentioned our new proof of §héog(1/)) list-size lower bound for list-decoding general
codes, and the asymptotically optimal list-size lower lwbtor random (and random linear) codes.

Our main result concerns an average-radius variant ofiéstding. This variant was implicitly used in
[1,[12] en route their list-size lower bounds for standasttdiecoding. In this work, we formally abstract
this notion: a code i$p, L) average-radius list-decodabléfor every L codewords, thaveragedistance
of their centroid from thel. codewords exceeds:. Note that this is a stronger requirement thanL)
list-decodability where only themaximumdistance from any center point to tliecodewords must exceed
pn.

We are able to prove nearly tight bounds on the achievatdeofet(p, L) average-radius list-decodable
code. To state our result formally, denote b§y the minimumZ such that there exists (@, L) average-
radius list-decodable code family of rate— h(p) — . A simple random coding argument shows that a
random code ofl — h(p) — v is (p, 1/v) average-radius list-decodable (matching the list-deitija of
random codes). That id;;~> < 1/v. Our main technical result is a lower bound on the list-stet is
polynomially related to the upper bound, naméR)y > Q,(y~1/2).

We remark that the classical Johnson bound in coding theofadt proves the average-radius list-
decodability of codes with good minimum distance —namebjinary code of relative distanceis (J(J —
§/L), L) average-radius list-decodable, whele) = (1 — /1 — 22)/2 for z € [0, 3]. (This follows from
a direct inspection of the proof of the Johnson bound [11]I$0Aone can show that if a binary code is
(3 — 2%,0(1/(2%¢?)) list-decodable for ali = 0,1,2,..., then it is also(3 — 2=,0(1/<?)) average-
radius list-decodablé [5]. This shows that at least in tigh moise regime, there is some reduction between
these notions. Further, a suitable soft version of averadeis list-decodability can be used to construct
matrices with a certain restricted isometry propelty [Sjor Ehese reasons, we feel that average-radius
list-decodability is a natural notion to study, even beydmeéting it as a vehicle to understand (standard)
list-decoding. In fact, somewhat surprisingly, one of oanstructionsof traditional list-decodable codes
with a strong weight requirement on the codewords proceetigally via average-radius list-decodability;
see Theorem 18 and the discussion following it for details.



1.3 Our other results

We also prove several other results that clarify the lanos@d combinatorial limitations of list-decodable
codes. Many results showing rate limitations in coding thigwoceed via a typical approach in which they
pass to a constant weight € (p, %]; i.e., they restrict the codewords to be of weight exastty They
show that under this restriction, a code with the statedgmt@s must have a constant number of codewords
(that is, asymptoticallgero ratg. Mapping this bound back to the unrestricted setting orie geate upper
bound ofl — h(\) for the original problem. For instance, the Elias-Bassalpgund for rateR vs. relative
distance) is of this nature (here is picked to be the Johnson radius for list-decoding for sanferelative
distance)).

The above is also the approach taken in Blinovsky’s work ELjell as that of([12]. We show that
such an approach does not ar@hnotgive any bound better than Blinovskys, (log(1/+)) bound forL,, .,.
More precisely, for any\ > p + 2-bL for someb, > 0, we show that there exists(a, L) (average-
radius) list-decodable code of réts, 1, (1). Thus in order to improve the lower bound, weistbe able to
handle codes of strictly positive rate, and cannot dedueddlind by pinning down the zero-rate regime of
constant-weight codes. This perhaps points to why imprevesto Blinovsky’s bounds have been difficult.
On a positive note, we remark that w&ee able to effect such a proof for average-radius list-deap@&some
details follow next).

To describe the method underlying our list-size lower bofamcverage-radius list-decoding, it is con-
venient to express the statement as an upper bound on ratens of list-sizel.. Note that a list-size lower
bound of L > Q,(1/,/7) for (p, L) average-radius list-decodable codes of fate i(p) — v amounts to
proving an upper bound df — h(p) — ,(1/L?) on the rate ofp, L) average-radius list-decodable codes.
Our proof of such an upper bound proceeds by first showingeaugter bound ofi(\) — h(p) — a,/L?* for
such codes when the codewords are all restricted to all haightwn, for a suitable choice ok, namely
A= p—|—a;7/L. To map this bound back to the original setting (with no wergktrictions on codewords), one
simply notes that everfp, L) average-radius list-decodable code of rdteontains as a subcode, a translate
of a constan\n-weight code of raté? — (1 — h(\)). (The second step uses a well-known argument.)

Generally speaking, by passing to a constant-weight s@cmte can translate combinatorial results
on limitations of constant-weight codes to results showinmgtations for the case of general codes. But
this leaves open the possibility that the problem of showiimitations of constant-weight codes may be
harder than the corresponding problem for general codespse still, have a different answer making it
impossible to solve the problem for general codes via thénoaetiogy of passing to constant-weight codes.
We show that for the problem of list-decoding this is fortighanot the case, and there is, in fact, a “reverse

connection” of the following form: A rate upper bound bf- h(p) — ~ for (p, L) list-decodable codes
implies a rate upper bound &f{\) — h(p) — (ii’;) ~ for (p, L) list-decodable codes whose codewords
must all have Hamming weightn. A similar cla21im holds also for average-radius list-dedaliy, though
we don't state it formally.

1.4 Our proof techniques

Our proofs in this paper employ variants of the standard gisdistic method. We show an extremely simple
probabilistic argument that yields(&,(log(1/~)) bound on the list-size of a standard list-decodable code;
we emphasize that this is qualitatively the tightest knowarid in this regime.

For the “average-radius list-decoding” problem that weodtice, we are able to improve this list-size
bound toQ2,,(1/,/7). The proof is based on the idea that instead of picking the tis&-decoding center”
2 uniformly at random, one can try to pick it randomly very @de a designated codeword, and this
still gives similar guarantees on the number of near-by wodés. Now since the quantity of interest is
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the average radius, this close-by codeword gives enoughgsafor us. In order to estimate the probability
that a typical codeword belongs to the list around, we write this probability explicitly as a function of
the Hamming distance betweehandc, which is then lower bounded using properties of hypergdnme
distributions and Taylor approximations for the binaryrepy function.

For limitations of list-decoding random codes, we defineraloan variablell that counts the number
of “violations” of the list-decoding property of the code.e\ihen show thall” has a exponentially large
mean, around which it is concentrated w.h.p. This yields ttia code cannot be list-decodable with high
probability, for suitable values of rate and list-size paeters.

1.5 Organization

We define some useful notation and the formal notion of aweradius list-decodability in Sectiéh 2. Our

main list-size lower bound for average-radius list-dengdappears in Sectidd 3. We give our short proof
of Blinovsky’s lower bounds for binary and general alphahetSectioi 4. Our results about the zero-error
rate regime for constant-weight codes and the reverse cbandetween list-decoding bounds for general
codes and constant-weight codes appear in Selction 5. ¥inali list-size lower bounds for random codes
are stated in Sectidd 6; for reasons of space, the proofhdsetbounds appear in the appendix.

2 Preliminaries and notation

2.1 Listdecoding

We recall some standard terminology regarding error-cting codes.

Let [n] denote the index s€tl,2,...,n}. Forqg > 2, let [¢] denote the sef0,1,...,q — 1}. A g-ary

coderefers to any subset C [¢]", Wheren is theblocklengthof C'. We will mainly focus on the special
case of binary codes corresponding;te- 2. The rateR = R(C') is defined to bé% Forz € [¢|" and
S C [n], the restriction of: to the coordinates iy is denotedr|s. Let Supp(x) := {z €n] : z; #0}. A
subcodeof C'is a subseC”’ of C. We say that” is aconstant-weight codeith weightw € [0, n], if all its

codewords have weight exactly. (Such codes are studied in Secfidn 5.)

Forz,y € [¢]", define theHamming distancdetweenz andy, denotedd(z, y), to be the number of
coordinates in which: andy differ. The(Hamming) weighof x, denotedwt(z), is d(0, z:), where0 is the
vector infg]™ with zeroes in all coordinates. Tliiamming) ballof radiusr centered at:, denotedB(z, r),
isthe sef{y € [¢]" : d(z,y) < r}. Inthis paper, we also need the following notions of distaoica (small)
“list” L of vectors from a “center’:

Definition 1. Given a centerr € [¢]™ and a nonempty lisC C [¢]", define the maximum and average
distances of from x respectively by:

Dpax(z, £) := max{d(x,c) : c€ L'} and
Davg(z, L) :=Ecer [ T c] = de c
[£] 4
It is well-known (cf., e.g., Lemma 5 in[12]) that the averagelius of a list is minimized by theoordi-
natewise majorityor centroid of the list:

Fact 2. Let £ = {c1,c2,...,c.} C {0,1}" be an arbitrary list of codewords, and letc {0,1}" be its
centroid that is, for any coordinatej, the j*" entry ofa is the majority of the corresponding entries of



c1,¢3,...,cr, (breaking ties arbitrarily). Then

Da\/g(a, E) = alen{l(}l}}n Da\/g (a/, £)

Next, we formalize the error recovery capability of the codeng list-decoding.

Definition 3. Fix0 < p < % and a positive integef.. LetC be ag-ary code with blocklength.

1. Cis said to be(p, L) list-decodablef for all x € [¢]", the ball B(z,pn) contains at mosL — 1
codewords of”'. Equivalently, for any: and any listC C C of size at leasL, we haveDmax(x, £) >
pn.

2. Cis said to bgp, L) average-radius list-decodaliléor any center: and anyL-tuple £ of codewords,
we haveDayg(z, £) > pn.

For constant-weight codes, it is convenient to augmentllogeinotation with the weight parameter:

Definition 4. Letp, L, q,n,C be as in Definitiol 13, and ldét < A\ < % C'is said to be(\; p, L) (average-
radius) list-decodabléd C is (p, L) (average-radius) list-decodable, and every codeword'ihas weight
exactlyAn.

We remark that the list-decodability property is standarditerature. Moreover, while the notion of
average-radius list-decodability is formally introdudgdthis paper, it is already implicit in[1) 2, 12]. The
following proposition asserts that this is a syntacticaliyonger property than standard list-decodability:

Proposition 5. If C'is (p, L) average-radius list-decodable, théhis (p, L) list-decodable.

Proof: The claim follows from the observation that the maximumatise of a list from a center always
dominates its average distance frem O

In particular, any limitation we establish for list-decbtk codes also carries over for average-radius
list-decodable codes.

Following (and extending) the notation i [9], we make thiofeing definitions to quantify the tradeoffs
in the different parameters of a code: the rRteghe error-correction radiys the list-sizeL, and the weight
A of the codewords (for “constant weight” codes). Further,general codes (without the constant-weight
restriction), it is usually more convenient to replace thee 2 by the paramete := 1 — h(p) — R; this
measures the “gap” to the “limiting rate” or the “capacity’’lo— h(p) for (p, O(1)) list-decodable codes.

Fix p, A € (0, 1] such thap < A, 0 < R < 1, and a positive integek.

Definition 6. 1. Say that the triplép, L; R) is achievable for list-decodable codéshere exist(p, L)
list-decodable codes of ratR for infinitely many lengths.

DefineR, 1, to be the supremum ovét such that(p, L; R) is achievable for list-decodable codes,
and definey, ; := 1 — h(p) — R, . Similarly, defineL,  to be the least integel. such that
(p, L; 1 — h(p) — ) is achievable.

2. (For constant weight codes.)Say that thel-tuple (\; p, L; R) is achievable if there exists\; p, L)
list-decodable codes of ratB. DefineR, () to be the supremum rat& for which the4-tuple
(X\;p, L; R) is achievable.

We can also define analogous quantities for average-raditdelcoding (denoted by a superscapy),
but to prevent notational clutter, we will not explicitly do. Throughout this papep,is treated as a fixed
constant in(0, %), and we will not attempt to optimize the dependence of oundswnp.
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2.2 Standard distributions and functions

In this paper, we usddg’ for logarithms to bas€ and 1n’ for natural logarithms. Also, to avoid cumber-
some notation, we often denaoté by exp,(z). Standard asymptotic notation®,(o, and(?) is employed
throughout this paper; we sometimes subscript this netdijoa parameter (typically) to mean that the
hidden constant could depend arbitrarily on the parameter.

Our proofs make a heavy tiypergeometric distributionsvhich we review here for the sake of com-
pleteness as well as to set the notation. Suppose a setreontabjects, exactlyn < n of which are
marked, and suppose vgamples < n objects uniformly at random from the sgithout replacementLet
the random variablé’ count the number of marked objects in the sample; thésllows the hypergeometric
distribution with parameterg:, m, s). A simple counting argument shows that, fo< min{m, s},

(1) (F)

(2)
We will denote the above expression ifyn, m,s,t). By convention, f(n,m,s,t) is set to0 if n <
max{m, s} ort > min{m, s}.

Our proofs rely on the following two properties of hypergegiritc random variables. While these claims
are standard, we have included a proof in AppeadiX A.1 forgeteness.

PriT =t] =

Fact 7 (Interchange property)For all integersn, m, s with n > max{m, s}, the hypergeometric distri-
bution with parametergn, m, s) is identical to that with parameterg:, s, m). That is, for all¢, we have

fn,m,s,t) = f(n,s,m,t).

Fact 8. Suppose:, m,m’, s are integers such that: > m’ andn > max{m,s}. Then the hypergeo-
metric distribution with parameter&:, m, s) stochastically dominatethe hypergeometric distribution with
parametergn,m’, s). That is, for all7, we have

if(n,m,s,t) > if(n,m/,s,t).
t=1 t=1

Throughout this paper, we are especially concerned witlaslyenptotic behaviour of binomial coeffi-
cients, which is characterized in terms of the binary entfopction, defined aé(z) := —zlogz — (1 —
z)log(1 — z). We will use the following standard estimate without proof.

Fact 9. Fix z € (0,1), and suppose — oo such thatzn is an integer. Then

h(z)n—o(n) ~ n < — [ < h(z)n
o (1) 50

=0
3 Bounds for average-radius list-decodability

In this section, we prove that the largest asymptotic rate,aof ) average-radius list-decodable binary codes
is bounded by

L= h(p) ~ 7 —01) < Bpi < 1—hip) — %5 + o)

whereaq, is a constant depending only pn(Herep is a fixed constant bounded away fr@mnd%.) Note
that the corresponding upper and lower bounds ea 1 — h(p) — R are polynomially related, ignoring the
dependence on

We first state the rate lower bound.



Theorem 10. Fix p € (0, %) and a positive integeL.. Then, for alle > 0 and all sufficiently large lengths
n, there exists dp, L) average-radius list-decodable code of rate at leBst h(p) — 1/L — ¢.

Proof: We will show that a random code of the desired ratépis.) average-radius list-decodable w.h.p.
Consider arandom codg : {0, 1} — {0,1}" of rateR := 1—h(p)—1/L—¢; i.e., for each: € {0, 1}7",
we pick C'(x) independently and uniformly at random froffi, 1}". For anya € {0,1}" and any distinct
L-tuple{z,..., 21} C {0,1}f"", we are interested in bounding the probability of the eveatD® < Lpn,
whereD = "% d(a, C(x)).

To estimate this probability, let be the{0, 1}-string of lengthLn obtained by concatenatingrepeat-
edly L times. Similarly, letY” be the{0, 1}-string obtained by concatenating(x1),...,C(z). In this
notation, note thab is simply the Hamming distance betwedrandY. Now, Y is distributed uniformly
at random in{0, 1}*" independently of the choice of, hence the probability thad < pLn is at most
expy ((h(p) — 1)Ln) (Fact9).

Finally, by a union bound over the choice @and{x,...,z}, the code fails to bép, L) average-
radius list-decodable with probability at most

Rn
2" <2L > ~expy ((h(p) — 1)Ln) < expy (n + (R + h(p) — 1)Ln) = expy (—eLn),

for the given choice oR, establishing the claim. O

We now show an upper bound bf- h(p) — a,/L? on the rate of dp, L) average-radius list-decodable
code. As stated in the Introduction, the main idea behina@dmstruction is that instead of picking the “bad
list decoding center’z uniformly at random, we pick it randomiyery close to a designated codeweid
(which itself is a uniformly random element frof). Now as long as we are guaranteed to find a list of
L — 1 other codewords near the center, we can inckide our list to lower its average radius.

However formalizing the above intuition into a proof is ndvial, since our restriction of the centerto
be very close te* introduces statistical dependencies while analyzing timeber of codewords neat We
are able to control these dependencies, but this requiree beavy calculations involving hypergeometric
distributions and the entropy function.

We are now ready to state our main result establishing a pertbound fo(p, L) average-radius list-
decodable codes. In fact, the bulk of the work is to show atogoas upper bound for the special case of a
constant-weight cod€, i.e., all codewords have weight exacty,, for some\ € (p, %). We can then map
this bound for general codes using a standard argumenn(giveemmd 1P).

Theorem 11(Main theorem) Fix p € (0, %), and letL be a sufficiently large positive integer. Then there
exista,,, a;, > 0 (depending only op) such that the following holds (for sufficiently large lemgt):

1. If Cis a(p, L) average-radius list-decodable code, th€ras rate at most — i(p) — a,/L* + o(1).

2. ForA :=p+ a;/L, if C'is a (\;p, L) average-radius list-decodable code, th€rhas rate at most
h(\) — h(p) — a,/L? + o(1).

As already mentioned in Sectién 1.3, the second claim neadiplies the first via the following well-
known argument (a partial converse to this statement fodésoding will be given in Sectidd 5):

Lemma 12. Let\ € (p, %] be such that\n is an integer. IfC'is a(p, L) average-radius list-decodable code
of rate R = 1 — h(p) — =, then there exists &\;p, L) average-radius list-decodable code of rate at least

h(\) = h(p) —~ —o(1).



Proof: For a random centet, the expected number of codewords= C with d(z,c) = An is exactly
|C]- (y+)27". For the assumed value of ral using FackD, this is at least

expy ((h(A) = h(p) —v —o(1))n).

Then there exists an such that the subcod®&’ C C consisting of all codewords at a distante from x
has rate at leagt(\) — h(p) — v — o(1). The claim follows by translating” by —z. 0

Before we proceed to the proof of the first part of Theokem & il establish the following folklore
result, whose proof illustrates our idea in a simple case.

Lemma 13 (A warm-up lemma) Fix p, A so thatp < A < % Then, ifC is a (\; p, L) list-decodable code,
thenC' has rate at mosk(\) — h(p) + o(1).

Proof: The main idea behind the proof is that a random centerparticular weight(carefully chosen) is
close to a large number of codewords in expectation. Pickdom subsef C [n] of coordinates of size
an, with a := (A — p)/(1 — 2p), and letS := [n] . S. (The motivation for this choice af will be clear
shortly.) Define the center be theindicator vectorof S; i.e., Supp(z) = S.

Consider the sef of codewords: € C such thatwt(c|s) > (1 — p)an; this is our candidate bad list of
codewords. Then eache L is close toc:

d(z,c) = (an —wt(c|s)) + wt(c|g) < apn+ (A — a(l —p))n = (A — (1 — 2p))n,

which equalgn for the given choice ofv. Hence the size of is a lower bound on the list-size of the code.
We complete the proof by computiig |£|. For any fixedc € C, the random variablert(c|s) follows

the hypergeometric distribution with parameténs An, an), which is identical to the hypergeometric dis-

tribution with parameterén, an, An) (see Fadt]7). Hence the probability thas included in the list is at

least (1) (1)
f(n . \n Oé(l —p)n) — ((l—p)an) (()\—a(l—p))n) _ (pom) (p(l—a)n)
() ()

where the second step uses the identity (1 — p)a = p(1 — «), which holds for our particular choice of
a. Asn — oo, this is equal to

expy (anh(p) + (1 — a)nh(p) — h(A)n — o(n)) = expy((h(p) — h(A) — o(1))n).

Thus, by linearity of expectations, the expected siz€ & at leas{C| - exp,((h(p) — h(A\) — o(1))n).
On the other hand, theg, L) list-decodability ofC' says that£| < L (with probability 1). Comparing these
lower and upper bounds da |£| yields the claim. O

Proof of Theorem[11 (part 2): At a high level, we proceed as in the proof of Lemima 13, but iditazh
to the bad listC of codewords, we will a special codewortl € C' such thatd(z, ¢*) is much smaller than
the codewords irf. Then definingC* to consist ofc* and(L — 1) other codewords front, we see that the
averagedistance of£* is much smaller than before, thus enabling us to obtain andwepl rate bound.

We now provide the details. Pick a uniformly random codewerd= C. Let S C [n] be a random
subset ofSupp(c*) of size Sn, where the parametét is chosen appropriately Ia&(‘this plays the role of
a in Lemmd13). Also, letr be the indicator vector of.

As before, consider the sgtof codewords: € C such thatwt(c|s) > (1 — p)|S|. For a fixede € C,
the random variablevt(c|s) follows the hypergeometric distribution with parametéks,, (A — d)n, fn),

LAt this point, the reader might find it useful to think of both- p and 8 as©(1/L); roughly speaking, this setting translates
to a rate upper bound @f(\) — h(p) — Q(B/L).



whereé = 6(c*, ¢) is defined byd(c*, ¢) := 20n. (Observe that the normalization ensures that 6 < A
for all pairsc*,c € C.) To see this, notice that we are samplifig coordinates fronBupp(c*) without
replacement, and thatt(c|s) simply counts the number of coordinates picked freapp(c*) N Supp(c)
(the size of this intersection is exactly — 0)n). Thus, conditioned on*, the probability that a fixed € C

is included inL is
Bn

QU = >,  fOn,(A=d)n,Bn,w). (1)
w=(1-p)Bn
By linearity of expectations, and taking expectations @vethe expected size & can be written as

3 Q((c", o))

ceC

E.- eC

whereboth ¢* andc are picked uniformly at random frod. The following lemma provides a lower bound
on this expectation.

Lemma 14. For A; := (1 — p) log (1%) + plog (%) and Ay = I%, we have

E Q(5(c*,c)) = expy (—(A18 + A258% + o(1))n),
where the expectation is taken over paifsc of codewords.

Remark In the above estimate, the coefficieti is tight for all values op and A (assumings — 0 keeping
p and X fixed), but A, can be improved significantly. For our purposes, it suffitet #, depends o
alone, and not on\ or 8. O

Proof: By a standard application of the Cauchy-Schwarz inequalieycan show thak § < A\(1 — \). To
see this, lef; denote the fraction of codewords@fthat havel in the jth coordinate. The weight constraint
on the codewords implies th@;’zl f; = An. Therefore,

Ee. [de, o) =Y 21,0 f) =23 ;-2 f?
j=1 j=1

Jj=1

2
< 2213—% (ij) = 2\n — 2\,

and so.E § < A(1 — \). Now, by Markov’s inequality, the probability that< A(1 — \) 4+ 1/n is at least
1_ )\A(I—A)l > 1
1=+ 7 n

Moreover, using Fati 8 (with := 3(1 —p)), we know thatQ(d) is a monotonically decreasing function
of 6. Therefore,

QAL = A) +0o(1))

>~ (An, (A2 = o(1))n, Bn, B(1 — p)n) .

The rest of the proof consists of lower bounding the rightchaide. Asn — oo, using FacfB, we get
E Q(9) > expy(en — o(n)), where

s::ﬁ-h((l;f)ﬂ)+A(1—A)-h<%>—A-h(?).

—_3 | -




We are interested in lower bounding the expongrand we do this by bounding each of the above entropy
terms individually using Fa¢t 24 (see AppenfixJA.2), andceding common terms. We just mention the
final bound ignoring the intermediate steps:

A A1 =) 2 (1-p)? p?
> 1—p)l 1 —1 — B=(1 .
€ 5<( p) 0g 7 +plog—— og/\> 5(0ge)< o +A(1—/\)>
Noting that
22 A1 =X A 1— )\
(l—p)logl_ + plog ( )—log/\:(l—p)logl_ + plog =—A,
and
(1-p)? P 1 2
(oge)( 2 +>\(1_/\) (loge) p2+ 2
we get the claim. O

We now return to the proof of Theorem]11. Frdm (2) and Leridaiflhe codeC' has rate at least
A18+ AaB% + o(1) (for a suitableo(1) term), the listC has size at leagt in expectation. Fix some choice
of ¢* andS such that£| > L. Let £* be any list containing* and L — 1 other codewords front; we are
interested iNDayg(z, £*). Clearly,d(x,c*) = (A — f)n. On the other hand, far € £* \ {c¢*}, we can
bound its distance from as:d(z,c) < fpn+ (A — 5(1 — p))n = (A — 5(1 — 2p))n, where the two terms
are respectively the contribution Byand|[n] \. S. Averaging thesd. distances, we get that

Dayg(z, L) < (A= (1 —2p+2p/L)) n.
Now, we picks so that this expression is at mgst; i.e., set

fim 2P

TR 3

(Compare with the choice af in Lemma1B.) For this choice d¢f, the list£* violates the average-radius
list-decodability property of’.

Thus the rate of &, L) average-radius list-decodable code is upper boundéti 4yA; 3+ A4, 3%+0(1),
whereg is given by [B). Further technical manipulations brings toi the following more convenient form:
If L > {22, then

P
Bi(A —p)
L

for By := ip andB, := W; see Lemm&a 26 in AppendixA.2 for a proof. Note that the sedenu
dominates the third whenevar— p is small enough. In particular, for

R < (M) = h(p)) - + Ba(A —p)* +o(1).

_ B pP(1-2p)
AEPT SR L TP T
the rate is upper bounded by
B} p*(1 - 2p)?
< — — = — )
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4 Bounds for (standard) list-decodability

In this section, we consider the rate vs. list-size tradfwfthe traditional list-decodability notion. For the
special case when the fraction of errors is clos% td12] showed that any code family of growing size
correcting up to% — ¢ fraction of errors must have a list-siz&(1/<?), which is optimal up to constant
factors. Wherp is bounded away from /2, Blinovsky [1,[3] gives the best known bounds on the rate of
a(p, L) list-decodable code. His results imply (seel[14] for thegkdtions) that anyp, L) list-decodable
code of ratel — h(p) — v has list-sizeL at least(2,(log(1/v)). We give a short and simple proof of this
latter claim in this section.

Theorem 15([1,[3]). 1. Suppose&” is (\;p, L) list-decodable code with = p + %pL. Then|C| <
2L2 /p, independent of its blocklength (In particular, the rate approache&asn — co.)

2. Any(p, L) list-decodable code has rate at mdst h(p) — Q,(p).
Proof:

1. For the sake of contradiction, assume thdt> 2.2 /p. Pick a randoni.-tuple of codewords (without
replacementl = {c1,c2,...,cr}, and letS be the set of indices [n]| such that each; € £ hasl
in theith coordinate. Define to be the indicator vector &f. Note thatd(x, ¢;) = wt(c;) — wt(z) =
An — |S|. SODmax(z, £) is alsoAn — | S|, and henceE Dmax(x, £) = An — E |S|. Thus to obtain a
contradiction, it suffices to show thBt|S| > (A — p)n = 2pFn.

Let M := |C| be the total number of codewords ©f and let); be the number of codewords 6f
with 1 in thei™ position. Then the probability thate S is equal tog(14;)/("}), where the function

g : R*0 — R>O is defined byg(z) := (™™=E=1) By standard closure properties of convex
functions,g is convex orR. (Specifically,z — max{z, L — 1} is convex oveiR, and restricted to its

image, namely, the interval. — 1, ), the functionz — (L) is convex. Hence their composition,
namelyg, is convex as well.)

We are now ready to bourl |S|:

- n AM
lps @ L .izgmi)g%.gGZMi):guMM)@<AL4>.
" (N s N \ns @ @

Here we have used (a) the linearity of expectations, (b)elemsnequality, and (c) the fact that
AM > 2L? > L — 1. We complete the proof using a straightforward approxiamatf the binomial
coefficients.

1 (AM —L)L L\"_ ., L2 1.,
—E|S| > (1) = aF (1) = oa
matil ML AM AM ) 72

L
2l

2. By Lemmd1R, the rate ofgeneral(p, L) list-decodable code is upper boundedibyh (p + %pL) +
o(1), which, by FacE2B (see Sectibn A in the Appendix), is at mosth(p) — (1 — 2p) - pL + o(1).
O

The above method can be adaptedgary codes with an additional trick:

Theorem 16. 1. Suppos&’ is a g-ary (\;p, L) list-decodable code with = p + %pL. Then|C| <
202/ \.

2. Suppos€’ is ag-ary (p, L) list-decodable code. Then there exists a constaatb, , > 0 such that
the rate ofC' is at mostl — hq(p) — Qg (£0%).
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Our proof of this theorem uses the following lemma due taEr@ée Section 2.1 ¢f [13] for a reference.)
This result was implicitly established in our proof of ThemI%, so we will omit a formal proof.

Lemma 17 (Erdds 1964) SupposeA is a set system over the ground Bet such that eactd € A has size
at leastAn. Then, if|A| > 2L?/), then there exist distincl;, Az, ..., Az in A such thatﬂZ.L:1 A; has size
atleastinA”.

Proof of Theorem[186:

1. Towards a contradiction, assun@g > 2L2/\. Consider the set systes := {Supp(c) : ¢ € C}.
By Lemmd17, there exists dntuple{cy, cs, . .., cr,} of codewords such that the intersection of their
support, says, has size at Iea%tnAL > %an. Arbitrarily partition the coordinates i into L parts,
saySi,..., St sothat eacly; has size at Iea%an.
Now consider a center such thatr agrees with:; on all coordinates € S;; for i ¢ S, setz; to be
zero. Then, clearlyd(z, ¢;) < wt(cj) — |S)] = A — 5-p” - n = pn. Thus the list{cy,...,c}
contradicts thep, L) list-decodability ofC'.

2. From ag-ary generalization of Lemniall2 (proof omitted), the rat@@p, L) ¢-ary list-decodable
code is at least — hq (p + 5-p"). For L large enough, this is at most— hy(p) — Qg (5-0),
which implies the claim.

5 Constant-weight vs. General codes

In this section, we will understand the rate vs. list-sizgl@-offs for constant-weight codes, that is, codes
with every codeword having weightn, where\ € (p, %] is a parameter. (Setting = % roughly corre-
sponds to arbitrary codes having no weight restrictions )oBserved earlier, a typical approach in coding
theory to establish rate upper bounds is to study the probieder the above constant-weight restriction.
One then proceeds to show a strong negative result of the tlaaba code with the stated properties must
have a constant size (and in particutarorate). For instance, the first part of Theorenh 15 above isisf th
form. Finally, mapping this bound to arbitrary codes, on&awis a rate upper bound of— h(\) for the
original problem. (Note that Lemniall2 provides a particédamal example of the last step.)

In particular, Blinovsky’s rate upper bound (Theorerh 15) efh(p) — 2~ L) for (p, L) list-decodable
codes follows this approaaﬁl\/lore precisely, he proves that, under the weiglméestriction, such code must
have zero rate for alh < p + 2% for someb, < oco. One may then imagine improving the rate upper
bound tol — h(p) — L9 simply byestablishing the latter result for correspondingly higvedues of\
(i.e., up top + L~9M). We show that this approach cannot work by establishing(twerage-radius) list-
decodable codes of positive (though possibly small) ratiss &s long as\ — p > 2-°(), Thus Blinovsky'’s
result identifies the correaero-rate regimedor the list-decoding problem; in particular, his bound lsoa
the best possible if we restrict ourselves to this approaatthis context, it is also worth noting that for
average-radius list-decodable codes, Thedreim 11 alreadhidps a better rate upper bound than what the
zero-rate regime indicates, thus suggesting that the “m#eoregime barrier” is not an inherent obstacle,
but more a limitation of the current proof techniques.

In the opposite direction, we show that the task of estaibigshate upper bounds for constant weight
codes is not significantly harder than the general problearmBlly, we state that that if the “gap to list-

decoding capacity” for general codesyisthen the gap to capacity for weight: codes isat Ieast(i—:i) 5.
2

%For notational ease, we suppress the dependengéroiiie O and2 notations in this informal discussion.
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Stated differently, if our goal is to establisa®) lower bound on the gap, then we do not lose by first
passing to a suitablg (that is not too close tp).

5.1 Zero-rate regime

Theorem 18. Fix p € (0, 3), and set = b, := % (3 —p)z. Then forL > & log (32) and all sufficiently
large n, there exists g\; p, L) average-radius list-decodable code of rate at le&st- o(1), with A <

p+5e "l and R := min{e= 2L 7L /(6L)} = Q, 1(1).

Proof: The basic idea of the proof is that a random codgid.) average-radius list-decodable, even if the
codewords are biased to have weight closgrioWe then use expurgation to ensure that all codewords have
the same weight. We now provide the details. Set e~*F and\' := p + 4¢; verify that for the assumed
values ofL, we have} — X" > 1 (1 — p). Choose a random code: {0, 1}*" — {0, 1}" in the following
way. For eachr € {0,1}7", each coordinate af'(x) chosen independently to bewith probability \’ (and
0 with the complementary probability).

Firstly, for a fixedz € {0,1}%", by Chernoff bound, its encoding(x) has weight in the interval
(X' + £)n with probability at least — 2exp(—2e%n) > 1 — expy(—2¢2n + o(n)). By union bound, this
holds for allz with probability at least — expy(Rn — 2¢2n + o(n)).

Next, we consider the event th@tis (p, L) average-radius list-decodable. Specifically, we reqniae t
for every L-tuple of messageX := {z1,...,2;} C {0,1}f" and every center € {0, 1}", the encodings
of the z;s arepn-far from a on average. It is easy to bound the probability of this eventaffixed pair
(a, X), and naively, we might hope to achieve this &irsuch pairs by a simple union bound. However, this
does not quite work, since the union bound aveontributes &™ factor loss to the probability and results
in a trivial bound. To get around this issue, we note that for lést of messages(, it suffices to control
the above event for a specific choiceaghamely, an arbitrargentroidof the encodings aot, ..., xr; we
then finish the argument by a union bound overXllSince the centroid minimizes the average distance of
a center to a given list (see Fatt 2), the code is now guarhimodee(p, L) average-radius list-decodable.

Fix an L-list X := {z1,...,z} of messages, let denote the centroid of their encodings. For a fixed
4 € [n], by Chernoff bound, the probability that thi&" entry ofa is 1 is at mostexp, (—2 (% — )\’)2 L),

which is at most
1/1 2
expy (=5 (5P L | =exp(—bL) =e.

Moreover, the entries af in then coordinates are all independent, and hence, by anothecafpmh of the
Chernoff bound (in the multiplicative form), the weightofs at most2en, except with probability at most
expy(—en/3). Assuming that this event holds, for eacke X,

d(a,z) = wt(z) — wt(a) = (X —e)n — 2en > (N — 4e)n =: pn,

and hence the average distanceXofrom « is also more thapn. Finally, by a union bound oveX, we can
conclude that the code (g, L) average-radius list-decodable, except with probabitity, (RLn — en/3).

Thus, forR = min{e?,¢/(6L)}, with probability1 — o(1), the random cod€¢’ satisfies the following:

e Each codeword i has weight at most\’ + ¢)n. Note that\' + ¢ = p + 5 = p + 5e L.

e (C'is(p, L) average-radius list-decodable.

Fix any C' with the above properties. This satisfies all our requird@s)eexcept that its codewords
could have varying weights. Fortunately, however, thisasilg fixed, since, by the pigeonhole principie,
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contains a constant-weight subcadeof size at leasfC|/(n + 1), and hence of rat& — o(1). Now, if wy
denotes the weight of the codewords(®f then note thatyy < (p + 5e~°%)n, establishing the claim with
A= wp/n. O

Note that thestatemenbf Theoreni 1B also yields as a corolldry; p, L) list-decodable codes of positive
rate with\ exponentially close tp, since standard list-decodability is only a weaker reqnést. However,
interestingly, the abovproof does not work directly because we do not have a simple analofjgac{2
identifying the best center that minimizes the maximumuadif a list. Indeed, the authors are not aware of
any proof of this result except going through average-atiai-decodability.

5.2 Areverse connection between constant-weight and arb#ry codes

Lemma 19. Fix p, A such tha) < p < A < % Then in the notation of Definitidd 6,4f:= 1 —h(p) — R, 1.,
then

A—p
B(N) = h(p) =7 < Ryt (V) < h(N) = h(p) - <; — ) v
2
Proof: The left inequality is essentially the content of Lenimh 18;skow the second inequality here. The
manipulations in this proof are of a similar flavor to thos&.@mmad13, but the exact details are different.

Suppose” is a(\; p, L) list-decodable code of blocklengthand rateR, such that each codeword
has weight exactlyn. Pick a random subsét C [n] of coordinates of sizaon, with as := (A—p)/(3 —p),
and letS := [n] \. S. (Interestingly, our setting af;, differs from the parameter employed in the proof of
Lemma[1B only by a factor df. The motivation for this choice af; will become clear shortly.) Consider
the subcod&” consisting of codewords € C such thatwt(c|s) > aon/2. For our choice ofv,, one can
verify that if c € C’, thenc has weight at most(1 — as)n = p|S| when restricted t& (this is the motivation
behind our choice ofis).

Consider the restriction af” to the coordinates it¥, C’|s := {c|s : ¢ € C'}. Our key observation
is thatC’|s, as a code of blocklengthsn, is (p, L) list-decodable. Suppose not. Then there exists a center
o' € {0,1}° and a sizek list £ C O such thatd(z',c|s) < pagn for all ¢ € £. Now, extendz’ to
x € {0,1}" such thatr agrees with’ on (the coordinates iny and is zero on the remaining coordinates.
ThenZ violates the(p, L) list-decodability ofC', since for every: € L,

d(z,c) = d(2', c|s) + wt(clg) < pagn + p(1 — az)n = pn.

Therefore,C’|s must be(p, L) list-decodable, and hence, by the hypothesis of the lentmsizee is at most
expy((1 — h(p) — v + o(1))agn) with probability 1. (It is crucial for this proof that the blocklength 6f
is asn, Which is significantly smaller than.)

Now, for a fixede € C, the random variablevt(c|s) follows the hypergeometric distribution with
parametersén, An, aan), which is identical to the hypergeometric distributionthwitarameterén, asn, An).
Hence, the probability thatis included inC” is at least

() (A )
()

@) (aanfo) (17((11__222))2)

- (o)

> expy (agn + h(p)(1 — ag)n — h(A)n —o(n)) .

f(n,aom, An, agn/2) =
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In the step marke¢«), we have used the the identity— as/2 = p(1 — ), which holds for our particular
choice ofay. Summing this over alt € C, the expected size @i’|s is at least

expy (Rn + agn + h(p)(1 — az)n — h(A)n —o(n)) .
Finally, comparing the upper and lower bound on the expesitariofC’| s, we get
R+ az + (1 —az)h(p) = h(A) —o(1) < (1 = h(p) — y)az + o(1),

which can be rearranged to give the desired balind h(\) — h(p) — aoy + o(1). O

6 List-size bounds for random codes

In this section, we establish optimal (up to constant fajtbounds on the list-size of random codes, both
general as well as lineBrResults of this vein were already shown by Rudra for the sicase[14], based on
the large near-disjoint packings of Hamming balls impligd3hannon’s capacity theorems. Here we give
a direct proof based on the second moment meﬂmdaddition, our proofs extend easily to give list-size
bounds follist-decodable codes for erasure channatswell.

Throughout this section and Appendik B, we work with randgry codes — both general and linear.
A randomg-ary code(for ¢ > 2) is simply a random mag’ : [¢]* — [¢]" where, for eachx € [q¢]*, its
imageC'(z) is pickedindependently and uniformly at randdnom [¢]". On the other hand, @ary random
linear codeis a random linear mag' : F’; — Fy obtained in the following way. We fix an arbitrabasis
(typically, but not necessarily, the standard basis) fer\tactor spaceF’;, and theencoding of the basis
vectorsis chosen independently and uniformly at random fiBf}y the encoding map’ naturally extends

for all messages iiﬁ"; via linearity.

6.1 Proofidea

Our results proceed directly via the second moment methoaaids this goal, we define a random variable
W that counts the number @fitnessegi.e., a bad list of codewords together with the center) teatify
the violation of the(p, L) list-decodability property Thus the code i$p, L) list-decodable if and only if
W = 0. We then show that (d}/ has large expectation (i.d W is exponential im), but (b) its variance

is relatively small (i.e.Var W/(E W)? is exponentially small im). Then using the Chebyshev inequality
(Fact28), we can conclude thif > 0, except with an exponentially small probability, which ibat we
set out to show.

As a particular example, consider the case of random geoedsds under errors. In this case, the
“potential violations” of the list-decoding property amdexed by pairga, X), wherea € {0,1}" is an
arbitrary center, and is an arbitrary distinc_-tuple of message§ry, 2o, ..., 21} C {0,1}*. We thus
define the indicator random variahléa, X) for the event thati(a, C(z)) < pn for all z € X, and let
W = >, xI(a, X). The mean and variance estimates fgrfollow by standard calculations. See the
formal proofs for details.

3In contrast to Sectiord BL5, our results on random codegateslsas bounds on the list-size in terms of the rate. Reweatliat
rate upper bound of — hq(p) — Q4,,(1/L) corresponds to a list-size bound@f,,,(1/~) for codes of ratd — hq(p) — 7.

“We remark that the argument in]14] is also based on the semandent method, but applied to a more complicated random
variable.
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6.2 Error list-decodability bounds

We state our bounds for standard list-decodable codes r(@ndes), deferring the complete proofs to Ap-
pendice§ BI1 and B.2.

Theorem 20.Fixqg > 2,0 <p<1—1/¢gand~y > 0.

1. A randomg-ary code of ratel — h,(p) — 7 is (p, %i(”)) list-decodable with probability at most
€XDPy (_me/(n))-

2. Arandomy-ary linearcode of ratel — h,(p) — v is <p, 55—;’) list-decodable with probability at most
exp, (—€2,(n)). Here,d,,, is a constant depending on onjyandp.

6.3 Erasure list-decodability bounds

The technique outlined in Sectibn B.1 also extends to gateslze bounds for randoigrary codes under
the erasure modelwhich we now review briefly. In this model, the output alpétis the usual alphabéi]
augmented with a speciatasure symbol?’. For a stringa € ([¢] U {?})", defineSupp*(a) to be the set
of indices: such thati; # 7. Also, we say that, b € ([¢] U {?})" agreewith each other ifs; = b; for all

i € Supp®(a) N Supp*(b).

Definition 21. A codeC C [¢|" is said to be(p, L) erasure list-decodablié for all a € ([q] U {?})"
satisfying| Supp*(a)| = (1 — p)n, at mostL — 1 codewords o€ (treated as strings oveiig] U {?})) agree
with a.

We are now ready to state our bounds for random (general aedr)i codes under erasures. Note the
exponential gap between the list-sizes of linear and géremdom codes under erasures.

Theorem 22. Fixg > 2,0 < p < landy > 0.
1. A randomg-ary code of ratel — p — ~ is (p, 12‘—f) erasure list-decodable with probability at most
expy (—Qp5(n)).

2. Letg be a prime power. A randompary linear code of ratel — p — ~ is (p,% - eXDy (%))
erasure list-decodable with probability at mestp, (—2,(n)).

The proofs for the above two bounds appear respectively peAdice$ B3 and Bl.4.
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A Technical results on standard functions

A.1 Properties of hypergeometric distributions

Proof of Fact[4: We consider a modification of the experiment in the definitddrthe hypergeometric
distribution. Consider a set of distinguishable objects that are marked by two players;eAéind Bob.
Alice picksm objects uniformly at random and marks it ‘A’. Simultanegu&ob pickss objects uniformly
at random and marks it ‘B’. Moreover, the choices of Alice &ub areindependenbf each other. We
claim that the number of objeci marked byboth Alice and Bob follows the hypergeometric distribution
with parametergn, m, s). Indeed,conditionedon the subsetl of objects selected by Alice, the number
of objectsfrom A that are picked by Bob follows the hypergeometric distitoutvith parametergn, m, s)
(independent ofd); we now obtain the claim by unconditioning ah
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Note that the above experiment is symmetric w.r.t. Alice Bobt, and hence the same argument shows
that 7" follows the hypergeometric distribution with parametgtss, m) as well. The lemma now follows.
|

Proof of Fact[8: Consider an urn containing balls, of which exactlyn’ are black,,m — m’ are green,
and the remaining are white. Sampldalls from the urn without replacement. Then, the numbBeof
black balls picked follows the hypergeometric distribatiwith parameter$n, m’, s), whereas the number
N of nonwhite (i.e., black or green) balls picked follows thgoérgeometric distribution with parameters
(n,m,s). Since, for any outcome, it holds that > B, the probability thatV > 7 is at least that of the
event thatB > 7, which is what we wanted to show. O

Remark The joint random variabléB, N) is astochastic couplingpetween the two hypergeometric distri-
butions.O

A.2 Properties of the binary entropy function
In this section, we will prove some standard properties efttimary entropy function used in this paper.

Fact 23. For anyp, A such that) < p < A < % we have

h(A) = h(p) = 5(1 —2p) - (A —p).

| =

Proof: We begin with the identity

h(A)—h(p):/:h'(z) dz:(loge)/)\ln<1_z> dz.

P z

Foru > 1, we havenu > “=1, which implies that fob < z < 2,

In > 5 > (1-2z).

z

1—2z

1—2 1=z 1 1_-9;
z —z

Therefore,

A
D)~ h(p) > (loge) [ (1~ 22) dz = (loge)(1 = A= p)A—p) > (05) (5~ ) (A=)

which establishes the claim.

Fact 24. For all z € (0,1), we havezlog(1/z) + (loge)(z — 22) < h(z) < zlog(1/z) + (loge)z.
Proof: After expanding the definition di(-), the above inequality reduces to
z—22<—(1—2)In(1 —2) < 2

We can equivalently write this as

—z 1—2’

In(1—2) < —z, andln(l—i—lz >< i
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both of which are special cases of the standard inequalfty+ =) < =z valid for all realz. O

Next, we show how to massage the rate upper bound given inr@imé@] in Sectioi]3 into a more
convenient form. For the remainder of the section, weset= (1 — p)log ( ) + plog ( ) and

Ay = 2.
2 p?

Lemma 25.

Proof: We begin with

A= (= pyiog (452 4 poe (25)
<(1- log( >—|—plog< >
= (1—2p)log (1 >+plog (%)

(1—%Nﬂm+mbg< >-

To complete the proof, we bound each term separately. First,

A A oo e
M@ﬁﬂﬂw—/ﬂmwﬂh:MQ%ﬁ/Zé%@dz

A
gwuy+/ %

p

Also, by the concavity of:, h(\) — h(p) > h’(A)(/\ p), SON (p) < h(AA):Z(p) - 4“})"’). On the other
hand, applying the inequality, < z — 1 with z = 1 %, We get

l—p A=p A—Dp
— | < < — <
IOg <1—A> ~ (loge)l_)\ \4(A p) ~ p2 ’

sincep < % ande < 4. Plugging these in the upper bound fbr gives the claim. O
Lemma 26. Fix ¢ € (0, %), and set3 := (A — p)/(1 — 2p + 2pe). Then

A1+ A8 < h(A) = h(p) — Bie(A — p) + Ba(A — p)?
for By .= %p and By = (1 ) (Note thatB; and B, are independent of ande.)

Proof: From Lemma& 25, we have

R R e =
1—2p 5(\ —p)?
<m'( ( )—h(p))er-



Assuming0 < ¢ < 3522 we can upper bound this by

2p
| o e 5(\ — p)?
A < =5 () = h0) + 255
B h(\) — h(p) 5(A —p)*
=hO) = hp) = =75 = et
per—p) 5O\ —p)?
< h(X) = h(p) — 2 p(1 —2p)

using FacEZ2B. Alsod,3? < p%g;g;;. Thus,

A-p) 50 -p)? | 2(A—p)?
2 p(1—=2p)  p*(1—2p)?
A—p)  3(A—p)?

2 P21 —2p)%

A1B+ A < h(N) — hp) — B

< h(3) — h(p) — P

B List-decoding bounds for random codes

Throughout this section, we fix the parameigrs, andn. Fora € [q]", letB,(a, pn) be theg-ary Hamming
ball with centera and radiugn. Let i denote the fraction of points ¢§]™ that are inside a Hamming balll
of radiuspn; i.e., u = |By(a, pn)|/q¢"™ for an arbitrarya € [¢]". We need the following estimate @n(this
generalizes Fatl 9 for larger alphabet sizes):

Fact 27. Asn — oo, exp,((hg(p) — 1 —o(1))n) < p < exp,((he(p) — 1)n).

We also need the following simple corollary of Chebyshertguality:

Fact 28. Let TV be a nonnegative random variable. Th&H,= 0 with probability at mos%.

B.1 Proof of part[ll of Theorem[20 (random general codes underrsors)

Consider a random cod®@ : [¢]* — [¢]", wherek := (1 — h,(p) — 7)n. Fix a positive integer., to be
specified later. For any centerc [¢]", and any (ordered) list of messages( := (v1,29,...,21) C [q]F,
letI(a, X') be the indicator random variable for the event that the eingaaf = falls inside the balB,(a, pn)
for all z € X. Moreover, definéV := 3_ \ I(a, X). Clearly, the cod& is (p, L) list-decodable if and

only if W > 0.

For a fixed centen and a fixed message the event that the encoding ofalls insideB,(a, pn) occurs
with probability z2; since the encodings of distinct messages are statigticalépendentPr I(a, X) = u”.
Also, assuming: > L + 1, the number of possibl:, X) pairs is at Ieasfz—q’“L - ¢", since the number of
orderedL-lists X of distinct messages is

k¢ k k kL L_li kL (é) kL 2b 1 kL
@ =D L) 2 (1= ) = (15 ) >q <1—§>>§q :

=0 q
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Therefore, by linearity of expectations, W > $urq"g"".

We now upper bound the variance f. For two lists of message’¥ andY’, define theintersection
parameterl = [(X,Y) := | X NY|. If X andY are disjoint (equivalently, if(X,Y") = 0), then the events
I(a, X) andI(b,Y") are independent for any pair of center$. Therefore,

Var W = ) (E [I(a, X)I(,Y)] - E [I(a, X)] - E [I(b,Y)])

X,Y ab

= > ) (E[I(a, X)I(b,Y)] - E [I(a, X)] - E [I(b,Y)])

XNY#0D a,b

< > ) E e, X)I(b,Y)]

XNY#D ab

= > ) Pri(e,X) =1andl(,Y) =1].

XNY#D ab

L
=> Y > Prl(e,X)=1andl(bY) = 1].

I=1|XNY|=l ab

For convenience, we convert the inner summation into anaapen by randomizing over the centers

a,b:
L

Var W< ¢y Y Prope [I(a, X) = 1andl(b,Y) =1]. (4)
I=1|XnY|=l
Here, in addition to the randomness of the code, the centarslb are picked uniformly at random from
[q]™
Fix 0 < I < L, and a pair(X,Y’) such that X NnY| = [. Fix an arbitraryz € X NY’; such a
z is guaranteed to exist sincé andY intersect. Now, the everdt thatl(a, X) = I(b,Y) = 1 can be
equivalently expressed as the conjunction of the events

e Botha,b fall inside B, (C(z), pn);
e Foreachr € X \ z, the encoding of: falls insideB,(a, pn); and

e Fory € Y \ X, the encoding of falls insideB, (b, pn).

The first event occurs with probability?, and conditioned on the choice afand b, the second and
third events occur with probabilities”~! and .“~! respectively (and they are independent giveand
b). Therefore the probability of is x2“~+1. Finally, by an easy counting, the number of p&ik§ Y) with
|X NY| = lis at mostL*¢*2L=D Thus, we can bound the variancel&fas

L
Var W < q2n Z LZqu(QL—l)MQL—H-l.
=1

Dividing by (E W)2, we get

L
Z4L2L (") i
1=1



For our choice of parameters, we hayig, = ¢—7", and hence

L
L4Lq~/ln,u < L4L+1q7Ln —(1—hgq(p ))

This quantity isexp, (—$,,(n)) for L := ;’ 1) and hence we are done by Hack 28.

B.2 Proof of part[2 of Theorem[20 (random linear codes under ewors)

We follow the same outline as in AppendixB.1, so we will onighiight the differences. L&f’ be a random
linear code of blocklength: anddimensionkt = (1 — h,(p) — v)n. We consider pairéa, X) as before, but
we now allow onlylinearly independent list of messag&s Moreover, the definition oft” is unchanged,
except that we sum over only the admissitde Finally, we modify the definition of the parameteto
take linearity into account. For a pair of lis§ andY (each of which is linearly independent), we define
I =1(X,Y) := dim(Span(X) N Span(Y')) (where, for any se of message vectorSpan(Z) denotes its
linear span). Note thdt= 0 if and only if they X andY are linearly independent of each other.

For anylinearly independent seX, the encodings of vectors iX are statistically independent, and
henceE I(a, X) = p*. Once again, the number of linearly independent litss again at least ¢**;
indeed, the number of such lists is

L-1

(@ =D~ (" —a") 2" (1 -2 qi_k> > (1- 2 *) 2

1=0

qu'

N | —

Therefore, as beford& W > 3(¢"u) g

As before, the event§a, X) andl(b,Y) are statistically independent whenevérandY are linearly
independent, i.el,= 0. Therefore, as before, we can bound the variandé’ diy

VarW<q2”Z Z Prabc
I=1 [(X,Y)=

where€ is the event thal(a, X)) = 1 andI(b,Y) = 1. Now, fixanl such thatl <! < L, and fix a paitX, Y
such thatlim(Span X N Span Y') = (. Then,Y can be partitioned a8 = Y, U Y7, with (a) |Yy| = L and
|Y1| = L —1, (b) X is linearly independent frori, and ()Y, C Span(X U Y;). Fix an arbitraryy, € Y.
Then, by the span condition, we can writge= ZuEXUYl 0., - u for some set ocalars{6,, }.cxuy,. Note
that it is possible thag lies in the span ofX. But, sinceY is an independent sej, cannotbe written as a
linear combination of vectors froffi; alone; in particular, there exists some= X with 6, # 0.

In order to upper bound the probability f we estimate the probability that(yy) € B, (b, pn), after
conditioningon the subeverd’ thatC'(u) € B,(a,pn) forallu € X, andC(u) € B, (b, pn) for all u € Y3.
(It is easy to check that the latter event occurs with prdtbi X1l = ;,20-1)

At this point, it is convenient to re-center the vectors¥inJ Y; as follows: Foru € X, defineC’(u) :=
C(u) — a, and foru € Y7, defineC’(u) := C(u) — b. After conditioning org’, the random variableS’ (u)
(foru € X UY))arei.i.d. and are uniformly distributed inside the dJI(0, pn); furthermore, they are also
independent of the choice afandb. In terms of these new random variables, we can write

Clyo) b= Y 0,-C'(u (ZO)a—i—(ZHul)b

ueXUY7 ueX ueYq
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We claim that conditioned oé’, C'(yo) — b € B,(0, pn) occurs with probability at most ™). We
discuss two cases:

1. Suppose . x 0u # 0, 0r 37 -y, 6 # 1. Then, conditioned on the choice 6f(u)s, the random
variableC (yo) — b is distributed uniformly at random inside}; and hence falls insidB, (0, pn) with
probability .

2. Suppose thdt 0, =0,and}_, .y, 0., = 1. In this case, we have
Clyo) b= > 0, -C'(w). 5)
ueXUY7 : 0,7#0

Thus, ifm = [{u : 6, # 0}|, thenC(yp) — b is a sum ofm points sampled independently and
uniformly from the ballB,(0, pn). Also, as observed earlier, there exists same X such that
0, # 0; moreover, sinc@uex 0, = 0, there are at leastvo u’s in X with 6, # 0;i.e.,m > 2. We
now bound the probability of conditioned ort’ using the following fact:

Lemma 29. For everyg > 2 and every € (0, 3), there exist$ = §,,, such that the following holds

all large enough integers. If m > 2, and ifvy, vs, . . . , v,,, arem independent and uniformly random
samples fronB,(0, pn), then the probability thaty + vy + - -+ + v, € By(0,pn) is bounded by
nO(m) . q—6n_

We skip a formal proof of this lemma. A special case of thisesteent corresponding t@ = ¢ = 2
can be found in[[9] (see Lemma 7), and the proof given theremdines to give our claim with
syntactic modifications.

We now return to the proof of Theordml20. Sinee< 2L = O, (1), Lemma29 implies that,
conditioned orf’, the stated everst also occurs with probability at mogt 07 +0O(Llogn) — g—=dn+to(n)
(Without loss of generality, we may chooésmall enough so that this bound is larger than

Therefore, the conditional probability &fis at most the maximum of the two cases, namely, (—d, ,n +
o(n)). To complete the variance bound, we need an estimate on théeruof pairs(X,Y’) such that
I(X,Y) = . PartitionY asY, U Y; as before. NowX U Y; can be picked in at mogt?£~!) ways. Also,
for eachy € Yy, we can writey as a linear combination of vectors iU Y; in at mostg?Z~! < ¢?F ways.
Thus the total number of paifs, Y) with [(X,Y) = [ is at mosig?" - ¢*?L=_ Thus, the variance can be
bounded as

L
Var W < q2n Z q2Ll . qk(ZL—l)'uZL—lq—(Sn—l—o(n)
=1

<Y AEW)? - PH (qku> T grantot
=1

L

< 4(E W)2 . Z q2qu'yln—an+o(n)
=1

< 4Lq2L2 q'yLn—an—l—o(n) . (E W)2

Therefore, as before, the probability tHat = 0 is also at mostxp,(yLn — an + o(n)). Thus, setting
L :=4/(2y), the claim follows.
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B.3 Proof of part[l of Theorem[22 (random general codes underrasures)

Consider a random codg : [¢]* — [¢]", wherek = (1 — p — v)n. Let A be the set of potential inputs
to the decoding algorithm, that is} := {a € ([¢g/ U {?})" : |Supp*(a)| = (1 — p)n}. We modify the
definition of I as follows. For every: € A and ordered.-list X of messages, defiriga, X) to be the
indicator random variable for the event that, forale X, the encoding”(z) of = agrees withu; finally,

in the definition oflV, we consider onlya, X) pairs of the above form. As in the errors case, the code is
(p, L) erasure list-decodable if and onlylif = 0.

For everya € A andz € [¢]*, the encoding of: agrees withz with probability g~ ~?)" and hence by
independence, the probability tHat, X) = 1isexp, (—(1 — p)Ln). Therefore,

EW > ¢ (Upin. ( " >q(1_”)" L,
np 2

where the second factor is the number of possihland the third term is a lower bound on the number of
X's. Moreover, proceeding as before, we can bound the vaiahid” by

Var W < Z Z ZPI‘ , (6)

=1 |XNY|=l ab
where€ is the event thal(a, X) =1(b,Y) =1

Now, fix an arbitrary pai(X,Y") with | X NY| = [ > 0. Observe that the eve@itimplies that both:
andb agree with the encoding'(u) of someu € X NY (indeed, such & is guaranteed to exist). Since
C'(u) is a string overg] (i.e., it does not contain any”s), it follows thata andb must themselves agree
with each other. Moreover, the evefirequires that (a)’'(z) agrees withu for all x € X \ Y, (b) C(y)
agrees withh for all y € Y ~ X, and (c)C(z) agrees withbotha andb for z € X NY. Therefore, the
probability of € is at most

exp, (=S|I X \NY|—=T|]Y ~ X| = |SUT||IXNY]) = exp, (=2(1 —=p)(L=Dn—|SUTI),

whereS := Supp*(a) andT' := Supp*(b). Now, for a given pair(S,T"), the number of pairs of centers
(a,b) such that (apupp*(a) = S, (b) Supp*(b) = T', and (c)a andb agree with each other (i.e1|snr =
blsnr), is equal th‘SUT|. Thus, the inner summation il (6),

> Pr [I(a, X) = 1 andl(b,Y) Zequ 2(1 —p)(L—n—|SUT|(I—1))

N

2
(;‘1) exp, (~2(1 = p)(L ~ D~ (1= p)a(i ~ 1))

_ (" 2q—(1—p)(2L—l—1)n
pn '

Finally, plugging in this estimate ifi}(6),

- 2
Var W < E L2 gk@RL=D | o= (=p)RL=1=1) < n >
=1 np

Z4L2L (1=p)n—k)l—(1—p)n

< (E W) . 4L2L+1 'q'ynL (1-p)n )

Thus, forL := 12;;”, the variance ofV is o((E )?), and hence we are done.
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B.4 Proof of part[2 of Theorem[22 (random linear codes under easures)

We first note that if a linear code contains a listofinearly independentodewords agreeing with some
a € A, thenits list-size is at leagt'~'. Indeed, ifci, s, . . ., ¢1, are codewords agreeing wiihthen, in fact,

so does everiaffine’ linear combinationof the codewords; i.e., every vector of the fofie; + - - - + 0rcp,
where the); are scalars satisfying, + 60+ - - - + 07, = 1. Note that the number of such linear combinations
is exactlyg”—!.

Consider a random linear codéof blocklengthn and dimensiork = (1 — p — v)n. Recall thatA is
the set of stringa overF,U {7} such that Supp*(a)| = (1 —p)n. Fora € A and any linearly independent
L-list X of messages, defiiéa, X) to be the indicator random variable for the event thiat) agrees with
aforallz € X, and letW := 3 +I(a, X).

For fixeda and X, it is easy to see thdk I(a, X) = exp, (—(1 — p)Ln), and therefore (as in Ap-
pendiXB.3),

BW > g (-nin. ( n >q<1—p>n L
np 2

For a pair of listsX andY” (each of which is linearly independent), define /(X,Y) := dim(Span(X) N
Span(Y')). Itis easy to check that if = 0 (i.e., X andY are linearly independent), the random variables
I(a, X) andl(b,Y) are statistically independent. Therefore, we can bounddhiance ofiv’ by

L
VarW<Z Z ZPr

=1 1(X,Y)=l ab

where€ is the event thal(a, X) = 1 andl(b,Y) =

Fix a pair X, Y such thatdim(Span X N Span Y) = [ > 0. As in Subsectiof B]2, we partition
Y asYy U Yy, where (a)|Yy| = [ and|Y;| = L — [, (b) X is linearly independent fronY;, and (c)
Yo C Span(X U Y1). Moreover, pickyy € Yy arbitrarily, so thatyy = >, - xy, fu - u for some scalars
{0 }uexuy, - Note thatd, # 0 for at least one: € X.

Now, fix a pair of stringse,b € A, and letS := Supp*(a) andT := Supp*(b). We are interested
in the probability of€ for this choice ofa andb. (Note that for general codes, this event implies that the
stringsa andb had to agree with each other,; this is not so for linear codesr)anyz € X, conditioned
on the event thaf’(z)|s = alg, the random variabl€'(z)| 7 s is uniformly distributed oveF?™~%. Since
Yo =D _pex 0o T+ ey, Oy-y (With 0, # 0 for somer € X), it follows thatC'(yo) |7 s is also uniformly
distributed overFZ\S. Hence, conditioned on the event tiiatz) agrees with: for all z € X andC/(y)
agrees with for all y € Y7, the probability that”(y,) agrees withb is at mosig—|7>5!. Hence,

> Prig] <) g rpnXMlgTITSE IS
S, T

:q—(l—p)n(2L 1) 2(1 p)n Zq \T\S\
<q—(1—p)n(2L 1) 2(1 p)n 22 |T\S|

—(1—p)n(2L— —pn [ T —|T~
_ ~(-pIn@L-D) 20-p) < > Bsr [271751).
np

Here, the expectation is ovét T' C [n] of size(1 — p)n, chosen independently and uniformly at random.
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By Lemmd 30 below, this quantity can be bounded by

2
—(1—=p)n — —o)n n 1
q (1-p)n(2L l)q2(1 p) <np> - €XPy <—§p(1 —p)n+ O(n)> .

Plugging this in our upper bound for the variance, we have

L 2
Var W < Z gt CL=D | = (A=p)n2L=1) f2(1-p)n <:p> . 9—gp(1—p)n+o(n)
=1

E Zq2Ll (A=p)n—Fk)l —%p(l—p)n+o(n)

< 4Lq2L qanQ—gp(l —p)nto(n) (E W)2

Thus, for
_p(l—p)
16vlogq’
this ratio iso(1). Thus, the code contains a bad listlofinearly independentessages w.h.p.; this implies
that its list-size is at leagt“~'.

Lemma 30. If S, T are independently and uniformly random subsetg:pbf size(1 — p)n, then

Est [2_‘71\5‘} < expy <—w + 0(n)> .

Proof: We prove this by thresholding dfi’ \. S|. It can be easily checked that the random varigble. S|
has the hypergeometric distribution with parametersn, (1 — p)n), and hence its mean g1 — p)n.
Hence, since hypergeometric random variables are comatedtaround their mean, we expect tat. S| >
%p(l — p), except with an exponentially small probability.

We now justify the above intuition by explicit calculatiorfsor anyt, the probability that? . S| =t is
equal to
(1=p)my ( pn (1=p)ny (pn
f(n, (1 —p)n,pn,t) := ( ¢ (2§pn—t> _ ( t(n))( t )

pn pn

Fort < $p(1 — p)n, this can be upper bounded B§**+°"), where

=(L—p)h (g) +ph <%> — h(p).

We are interested in upper bounding the exponeriVe will assume thap < 1/2; the argument in the
p > 1/2 case is symmetric (by replacingby 1 — p). By concavity ofh(-),

c<n(@=p)BapT52) <) < hip/1) ~ hip)

c< [{{ log (%) ~plog (%)] +(loge) [2 (o1

For0 < p < 1/2, the first term is negative, and hencec (log e) <p2 — %) < —%p loge < —@.

By Fact{24,

26



Thus, summing over al < ip(1 — p)n, the eventT ~ S| < #p(1 — p)n occurs with probability at

n

mostexp, (—p(l% + o(n)). Hence, the desired expectation is bounded as

E [2—|T\SI] < Pr [|T NS < %p(l — p)n] -1 4 exp, <—%p(1 — p)n> )

establishing the claim. O
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