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Abstract

We study the transmission of correlated sources over discrete memoryless (DM) multiple-access-relay channels

(MARCs), in which both the relay and the destination have access to side information arbitrarily correlated with

the sources. As the optimal transmission scheme is an open problem, in this work we propose a new joint source-

channel coding scheme based on a novel combination of the correlation preserving mapping (CPM) technique with

Slepian-Wolf (SW) source coding, and obtain the corresponding sufficient conditions. The proposed coding scheme

is based on the decode-and-forward strategy, and utilizes CPM for encoding information simultaneously to the relay

and the destination, whereas the cooperation information from the relay is encoded via SW source coding. It is shown

that there are cases in which the new scheme strictly outperforms the schemes available in the literature. This is the

first instance of a source-channel code that uses CPM for encoding information to two different nodes (relay and

destination). In addition to sufficient conditions, we present three different sets of single-letter necessary conditions

for reliable transmission of correlated sources over DM MARCs. The newly derived conditions are shown to be at

least as tight as the previously known necessary conditions.

Index Terms

Multiple-access relay channel, joint source and channel coding, correlation preserving mapping, correlated sources,

side information, decode-and-forward.

I. I NTRODUCTION

The multiple-access relay channel (MARC) is a multiuser network in which several sources communicate with

a single destination with the help of a relay [1], [2]. This model represents cooperative uplink communication in

wireless networks. In this work, we study the lossless transmission of arbitrarily correlated sources over MARCs,

in which both the relay and the destination have access to side information correlated with the sources.

It is well known [3] that a source can be reliably transmittedover a memoryless point-to-point (PtP) channel, if

its entropy is less than the channel capacity. Conversely, if the source entropy is larger than the channel capacity,
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then reliable transmission is not possible. Therefore, formemoryless PtP channels, a separate design of the source

and channel codes achieves the optimal end-to-end performance. However, the optimality of separate designs does

not generalize to multiuser networks [4], [5], [6].

Since the MARC combines both the multiple access channel (MAC) and the relay channel models, and since

separate source-channel coding is not optimal for MAC with correlated sources [4], we conclude that separate

designs are not optimal for MARCs. Therefore, it is important to develop methods for joint source-channel coding

(JSCC) for this network. In this work we derive separate setsof sufficient and necessary conditions, which are not

necessarily tight. In deriving our sufficiency conditions we focus on cooperation schemes based on the decode-and-

forward (DF) protocol, such that the sequences of both sources are decoded at the relay. Accordingly, transmission

to both the relay and the destination can benefit from joint design of the source and channel codes.

A. Prior Work

The MARC has received a lot of attention in recent years, especially from a channel coding perspective. In

[1], Kramer et al. derived an achievable rate region for the MARC with independent messages, using a coding

scheme based on DF relaying, regular encoding, successive decoding at the relay, and backward decoding at the

destination. In [2] it was shown that for the MARC, in contrast to the relay channel, DF schemes with different

decoding techniques at the destination yield different rate regions. Specifically, backward decoding can support a

larger rate region than sliding window decoding. Another DF-based coding scheme, which uses offset encoding,

successive decoding at the relay and sliding window decoding at the destination, was presented in [2]. This scheme

was shown to be at least as good as sliding window decoding. Moreover, this scheme achieves the corner points

of the backward decoding rate region, but with a smaller delay. While the focus of [1] and [2] was mainly on

achievable rate regions, outer bounds on the capacity region of MARCs were derived in [7]. More recently, in [8],

Tandon and Poor derived the capacity region of two classes ofMARCs, which include a primitive relay assisting

the transmitters through an orthogonal finite-capacity link to the destination.

While the works [1], [2], [7] and [8] considered channel coding for MARCs, in [9] we studied source-channel

coding for MARCs with correlated sources. In [6] we presented an explicit example in which separate source and

channel code design is suboptimal for this model. The suboptimality of separate source and channel coding for

multiuser scenario was first shown by Shannon in [10] by considering the transmission of correlated sources over

a two-way channel.

Lossless transmission of correlated sources over relay channels with correlated side information was studied in

[11], [12], [13] and [14]. Specifically, in [11] Gündüz andErkip proposed a DF based achievability scheme and

showed that separation is optimal for physically degraded relay channels as well as for cooperative relay-broadcast

channels. This work was later extended to multiple relay networks in [12]. The relay channel with arbitrarily

correlated sources, in which one of the sources is availableat the transmitter while the other is known at the relay,

and the destination is interested in a lossless reconstruction of both sources, was considered in [15], [16] and [17].

The work [15] used block Markov irregular encoding with listdecoding (based on [18]), at both the relay and the
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destination, to characterize sufficient conditions for reliable transmission using a separation-based source-channel

code. The works [16] and [17] used block Markov regular encoding with backward decoding, in which the relay

partially decodes the sequence transmitted from the transmitter prior to sending both its own source sequence and

the cooperation information to the destination.

As shown in [6], source-channel separation is suboptimal for general MARCS. Therefore, optimal performance

require employing a joint source-channel code. An important technique for JSCC is the correlation preserving

mapping (CPM) technique in which the channel codewords are correlated with the source sequences. CPM was

introduced in [4] in which it was used to obtain single-letter sufficiency conditions for reliable transmission of

discrete, memoryless (DM) arbitrarily correlated sourcesover a MAC. CPM typically enlarges the set of feasible

input distribution, thereby enlarging the set of sources which can be reliably transmitted compared to separate

source and channel coding.

The CPM technique of [4] was extended to source coding with side information for MACs in [19], to broadcast

channels with correlated sources in [20] (with a correctionin [21]), and to the transmission of correlated sources over

interference channels (ICs) in [22]. However, when the sources are independent, the region obtained from [22] does

not specialize to the Han and Kobayashi (HK) region of [23]. Sufficient conditions for reliable transmission, based

on the CPM technique, which specialize to the HK region were derived in [24]. The transmission of independent

sources over ICs with correlated receiver side informationwas studied in [25], where it was shown that separation

is optimal when each receiver has access to side informationcorrelated only with its own desired source. When

each receiver has access to side information correlated only with the interfering transmitter’s source, [25] provided

sufficient conditions for reliable transmission based on the CPM technique together with the HK superposition

encoding and partial interference cancellation.

Although CPM implements JSCC, in [26] Dueck observed that the sufficiency conditions derived in [4] are not

necessary. Therefore, in this work, in addition to sufficient conditions, necessary conditions are considered as well.

Observe that the feasible joint distributions of the sources and the respective channel inputs for the MAC (and for

the MARC), must satisfy a Markov relationship which reflectsthe fact that the channel inputs at the transmitters are

correlatedonly via the correlation of the sources. In [4], in addition to the single-letter sufficient conditions, multi-

letter necessary and sufficient conditions, which account for the above constraint, were also presented. However, as

noted in [4], these conditions are based onn-letter mutual information expressions, and thereby not computable.

The work [27] followed the lines of [4], and established necessary conditions for reliable transmission of correlated

sources over DM MARCs, which are based onn-letter expressions. Furthermore, [27] showed that in somecases

source-channel separation is optimal and then-letter expressions specialize to single-letter expressions. In contrast

to [4], in [28] Kang and Ulukus used the above constraint to derive a new set ofsingle-letternecessary conditions

for reliable transmission of correlated sources over a MAC.

B. Main Contributions

This work has a number of important contributions:
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1) We derive a novel JSCC achievable scheme for MARCs. The scheme uses CPM for encoding information from

the sources toboth the relay and the destination. The relay, on the other hand, uses SW source coding1 for

forwarding its cooperation information. Therefore, the sources and the relay senddifferenttypes of information

to the destination: the sources send source-channel codewords, while the relay sends binning information (SW

bin indices). This is in contrast to the schemes of [6, Thm. 1,Thm. 2], and to [16], in which the same type

of information is sent to the destination from the sources aswell as from the relay (either SW bin indices or

source-channel codewords). The new scheme uses the DF strategy with successive decoding at the relay and

simultaneous backward decoding of both cooperation information and source sequences at the destination.

This scheme achievesthe best known results for all previously characterizedspecial cases.

2) We show that, similarly to the capacity analysis for MARCs, also for JSCC simultaneous backward decoding

of the cooperation information and source sequences at the destination, outperforms sequential backward

decoding at the destination. We also show that simultaneousbackward decoding at the destination outperforms

the scheme derived in [6, Thm. 1]. Additionally, we show thatthere are cases in which simultaneous backward

decoding at the destination strictly outperform the schemes derived in [6]. This is proved through an explicit

analysis of the error probability for a specific MARC model.

3) We derive three new sets of single-letter necessary conditions for reliable transmission of correlated sources

over DM MARCs. The first set of conditions is a “MAC-type” bound, considering the cut around the sources

and the relay, while the other two sets are “broadcast-type”bounds, derived using the cut around the destination

and the relay. The new sets of necessary conditions are shownto be at least as tight as previously known

conditions, and in some scenarios, the new sets are strictlytighter than known conditions.

The rest of this paper is organized as follows: in Section II we introduce the notations and the channel model.

In Section III we briefly review the existing schemes and givemotivation for a new JSCC scheme. In Section IV

we present the new achievability scheme and derive it’s corresponding set of sufficiency conditions. In Section V

a comparison between the existing schemes and the new schemeis presented. Necessary conditions are presented

in Section VI, and concluding remarks are provided in Section VII.

II. PRELIMINARIES

A. Notations

In this work, we denote random variables (RVs) with upper case letters, e.g.X , Y , and their realizations with

lower case letters , e.g.,x, y. A discrete RVX takes values in a setX . |X | is used to denote the cardinality of a

finite, discrete setX . We usepX(x) to denote the probability mass function (p.m.f.) of a discrete RV X on X ; for

brevity we may omit the subscriptX when it is the uppercase version of the sample symbolx. We denote vectors

with boldface letters, e.g.x, y, thei’th element of a vectorx is denoted byxi, and we usexj
i wherei < j to denote

(xi, xi+1, ..., xj−1, xj); xj is a short form notation forxj
1, and unless specified otherwisex , xn. Matrices are

1Throughout this work we refer to separate source-channel coding (i.e., a source code followed by a channel code) as encoding using SW

source coding.
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denoted by doublestroke font, e.g.P. We denote the empty set withφ, and the complement of the setB by Bc. We

useH(·) to denote the entropy of a discrete RV andI(·; ·) to denote the mutual information between two RVs, as

defined in [29, Ch. 2.2]. We useA∗(n)
ǫ (X) to denote the set ofǫ-strongly typical sequences with respect to (w.r.t.)

the p.m.fpX(x) on X , as defined in [29, Ch. 6.1]. When referring to a typical set wemay omit the RVs from

the notation when these variables are obvious from the context. We useX ↔ Y ↔ Z to denote a Markov chain

formed by the RVsX,Y, Z as defined in [29, Ch. 2.1]. Finally, we useX ⊥⊥ Y to denote thatX is statistically

independent ofY , N+ is used to denote the set of positive integers,R is used to denote the set of real numbers

andE{·} is used to denote stochastic expectation.

B. System Model

The MARC consists of two transmitters (sources), a receiver(destination) and a relay. Transmitteri observes

the source sequenceSn
i , for i = 1, 2. The receiver is interested in a lossless reconstruction ofthe source sequences

observed by the two transmitters, and the objective of the relay is to help the transmitters and the receiver in

reconstructing the source sequences. The relay and the receiver each observes its own side information, denoted by

Wn
3 andWn, respectively, correlated with the source sequences. Figure 1 depicts the MARC with side information

scenario.

Fig. 1: The multiple-access relay channel with correlated side information.(Ŝn
1 , Ŝ

n
2 ) are the reconstructions at the destination.

The sources and the side information sequences,{S1,k, S2,k,Wk,W3,k}
n
k=1, are arbitrarily correlated at each

sample indexk, according to the joint distributionp(s1, s2, w, w3) defined over a finite alphabetS1×S2×W×W3,

and independent across different sample indicesk. This joint distribution is known at all nodes. For transmission,

a DM MARC with inputsXi ∈ Xi, i = 1, 2, 3, and outputsY, Y3 over finite output alphabetsY,Y3, respectively,

is available. The MARC is causal and memoryless in the sense of [30]:

p(yk, y3,k|y
k−1, yk−1

3 , xk
1 , x

k
2 , x

k
3 , s

n
1 , s

n
2 , w

n
3 , w

n) = p(yk, y3,k|x1,k, x2,k, x3,k), k = 1, 2, . . . , n. (1)

Definition 1. A source-channel codefor the MARC with correlated side information consists of two encoding

functions at the transmitters,
f
(n)
i : Sn

i 7→ Xn
i , i = 1, 2, (2)

a set of causal encoding functions at the relay,{f
(n)
3,k }

n
k=1, such that

x3,k = f
(n)
3,k (y

k−1
3,1 , wn

3,1), k = 1, 2, . . . , n, (3)

and a decoding function at the destination

g(n) : Yn ×Wn 7→ Sn
1 × Sn

2 . (4)
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Definition2. Let Ŝn
i , i = 1, 2, denote the reconstruction ofSn

i , i = 1, 2, respectively, at the receiver, i.e.,(Ŝn
1 , Ŝ

n
2 ) =

g(n)(Y n,Wn). The average probability of error, P (n)
e , of a source-channel code for the MARC is defined as:

P (n)
e ,Pr

(

(Ŝn
1 , Ŝ

n
2 ) 6= (Sn

1 , S
n
2 )
)

. (5)

Definition 3. The sourcesS1 andS2 can bereliably transmittedover the MARC with side information if there

exists a sequence of source-channel codes such thatP
(n)
e → 0 asn → ∞.

C. The Primitive Semi-Orthogonal MARC

The DM semi-orthogonal MARC (SOMARC) is a MARC in which the relay-destination link is orthogonal to

the channels from the sources to the relay and the destination. Let YR denote the signal received at the destination

due to the relay channel inputX3, andYS denote the signal received at the destination due to the transmission of

X1 andX2. The conditional distribution function of the SOMARC is:

p(yR, yS, y3|x1, x2, x3) = p(yR|x3)p(yS , y3|x1, x2). (6)

A special case of the SOMARC, called the primitive SOMARC (PSOMARC), was considered by Tandon and

Poor in [8]. In this channel the relay-destination linkX3−YR is replaced with a finite-capacity link whose capacity

is C3. This model is depicted in Figure 2. Observe that in the PSOMARC setup there is no side-information at

either the relay or destination.

Fig. 2: Primitive semi-orthogonal multiple-access relay channel (PSOMARC).

D. Implementing JSCC via CPM

JSCC is implemented via CPM by generating the channel inputs(codewords) statistically dependent with the

source sequences, thus, the channel codewords “preserve” some of the correlation exhibited among the sources. For

example, if two sources(S1, S2) are to be transmitted over a MAC with channel inputs(X1, X2), then the CPM

encoded channel codewords are generated according to
∏n

k=1 p(x1,k|s1,k). The main benefit of the CPM technique

is enlarging the set of possible joint input distributions,thereby improving the performance compared to separately

constructing the source code and the channel code. For an illustrative example we refer the reader to the example

presented in [4, pg. 649], which demonstrates the sub-optimality of separate source-channel coding, compared to

the CPM technique, for the transmission of correlated sources over a DM MAC.

III. PREVIOUS SCHEMES AND MOTIVATION FOR A NEW SCHEME

Before introducing the new coding scheme we motivate our work by briefly reviewing the two sets of sufficient

conditions for reliable transmission of correlated sources over DM MARCs derived in [6] and in [9].

October 3, 2018 DRAFT
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A. Previously Derived Joint Source-Channel Coding Schemesfor DM MARCs

In [6] two JSCC schemes for reliable transmission of correlated sources over DM MARCs were derived. The

corresponding sufficient conditions are as follows:

Theorem1. ([6, Thm. 1]) A source pair(S1, S2) can be reliably transmitted over a DM MARC with relay and

receiver side information as defined in Section II-B if,

H(S1|S2,W3)< I(X1;Y3|S2, V1, X2, X3,W3) (7a)

H(S2|S1,W3)< I(X2;Y3|S1, V2, X1, X3,W3) (7b)

H(S1, S2|W3)< I(X1, X2;Y3|V1, V2, X3,W3) (7c)

H(S1|S2,W )< I(X1, X3;Y |S1, V2, X2) (7d)

H(S2|S1,W )< I(X2, X3;Y |S2, V1, X1) (7e)

H(S1, S2|W )< I(X1, X2, X3;Y |S1, S2), (7f)

are satisfied for some joint distribution that factorizes as:

p(s1, s2, w3, w)p(v1)p(x1|s1, v1)p(v2)p(x2|s2, v2)p(x3|v1, v2)p(y3, y|x1, x2, x3). (8)

Theorem2. ([6, Thm. 2]) A source pair(S1, S2) can be reliably transmitted over a DM MARC with relay and

receiver side information as defined in Section II-B if,

H(S1|S2,W3)< I(X1;Y3|S1, X2, X3) (9a)

H(S2|S1,W3)< I(X2;Y3|S2, X1, X3) (9b)

H(S1, S2|W3)< I(X1, X2;Y3|S1, S2, X3) (9c)

H(S1|S2,W )< I(X1, X3;Y |S2, X2,W ) (9d)

H(S2|S1,W )< I(X2, X3;Y |S1, X1,W ) (9e)

H(S1, S2|W )< I(X1, X2, X3;Y |W ), (9f)

are satisfied for some joint distribution that factorizes as:

p(s1, s2, w3, w)p(x1|s1)p(x2|s2)p(x3|s1, s2)p(y3, y|x1, x2, x3). (10)

Remark1. Thm. 1 and Thm. 2 differ in both the decoding constraints and the admissible joint distribution chains,

i.e., (8) and (10). The main difference between Thm. 1 and Thm. 2 is the target nodes for CPM and SW coding:

In Thm. 1, CPM is used for encoding information from the transmitters to the relay and SW coding is used for

encoding information cooperatively from the transmittersand the relay to the destination. Thus, in Thm. 1 the

cooperation between the relay and the transmitters is basedon the binning information. The RVsV1 and V2 in

Thm. 1 carry the bin indices of the SW source code. In Thm. 2, SWcoding is used for encoding information from

the transmitters to the relay and CPM is used for cooperatively encoding information to the destination. Thus, in

Thm. 2 the cooperation between the transmitters and the relay is based on the sourcesS1 andS2.
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Recall that in [4] it was shown that separate source and channel coding is generally suboptimal for transmitting

correlated sources over MACs. Thus, it follows that the relay decoding constraints of Thm. 1 are generally looser

compared to the relay decoding constraints of Thm. 2. Using similar reasoning we conclude that the destination

decoding constraints of Thm. 2 are looser compared to the destination decoding constraints of Thm. 1 (as long as

coordination is possible, see [9, Remark 18]).

Remark2. The work [16] considered JSCC for the relay channel, in whichone of the sources is available at the

transmitter while the other is known at the relay. The authors presented a transmission scheme similar to Thm. 2,

where CPM is utilized to transmit the sources from the transmitters to the destination while the relay applies binning

for cooperation.

Remark3. In the multiple-access broadcast relay channel (MABRC) [9], the relay also wants to reconstruct the

sources in a lossless fashion. This channel model is depicted in Figure 3. As both Thm. 1 and Thm. 2 use the

DF protocol, the conditions of Thm. 1 and Thm. 2 are also sufficient conditions for reliable transmission over the

MABRC.

Fig. 3: The multiple-access broadcast relay channel with correlated side information.(S̃n
1 , S̃

n
2 ) are the reconstructions at the

relay, and(Ŝn
1 , Ŝ

n
2 ) are the reconstructions at the destination.

B. The Motivation for a New JSCC Scheme

Motivating observation 1: As stated in Remark 1, the achievability schemes of Thm. 1 andThm. 2 use different

combinations of the CPM technique with a SW source code paired with a channel code. The achievability scheme

of Thm. 1 uses SW source coding for cooperatively encoding information from the transmitters and the relay to

the destination while CPM is used for encoding information from the transmitters to the relay. In Thm. 2, CPM is

used for cooperatively encoding information from the transmitters and the relay to the destination while SW source

coding is used for encoding information from the transmitters to the relay. Since CPM can generally support the

transmission of sources with higher entropies compared to separate source-channel coding, a natural question that

arises iswhether the CPM technique can be used for simultaneously encoding information to both the relay and

the destination.

Motivating observation 2: It was observed in [18] that for the relay channel, when decoding at the relay does

not constrain the rate, DF as implemented in [18, Thm. 1] is capacity achieving . It follows that cooperation based
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on binning is optimal in this case.2 This raises the questionwhether it is possible to construct a scheme that

combines CPM from the sources to the destination with binning from the relay to the destination, and how does

such a scheme compare with Thm. 1 and Thm. 2.

Motivating observation 3: The cooperative relay-broadcast channel (CRBC) model is a special case of the

MABRC obtained by settingS2=X2=φ, such that there is a single transmitter [11]. Figure 4 depicts the CRBC

model.

Fig. 4: The cooperative relay broadcast channel.S̃n
1 and Ŝn

1 are the reconstructions of the source sequence,Sn
1 , at the relay

and the destination, respectively.

For this channel model [11] presented the following necessary and sufficient conditions:

Proposition1. ([11, Thm. 3.1]) A sourceS1 can be reliably transmitted over a DM CRBC with relay and receiver

side information if:

H(S1|W3)< I(X1;Y3|X3) (11a)

H(S1|W )< I(X1, X3;Y ), (11b)

for some input distributionp(s1, w3, w)p(x1, x3). Conversely, if a sourceS1 can be reliably transmitted over the

CRBC then the conditions in (11a) and (11b) are satisfied with< replaced by≤ for some input distribution

p(s1, w3, w)p(x1, x3).

In [6, Remark 6] it is shown that for a CRBC, the conditions of Thm. 1 can be specialized to the conditions

of [11, Thm. 3.1], while the conditions obtained from Thm. 2 are generally more restrictive. The reason is that

when specializing Thm. 2 to the case of a single transmitter,the set of joint distributions of the source and relay

channel inputs which satisfy (10) does not exhaust the entire space of joint distributions, and in particular, does

not include the optimal distribution according to [11, Thm.3.1]. We conclude that the downside of using CPM for

encoding information to the destination, as implemented inThm. 2, is that it restricts the set of admissible joint

distributions; thereby constrains the achievable coordination between the sources and the relay when cooperating to

send information to the destination. This leads to the question whether it is possible to construct a scheme in which

CPM is used for encoding information to the destination, while the constraints on the source-relay coordination

imposed by the distribution chain(10) are relaxed or entirely removed.

In the next section a new JSCC scheme is derived which gives affirmative answers to the above three questions.

2We note that in the channel coding problem for the relay channel, other schemes, e.g. the regular encoding schemes of [31], [32], achieve

the DF-rate without binning, but these schemes are not directly applicable for this scenario, see also [9].
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IV. A N EW JOINT SOURCE-CHANNEL CODING SCHEME

We now present a new set of sufficient conditions for reliabletransmission of correlated sources over DM MARCs

with side information. The achievability scheme (Thm. 3) isbased on DF at the relay, and uses CPM for encoding

information to both the relay and the destination and successive decoding at therelay. Cooperation in the new

scheme is based onbinning implemented via SW source coding.The decoding method applied at the destination

in the new scheme is simultaneous backward decoding of the cooperation information and the transmitted source

sequences. By combining cooperation based on binning with CPM for encoding information to the destination, the

constraints on the distribution chain imposed by the schemeof Thm. 2 are removed.

Note that in the schemes implemented in Thm. 1 and in Thm. 2 thesame type of information is sent to the

destination from both the relay and from the sources, while in the new scheme implemented in Thm. 3different

typesof information are sent to the destination from the relay andfrom the sources. This is illustrated in Figure

5. It can be observed that in Thm. 1 (Figure 5a) both the relay and the sources send bin indices to the destination,

while in Thm. 2 (Figure 5b) both the relay and the sources sendsource-channel codewords. However, this is not the

case in Thm. 3 (Figure 5c), in which the relay sends bin indices while the sources send source-channel codewords.

(a) (b) (c)

Fig. 5: Types of information sent to the destination in the schemes of (a) Thm. 1; (b) Thm. 2; and (c) the new proposed scheme

of Thm. 3. Solid arrows indicate bin indices, while dashed arrows indicate source-channel codewords.

A. Sufficient Conditions for Simultaneous Backward Decoding at the Destination

Using simultaneous backward decoding the following sufficient conditions are obtained:

Theorem3. A source pair(S1, S2) can be reliably transmitted over a DM MARC with relay and receiver side

information as defined in Section II-B if the conditions

H(S1|S2,W3) < I(X1;Y3|S2, V1, X2, X3,W3) (12a)

H(S2|S1,W3) < I(X2;Y3|S1, V2, X1, X3,W3) (12b)

H(S1, S2|W3) < I(X1, X2;Y3|V1, V2, X3,W3) (12c)

H(S1|S2,W ) < min
{

I(X1, X3;Y |S2, V2, X2,W ),

I(X1, X3;Y |S1, V2, X2) + I(X1;Y |S2, V1, X2, X3,W )
}

(12d)
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H(S2|S1,W ) < min
{

I(X2, X3;Y |S1, V1, X1,W ),

I(X2, X3;Y |S2, V1, X1) + I(X2;Y |S1, V2, X1, X3,W )
}

(12e)

H(S1, S2|W ) < I(X1, X2, X3;Y |W ), (12f)

are satisfied for some joint distribution that factorizes as”

p(s1, s2, w3, w)p(v1)p(x1|s1, v1)p(v2)p(x2|s2, v2)p(x3|v1, v2)p(y3, y|x1, x2, x3). (13)

Proof: The proof is given in Appendix A.

B. Discussion

Remark4. The achievability schemes of Thm. 1 and Thm. 3 require the same joint distribution (cf. equations (8)

and (13)).

Remark5. Conditions (12a)–(12c) in Thm. 3 are constraints due to decoding at the relay, while conditions (12d)–

(12f) are decoding constraints at the destination. Note that the decoding constraints at the relay in Thm. 3 are

identical to (7a)–(7c) in Thm. 1.

Remark6. Note that as Thm. 3 uses the DF scheme, the conditions of Thm. 3are also sufficient conditions for

reliable transmission over the MABRC.

Remark7. In Thm. 3,V n
1 andV n

2 represent the binning information forSn
1 andSn

2 , respectively. Consider Thm. 3

which uses simultaneous backward decoding: condition (12d) can be written as follows:

H(S1|S2,W ) < I(X1;Y |S2, V1, X2, X3,W )+

min
{

I(V1, X3;Y |S2, V2, X2,W ), I(X1, X3;Y |S1, V2, X2)
}

. (14)

On the right-hand side (RHS) of (14), the mutual informationexpressionI(X1;Y |S2, V1, X2, X3,W ) represents

the available rate for encoding information on thesource sequenceSn
1 , in excess of the bin index conveyed by the

sequenceV n
1 . This is becauseS2, V1, X2, X3 and W are known. The expressionI(V1, X3;Y |S2, V2, X2,W )

represents the rate of binning information onS1 that can be utilized at the destination. Also the expression

I(X1, X3;Y |S1, V2, X2), asS1 andV2 are known, represents the rate for sending the bin index of the source se-

quenceS1, cooperatively from Transmitter 1 and the relay to the destination. The reason for the two possible binning

rates is thatI(V1, X3;Y |S2, V2, X2,W ) represents the maximal rate increase that can be achieved due to the binning

information available on the current message in the backward decoding scheme, whileI(X1, X3;Y |S1, V2, X2)

represents the maximal rate for decoding the binning information for the next step in the backward decoding

scheme. Therefore, decoding via simultaneous backward decoding results in two constraints on the binning rate.

Remark8. Thm. 3 can be specialized to the MAC with correlated sources by letting V1 = V2 = X3 = W = φ. For

this setting the conditions (12d)–(12f) specialize to the ones in [4, Eqn. (12)] withY as the destination. Similarly,

the MABRC, underV1 = V2 = X3 = W3 = W = φ, specializes to the compound MAC [5, Section VI], and

Thm. 3 specializes to [5, Thm. 6.1]. We conclude that Thm. 3 implements aCPM encoding for both the relay and

the destination. This is in contrast to the previous results of Thm. 1 and Thm.2 in which CPM is used for encoding

informationeither to the relayor to the destination.

October 3, 2018 DRAFT



12

Remark9. The CRBC model with correlated relay and destination side information can be obtained as a special

case of the MABRC model by lettingX2 = S2 = φ. The sufficient conditions for the CRBC given in [11, Thm. 3.1]

can also be obtained from Thm. 3 by lettingV1 = X3, S2 = X2 = V2 = φ, and considering an input distribution

independent of the sources. This is in contrast to Thm. 2 which specializes to more restrictive conditions (see

Subsection III-B). We conclude that Thm. 3 allows more flexibility in the achievable coordination between the

sources and the relay compared to Thm. 2.

Remark10. Using successive backward decoding at the destination the following sufficient conditions are obtained:

Proposition2. A source pair(S1, S2) can be transmitted reliably over a DM MARC with relay and receiver side

information as defined in Section II-B if,

H(S1|S2,W3) < I(X1;Y3|S2, V1, X2, X3,W3) (15a)

H(S2|S1,W3) < I(X2;Y3|S1, V2, X1, X3,W3) (15b)

H(S1, S2|W3) < I(X1, X2;Y3|V1, V2, X3,W3) (15c)

H(S1|S2,W ) < I(X1;Y |S2, V1, X2, X3,W ) + I(V1, X3;Y |V2,W ) (15d)

H(S2|S1,W ) < I(X2;Y |S1, V2, X1, X3,W ) + I(V2, X3;Y |V1,W ) (15e)

H(S1, S2|W ) < I(X1, X2;Y |V1, V2, X3,W ) + I(V1, V2, X3;Y |W ), (15f)

are satisfied for some joint distribution that factorizes as:

p(s1, s2, w3, w)p(v1)p(x1|s1, v1)p(v2)p(x2|s2, v2)p(x3|v1, v2)p(y3, y|x1, x2, x3). (16)

Proof: The proof is given in Appendix B.

Remark11. As the scheme of Thm. 3 applies simultaneous backward decoding at the destination, then the source

vectors and the binning information arejointly decoded (see Appendix A-C). On the other hand, the scheme of

Prop. 2 applies successive backward decoding at the destination, thus, first the binning information is decoded,

and then, the source vectors are decoded (see Appendix B-B).Since in the latter scheme decoding the binning

information uses only part of the available information, the sufficient conditions obtained for the scheme of Prop. 2

are more restrictive than those obtained for the scheme of Thm. 3 This is rigorously shown in the following section.

V. COMPARISON OF THEDIFFERENTACHIEVABILITY SCHEMES

We now present a detailed comparison of the sufficient conditions established by Thm. 3, Thm. 1, Thm. 2 and

Prop. 2. Specifically, we show the following:

• In Subsection V-A we show that for correlated sources and side information the scheme of Thm. 3 outperforms

the schemes of Thm. 1 and Prop. 2.

• In Subsection V-B we show that there are scenarios for which the scheme of Thm. 3 strictly outperforms the

schemes of Thm. 1 and Thm. 2.
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A. Correlated Sources and Side Information

We now compare Thm. 1, Thm. 3 and Prop. 2 for the general input distributions (8), (13) and (16). As stated in

Remark 5, the decoding constraints at the relay in Thm. 3 are identical to the decoding constraints at the relay in

Thm. 1 and Prop. 2. Therefore, in the following we compare only the decoding constraints at the destination. The

conclusion is summarized in the following proposition:

Proposition3. The scheme of Thm. 3 is at least as good as the schemes of Thm. 1 and Prop. 2.

Proof: The proof is given in Appendix C.

Remark12. We emphasize that Prop. 3 implies that the superiority of thescheme of Thm. 3 over the scheme of

Thm. 1 and the scheme of Prop. 2 holds in general.

Proposition 3 implies that for JSCC for MARCs, simultaneousbackward decoding outperforms sequential

backward decoding. For the case of separate source and channel codes, [9, Thm. 1] presented a separation-based

achievability scheme subject to the input distribution:

p(s1, s2, w3, w, v1, v2, x1, x2, x3) = p(s1, s2, w3, w)p(v1)p(x1|v1)p(v2)p(x2|v2)p(x3|v1, v2). (17)

In this case, we havep(xi|si, vi) = p(xi|vi), i = 1, 2, the joint distributions in (8) and (13) specialize to the one

in (17), and the sufficient conditions of Thm. 1 and Thm. 3 specialize to the conditions of [9, Thm. 1].

Remark13. When the source and side information sequences are independent, that isp(s1, s2, w3, w) = p(s1)p(s2)

p(w3)p(w), the joint distributions in (13) and (16) specialize top(s1)p(s2)p(w3)p(w)p(v1)p(x1|v1)p(v2) p(x2|v2)

p(x3|v1, v2). In this case, the conditions of Prop. 2 specialize to the conditions obtained for sending independent

messages over the MARC using sliding-window decoding at thedestination [2, Section III.B], while the conditions

of Thm. 3 specialize to the conditions obtained for sending independent messages over the MARC using backward

decoding at the destination [2, Section III.A].3

B. Mixed JSCC Can Strictly Outperform the Schemes of Thm. 1 and Thm. 2

Recall Remark 4, which states that the underlying input distributions of Thm. 3 and Thm. 1 are identical, while

the underlying input distribution for Thm. 2 is different. Here, we present a comparison of all three schemes for a

special case in which the two input distribution chains are the same. In this example the sources can be reliably

transmitted by using the scheme of Thm. 3, while reliable transmission is not possible via the schemes of Thm. 1

and Thm. 2. Consider a PSOMARC, defined byX1 = X2 = {0, 1},Y3 = {0, 1, 2},YS = {0, 1}. Let C3 = 1, and

consider the deterministic channel mapping(X1, X2) 7→ (Y3, YS) specified in Table I.

(X1,X2) (0, 0) (0, 1) (1, 0) (1, 1)

Y3 0 1 1 2

YS 0 0 1 1

TABLE I: A deterministic channel mapping(X1, X2) 7→ (Y3, YS) for the PSOMARC.

3The same observation holds when the side information is not present. This follows since when the side information is independent of the

sources then it cannot help in decoding the sources. Thus, wecan setW = W3 = φ.
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The sources(S1, S2) are defined over the setsS1 = S2 = {0, 1} with the joint distribution specified in Table II.

S1 \S2 0 1

0 1/3 1/3

1 0 1/3

TABLE II: The joint distribution of (S1, S2). The entry in thejth row and mth column, j,m = 0, 1, corresponds to

Pr ((S1, S2) = (j,m)).

These sources can be reliably transmitted by lettingX1 = S1 andX2 = S2. The probability of decoding error at

the relay is zero since there is a one-to-one mapping betweenthe channel inputs from the sources and the channel

output at the relay. The probability of decoding error at thedestination can be made arbitrarily small by using

the fact that each channel output at the destination corresponds only to two possible pairs of channel inputs. This

ambiguity can be resolved using the relay-destination linkwhose capacity is 1 bit per channel use.

Next, consider the transmission via the schemes of Thm. 1, Thm. 2 and Thm. 3. For transmission via the schemes

of Thm. 1 and Thm. 2 we have the following proposition:

Proposition4. The sources defined in Table IIcannotbe reliably transmitted over the PSOMARC defined in Table

I, by using the schemes of Thm. 1 and Thm. 2.

Proof: First we make the following claim:

Claim 1. If an inequality sign in the conditions of Thm. 1 and Thm. 2 isreversed, then reliable transmission is not

possible with the corresponding schemes.

Proof sketch:The average probability of error for decoding the sources transmitted via the scheme of Thm. 1

can belower boundedby using the properties of jointly typical sequences, [29, Ch. 6.3]. This can be done by

following arguments similar to those used in [9, Appendix B.D], but instead of upper bounding the different

quantities in the calculation of the probability of error, we apply lower bounds, see the left-hand side (LHS) of

[29, Eqns. (6.106)–(6.108)]. In particular it follows thatif conditions (7) hold withopposite strict inequality, e.g.,

H(S1|S2,W3) > I(X1;Y3|S2, V1, X2, X3,W3), see (7a), then reliable transmission is not possiblevia the scheme

of Thm. 1. These arguments also apply to Thm. 2, that is, if conditions(9) hold with opposite strict inequality,

e.g.,H(S1|S2,W3) > I(X1;Y3|S1, X2, X3) , see (9a), then reliable transmission is not possiblevia the scheme of

Thm. 2.

In Appendix D we show that indeed evaluating both Thm. 1 and Thm. 2 for the example in this section, some

conditions in Thm. 1 and Thm. 2 hold with opposite strict inequality to what is required by the theorems. This

shows that reliable transmission of the sources is not possible via the schemes of Thm. 1 and Thm. 2.

In contrast to Thm. 1 and Thm. 2, we have the following proposition for Thm. 3:

Proposition5. The sources defined in Table II can be reliably transmitted over the PSOMARC specified in Table

I, by using the scheme of Thm. 3.

Proof: Conditions (12) can be specialized to the PSOMARC by lettingV1 = V2 = W3 = W = φ and
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I(X3;YR) = C3. In particular, a specialization of the conditions of Thm. 3which involveH(S1, S2), i.e. (12c)

and (12f), gives the following condition:

H(S1, S2) < min{I(X1, X2;Y3), I(X1, X2;YS) + C3}, (18)

where the joint distribution (13) specializes top(s1, s2)p(x1|s1)p(x2|s2)p(y3, yS|x1, x2). Next, note that for the

sources defined in Table II we haveH(S1, S2) = log2 3. Moreover, as|Y3| = 3, |YS | = 2 andC3 = 1, the RHS

of (18) is upper bounded bylog2 3, thus, the LHS of (18) equals to the RHS of (18). However, as condition (18)

requires strict inequality,the conditions provided in the statement of Thm. 3 do not imply that reliable transmission

is possiblein the present example. Note that this case is different thanthe case of Prop. 4, see Remark 14 below.

In Appendix E we specify an explicit p.m.fp(xi|si), i = 1, 2, for which we show, through an explicit calculation

of the probability of decoding error, that reliable transmission is possible via the scheme of Thm. 3.

Remark14. The case of Prop. 5 is different than the case of Prop. 4. In thecase of Prop. 5 we have an equality

between the LHS and RHS,4 while for Prop. 4, evaluating the conditions of Thm. 1 and Thm. 2 we show that the

inequality sign is reversed compared to what is required by the theorems. Then, in the proof of Prop. 4 we show

that such reversal implies that reliable transmission is impossible (see Appendix D). Since in the case of Prop. 5 we

have an equality between the LHS and the RHS quantities, we examine the situation in more detail in Appendix E.

VI. N ECESSARYCONDITIONS FORRELIABLE TRANSMISSION OFCORRELATED SOURCESOVER DM MARCS

In this section three sets of necessary conditions for reliable transmission of correlated sources over DM MARCs

with side information are derived. These new converse results are based on the fact that only certain joint input

distributionsp(x1, x2) can be achieved. Observe that from Def. 1 it follows that valid channel input distributions

must obey the Markov chain:
X1 ↔ Sn

1 ↔ Sn
2 ↔ X2. (19)

In the following we use the technique introduced by Kang and Ulukus in [28] to constrain the achievable joint

input distributions to take into account (19). We start by reviewing some basic definitions and results from [28]

and [33].

A. Definitions and Known Results

Definition 4. (Maximal correlation, [33, Sec. 2]) The maximal correlation between the RVsX andY is defined

as ρ∗XY , supE {f(X)g(Y )}, where the supremum is taken overf : X 7→ R, g : Y 7→ R, s.t E {f(X)} =

E {g(Y )} = 0, E
{

f2(X)
}

= E
{

g2(Y )
}

= 1, and with the convention that the supremum over the empty set

equals to 0. The conditional maximal correlationρ∗XY |z is defined similarly.

Definition 5. (Matrix notation for probability distributions, [28, Eqn. (6)]) LetX ∈ X , and Y ∈ Y, be two

discrete random variables with finite cardinalities. The joint probability distribution matrixPXY is defined as

4Conditions (12), specialized to the PSOMARC, evaluated by setting p(xi|si), i = 1, 2, to be the deterministic distributionp(xi|si) =

δ(xi − si), whereδ(x) is the Kronecker Delta function, hold with anequality.
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PXY (i, j) , Pr (X = xi, Y = yj) , i = 1, 2, . . . , |X |, j = 1, 2, . . . , |Y|. The marginal distribution matrix of an RV

X is defined as the diagonal matrixPX such thatPX(i, i) = Pr (X = xi) , xi ∈ X ; PX(i, j) = 0, i 6= j.

This marginal distribution can also be represented in a vector form denoted bypX . The i’th element ofpX is

pX(i) , Pr (X = xi). The conditional joint probability distribution matrixPXY |z is defined similarly.

Definition6. (Spectral representation, [28, Eqns. (12)–(13)]) We define the matrixP̃XY asP̃XY , P
− 1

2

X PXY P
− 1

2

Y ,

and the vector̃pX as p̃X = p
1
2

X , wherep
1
2

X stands for an element-wise square root ofpX . The conditional

distributionsP̃XY |z and p̃X|y are defined similarly.

Note that not every matrix̃PXY can correspond to a given joint distribution matrixPXY . This is because a

valid joint distribution matrixPXY must have all its elements to be nonnegative and add to 1. [28,Thm. 1] gives

a necessary and sufficient condition forP̃XY to correspond to a joint distribution matrixPXY :

Theorem.([28, Thm. 1]) LetPX andPY be a pair of marginal distributions. A nonnegative matrixPXY is a joint

distribution matrix with marginal distributionsPX andPY if and only if the singular value decomposition (SVD)

of the corresponding nonnegative matrixP̃XY satisfies:

P̃XY = MDN
T = p

1
2

X

(

p
1
2

Y

)T

+

l
∑

i=2

σiµiν
T
i , (20)

wherel = min{|X |, |Y|}, M , [µ1,µ2, . . .µl] andN , [ν1,ν2, . . .νl] are two matrices such thatMT
M = I and

N
T
N = I, andD , diag[σ1, σ2, . . . , σl]

5; µ1 = p
1
2

X ,ν1 = p
1
2

Y , andσ1 = 1 ≥ σ2 ≥ · · · ≥ σl ≥ 0. That is, all

the singular values of̃PXY are non-negative and smaller than or equal to 1. We sometime denoteσi = σi(P̃XY )

to explicitly indicate the matrix for which the singular value is computed. The largest singular value ofP̃XY is 1,

and its corresponding left and right singular vectors arep
1
2

X andp
1
2

Y .

Next, we define the set of all possible conditional distributionsp(x1,x2|s1,1,s2,1) satisfying the Markov chain (19):

BX1X2|S1S2
,























































pX1,X2|S1,S2
(x1, x2|s1,1, s2,1) :

∃n ∈ N
+, pX1|Sn

1
(x1|s

n
1 ), pX2|Sn

2
(x2|s

n
2 )

s.t. ∀(x1, x2, s1,1, s2,1) ∈ X1 ×X2 × S1 × S2,

pX1,X2|S1,S2
(x1, x2|s1,1, s2,1) =

1
pS1,S2 (s1,1,s2,1)

∑

sn1,2∈Sn−1
1

sn2,2∈Sn−1
2

pX1|Sn
1
(x1|s

n
1 )pX2|Sn

2
(x2|s

n
2 )pSn

1 ,Sn
2
(sn1 , s

n
2 )























































,

wherepSn
1 ,Sn

2
(sn1 , s

n
2 ) =

∏n
k=1 pS1,S2(s1,k, s2,k). Note that asn can be arbitrarily large, the set of all conditional

distributionspX1|Sn
1
(x1|s

n
1 ) andpX2|Sn

2
(x2|s

n
2 ), for all positive integersn, is countably infinite. Therefore, we are

interested in a characterization of then-letter Markov chain (19) via a set which has abounded and finite cardinality.

In order to achieve this, we first note that aspS1,S2(s1,1, s2,1) is given,pX1,X2(x1, x2), pX1,X2|S1
(x1, x2|s1,1) and

pX1,X2|S2
(x1, x2|s2,1) are all uniquely determined bypX1,X2|S1,S2

(x1, x2|s1,1, s2,1). Furthermore, in [33, Sec. 4]

it is shown thatσ2(P̃X1X2) = ρ∗X1X2
. Therefore,ρ∗X1X2

, ρ∗X1X2|s1,1
, ρ∗X1X2|s2,1

andρ∗X1X2|s1,1,s2,1
are all functions

5We useD = diag[a] to denote a rectangular matrixD s.t Di,i = ai,Di,j = 0,∀i 6= j.
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of pX1,X2|S1,S2
(x1, x2|s1,1, s2,1) for a givenpS1,S2(s1,1, s2,1). The following theorem characterizes constraints on

these maximal correlations, and thereby gives a necessary condition for then-letter Markov chain (19):6

Theorem.([28, Thm. 4]) Let(Sn
1 , S

n
2 ) be a pair of length-n independent and identically distributed (i.i.d.) sequences

such thatpS1,k,S2,k
(a, b) = pS1,S2(a, b), ∀(a, b) ∈ S1 × S2, ∀k ∈ {1, 2, . . . , n}, and let the variablesX1 andX2

satisfy the Markov chain (19). LetS1,k and S2,j be arbitrary elements ofSn
1,1 and Sn

2,1, respectively, that is,

k, j ∈ {1, 2, . . . , n}, then
ρ∗X1X2|s1,k,s2,k

≤ ρ∗S1S2
. (21)

Now, we define the setB′
X1X2|S1S2

as follows:

B′
X1X2|S1S2

,























































pX1,X2|S1,S2
(x1, x2|s1,1, s2,1) :

∀(s1,1, s2,1) ∈ S1 × S2

ρ∗X1X2
≤ ρ∗S1S2

,

ρ∗X1X2|s1,1
≤ ρ∗S1S2

,

ρ∗X1X2|s2,1
≤ ρ∗S1S2

,

ρ∗X1X2|s1,1,s2,1
≤ ρ∗S1S2























































.

Note that by [28, Thm. 4] the setB′
X1X2|S1S2

is invariant to the symbol index, that is,s1,1 and s2,1 can be

replaced bys1,k ands2,k for any k ∈ {2, 3, . . . , n}. Since [28, Thm. 4] gives necessary conditions for then-letter

Markov chain (19), it follows thatBX1X2|S1S2
⊆ B′

X1X2|S1S2
. Furthermore, the setB′

X1X2|S1S2
is characterized by

the singular values7 of the matricesP̃X1X2 , P̃X1X2|s1,1 , P̃X1X2|s2,1 and P̃X1X2|s1,1,s2,1 . Therefore, while the set

BX1X2|S1S2
has countably infinite dimensions, the setB′

X1X2|S1S2
has finite and bounded dimensions.

B. A MAC Bound

Next, we derive a new set of necessary conditions which is a reminiscent of the so-called “MAC bound” for the

relay channel, [34, Ch. 16], that takes into account (19).

Theorem4. Any source pair(S1, S2) that can be reliably transmitted over the DM MARC with receiver side

informationW , as defined in Section II-B, must satisfy the constraints:

H(S1|S2,W )≤ I(X1, X3;Y |S2, X2,W,Q) (22a)

H(S2|S1,W )≤ I(X2, X3;Y |S1, X1,W,Q) (22b)

H(S1, S2|W )≤ I(X1, X2, X3;Y |W,Q), (22c)

for a joint distribution that factorizes as:

p(q, s1, s2, w, x1, x2, x3, y) = p(q)p(s1, s2, w)p(x1, x2|s1, s2, q)p(x3|x1, x2, s1, s2, q)p(y|x1, x2, x3), (23)

with |Q| ≤ 4, and for everyq ∈ Q, it follows that:

6Here we present a simplified version of [28, Thm. 4].

7Recall thatσ2(P̃X1X2
) = ρ∗X1X2

.
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p(x1, x2|s1, s2, Q = q) ∈ BX1X2|S1S2
⊆ B′

X1X2|S1S2
. (24)

Proof: The proof is given in Appendix F-A.

Remark15. This bound does not includeW3 because decoding is done based only on the information available at

the destination, while the relay channel input is allowed todepend onX1, X2, S1 andS2. Therefore,W3 does not

add any useful information for generating the relay channelinput.

C. Broadcast Bounds

The next two new sets of necessary conditions are a reminiscent of the so-called “broadcast bound” for the relay

channel, [34, Ch. 16].

Proposition 6. Any source pair(S1, S2) that can be reliably transmitted over the DM MARC with relay side

informationW3 and receiver side informationW , as defined in Section II-B, must satisfy the constraints:

H(S1|S2,W,W3) ≤ I(X1;Y, Y3|S2, X2,W, V ) (25a)

H(S2|S1,W,W3) ≤ I(X2;Y, Y3|S1, X1,W, V ) (25b)

H(S1, S2|W,W3) ≤ I(X1, X2;Y, Y3|W,V ), (25c)

for some joint distribution of the form:

p(v, s1, s2, w, w3, x1, x2, x3, y, y3) = p(v, s1, s2, w, w3)p(x1, x2|s1, s2, v)p(x3|v)p(y, y3|x1, x2, x3), (26)

with |V| ≤ 4.

Proof: The proof is given in Appendix F-B.

Remark16. In Prop. 6 we did not place restrictions onp(x1, x2|s1, s2) as in Thm. 4. This is because [28, Thm.

4] requires(Sn
1 , S

n
2 ) to be a pair ofi.i.d sequencesof lengthn. However, in the proof of Prop. 6V n is not an

i.i.d sequence, and therefore(Sn
1 , S

n
2 , V

n) is not a triplet of i.i.d sequences. Hence, it is not possible to use the

approach of [28] to tighten Prop. 6. It is possible, however,to establish a different set of “broadcast-type” necessary

conditions which benefits from the results of [28]. This is stated in Thm. 5.

Theorem5. Any source pair(S1, S2) that can be reliably transmitted over the DM MARC with relay side information

W3 and receiver side informationW , as defined in Section II-B, must satisfy the constraints:

H(S1|S2,W,W3)≤ I(X1;Y, Y3|S2, X2, X3,W,Q) (27a)

H(S2|S1,W,W3)≤ I(X2;Y, Y3|S1, X1, X3,W,Q) (27b)

H(S1, S2|W,W3)≤ I(X1, X2;Y, Y3|X3,W,Q), (27c)

for a joint distribution that factorizes as:

p(q, s1, s2, w, w3, x1, x2, x3, y, y3) =

p(q)p(s1, s2, w, w3)p(x1, x2|s1, s2, q)p(x3|x1, x2, w3, q)p(y, y3|x1, x2, x3), (28)

with |Q| ≤ 4, and for everyq ∈ Q, it follows that:

p(x1, x2|s1, s2, Q = q) ∈ BX1X2|S1S2
⊆ B′

X1X2|S1S2
, (29)

Proof: The proof follows similar arguments to the proofs of Thm. 4 and Prop. 6, thus, it is omitted here.
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D. Discussion

Remark17. Note that the side information may affect the correspondingchain, see e.g., Thm. 5.

Remark18. For independent sources (p(s1, s2) = p(s1)p(s2)) and W = W3 = φ, a combination of Thm. 4

and Thm. 5 specializes to the cut-set bound for the MARC derived in [7, Thm. 1]. To see this, note that in this

case the RHSs of (27) are identical to the first term in the RHS of [7, Eqn. (7)], while the RHSs of (22) are

identical to the second term in the RHS of [7, Eqn. (7)], forG = {1}, {2}, {1, 2}, respectively. Furthermore, we

have that (23) and (28) are the same. Next, note that for independent sources,ρ∗S1S2
= 0, which implies that

ρ∗X1X2
= ρ∗X1X2|s1,1

= ρ∗X1X2|s2,1
= ρ∗X1X2|s1,1,s2,1

= 0. Therefore,X1 andX2 are independent and conditions

(24) and (29) are satisfied for anypS1,S2(s1, s2) = pS1(s1)pS2(s2). Finally, lettingR1 , H(S1), R2 , H(S2)

implies thatH(S1, S2) = R1 +R2, and therefore for independent sources the combination of Thm. 4 and Thm. 5

coincides with [7, Eqn. (7)].

Remark19. For Gaussian MARCs subject to i.i.d phase fading, and for thechannel inputs that maximize the

achievable region at the destination obtained via DF, the achievable region at the destination is a subset of

the corresponding achievable region at the relay (i.e., decoding at the relay does not constrain the rate to the

destination). In this case, Thm. 4 specializes to [35, Prop.1].8 From [1, Thm. 8] it follows that in this case

mutually independent channel inputs simultaneously maximize the RHSs of [35, Eqns. (3)]. Additionally, note that

for mutually independent channel inputs, Eqns. (22) coincide with [35, Eqns. (3)]. Lastly we observe that the mutual

independence of the channel inputs implies thatρ∗X1X2
= ρ∗X1X2|s1,1

= ρ∗X1X2|s2,1
= ρ∗X1X2|s1,1,s2,1

= 0, thus (24)

is satisfied for any joint distribution of the sources.

Remark20. When specialized to the MAC with correlated sources Thm. 4 and Thm. 5 coincide and both are

tighter than Prop. 6. SettingX3 = Y3 = W3 = φ, the expressions in (22), (25) and (27) become identical. However,

note that in (26) a general joint distributionp(v, s1, s2, w) is considered, while in (23) and (28)Q ⊥⊥ (S1, S2,W ).

Moreover, the required Markov chain of (19) is not accountedfor by the chain of Prop. 6, contrary to Thm. 4 and

Thm. 5. Therefore, we conclude that when specialized to the MAC scenario, Thm. 4 and Thm. 5 give the same

bound which is tighter then the one in Prop. 6.

SettingX3 = Y3 = W3 = φ as well asW = φ, specializes our model to the MAC with no side information

at the receiver. For this model, both Thm. 4 and Thm. 5 specialize to [28, Thm. 7], which establishes necessary

conditions for the MAC with correlated sources.

E. Numerical Examples

We now demonstrate the improvement of Thm. 4 and Thm. 5 upon the cut-set bound of [34, Ch. 18.1]. In order

to simplify the arguments, we consider a scenario with no side informationW = W3 = φ, and focus on the bound

on H(S1, S2). In the following, we consider explicit PSOMARC and sourcesfor which we show that the cut-set

8In [9, Thm. 4] we showed that for Gaussian MARCs subject to i.i.d phase fading, when decoding at the relay does not constrain the rate to

the destination, then source-channel separation is optimal.
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bound fails to indicate whether reliable transmission of the sources over the channel is possible, while a relaxed

version of our outer bounds do indicate that reliable transmission of the sources over the channel is impossible.

Consider the PSOMARC defined byX1 = X2 = Y3 = YS = {0, 1}, the channel transition probabilities detailed

in Tables III and IV, and letC3 = 0.1.

Y3 \(X1,X2) (0,0) (0,1) (1,0) (1,1)

0 0.87 0.25 0.51 0.24

1 0.13 0.75 0.49 0.76

TABLE III: The transition probability(X1, X2) 7→ Y3.

Y \(X1,X2) (0,0) (0,1) (1,0) (1,1)

0 0.23 0.19 0.65 0.91

1 0.77 0.81 0.35 0.09

TABLE IV: The transition probability(X1, X2) 7→ Y .

Next, consider the cut-set bound for the sum-rate of the PSOMARC, [8, Eqn. (9)]. When evaluated for the

PSOMARC defined in Tables III, IV the necessary conditions of[8, Eqn. (9)] yield:

H(S1, S2) ≤ Icut-set, max
p(x1,x2)

{

I(X1, X2;YS) + min
{

C3, I(X1, X2;Y3|YS)
}

}

≈ 0.516.9 (30)

The maximum in (30) is achieved byPr ((X1, X2) = (0, 0)) ≈ 0.1, Pr ((X1, X2) = (0, 1)) ≈ 0.39,

Pr ((X1, X2) = (1, 0)) ≈ 0, Pr ((X1, X2) = (1, 1)) ≈ 0.51. This and the following optimizations are done nu-

merically using an exhaustive search over all relevant parameters with a step size of 0.01 in each variable. Next,

we consider the combination of the relaxed versions of (22c)and (27c), withW = W3 = φ, specialized to the

PSOMARC:

H(S1, S2) ≤ Inew , max
p(x1,x2):ρ∗

X1X2
≤ρ∗

S1S2

{

I(X1, X2;YS) + min
{

C3, I(X1, X2;Y3|YS)
}

}

. (31)

Note that (31) is less restrictive than (22c) and (27c), as the maximization in (31) includes only the restriction

due toP̃X1X2 , while the restrictions due to the conditional distributions P̃X1X2|S1
, P̃X1X2|S2

andP̃X1X2|S1,S2
are

ignored. Finally, we recall the sum-rate condition of Thm. 3stated in (18) obtained by combining (12c) and (12f)

and specializing the expressions to the PSOAMRC:

H(S1, S2) < Isuff , max
p(s1,s2)p(x1|s1)p(x2|s2)

min
{

I(X1, X2;Y3), I(X1, X2;YS) + C3

}

. (32)

Let (S1, S2) be a pair of sources such thatS1 = S2 = {0, 1}, and their joint distribution is given in Table V.

S1 \S2 0 1

0 0 0.04

1 0.045 0.915

TABLE V: The joint distributionp(s1, s2).

For this joint distribution we evaluateH(S1, S2) ≈ 0.504, therefore, the cut-set necessary condition (30) does

not indicate whether these sources can be transmitted reliably or not. Furthermore, for the joint distribution given

9Note that the cut-set bound in (30) depends only on the channel transition probabilities andnot on the joint distribution of the sources.
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in Table V, the RHS of (32) is evaluated as Isuff ≈ 0.274. This value is achieved byPr (X1 = 0|S1 = 0) ≈ 0,

Pr (X1 = 0|S1 = 1) ≈ 1, Pr (X1 = 1|S1 = 0) ≈ 0.84, Pr (X1 = 1|S1 = 1) ≈ 0.16, Pr (X2 = 0|S2 = 0) ≈ 0.98,

Pr (X2 = 0|S2 = 1) ≈ 0.02, Pr (X2 = 1|S2 = 0) ≈ 0.49, Pr (X2 = 1|S2 = 1) ≈ 0.51. Thus, the scheme of Thm. 3

cannot transmit these sources reliably since condition (32) is not satisfied.

In contrast to (30), which is larger thanH(S1, S2), for the joint distribution given in Table V we have Inew ≈ 0.485.

This value is achieved byPr ((X1, X2)= (0, 0)) ≈ 0.08, Pr ((X1, X2)= (0, 1)) ≈ 0.41, Pr ((X1, X2)= (1, 0)) ≈

0.07, Pr ((X1, X2)= (1, 1)) ≈ 0.44. Hence, our new necessary condition (31), explicitly indicates that reliable

transmission of these sources is impossible.

This demonstrates the improvement of Thm. 4 and Thm. 5 upon the cut-set bound.

Remark21. This numerical exampledoes not follow immediately from the results of Kang and Ulukus for the

MAC, detailed in [28, Subsection III.C]. To see this, consider the PSOMARC and sources as defined in Tables III,

IV and V, and letC3 = 0.2 (instead of0.1). Here, (30) is evaluated as Icut-set≈ 0.60010, while (31) is evaluated

as Inew ≈ 0.51411. Moreover, recall thatH(S1, S2) ≈ 0.504. Hence, forC3 = 0.2, (31) does not indicate whether

reliable transmission of the sources is possible, while forC3 = 0.1, (31) explicitly indicates that reliable transmission

is impossible. Observe that the necessary conditions are affected by the presence of the relay. Also note that the

cut-set conditions (30) does not indicate whether reliabletransmission is possible or not, for either value ofC3.

Remark22. In the above numerical example we assume that side information is not present. To see the effect

of side information at the relay on (31) consider the PSOMARCand sources as defined in Tables III, IV and V,

and letC3 = 0.5. Here,I(X1, X2;Y2|YS) ≈ 0.185, I(X1, X2;YS) ≈ 0.329 and Inew ≈ 0.51412. Therefore, in this

caseI(X1, X2;Y2|YS) is the dominant term in the minimization on the RHS of (31). Now, let W3 = (S1, S2),

which makes (27c) redundant.13 In this case, the RHS of (31) becomes max
p(x1,x2):ρ∗

X1X2
≤ρ∗

S1S2

I(X1, X2;YS) + C3, and

we have Inew ≈ 0.91914. To conclude, in this case, the presence of side informationat the relay significantly

enlarges Inew.

Remark23. We note that the necessary conditions presented in Thm. 4 andThm. 5 are not tight in general.

For instance, consider the PSOMARC specified in Table I withC3 = 1, and the pair of sources defined in

Table II. Prop. 5 implies that the sources defined in Table II can be reliably transmitted over this PSOMARC

by using the scheme of Thm. 3. Here, the maximal sum-rate sufficient condition which is evaluated using (32) is

10This value was found via an exhaustive search over over allp(x1, x2) and can be achieved byPr ((X1, X2) = (0, 0)) ≈ 0.26,

Pr ((X1,X2)= (0, 1)) ≈ 0.24, Pr ((X1,X2)= (1, 0)) ≈ 0, Pr ((X1, X2)= (1, 1)) ≈ 0.5.

11This value was found via an exhaustive search over over allp(x1, x2) s.t ρ∗X1X2
≤ ρ∗S1S2

, and can be achieved by

Pr ((X1,X2)= (0, 0)) ≈ 0.2, Pr ((X1,X2)= (0, 1)) ≈ 0.36, Pr ((X1,X2)= (1, 0)) ≈ 0.14, Pr ((X1, X2) = (1, 1)) ≈ 0.3.

12These value were found via an exhaustive search over over allp(x1, x2) s.t ρ∗
X1X2

≤ ρ∗
S1S2

, and can be achieved by

Pr ((X1,X2)= (0, 0)) ≈ 0.04, Pr ((X1,X2)= (0, 1)) ≈ 0.46, Pr ((X1, X2) = (1, 0)) ≈ 0.03, Pr ((X1,X2)= (1, 1)) ≈ 0.47.

13WhenW3 = (S1, S2) the chains (23) and (28) are the same, andH(S1, S2|W,W3) = 0.

14This value is found via an exhaustive search over over allp(x1, x2) s.tρ∗X1X2
≤ ρ∗S1S2

, and can be achieved byPr ((X1, X2) = (0, 0)) ≈

0.01, Pr ((X1,X2)= (0, 1)) ≈ 0.47, Pr ((X1, X2) = (1, 0)) ≈ 0.01, Pr ((X1,X2)= (1, 1)) ≈ 0.51.
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Isuff = log2 3. For this combination of sources and channel, the sum-rate necessary condition due to the cut-set bound

is evaluated via (30) as Icut-set= 2, which is achieved by settingPr ((X1, X2) = (0, 0)) = Pr ((X1, X2) = (0, 1)) =

Pr ((X1, X2) = (1, 0)) = Pr ((X1, X2) = (1, 1)) = 0.25. Furthermore, using the samepX1,X2(x1, x2) we also

evaluate the newly derived sum-rate necessary condition (from either Thm. 4 or Thm. 5) via (31) as Inew = 2. Thus,

for this combination of channel and sources the RHSs of (30) and (31) are strictly larger than the RHS of (32).

On the other hand, there are sources and channels for which Icut-set = Inew = Isuff. As an example, consider a

PSOMARC, defined byX1 = X2 = {0, 1, 2},Y3 = {0, 1, 2, 3, 4, 5} andYS = {0, 1, 2}. Let C3 = 1, and consider

the deterministic channel mapping(X1, X2) 7→ (Y3, YS) specified in Table VI.

(X1,X2) (0, 0) (1, 1) (1, 2) (2, 0) (2, 2) Otherwise

Y3 0 2 3 4 5 1

YS 0 2 1 2 0 1

TABLE VI: A deterministic channel mapping(X1, X2) 7→ (Y3, YS) for the PSOMARC.

The sources(S1, S2) are defined over the setsS1=S2={0, 1, 2} with the joint distribution specified in Table VII.

S1 \S2 0 1 2

0 1/6 1/6 0

1 0 1/6 1/6

2 1/6 0 1/6

TABLE VII: The joint distribution of (S1, S2). The entry in thejth row and mth column, j,m = 0, 1, 2, corresponds to

Pr ((S1, S2) = (j,m)).

Following the arguments presented in Appendix E, it can be shown that, using the scheme of Thm. 3 the sources

defined in Table VII can be reliably transmitted over the PSOMARC defined in Table VI, withC3 = 1. In particular,

we haveH(S1, S2) = Isuff = log2 6 (note that since|Y3| = 6, it follows from (32) that Isuff ≤ log2 6). For the channel

mapping specified in Table VI, we also have Inew ≤ log2 6 and Icut-set ≤ log2 6. This follows from the fact that

|YS | = 3 and from the fact thatC3 = 1. In fact, Icut-set= Inew = log2 6 is obtained by settingp(x1, x2) = p(s1, s2).

Hence, for this combination of channel and sources the RHSs of (30), (31) and (32) coincide and tightness in

sum-rate is achieved. Furthermore, for everyC3 ≥ 1 we obtain Inew = Isuff. To understand this equality, first recall

from the above discussion that Isuff ≤ log2 6 with equality obtained with the assignmentp(x1, x2) = p(s1, s2). For

evaluating Inew, we recall the expression for Inew given by (31), repeated here for ease of reference:

Inew = max
p(x1,x2):ρ∗

X1X2
≤ρ∗

S1S2

{

I(X1, X2;YS) + min
{

C3, I(X1, X2;Y3|YS)
}

}

.

Now, since|YS | = 3 we have thatI(X1, X2;YS) ≤ log2 3, and this is achieved with equality by the assignment

p(x1, x2) = p(s1, s2). For I(X1, X2;Y3|YS) we write:

I(X1, X2;Y3|YS)
(a)
= H(Y3|YS)

(b)

≤ 1,

where (a) follows from the the fact that in the considered PSOMARC the mapping from(X1, X2) to Y3 is

deterministic, and (b) follows from the fact that for every possible value ofYS there are only two possible values

October 3, 2018 DRAFT



23

of Y3. An equality in (b) is achieved with the assignmentp(x1, x2) = p(s1, s2). Hence, forC3 ≥ 1 the active term

in the minimization on the RHS of (31) isI(X1, X2;Y3|YS), and we have Inew = Isuff, both maximized with the

assignmentp(x1, x2) = p(s1, s2). Finally, note that ifC3 < 1 then the necessary conditions (30) and (31) are not

satisfied.

VII. C ONCLUSIONS

In this work we studied JSCC for lossless transmission of correlated sources over DM MARCs. We derived

a new DF-based JSCC scheme which uses the CPM technique for encoding the correlated source sequences for

transmission to both the relay and the destination, while SWsource coding is used for cooperation between the

sources and the relay. This combination allows removing theconstraints on the distribution chain required by a

previously derived scheme which used CPM to the destination[6, Thm. 2] (quoted as Thm. 2 in this manuscript). The

new scheme of Thm. 3 applies simultaneous backward decodingat the destination to simultaneously decode both

source sequences and the cooperation information. As the scheme implements CPM-based encoding of the source

sequences at the transmitters, both the relay and the destination benefit from the joint source-channel encoding.

This is in contrast to the JSCC schemes derived in [6] (quotedas Thm. 1 and Thm. 2 in this manuscript), in which

either the relay or the destination benefits from the CPM encoding, but not both simultaneously.

We then provided a detailed comparison of the new scheme of Thm. 3 with the two JSCC schemes of [6] and with

the scheme of Prop. 2 which apply sequential decoding of the source sequences and the cooperation information

at the destination. We showed that the scheme of Thm. 3 is better than the scheme derived in [6, Thm. 1] and the

scheme of Prop. 2. We also showed that there are cases in whichthe scheme of Thm. 3 strictly outperforms the

schemes of Thm. 1 and Thm. 2. However, we cannot show that the new scheme of Thm. 3 is universally better than

the scheme of [6, Thm. 2]. This follows from the different admissible joint distributions (see Remarks 1 and 4).

Finally, we derived three different sets of necessary conditions for reliable transmission of correlated sources

over DM MARCs. We also showed that the newly derived sets are at least as tight as previously known results.

One of the new sets is in the spirit of the “MAC bound” for the classic relay channel, while the other two sets

are in the spirit of the “broadcast bound” for the relay channel. Two of the new sets use the Markov relationship

between the sources and the channel inputs to restrict the set of feasible distributions.

APPENDIX A

PROOF OFTHEOREM 3

A. Codebook Construction

• For eachi = 1, 2, consider a set of2nRi bins and letUi , {1, 2, . . . , 2nRi}, i = 1, 2, be the corresponding

set of bin indices. Fori = 1, 2, assign everysi ∈ Sn
i to one of the2nRi bins independently according to a

uniform distribution over the bin indices. Denote this assignment byfi : Sn
i 7→ Ui, i = 1, 2.

• For i = 1, 2, generate2nRi codewordsvi(ui), ui ∈ Ui, by choosing the lettersvi,k(ui), k = 1, 2, . . . , n, inde-

pendently according to the p.m.fpVi
(vi,k(ui)). For each pair(si, ui) ∈ Sn

i ×Ui, i = 1, 2, generate one codeword

xi(si, ui) by choosing the lettersxi,k(si, ui) independently according to the p.m.fpXi|Si,Vi
(xi,k|si,k, vi,k(ui)),
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k = 1, 2, . . . , n. Finally, generate one relay codewordx3(u1, u2) for each pair(u1, u2) ∈ U1×U2, by choosing

the lettersx3,k(u1, u2) independently according to the p.m.fpX3|V1,V2
(x3,k|v1,k(u1), v2,k(u2)), k = 1, 2, . . . , n.

B. Encoding

Consider two source sequences each of lengthBn, sBn
i,1 ∈ SBn

i , i = 1, 2. Partition each sequence intoB length-n

subsequences,si,b ∈ Sn
i , b = 1, 2, . . . , B. Similarly partition the side information sequenceswBn

3,1 andwBn into

B length-n subsequencesw3,b ∈ Wn
3 ,wb ∈ Wn, b = 1, 2, . . . , B, respectively. A total ofBn source samples is

transmitted overB + 1 blocks, such that at each blockn channel symbols are transmitted.

At block 1, transmitteri, i = 1, 2, transmits the channel codewordxi(si,1, 1). At block b, b = 2, 3, . . . , B, trans-

mitter i transmits the channel codewordxi(si,b, ui,b−1), whereui,b−1 = fi(si,b−1) ∈ Ui is the bin index of source

vectorsi,b−1. Let (a1, a2) ∈ Sn
1 ×Sn

2 be two sequences generated according top(a1, a2) =
∏n

k=1 pS1,S2(a1,k, a2,k).

These sequences are known to all nodes. At blockB + 1, transmitteri, i = 1, 2, transmitsxi(ai, ui,B).

At block b = 1, the relay transmitsx3(1, 1). Assume that at blockb, b = 2, 3, . . . , B,B + 1, the relay has the

estimates(s̃1,b−1, s̃2,b−1) of (s1,b−1, s2,b−1). It then finds the corresponding bin indicesũi,b−1 = fi(s̃i,b−1) ∈

Ui, i = 1, 2, and transmits the channel codewordx3(ũ1,b−1, ũ2,b−1) at timeb.

C. Decoding

The relay decodes the source sequences sequentially. At theend of channel blockb the relay decodessi,b, i = 1, 2,

as follows: Using the estimates(ũ1,b−1, ũ2,b−1), the received signaly3,b and the side informationw3,b, the relay

decodes(s1,b, s2,b) by looking for a unique pair(s̃1, s̃2) ∈ Sn
1 × Sn

2 such that:
(

s̃1, s̃2,v1(ũ1,b−1),v2(ũ2,b−1),x1(s̃1, ũ1,b−1),x2(s̃2, ũ2,b−1),x3(ũ1,b−1, ũ2,b−1),w3,b,y3,b

)

∈ A∗(n)
ǫ . (A.1)

Decoding at the destination is done via simultaneous backward decoding. Letα ∈ Wn be an i.i.d sequence such

that each letterαk is selected independently according topW |S1,S2
(αk|a1,k, a2,k), k = 1, 2, . . . , n. The destination

node waits until the end of channel blockB + 1. It first tries to decode(u1,B, u2,B) using the received signal at

channel blockB + 1, yb+1, and usinga1, a2, andα. Going backwards from the last channel block to the first,

we assume that at blockb the destination has estimates(û1,b, û2,b) of (u1,b, u2,b). The destination simultaneously

decodes(s1,b, s2,b, u1,b−1, u2,b−1) based on the received signalyb, and the side informationwb, by looking for a

unique combination(ŝ1, ŝ2, û1, û2) ∈ Sn
1 × Sn

2 × U1 × U2 such that:
(

ŝ1, ŝ2,v1(û1),v2(û2),x1(ŝ1, û1),x2(ŝ2, û2),x3(û1, û2),wb,yb

)

∈ A∗(n)
ǫ , (A.2)

andf1(ŝ1) = û1,b, f2(ŝ2,b) = û2. Denote the decoded variables by(ŝ1,b, ŝ2,b, û1,b−1, û2,b−1).

D. Error Probability Analysis

Relay error probability: The relay error probability analysis follows the same arguments as the relay error

probability analysis detailed in [9, Appendix B].

Destination error probability: The average probability of error in decoding at the destination at blockb, P̄ (n)
dest,b,

is defined by:
P̄

(n)
dest,b , Pr

(

(Ŝ1,b, Ŝ2,b) 6= (S1,b,S2b)
)

.
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Due to backward decoding, the pair of source sequences sent at time b is decoded after the pair at timeb + 1

is decoded. LetFb ,
{(

Ŝ1,b, Ŝ2,b, Û1,b−1, Û2,b−1

)

6=
(

S1,b,S2,b, U1,b−1, U2,b−1

)}

. Then, as in [18, Eqn. (40)], we

write:
P̄

(n)
dest ≤

B
∑

b=1

Pr
(

Fb ∩ Fc
b+1

)

.15 (A.3)

Let ǫ0, ǫ1, . . . , ǫ8 be positive numbers such thatǫ0 ≥ ǫ1 > ǫ, ǫm > ǫ andǫm → 0 as ǫ → 0, for m = 0, 1, . . . , 8.

Now, define two error events at blockb:

• Joint-typicality fails:

E1,b ,
{

(

S1,b,S2,b,V1(U1,b−1),V2(U2,b−1),X1(S1,b, U1,b−1),

X2(S2,b, U2,b−1),X3(U1,b−1, U2,b−1),Wb,Yb

)

/∈ A∗(n)
ǫ

}

.

• Simultaneous decoding of the bin indices (for the next step)and the source sequences fails:

E2,b ,
{

∃
(

ŝ1, ŝ2, û1, û2

)

∈ Sn
1 × Sn

2 × U1 × U2,

(

ŝ1, ŝ2, û1, û2

)

6=
(

S1,b,S2,b, U1,b−1, U2,b−1

)

, f1(s̃1) = Û1,b, f2(s̃2) = Û2,b,

(

ŝ1, ŝ2, V̂1(û1), V̂2(û2), X̂1(ŝ1, û1), X̂2(ŝ2, û2), X̂3(û1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

Then,Fb = E1,b ∪ E2,b, and we bound:

Pr
(

Fb ∩ Fc
b+1

)

≤ Pr
(

E1,b ∪ E2,b
∣

∣Fc
b+1

)

= Pr
(

E1,b
∣

∣Fc
b+1

)

+ Pr
(

E2,b
∣

∣Ec
1,b ∩ Fc

b+1

)

.

By applying the properties of strong typicality, [29, Theorem 6.9] we have that forn sufficiently large,

Pr
(

E1,b

∣

∣

∣Fc
b+1

)

≤ ǫ. For boundingPr
(

E2,b
∣

∣Ec
1,b ∩ Fc

b+1

)

we consider the following error events:

E
(1)
2,b ,

{

∃û1 ∈ U1, û1 6= U1,b−1,
(

S1,b,S2,b, V̂1(û1),V2(U2,b−1),

X̂1(S1,b, û1),X2(S2,b, U2,b−1), X̃3(û1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(2)
2,b ,

{

∃û2 ∈ U2, û2 6= U2,b−1,
(

S1,b,S2,b,V1(U1,b−1), V̂2(û2),

X1(S1,b, U1,b−1), X̂2(S2,b, û2), X̂3(U1,b−1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(3)
2,b ,

{

∃û1 ∈ U1, û1 6= U1,b−1, ∃û2 ∈ U2, û2 6= U2,b−1,

(

S1,b,S2,b, V̂1(û1), V̂2(û2), X̂1(S1,b, û1), X̂2(S2,b, û2), X̂3(û1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(4)
2,b ,

{

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b,

(

ŝ1,S2,b,V1(U1,b−1),V2(U2,b−1),

X̂1(ŝ1, U1,b−1),X2(S2,b, U2,b−1),X3(U1,b−1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(5)
2,b ,

{

∃ŝ2 ∈ Sn
2 , ŝ2 6= S2,b, f2(ŝ2) = Û2,b,

(

S1,b, ŝ2,V1(U1,b−1),V2(U2,b−1),

X1(S1,b, U1,b−1), X̂2(s̃2, U2,b−1),X3(U1,b−1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(6)
2,b ,

{

∃(ŝ1, ŝ2) ∈ Sn
1 × Sn

2 , ŝ1 6= S1,b, ŝ2 6= S2,b, f1(ŝ1) = Û1,b, f2(ŝ2) = Û2,b,
(

ŝ1, ŝ2,V1(U1,b−1),

V2(U2,b−1), X̂1(ŝ1, U1,b−1), X̂2(ŝ2, U2,b−1),X3(U1,b−1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

15As stated in Subsection A-B, at blockB + 1, source terminali transmitsxi(ai, ui,B), whereai ∈ Sn
i , i = 1, 2, is known to all nodes.

Therefore, at blockB + 1 we defineFB+1 ,
{(

Û1,B, Û2,B

)

6=
(

U1,B , U2,B

)}

.
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E
(7)
2,b ,

{

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b, ∃û1 ∈ U1, û1 6= U1,b−1,

(

ŝ1,S2,b, V̂1(û1),

V2(U2,b−1), X̂1(ŝ1, û1),X2(S2,b, U2,b−1), X̂3(û1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(8)
2,b ,

{

∃ŝ2 ∈ Sn
2 , ŝ2 6= S2,b, f2(ŝ2) = Û2,b, ∃û2 ∈ U2, û2 6= U2,b−1,

(

S1,b, ŝ2,V1(U1,b−1),

V̂2(û2),X1(S1,b, U1,b−1), X̂2(ŝ2, û2), X̂3(U1,b−1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(9)
2,b ,

{

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b, ∃û2 ∈ U2, û2 6= U2,b−1,

(

ŝ1,S2,b,V1(U1,b−1),

V̂2(û2), X̂1(ŝ1, U1,b−1), X̂2(S2,b, û2), X̂3(U1,b−1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(10)
2,b ,

{

∃ŝ2 ∈ Sn
2 , ŝ2 6= S2,b, f2(ŝ2) = Û2,b, ∃û1 ∈ U1, û1 6= U1,b−1,

(

S1,b, ŝ2, V̂1(û1),

V2(U2,b−1), X̂1(S1,b, û1), X̂2(ŝ2, U2,b−1), X̂3(û1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(11)
2,b ,

{

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b, ∃û1 ∈ U1, û1 6= U1,b−1, ∃û2 ∈ U2, û2 6= U2,b−1,

(

ŝ1,S2,b, V̂1(û1), V̂2(û2), X̂1(ŝ1, û1), X̂2(S2,b, û2), X̂3(û1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(12)
2,b ,

{

∃ŝ2 ∈ Sn
2 , ŝ2 6= S2,b, f2(ŝ2) = Û2,b, ∃û1 ∈ U1, û1 6= U1,b−1, ∃û2 ∈ U2, û2 6= U2,b−1,

(

S1,b, ŝ2, V̂1(û1), V̂2(û2), X̂1(S1,b, û1), X̂2(ŝ2, û2), X̂3(û1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(13)
2,b ,

{

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b, ∃ŝ2 ∈ Sn

2 , ŝ2 6= S2,b, f2(ŝ2) = Û2,b, ∃û1 ∈ U1, û1 6= U1,b−1,

(

ŝ1, ŝ2, V̂1(û1),V2(U2,b−1), X̂1(ŝ1, û1), X̂2(ŝ2, U2,b−1), X̂3(û1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(14)
2,b ,

{

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b, ∃ŝ2 ∈ Sn

2 , ŝ2 6= S2,b, f2(ŝ2) = Û2,b, ∃û2 ∈ U2, û2 6= U2,b−1,

(

ŝ1, ŝ2,V1(U1,b−1), V̂2(û2), X̂1(ŝ1, U1,b−1), X̂2(ŝ2, û2), X̂3(U1,b−1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

E
(15)
2,b ,

{

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b, ∃ŝ2 ∈ Sn

2 , ŝ2 6= S2,b, f2(ŝ2) = Û2,b,

∃û1 ∈ U1, û1 6= U1,b−1, ∃û2 ∈ U2, û2 6= U2,b−1,

(

ŝ1, ŝ2, V̂1(û1), V̂2(û2), X̂1(ŝ1, û1), X̂2(ŝ2, û2), X̂3(û1, û2),Wb,Yb

)

∈ A∗(n)
ǫ

}

.

Following the same arguments as in the error probability analysis detailed in [9, Appendix B, Eqns. (B.37)–

(B.45)], we have that the probabilityPr
(

E
(m)
2,b

∣

∣Ec
1,b ∩ Fc

b+1

)

can be made arbitrarily small form = 1, 2, 3, by

increasing the block lengthn, if the following conditions are satisfied correspondingly:

R1 < I(X1, X3;Y |S1, V2, X2)− 2ǫ2 (A.4a)

R2 < I(X2, X3;Y |S2, V1, X1)− 2ǫ2 (A.4b)

R1 +R2 < I(X1, X2, X3;Y |S1, S2)− 2ǫ2. (A.4c)

The bounds forPr
(

E
(m)
2,b

∣

∣Ec
1,b ∩ Fc

b+1

)

, 4 ≤ m ≤ 15, follow similar arguments. We demonstrate the technique

for m = 7. We begin by writing:
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Pr
(

E
(7)
2,b |E

c
1,b ∩ Fc

b+1

)

= Pr
(

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = Û1,b, ∃û1 ∈ U1, û1 6= U1,b−1,

(

ŝ1,S2,b, V̂1(û1),V2(U2,b−1),

X̂1(ŝ1, û1),X2(S2,b, U2,b−1), X̂3(û1, U2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

∣

∣

∣Ec
1,b ∩ Fc

b+1

)

=
∑

û1,b∈U1,u1,b−1∈U1,u2,b−1∈U2

pU1(û1,b)pU1U2(u1,b−1, u2,b−1)×

Pr
(

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = û1,b, ∃û1 ∈ U1, û1 6= u1,b−1,

(

ŝ1,S2,b, V̂1(û1),V2(u2,b−1),

X̂1(ŝ1, û1),X2(S2,b, u2,b−1), X̂3(û1, u2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

∣

∣

∣Ec
1,b ∩ Fc

b+1

)

.

We now bound:

Pr
(

∃ŝ1 ∈ Sn
1 , ŝ1 6= S1,b, f1(ŝ1) = û1,b, ∃û1 ∈ U1, û1 6= u1,b−1,

(

ŝ1,S2,b, V̂1(û1),V2(u2,b−1),

X̂1(ŝ1, û1),X2(S2,b, u2,b−1), X̂3(û1, u2,b−1),Wb,Yb

)

∈ A∗(n)
ǫ

∣

∣

∣Ec
1,b ∩ Fc

b+1

)

(a)
=

∑

(

s1,b,s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),wb,yb

)

∈A∗(n)
ǫ

p
(

s1,b, s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb

)

×

∑

û1∈U1,
û1 6=u1,b−1

∑

ŝ1∈A∗(n)
ǫ

(

S1

∣

∣

s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),wb,yb

)

,

ŝ1 6=s1,b

Pr
(

f1(ŝ1) = û1,b,
(

ŝ1, V̂1(û1), X̂1(ŝ1, û1), X̂3(û1, u2,b−1)
)

∈

A∗(n)
ǫ

(

S1, V1, X1, X3

∣

∣s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb

)

)

(b)
=

∑

(

s1,b,s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),wb,yb

)

∈A∗(n)
ǫ

p
(

s1,b, s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb

)

×

∑

û1∈U1,
û1 6=u1,b−1

∑

ŝ1∈A∗(n)
ǫ

(

S1

∣

∣

s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),wb,yb

)

,

ŝ1 6=s1,b

2−nR1 Pr
(

(

V̂1(û1), X̂1(ŝ1, û1), X̂3(û1, u2,b−1)
)

∈

A∗(n)
ǫ

(

V1, X1, X3

∣

∣ŝ1, s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb

)

)

where (a) follows from the conditioning onEc
b,1 which implies that the sequences at blockb are jointly typical, and

from consistency of strong typicality [29, Theorem 6.7]: Let zb ,
(

s2,b,v2(u2,b−1), x2(s2,b, u2,b−1),wb,yb

)

. By

[29, Eqn. (6.110)], whenzb ∈ A
∗(n)
ǫ (S2, V2, X2,W, Y ), the conditionally typical setA∗(n)

ǫ (S1, V1, X1, X3|zb) is

defined as:

A∗(n)
ǫ (S1, V1, X1, X3|zb) ,

{

(ŝ1, v̂1, x̂1, x̂3) ∈ A∗(n)
ǫ (S1, V1, X1, X3) : (ŝ1, v̂1, x̂1, x̂3, zb) ∈ A∗(n)

ǫ

}

.

Next, note that due to consistency

(ŝ1, v̂1, x̂1, x̂3, zb) ∈ A∗(n)
ǫ ⇒ (ŝ1, zb) ∈ A∗(n)

ǫ ,

hence if ŝ1 /∈ A
∗(n)
ǫ (S1|zb), then (ŝ1, v̂1, x̂1, x̂3) /∈ A

∗(n)
ǫ (S1, V1, X1, X3|zb), and we therefore can restrict the

summation over̂s1 to the setA∗(n)
ǫ (S1|zb). Step (b) follows as when̂s1 ∈ A

∗(n)
ǫ

(

S1

∣

∣zb
)

, then joint typicality is

achieved when:
(

V̂1(û1), X̂1(ŝ1, û1), X̂3(û1, u2,b−1)
)

∈ A∗(n)
ǫ

(

V1, X1, X3

∣

∣ŝ1, s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb

)

.

Next, we bound
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Pr
(

(

V̂1(û1), X̂1(ŝ1, û1), X̂3(û1, u2,b−1)
)

∈ A∗(n)
ǫ

(

V1, X1, X3

∣

∣ŝ1, s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb

)

)

=
∑

(

v̂1(û1),x̂1(ŝ1,û1),x̂3(û1,u2,b−1)
)

∈

A∗(n)
ǫ

(

V1,X1,X3

∣

∣

ŝ1,s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),wb,yb

)

p
(

v̂1(û1), x̂1(ŝ1, û1), x̂3(û1, u2,b−1)
∣

∣ŝ1, s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb

)

(a)

≤ 2n
(

H(V1,X1,X3|S1,S2,V2,X2,W,Y )+ǫ0

)

2−n
(

H(V1,X1,X3|S1,V2)−ǫ1

)

,

where (a) follows from the properties of conditionally typical sequences, [29, Theorem 6.9] and [29, Theorem 6.10].

Thus, we have:

Pr
(

E
(7)
2,b

∣

∣Ec
1,b ∩ Fc

b+1

)

≤
∑

(

s1,b,s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),wb,yb

)

∈A∗(n)
ǫ

p
(

s1,b, s2,b,v2(u2,b−1),x2(s2,b, u2,b−1),wb,yb)×

∑

û1∈U1,
û1 6=u1,b−1

∑

ŝ1∈A∗(n)
ǫ

(

S1

∣

∣

s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),wb,yb

)

,

ŝ1 6=s1,b

2−nR12n
(

H(V1,X1,X3|S1,S2,V2,X2,W,Y )+ǫ0

)

2−n
(

H(V1,X1,X3|S1,V2)−ǫ1

)

= 2n
(

H(S1,V1,X1,X3|S2,V2,X2,W,Y )+2ǫ0

)

2−n
(

H(V1,X1,X3|S1,V2)−ǫ1

)

,

which implies that in order to get an arbitrarily small probability of error asn increases, it must hold that:

H(S1, V1, X1, X3|S2, V2, X2,W, Y )−H(V1, X1, X3|S1, V2) + 3ǫ0 < 0.

Note thatH(S1, V1, X1, X3|S2, V2, X2,W, Y )−H(V1, X1, X3|S1, V2) can also be written as

H(S1, V1, X1, X3|S2, V2, X2,W, Y )−H(V1, X1, X3|S1, V2)

= H(S1, V1, X1, X3|S2, V2, X2,W, Y )−H(S1, V1, X1, X3|V2) +H(S1|V2)

(a)
= H(S1)− I(S1, V1, X1, X3;S2, X2,W, Y |V2)

= H(S1)− I(S1, V1, X1, X3;S2, X2,W |V2)− I(S1, V1, X1, X3;Y |S2, V2, X2,W )

= H(S1)− I(S1;S2, X2,W |V2)− I(V1, X1, X3;S2, X2,W |S1, V2)− I(S1, V1, X1, X3;Y |S2, V2, X2,W )

(b)
= H(S1)−H(S1|V2) +H(S1|S2, V2, X2,W )− I(S1, V1, X1, X3;Y |S2, V2, X2,W )

(c)
= H(S1|S2,W )− I(X1, X3;Y |S2, V2, X2,W ),

where (a) follows form the independenceS1 and V2; (b) follows from the Markov relationship(S2, X2,W ) ↔

(S1, V2) ↔ (V1, X1, X3); and (c) follows from the Markov relationship(V2, X2) ↔ (S2,W ) ↔ S1 and from the

Markov relationship(S1, V1) ↔ (S2, V2, X1, X2, X3,W ) ↔ Y . Therefore, we conclude that as long as:

H(S1|S2,W ) < I(X1, X3;Y |S2, V2, X2,W )− 3ǫ0, (A.5)

thenPr
(

E
(7)
2,b

∣

∣Ec
1,b ∩ Fc

b+1

)

can be made arbitrarily small by takingn large enough.

Using similar arguments we can show thatPr
(

E
(m)
2,b

∣

∣Ec
1,b∩Fc

b+1

)

,m = 4, 5, 6, 8, 9..., 15, can be made arbitrarily

small by takingn large enough, if the following conditions are satisfied correspondingly:
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H(S1|S2,W ) < I(X1;Y |S2, V1, X2, X3,W ) +R1 − 3ǫ3 (A.6a)

H(S2|S1,W ) < I(X2;Y |S1, V2, X1, X3,W ) +R2 − 3ǫ3 (A.6b)

H(S1, S2|W ) < I(X1, X2;Y |V1, V2, X3,W ) +R1 +R2 − 3ǫ3, (A.6c)

H(S2|S1,W ) < I(X2, X3;Y |S1, V1, X1,W )− 3ǫ4 (A.6d)

R2 +H(S1|S2,W ) < I(X1, X2, X3;Y |S2, V1,W ) +R1 − 3ǫ5 (A.6e)

R1 +H(S2|S1,W ) < I(X1, X2, X3;Y |S1, V2,W ) +R2 − 3ǫ5 (A.6f)

R2 +H(S1|S2,W ) < I(X1, X2, X3;Y |S2,W )− 3ǫ6 (A.6g)

R1 +H(S2|S1,W ) < I(X1, X2, X3;Y |S1,W )− 3ǫ6 (A.6h)

H(S1, S2|W ) < I(X1, X2, X3;Y |V2,W ) +R2 − 3ǫ7 (A.6i)

H(S1, S2|W ) < I(X1, X2, X3;Y |V1,W ) +R1 − 3ǫ7 (A.6j)

H(S1, S2|W ) < I(X1, X2, X3;Y |W )− 3ǫ8. (A.6k)

Now, defineǫ′ = max{ǫ0, ǫ1, . . . , ǫ8}, then it follows that constraints (A.4)–(A.6) hold withǫk, k = 0, 1, . . . , 8,

replaced byǫ′. Finally, by using Fourier-Motzkin algorithm to eliminateR1 andR2 from the constraints (A.4)–(A.6),

we obtain (12d)–(12f).

APPENDIX B

PROOF OFPROPOSITION2

A. Codebook Construction and Encoding

The codebook construction and encoding are identical to Thm. 3, see Appendix A.

B. Decoding

Decoding at the relay is identical to Thm. 3, see Appendix A. Decoding at the destination is done using successive

backward decoding. Letα ∈ Wn be an i.i.d sequence such that each letterαk is selected independently according

to pW |S1,S2
(αk|a1,k, a2,k), k = 1, 2, . . . , n. The destination node waits until the end of channel blockB + 1. It

first tries to decode(u1,B, u2,B) using the received signal at channel blockB+1, yB+1, andα. Going backwards

from the last channel block to the first, the destination has the estimates(û1,b, û2,b) of (u1,b, u2,b) when decoding

at blockb. Now, for decoding at blockb the destination first recovers the bin indicesûi,b−1, i = 1, 2, corresponding

to si,b−1, based on its received signalyb and the side informationwb. This is done by looking for a unique pair

(û1, û2) ∈ U1 × U2 such that:
(

v1(û1),v2(û2),x3(û1, û2),wb,yb

)

∈ A∗(n)
ǫ . (B.1)

Denote the decoded indices by(û1,b−1, û2,b−1). Next, the destination decodes(s1,b, s2,b) by looking for a unique

pair (ŝ1, ŝ2) such that:
(

ŝ1, ŝ2,v1(û1,b−1),v2(û2,b−1),x1(ŝ1, û1,b−1),x2(ŝ2, û2,b−1),x3(û1,b−1, û2,b−1),wb,yb

)

∈ A∗(n)
ǫ , (B.2)

andf1(ŝ1) = û1,b, f2(ŝ2) = û2,b. Denote the decoded sequences with(ŝ1,b, ŝ2,b).
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C. Error Probability Analysis

Following arguments similar to those in Appendix A-D it can be shown that decoding the source sequences at

the relay can be done reliably as long as (15a)–(15c) hold, and decoding the source sequences at the destination

can be done reliably as long as (15d)–(15f) hold.

APPENDIX C

PROOF OFPROPOSITION3

A. Thm. 3 Vs. Thm. 1

First we compare (12d) and (7d). The first term on the RHS of (12d) can be written as:

I(X1, X3;Y |S2, V2, X2,W )
(a)
= I(S1;Y |S2, V2, X2,W ) + I(X1, X3;Y |S1, V2, X2)

≥ I(X1, X3;Y |S1, V2, X2), (C.1)

where (a) follows from the Markov chainsS1 ↔ (S2, V2, X1, X2, X3,W ) ↔ Y , (S2,W ) ↔ (S1, V2, X2) ↔ Y

and from the chain rule for mutual information. From the non-negativity of mutual information it follows that

the second term on the RHS of (12d),I(X1, X3;Y |S1, V2, X2) + I(X1;Y |S2, V1, X2, X3,W ) is greater than or

equal toI(X1, X3;Y |S1, V2, X2). As the LHSs of (12d) and (7d) are the same, we conclude that (12d) is less

restrictive than (7d). Using similar arguments it also follows that (12e) is less restrictive than (7e). Next, compare

(12f) and (7f):

I(X1, X2, X3;Y |W ) ≥ I(X1, X2, X3;Y |S1, S2), (C.2)

where (C.2) follows from the Markov chain(S1, S2) ↔ (X1, X2, X3,W ) ↔ Y , and from the non-negativity of

mutual information. As the LHSs of (12f) and (7f) are the same, we conclude that (12f) is less restrictive than (7f).

In conclusion: Thm. 3 is at least as good as Thm. 1.

B. Thm. 3 Vs. Prop. 2

First consider (12d) and (15d). We begin with the first term onthe RHS of (12d):

I(X1, X3;Y |S2, V2, X2,W )− I(X1;Y |S2, V1, X2, X3,W )− I(V1, X3;Y |W,V2)

(a)
= I(V1, X3;Y |S2, V2, X2,W )− I(V1, X3;Y |W,V2)

(b)
= I(V1, X3;S2, X2|V2,W, Y ) ≥ 0, (C.3)

where (a) follows from the chain rule for mutual information; and (b) follows from the Markov relationship

(S2, X2) ↔ (V2,W ) ↔ (V1, X3). Next, consider the second term on the RHS of (12d):

I(X1, X3;Y |S1, V2, X2) + I(X1;Y |S2, V1, X2, X3,W )− I(X1;Y |S2, V1, X2, X3,W )− I(V1, X3;Y |V2,W )

(a)
= I(X1;Y |S1, V2, X1, X2,W ) + I(V1, X3;Y |S1, V2, X2,W )− I(V1, X3;Y |W,V2)

(b)
= I(X1;Y |S1, V2, X1, X2,W ) + I(V1, X3;S1, X2|V2,W, Y ) ≥ 0, (C.4)

where (a) follows from the chain rule for mutual information; and (b) follows from the Markov relationship

(S1, X2) ↔ (V2,W ) ↔ (V1, X3). As the LHS of (12d) and (15d) is the same, we conclude that (12d) is less

restrictive than (15d). Using similar arguments it followsthat (12e) is less restrictive than (15e). For the expressions

involving H(S1, S2|W ), note that the RHS of (12f) equals to the RHS of (15f). Therefore, we conclude that Thm. 3

is at least as good as Prop. 2.
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APPENDIX D

PROOF OFPROPOSITION4

It is enough to show that if at least one of the conditions in (7) holds with opposite strict inequality, then

reliable transmission is not possible via the scheme of Thm.1. The same statement holds for (9) and Thm. 2.

Furthermore, note that for the deterministic PSOMARC specified in Table I, and for the pair of correlated sources

specified in Table II, reliable transmission to the destination requires assistance from the relay. To see this note that

H(S1, S2) = log2 3, while |YS | = 2, which implies that the sources cannot be decoded at the destination without

the help of the relay. In Appendix D-A we show that when the scheme of Thm. 1 is used, if the sources can be

decoded at the relay then theycannotbe decoded at the destination, i.e., condition (7f) holds with strict inequality.

In Appendix D-B we show that when the scheme of Thm. 2 is used, then the sources cannot be decoded at the

relay, i.e., condition (9c) holds with strict inequality.

A. Transmission Using the Scheme of Theorem 1

We begin with specializing the conditions of Thm. 1 in (7a)–(7f) to the PSOMARC by lettingW3 = W = φ

and I(X3;YR) = C3. From the orthogonality of the relay-destination link it follows that the scheme of Thm. 1

is optimized by lettingV1 = V2 = φ. This fact and the resulting sufficient conditions are stated in the following

proposition:

PropositionD.1. The sufficient conditions of Thm. 1 in (7a)–(7f), specialized to the PSOMARC, are optimized by

letting V1 = V2 = φ. The resulting conditions are:

H(S1|S2) < min{I(X1;Y3|S2, X2), I(X1;YS |S1, X2) + C3} (D.1a)

H(S2|S1) < min{I(X2;Y3|S1, X1), I(X2;YS |S2, X1) + C3} (D.1b)

H(S1, S2) < min{I(X1, X2;Y3), I(X1, X2;YS |S1, S2) + C3}, (D.1c)

subject to a joint distribution that factorizes as

p(s1, s2)p(x1|s1)p(x2|s2)p(y3, yS |x1, x2). (D.2)

Proof: We begin with the constraints due to decoding at the relay given by (7a)–(7c). For the RHS of condition

(7a) (withW3 = φ) we write:

I(X1;Y3|S2, V1, X2, X3)
(a)
= H(Y3|S2, V1, X2, X3)−H(Y3|S2, X1, X2)

(b)

≤ H(Y3|S2, X2)−H(Y3|S2, X1, X2)

= I(X1;Y3|S2, X2), (D.3a)

where (a) follows from the definition of the PSOMARC which implies that the Markov chain(V1, X3) ↔

(S2, X1, X2) ↔ Y3 holds; and (b) follows from the fact the conditioning reduces entropy. Similarly, for the RHS

of conditions (7b)–(7c) we have:

I(X2;Y3|S1, V2, X1, X3) ≤ I(X2;Y3|S1, X1) (D.3b)

I(X1, X2;Y3|V1, V2, X3) ≤ I(X1, X2;Y3). (D.3c)
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Next, consider the constraints due to decoding at the destination given by (7d)–(7f), and recall that for the

PSOMARC the channel output at the destination,Y , is replaced by the pair of channel outputs(YR, YS). For the

RHS of (7d) we write:

I(X1, X3;YR, YS |S1, V2, X2)

= I(X1;YR, YS |S1, V2, X2) + I(X3;YR|S1, V2, X1, X2) + I(X3;YS |S1, V2, X1, X2, YR)

(a)
= I(X1;YS |S1, V2, X2) + I(X1;YR|S1, V2, X2, YS) + I(X3;YR|S1, V2, X1, X2)

= I(X1;YS |S1, V2, X2) +H(YR|S1, V2, X2, YS)−H(YR|S1, V2, X1, X2, YS)

+H(YR|S1, V2, X1, X2)−H(YR|S1, V2, X1, X2, X3)

(b)
= I(X1;YS |S1, V2, X2) +H(YR|S1, V2, X2, YS)−H(YR|X3)

(c)

≤ I(X1;YS |S1, X2) + I(X3;YR), (D.4a)

where (a) follows from the fact thatYS is uniquely determined byX1 and X2, and therefore it follows that

I(X3;YS |S1, V2, X1, X2, YR) = 0; (b) follows from the Markov chainYS ↔ (S1, V2, X1, X2) ↔ YR (which di-

rectly follows from the definition of the conditional distribution function of the SOMARC:p(yR, yS, y3|x1, x2, x3) =

p(yR|x3)p(yS , y3|x1, x2)), and from the Markov chain(S1, V2, X1, X2) ↔ X3 ↔ YR; and (c) follows from the

arguments leading to (D.3a) and from the fact that conditioning reduces entropy. Similarly, for the RHS of conditions

(7e)–(7f) we have:

I(X2, X3;YR, YS |S2, V1, X1) ≤ I(X2;YS |S2, X1) + I(X3;YR) (D.4b)

I(X1, X2, X3;YR, YS |S1, S2) ≤ I(X1, X2;YS |S1, S2) + I(X3;YR). (D.4c)

Finally, substitutingI(X3;YR) = C3 in (D.4) and combining with (D.3), we obtain the RHSs of conditions (D.1).

Note that conditions (D.1) are subject to the chain:

p(s1, s2, v1, v2, x1, x2, y3, ys) = p(s1, s2)p(v1)p(x1|s1, v1)p(v2)p(x2|s2, v2)p(y3, yS |x1, x2).

Furthermore, as (D.1) is independent of(V1, V2) then the resulting chain is:
∑

(v1,v2)∈V1×V2

p(s1, s2, v1, v2, x1, x2, y3, ys)=p(s1, s2)p(x1|s1)p(x2|s2)p(y3, yS |x1, x2). (D.5)

Lastly, note that the upper bounds (D.3)–(D.4), subject to the chain (D.5), are obtained by lettingV1 = V2 = φ in

(7) and (8). Thus,V1 = V2 = φ maximizes the sufficient conditions of Thm. 1.

Next, note that the LHS of condition (D.1c), evaluated for the sources defined in Table II, equalslog2 3 bits.

Therefore, for successfully transmittingS1 andS2 we must have that the RHS of (D.1c) is greater than (or equals

to) log2 3. Now, consider the RHS of condition (D.1c) for these sourcesand the PSOMARC defined in Table I:

finding the maximum ofI(X1, X2;Y3) over all p(x1|s1)p(x2|s2) we have:

max
p(x1|s1)p(x2|s2)

I(X1, X2;Y3) = max
p(x1|s1)p(x2|s2)

H(Y3), (D.6)

which follows as the channel from(X1, X2) to Y3 is deterministic. As|Y3| = 3, it follows that max
p(x1|s1)p(x2|s2)

H(Y3) =

log2 3 if and only if Pr{Y3 = j} = 1/3, j = 0, 1, 2. This requires thatPr{(X1, X2) = (0, 0)} = Pr{(X1, X2) =

(1, 1)} = 1/3 andPr{((X1, X2) = (0, 1)) ∪ ((X1, X2) = (1, 0))} = 1/3. Since the sources distribution is given,
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Pr{(X1, X2) = (i, j)} depends only onp(x1|s1)p(x2|s2), which consists of four unknowns. This corresponds to an

algebraic equations system with three equations, four unknowns, and the constraint that all the variables are in the

range[0, 1]. The two possible solutions of this system, solved usingMathematica
16, are deterministic mappings

from si to xi.17 The expressionI(X1, X2;YS |S1, S2)+C3, evaluated using each of these conditional distributions,

equals1 bit. Therefore, the RHS of condition (D.1c), when evaluatedusing these conditional distributions, is strictly

smaller thanlog2 3. This implies that for these sources and PSOMARC, condition(D.1c) holds with opposite strict

inequality, and we conclude that reliable transmission viathe scheme of Thm. 1 is impossible.

B. Transmission Using the Scheme of Theorem 2

Specializing the conditions of Thm. 2 in (9a)–(9f) to the PSOMARC by lettingW3 = W = φ andI(X3;YR) =

C3, results in the following sufficient conditions:

H(S1|S2) < min{I(X1;Y3|S1, X2), I(X1;YS |S2, X2) + C3} (D.7a)

H(S2|S1) < min{I(X2;Y3|S2, X1), I(X2;YS |S1, X1) + C3} (D.7b)

H(S1, S2) < min{I(X1, X2;Y3|S1, S2), I(X1, X2;YS) + C3}, (D.7c)

subject to the input distribution (D.2).

Consider maximizing the mutual information expressionI(X1, X2;Y3|S1, S2) on the RHS of condition (D.7c) for

the considered sources and PSOMARC, over allp(x1|s1)p(x2|s2):

max
p(x1|s1)p(x2|s2)

I(X1, X2;Y3|S1, S2)

(a)
= max

p(x1|s1)p(x2|s2)
H(Y3|S1, S2)

(b)
= max

p(x1|s1)p(x2|s2)

∑

(s̃1,s̃2)∈S1×S2,
p(s̃1,s̃2) 6=0

p(s̃1, s̃2) ·H
(

Y3|(S1, S2) = (s̃1, s̃2)
)

(c)

≤
1

6
·

∑

(s̃1,s̃2)∈S1×S2,
p(s̃1,s̃2) 6=0

max
p(x1|s̃1)p(x2|s̃2)







−
∑

y3∈Y3

p(y3|s̃1, s̃2) · log2 p(y3|s̃1, s̃2)







=
1

6
·

∑

(s̃1,s̃2)∈S1×S2,
p(s̃1,s̃2) 6=0

max
p(x1|s̃1)p(x2|s̃2)







−
∑

y3∈Y3

∑

(x1,x2)∈X1×X2

p(y3, x1, x2|s̃1, s̃2) · log2





∑

(x1,x2)∈X1×X2

p(y3, x1, x2|s̃1, s̃2)











16Let pi,j , Pr{Xi = j|Si = 0}, i, j = 0, 1. The following algebraic equations system is solved:

Solve[p00 · p10 + p00 · p11 + p01 · p11 == 1&&(1− p00) · (1 − p10) + (1− p00) · (1 − p11) + (1 − p01) · (1− p11) == 1&&

p00 · (1 − p10) + p00 · (1− p11) + p01 · (1 − p11) + (1 − p00) · p10 + (1− p00) · p11 + (1− p01) · p11 == 1&&

0 <= p00 <= 1&&0 <= p01 <= 1&&0 <= p10 <= 1&&0 <= p11 <= 1, {p00, p01, p10, p11}],

to obtain{{p00 = 0, p01 = 1, p10 = 0, p11 = 1}, {p00 = 1, p01 = 0, p10 = 1, p11 = 0}}.

17This is also validated via an exhaustive search.
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(d)
=

1

6
·

∑

(s̃1,s̃2)∈S1×S2,
p(s̃1,s̃2) 6=0

max
p(x1|s̃1)p(x2|s̃2)







−
∑

y3∈Y3

∑

(x1,x2)∈X1×X2

p(x1|s̃1)p(x2|s̃2)p(y3|x1, x2) · log2





∑

(x1,x2)∈X1×X2

p(x1|s̃1)p(x2|s̃2)p(y3|x1, x2)











(e)
=

1

6
·
∑

(s̃1,s̃2)∈S1×S2,
p(s̃1,s̃2) 6=0

max
p(x1)p(x2)







−
∑

y3∈Y3

∑

(x1,x2)∈X1×X2

p(x1)p(x2)p(y3|x1, x2) · log2





∑

(x1,x2)∈X1×X2

p(x1)p(x2)p(y3|x1, x2)











= max
p(x1)p(x2)

H(Y3)

(f)
= 1.5, (D.8)

where (a) follows from the fact thatY3 is a deterministic function of(X1, X2); (b) follows from the definition

of conditional entropy; (c) follows from the joint distribution of the sources in Table II and the fact that the

maximum of a sum is less than the sum of the maximum of the summands; (d) follows from the Markov chain

(S1, S2) − (X1, X2) − Y3; (e) follows from the fact that sincẽs1 and s̃2 appear only in the conditioning of the

conditional distributionsp(x1|s̃1), p(x2|s̃2), the maximizingp(x1|s̃1)p(x2|s̃2) is the same for any pair(s̃1, s̃2).

Thus, the maximizingp(x1|s̃1)p(x2|s̃2) is independent of the value of(s̃1, s̃2); finally, (f) follows from [4].

Recall thatH(S1, S2) = log2 3 bits. Thus,H(S1, S2) > maxp(x1|s1)p(x2|s2) I(X1, X2;Y3|S1, S2), and (D.7c)

holds with strict opposite inequality. Therefore we conclude that reliable transmission via the scheme of Thm. 2 is

impossible. This concludes the proof of Prop. 4.

APPENDIX E

PROOF OFPROPOSITION5

Here, instead of specializing the conditions of Thm. 3 to thePSOAMRC, we analyze the decoding rules of

Thm. 3 given in (A.1)–(A.2) for a specificp(xi|si), i = 1, 2. Let p(xi|si), i = 1, 2, be the deterministic distribution

p(xi|si) = δ(xi − si), whereδ(x) is the Kronecker Delta function, and setV1 = V2 = φ. Hence, there is no

superposition encoding at the sources, and the cooperationbetween the sources and the relay is based only on the

codeword transmitted by the relay.

A. Encoding at the Relay

Let Q , {1, 2, . . . , 2n}, and letf3 : (s1, s2) 7→ Q, be the encoding function at the relay. At blockb = 1, the relay

transmits the codeword1. Assume that at blockb, b = 2, 3, . . . , B,B+1, the relay has the estimates(s̃1,b−1, s̃2,b−1)

of (s1,b−1, s2,b−1). Then, at timeb, the relay transmits the channel codewordqb−1 = f3(s̃1,b−1, s̃2,b−1), qb−1 ∈ Q.

B. Decoding at the Relay

1) Decoding rule:For the mapping defined in Table I and the specifiedp(xi|si), the relay decoding rule (A.1)

is specialized to the following decoding rule:the relay decodes(s1,b, s2,b) by looking for a unique pair(s̃1, s̃2) ∈

Sn
1 × Sn

2 such that
(

s̃1, s̃2,y3,b

)

∈ A
∗(n)
ǫ . Denote the decoded sequences by(s̃1,b, s̃2,b).
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2) Error probability analysis: Let Er ,

{(

S̃1,b, S̃2,b

)

6= (S1,b,S2,b)
}

. The average probability of error for

decoding at the relay at blockb, P̄ (n)
r,b , is defined as:

P̄
(n)
r,b ,

∑

(s1,b,s2,b)∈Sn
1 ×Sn

2

p(s1,b, s2,b) Pr
(

Er|s1,b, s2,b

)

≤
∑

(s1,b,s2,b)/∈A
∗(n)
ǫ (S1,S2)

p(s1,b, s2,b) +
∑

(s1,b,s2,b)∈A
∗(n)
ǫ (S1,S2)

p(s1,b, s2,b) Pr
(

Er|(s1,b, s2,b) ∈ A∗(n)
ǫ

)

. (E.1)

From [29, Thm. 6.9] the first sum in (E.1) can be bounded byǫ. Next, by the union bound we write:

Pr
(

Er|(s1,b, s2,b) ∈ A∗(n)
ǫ

)

≤ Pr
(

(

s1,b, s2,b,Y3,b

)

/∈ A∗(n)
ǫ |(s1,b, s2,b) ∈ A∗(n)

ǫ

)

+ Pr
(

∃(s̃1, s̃2) 6= (s1,b, s2,b) : (s̃1, s̃2,Y3,b

)

∈ A∗(n)
ǫ |(s1,b, s2,b) ∈ A∗(n)

ǫ

)

. (E.2)

For the specifiedp(xi|si), i = 1, 2, and the channel mapping defined in Table I,Y3 is a deterministic function of

the sourcesS1 andS2. Moreover, there is one-to-one mapping between the source pairs (S1, S2) andY3. Hence,

for each possible source pair(S1, S2) there is a unique value ofY3, and we conclude that:

Pr
(

(

s1,b, s2,b,Y3,b

)

/∈ A∗(n)
ǫ |(s1,b, s2,b) ∈ A∗(n)

ǫ

)

= 0. (E.3)

From the one-to-one mapping between the source pairs(S1, S2) andY3, and from the definition of strong typicality,

[29, Ch. 6.1], it follows that:

Pr
(

∃(s̃1, s̃2) 6= (s1,b, s2,b) : (s̃1, s̃2,Y3,b

)

∈ A∗(n)
ǫ |(s1,b, s2,b) ∈ A∗(n)

ǫ

)

= 0. (E.4)

Combining (E.2)–(E.4) yields̄P (n)
r,b ≤ ǫ for sufficiently largen. We conclude that the sources of Table II can be

reliably transmitted over the channel to the relay.

C. Decoding at the Destination

1) Decoding rule:Recall thatqb is available at the destination assuming the relay correctly decoded the source

sequences. The destination decoding rule of Thm. 3, see (A.2), is specialized to the following decoding rule:18 the

destination decodes(s1,b, s2,b), by looking for a unique pair(ŝ1, ŝ2) ∈ Sn
1 × Sn

2 such that
(

ŝ1, ŝ2,yS,b

)

∈ A
∗(n)
ǫ and

f3(ŝ1, ŝ2) = qb. Denote the decoded sequences by(ŝ1,b, ŝ2,b).

2) Error probability analysis: Let Ed ,

{

(

Ŝ1,b, Ŝ2,b

)

6= (S1,b,S2,b)
}

. Following the same arguments that led

to (E.1), the average probability of decoding error at the destination at blockb, P̄ (n)
d,b can be upper bounded as:

P̄
(n)
d,b ≤ ǫ+

∑

(s1,b,s2,b)∈A
∗(n)
ǫ

p(s1,b, s2,b) Pr
(

Ed
∣

∣(s1,b, s2,b) ∈ A∗(n)
ǫ

)

. (E.5)

Using the union boundPr
(

Ed
∣

∣(s1,b, s2,b) ∈ A
∗(n)
ǫ

)

can be upper bounded by:

Pr
(

(

s1,b, s2,b,YS,b

)

/∈ A∗(n)
ǫ

∣

∣(s1,b, s2,b) ∈ A∗(n)
ǫ

)

+

Pr
(

∃(ŝ1, ŝ2) 6= (s1,b, s2,b) :
{

(ŝ1, ŝ2,YS,b

)

∈ A∗(n)
ǫ

}

∩
{

f3(ŝ1, ŝ2) = qb
}∣

∣(s1,b, s2,b) ∈ A∗(n)
ǫ

)

. (E.6)

Sincexi = si, i = 1, 2, andYS is a deterministic function of(X1, X2) then as(s1,b, s2,b) ∈ A
∗(n)
ǫ it follows that

(s1,b, s2,b,YS,b) ∈ A
∗(n)
ǫ , thus

Pr
(

(

s1,b, s2,b,YS,b

)

/∈ A∗(n)
ǫ

∣

∣((s1,b, s2,b) ∈ A∗(n)
ǫ

)

= 0. (E.7)

18This follows from the fact that the relay’s information is transmitted via an orthogonal link.
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The channel to the destination does not provide a one-to-onemapping between the pair(S1, S2) andYS . Let θ(yS)

denote the inverse mapping from the channel outputYS to the sources, e.g.,θ(0) = {(0, 0), (0, 1)}. From [29, Def.

6.6] it follows that if
(

s1, s2,YS

)

∈ A
∗(n)
ǫ then:

∀yS,k : (s1,k, s2,k) ∈ θ(yS,k), k = 1, 2, . . . , n. (E.8)

Furthermore,∀yS ∈ YS : ‖θ(yS)‖ = 2. Therefore, by mapping the two elements ofθ(yS) into different symbols

transmitted from the relay we can guarantee that the condition f3(ŝ1, ŝ2) = qb holds only for the transmitted source

sequences.19 Hence, we conclude that the combination of the codeword transmitted by the relay andYS uniquely

identifies the transmitted source pair. Thus,

Pr
(

∃(ŝ1, ŝ2) 6= (s1,b, s2,b) :
{

(ŝ1, ŝ2,YS,b

)

∈ A∗(n)
ǫ

}

∩
{

f3(ŝ1, ŝ2) = qb
}

∣

∣

∣(s1,b, s2,b) ∈ A∗(n)
ǫ

)

= 0. (E.9)

Combining (E.5)–(E.9) yields̄P (n)
d,b ≤ ǫ for n large enough. We conclude that the sources of Table II can be reliably

transmitted over the channel to the destination.

APPENDIX F

PROOFS OFTHEOREM 4 AND PROPOSITION6
A. Proof of Thm. 4

Assume a sequence of encodersf
(n)
i , i = 1, 2, 3, and decodersg(n) is specified such thatP (n)

e → 0 asn → ∞.

Fano’s inequality [29, Ch. 2.8], in the context of the current scenario, states that:

H(Sn
1 , S

n
2 |Ŝ

n
1 , Ŝ

n
2 ) ≤ 1 + nP (n)

e log2 |S1 × S2| , nγ(P (n)
e ), (F.1)

whereγ(x) is a non-negative function that approaches1
n asx → 0. We also obtain:

H(Sn
1 , S

n
2 |Ŝ

n
1 , Ŝ

n
2 )

(a)

≥ H(Sn
1 , S

n
2 |W

n, Y n)
(b)

≥ H(Sn
1 |S

n
2 ,W

n, Y n), (F.2)

where (a) follows from the fact that conditioning reduces entropy, and from the fact that(Ŝn
1 , Ŝ

n
2 ) is a deterministic

function of(Y n,Wn); (b) follows from non-negativity of the entropy function for discrete sources. Constraint (22a)

is a consequence of the following chain of inequalities:
n
∑

k=1

I(X1,k, X3,k;Yk|S2,k, X2,k,Wk)

(a)
=

n
∑

k=1

[

H(Yk|S2,k, X2,k,Wk)−H
(

Yk|S
n
1 , S

n
2 , X

k
1,1, X

k
2,1, X

k
3,1,W

n,Wn
3,1, Y

k−1, Y k−1
3,1

)

]

(b)

≥

n
∑

k=1

[

H(Yk|S
n
2 , X2,k,W

n, Y k−1)−H(Yk|S
n
1 , S

n
2 ,W

n,Wn
3,1, Y

k−1)
]

(c)
= I(Sn

1 ,W
n
3,1;Y

n|Sn
2 ,W

n)

(d)

≥ H(Sn
1 |S

n
2 ,W

n)−H(Sn
1 |S

n
2 ,W

n, Y n)

(e)

≥ nH(S1|S2,W )− nγ(P (n)
e ), (F.3)

where (a) follows from the memoryless channel assumption (see (1)) and the causal Markov relation(Sn
1 , S

n
2 ,W

n,

Wn
3,1) ↔ (Xk

1,1, X
k
2,1, X

k
3,1, Y

k−1, Y k−1
3,1 ) ↔ Yk (see [30]); (b) follows from the fact that conditioning reduces

19From the fact that∀y ∈ Y : ‖θ(y)‖ = 2 it follows that resolving the ambiguity inθ(y) requires 1 bit per source pair, and therefore, this

information can be transmitted from the relay via the relay-destination link with capacityC3 = 1 bit.
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entropy; (c) follows from the fact thatX2,k is a deterministic function ofSn
2 ; (d) follows from the non-negativity

of the mutual information; and (e) follows from the memoryless sources and side information assumption and from

(F.1)–(F.2).

Following arguments similar to those that led to (F.3) we obtain:

H(S2|S1,W ) ≤
1

n

n
∑

k=1

I(X2,k, X3,k;Yk|S1,k, X1,k,Wk) + γ(P (n)
e ) (F.4a)

H(S1, S2|W ) ≤
1

n

n
∑

k=1

I(X1,k, X2,k, X3,k;Yk|Wk) + γ(P (n)
e ). (F.4b)

Note that the following three expressions,I(X1,k, X3,k;Yk|S2,k, X2,k,Wk), I(X2,k, X3,k;Yk|S1,k, X1,k,Wk), and

I(X1,k, X2,k, X3,k;Yk|Wk), depend on the marginal conditional distribution:

p(x1,k, x2,k, x3,k|s1,k, s2,k) = p(x1,k, x2,k|s1,k, s2,k)p(x3,k|s1,k, s2,k, x1,k, x2,k),

and onp(s1,k, s2,k, wk) and p(yk|x1,k, x2,k, x2,k). Moreover, note thatX1,k is a function ofSn
1 while X2,k is a

function ofSn
2 , and therefore the Markov chain in (19) holds. Thus, it follows that:

p(x1,k, x2,k|s1,k, s2,k) ∈ BX1X2|S1S2
⊆ B′

X1X2|S1S2
. (F.5)

Next, we introduce the time-sharing random variableQ uniformly distributed over{1, 2, . . . , n} and independent

of all other random variables. We can write the following:

1

n

n
∑

k=1

I(X1,k, X3,k;Yk|S2,k, X2,k,Wk) = I(X1,Q, X3,Q;YQ|S2,Q, X2,Q,WQ, Q)

= I(X1, X3;Y |S2, X2,W,Q), (F.6)

whereX1 , X1,Q, X2 , X2,Q, X3 , X3,Q, Y , YQ, S2 , S2,Q andW , WQ. Furthermore, since for all values

of q we havep(x1,q, x2,q|s1,q, s2,q, Q = k) = p(x1,k, x2,k|s1,k, s2,k) which satisfies (F.5), then we have that for

k = 1, 2, . . . , n it holds that:

p(x1,q, x2,q|s1,q, s2,q, Q = k) ∈ B′
X1X2|S1S2

. (F.7)

Finally, note that for allk, the expressions and structural constraints on the distribution chain are identical. Thus,

repeating the steps leading to (F.6) for (F.4a) and (F.4b), and taking the limitn→∞, leads to the constraints in (22).

B. Proof of Proposition 6

First, define the auxiliary RVVk , (Wn
3,1, Y

k−1
3,1 ), k = 1, 2, . . . , n. Constraint (25a) is a consequence of the

following chain of inequalities:
n
∑

k=1

I(X1,k;Yk, Y3,k|S2,k, X2,k,Wk, Vk)

(a)
=

n
∑

k=1

[

H(Yk, Y3,k|S2,k, X2,k,Wk,W
n
3,1, Y

k−1
3,1 )

−H(Yk, Y3,k|S2,k, X
k
1,1, X

k
2,1, X

k
3,1,Wk,W

n
3,1, Y

k−1, Y k−1
3,1 )

]

(b)

≥

n
∑

k=1

[

H(Yk, Y3,k|S
n
2 , X2,k, Y

k−1,Wn,Wn
3,1, Y

k−1
3,1 )

−H(Yk, Y3,k|S
n
1 , S

n
2 , X

k
1,1, X

k
2,1, X

k
3,1,W

n,Wn
3,1, Y

k−1, Y k−1
3,1 )

]
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(c)

≥

n
∑

k=1

[

H(Yk, Y3,k|S
n
2 ,W

n,Wn
3,1, Y

k−1, Y k−1
3,1 )−H(Yk, Y3,k|S

n
1 , S

n
2 ,W

n,Wn
3,1, Y

k−1, Y k−1
3,1 )

]

≥ H(Sn
1 |S

n
2 ,W

n,Wn
3,1)−H(Sn

1 |S
n
2 ,W

n,Wn
3,1, Y

n)

(d)

≥ nH(S1|S2,W,W3)− nγ(P (n)
e ), (F.8)

where (a) follows from the definition ofVk, the fact thatXk
3,1 is a deterministic function of(Wn

3,1, Y
k−1
3,1 ) and

from the memoryless channel assumption, see (1); (b) follows from the fact that conditioning reduces entropy and,

[30]; (c) follows from the fact thatX2,k is a deterministic function ofSn
2 , and from the property that conditioning

reduces entropy; (d) follows again from the fact that conditioning reduces entropy, the memoryless sources and side

information assumption, and (F.1)–(F.2).

Following arguments similar to those that led to (F.8) we canalso show that:

H(S2|S1,W,W3) ≤
1

n

n
∑

k=1

I(X2,k;Yk, Y3,k|S1,k, X1,k,Wk, Vk) + γ(P (n)
e ) (F.9a)

H(S1, S2|W,W3) ≤
1

n

n
∑

k=1

I(X1,k, X2,k;Yk, Y3,k|Wk, Vk) + γ(P (n)
e ). (F.9b)

Next, we define the time-sharing random variableQ uniformly distributed over{1, 2, . . . , n} and independent of

all other random variables. We can write the following:

1

n

n
∑

k=1

I(X1,k;Yk, Y3,k|S2,k, X2,k,Wk, Vk) = I(X1,Q;YQ, Y3,Q|S2,Q, X2,Q,WQ, VQ, Q)

= I(X1;Y, Y3|S2, X2,W, V ), (F.10)

whereX1 , X1,Q, X2 , X2,Q, Y , YQ, Y3 , Y3,Q, S2 , S2,Q, W , WQ andV , (VQ, Q). Since(X1,k, X2,k)

andX3,k are independent given(S1,k, S2,k, Vk), for v̄ = (v, k) we have:

Pr
(

X1 = x1, X2 = x2, X3 = x3|S1 = s1, S2 = s2, V = v̄
)

= Pr
(

X1 = x1, X2 = x2|S1 = s1, S2 = s2, V = v̄
)

Pr
(

X3 = x3|V = v̄
)

. (F.11)

Hence, the probability distribution is of the form given in (26). Finally, repeating the steps leading to (F.10) for

(F.9a) and (F.9b), and taking the limitn → ∞, leads to the constraints in (25).
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[5] D. Gündüz, E. Erkip, A. Goldsmith, and H. V. Poor, “Source and channel coding for correlated sources over multiuserchannels,” IEEE

Trans. Inform. Theory, vol. 55, no. 9, pp. 3927–3944, Sep. 2009.
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