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Abstract—The paper explores the problem of spectral com-
pressed sensing, which aims to recover a spectrally sparse signal
from a small random subset of itsn time domain samples. The
signal of interest is assumed to be a superposition ofr multi-
dimensional complex sinusoids, while the underlying frequencies
can assume anycontinuous values in the normalized frequency
domain. Conventional compressed sensing paradigms sufferfrom
the basis mismatch issue when imposing a discrete dictionary on
the Fourier representation. To address this issue, we develop
a novel algorithm, called Enhanced Matrix Completion (EMaC),
based on structured matrix completion that does not require
prior knowledge of the model order. The algorithm starts by
arranging the data into a low-rank enhanced form exhibiting
multi-fold Hankel structure, and then attempts recovery via
nuclear norm minimization. Under mild incoherence conditions,
EMaC allows perfect recovery as soon as the number of samples
exceeds the order ofr log4 n, and is stable against bounded
noise. Even if a constant portion of samples are corrupted with
arbitrary magnitude, EMaC still allows exact recovery, provided
that the sample complexity exceeds the order ofr2 log3 n.
Along the way, our results demonstrate the power of convex
relaxation in completing a low-rank multi-fold Hankel or To eplitz
matrix from minimal observed entries. The performance of our
algorithm and its applicability to super resolution are fur ther
validated by numerical experiments.

Index Terms—spectral compressed sensing, matrix completion,
Hankel matrices, Toeplitz matrices, basis mismatch, off-grid
compressed sensing, incoherence, super-resolution

I. I NTRODUCTION

A. Motivation and Contributions

A large class of practical applications features high-
dimensional signals that can be modeled or approximated by
a superposition of spikes in the spectral (resp. time) domain,
and involves estimation of the signal from its time (resp.
frequency) domain samples. Examples include accelerationof
medical imaging [1], target localization in radar and sonar
systems [2], inverse scattering in seismic imaging [3], fluores-
cence microscopy [4], channel estimation in wireless commu-
nications [5], analog-to-digital conversion [6], etc. Thedata
acquisition devices, however, are often limited by hardware
and physical constraints, precluding sampling with the desired
resolution. It is thus of paramount interest to reduce sensing
complexity while retaining recovery accuracy.
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In this paper, we investigate thespectral compressed sensing
problem, which aims to recover a spectrally sparse signal from
a small number of randomly observed time domain samples.
The signal of interestx (t) with ambient dimensionn is
assumed to be a weighted sum of multi-dimensional complex
sinusoids atr distinct frequencies{f i ∈ [0, 1)K : 1 ≤ i ≤ r},
where the underlying frequencies can assume any continuous
values on the unit interval.

Spectral compressed sensing is closely related to the prob-
lem of harmonic retrieval, which seeks to extract the under-
lying frequencies of a signal from a collection of its time
domain samples. Conventional methods for harmonic retrieval
include Prony’s method [7], ESPRIT [8], the matrix pencil
method [9], the Tufts and Kumaresan approach [10], the finite
rate of innovation approach [11], [12], etc. These methods
routinely exploit theshift invarianceof the harmonic structure,
namely, a consecutive segment of time domain samples lies
in the same subspace irrespective of the starting point of the
segment. However, one weakness of these techniques if that
they require prior knowledge of the model order, that is, the
number of underlying frequency spikes of the signal or at least
an estimate of it. Besides, these techniques heavily rely onthe
knowledge of the noise spectra, and are often sensitive against
noise and outliers [13].

Another line of work is concerned with Compressed Sensing
(CS) [14], [15] over a discrete domain, which suggests that
it is possible to recover a signal even when the number of
samples is far below its ambient dimension, provided that the
signal enjoys a sparse representation in the transform domain.
In particular, tractable algorithms based on convex surrogates
become popular due to their computational efficiency and
robustness against noise and outliers [16], [17]. Furthermore,
they do not require prior information on the model order.
Nevertheless, the success of CS relies on sparse representation
or approximation of the signal of interest in a finite discrete
dictionary, while the true parameters in many applications
are actually specified in acontinuousdictionary. Thebasis
mismatchbetween the true frequencies and the discretized grid
[18] results in loss of sparsity due to spectral leakage along the
Dirichlet kernel, and hence degeneration in the performance
of conventional CS paradigms.

In this paper, we develop an algorithm, calledEnhanced
Matrix Completion (EMaC), that simultaneously exploits the
shift invariance property of harmonic structures and the spec-
tral sparsity of signals. Inspired by the conventional matrix
pencil form [19], EMaC starts by arranging the data samples
into an enhanced matrix exhibitingK-fold Hankel structures,
whose rank is bounded above by the spectral sparsityr. This
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way we convert the spectral sparsity into the low-rank structure
without imposing any pre-determined grid. EMaC then invokes
a nuclear norm minimization program to complete the en-
hanced matrix from partially observed samples. When a small
constant proportion of the observed samples are corrupted with
arbitrary magnitudes, EMaC solves a weighted nuclear norm
minimization andℓ1 norm minimization to recover the signal
as well as the sparse corruption component.

The performance of EMaC depends on an incoherence
condition that depends only on the frequency locations re-
gardless of the amplitudes of their respective coefficients.
The incoherence measure is characterized by the reciprocal
of the smallest singular value of some Gram matrix, which is
defined by sampling theDirichlet kernel at the wrap-around
differences of all frequency pairs. The signal of interest is
said to obey the incoherence condition if the Gram matrix is
well conditioned, which arises over a broad class of spectrally
sparse signals including but not restricted to signals with
well-separated frequencies. We demonstrate that, under this
incoherence condition, EMaC enables exact recovery from
O(r log4 n) random samples1, and is stable against bounded
noise. Moreover, EMaC admits perfect signal recovery from
O(r2 log3 n) random samples even when a constant proportion
of the samples are corrupted with arbitrary magnitudes. Fi-
nally, numerical experiments validate our theoretical findings,
and demonstrate the applicability of EMaC in super resolution.

Along the way, we provide theoretical guarantees for low-
rank matrix completion of Hankel matrices and Toeplitz matri-
ces, which is of great importance in control, natural language
processing, and computer vision. To the best of our knowledge,
our results provide the first theoretical guarantees for Hankel
matrix completion that are close to the information theoretic
limit.

B. Connection and Comparison to Prior Work

TheK-fold Hankel structure, which plays a central role in
the EMaC algorithm, roots from the traditional spectral esti-
mation technique named Matrix Enhancement Matrix Pencil
(MEMP) [19] for multi-dimensional harmonic retrieval. The
conventional MEMP algorithm assumes fully observed equi-
spaced time domain samples for estimation, and require prior
knowledge on the model order. Cadzow’s denoising method
[20] also exploits the low-rank structure of the matrix pencil
form for denoising line spectrum, but the method is non-
convex and lacks performance guarantees.

When the frequencies of the signal indeed fall on a grid, CS
algorithms based onℓ1 minimization [14], [15] assert that it is
possible to recover the spectrally sparse signal fromO(r logn)
random time domain samples. These algorithms admit faithful
recovery even when the samples are contaminated by bounded
noise [16], [21] or arbitrary sparse outliers [17]. When the
inevitablebasis mismatchissue [18] is present, several reme-
dies of CS algorithms have been proposed to mitigate the

1The standard notationf(n) = O (g(n)) means that there exists a constant
c > 0 such thatf(n) ≤ cg(n); f(n) = Θ (g(n)) indicates that there are
numerical constantsc1, c2 > 0 such thatc1g(n) ≤ f(n) ≤ c2g(n).

effect [22], [23] under random linear projection measurements,
although theoretical guarantees are in general lacking.

More recently, Candï¿œs and Fernandez-Granda [24] pro-
posed a total-variation norm minimization algorithm to super-
resolve a sparse signal from frequency samples at thelow
end of the spectrum. This algorithm allows accurate super-
resolution when the point sources are sufficiently separated,
and is stable against noise [25]. Inspired by this approach,
Tang et. al. [26] then developed an atomic norm minimization
algorithm for line spectral estimation fromO(r log r logn)
random time domain samples, which enables exact recovery
when the frequencies are separated by at least4/n with
random amplitude phases. Similar performance guarantees are
later established in [27] for multi-dimensional frequencies.
However, these results are established under a random signal
model, i.e. the complex signs of the frequency spikes are
assumed to be i.i.d. drawn from a uniform distribution. The
robustness of the method against noise and outliers is not
established either. In contrast, our approach yields determin-
istic conditions for multi-dimensional frequency models that
guarantee perfect recovery with noiseless samples and are
provably robust against noise and sparse corruptions. We will
provide detailed comparison with the approach of Tang et. al.
after we formally present our results. Numerical comparison
will also be provided in Section V-C for the line spectrum
model.

Our algorithm is inspired by recent advances of Matrix
Completion (MC) [28], [29], which aims at recovering a low-
rank matrix from partial entries. It has been shown [30]–[32]
that exact recovery is possible via nuclear norm minimization,
as soon as the number of observed entries exceeds the order
of the information theoretic limit. This line of algorithmsis
also robust against noise and outliers [33], [34], and allows
exact recovery even in the presence of a constant portion of
adversarially corrupted entries [35]–[37], which have found
numerous applications in collaborative filtering [38], medical
imaging [39], [40], etc. Nevertheless, the theoretical guaran-
tees of these algorithms do not apply to the more structured
observation models associated with the proposed multi-fold
Hankel structure. Consequently, direct application of existing
MC results delivers pessimistic sample complexity, which far
exceeds the degrees of freedom underlying the signal.

Preliminary results of this work have been presented in
[41], where an additional strong incoherence condition was
introduced that bore a similar role as the traditional strong
incoherence parameter in MC [30] but lacked physical in-
terpretations. This paper removes this condition and further
improves the sample complexity.

C. Organization

The rest of the paper is organized as follows. The signal and
sampling models are described in Section II. By restricting
our attention to two-dimensional (2-D) frequency models, we
present the enhanced matrix form and the associated struc-
tured matrix completion algorithms. The extension to multi-
dimensional frequency models is discussed in Section III-C.
The main theoretical guarantees are summarized in Section
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III, based on the incoherence condition introduced in Section
III-A. We then discuss the extension to low-rank Hankel and
Toeplitz matrix completion in Section IV. Section V presents
the numerical validation of our algorithms. The proofs of
Theorems 1 and 3 are based on duality analysis followed by a
golfing scheme, which are supplied in Section VI and Section
VII, respectively. Section VIII concludes the paper with a short
summary of our findings as well as a discussion of potential
extensions and improvements. Finally, the proofs of auxiliary
lemmas supporting our results are deferred to the appendices.

II. M ODEL AND ALGORITHM

Assume that the signal of interestx (t) can be modeled
as a weighted sum ofK-dimensional complex sinusoids atr
distinct frequenciesf i ∈ [0, 1)K , 1 ≤ i ≤ r, i.e.

x(t) =

r∑

i=1

die
j2π〈t,fi〉, t ∈ Z

K . (1)

It is assumed throughout that the frequenciesf i’s are nor-
malized with respect to the Nyquist frequency ofx(t) and
the time domain measurements are sampled at integer values.
We denote bydi’s the complex amplitudes of the associated
coefficients, and〈·, ·〉 represents the inner product. For con-
creteness, our discussion is mainly devoted to a 2-D frequency
model whenK = 2. This subsumes line spectral estima-
tion as a special case, and indicates how to address multi-
dimensional models. The algorithms for higher dimensional
scenarios closely parallel the 2-D case, which will be briefly
discussed in Section III-C.

A. 2-D Frequency Model

Consider a data matrixX = [Xk,l]0≤k<n1,0≤l<n2 of
ambient dimensionn := n1n2, which is obtained by sampling
the signal (1) on a uniform grid. From (1) each entryXk,l can
be expressed as

Xk,l = x(k, l) =

r∑

i=1

diy
k
i z

l
i, (2)

where for anyi (1 ≤ i ≤ r) we define

yi := exp (j2πf1i) and zi := exp (j2πf2i)

for some frequency pairs{f i = (f1i, f2i) | 1 ≤ i ≤ r}. We
can then expressX in a matrix form as follows

X = Y DZ⊤, (3)

where the above matrices are defined as

Y :=








1 1 · · · 1
y1 y2 · · · yr
...

...
...

...
yn1−1
1 yn1−1

2 · · · yn1−1
r







, (4)

Z :=








1 1 · · · 1
z1 z2 · · · zr
...

...
...

...
zn2−1
1 zn2−1

2 · · · zn2−1
r







, (5)

and
D := diag[d1, d2, · · · , dr] . (6)

The above form (3) is sometimes referred to as the Vande-
monde decomposition ofX.

Suppose that there exists a location setΩ of sizem such that
the Xk,l is observed if and only if(k, l) ∈ Ω. It is assumed
thatΩ is sampled uniformly at random. DefinePΩ(X) as the
orthogonal projection ofX onto the subspace of matrices that
vanish outsideΩ. We aim at recoveringX from PΩ(X).

B. Matrix Enhancement

One might naturally attempt recovery by applying the low-
rank MC algorithms [28], arguing that whenr is small, perfect
recovery ofX is possible from partial measurements sinceX

is low rank if r ≪ min{n1, n2}. Specifically, this corresponds
to the following algorithm:

minimize
M∈Cn1×n2

‖M‖∗ (7)

subject to PΩ (M ) = PΩ (X) ,

where ‖M‖∗ denotes the nuclear norm (or sum of all sin-
gular values) of a matrixM = [Mk,l]. This is a convex
relaxation paradigm with respect to rank minimization. How-
ever, naive MC algorithms [31] require at least the order of
rmax (n1, n2) log (n1n2) samples in order to allow perfect
recovery, which far exceeds the degrees of freedom (which is
Θ(r)) in our problem. What is worse, since the numberr of
spectral spikes can be as large asn1n2, X might become full-
rank oncer > min (n1, n2). This motivates us to seek other
forms that better capture the harmonic structure.

In this paper, we adopt one effective enhanced form of
X based on the following two-fold Hankel structure. The
enhanced matrixXe with respect toX is defined as a
k1 × (n1 − k1 + 1) block Hankel matrix

Xe :=








X0 X1 · · · Xn1−k1

X1 X2 · · · Xn1−k1+1

...
...

...
...

Xk1−1 Xk1 · · · Xn1−1







, (8)

wherek1 (1 ≤ k1 ≤ n1) is called a pencil parameter. Each
block is ak2× (n2 − k2 + 1) Hankel matrix defined such that
for everyℓ (0 ≤ ℓ < n1):

Xℓ :=








Xℓ,0 Xℓ,1 · · · Xℓ,n2−k2

Xℓ,1 Xℓ,2 · · · Xℓ,n2−k2+1

...
...

...
...

Xℓ,k2−1 Xℓ,k2 · · · Xℓ,n2−1







, (9)

where1 ≤ k2 ≤ n2 is another pencil parameter. This enhanced
form allows us to express each block as2

Xℓ = ZLY
ℓ
dDZR, (10)

2Note that thelth (0 ≤ l < n1) row Xl∗ of X can be expressed as

Xl∗ =
[

yl1, · · · , ylr
]

DZ
⊤ =

[

yl1d1, · · · , ylrdr
]

Z
⊤,

and hence we only need to find the Vandemonde decomposition for X0 and
then replacedi by ylidi.
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whereZL, ZR andY d are defined respectively as

ZL :=








1 1 · · · 1
z1 z2 · · · zr
...

...
...

...
zk2−1
1 zk2−1

2 · · · zk2−1
r







,

ZR :=








1 z1 · · · zn2−k2
1

1 z2 · · · zn2−k2
2

...
...

...
...

1 zr · · · zn2−k2
r







,

and
Y d := diag[y1, y2, · · · , yr] .

Substituting (10) into (8) yields the following:

Xe =








ZL

ZLY d
...

ZLY
k1−1
d








︸ ︷︷ ︸
√
k1k2EL

D
[

ZR, Y dZR, · · · , Y n1−k1

d ZR

]

︸ ︷︷ ︸√
(n1−k1+1)(n2−k2+1)ER

,

(11)
whereEL and ER span the column and row space ofXe,
respectively. This immediately implies thatXe is low-rank,
i.e.

rank(Xe) ≤ r. (12)

This form is inspired by the traditional matrix pencil approach
proposed in [9], [19] to estimate harmonic frequencies ifall
entries ofX are available. Thus, one can extract all underlying
frequencies ofX using methods proposed in [19], as long as
X can be faithfully recovered.

C. The EMaC Algorithm in the Absence of Noise

We then attempt recovery through the followingEnhance-
ment Matrix Completion (EMaC)algorithm:

(EMaC) minimize
M∈Cn1×n2

‖Me‖∗ (13)

subject to PΩ (M ) = PΩ (X) ,

whereMe denotes the enhanced form ofM . In other words,
EMaC minimizes the nuclear norm of the enhanced form over
all matrices compatible with the samples. This convex program
can be rewritten into a semidefinite program (SDP) [42]

minimize
M∈Cn1×n2

1

2
Tr (Q1) +

1

2
Tr (Q2)

subject to PΩ (M ) = PΩ (X) ,
[

Q1 M∗
e

M e Q2

]

� 0,

which can be solved using off-the-shelf solvers in a tractable
manner (see, e.g., [42]). It is worth mentioning that EMaC has
a similar computational complexity as the atomic norm min-
imization method [26] when restricted to the 1-D frequency
model.

Careful readers will remark that the performance of EMaC
must depend on the choices of the pencil parametersk1 and
k2. In fact, if we define a quantity

cs := max

{
n1n2

k1k2
,

n1n2

(n1 − k1 + 1) (n2 − k2 + 1)

}

(14)

that measures how closeXe is to a square matrix, then it
will be shown later that the required sample complexity for
faithful recovery is an increasing function ofcs. In fact, both
our theory and empirical experiments are in favor of a small
cs, corresponding to the choicesk1 = Θ(n1), n1 − k1 + 1 =
Θ (n1), k2 = Θ(n2), andn2 − k2 + 1 = Θ (n2).

D. The Noisy-EMaC Algorithm with Bounded Noise

In practice, measurements are often contaminated by a
certain amount of noise. To make our model and algorithm
more practically applicable, we replace our measurements by
Xo = [Xo

k,l]0≤k<n1,0≤l<n2 through the following noisy model

Xo
k,l = Xk,l +Nk,l, ∀(k, l) ∈ Ω, (15)

where Xo
k,l is the observed(k, l)-th entry, and N =

[Nk,l]0≤k<n1,0≤l<n2 denotes some unknown noise. We as-
sume that the noise magnitude is bounded by a known amount
‖PΩ (N)‖F ≤ δ, where‖·‖F denotes the Frobenius norm. In
order to adapt our algorithm to such noisy measurements, one
wishes that small perturbation in the measurements should
result in small variation in the estimate. Our algorithm is then
modified as follows

(Noisy-EMaC): minimize
M∈Cn1×n2

‖Me‖∗ (16)

subject to ‖PΩ (M −Xo)‖F ≤ δ.

That said, the algorithm searches for a candidate with mini-
mum nuclear norm among all signals close to the measure-
ments.

E. The Robust-EMaC Algorithm with Sparse Outliers

An outlier is a data sample that can deviate arbitrarily from
the true data point. Practical data samples one collects may
contain a certain portion of outliers due to abnormal behavior
of data acquisition devices such as amplifier saturation, sensor
failures, and malicious attacks. A desired recovery algorithm
should be able to automatically prune all outliers even when
they corrupt up to a constant portion of all data samples.

Specifically, suppose that our measurementsXo are given
by

Xo
k,l = Xk,l + Sk,l, ∀(k, l) ∈ Ω, (17)

where Xo
k,l is the observed(k, l)-th entry, and S =

[Sk,l]0≤k<n1,0≤l<n2 denotes the outliers, which is assumed to
be a sparse matrix supported on some location setΩdirty ⊆ Ω.
The sampling model is formally described as follows.

1) Suppose thatΩ is obtained by samplingm entries
uniformly at random, and defineρ := m

n1n2
.

2) Conditioning on(k, l) ∈ Ω, the events
{
(k, l) ∈ Ωdirty

}

are independent with conditional probability

P
{
(k, l) ∈ Ωdirty | (k, l) ∈ Ω

}
= τ
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for some small constant corruption fraction0 < τ < 1.
3) DefineΩclean := Ω\Ωdirty as the location set ofuncor-

rupted measurements.
EMaC is then modified as follows to accommodate sparse
outliers:

(Robust-EMaC) minimize
M ,Ŝ∈Cn1×n2

‖M e‖∗ + λ‖Ŝe‖1 (18)

subject to PΩ

(

M + Ŝ
)

= PΩ (X + S) ,

whereλ > 0 is a regularization parameter that will be specified
later. As will be shown later,λ can be selected in a parameter-
free fashion. We denote byMe andŜe the enhanced form of
M andŜ, respectively. Here,‖Ŝe‖1 := ‖vec(Ŝe)‖1 represents
the elementwiseℓ1-norm of Ŝe. Robust-EMaC promotes the
low-rank structure of the enhanced data matrix as well as the
sparsity of the outliers via convex relaxation with respective
structures.

F. Notations

Before continuing, we introduce a few notations that will be
used throughout. Let the singular value decomposition (SVD)
of Xe beXe = UΛV ∗. Denote by

T : =
{

UM∗ + M̃V ∗ : M ∈ C
(n1−k1+1)(n2−k1+1)×r,

M̃ ∈ C
k1k2×r

}

(19)

the tangent space with respect toXe, andT⊥ the orthogonal
complement ofT . Denote byPU (resp.PV , PT ) the orthog-
onal projection onto the column (resp. row, tangent) space of
Xe, i.e. for anyM ,

PU (M ) = UU∗M , PV (M ) = MV V ∗,

and PT = PU + PV − PUPV .

We letPT⊥ = I −PT be the orthogonal complement ofPT ,
whereI denotes the identity operator.

Denote by ‖M‖, ‖M‖F and ‖M‖∗ the spectral norm
(operator norm), Frobenius norm, and nuclear norm ofM ,
respectively. Also,‖M‖1 and ‖M‖∞ are defined to be the
elementwiseℓ1 and ℓ∞ norm of M . Denote byei the ith

standard basis vector. Additionally, we use sgn(M) to denote
the elementwise complex sign ofM .

On the other hand, we denote byΩe(k, l) the set of locations
of the enhanced matrixXe containing copies ofXk,l. Due
to the Hankel or multi-fold Hankel structures, one can easily
verify the following: each location setΩe(k, l) contains at most
one index in any given row of the enhanced form, and at most
one index in any given column. For each(k, l) ∈ [n1]× [n2],
we useA(k,l) to denote a basis matrix that extracts the average
of all entries inΩe (k, l). Specifically,

(
A(k,l)

)

α,β
:=

{
1√

|Ωe(k,l)|
, if (α, β) ∈ Ωe (k, l) ,

0, else.
(20)

We will use
ωk,l := |Ωe (k, l)| (21)

throughout as a short-hand notation.

III. M AIN RESULTS

This section delivers the following encouraging news: under
mild incoherence conditions, EMaC enables faithful signal
recovery from a minimal number of time-domain samples,
even when the samples are contaminated by bounded noise
or a constant portion of arbitrary outliers.

A. Incoherence Measure

In general, matrix completion from a few entries is hopeless
unless the underlying structure is sufficiently uncorrelated with
the observation basis. This inspires us to introduce certain
incoherence measures. To this end, we define the 2-D Dirichlet
kernel as

D(k1, k2,f) :=
1

k1k2

(
1− e−j2πk1f1

1− e−j2πf1

)(
1− e−j2πk2f2

1− e−j2πf2

)

,

(22)
where f = (f1, f2) ∈ [0, 1)2. Fig. 1 (a) illustrates the
amplitude ofD(k1, k2,f) when k1 = k2 = 6. The value
of |D(k1, k2,f)| decays inverse proportionally with respect
to the frequencyf . SetGL andGR to be two r × r Gram
matrices such that their entries are specified respectivelyby

(GL)i,l = D(k1, k2,f i − f l),

(GR)i,l = D(n1 − k1 + 1, n2 − k2 + 1,f i − f l),

where the differencef i−f l is understood as the wrap-around
distance in the interval[−1/2, 1/2)2. Simple manipulation
reveals that

GL = E∗
LEL, GR = (ERE

∗
R)

⊤
,

whereEL andER are defined in (11).
Our incoherence measure is then defined as follows.

Definition 1 (Incoherence). A matrix X is said to obey the
incoherence property with parameterµ1 if

σmin (GL) ≥
1

µ1
and σmin (GR) ≥

1

µ1
. (23)

whereσmin (GL) andσmin (GR) represent the least singular
values ofGL andGR, respectively.

The incoherence measureµ1 only depends on the locations
of the frequency spikes, irrespective of the amplitudes of
their respective coefficients. The signal is said to satisfy
the incoherence condition ifµ1 scales as a small constant,
which occurs whenGL and GR are both well-conditioned.
Our incoherence condition naturally requires certain separation
among all frequency pairs, as when two frequency spikes
are closely located,µ1 gets undesirably large. As shown in
[43, Theorem 2], a separation of about2/n for line spectrum
is sufficient to guarantee the incoherence condition to hold.
However, it is worth emphasizing that such strict separation is
not necessary as required in [26], and thereby our incoherence
condition is applicable to a broader class of spectrally sparse
signals.

To give the reader a flavor of the incoherence condition, we
list two examples below. For ease of presentation, we assume
below 2-D frequency models withn1 = n2. Note, however,
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Fig. 1. (a) The 2-D Dirichlet kernel whenk = k1 = k2 = 6; (b)
The empirical distribution of the minimum eigenvalueσmin(GL) for various
choices ofk with respect to the sparsity level.

that the asymmetric cases and generalK-dimensional fre-
quency models can be analyzed in the same manner.

• Random frequency locations: suppose that ther fre-
quencies are generated uniformly at random, then the
minimum pairwise separation can be crudely bounded by
Θ
(

1
r2 logn1

)

. If n1 ≫ r2.5 log n1, then a crude bound
reveals that∀i1 6= i2,

max

{

1

k1

1−
(
y∗i1yi2

)k1

1− y∗i1yi2
,
1

k2

1−
(
z∗i1zi2

)k2

1− z∗i1zi2

}

≪ 1√
r

holds with high probability, indicating that the off-
diagonal entries ofGL and GR are much smaller than
1/r in magnitude. Simple manipulation then allows us to
conclude thatσmin (GL) andσmin (GR) are bounded be-
low by positive constants. Fig. 1 (b) shows the minimum
eigenvalue ofGL for different k = k1 = k2 = 6, 36, 72
when the spikes are randomly generated and the number
of spikes is given as the sparsity level. The minimum
eigenvalue ofGL gets closer to one ask grows, confirm-
ing our argument.

• Small perturbation off the grid: suppose that all frequen-
cies are within a distance at most 1

n1r1/4
from some

grid points
(

l1
k1
, l2
k2

)

(0 ≤ l1 < k1, 0 ≤ l2 < k2). One
can verify that∀i1 6= i2,

max

{

1

k1

1−
(
y∗i1yi2

)k1

1− y∗i1yi2
,
1

k2

1−
(
z∗i1zi2

)k2

1− z∗i1zi2

}

<
1

2
√
r
,

and hence the magnitude of all off-diagonal entries ofGL

andGR are no larger than1/(4r). This immediately sug-
gests thatσmin (GL) andσmin (GR) are lower bounded
by 3/4.

Note, however, that the class of incoherent signals are far
beyond the ones discussed above.

B. Theoretical Guarantees

With the above incoherence measure, the main theoretical
guarantees are provided in the following three theorems each
accounting for a distinct data model: 1) noiseless measure-
ments, 2) measurements contaminated by bounded noise,
and 3) measurements corrupted by a constant proportion of
arbitrary outliers.

1) Exact Recovery from Noiseless Measurements:Exact
recovery is possible from a minimal number of noise-free
samples, as asserted in the following theorem.

Theorem 1. Let X be a data matrix of form (3), andΩ the
random location set of sizem. Suppose that the incoherence
property (23) holds and that all measurements are noiseless.
Then there exists a universal constantc1 > 0 such thatX
is the unique solution to EMaC with probability exceeding
1− (n1n2)

−2, provided that

m > c1µ1csr log
4(n1n2). (24)

Theorem 1 asserts that under some milddeterministic
incoherence condition such thatµ1 scales as a small constant,
EMaC admits prefect recovery as soon as the number of
measurements exceedsO(r log4 (n1n2)). Since there areΘ(r)
degrees of freedom in total, the lower bound should be no
smaller thanΘ(r). This demonstrates the orderwise optimality
of EMaC except for a logarithmic gap. We note, however, that
the polylog factor might be further refined via finer tuning of
concentration of measure inequalities.

It is worth emphasizing that while we assume random obser-
vation models, the data model is assumed deterministic. This
differs significantly from [26], which relies on randomnessin
both the observation model and the data model. In particular,
our theoretical performance guarantees rely solely on the
frequency locations irrespective of the associated amplitudes.
In contrast, the results in [26] require the phases of all
frequency spikes to be i.i.d. drawn in a uniform manner in
addition to a separation condition.

Remark 1. Theorem 1 significantly strengthens our
prior results reported in [41] by improving the required
sample complexity from O

(
µ2
1c

2
sr

2poly log(n1n2)
)

to
O (µ1csrpoly log(n1n2)).

2) Stable Recovery in the Presence of Bounded Noise:Our
method enables stable recovery even when the time domain
samples are noisy copies of the true data. Here, we say the
recovery is stable if the solution of Noisy-EMaC is close to
the ground truth in proportion to the noise level. To this end,
we provide the following theorem, which is a counterpart of
Theorem 1 in the noisy setting, whose proof is inspired by
[44].

Theorem 2. SupposeXo is a noisy copy ofX that satisfies
‖PΩ(X −Xo)‖F ≤ δ. Under the conditions of Theorem 1,
the solution to Noisy-EMaC in (16) satisfies

‖X̂e −Xe‖F ≤ 5n3
1n

3
2δ (25)

with probability exceeding1− (n1n2)
−2.

Theorem 2 reveals that the recovered enhanced matrix
(which containsΘ(n2

1n
2
2) entries) is close to the true enhanced

matrix at high SNR. In particular, the average entry inaccuracy
of the enhanced matrix is bounded above byO(n3

1n
3
2δ), ampli-

fied by the subsampling factor. In practice, one is interested in
an estimate ofX, which can be obtained naively by randomly
selecting an entry inΩe(k, l) as X̂k,l, then we have

‖X̂ −X‖F ≤ ‖X̂e−Xe‖F.
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This yields that the per-entry noise of̂X is about
O(n2.5

1 n2.5
2 δ), which is further amplified due to enhancement

by a factor ofn1n2. However, this factor arises from an anal-
ysis artifact due to our simple strategy to deduceX̂ from X̂e,
and may be elevated. We note that in numerical experiments,
Noisy-EMaC usually generates much better estimates, usually
by a polynomial factor. The practical applicability will be
illustrated in Section V.

It is worth mentioning that to the best of our knowledge,
our result is the first stability result with partially observed
data for spectral compressed sensing off the grid. While the
atomic norm approach is near-minimax with full data [45], it
is not clear how it performs with partially observed data.

3) Robust Recovery in the Presence of Sparse Outliers:
Interestingly, Robust-EMaC can provably tolerate a constant
portion of arbitrary outliers. The theoretical performance is
formally summarized in the following theorem.

Theorem 3. LetX be a data matrix with matrix form (3), and
Ω a random location set of sizem. Setλ = 1√

m log(n1n2)
, and

assumeτ ≤ 0.1 is some small positive constant. Then there
exist a numerical constantc1 > 0 depending only onτ such
that if (23) holds and

m > c1µ
2
1c

2
sr

2 log3(n1n2), (26)

then Robust-EMaC is exact, i.e. the minimizer(M̂ , Ŝ) satisfies
M̂ = X, with probability exceeding1− (n1n2)

−2.

Remark 2. Note thatτ ≤ 0.1 is not a critical threshold. In fact,
one can prove the same theorem for a largerτ (e.g.τ ≤ 0.25)
with a larger absolute constantc1. However, to allow even
larger τ (e.g. in the regime whereτ ≥ 50%), we need the
sparse components exhibit random sign patterns.

Theorem 3 specifies a candidate choice of the regularization
parameterλ that allows recovery from a few samples, which
only depends on the size ofΩ but is otherwise parameter-
free. In practice, however,λ may better be selected via
cross validation. Furthermore, Theorem 3 demonstrates the
possibility of robust recovery under a constant proportionof
sparse corruptions. Under the same mild incoherence con-
dition as for Theorem 1, robust recovery is possible from
O
(
r2 log3 (n1n2)

)
samples, even when a constant proportion

of the samples are arbitrarily corrupted. As far as we know, this
provides the first theoretical guarantees for separating sparse
measurement corruptions in the off-grid compressed sensing
setting.

C. Extension to Higher-Dimensional and Damping Frequency
Models

By letting n2 = 1 the above 2-D frequency model reverts
to the line spectrum model. The EMaC algorithm and the
main results immediately extend to higher dimensional fre-
quency models without difficulty. In fact, forK-dimensional
frequency models, one can arrange the original data into aK-
fold Hankel matrix of rank at mostr. For instance, consider
a 3-D model such that

Xl1,l2,l3 =

r∑

i=1

diy
l1
i zl2i wl3

i , ∀ (l1, l2, l3) ∈ [n1]× [n2]× [n3].

An enhanced form can be defined as a 3-fold Hankel matrix
such that

Xe :=








X0,e X1,e · · · Xn3−k3,e

X1,e X2,e · · · Xn3−k3+1,e
...

...
...

...
Xk3−1,e Xk1,e · · · Xn3−1,e







,

where Xi,e denotes the 2-D enhanced form of the matrix
consisting of all entriesXl1,l2,l3 obeying l3 = i. One can
verify that Xe is of rank at mostr, and can thereby apply
EMaC on the 3-D enhanced form. To summarize, forK-
dimensional frequency models, EMaC (resp. Noisy-EMaC,
Robust-EMaC) searches over allK-fold Hankel matrices
that are consistent with the measurements. The theoretical
performance guarantees can be similarly extended by defining
the respective Dirichlet kernel in 3-D and the coherence
measure. In fact, all our analyses can be extended to handle
dampingmodes, when the frequencies are not of time-invariant
amplitudes. We omit the details for conciseness.

IV. STRUCTURED MATRIX COMPLETION

One problem closely related to our method is completion
of multi-fold Hankel matrices from a small number of entries.
While each spectrally sparse signal can be mapped to a low-
rank multi-fold Hankel matrix, it is not clear whether all
multi-fold Hankel matrices of rankr can be written as the
enhanced form of a signal with spectral sparsityr. Therefore,
one can think of recovery of multi-fold Hankel matrices as a
more general problem than the spectral compressed sensing
problem. Indeed, Hankel matrix completion has found numer-
ous applications in system identification [46], [47], natural
language processing [48], computer vision [49], magnetic
resonance imaging [50], etc.

There has been several work concerning algorithms and
numerical experiments for Hankel matrix completions [46],
[47], [51]. However, to the best of our knowledge, there
has been little theoretical guarantee that addresses directly
Hankel matrix completion. Our analysis framework can be
straightforwardly adapted to the generalK-fold Hankel matrix
completions. Below we present the performance guarantee
for the two-fold Hankel matrix completion without loss of
generality. Notice that we need to modify the definition ofµ1

as stated in the following theorem.

Theorem 4. Consider a two-fold Hankel matrixXe of rank
r. The bounds in Theorems 1, 2 and 3 continue to hold, if the
incoherenceµ1 is defined as the smallest number that satisfies

max
(k,l)∈[n1]×[n2]

{
‖U∗A(k,l)‖2F, ‖A(k,l)V ‖2F

}
≤ µ1csr

n1n2
. (27)

Condition (27) requires that the left and right singular
vectors are sufficiently uncorrelated with the observationbasis.
In fact, condition (27) is a weaker assumption than (23).

It is worth mentioning that a low-rank Hankel matrix
can often be converted to its low-rank Toeplitz counterpart,
by reversely ordering all rows of the Hankel matrix. Both
Hankel and Toeplitz matrices are effective forms that capture
the underlying harmonic structures. Our results and analysis
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framework extend to low-rank Toeplitz matrix completion
problem without difficulty.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical examples to evaluate
the performance of EMaC and its variants under different
scenarios. We further examine the application of EMaC in
image super resolution. Finally, we propose an extension of
singular value thresholding (SVT) developed by Cai et. al. [52]
that exploits the multi-fold Hankel structure to handle larger
scale data sets.

A. Phase Transition in the Noiseless Setting

To evaluate the practical ability of the EMaC algorithm,
we conducted a series of numerical experiments to examine
the phase transition for exact recovery. Letn1 = n2, and
we take k1 = k2 = ⌈(n1 + 1)/2⌉ which corresponds
to the smallestcs. For each(r,m) pair, 100 Monte Carlo
trials were conducted. We generated a spectrally sparse data
matrix X by randomly generatingr frequency spikes in
[0, 1) × [0, 1), and sampled a subsetΩ of size m entries
uniformly at random. The EMaC algorithm was conducted
using the convex programming modeling software CVX with
the interior-point solver SDPT3 [53]. Each trial is declared
successful if the normalized mean squared error (NMSE)
satisfies‖X̂ − X‖F/‖X‖F ≤ 10−3, where X̂ denotes the
estimate returned by EMaC. The empirical success rate is
calculated by averaging over 100 Monte Carlo trials.

Fig. 2 illustrates the results of these Monte Carlo experi-
ments when the dimensions3 of X are11× 11 and15× 15.
The horizontal axis corresponds to the numberm of samples
revealed to the algorithm, while the vertical axis corresponds
to the spectral sparsity levelr. The empirical success rate is
reflected by the color of each cell. It can be seen from the plot
that the number of samplesm grows approximately linearly
with respect to the spectral sparsityr, and that the slopes
of the phase transition lines for two cases are approximately
the same. These observations are in line with our theoretical
guarantee in Theorem 1. This phase transition diagrams justify
the practical applicability of our algorithm in the noiseless
setting.

B. Stable Recovery from Noisy Data

Fig. 3 further examines the stability of the proposed al-
gorithm by performing Noisy-EMaC with respect to different
parameterδ on a noise-free dataset ofr = 4 complex sinusoids
with n1 = n2 = 11. The number of random samples is
m = 50. The reconstructed NMSE grows approximately linear
with respect toδ, validating the stability of the proposed
algorithm.

3We choose the dimension ofX to be odd simply to yield a squared matrix
Xe. In fact, our results do not rely onn1 or n2 being either odd or prime.
We note that whenn1 andn2 are known to be prime numbers, there might
exist computationally cheaper methods to enable perfect recovery (e.g. [54])
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Fig. 2. Phase transition plots where frequency locations are randomly
generated. The plot (a) concerns the case wheren1 = n2 = 11, whereas
the plot (b) corresponds to the situation wheren1 = n2 = 15. The empirical
success rate is calculated by averaging over 100 Monte Carlotrials.
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Fig. 3. The reconstruction NMSE with respect toδ for a dataset withn1 =
n2 = 11, r = 4 andm = 50.

C. Comparison with Existing Approaches for Line Spectrum
Estimation

Suppose that we randomly observe64 entries of ann-
dimensional vector (n = 127) composed ofr = 4 modes. For
such 1-D signals, we compare EMaC with the atomic norm
approach [26] as well as basis pursuit [55] assuming a grid of
size 212. For the atomic norm and the EMaC algorithm, the
modes are recovered via linear prediction using the recovered
data [56]. Fig. 4 demonstrates the recovery of mode locations
for three cases, namely when (a) all the modes are on the
DFT grid along the unit circle; (b) all the modes are on
the unit circle except two closely located modes that are off
the presumed grid; (c) all the modes are on the unit circle
except that one of the two closely located modes is a damping
mode with amplitude0.99. In all cases, the EMaC algorithm
successfully recovers the underlying modes, while the atomic
norm approach fails to recover damping modes, and basis
pursuit fails with both off-the-grid modes and damping modes.

We further compare the phase transition of the EMaC algo-
rithm and the atomic norm approach in [26] for line spectrum
estimation. We assume a 1-D signal of lengthn = n1 = 127
and the pencil parameterk1 of EMaC is chosen to be64. The
phase transition experiments are conducted in the same manner
as Fig. 2. In the first case, the spikes are generated randomly
as Fig. 2 on a unit circle; in the second case, the spikes
are generated until a separation condition is satisfied∆ :=
mini1 6=i2 |fi1 − fi2 | ≥ 1.5/n. Fig. 5 (a) and (b) illustrate the
phase transition of EMaC and the atomic norm approach when
the frequencies are randomly generated without imposing the
separation condition. The performance of the atomic norm
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Fig. 4. Recovery of mode locations when (a) all the modes are on the DFT grid along the unit circle; (b) all the modes are on the unit circle except two
closely located modes that are off the DFT grid; (c) all the modes are on the unit circle except that one of the two closely located modes is a damping mode.
The panels from the upper left, clockwise, are the ground truth, the EMaC algorithm, the atomic norm approach [26], and basis pursuit [55] assuming a grid
of size212.

approach degenerates severely when the separation condition
is not met; on the other hand, the EMaC gives a sharp
phase transition similar to the 2D case. When the separation
condition is imposed, the phase transition of the atomic norm
approach greatly improves as shown in Fig. 5 (c), while the
phase transition of EMaC still gives similar performance asin
Fig. 5 (a) (We omit the actual phase transition in this case.)
However, it is worth mentioning that when the sparsity levelis
relatively high, the required separation condition is in general
difficult to be satisfied in practice. In comparison, EMaC is
less sensitive to the separation requirement.

D. Robust Line Spectrum Estimation

Consider the problem of line spectrum estimation, where the
time domain measurements are contaminated by a constant
portion of outliers. We conducted a series of Monte Carlo
trials to illustrate the phase transition for perfect recovery
of the ground truth. The true dataX is assumed to be a
125-dimensional vector, where the locations of the underlying
frequencies are randomly generated. The simulations were
carried out again using CVX with SDPT3.

Fig. 6(a) illustrates the phase transition for robust line
spectrum estimation when10% of the entries are corrupted,
which showcases the tradeoff between the numberm of
measurements and the recoverable spectral sparsity levelr.
One can see from the plot thatm is approximately linear
in r on the phase transition curve even when 10% of the
measurements are corrupted, which validates our finding in
Theorem 3. Fig. 6(b) illustrates the success rate of exact
recovery when we obtain samples for all entry locations. This
plot illustrates the tradeoff between the spectral sparsity level
and the number of outliers when all entries of the corrupted
Xo are observed. It can be seen that there is a large region
where exact recovery can be guaranteed, demonstrating the
power of our algorithms in the presence of sparse outliers.

E. Synthetic Super Resolution

The proposed EMaC algorithm works beyond the random
observation model in Theorem 1. Fig. 7 considers a synthetic
super resolution example motivated by [24], where the ground
truth in Fig. 7(a) contains6 point sources with constant
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Fig. 6. Robust line spectrum estimation where mode locations are randomly
generated: (a) Phase transition plots whenn = 125, and10% of the entries
are corrupted; the empirical success rate is calculated by averaging over 100
Monte Carlo trials. (b) Phase transition plots whenn = 125, and all the
entries are observed; the empirical success rate is calculated by averaging
over 20 Monte Carlo trials.

amplitude. The low-resolution observation in Fig. 7(b) is
obtained by measuring low-frequency components[−flo, flo]
of the ground truth. Due to the large width of the associated
point-spread function, both the locations and amplitudes of the
point sources are distorted in the low-resolution image.

We apply EMaC to extrapolate high-frequency components
up to [−fhi, fhi], wherefhi/flo = 2. The reconstruction in
Fig. 7(c) is obtained via applying directly inverse Fourier
transform of the spectrum to avoid parameter estimation such
as the number of modes. The resolution is greatly enhanced
from Fig. 7(b), suggesting that EMaC is a promising approach
for super resolution tasks. The theoretical performance isleft
for future work.

F. Singular Value Thresholding for EMaC

The above Monte Carlo experiments were conducted using
the advanced SDP solver SDPT3. This solver and many
other popular ones (e.g. SeDuMi) are based on interior point
methods, which are typically inapplicable to large-scale data.
In fact, SDPT3 fails to handle ann × n data matrix when
n exceeds 19, which corresponds to a100 × 100 enhanced
matrix.

One alternative for large-scale data is the first-order al-
gorithms tailored to matrix completion problems, e.g. the
singular value thresholding (SVT) algorithm [52]. We propose
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Fig. 5. Phase transition for line spectrum estimation of EMaC and the atomic norm approach [26]. (a) EMaC without imposing separation; (b) atomic norm
approach without imposing separation; (c) atomic norm approach with separation.
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Fig. 7. A synthetic super resolution example, where the observation (b) is taken from the low-frequency components of the ground truth in (a), and the
reconstruction (c) is done via inverse Fourier transform ofthe extrapolated high-frequency components.

a modified SVT algorithm in Algorithm 1 to exploit the Hankel
structure.

Algorithm 1 Singular Value Thresholding for EMaC.

Input : The observed data matrixXo on the location setΩ.
initialize : let Xo

e denote the enhanced form ofPΩ (Xo);
setM0 = X0

e and t = 0.
repeat

1) Qt ← Dτt (M t)
2) M t ← HX0 (Qt)
3) t← t+ 1

until convergence
output X̂ as the data matrix with enhanced formM t.

In particular, two operators are defined as follows:

• Dτt(·) in Algorithm 1 denotes the singular value shrink-
age operator. Specifically, if the SVD ofX is given by
X = UΣV ∗ with Σ = diag({σi}), then

Dτt (X) := Udiag
({

(σi − τt)+
})

V ∗,

whereτt > 0 is the soft-thresholding level.
• In the K-dimensional frequency model,HXo(Qt) de-

notes the projection ofQt onto the subspace of enhanced

matrices (i.e.K-fold Hankel matrices) that are consistent
with the observed entries.

Consequently, at each iteration, a pair(Qt,M t) is produced
by first performing singular value shrinkage and then project-
ing the outcome onto the space ofK-fold Hankel matrices
that are consistent with observed entries.

The key parameter that one needs to tune is the threshold
τt. Unfortunately, there is no universal consensus regarding
how to tweak the threshold for SVT type of algorithms. One
suggested choice isτt = 0.1σmax (M t) /

⌈
t
10

⌉
, which works

well based on our empirical experiments.
Fig. 8 illustrates the performance of Algorithm 1. We gener-

ated a true101×101 data matrixX through a superposition of
30 random complex sinusoids, and revealed 5.8% of the total
entries (i.e.m = 600) uniformly at random. The noise was
i.i.d. Gaussian giving a signal-to-noise amplitude ratio of 10.
The reconstructed vectorized signal is superimposed on the
ground truth in Fig. 8. The normalized reconstruction error
was ‖X̂ −X‖F/ ‖X‖F = 0.1098, validating the stability of
our algorithm in the presence of noise.

VI. PROOF OFTHEOREMS1 AND 4

EMaC has similar spirit as the well-known matrix com-
pletion algorithms [28], [31], except that we impose Hankel
and multi-fold Hankel structures on the matrices. While [31]
has presented a general sufficient condition for exact recovery
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Fig. 8. The performance of SVT for Noisy-EMaC for a101 × 101
data matrix that contains 30 random frequency spikes. 5.8% of all entries
(m = 600) are observed with signal-to-noise amplitude ratio 10. Here,
τt = 0.1σmax (M t) /

⌈

t
10

⌉

empirically. For concreteness, the reconstructed
data against the true data for the first 100 time instances (after vectorization)
are plotted.

(see [31, Theorem 3]), the basis in our case does not exhibit
desired coherence properties as required in [31], and hence
these results cannot deliver informative estimates when applied
to our problem. Nevertheless, the beautiful golfing scheme
introduced in [31] lays the foundation of our analysis in the
sequel. We also note that the analyses adopted in [28], [31]
rely on a desired joint incoherence property onUV ∗, which
has been shown to be unnecessary [32].

For concreteness, the analyses in this paper focus on recov-
ering harmonically sparse signals as stated in Theorem 1, since
proving Theorem 1 is slightly more involved than proving
Theorem 4. We note, however, that our analysis already entails
all reasoning required for establishing Theorem 4.

A. Dual Certification

Denote byA(k,l) (M) the projection ofM onto the sub-
space spanned byA(k,l), and define the projection operator
onto the space spanned by allA(k,l) and its orthogonal
complement as

A :=
∑

(k,l)∈[n1]×[n2]

A(k,l), and A⊥ = I − A. (28)

There are two common ways to describe the randomness
of Ω: one corresponds to samplingwithout replacement, and
another concerns samplingwith replacement (i.e.Ω contains
m indices{ai ∈ [n1]× [n2] : 1 ≤ i ≤ m} that are i.i.d. gener-
ated). As discussed in [31, Section II.A], while both situations
result in the same order-wide bounds, the latter situation
admits simpler analysis due to independence. Therefore, we
will assume thatΩ is a multi-set (possibly with repeated
elements) andai’s are independently and uniformly distributed
throughout the proofs of this paper, and define the associated
operators as

AΩ :=

m∑

i=1

Aai . (29)

We also define another projection operatorA′
Ω similar to (29),

but with the sum extending only overdistinct samples. Its
complement operator is defined asA′

Ω⊥ := A − A′
Ω. Note

thatAΩ (M ) = 0 is equivalent toA′
Ω(M ) = 0. With these

definitions, EMaC can be rewritten as the following general
matrix completion problem:

minimize
M

‖M‖∗ (30)

subject to A′
Ω (M ) = A′

Ω (Xe) ,

A⊥ (M) = A⊥ (Xe) = 0.

To prove exact recovery of convex optimization, it suffices
to produce an appropriate dual certificate, as stated in the
following lemma.

Lemma 1. Consider a multi-setΩ that containsm random
indices. Suppose that the sampling operatorAΩ obeys

∥
∥
∥PTAPT −

n1n2

m
PTAΩPT

∥
∥
∥ ≤ 1

2
. (31)

If there exists a matrixW satisfying

A′
Ω⊥ (W ) = 0, (32)

‖PT (W −UV ∗)‖F ≤
1

2n2
1n

2
2

, (33)

and
‖PT⊥ (W )‖ ≤ 1

2
, (34)

thenXe is the unique solution to (30) or, equivalently,X is
the unique minimizer of EMaC.

Proof: See Appendix B.
Condition (31) will be analyzed in Section VI-B, while

a dual certificateW will be constructed in Section VI-C.
The validity of W as a dual certificate will be established
in Sections VI-C - VI-E. These are the focus of the remaining
section.

B. Deviation of
∥
∥PTAPT − n1n2

m
PTAΩPT

∥
∥

Lemma 1 requires thatAΩ be sufficiently incoherent with
respect to the tangent spaceT . The following lemma quantifies
the projection of eachA(k,l) onto the subspaceT .

Lemma 2. Under the hypothesis(23), one has
∥
∥UU∗A(k,l)

∥
∥
2

F
≤ µ1csr

n1n2
,
∥
∥A(k,l)V V ∗∥∥2

F
≤ µ1csr

n1n2
,

(35)
for all (k, l) ∈ [n1]× [n2]. For anya, b ∈ [n1]× [n2], one has

|〈Ab,PTAa〉| ≤
√

ωb

ωa

3µ1csr

n1n2
. (36)

Proof: See Appendix C.
Recognizing that (35) is the same as (27), the following

proof also establishes Theorem 4. Note that Lemma 2 imme-
diately leads to

∥
∥PT

(
A(k,l)

)∥
∥
2

F
≤
∥
∥PU

(
A(k,l)

)∥
∥
2

F
+
∥
∥PV

(
A(k,l)

)∥
∥
2

F

≤ 2µ1csr

n1n2
. (37)

As long as (37) holds, the fluctuation ofPTAΩPT can be
controlled reasonably well, as stated in the following lemma.
This justifies Condition (31) as required by Lemma 1.
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Lemma 3. Suppose that(37) holds. Then for any small
constant0 < ǫ ≤ 1

2 , one has
∥
∥
∥
n1n2

m
PTAΩPT − PTAPT

∥
∥
∥ ≤ ǫ (38)

with probability exceeding1 − (n1n2)
−4, provided thatm >

c1µ1csr log (n1n2) for some universal constantc1 > 0.

Proof: See Appendix D.

C. Construction of Dual Certificates

Now we are in a position to construct the dual certificate, for
which we will employ the golfing scheme introduced in [31].
Suppose that we generatej0 independent random location
multi-setsΩi (1 ≤ i ≤ j0), each containingm

j0
i.i.d. samples.

This way the distribution ofΩ is the same asΩ1∪Ω2∪· · ·∪Ωj0

. Note thatΩi’s correspond to samplingwith replacement. Let

ρ :=
m

n1n2
and q :=

ρ

j0
(39)

represent the undersampling factors ofΩ andΩi, respectively.
Consider a small constantǫ < 1

e
, and pick j0 :=

3 log 1
ǫ
n1n2. The construction of the dual matrixW then

proceeds as follows:

Construction of a dual certificate W via the golfing
scheme.

1. SetF 0 = UV ∗, andj0 := 5 log 1
ǫ
(n1n2).

2. For all i (1 ≤ i ≤ j0), let
F i = PT

(

A− 1
q
AΩi

)

PT (F i−1) .

3. SetW :=
∑j0

j=1

(
1
q
AΩi +A⊥

)

(F i−1).

We will establish thatW is a valid dual certificate by
showing thatW satisfies the conditions stated in Lemma 1,
which we now proceed step by step.

First, by construction, all summands
(
1

q
AΩi +A⊥

)

(F i−1)

lie within the subspace of matrices supported onΩ or the
subspaceA⊥. This validates thatA′

Ω⊥ (W ) = 0, as required
in (32).

Secondly, the recursive construction procedure ofF i allows
us to write

− PT (W − F 0) = PT (F 0)−
j0∑

j=1

PT

(
1

q
AΩi +A⊥

)

(F i−1)

= PT (F 0)− PT

(
1

q
AΩi +A⊥

)

PT (F 0)

−
j0∑

j=2

PT

(
1

q
AΩi +A⊥

)

(F i−1)

= PT

(

A− 1

q
AΩi

)

PT (F 0)−
j0∑

j=2

PT

(
1

q
AΩi +A⊥

)

F i−1

= PT (F 1)−
j0∑

j=2

PT

(
1

q
AΩi +A⊥

)

(F i−1)

= · · · = PT (F j0) . (40)

Lemma 3 asserts the following: ifqn1n2 ≥ c1µ1csr log (n1n2)
or, equivalently,m ≥ c̃1µ1csr log

2(n1n2) for some constant
c̃1 > 0, then with overwhelming probability one has
∥
∥
∥
∥
PT − PT

(
1

q
AΩi +A⊥

)

PT

∥
∥
∥
∥
=

∥
∥
∥
∥
PTAPT −

1

q
PTAΩiPT

∥
∥
∥
∥

≤ ǫ <
1

2
.

This allows us to bound‖PT (F i)‖F as

‖PT (F i)‖F ≤ ǫi ‖PT (F 0)‖F ≤ ǫi ‖UV ∗‖F = ǫi
√
r,

which together with (40) gives

‖PT (W −UV ∗)‖F = ‖PT (W − F 0)‖F = ‖PT (F j0)‖F

≤ ǫj0
√
r <

1

2n2
1n

2
2

(41)

as required in Condition (33).
Finally, it remains to be shown that‖PT⊥ (W )‖ ≤ 1

2 , which
we will establish in the next two subsections. In particular,
we first introduce two key metrics and characterize their
relationships in Section VI-D. These metrics are crucial in
bounding‖PT⊥ (W )‖, which will be the focus of Section
VI-E.

D. Two Metrics and Key Lemmas

In this subsection, we introduce the following two norms

‖M‖A,∞ := max
(k,l)∈[n1]×[n2]

∣
∣
∣
∣
∣

〈
A(k,l),M

〉

√
ωk,l

∣
∣
∣
∣
∣
, (42)

‖M‖A,2 :=

√
√
√
√

∑

(k,l)∈[n1]×[n2]

∣
∣
〈
A(k,l),M

〉∣
∣
2

ωk,l

. (43)

Based on these two metrics, we can derive several techni-
cal lemmas which, taken collectively, allow us to control
‖PT⊥ (W )‖. Specifically, these lemmas characterize the mu-
tual dependence of three norms‖·‖, ‖·‖A,2 and‖·‖A,∞.

Lemma 4. For any given matrixM , there exists some
numerical constantc2 > 0 such that
∥
∥
∥

(n1n2

m
AΩ −A

)

(M)
∥
∥
∥ ≤ c2

√

n1n2 log (n1n2)

m
‖M‖A,2

+ c2
n1n2 log (n1n2)

m
‖M‖A,∞ (44)

with probability at least1− (n1n2)
−10.

Proof: See Appendix E.

Lemma 5. Assume that there exists a quantityµ5 such that

ωα,β

∥
∥PT

(
A(α,β)

)∥
∥
2

A,2
≤ µ5r

n1n2
, (α, β) ∈ [n1]× [n2] . (45)

For any given matrixM , with probability exceeding1 −
(n1n2)

−10,
∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M )
∥
∥
∥
A,2
≤ c3

√

µ5r log (n1n2)

m
·

(

‖M‖A,2 +

√

n1n2 log (n1n2)

m
‖M‖A,∞

)

(46)
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for some absolute constantc3 > 0.

Proof: See Appendix F.

Lemma 6. For any given matrixM ∈ T , there is some
absolute constantc4 > 0 such that

∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M)
∥
∥
∥
A,∞

≤ c4

√

µ1csr log (n1n2)

m
·
√

µ1csr

n1n2
‖M‖A,2

+ c4
µ1csr log (n1n2)

m
‖M‖A,∞ (47)

with probability exceeding1− (n1n2)
−10.

Proof: See Appendix G.

Lemma 5 combined with Lemma 6 gives rise to the follow-
ing inequality. Consider any given matrixM ∈ T . Applying
the bounds (46) and (47), one can derive

∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M)
∥
∥
∥
A,2

+

√

n1n2 log (n1n2)

m

∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M)
∥
∥
∥
A,∞

(48)

≤ c3

√

µ5r log (n1n2)

m

(

‖M‖
A,2 +

√

n1n2 log (n1n2)

m
‖M‖

A,∞

)

+ c4

√

n1n2 log (n1n2)

m

(
√

µ1csr log (n1n2)

m
·
√

µ1csr

n1n2
‖M‖

A,2

+
µ1csr log (n1n2)

m
‖M‖A,∞

)

≤ c5

(√

µ5r log (n1n2)

m
+

µ1csr log (n1n2)

m

)

·
{

‖M‖A,2 +

√

n1n2 log (n1n2)

m
‖M‖A,∞

}

, (49)

with probability exceeding1 − (n1n2)
−10, where c5 =

max {c3, c4}. This holds under the hypothesis (45).

E. An Upper Bound on‖PT⊥ (W )‖

Now we are ready to show how we may combine the
above lemmas to develop an upper bound on‖PT⊥ (W )‖.
By construction, one has

‖PT⊥ (W )‖ ≤
j0∑

l=1

∥
∥
∥
∥
PT⊥

(
1

q
AΩl

+A⊥
)

PT (F l−1)

∥
∥
∥
∥
.

Each summand can be bounded above as follows
∥
∥
∥
∥
PT⊥

(
1

q
AΩl

+A⊥
)

PT (F l−1)

∥
∥
∥
∥

=

∥
∥
∥
∥
PT⊥

(
1

q
AΩl
−A

)

PT (F l−1)

∥
∥
∥
∥

≤
∥
∥
∥
∥

(
1

q
AΩl
−A

)

(F l−1)

∥
∥
∥
∥

≤ c2

(√

log (n1n2)

q
‖F l−1‖A,2 +

log (n1n2)

q
‖F l−1‖A,∞

)

(50)

≤ c2c5

(√

µ5r log (n1n2)

qn1n2
+

µ1csr log (n1n2)

qn1n2

)

·
{
√

log (n1n2)

q
‖F l−2‖A,2 +

log (n1n2)

q
‖F l−2‖A,∞

}

(51)

≤
(

1

2

)l−1
(
√

log (n1n2)

q
· ‖F 0‖A,2 +

log (n1n2)

q
‖F 0‖A,∞

)

,

(52)

where (50) follows from Lemma 4 together with the
fact that F i ∈ T , and (51) is a consequence of
(49). The last inequality holds under the hypothesis that
qn1n2 ≫ max {µ1cs, µ5} r log (n1n2) or, equivalently,m ≫
max {µ1cs, µ5} r log2 (n1n2).

SinceF 0 = UV ∗, it remains to control‖UV ∗‖A,∞ and
‖UV ∗‖A,2. We have the following lemma.

Lemma 7. With the incoherence measureµ1, one can bound

‖UV ∗‖A,∞ ≤
µ1csr

n1n2
, (53)

‖UV ∗‖2A,2 ≤
µ1csr log

2 (n1n2)

n1n2
, (54)

and for any(α, β) ∈ [n1]× [n2],

∥
∥PT

(√
ωα,βA(α,β)

)∥
∥
2

A,2
≤ c6µ1cs log

2 (n1n2) r

n1n2
(55)

for some numerical constantc6 > 0.

Proof: See Appendix H.
In particular, the bound (55) translates into

µ5 ≤ c6µ1cs log
2 (n1n2) .

Substituting (53) and (54) into (52) gives
∥
∥
∥PT⊥

(n1n2

m
AΩl

+A⊥
)

PT (F l−1)
∥
∥
∥

≤
(
1

2

)l−1




√

µ1csr log
2 (n1n2)

qn1n2
+

µ1csr log (n1n2)

qn1n2





≪ 1

2
·
(
1

2

)l

,
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as soon asm > c7 max
{
µ1cs log

2 (n1n2) , µ5 log
2 (n1n2)

}
r

or m > c̃7µ1cs log
4 (n1n2) for some sufficiently large con-

stantsc7, c̃7 > 0, indicating that

‖PT⊥ (W )‖ ≤
j0∑

l=1

∥
∥
∥
∥
PT⊥

(
1

q
AΩl

+A⊥
)

PT (F l−1)

∥
∥
∥
∥

≤ 1

2
·

∞∑

l=1

(
1

2

)l

≤ 1

2
(56)

as required. So far, we have successfully verified that with
high probability,W is a valid dual certificate, and hence by
Lemma 1 the solution to EMaC is exact and unique.

VII. PROOF OFTHEOREM 3

The algorithm Robust-EMaC is inspired by the well-known
robust principal component analysis [17], [33] that seeks a
decomposition of low-rank plus sparse matrices, except that
we impose multi-fold Hankel structures on both the low-rank
and sparse matrices. Following similar spirit as to the proof
of Theorem 1, the proof here is based on duality analysis,
and relies on the golfing scheme [31] to construct a valid dual
certificate.

In this section, we prove the results for a slightly different
sampling model as follows.

• The location multi-setΩclean of observed uncorrupted
entries is generated by sampling(1− τ) ρn1n2 i.i.d.
entries uniformly at random.

• The location multi-setΩ of observed entries is generated
by samplingρn1n2 i.i.d. entries uniformly at random,
with the first (1− τ) ρn1n2 entries coming fromΩclean.

• The location setΩdirty of observed corrupted entries is
given byΩ′\Ωclean′ , whereΩ′ andΩclean′ denote the sets
of distinct entry locations inΩ andΩclean, respectively.

As mentioned in the proof of Theorem 1, this slightly dif-
ferent sampling model, while resulting in the same order-
wise bounds, significantly simplifies the analysis due to the
independence assumptions.

We will prove Theorem 3 under an additional random sign
condition, that is, the signs of all non-zero entries ofS are
independent zero-meanrandom variables. Specifically, we will
prove the following theorem.

Theorem 5 (Random Sign). Suppose thatX obeys the
incoherence condition with parameterµ1, and let λ =

1√
m log(n1n2)

. Assume thatτ ≤ 0.2 is some small positive

constant, and that the signs of nonzero entries ofS are
independently generated with zero mean. If

m > c0µ
2
1c

2
sr

2 log3 (n1n2) ,

then Robust-EMaC succeeds in recoveringX with probability
exceeding1− (n1n2)

−2.

In fact, a simple derandomization argument introduced in
[33, Section 2.2] immediately suggests that the performance
of Robust-EMaC under the fixed-sign pattern is no worse than
that under the random-sign pattern with sparsity parameter2τ ,
i.e. the condition on the signs pattern ofS is unnecessary and
Theorem 3 follows after we establish Theorem 5. As a result,

the section will focus on Theorem 3 with random sign patterns,
which are much easier to analyze.

A. Dual Certification

We adopt similar notations as in Section VI-A. That said,
if we generateρn1n2 i.i.d. entry locationsai’s uniformly at
random, and let the multi-setsΩ andΩcleancontain respectively
{ai|1 ≤ i ≤ ρn1n2} and{ai|1 ≤ i ≤ ρ(1− τ)n1n2}), then

AΩ :=

ρn1n2∑

i=1

Aai
, and AΩclean :=

ρ(1−τ)n1n2∑

i=1

Aai
,

corresponding to sampling with replacement. Besides,A′
Ω

(resp.A′
Ωclean) is defined similar toAΩ (resp.AΩclean), but with

the sum extending only overdistinct samples.
We will establish that exact recovery can be guaranteed, if

we can produce a valid dual certificate as follows.

Lemma 8. Suppose thatτ is some small positive constant.
Suppose that the associated sampling operatorAΩclean obeys

∥
∥
∥
∥
PTAPT −

1

ρ (1− τ)
PTAΩcleanPT

∥
∥
∥
∥
≤ 1

2
, (57)

and

‖AΩclean (M )‖F ≤ 10 log (n1n2) ‖A′
Ωclean (M )‖F , (58)

for any matrixM . If there exist a regularization parameterλ
(0 < λ < 1) and a matrixW obeying







‖PT (W + λsgn (Se)−UV ∗)‖F ≤ λ
n2
1n

2
2
,

‖PT⊥ (W + λsgn (Se))‖ ≤ 1
4 ,

A′
(Ωclean)⊥

(W ) = 0,
∥
∥A′

Ωclean (W )
∥
∥
∞ ≤

λ
4 ,

(59)

then Robust-EMaC is exact, i.e. the minimizer
(

M̂ , Ŝ
)

satis-

fiesM̂ = X .

Proof: See Appendix I.
We note that a reasonably tight bound on∥

∥
∥PTAPT − 1

ρ(1−τ)PTAΩcleanPT

∥
∥
∥ has been developed

by Lemma 3. Specifically, there exists some constantc1 > 0
such that ifρ (1− τ)n1n2 > c1µ1csr log (n1n2), then one
has ∥

∥
∥
∥
PTAPT −

1

ρ (1− τ)
PTAΩcleanPT

∥
∥
∥
∥
≤ 1

2

with probability exceeding1 − (n1n2)
−4. Besides, Cher-

noff bound [57] indicates that with probability exceeding
1 − (n1n2)

−3, none of the entries is sampled more than
10 log (n1n2) times. Equivalently,

P
(
∀M : ‖AΩclean (M )‖F ≤ 10 log (n1n2) ‖A′

Ωclean (M)‖F
)

≥ 1− (n1n2)
−3.

Our objective in the remainder of this section is to produce a
dual matrixW satisfying Condition (59).
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B. Construction of Dual Certificate

Suppose that we generatej0 independent random location
multi-setsΩclean

j , whereΩclean
j containsqn1n2 i.i.d. samples

uniformly at random. Here, we setq := (1−τ)ρ
j0

and ǫ < 1
e
.

This way the distribution of the multi-setΩ is the same as
Ωclean

1 ∪ Ωclean
2 ∪ · · · ∪ Ωclean

j0
.

We now propose constructing a dual certificateW as
follows:

Construction of a dual certificate W via the golfing
scheme.

1. SetF 0 = PT (UV ∗ − λsgn(Se)), and
j0 := 5 log 1

ǫ
n1n2.

2. For everyi (1 ≤ i ≤ j0), let
F i := PT

(

A− 1
q
AΩclean

i

)

PT (F i−1) .

3. SetW :=
∑j0

j=1

(
1
q
AΩclean

j
+A⊥

)

(F j−1).

Take λ = 1√
m log(n1n2)

. Note that the construction ofW

proceeds with a similar procedure as in Section VI-C, except
that F 0 andΩi are replaced byPT (UV ∗ − λsgn(Se)) and
Ωclean

i , respectively.

We will justify that W is a valid dual certificate, by
examining the conditions in (59) step by step.

(1) The first condition requires the term
‖PT (W + λsgn(Se)−UV ∗)‖F = ‖PT (W − F 0)‖F
to be reasonably small. Lemma 3 asserts that
there exist some constantsc1, c̃1 > 0 such that if
m = ρn1n2 > c1µ1csr log

2 (n1n2) or, equivalently,
qin1n2 > c̃1µ1csr log

2 (n1n2), then

‖PT (F j0)‖F ≤ ǫ ‖PT (F j0−1)‖F ≤ · · · ≤ ǫj0 ‖PT (F 0)‖F

≤ 1

n5
1n

5
2

(‖UV ∗‖F + λ ‖sgn(Se)‖F)

≤ 1

n5
1n

5
2

(√
r + λn1n2

)
<

1

n5
1n

5
2

(n1n2 + λn1n2)

≤ λ

n2
1n

2
2

(60)

with probability exceeding1 − (n1n2)
−3. Apply the same

argument as for (40) to derive

−PT (W − F 0) = PT (F j0) .

Plugging this into (60) establishes that

‖PT (W + λsgn(Se)−UV ∗)‖F = ‖PT (F j0)‖F

≤ λ

n2
1n

2
2

. (61)

(2) The second condition relies on an upper bound on
‖PT⊥ (W + λsgn(Se))‖. To this end, we proceed by control-
ling ‖PT⊥ (W )‖ and‖PT⊥ (λsgn(Se))‖ separately. Applying

the same argument as for (52) suggests
∥
∥
∥
∥
PT⊥

(
1

q
AΩl

+A⊥
)

PT (F l−1)

∥
∥
∥
∥

≤
(

1

2

)l−1
(
√

log (n1n2)

q
· ‖F 0‖A,2 +

log (n1n2)

q
‖F 0‖A,∞

)

≤
(

1

2

)l−1
(
√

n1n2 log (n1n2)

q
+

log (n1n2)

q

)

· ‖F 0‖A,∞

≤
(
1

2

)l−2
n1n2 log (n1n2)√

m
‖F 0‖A,∞ , (62)

where the second inequality follows since‖M‖A,2 ≤√
n1n2 ‖M‖A,∞, and the last inequality arises from the fact

that

log (n1n2)

q
≤
√

n1n2 log (n1n2)

q
=

n1n2 log (n1n2)√
m

when m ≫ log2 (n1n2). Note that F 0 = UV ∗ −
λPT (sgn(Se)). Since we have established an upper bound
on ‖UV ∗‖A,∞ in (53), what remains to be controlled
is ‖PT (sgn(Se))‖A,∞. This is achieved by the following
lemma.

Lemma 9. Suppose thats is a positive constant. then one has

‖PT (sgn (Se))‖A,∞ ≤ c9
µ1csr

n1n2

√

mτ log (n1n2)

for some constantc9 > 0 with probability at least1 −
(n1n2)

−4.

Proof: See Appendix J.
From (53) and Lemma 9, we have

‖F 0‖A,∞ ≤ ‖UV ∗‖A,∞ + λ ‖PT (sgn(Se))‖A,∞

≤ µ1csr

n1n2
+

c9µ1csr
√
τ

n1n2

≤ c̃9µ1csr

n1n2
, (63)

and substitute (63) into (62) we have
∥
∥
∥
∥
PT⊥

(
1

q
AΩl

+A⊥
)

PT (F l−1)

∥
∥
∥
∥

≤
(
1

2

)l−2
c̃9µ1csr log (n1n2)√

m
.

In particular, if m > c8µ
2
1c

2
sr

2 log2 (n1n2) for some large
enough constantc8, then one has

∥
∥
∥
∥
PT⊥

(
1

q
AΩl

+A⊥
)

PT (F l−1)

∥
∥
∥
∥
≤
(
1

2

)l+4

.

As a result, we can obtain

‖PT⊥ (W )‖ ≤
j0∑

i=1

∥
∥
∥
∥
PT⊥

(
1

q
AΩclean

i
+A⊥

)

PT (F i−1)

∥
∥
∥
∥

≤
j0∑

i=0

(
1

2

)i+4

<
1

8
(64)

with probability exceeding1− (n1n2)
−4.
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It remains to control the term‖PT⊥ (λsgn(Se))‖, which is
supplied in the following lemma.

Lemma 10. Suppose thatτ is a small positive constant, then
one has







‖sgn (Se)‖ ≤
√

c10ρτn1n2 log
1
2 (n1n2),∥

∥
∥PT⊥

(
1
q
AΩl

+A⊥
)

PT (F l−1)
∥
∥
∥ ≤ 1

8 ,
(65)

with probability at least1− (n1n2)
−5.

Proof: See Appendix K.
Putting (64) and (65) together yields

‖PT⊥ (W + λsgn(Se))‖ ≤ ‖PT⊥ (W )‖+ ‖PT⊥ (λsgn(Se))‖

≤ 1

4

with high probability.
(3) By construction, one hasA′

(Ωclean)⊥
(W ) = 0.

(4) The last step is to bound
∥
∥A′

Ωclean (W )
∥
∥
∞, which is ap-

parently bounded above by‖AΩclean (W )‖∞. The construction
procedure together with Lemma 6 allows us to bound

‖F i‖A,∞ ≤ c4

(√

µ1csr log (n1n2)

qn1n2
·
√

µ1csr

n1n2
‖F i−1‖A,2

+c4
µ1csr log (n1n2)

qn1n2
‖F i−1‖A,∞

)

≤ c4

(
√

µ1csr log (n1n2)

qn1n2

√
µ1csr +

µ1csr log (n1n2)

qn1n2

)

‖F i−1‖A,∞

≤ 2c4µ1csr

√

log (n1n2)

qn1n2
‖F i−1‖A,∞ ,

where the second inequality arises since‖F i‖A,2 ≤√
n1n2 ‖F i‖A,∞, and the last step follows since

√
log(n1n2)
qn1n2

≥ log(n1n2)
qn1n2

when m ≫ log2 (n1n2).
Then there exists some constantc11 > 0 such that if
m > c11µ

2
1c

2
sr

2 log2 (n1n2), then

‖F i‖A,∞ ≤
1

4
‖F i−1‖A,∞ ≤

1

4i
‖F 0‖A,∞ ≤

c̃9µ1csr

4in1n2
,

where the last inequality follows from (63). As a result, one
can deduce

‖AΩclean (W )‖∞ =

∥
∥
∥
∥
∥

j0∑

i=1

AΩclean

(
1

q
AΩclean

i
+A⊥

)

F i−1

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

j0∑

i=1

1

q
AΩclean

i
F i−1

∥
∥
∥
∥
∥
∞

≤
j0∑

i=1

1

q
max

(k,l)∈[n1]×[n2]

∣
∣
〈
A(k,l),F i−1

〉∣
∣

√
ωk,l

=

j0∑

i=1

1

q
‖F i−1‖A,∞

≤
j0∑

i=1

5 log (n1n2)

ρ

c̃9µ1csr

4i−1n1n2

≤ 20 log (n1n2) c̃9µ1csr

3m
≤ 1

4
√

m log (n1n2)
,

where the last inequality is obtained by settingm >
c12µ

2
1c

2
sr

2 log3 (n1n2) for some constantc12 > 0.

To sum up, we have verified thatW satisfies the four con-
ditions required in (59), and is hence a valid dual certificate.
This concludes the proof.

VIII. C ONCLUDING REMARKS

We present an efficient algorithm to estimate a spectrally
sparse signal from its partial time-domain samples that does
not require prior knowledge on the model order, which poses
spectral compressed sensing as a low-rank Hankel structured
matrix completion problem. Under mild incoherence condi-
tions, our algorithm enables recovery of the multi-dimensional
unknown frequencies with infinite precision, which remedies
the basis mismatch issue that arises in conventional CS
paradigms. We have shown both theoretically and numerically
that our algorithm is stable against bounded noise and a con-
stant proportion of arbitrary corruptions, and can be extended
numerically to tasks such as super resolution. To the best of
our knowledge, our result on Hankel matrix completion is also
the first theoretical guarantee that is close to the information-
theoretical limit (up to some logarithmic factor).

Our results are based on uniform random observation mod-
els. In particular, this paper considers directly taking a random
subset of the time domain samples, it is also possible to
take a random set of linear mixtures of the time domain
samples, as in the renowned CS setting [14]. This again can be
translated into taking linear measurements of the low-rankK-
fold Hankel matrix, given asy = B(Xe). Unfortunately, due
to the Hankel structures, it is not clear whetherB exhibits
approximate isometry property. Nonetheless, the technique
developed in this paper can be extended without difficulty to
analyze linear measurements, in a similar flavor of a golfing
scheme developed for CS in [21].

It remains to be seen whether it is possible to obtain
performance guarantees of the proposed EMaC algorithm
similar to that in [24] for super resolution. It is also of great
interest to develop efficient numerical methods to solve the
EMaC algorithm in order to accommodate large datasets.
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APPENDIX A
BERNSTEIN INEQUALITY

Our analysis relies heavily on the Bernstein inequality. To
simplify presentation, we state below a user-friendly version
of Bernstein inequality, which is an immediate consequence
of [58, Theorem 1.6].

Lemma 11. Considerm independent random matricesM l

(1 ≤ l ≤ m) of dimensiond1×d2, each satisfyingE [M l] = 0
and ‖M l‖ ≤ B. Define

σ2 := max

{∥
∥
∥
∥
∥

m∑

l=1

E [M lM
∗
l ]

∥
∥
∥
∥
∥
,

∥
∥
∥
∥
∥

m∑

l=1

E [M∗
lM l]

∥
∥
∥
∥
∥

}

.
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Then there exists a universal constantc0 > 0 such that for
any integera ≥ 2,
∥
∥
∥
∥
∥

m∑

l=1

M l

∥
∥
∥
∥
∥
≤ c0

(√

aσ2 log (d1 + d2) + aB log (d1 + d2)
)

(66)
with probability at least1− (d1 + d2)

−a.

APPENDIX B
PROOF OFLEMMA 1

Consider any valid perturbationH obeyingPΩ (X +H) =
PΩ (X), and denote byHe the enhanced form ofH. We note
that the constraint requiresA′

Ω (He) = 0 (or AΩ (He) = 0)
andA⊥ (He) = 0. In addition, setZ0 = PT⊥ (B) for anyB
that satisfies〈B,PT⊥ (He)〉 = ‖PT⊥ (He)‖∗ and‖B‖ ≤ 1.
Therefore,Z0 ∈ T⊥ and‖Z0‖ ≤ 1, and henceUV ∗+Z0 is
a sub-gradient of the nuclear norm atXe. We will establish
this lemma by considering two scenarios separately.

(1) Consider first the case in whichHe satisfies

‖PT (He)‖F ≤
n2
1n

2
2

2
‖PT⊥ (He)‖F . (67)

SinceUV ∗ + Z0 is a sub-gradient of the nuclear norm at
Xe, it follows that

‖Xe +He‖∗
≥ ‖Xe‖∗ + 〈UV ∗ +Z0,He〉
= ‖Xe‖∗ + 〈W ,He〉+ 〈Z0,He〉 − 〈W −UV ∗,He〉
= ‖Xe‖∗ +

〈(
A′

Ω +A⊥) (W ) ,He
〉

+ 〈Z0,He〉 − 〈W −UV ∗,He〉 (68)

≥ ‖Xe‖∗ + ‖PT⊥ (He)‖∗ − 〈W −UV ∗,He〉 (69)

where (68) holds from (32), and (69) follows from the property
of Z0 and the fact that

(
A′

Ω +A⊥) (He) = 0. The last term
of (69) can be bounded as

〈W −UV ∗,He〉
= 〈PT (W −UV ∗) ,He〉+ 〈PT⊥ (W −UV ∗) ,He〉
≤ ‖PT (W −UV ∗)‖F ‖PT (He)‖F

+ ‖PT⊥ (W )‖ ‖PT⊥ (He)‖∗
≤ 1

2n2
1n

2
2

‖PT (He)‖F +
1

2
‖PT⊥ (He)‖∗ ,

where the last inequality follows from the assumptions (33)
and (34). Plugging this into (69) yields

‖Xe +He‖∗
≥ ‖Xe‖∗ −

1

2n2
1n

2
2

‖PT (He)‖F +
1

2
‖PT⊥ (He)‖∗ (70)

≥ ‖Xe‖∗ −
1

4
‖PT⊥ (He)‖F +

1

2
‖PT⊥ (He)‖F (71)

≥ ‖Xe‖∗ +
1

4
‖PT⊥ (He)‖F

where (71) follows from the inequality‖M‖∗ ≥ ‖M‖F and
(67). Therefore,Xe is the minimizer of EMaC.

We still need to prove the uniqueness of the minimizer.
The inequality (71) implies that‖Xe +He‖∗ = ‖Xe‖∗
holds only when‖PT⊥ (He)‖F = 0. If ‖PT⊥ (He)‖F = 0,

then ‖PT (He)‖F ≤
n2
1n

2
2

2 ‖PT⊥ (He)‖F = 0, and hence
PT⊥ (He) = PT (He) = 0, which only occurs whenHe = 0.
Hence,Xe is the unique minimizer in this situation.

(2) On the other hand, consider the complement scenario
where the following holds

‖PT (He)‖F ≥
n2
1n

2
2

2
‖PT⊥ (He)‖F . (72)

We would first like to bound
∥
∥
(
n1n2

m
AΩ +A⊥)PT (He)

∥
∥

F
and

∥
∥
(
n1n2

m
AΩ +A⊥)PT⊥ (He)

∥
∥

F
. The former term can be

lower bounded by
∥

∥

∥

(

n1n2

m
AΩ +A⊥

)

PT (He)
∥

∥

∥

2

F

=
〈(

n1n2

m
AΩ +A⊥

)

PT (He) ,
(

n1n2

m
AΩ +A⊥

)

PT (He)
〉

=
〈

n1n2

m
AΩPT (He) ,

n1n2

m
AΩPT (He)

〉

+
〈

A⊥PT (He) ,A⊥PT (He)
〉

≥
〈

PT (He) ,
n1n2

m
AΩPT (He)

〉

+
〈

PT (He) ,A⊥PT (He)
〉

=
〈

PT (He) ,PT

(n1n2

m
AΩ +A⊥

)

PT (He)
〉

= 〈PT (He) ,PT (He)〉
+
〈

PT (He) ,
(

n1n2

m
PTAΩPT − PTAPT

)

PT (He)
〉

≥ ‖PT (He)‖2F −
∥

∥

∥PTAPT − n1n2

m
PTAΩPT

∥

∥

∥ ‖PT (He)‖2F
≥
(

1−
∥

∥

∥
PTAPT − n1n2

m
PTAΩPT

∥

∥

∥

)

‖PT (He)‖2F

≥ 1

2
‖PT (He)‖2F . (73)

On the other hand, since the operator norm of any projection
operator is bounded above by1, one can verify that

∥
∥
∥
n1n2

m
AΩ +A⊥

∥
∥
∥ ≤ n1n2

m

(

∥
∥Aa1 +A⊥∥∥+

m∑

i=2

‖Aai‖
)

≤ n1n2,

whereai (1 ≤ i ≤ m) are m uniform random indices that
form Ω. This implies the following bound:
∥
∥
∥

(n1n2

m
AΩ +A⊥

)

PT⊥ (He)
∥
∥
∥

F
≤ n1n2 ‖PT⊥ (He)‖F

≤ 2

n1n2
‖PT (He)‖F ,

where the last inequality arises from our assumption. Com-
bining this with the above two bounds yields

0 =
∥
∥
∥

(n1n2

m
AΩ +A⊥

)

(He)
∥
∥
∥

F

≥
∥
∥
∥

(n1n2

m
AΩ +A⊥

)

PT (He)
∥
∥
∥

F

−
∥
∥
∥

(n1n2

m
AΩ +A⊥

)

PT⊥ (He)
∥
∥
∥

F

≥
√

1

2
‖PT (He)‖F −

2

n1n2
‖PT (He)‖F

≥ 1

2
‖PT (He)‖F ≥

n2
1n

2
2

4
‖PT⊥ (He)‖F ≥ 0,

which immediately indicatesPT⊥ (He) = 0 andPT (He) =
0. Hence, (72) can only hold whenHe = 0.
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APPENDIX C
PROOF OFLEMMA 2

SinceU (resp.V ) andEL (resp.ER) determine the same
column (resp. row) space, we can write

UU∗ = EL (E
∗
LEL)

−1
E∗

L ,

V V ∗ = E∗
R (ERE

∗
R)

−1
ER,

and thus
∥
∥PU

(
A(k,l)

)∥
∥
2

F
≤
∥
∥
∥EL (E

∗
LEL)

−1
E∗

LA(k,l)

∥
∥
∥

2

F

≤ 1

σmin (E
∗
LEL)

∥
∥E∗

LA(k,l)

∥
∥
2

F
,

and
∥
∥PV

(
A(k,l)

)∥
∥
2

F
≤
∥
∥
∥A(k,l)E

∗
R (ERE

∗
R)

−1
ER

∥
∥
∥

2

F

≤ 1

σmin (ERE
∗
R)

∥
∥A(k,l)E

∗
R

∥
∥
2

F
.

Note that
√
ωk,lE

∗
LA(k,l) consists ofωk,l columns ofE∗

L (and
hence it containsrωk,l nonzero entries in total). Owing to the
fact that each entry ofE∗

L has magnitude 1√
k1k2

, one can
derive

∥
∥E∗

LA(k,l)

∥
∥
2

F
=

1

ωk,l

· rωk,l ·
1

k1k2
=

r

k1k2
≤ rcs

n1n2
.

A similar argument yields
∥
∥A(k,l)E

∗
R

∥
∥
2

F
≤ csr

n1n2
. Combining

σmin (E
∗
LEL) ≥ 1

µ1
andσmin (ERE

∗
R) ≥ 1

µ1
, (35) follows by

plugging these facts into the above equations.
To show (36), since|〈Ab,PT (Aa)〉| = |〈PT (Ab) ,Aa〉|,

we only need to examine the situation whereωb < ωa.
Observe that

|〈Ab,PTAa〉| ≤ |〈Ab,UU∗Aa〉|+ |〈Ab,AaV V ∗〉|
+ |〈Ab,UU∗AaV V ∗〉| .

Owing to the multi-fold Hankel structure ofAa, the matrix
UU∗√ωaAa consists ofωa columns ofUU∗. Since there
are onlyωb nonzero entries inAb each of magnitude 1√

ωb

,
we can derive

|〈Ab,UU∗Aa〉| ≤ ‖Ab‖1 ‖UU∗Aa‖∞
= ωb ·

1√
ωb

·max
α,β

∣
∣
∣(UU∗Aa)α,β

∣
∣
∣

≤
√

ωb

ωa

max
α,β

∣
∣
∣(UU∗)α,β

∣
∣
∣ .

Each entry ofUU∗ is bounded in magnitude by
∣
∣
∣(UU∗)k,l

∣
∣
∣ =

∣
∣
∣e

⊤
k EL (E

∗
LEL)

−1
E∗

Lel

∣
∣
∣

≤
∥
∥e⊤k EL

∥
∥

F

∥
∥
∥(E∗

LEL)
−1
∥
∥
∥ ‖E∗

Lel‖F

≤ r

k1k2

1

σmin (E
∗
LEL)

≤ µ1csr

n1n2
, (74)

which immediately implies that

|〈Ab,UU∗Aa〉| ≤
√

ωb

ωa

µ1csr

n1n2
. (75)

Similarly, one can derive

|〈Ab,AaV V ∗〉| ≤
√

ωb

ωa

µ1csr

n1n2
. (76)

We still need to bound the magnitude of
〈UU∗AaV V ∗,Ab〉. One can observe that for thekth
row of UU∗:

∥
∥e⊤k UU∗∥∥

F
≤
∥
∥
∥e

⊤
k EL (E

∗
LEL)

−1
E∗

L

∥
∥
∥

F

≤
∥
∥e⊤k EL

∥
∥

F

∥
∥
∥(E∗

LEL)
−1

E∗
L

∥
∥
∥

≤
√

µ1csr

n1n2
.

Similarly, for thelth column ofV V ∗, one has‖V V ∗el‖F ≤√
µ1csr
n1n2

. The magnitude of the entries ofUU∗AaV V ∗ can
now be bounded by
∣
∣
∣(UU∗AaV V ∗)k,l

∣
∣
∣ ≤ ‖Aa‖

∥
∥e⊤k UU∗∥∥

F
‖V V ∗el‖F

≤ 1√
ωa

µ1csr

n1n2
,

where we used‖Aa‖ = 1/
√
ωa. Since Ab has only ωb

nonzero entries each has magnitude1√
ωb

, one can verify that

|〈UU∗AaV V ∗,Ab〉| ≤
(

max
k,l

∣
∣
∣(UU∗AaV V ∗)k,l

∣
∣
∣

)

· ωb√
ωb

=

√
ωb

ωa

µ1csr

n1n2
. (77)

The above bounds (75), (76) and (77) taken together lead to
(36).

APPENDIX D
PROOF OFLEMMA 3

Define a family of operators

Z(k,l) :=
n1n2

m
PTA(k,l)PT −

1

m
PTAPT .

for any(k, l) ∈ [n1]×[n2]. For any matrixM , we can compute

PTA(k,l)PT (M) = PT

(〈
A(k,l),PTM

〉
A(k,l)

)

= PT

(
A(k,l)

) 〈
PT

(
A(k,l)

)
,M

〉
, (78)

and hence
(
PTA(k,l)PT

)2
(M )

=
[
PTA(k,l)PT

(
A(k,l)

)] 〈
PT

(
A(k,l)

)
,M

〉

=
〈
A(k,l),PT

(
A(k,l)

)〉
PT

(
A(k,l)

) 〈
PT

(
A(k,l)

)
,M

〉

=
∥
∥PT

(
A(k,l)

)∥
∥
2

F
PTA(k,l)PT (M)

≤ 2µ1csr

n1n2
PTA(k,l)PT (M) ,

where the last inequality follows from (37). This further gives

∥
∥PTA(k,l)PT

∥
∥ ≤ 2µ1csr

n1n2
. (79)

Let ai (1 ≤ i ≤ m) be m independent indices uniformly
drawn from[n1]× [n2], then we haveE [Zai ] = 0 and

‖Zai
‖ ≤ 2 max

(k,l)∈[n1]×[n2]

n1n2

m

∥
∥PTA(k,l)PT

∥
∥ ≤ 4µ1csr

m
.
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following from (79). Further,

E
[
Z2

ai

]
= E

(n1n2

m
PTAai

PT

)2

−
(

E

[n1n2

m
PTAai

PT

])2

=
n2
1n

2
2

m2
E (PTAaiPT )

2 − 1

m2
(PTAPT )

2
,

We can then bound the operator norm as

m∑

i=1

∥
∥E
[
Z2

ai

]∥
∥ ≤

m∑

i=1

n2
1n

2
2

m2

∥
∥
∥E (PTAai

PT )
2
∥
∥
∥

+
1

m

∥
∥
∥(PTAPT )

2
∥
∥
∥

≤ n2
1n

2
2

m

2µ1csr

n1n2
‖E [PTAai

PT ]‖+
1

m
(80)

=
2µ1csrn1n2

m

1

n1n2
‖PTAPT ‖+

1

m2

≤ 4µ1csr

m
, (81)

where (80) uses (79). Applying Lemma 11 yields that there
exists some constant0 < ǫ ≤ 1

2 such that
∥
∥
∥
∥
∥

m∑

i=1

Zai

∥
∥
∥
∥
∥
≤ ǫ

with probability exceeding1− (n1n2)
−4, provided thatm >

c1µ1csr log (n1n2) for some universal constantc1 > 0.

APPENDIX E
PROOF OFLEMMA 4

Suppose thatAΩ =
∑m

i=1Aai
, whereai, 1 ≤ i ≤ m,

arem independent indices drawn uniformly at random from
[n1]× [n2]. Define

S(k,l) :=
n1n2

m
A(k,l) (M)− 1

m
A (M ) , (k, l) ∈ [n1]×[n2] ,

which obeysE [Sai
] = 0 and

(n1n2

m
AΩ −A

)

(M) :=

m∑

i=1

Sai
.

In order to apply Lemma 11, one needs to bound
∥
∥E
[∑m

i=1 Sai
S∗

ai

]∥
∥ and‖Sai

‖, which we tackle separately
in the sequel. Observe that

0 � S(k,l)S
∗
(k,l) =

(
n1n2

m
A(k,l) (M)− 1

m
A (M)

)

·
(
n1n2

m
A(k,l) (M)− 1

m
A (M)

)∗

�
(n1n2

m

)2

A(k,l) (M)
(
A(k,l) (M )

)∗

=
(n1n2

m

)2 ∣
∣
〈
A(k,l),M

〉∣
∣
2
A(k,l) ·A⊤

(k,l)

�
(n1n2

m

)2
∣
∣
〈
A(k,l),M

〉∣
∣
2

ωk,l

I,

where the first inequality follows since1
m

∑

k,lA(k,l) (M) =
1
m
A (M ), and the last inequality arises from the fact that all

non-zero entries ofA(k,l) ·A⊤
(k,l) lie on its diagonal and are

bounded in magnitude by1
ωk,l

. This immediately suggests

∥
∥
∥
∥
∥
E

[
m∑

i=1

SaiS
∗
ai

]∥
∥
∥
∥
∥
=

m

n1n2

∥
∥
∥
∥
∥
∥

∑

(k,l)∈[n1]×[n2]

S(k,l)S
∗
(k,l)

∥
∥
∥
∥
∥
∥

≤ m

n1n2

∥
∥
∥
∥
∥
∥

(n1n2

m

)2




∑

(k,l)∈[n1]×[n2]

∣
∣
〈
A(k,l),M

〉∣
∣
2

ωk,l



 I

∥
∥
∥
∥
∥
∥

=
n1n2

m
‖M‖2A,2 , (82)

where the last equality follows from the definition of‖M‖A,2.
Following the same argument, one can derive the same bound
for
∥
∥E
[∑m

i=1 S
∗
ai
Sai

]∥
∥ as well.

On the other hand, the operator norm of eachS(k,l) can be
bounded as follows

∥
∥S(k,l)

∥
∥ ≤

∥
∥
∥
n1n2

m
A(k,l) (M)

∥
∥
∥+

∥
∥
∥
∥

1

m
A (M )

∥
∥
∥
∥

≤ 2 max
(k,l)∈[n1]×[n2]

∥
∥
∥
n1n2

m
A(k,l) (M )

∥
∥
∥

=
2n1n2

m
max

(k,l)∈[n1]×[n2]

∥
∥
〈
A(k,l),M

〉
A(k,l)

∥
∥ (83)

=
2n1n2

m
max

(k,l)∈[n1]×[n2]

∣
∣
∣
∣
∣

〈
A(k,l),M

〉

√
ωk,l

∣
∣
∣
∣
∣

=
2n1n2

m
‖M‖A,∞ ,

where (83) holds since
∥
∥A(k,l)

∥
∥ = 1√

ωk,l
and the last equality

follows by applying the definition of‖·‖A,∞.
Finally, we combine the above two bounds together with

Bernstein inequality (Lemma 11) to obtain

∥
∥
∥

(n1n2

m
AΩ −A

)

(M)
∥
∥
∥ ≤c2

√

n1n2 log (n1n2)

m
‖M‖A,2

+ c2
2n1n2 log (n1n2)

m
‖M‖A,∞

with high probability, wherec2 > 0 is some absolute constant.

APPENDIX F
PROOF OFLEMMA 5

Write AΩ =
∑m

i=1Aai
, whereai (1 ≤ i ≤ m) are m

independent indices uniformly drawn from[n1]× [n2]. By the
definition of ‖M‖A,2, we need to examine the components

1
√
ωk,l

〈

A(k,l),
(n1n2

m
PTAΩ − PTA

)

(M)
〉

for all (k, l) ∈ [n1]× [n2].
Define a set of variablesz(α,β)’s to be

z
(k,l)
(α,β) :=

1√
ωk,l

〈

A(k,l),
n1n2

m
PTA(α,β) (M)− 1

m
PTA (M)

〉

,

(84)
thus resulting in

1
√
ωk,l

〈

A(k,l),
(n1n2

m
PTAΩ − PTA

)

(M )
〉

:=

m∑

i=1

z(k,l)ai
.
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The definition of‖M‖A,2 allows us to express

∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M)
∥
∥
∥
A,2

=

∥
∥
∥
∥
∥

m∑

i=1

zai

∥
∥
∥
∥
∥
2

, (85)

wherez(α,β)’s are defined to ben1n2-dimensional vectors

z(α,β) :=
[

z
(k,l)
(α,β)

]

(k,l)∈[n1]×[n2]
, (α, β) ∈ [n1]× [n2] .

For any random vectorv ∈ V , one can easily bound
‖v − Ev‖2 ≤ 2 supṽ∈V ‖ṽ‖2. Observing thatE

[
z(α,β)

]
= 0,

we can bound

∥
∥z(α,β)

∥
∥
2
≤ 2

√
√
√
√
∑

k,l

1

ωk,l

∣
∣
∣
∣

〈

A(k,l),
2n1n2

m
PTA(α,β) (M)

〉∣
∣
∣
∣

2

=
2n1n2

m

√

∑

k,l

1

ωk,l

∣

∣

〈

A(k,l),PT

(

A(α,β)

) 〈

A(α,β),M
〉〉∣

∣

2

=
2n1n2

m

∣

∣

〈

A(α,β),M
〉∣

∣

√
ωα,β

√

√

√

√

∑

k,l

ωα,β

∣

∣

〈

A(k,l),PT

(

A(α,β)

)〉∣

∣

2

ωk,l

≤ 2n1n2

m

∣

∣

〈

A(α,β),M
〉∣

∣

√
ωα,β

√

µ5r

n1n2

= 2

√

n1n2

m
· µ5r

m

∣

∣

〈

A(α,β),M
〉∣

∣

√
ωα,β

, (86)

where (86) follows from the definition ofµ5 in (45). Now it
follows that

‖zai
‖2 ≤ max

α,β

∥
∥z(α,β)

∥
∥
2

≤ max
α,β

2

√
n1n2

m
· µ5r

m

∣
∣
〈
A(α,β),M

〉∣
∣

√
ωα,β

≤ 2

√
n1n2

m
· µ5r

m
‖M‖A,∞ , (87)

where (87) follows from (42). On the other hand,
∣
∣
∣
∣
∣
E

[
m∑

i=1

z∗
ai
zai

]∣
∣
∣
∣
∣
=

m

n1n2

∑

α,β

‖z(α,β)‖22

≤ m

n1n2

∑

α,β

4
n1n2

m
· µ5r

m

∣
∣
〈
A(α,β),M

〉∣
∣
2

ωα,β

=
4µ5r

m
‖M‖2A,2 ,

which again follows from (43). Sincezai
’s are vectors, we im-

mediately obtain
∥
∥E
[∑m

i=1 zai
z∗
ai

]∥
∥ =

∣
∣E
[∑m

i=1 z
∗
ai
zai

]∣
∣.

Applying Lemma 11 then suggests that

∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M)
∥
∥
∥
A,2
≤ c3

√

µ5r log (n1n2)

m
‖M‖A,2

+ c3

√

n1n2

m
· µ5r

m
log (n1n2) ‖M‖

A,∞

with high probability for some numerical constantc3 > 0,
which completes the proof.

APPENDIX G
PROOF OFLEMMA 6

From Appendix F, it is straightforward that

∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M)
∥
∥
∥
A,∞

= max
k,l

∣
∣
∣
∣
∣

m∑

i=1

z(k,l)ai

∣
∣
∣
∣
∣
,

(88)
wherez(k,l)ai ’s are defined as (84). Using similar techniques as
(86), we can obtain
∣
∣
∣z

(k,l)
(α,β)

∣
∣
∣ ≤ 2max

k,l

∣
∣
〈
A(k,l),

n1n2

m
PT

(
A(α,β)

) 〈
A(α,β),M

〉〉∣
∣

√
ωk,l

≤ 2max
k,l

(
1
√
ωk,l

√
ωk,l

ωα,β

3µ1csr

n1n2

)
n1n2

m

∣
∣
〈
A(α,β),M

〉∣
∣

=
6µ1csr

m

1
√
ωα,β

∣
∣
〈
A(α,β),M

〉∣
∣ ,

where we have made use of the fact (36). As a result, one has
∣
∣
∣z

(k,l)
(α,β)

∣
∣
∣ ≤ 6µ1csr

m
‖M‖A,∞

and

E

[
m∑

i=1

|z(k,l)ai
|2
]

=
m

n1n2

∑

α,β

∣
∣
∣z

(k,l)
(α,β)

∣
∣
∣

2

≤ m

n1n2

(
6µ1csr

m

)2∑

α,β

1

ωα,β

∣
∣
〈
A(α,β),M

〉∣
∣
2

=
36µ2

1c
2
sr

2

mn1n2
‖M‖2A,2.

The Bernstein inequality in Lemma 11 taken collectively
with the union bound yields that

∥
∥
∥

(n1n2

m
PTAΩ − PTA

)

(M)
∥
∥
∥
A,∞

≤ c4

√

µ1csr log (n1n2)

m
·
√

µ1csr

n1n2
‖M‖A,2

+ c4
µ1csr log (n1n2)

m
‖M‖A,∞

with high probability for some constantc4 > 0, completing
the proof.

APPENDIX H
PROOF OFLEMMA 7

To bound‖UV ∗‖A,∞, observe that there exists a unitary
matrix B such that

UV ∗ = EL (E
∗
LEL)

− 1
2 B (ERE

∗
R)

− 1
2 ER.

For any(k, l) ∈ [n1]× [n2], we can then bound
∣
∣
∣(UV ∗)k,l

∣
∣
∣ =

∣
∣
∣e

⊤
k EL (E

∗
LEL)

− 1
2 B (ERE

∗
R)

− 1
2 ERel

∣
∣
∣

≤
∥
∥e⊤k EL

∥
∥

F

∥
∥
∥(E∗

LEL)
− 1

2

∥
∥
∥ ‖B‖

∥
∥
∥(E∗

RER)
− 1

2

∥
∥
∥ ‖ERel‖F

≤
√

r

k1k2
µ1

√
r

(n1 − k1 + 1) (n2 − k2 + 1)

≤ µ1csr

n1n2
.
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SinceA(k,l) has onlyωk,l nonzero entries each of magnitude
1√
ωk,l

, this leads to

‖UV ∗‖A,∞ =
1

ωk,l

∣
∣
∣
∣
∣
∣

∑

(α,β)∈Ωe(k,l)

(UV ∗)α,β

∣
∣
∣
∣
∣
∣

≤ max
k,l

∣
∣
∣(UV ∗)k,l

∣
∣
∣ ≤ µ1csr

n1n2
.

The rest is to bound ‖UV ∗‖A,2 and
∥
∥PT

(√
ωk,lA(k,l)

)∥
∥
A,2

. Observe that the ith row of
UV ∗ obeys

∥
∥e⊤i UV ∗∥∥2

F
=
∥
∥e⊤i U

∥
∥
2

F
=
∥
∥
∥e

⊤
i EL (E

∗
LEL)

− 1
2

∥
∥
∥

2

F

≤
∥
∥e⊤i EL

∥
∥
2

F

∥
∥
∥(E∗

LEL)
−1
∥
∥
∥

≤ µ1

∥
∥e⊤i EL

∥
∥
2

F
≤ µ1csr

n1n2
. (89)

That said, the total energy allocated to any row ofUV ∗ cannot
exceedµ1csr

n1n2
.

Moreover, the matrixPT

(√
ωα,βA(α,β)

)
enjoys similar

properties as well, which we briefly reason as follows. First,
the matrixUU∗ (√ωα,βA(α,β)

)
obeys

∥
∥e⊤i UU∗ (√ωα,βA(α,β)

)∥
∥
2

F
≤
∥
∥e⊤i U

∥
∥
2

F
‖U∗‖2

∥
∥
√
ωα,βA(α,β)

∥
∥
2

≤ µ1csr

n1n2
,

since the operator norm ofU and
√
ωα,βA(α,β)

are both bounded by 1. The same bound for√
ωα,βA(α,β)V V ∗ can be demonstrated via the same

argument as forUU∗ (√ωα,βA(α,β)

)
. Additionally, for

UU∗ (√ωα,βA(α,β)

)
V V ∗ one has

∥
∥e⊤i UU∗ (√ωα,βA(α,β)

)
V V ∗∥∥2

F

≤
∥
∥e⊤i U

∥
∥
2

F
‖U∗‖2 ‖V V ∗‖2

∥
∥
√
ωα,βA(α,β)

∥
∥
2

≤ µ1csr

n1n2
.

By definition ofPT ,
∥
∥e⊤i PT

(√
ωα,βA(α,β)

)∥
∥
2

F
≤ 3

∥
∥e⊤i UU∗ (√ωα,βA(α,β)

)∥
∥
2

F

+ 3
∥
∥e⊤i

(√
ωα,βA(α,β)

)
V V ∗∥∥2

F

+ 3
∥
∥e⊤i UU∗ (√ωα,βA(α,β)

)
V V ∗∥∥2

F

≤ 9µ1csr

n1n2
.

Now our task boils down to bounding‖M‖A,2 for some
matrix M satisfying some energy constraints per row, which
subsumes‖UV ∗‖A,2 and

∥
∥PT

(√
ωk,lA(k,l)

)∥
∥
A,2

as special
cases. We can then conclude the proof by applying the
following lemma.

Lemma 12. Denote by the setM of feasible matrices satis-
fying

max
i

∥
∥e⊤i M

∥
∥
2

F
≤ 9µ1csr

n1n2
. (90)

Then there exists some universal constantc3 > 0 such that

max
M∈M

‖M‖2A,2 ≤ c3
µ1csr

n1n2
log2 (n1n2) . (91)

Proof: For ease of presentation, we split any matrixM

into 4 parts, which are defined as follows

• M (1): the matrix containing all upper triangular compo-
nents of all upper triangular blocks ofM ;

• M (2): the matrix containing all lower triangular compo-
nents of all upper triangular blocks ofM ;

• M (3): the matrix containing all upper triangular compo-
nents of all lower triangular blocks ofM ;

• M (4): the matrix containing all lower triangular compo-
nents of all lower triangular blocks ofM .

Here, we use the term “upper triangular” and “lower trian-
gular” in short for “left upper triangular” and “right lower
triangular”, which are more natural for Hankel matrices.
Instead of maximizing‖M‖A,2 directly, we will handle

maxM∈M ‖M (l)‖2A,2 for each1 ≤ l ≤ 4 separately, owing
to the fact that

max
M∈M

‖M‖2A,2 ≤ 4 max
M: M(l)∈M

∥
∥
∥M

(l)
∥
∥
∥

2

A,2
. (92)

In the sequel, we only demonstrate how to control‖M (1)‖A,2.
Similar bounds can be derived for‖M (l)‖A,2 (2 ≤ l ≤ 4) via
very similar argument.

To facilitate analysis, we divide the entire index set into
several subsetsWi,j such that for all1 ≤ i ≤ ⌈log (n1)⌉ and
1 ≤ j ≤ ⌈log (n2)⌉,

Wi,j :=
⋃{

Ωe (k, l) | (k, l) ∈
[
2i−1, 2i

]
×
[
2j−1, 2j

]}
.

(93)
Consequently, for eachΩe (k, l) ⊆ Wi,j , one has

2i−1 · 2j−1 ≤ ωk,l ≤ 2i+j .

This allows us to derive for eachWi,j that

∑

(k,l)∈Wi,j

1

ω2
k,l

∣
∣
∣
∣

∑

(α,β)∈Ωe(k,l)
M

(1)
α,β

∣
∣
∣
∣

2

≤
∑

(k,l)∈Wi,j

1

ωk,l

∑

(α,β)∈Ωe(k,l)

∣
∣
∣M

(1)
α,β

∣
∣
∣

2

(94)

≤ 1

2i+j−2

∑

(k,l)∈Wi,j

∑

(α,β)∈Ωe(k,l)

∣
∣
∣M

(1)
α,β

∣
∣
∣

2

, (95)

where (94) follows from the RMS-AM (root-mean square v.s.
arithmetic mean) inequality.

Observe that the indices contained inWi,j reside within no
more than2i · 2j rows. By assumption (90), the total energy
allocated toWi,j must be bounded above by

∑

(k,l)∈Wi,j

∑

(α,β)∈Ωe(k,l)

∣
∣
∣M

(1)
α,β

∣
∣
∣

2

≤ 2i · 2j max
i

∥
∥e⊤i M

∥
∥
2

F

≤ 2i+j · 9µ1csr

n1n2
.

Substituting it into (95) immediately leads to

∑

(k,l)∈Wi,j

1

ω2
k,l

∣
∣
∣
∣

∑

(α,β)∈Ωe(k,l)
M

(1)
α,β

∣
∣
∣
∣

2

≤ 36µ1csr

n1n2
. (96)
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By definition,

‖M‖2
A,2 =

∑

1 ≤ i ≤ ⌈log n1⌉
1 ≤ j ≤ ⌈log n2⌉

∑

(k,l)∈Wi,j

∣

∣

∣

∑

(α,β)∈Ωe(k,l)
Mα,β

∣

∣

∣

2

ω2
k,l

.

Combining the above bounds over allWi,j then gives
∥
∥
∥M

(1)
∥
∥
∥

2

A,2
≤ 36µ1csr ⌈log (n1)⌉ · ⌈log (n2)⌉

n1n2

as claimed.
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Suppose there is a non-zero perturbation(H ,T ) such that
(X +H ,S + T ) is the optimizer of Robust-EMaC. One can
easily verify thatPΩ⊥ (S + T ) = 0, otherwise we can always
set S + T as PΩ (S + T ) to yield a better estimate. This
together with the fact thatPΩ⊥ (S) = 0 implies thatPΩ (T ) =
T . Observe that the constraints of Robust-EMaC indicate

PΩ (X + S) = PΩ (X +H + S + T ) ,

⇒ PΩ (H + T ) = 0,

which is equivalent to requiringA′
Ω (He) = −A′

Ω (T e) =
−T e andA⊥ (He) = 0.

Recall thatHe andSe are the enhanced forms ofH and
S, respectively. SetW 0 ∈ T⊥ to be a matrix satisfying
〈W 0,PT⊥ (He)〉 = ‖PT⊥ (He)‖∗ and ‖W 0‖ ≤ 1, then
UV ∗ + W 0 is a sub-gradient of the nuclear norm atXe.
This gives

‖Xe +He‖∗ ≥ ‖Xe‖∗ + 〈UV ∗ +W 0,He〉
= ‖Xe‖∗ + 〈UV ∗,He〉+ ‖PT⊥ (He)‖∗ .

(97)

Owing to the fact that support(S) ⊆ Ωdirty, one has
Se = A′

Ωdirty (Se). Combining this and the fact that
support(Se + T e) ⊆ Ω yields

‖Se + T e‖1 = ‖A′
Ωclean(T e)‖1 + ‖Se +A′

Ωdirty (T e)‖1 ,
which further gives

‖Se + T e‖1 − ‖Se‖1
= ‖A′

Ωclean (T e)‖1 + ‖Se +A′
Ωdirty (T e)‖1 − ‖Se‖1

≥ ‖A′
Ωclean (T e)‖1 + 〈sgn(Se) ,A′

Ωdirty (T e)〉 (98)

= ‖A′
Ωclean (T e)‖1 − 〈sgn(Se) ,A′

Ωdirty (He)〉 (99)

= ‖A′
Ωclean (T e)‖1 − 〈A′

Ωdirty (sgn(Se)) ,He〉
= ‖A′

Ωclean (He)‖1 − 〈sgn(Se) ,He〉 . (100)

Here, (98) follows from the fact that sgn(Se) is the sub-
gradient of ‖·‖1 at Se, and (99) arises from the identity
PΩdirty (H + T ) = 0 and henceA′

Ωdirty (He) = −A′
Ωdirty (T e).

The inequalities (97) and (100) taken collectively lead to

‖Xe +He‖∗ + λ ‖Se + T e‖1 − (‖Xe‖∗ + λ ‖Se‖1)
≥ 〈UV ∗,He〉+ ‖PT⊥ (He)‖∗ + λ ‖A′

Ωclean (He)‖1
− λ 〈sgn(Se) ,He〉

≥ − 〈λsgn(Se)−UV ∗,He〉+ ‖PT⊥ (He)‖∗
+ λ ‖A′

Ωclean (He)‖1 . (101)

It remains to show that the right-hand side of (101) cannot
be negative. For a dual matrixW satisfying Conditions (59),
one can derive

〈λsgn(Se)−UV ∗,He〉
= 〈W + λsgn(Se)−UV ∗,He〉 − 〈W ,He〉
= 〈PT (W + λsgn(Se)−UV ∗) ,PT (He)〉

+ 〈PT⊥ (W + λsgn(Se)−UV ∗) ,PT⊥ (He)〉
− 〈A′

Ωclean (W ) ,A′
Ωclean (He)〉

−
〈

A′
(Ωclean)⊥

(W ) ,A′
(Ωclean)⊥

(He)
〉

≤ λ

n2
1n

2
2

‖PT (He)‖F +
1

4
‖PT⊥ (He)‖∗ +

λ

4

∥

∥A′

Ωclean (He)
∥

∥

1
,

(102)

where the last inequality follows from the four properties of
W in (59). Since(X +H ,S + T ) is assumed to be the
optimizer, substituting (102) into (101) then yields

0 ≥ ‖Xe +He‖∗ + λ ‖Se + T e‖1 −
(

‖Xe‖∗ + λ ‖Se‖1
)

(103)

≥ 3

4
‖PT⊥ (He)‖∗ +

3

4
λ
∥

∥A′

Ωclean (He)
∥

∥

1
− λ

n2
1n

2
2

‖PT (He)‖F

≥ 3

4
‖PT⊥ (He)‖∗ +

3

4
λ
∥

∥A′

Ωclean (He)
∥

∥

F
− λ

n2
1n

2
2

‖PT (He)‖F ,

(104)

where (104) arises due to the inequality‖M‖F ≤ ‖M‖1.
The invertibility condition (57) onPTAΩcleanPT is equiva-

lent to
∥
∥
∥
∥
PT − PT

(
1

ρ (1− τ)
AΩclean +A⊥

)

PT

∥
∥
∥
∥
≤ 1

2
,

indicating that

1

2
‖PT (He)‖F ≤

∥
∥
∥
∥
PT

(
1

ρ (1− τ)
AΩclean +A⊥

)

PT (He)

∥
∥
∥
∥

F

≤ 3

2
‖PT (He)‖F .

One can, therefore, bound‖PT (He)‖F as follows

‖PT (He)‖F ≤ 2

∥
∥
∥
∥
PT

(
1

ρ (1− τ)
AΩclean +A⊥

)

PT (He)

∥
∥
∥
∥

F

≤ 2

ρ (1− τ)
‖PTAΩcleanPT (He)‖F + 2

∥
∥PTA⊥PT (He)

∥
∥

F

≤ 2

ρ (1− τ)
(‖PTAΩclean (He)‖F + ‖PTAΩcleanPT⊥ (He)‖F)

+ 2
∥
∥PTA⊥ (He)

∥
∥

F
+ 2

∥
∥PTA⊥PT⊥ (He)

∥
∥

F

≤ 2

ρ (1− τ)
(‖AΩclean (He)‖F + ‖AΩcleanPT⊥ (He)‖F)

+ 2 ‖PT⊥ (He)‖F , (105)

where the last inequality exploit the facts thatA⊥ (He) = 0
and‖PT (M )‖F ≤ ‖M‖F.



23

Recall thatAΩclean corresponds to sampling with replace-
ment. Condition (58) together with (105) leads to

‖PT (He)‖F

≤ 20 log (n1n2)

ρ (1− τ)

(
‖A′

Ωclean (He)‖F + ‖A′
ΩcleanPT⊥ (He)‖F

)

+ 2 ‖PT⊥ (He)‖F

≤ 20 log (n1n2)

ρ (1− τ)
‖A′

Ωclean (He)‖F

+

(
20 log (n1n2)

ρ (1− τ)
+ 2

)

‖PT⊥ (He)‖F

≤ 20 log (n1n2)

ρ (1− τ)
‖A′

Ωclean (He)‖F

+

(
20 log (n1n2)

ρ (1− τ)
+ 2

)

‖PT⊥ (He)‖∗ , (106)

where the last inequality follows from the fact that‖M‖F ≤
‖M‖∗. Substituting (106) into (104) yields
(
3

4
− λ

n2
1n

2
2

(
20 log (n1n2)

ρ (1− τ)
+ 2

))

‖PT⊥ (He)‖∗

+λ

(
3

4
− 20 log (n1n2)

ρ (1− τ)n2
1n

2
2

)

‖A′
Ωclean (He)‖F ≤ 0. (107)

Since λ < 1 and ρn2
1n

2
2 ≫ log (n1n2), both terms on the

left-hand side of (107) are positive. This can only occur when

PT⊥ (He) = 0 and A′
Ωclean (He) = 0. (108)

(1) Consider first the situation where

‖PT (He)‖F ≤
n2
1n

2
2

2
‖PT⊥ (He)‖F . (109)

One can immediately see that

‖PT (He)‖F ≤
n2
1n

2
2

2
‖PT⊥ (He)‖F = 0

which implies PT (He) = PT⊥ (He) = 0, and therefore
He = 0. That said, Robust-EMaC succeeds in findingXe

under Condition (109).
(2) Consider instead the complement situation where

‖PT (He)‖F >
n2
1n

2
2

2
‖PT⊥ (He)‖F .

Note that A′
Ωclean(He) = A⊥(He) = 0 and

∥
∥
∥PTAPT − 1

ρ(1−τ)PTAΩcleanPT

∥
∥
∥ ≤ 1

2 . Using the same
argument as in the proof of Lemma 1 (see the second part
of Appendix B) withΩ replaced byΩclean, we can conclude
He = 0.

APPENDIX J
PROOF OFLEMMA 9

We first state the following useful inequality in the proof.
For anyb ∈ [n1]× [n2], one has

∑

a∈[n1]×[n2]

|〈PTAb,Aa〉|2 ωa ≤
∑

a∈[n1]×[n2]

(√

ωb

ωa

3µ1csr

n1n2

)2

ωa

(110)

= ωb

∑

a∈[n1]×[n2]

(

3µ1csr

n1n2

)2

= ωb

9µ2
1c

2
sr

2

n1n2
, (111)

where (110) follows from (36).
By definition, Ωdirty is the set ofdistinct locations that

appear inΩ but not inΩclean. To simplify the analysis, we in-
troduce an auxiliary multi-set̃Ωdirty that containsρsn1n2 i.i.d.
entries. Specifically, suppose thatΩ = {ai | 1 ≤ i ≤ ρn1n2},
Ωclean = {ai | 1 ≤ i ≤ ρ (1− τ)n1n2} and Ω̃dirty =
{ai | ρ (1− τ)n1n2 < i ≤ ρn1n2}, whereai’s are indepen-
dently and uniformly selected from[n1]× [n2].

In addition, we consider an equivalent model for sgn(S) as
follows

• DefineK = (Kα,β)1≤α≤n1,1≤β≤n2
to be a randomn1×

n2 matrix such that all of its entries are independent and
have amplitude 1 (i.e. in the real case, all entries are
either1 or −1, and in the complex case, all entries have
amplitude 1 and arbitrary phase on the unit circle). We
assume thatE [K] = 0.

• Set sgn(S) such that sgn(Sα,β) = Kα,β1{(α,β)∈Ωdirty},
and hence

sgn(Se) =
∑

(α,β)∈Ωdirty

Kα,β
√
ωα,βAα,β .

Recall that support(S) ⊆ Ωdirty. Rather than directly studying
sgn(Se), we will first examine an auxiliary matrix

S̃e :=

ρn1n2∑

i=ρ(1−s)n1n2+1

Kai

√
ωaiAai ,

and then bound the difference betweenS̃e and sgn(Se).
For any given pair(k, l) ∈ [n1] × [n2], define a random

variable

Zα,β : =

√
ωα,β

ωk,l

〈
PTA(k,l),Kα,βAα,β

〉
.

Thus, conditioned onK, Zai
’s are conditionally in-

dependent and 1√
ωk,l

〈

A(k,l),PT

(

S̃e

)〉

is equivalent to
∑ρn1n2

i=ρ(1−s)n1n2+1Zai
in distribution. The conditional mean

and variance ofZai
are given as

E [Zai
|K] =

1

n1n2

1
√
ωk,l

〈
PTA(k,l),Ke

〉
,

whereKe is the enhanced matrix ofK, and

Var [Zai |K] ≤ E
[
ZaiZ∗

ai
|K
]

=
1

n1n2

1

ωk,l

∑

b∈[n1]×[n2]

ωb

∣
∣
〈
PTA(k,l),Ab

〉∣
∣
2

≤ 9µ2
1c

2
sr

2

n2
1n

2
2

,

where the last inequality follows from (111). Besides, from
(36), the magnitude ofZα,β can be bounded as follows

|Zα,β | ≤
3µ1csr

n1n2
. (112)
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Applying Lemma 11 then yields that with probability ex-
ceeding1− (n1n2)

−4,

1
√
ωk,l

∣
∣
∣

〈

A(k,l),PT

(

S̃e

)〉

− ρτ
〈
PTA(k,l),Ke

〉
∣
∣
∣

≤ c13µ1csr





√

ρτ log (n1n2)

n1n2
+

log (n1n2)

n1n2





≤ 2c13µ1csr

√

ρτ log (n1n2)

n1n2
(113)

for some constantc13 > 0 providedρτn1n2 ≫ log (n1n2).
The next step is to boundρτ√

ωk,l

〈
PTA(k,l),Ke

〉
. For con-

venience of analysis, we representKe as

Ke =
∑

a∈[n1]×[n2]

za
√
ωaAa, (114)

whereza’s are independent (not necessarily i.i.d.) zero-mean
random variables satisfying|za| = 1. Let

Ya :=
1
√
ωk,l

〈
PTA(k,l), za

√
ωaAa

〉
,

thenE [Ya] = 0, (36) and (111) allow us to bound

|Ya| =
1
√
ωk,l

∣
∣
〈
PTA(k,l),

√
ωaAa

〉∣
∣ ≤ 3µ1csr

n1n2
,

and
∑

a∈[n1]×[n2]

E [YaY∗
a] =

1

ωk,l

∑

a∈[n1]×[n2]

∣
∣
〈
PTA(k,l),

√
ωaAa

〉∣
∣
2

≤ 9µ2
1c

2
sr

2

n1n2
.

Applying Lemma 11 suggests that there exists a constantc14 >
0 such that

1
√
ωk,l

∣
∣
〈
PTA(k,l),Ke

〉∣
∣ =

∣
∣
∣
∣
∣
∣

∑

a∈[n1]×[n2]

Ya

∣
∣
∣
∣
∣
∣

≤ c14µ1csr

√

log (n1n2)

n1n2

with high probability providedn1n2 ≫ log(n1n2). This
together with (113) suggests that

1
√
ωk,l

∣
∣
∣

〈

A(k,l),PT

(

S̃e

)〉∣
∣
∣

≤ 1
√
ωk,l

∣
∣
∣

〈

A(k,l),PT

(

S̃e

)〉

− ρτ
〈
PTA(k,l),Ke

〉
∣
∣
∣

+
ρτ
√
ωk,l

∣
∣
〈
PTA(k,l),Ke

〉∣
∣

≤ c15µ1csr

√

ρτ log (n1n2)

n1n2
(115)

for some constantc15 > 0 with high probability.
We still need to bound the deviation of̃Se from sgn(Se).

Observe that the difference between them arise from sam-
pling with replacement, i.e. there are a few entries in
{ai | ρ (1− τ)n1n2 < i ≤ ρn1n2} that either fall within

Ωclean or have appeared more than once. A simple Chernoff
bound argument (e.g. [57]) indicates the number of afore-
mentioned conflicts is upper bounded by10 log (n1n2) with
high probability. That said, one can find a collection of entry
locations{b1, · · · , bN} such that

S̃e− sgn(Se) =

N∑

i=1

Kbi

√
ωbiAbi , (116)

whereN ≤ 10 log (n1n2) with high probability. Therefore,
we can bound

1
√
ωk,l

∣
∣
∣

〈

A(k,l),PT

(

S̃e− sgn(Se)
)〉∣
∣
∣

≤
N∑

i=1

1
√
ωk,l

∣
∣
〈
A(k,l),PT

(√
ωbi

Abi

)〉∣
∣

≤ N
3µ1csr

n1n2
≤ 30µ1csr log(n1n2)

n1n2
.

following (36). Putting the above inequality and (115) together
yields that for every(k, l) ∈ [n1]× [n2],

1
√
ωk,l

∣
∣
〈
A(k,l),PT (sgn(Se))

〉∣
∣

≤ 1
√
ωk,l

∣
∣
∣

〈

A(k,l),PT

(

S̃e− sgn(Se)
)〉∣
∣
∣

+
1
√
ωk,l

∣
∣
∣

〈

A(k,l),PT

(

S̃e

)〉∣
∣
∣

≤ c15µ1csr

√

ρτ log (n1n2)

n1n2
+

30µ1csr log(n1n2)

n1n2

≤ c9µ1csr

√

ρτ log (n1n2)

n1n2

for some constantc9 > 0 provided ρτn1n2 > log (n1n2).
This completes the proof.

APPENDIX K
PROOF OFLEMMA 10

Consider the model of sgn(S), K and S̃e as introduced
in the proof of Lemma 9 in Appendix J. For any(α, β) ∈
[n1]× [n2], define

Z̃α,β := Aα,β (Ke) =
√
ωα,βKα,βAα,β .

With this notation, we can see that̃Zai
’s are conditionally

independent givenK, and satisfy

E

[

Z̃ai
|K
]

=
1

n1n2

∑

(α,β)∈[n1]×[n2]

√
ωα,βAα,βKα,β

=
1

n1n2
Ke,

∥
∥
∥Z̃α,β

∥
∥
∥ =

∥
∥
√
ωα,βAα,β

∥
∥ = 1,

and
∥
∥
∥E

[

Z̃aiZ̃∗
ai
|K
]∥
∥
∥ ≤ 1

n1n2

∑

(α,β)∈[n1]×[n2]

∥
∥ωα,βAα,βA

∗
α,β

∥
∥

= 1.
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Since S̃e =
∑ρn1n2

i=(1−τ)ρn1n2+1 Z̃ai
, applying Lemma 11

implies that conditioned onK, there exists a constantc16 > 0
such that

∥
∥
∥S̃e− ρτKe

∥
∥
∥ <

√

c16ρτn1n2 log (n1n2) (117)

with probability at least than1− n−5
1 n−5

2 .
The next step is to bound the operator norm ofρτKe. Recall

the decomposition form ofKe in (114). LetYa := za
√
ωaAa,

then we haveE [Ya] = 0, ‖Ya‖ = 1, and
∥
∥
∥
∥
∥
∥

∑

a∈[n1]×[n2]

EYaY∗
a

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

∑

a∈[n1]×[n2]

ωaAaA
∗
a

∥
∥
∥
∥
∥
∥

≤ n1n2

Therefore, applying Lemma 11 yields that there exists a
constantc17 > 0 such that

‖Ke‖ ≤
√

c17n1n2 log (n1n2)

with high probability. This and (117), taken collectively,yield
∥
∥
∥S̃e

∥
∥
∥ ≤

∥
∥
∥S̃e− ρτKe

∥
∥
∥+ρτ ‖Ke‖ < 2

√

c18ρτn1n2 log (n1n2)

with high probability, wherec18 = max{c16, c17}. On the
other hand, (116) implies that,

∥
∥
∥S̃e− sgn(Se)

∥
∥
∥ ≤

N∑

i=1

∥
∥
√
ωbi

Abi

∥
∥ = N ≤ 10 log (n1n2)

≤
√

c18ρτn1n2 log (n1n2)

with high probability, provided ρτn1n2 >
100 log (n1n2) /c18. Consequently, for a sufficiently small
constantτ ,

‖PT⊥ (λsgn(Se))‖ ≤ λ ‖sgn(Se)‖
≤ λ

∥
∥
∥S̃e− sgn(Se)

∥
∥
∥+ λ

∥
∥
∥S̃e

∥
∥
∥

≤ 3λ
√

c18ρτn1n2 log (n1n2)

= 3
√
c18τ ≤

1

8

with probability exceeding1− n−5
1 n−5

2 .

APPENDIX L
PROOF OFTHEOREM 2

We prove this theorem under the conditions of Lemma 1,
i.e. (31)–(34). Note that these conditions are satisfied with high
probability, as we have shown in the proof of Theorem 1.

Denote byX̂e = Xe + He the solution to Noisy-EMaC.
By writing He = AΩ (He) +AΩ⊥ (He), one can obtain

‖Xe‖∗ ≥ ‖X̂e‖∗ = ‖Xe +He‖∗
≥ ‖Xe +AΩ⊥(He)‖∗ − ‖AΩ(He)‖∗. (118)

The term ‖AΩ (He)‖F can be bounded using the triangle
inequality as

‖AΩ (He)‖F ≤
∥
∥
∥AΩ

(

X̂e−Xo
e

)∥
∥
∥

F
+ ‖AΩ (Xe−Xo

e)‖F .

(119)
Since the constraint of Noisy-EMaC requires∥
∥
∥PΩ

(

X̂ −Xo
)∥
∥
∥

F
≤ δ and ‖PΩ (X −Xo)‖F ≤ δ,

the Hankel structure of the enhanced form allows
us to bound

∥
∥
∥AΩ

(

X̂e−Xo
e

)∥
∥
∥

F
≤ √

n1n2δ and

‖AΩ (Xe−Xo
e)‖F ≤

√
n1n2δ, leading to

‖AΩ (He)‖F ≤ 2
√
n1n2δ.

i) Suppose first thatHe satisfies

‖PTAΩ⊥ (He)‖F ≤
n2
1n

2
2

2
‖PT⊥AΩ⊥ (He)‖F . (120)

Applying the same analysis as for (71) allows us to bound the
perturbationAΩ⊥(He) as follows

‖Xe +AΩ⊥(He)‖∗ ≥ ‖Xe‖∗ +
1

4
‖PT⊥AΩ⊥(He)‖F .

Combining this with (118), we have

‖PT⊥AΩ⊥(He)‖F ≤ 4‖AΩ(He)‖∗
≤ 4
√
n1n2‖AΩ(He)‖F ≤ 8n1n2δ.

Furthermore, the inequality (120) indicates that

‖PTAΩ⊥ (He)‖F ≤ 4n3
1n

3
2 ‖PT⊥AΩ⊥ (He)‖F . (121)

Therefore, combining all the above results give

‖He‖F ≤ ‖AΩ(He)‖F + ‖PTAΩ⊥ (He)‖F + ‖PT⊥AΩ⊥ (He)‖F

≤
{
2
√
n1n2 + 8n1n2 + 4n3

1n
3
2

}
δ

≤ 5n3
1n

3
2δ

for sufficiently largen1 andn2.
ii) On the other hand, consider the situation where

‖PTAΩ⊥ (He)‖F >
n2
1n

2
2

2
‖PT⊥AΩ⊥ (He)‖F . (122)

Employing similar argument as in Part (2) of Appendix B
yields that (122) can only arise whenAΩ⊥ (He) = 0. In this
case, one has

‖He‖F ≤ ‖AΩ(He)‖F + ‖AΩ⊥ (He)‖F

= ‖AΩ(He)‖F ≤ 2
√
n1n2δ.

concluding the proof.
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