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Abstract

We study the transmission of correlated sources over descnemoryless (DM) multiple-access-relay channels
(MARCS), in which both the relay and the destination haveeascto side information arbitrarily correlated with
the sources. As the optimal transmission scheme is an opmdtepn, in this work we propose a new joint source-
channel coding scheme based on a novel combination of thielaon preserving mapping (CPM) technique with
Slepian-Wolf (SW) source coding, and obtain the correspandufficient conditions. The proposed coding scheme
is based on the decode-and-forward strategy, and utili®dd €@r encoding information simultaneously to the relay
and the destination, whereas the cooperation informatimm the relay is encoded via SW source coding. It is shown
that there are cases in which the new scheme strictly oatpesfthe schemes available in the literature. This is the
first instance of a source-channel code that uses CPM forderganformation to two different nodes (relay and
destination). In addition to sufficient conditions, we meisthree different sets of single-letter necessary cimmdit
for reliable transmission of correlated sources over DM MFR The newly derived conditions are shown to be at
least as tight as the previously known necessary conditions

Index Terms

Multiple-access relay channel, joint source and channdihgp correlation preserving mapping, correlated soyrces
side information, decode-and-forward.

I. INTRODUCTION

The multiple-access relay channel (MARC) is a multiusemoek in which several sources communicate with
a single destination with the help of a relay [1]| [2]. This a@ebrepresents cooperative uplink communication in
wireless networks. In this work, we study the lossless trassion of arbitrarily correlated sources over MARCs,
in which both the relay and the destination have access ®isfdrmation correlated with the sources.

It is well known [3] that a source can be reliably transmitteer a memoryless point-to-point (PtP) channel, if

its entropy is less than the channel capacity. Converdelliei source entropy is larger than the channel capacity,
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then reliable transmission is not possible. Thereforeniemoryless PtP channels, a separate design of the source
and channel codes achieves the optimal end-to-end penficenalowever, the optimality of separate designs does
not generalize to multiuser networks [4]] [5], [6].

Since the MARC combines both the multiple access channelG@Ma&nd the relay channel models, and since
separate source-channel coding is not optimal for MAC withrelated sources [4], we conclude that separate
designs are not optimal for MARCs. Therefore, it is impotteindevelop methods for joint source-channel coding
(JSCC) for this network. In this work we derive separate sétsufficient and necessary conditions, which are not
necessarily tight. In deriving our sufficiency conditions f@ecus on cooperation schemes based on the decode-and-
forward (DF) protocol, such that the sequences of both ssuace decoded at the relay. Accordingly, transmission

to both the relay and the destination can benefit from joisigieof the source and channel codes.

A. Prior Work

The MARC has received a lot of attention in recent years, @afhg from a channel coding perspective. In
[1], Kramer et al. derived an achievable rate region for thARC with independent messages, using a coding
scheme based on DF relaying, regular encoding, successeadihg at the relay, and backward decoding at the
destination. In[[2] it was shown that for the MARC, in contrés the relay channel, DF schemes with different
decoding techniques at the destination yield differerd ragions. Specifically, backward decoding can support a
larger rate region than sliding window decoding. Anotherl#sed coding scheme, which uses offset encoding,
successive decoding at the relay and sliding window decgpalirihe destination, was presentedLin [2]. This scheme
was shown to be at least as good as sliding window decodinge®er, this scheme achieves the corner points
of the backward decoding rate region, but with a smallerydaléhile the focus of[[1] and[]2] was mainly on
achievable rate regions, outer bounds on the capacitymagidARCs were derived in_|7]. More recently, ihl[8],
Tandon and Poor derived the capacity region of two class@dARCs, which include a primitive relay assisting
the transmitters through an orthogonal finite-capacity tim the destination.

While the works [[1], [[2], [7] and[[B] considered channel aoglifor MARCS, in [9] we studied source-channel
coding for MARCs with correlated sources. [0 [6] we presdrdae explicit example in which separate source and
channel code design is suboptimal for this model. The sutmafity of separate source and channel coding for
multiuser scenario was first shown by Shannoriin [10] by a®rgig the transmission of correlated sources over
a two-way channel.

Lossless transmission of correlated sources over relagnehis with correlated side information was studied in
[11], [12], [13] and [14]. Specifically, in[[11] Gunduz arterkip proposed a DF based achievability scheme and
showed that separation is optimal for physically degraadayrchannels as well as for cooperative relay-broadcast
channels. This work was later extended to multiple relaywvogts in [12]. The relay channel with arbitrarily
correlated sources, in which one of the sources is avaitahliee transmitter while the other is known at the relay,
and the destination is interested in a lossless recongtruet both sources, was considered|inl[15],/[16] and [17].

The work [15] used block Markov irregular encoding with lggcoding (based on [18]), at both the relay and the
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destination, to characterize sufficient conditions foratae transmission using a separation-based source-ehann
code. The works[[16] and [17] used block Markov regular emgavith backward decoding, in which the relay
partially decodes the sequence transmitted from the tritesmprior to sending both its own source sequence and
the cooperation information to the destination.

As shown in [6], source-channel separation is suboptimagémeral MARCS. Therefore, optimal performance
require employing a joint source-channel code. An impdrtachnique for JSCC is the correlation preserving
mapping (CPM) technique in which the channel codewords areelated with the source sequences. CPM was
introduced in [[4] in which it was used to obtain single-letseifficiency conditions for reliable transmission of
discrete, memoryless (DM) arbitrarily correlated souroesr a MAC. CPM typically enlarges the set of feasible
input distribution, thereby enlarging the set of sourcescivican be reliably transmitted compared to separate
source and channel coding.

The CPM technique of [4] was extended to source coding widk giformation for MACs in[[1B], to broadcast
channels with correlated sources[inl[20] (with a correctimj21]), and to the transmission of correlated sources over
interference channels (ICs) in [22]. However, when the sesiare independent, the region obtained from [22] does
not specialize to the Han and Kobayashi (HK) region_of [23]ffi§ient conditions for reliable transmission, based
on the CPM technique, which specialize to the HK region wergvdd in [24]. The transmission of independent
sources over ICs with correlated receiver side informatias studied in[[25], where it was shown that separation
is optimal when each receiver has access to side informatiorelated only with its own desired source. When
each receiver has access to side information correlatgdvath the interfering transmitter’s source, [25] provided
sufficient conditions for reliable transmission based om @PM technique together with the HK superposition
encoding and partial interference cancellation.

Although CPM implements JSCC, in_[26] Dueck observed thatdhfficiency conditions derived inl[4] are not
necessary. Therefore, in this work, in addition to suffitieonditions, necessary conditions are considered as well.
Observe that the feasible joint distributions of the sosir@ed the respective channel inputs for the MAC (and for
the MARC), must satisfy a Markov relationship which reflettis fact that the channel inputs at the transmitters are
correlatedonly via the correlation of the sourcem [4], in addition to the single-letter sufficient conditis, multi-
letter necessary and sufficient conditions, which accoonttfe above constraint, were also presented. However, as
noted in [4], these conditions are basedtetter mutual information expressions, and thereby nebmatable.
The work [27] followed the lines of [4], and established resay conditions for reliable transmission of correlated
sources over DM MARCSs, which are based mietter expressions. Furthermorg, [27] showed that in soases
source-channel separation is optimal and+#Hetter expressions specialize to single-letter expoessiln contrast
to [4], in [28] Kang and Ulukus used the above constraint tavéea new set okingle-letternecessary conditions

for reliable transmission of correlated sources over a MAC.

B. Main Contributions

This work has a number of important contributions:
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1) We derive a novel JSCC achievable scheme for MARCs. Thenseluses CPM for encoding information from
the sources tdoth the relay and the destination. The relay, on the other hasek 8W source codngor
forwarding its cooperation information. Therefore, thames and the relay sewlifferenttypes of information
to the destination: the sources send source-channel codgwahile the relay sends binning information (SW
bin indices). This is in contrast to the schemes[of [6, ThmI'Hm. 2], and to[[15], in which the same type
of information is sent to the destination from the sourcewal as from the relay (either SW bin indices or
source-channel codewords). The new scheme uses the Déggtmaith successive decoding at the relay and
simultaneous backward decoding of both cooperation inétion and source sequences at the destination.
This scheme achievdabe best known results for all previously characterizpecial cases.

2) We show that, similarly to the capacity analysis for MAR@so for JSCC simultaneous backward decoding
of the cooperation information and source sequences at ¢stndtion, outperforms sequential backward
decoding at the destination. We also show that simultankacisvard decoding at the destination outperforms
the scheme derived ial[6, Thm. 1]. Additionally, we show ttietre are cases in which simultaneous backward
decoding at the destination strictly outperform the schederived in([6]. This is proved through an explicit
analysis of the error probability for a specific MARC model.

3) We derive three new sets of single-letter necessary tiondifor reliable transmission of correlated sources
over DM MARCSs. The first set of conditions is a “MAC-type” balinconsidering the cut around the sources
and the relay, while the other two sets are “broadcast-tppehds, derived using the cut around the destination
and the relay. The new sets of necessary conditions are stowa at least as tight as previously known

conditions, and in some scenarios, the new sets are sttighifer than known conditions.

The rest of this paper is organized as follows: in Secfibn ¢l imtroduce the notations and the channel model.
In Section Il we briefly review the existing schemes and givetivation for a new JSCC scheme. In Secfion IV
we present the new achievability scheme and derive it'sespoonding set of sufficiency conditions. In Secfidn V
a comparison between the existing schemes and the new siébhgmesented. Necessary conditions are presented

in Section V], and concluding remarks are provided in Sedidl]

Il. PRELIMINARIES
A. Notations

In this work, we denote random variables (RVs) with upperdatters, e.gX, Y, and their realizations with
lower case letters , e.gr, y. A discrete RVX takes values in a set. |X| is used to denote the cardinality of a
finite, discrete sef’. We usepx (x) to denote the probability mass function (p.m.f.) of a dise®eV X on X’; for
brevity we may omit the subscript when it is the uppercase version of the sample symbaWe denote vectors
with boldface letters, e.c, y, thei'th element of a vectok is denoted bye;, and we usec-g wherei < j to denote

(%4, Tit1, ., Tj—1,2;); 2/ is a short form notation fow{, and unless specified otherwise2 z". Matrices are

IThroughout this work we refer to separate source-channginga(i.e., a source code followed by a channel code) as émgagsing SW

source coding.
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denoted by doublestroke font, el§. We denote the empty set withh and the complement of the sBtby 5¢. We
use H(-) to denote the entropy of a discrete RV ahd; -) to denote the mutual information between two RVs, as
defined in[[29, Ch. 2.2]. We usd; ™ (X) to denote the set af-strongly typical sequences with respect to (w.r.t.)
the p.m.fpx(x) on X, as defined in[[29, Ch. 6.1]. When referring to a typical setmey omit the RVs from
the notation when these variables are obvious from the gbrtée useX < Y <« Z to denote a Markov chain
formed by the RVsX,Y, Z as defined in[[29, Ch. 2.1]. Finally, we usé L Y to denote thatX is statistically
independent o, 91T is used to denote the set of positive integéksis used to denote the set of real numbers

andE{-} is used to denote stochastic expectation.

B. System Model

The MARC consists of two transmitters (sources), a recegf@estination) and a relay. Transmitteobserves
the source sequenc#, for i = 1,2. The receiver is interested in a lossless reconstructidhesource sequences
observed by the two transmitters, and the objective of th&yris to help the transmitters and the receiver in
reconstructing the source sequences. The relay and thigeeeach observes its own side information, denoted by

Wi andW™, respectively, correlated with the source sequencesréiifjulepicts the MARC with side information

scenario.
wg
Relay
X3 v wr
Xp |
S’f —>» Transmitter 1 L MARC

Yn

Receiver H(S? R S'g)

Xy (Y, ys[21, 29, 23)

S% —>{ Transmitter 2

Fig. 1: The multiple-access relay channel with correlatelé a'nformation.(S”{L, S‘S) are the reconstructions at the destination.

The sources and the side information sequen€ss,,, So k, Wi, W5, }7_,, are arbitrarily correlated at each
sample index;, according to the joint distributiop(s1, s2, w, ws) defined over a finite alphab&i x Sa x W x W,
and independent across different sample indiceshis joint distribution is known at all nodes. For transsnis,

a DM MARC with inputs X; € &;,i = 1,2,3, and outputsY, Y5 over finite output alphabe¥, Vs, respectively,

is available. The MARC is causal and memoryless in the seh§&0h

k— k=1 k k .k
p(ykay?),k'y 11y3 ax11x27x318?7831wg1wn) :P(ykay3,k|$1,k7$2,k75€3,k)7 k= 1,27...,TL. (1)

Definition 1. A source-channel codéor the MARC with correlated side information consists ofotwncoding

functions at the transmitters,

FMLsr s xr i=1,2, @)
a set of causal encoding functions at the re[@&é,f}c)}gzl, such that
T3,k :féiz)(ygzlawg,l)a k= 1,2,...,7?,, (3)
and a decoding function at the destination
g YT X W ST x ST (4)
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Definition2. Let S‘f,i = 1,2, denote the reconstruction 8f',i = 1, 2, respectively, at the receiver, i.éS*{l, S*;) =

g™ (Y™, Wn). The average probability of errque("), of a source-channel code for the MARC is defined as:
P £ Pr (87, 87) # (S7,58)). (5)

Definition 3. The sourcesS; and S, can bereliably transmittedover the MARC with side information if there

exists a sequence of source-channel codes suchPfiat— 0 asn — oo.

C. The Primitive Semi-Orthogonal MARC

The DM semi-orthogonal MARC (SOMARC) is a MARC in which thdag-destination link is orthogonal to
the channels from the sources to the relay and the destinat& Y denote the signal received at the destination
due to the relay channel inpufs, andYs denote the signal received at the destination due to thsrtrssion of
X; and X,. The conditional distribution function of the SOMARC is:

P(Yr, ys, ys|o1, x2, ¥3) = p(Yr|rs)p(ys, ys|z1, x2). (6)

A special case of the SOMARC, called the primitive SOMARC QR#ARC), was considered by Tandon and
Poor in [8]. In this channel the relay-destination liflg — Y% is replaced with a finite-capacity link whose capacity
is Cs. This model is depicted in Figufd 2. Observe that in the PS®@Asetup there is no side-information at

either the relay or destination.

Relay

vy Cs

XTL I—

S{l —>» Transmitter 1 L yn y
s ‘ Gn 4

p(ys,y3|x1,x2) Receiver —>(ST, S%)

S% —> Transmitter 2

Fig. 2: Primitive semi-orthogonal multiple-access relémamrnel (PSOMARC).

D. Implementing JSCC via CPM

JSCC is implemented via CPM by generating the channel infmatdewords) statistically dependent with the
source sequences, thus, the channel codewords “presenve’ af the correlation exhibited among the sources. For
example, if two source§S, S2) are to be transmitted over a MAC with channel inp(i§;, X>), then the CPM
encoded channel codewords are generated accordm;q p(z1,%]81,%). The main benefit of the CPM technique
is enlarging the set of possible joint input distributiotisgreby improving the performance compared to separately
constructing the source code and the channel code. Forustrdtive example we refer the reader to the example
presented in[[4, pg. 649], which demonstrates the sub-@fitymof separate source-channel coding, compared to

the CPM technique, for the transmission of correlated ssiover a DM MAC.

Ill. PREVIOUS SCHEMES AND MOTIVATION FOR A NEW SCHEME

Before introducing the new coding scheme we motivate oukvayr briefly reviewing the two sets of sufficient

conditions for reliable transmission of correlated sosraeer DM MARCs derived in[]6] and ir_[9].
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A. Previously Derived Joint Source-Channel Coding ScheioreBM MARCs

In [6] two JSCC schemes for reliable transmission of coteelssources over DM MARCs were derived. The

corresponding sufficient conditions are as follows:

Theoreml. ([6, Thm. 1]) A source paifS;, S2) can be reliably transmitted over a DM MARC with relay and

receiver side information as defined in SeciionlI-B if,

H(S1]S2, W3) < I(X1;Y3]S2, V1, X2, X3, W3) (7a)
H (82|81, W3) < I1(X2; Y3|S1, Va, X1, X3, W3) (7b)
H(Sy,S2|W3) < I(X7, Xo; Y3|Vi, Vo, X3, W3) (7¢)
H(S1]S2, W) <I(X1, X3;Y|S1, V2, X2) (7d)
H(S2[S1, W) < I(Xa, X3;Y|S2, Vi, X1) (7e)
H(S1, 52|W) <I(X1, X2, X3;Y |51, 52), (77)

are satisfied for some joint distribution that factorizes as

p(Sl, S2, W3, w)p(vl)p($1 |81, Ul)P(Uz)p(IQ |82, 02)17(503 |U1, 02)p(y3, y|:c1, T2, Is)- 8)

Theorem2. ([6, Thm. 2]) A source pai(S1, S2) can be reliably transmitted over a DM MARC with relay and

receiver side information as defined in SeciionlI-B if,

H (51182, W3) <I(X1;Y3]51, Xa, X3) (9a)
H(S2|S1,W3) < I(X2;Y3]S92, X1, X3) (9b)
H(Sy, 52|W3) < I(X1, X2;Y3|51, Sa, X3) (9¢)
H(S1|S, W) < I(X1, X3: Y| S, Xa, W) (9d)
H(Sa|S1, W) < I(Xa, X3:Y|S1, X1, W) (9e)
H(S1, Sa|W) < I(X1, Xa, X3; Y|W), 9f)

are satisfied for some joint distribution that factorizes as

p(s1, s2, w3, w)p(x1|s1)p(x2|s2)p(xs|si, s2)p(ys, y|1, x2, x3). (10)

Remarkl. Thm.[d and Thm[J2 differ in both the decoding constraints dredadmissible joint distribution chains,
i.e., (8) and[(ID). The main difference between Thin. 1 and . TAns the target nodes for CPM and SW coding:
In Thm.[d, CPM is used for encoding information from the traitters to the relay and SW coding is used for
encoding information cooperatively from the transmittarsl the relay to the destination. Thus, in THrh. 1 the
cooperation between the relay and the transmitters is basedtie binning information. The RV¥; and V5 in
Thm.[ carry the bin indices of the SW source code. In ThAm. 2,&®ding is used for encoding information from
the transmitters to the relay and CPM is used for coopetgteecoding information to the destination. Thus, in

Thm.[2 the cooperation between the transmitters and thg iglbased on the sourceés and Ss.
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Recall that in[[4] it was shown that separate source and eamaling is generally suboptimal for transmitting
correlated sources over MACs. Thus, it follows that theyalacoding constraints of Thidl 1 are generally looser
compared to the relay decoding constraints of Thin. 2. Usimglas reasoning we conclude that the destination
decoding constraints of Thifll 2 are looser compared to theéndésn decoding constraints of Thim. 1 (as long as

coordination is possible, seel [9, Remark 18]).

Remark2. The work [16] considered JSCC for the relay channel, in widok of the sources is available at the
transmitter while the other is known at the relay. The awthmesented a transmission scheme similar to Thm. 2,
where CPM is utilized to transmit the sources from the tratiens to the destination while the relay applies binning
for cooperation.

Remark3. In the multiple-access broadcast relay channel (MABRC) {8 relay also wants to reconstruct the
sources in a lossless fashion. This channel model is depinté&igure[3. As both Thni]1 and Thial 2 use the
DF protocol, the conditions of Thril 1 and Thim. 2 are also defiicconditions for reliable transmission over the

MABRC.

n
Wil

Relay H(S’?, 5'2")

X3 Yg we

X7 |
ST —>{ Transmitter 1 L, MARC yn

Receiver —>( AIL, Ag)

Xy p(y, ysl1, 2, 73)

S% —» Transmitter 2

Fig. 3: The multiple-access broadcast relay channel withetated side information(S‘ﬁS*;L) are the reconstructions at the
relay, and(S‘{L, S‘S) are the reconstructions at the destination.

B. The Motivation for a New JSCC Scheme

Motivating observation 1: As stated in Remarlkl 1, the achievability schemes of Tm. 1Tdmd.[2 use different
combinations of the CPM technique with a SW source code paitth a channel code. The achievability scheme
of Thm.[1 uses SW source coding for cooperatively encodifgrimation from the transmitters and the relay to
the destination while CPM is used for encoding informaticonf the transmitters to the relay. In Thid. 2, CPM is
used for cooperatively encoding information from the traitters and the relay to the destination while SW source
coding is used for encoding information from the transmitt® the relay. Since CPM can generally support the
transmission of sources with higher entropies compare@parsite source-channel coding, a natural question that
arises iswhether the CPM technique can be used for simultaneouslydémg information to both the relay and
the destination

Motivating observation 2: It was observed in_[18] that for the relay channel, when dewpdt the relay does

not constrain the rate, DF as implemented_in/ [18, Thm. 1] gacdy achieving . It follows that cooperation based

October 3, 2018 DRAFT



9

on binning is optimal in this ca&.‘l’his raises the questiowhether it is possible to construct a scheme that
combines CPM from the sources to the destination with bopfiom the relay to the destination, and how does
such a scheme compare with THh. 1 and THm. 2

Motivating observation 3: The cooperative relay-broadcast channel (CRBC) model ipegial case of the
MABRC obtained by settings, = X» =¢, such that there is a single transmitter|[11]. Figure 4 depite CRBC

model.
wg'

)

Relay —»5’{‘

X3 Ys we

Relay Channel

T —> Transmitter Receiver —>ST

(Y, ys|z1, 23)

Fig. 4: The cooperative relay broadcast chansél.and S are the reconstructions of the source sequesée,at the relay

and the destination, respectively.

For this channel model [11] presented the following neagsaad sufficient conditions:

Proposition1. ([11, Thm. 3.1]) A sourceS; can be reliably transmitted over a DM CRBC with relay and nesre
side information if:
H(S1|W3) <I(X1;Y3|X5) (11a)
H(S1|W) <I(X1,X3;Y), (11b)
for some input distribution(sy, w3, w)p(z1, 23). Conversely, if a sourcé&; can be reliably transmitted over the
CRBC then the conditions if_(Ila) and (11b) are satisfied witlheplaced by< for some input distribution
p(s1, w3, w)p(z1,23).

In [6l, Remark 6] it is shown that for a CRBC, the conditions ¢fnT.[1 can be specialized to the conditions
of [11, Thm. 3.1], while the conditions obtained from Thinh. 2 @yenerally more restrictive. The reason is that
when specializing Thni]2 to the case of a single transmititer,set of joint distributions of the source and relay
channel inputs which satisfy (1L0) does not exhaust the eesfiace of joint distributions, and in particular, does
not include the optimal distribution according fo [11, Th8il]. We conclude that the downside of using CPM for
encoding information to the destination, as implemented@hm.[2, is that it restricts the set of admissible joint
distributions; thereby constrains the achievable coatitim between the sources and the relay when cooperating to
send information to the destination. This leads to the domesthether it is possible to construct a scheme in which
CPM is used for encoding information to the destination,levithe constraints on the source-relay coordination
imposed by the distribution chaiffd) are relaxed or entirely removed

In the next section a new JSCC scheme is derived which gifiemafive answers to the above three questions.

2We note that in the channel coding problem for the relay chirother schemes, e.g. the regular encoding schemés lof[B2l] achieve

the DF-rate without binning, but these schemes are notttlirapplicable for this scenario, see al§o [9].
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IV. ANEW JOINT SOURCE-CHANNEL CODING SCHEME

We now present a new set of sufficient conditions for relidtdasmission of correlated sources over DM MARCs
with side information. The achievability scheme (THh. 3pa&sed on DF at the relay, and uses CPM for encoding
information to both the relay and the destination and successive decoding atethg Cooperation in the new
scheme is based dminning implemented via SW source codifige decoding method applied at the destination
in the new scheme is simultaneous backward decoding of thpetation information and the transmitted source
sequences. By combining cooperation based on binning vkl @r encoding information to the destination, the
constraints on the distribution chain imposed by the schehfhm.[2 are removed.

Note that in the schemes implemented in Thin. 1 and in THm. Zé#mee type of information is sent to the
destination from both the relay and from the sources, whil¢he new scheme implemented in THohdi®erent
typesof information are sent to the destination from the relay &odh the sources. This is illustrated in Figure
[B. It can be observed that in Thid. 1 (Figliré 5a) both the retaythe sources send bin indices to the destination,
while in Thm.[2 (Figuré Bb) both the relay and the sources sentce-channel codewords. However, this is not the

case in Thm BB (Figurebc), in which the relay sends bin irglighile the sources send source-channel codewords.

Transmitter 1 Transmitter 1 Transmitter 1

= (5.5

-7 Relay __-""  Receiver

Transmitter 2 Transmitter 2

(b) (©)

Fig. 5: Types of information sent to the destination in thieesaes of (a) Thnil1; (b) Thral 2; and (c) the new proposed scheme
of Thm.[3. Solid arrows indicate bin indices, while dashed\ws indicate source-channel codewords.

A. Sufficient Conditions for Simultaneous Backward Deapdinthe Destination

Using simultaneous backward decoding the following sugfiticonditions are obtained:

Theorem3. A source pair(S1,S2) can be reliably transmitted over a DM MARC with relay and reee side

information as defined in Sectién 1B if the conditions

H(S1|SQ,W3) < I(Xl;}/g|SQ,V1,X2,X3,W3) (123)
H(SQ|517W3) < I(XQ;}/E’)|SI7‘/21X17X37W3) (12b)
H(S1,52|W3) < I(Xl,XQ;}/g|‘/17‘/2,X37W3) (12C)

H(S1|S2, W) < min{I(Xl,X3;Y|Sg,V2,X2,W),

1(X1, X33 Y|S1, Vo, Xa) + 1(X13Y[S5, A, X, X, W) } (12d)
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H(S5|S1, W) < min {I(Xg,Xg;Y|Sl,V1,X1,W),

I(Xa, X33 Y |82, Vi, X1) + 1(Xa3 Y[S1, Va, X1, X, W) } (12€)
H(S1,5:|W) < I(X1, X2, X5; Y[W), (12f)
are satisfied for some joint distribution that factorize’s as
p(s1, 82, w3, w)p(v1)p(z1]s1, v1)p(v2)p(2|S2, v2)P(T3|V1, v2)P(Y3, Y| 71, T2, T3). (13)
Proof: The proof is given in AppendikxJA. ]

B. Discussion
Remark4. The achievability schemes of Thid. 1 and Thih. 3 require thees@int distribution (cf. equation$(8)

and [13)).
Remark5. Conditions [[I2a)£(12c) in Thrl 3 are constraints due to diegpat the relay, while conditiong (112d)—

(I2f) are decoding constraints at the destination. Not¢ tiea decoding constraints at the relay in THrh. 3 are
identical to [7R)-{4c) in Thni]1.

Remark6. Note that as Thni.]3 uses the DF scheme, the conditions of Thane Ziso sufficient conditions for

reliable transmission over the MABRC.

Remark7. In Thm.[3,V;* andVy® represent the binning information féf* and S%, respectively. Consider Thiia] 3

which uses simultaneous backward decoding: condifion)(ta2d be written as follows:

H(Sl|527W) < I(XI;Y|SQ7‘/17X21X37W)+

min {1(V1, X3;Y[S2, Vo, Xo, W), (X1, X5;Y|S1, Vo, X2) }. (14)
On the right-hand side (RHS) df {14), the mutual informatexpressionl (X1;Y|Ss, V1, Xo, X3, W) represents
the available rate for encoding information on #wurce sequencgy’, in excess of the bin index conveyed by the
sequencd/;". This is becauseS,, Vi, X3, X3 and W are known. The expressioN(V;, X3;Y|Ss, Va, X2, W)
represents the rate of binning information ¢h that can be utilized at the destination. Also the expression
I(X41, X35;Y|S1, V2, Xs), as Sy andV; are known, represents the rate for sending the bin indexeoStlurce se-
guenceS;, cooperatively from Transmitter 1 and the relay to the desitbn. The reason for the two possible binning
rates is thaf (V1, X3; Y|S2, V2, Xo, W) represents the maximal rate increase that can be achieeed the binning
information available on the current message in the badkwiacoding scheme, whil&(X;, X3;Y|S1, Va, Xa2)
represents the maximal rate for decoding the binning in&dion for the next step in the backward decoding

scheme. Therefore, decoding via simultaneous backwardditeg results in two constraints on the binning rate.

Remark8. Thm.[3 can be specialized to the MAC with correlated sourgeleting V; = Vo = X3 = W = ¢. For
this setting the condition§ (IRd)—(12f) specialize to tmewin [4, Egn. (12)] witht” as the destination. Similarly,
the MABRC, underV; = Vs = &35 = W3 = W = ¢, specializes to the compound MACI [5, Section VI], and
Thm.[3 specializes td [5, Thm. 6.1]. We conclude that Thim. pléments &CPM encoding for both the relay and
the destinationThis is in contrast to the previous results of Thin. 1 and TBm. which CPM is used for encoding

informationeither to the relayor to the destination.
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Remark9. The CRBC model with correlated relay and destination siderination can be obtained as a special
case of the MABRC model by lettings = So = ¢. The sufficient conditions for the CRBC given in]11, Thm.]3.1
can also be obtained from Thild. 3 by lettifg = X3, So = X> = Vo = ¢, and considering an input distribution
independent of the sources. This is in contrast to Thim. 2 hwkjgecializes to more restrictive conditions (see
Subsectio 1II-B). We conclude that Thinl 3 allows more flditibin the achievable coordination between the

sources and the relay compared to Thin. 2.

Remark10. Using successive backward decoding at the destinatiorotteaving sufficient conditions are obtained:
Proposition2. A source pair(Sy,.S2) can be transmitted reliably over a DM MARC with relay and reeeside

information as defined in Sectién 1I-B if,

H(S1]S2, W3) < I(X1;Y3]S2, Vi, X2, X3, W3) (15a)

H(S2|S1, W3) < I(Xo; Y3|S1, Va, X1, X3, W3) (15b)

H(S1,52|W3) < I(X1, X2; Y3|V1, Va, X3, W3) (15c)

H(S1]S2, W) < I(X1;Y|S2, Vi, Xo, X3, W) + I(V1, X3; Y |Vo, W) (15d)

H(S5|51, W) < I(X2;Y|S1, Vo, X1, X3, W) + I(Va, X3; Y |V1, W) (15e)

H(S1,82|W) < I(X1, Xo; Y |V1, Va, X3, W) + I(V1, Vo, X3; Y[W), (15f)

are satisfied for some joint distribution that factorizes as

p(s1, 52, w3, w)p(v1)p(x1|s1, v1)p(v2)p(a2|se, v2)p(ws|vr, v2)p(ys, ylo1, 2, 3). (16)

Proof: The proof is given in AppendikIB. [ ]

Remarkll. As the scheme of Thnil 3 applies simultaneous backward degadithe destination, then the source
vectors and the binning information ajgintly decoded (see Appendix_AFC). On the other hand, the scheme of
Prop.[2 applies successive backward decoding at the déstinghus, first the binning information is decoded,
and then, the source vectors are decoded (see AppEndix BiBje in the latter scheme decoding the binning
information uses only part of the available informatiore #ufficient conditions obtained for the scheme of Pop. 2

are more restrictive than those obtained for the scheme w¥. [BhThis is rigorously shown in the following section.

V. COMPARISON OF THEDIFFERENTACHIEVABILITY SCHEMES
We now present a detailed comparison of the sufficient cmmditestablished by Thri] 3, Thi. 1, Thinh. 2 and
Prop.[2. Specifically, we show the following:
« In Subsectiof V-A we show that for correlated sources ang isitbrmation the scheme of Thid. 3 outperforms
the schemes of Thm] 1 and Prgp. 2.
« In Subsectiom V-B we show that there are scenarios for whiehstheme of Thni] 3 strictly outperforms the

schemes of Thni]1l and Thim. 2.

October 3, 2018 DRAFT



13

A. Correlated Sources and Side Information

We now compare Thnil 1, Thrial 3 and Prbp. 2 for the general injstriltlitions [8), [(IB) and(16). As stated in
Remark b, the decoding constraints at the relay in THm. 3deetical to the decoding constraints at the relay in
Thm.[d and Prod.2. Therefore, in the following we comparey dhé decoding constraints at the destination. The

conclusion is summarized in the following proposition:

Proposition3. The scheme of Thnf]3 is at least as good as the schemes of Thmal. Rrap[2.
Proof: The proof is given in Appendik]C. ]

Remark12. We emphasize that Propl 3 implies that the superiority ofsitteeme of Thn13 over the scheme of
Thm.[d and the scheme of Prdg. 2 holds in general.

Proposition[B implies that for JSCC for MARCs, simultanedaackward decoding outperforms sequential
backward decoding. For the case of separate source andethmdes,[[9, Thm. 1] presented a separation-based
achievability scheme subject to the input distribution:

p(sla S2, W3, w, U1, V2, ,CC1,.I'2,.T3) = p(sla S2, W3, w)p(Ul)p((El|’U1)p(1}2)p(l’2|U2)p(l’3|1}1,Ug). (17)

In this case, we have(z;|s;, v;) = p(z;i|v;),7 = 1,2, the joint distributions in[{8) and{13) specialize to theeon

in (I7), and the sufficient conditions of Thid. 1 and Tih. 3 s&dexe to the conditions of [9, Thm. 1].

Remark13. When the source and side information sequences are indepetigat isp(s1, s2, ws, w) = p(s1)p(s2)
p(ws)p(w), the joint distributions in[(13) and(16) specializeztts1)p(s2)p(ws)p(w)p(v1)p(z1|v1)p(ve) p(za|va)
p(zs|v1,v2). In this case, the conditions of Prdg. 2 specialize to theditimms obtained for sending independent
messages over the MARC using sliding-window decoding atd#sination[[2, Section III.B], while the conditions
of Thm.[3 specialize to the conditions obtained for sendirdgpendent messages over the MARC using backward

decoding at the destinationhl[2, Section IIIB\].

B. Mixed JSCC Can Strictly Outperform the Schemes of ThmdiTam[2

Recall Remarkl4, which states that the underlying inputitistions of Thm[3 and Thnill1 are identical, while
the underlying input distribution for Thri] 2 is differentekt, we present a comparison of all three schemes for a
special case in which the two input distribution chains & same. In this example the sources can be reliably
transmitted by using the scheme of THmh. 3, while reliablegnaission is not possible via the schemes of Thim. 1
and Thm[2. Consider a PSOMARC, defined by = x> = {0,1}, Vs = {0,1,2}, Vs = {0,1}. Let C3 = 1, and
consider the deterministic channel mappidt;, Xz) — (Y3, Ys) specified in Tablél .

(X1,X2) | (0,0) | (0,1) | (1,0) | (1,1)
Y3 0 1 1 2
Yg 0 0 1 1

TABLE I: A deterministic channel mappingX:, X2) — (Y3,Ys) for the PSOMARC.

3The same observation holds when the side information is restemt. This follows since when the side information is retelent of the

sources then it cannot help in decoding the sources. Thusaweset\V = Ws = ¢.
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The sourcegSi, S2) are defined over the sef§ = S = {0, 1} with the joint distribution specified in Tablel II.

S1\S2 0 1
0 1/3 | 1/3
1 0 1/3

TABLE II: The joint distribution of (S;,S2). The entry in the;" row and m"™ column, j,m = 0,1, corresponds to
Pr((51,52) = (4,m)).

These sources can be reliably transmitted by letfing= S, and X2 = S». The probability of decoding error at
the relay is zero since there is a one-to-one mapping betéteeohannel inputs from the sources and the channel
output at the relay. The probability of decoding error at tiesstination can be made arbitrarily small by using
the fact that each channel output at the destination cavrelsponly to two possible pairs of channel inputs. This
ambiguity can be resolved using the relay-destination Vitlose capacity is 1 bit per channel use.

Next, consider the transmission via the schemes of Thm. th.[Bhand Thm[13. For transmission via the schemes

of Thm.[d and Thm[12 we have the following proposition:

Proposition4. The sources defined in Taljlé dannotbe reliably transmitted over the PSOMARC defined in Table
[ by using the schemes of Thin. 1 and THrh. 2.

Proof: First we make the following claim:

Claim 1. If an inequality sign in the conditions of Thial 1 and THrh. 2dsersedthen reliable transmission is not

possible with the corresponding schemes.

Proof sketch:The average probability of error for decoding the sourcassmitted via the scheme of Thi. 1
can belower boundedby using the properties of jointly typical sequencés, [28, 6.3]. This can be done by
following arguments similar to those used in [9, AppendiDB.but instead of upper bounding the different
guantities in the calculation of the probability of errorevapply lower bounds, see the left-hand side (LHS) of
[29, Egns. (6.106)—(6.108)]. In particular it follows thatonditions [T) hold withopposite strict inequalitye.g.,
H(51]|S2,W3) > I(X1;Y5|52, Vi, Xo, X3, W3), seel(7Bh), then reliable transmission is not possitdethe scheme
of Thm.[l These arguments also apply to THm. 2, that is, if conditi@)shold with opposite strict inequality
e.g., H(S1|S2, W3) > I(X1;Y3|51, Xo, X3) , see[(9n), then reliable transmission is not possildehe scheme of
Thm.[2

In Appendix[D we show that indeed evaluating both Thin. 1 anthTB for the example in this section, some
conditions in Thm[IL and Thnil 2 hold with opposite strict inality to what is required by the theorems. This
shows that reliable transmission of the sources is not plessia the schemes of Thial 1 and THm. 2. [ ]

In contrast to Thm]1 and Thri] 2, we have the following propasifor Thm.[3:

Proposition5. The sources defined in Tallé Il can be reliably transmitteel e PSOMARC specified in Table
[ by using the scheme of Thiil 3.

Proof: Conditions [(IR) can be specialized to the PSOMARC by letlitg= V> = W3 = W = ¢ and
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I(X3;YR) = Cs. In particular, a specialization of the conditions of THrhwaBich involve H(S1, S2), i.e. (12¢)
and [12f), gives the following condition:

H(S1,852) < min{I (X, Xo;Y3),I(X1, X2;Ys) + Cs}, (18)
where the joint distribution[{13) specializes p0s1, s2)p(x1|s1)p(z2|s2)p(ys, ys|T1, z2). Next, note that for the
sources defined in Tablel Il we havé(S;,S2) = log, 3. Moreover, ag)s| = 3,|Vs| = 2 andC3 = 1, the RHS
of (18) is upper bounded byg, 3, thus, the LHS of[(118) equals to the RHS bf](18). However, aditmn (18)
requires strict inequalitythe conditions provided in the statement of Thin. 3 do notyirtt@t reliable transmission
is possiblein the present example. Note that this case is different tharcase of Prof.]4, see Remark 14 below.
In Appendix[E we specify an explicit p.mgf(z;|s;),i = 1,2, for which we show, through an explicit calculation

of the probability of decoding error, that reliable transsin is possible via the scheme of THi. 3. ]

Remark14. The case of Profy]5 is different than the case of Frbp. 4. Ircéise of Prop]5 we have an equality
between the LHS and RI-&While for Prop[4, evaluating the conditions of Thimh. 1 and T@hwe show that the
inequality sign is reversed compared to what is requiredhieytheorems. Then, in the proof of Prgp. 4 we show
that such reversal implies that reliable transmission igassible (see Appendix]D). Since in the case of Frbp. 5 we

have an equality between the LHS and the RHS quantities, amime the situation in more detail in Appendik E.

VI. NECESSARYCONDITIONS FORRELIABLE TRANSMISSION OFCORRELATED SOURCESOVER DM MARCSs

In this section three sets of necessary conditions forbiglizansmission of correlated sources over DM MARCs
with side information are derived. These new converse te®suk based on the fact that only certain joint input
distributionsp(zy, z2) can be achieved. Observe that from Oéf. 1 it follows thatdvalhannel input distributions
must obey the Markov chain:

X1 < ST & 57 & Xo. (29)
In the following we use the technique introduced by Kang ardkus in [28] to constrain the achievable joint
input distributions to take into accourii {19). We start byie®ing some basic definitions and results frdm][28]
and [33].

A. Definitions and Known Results

Definition 4. (Maximal correlation [33, Sec. 2]) The maximal correlation between the R¥/sand Y is defined
as piy = supE{f(X)g(Y)}, where the supremum is taken ovgr: X — R,g: Y — R, StE{f(X)} =
E{g(Y)} =0, E{f*(X)} = E{g*(Y)} = 1, and with the convention that the supremum over the empty set

equals to 0. The conditional maximal correlatippy‘z is defined similarly.

Definition 5. (Matrix notation for probability distributions[28, Eqn. (6)]) LetX € X, andY € ), be two

discrete random variables with finite cardinalities. Thantjqrobability distribution matrixlPxy is defined as

4Conditions [I2), specialized to the PSOMARC, evaluated dirgy p(z;|s;),7 = 1,2, to be the deterministic distributiop(x;|s;) =

d(x; — si), whered(x) is the Kronecker Delta function, hold with aquality
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Pxy(i,j) 2 Pr(X=2;,Y =y;),i = 1,2,...,|X|,j = 1,2,...,|Y|. The marginal distribution matrix of an RV
X is defined as the diagonal matfiky such thatPx (i,i) = Pr(X =u;),2; € &; Px(i,5) =0, i # j.
This marginal distribution can also be represented in aoveftrm denoted bypx. The i'th element ofpx is

px (i) £ Pr(X = ;). The conditional joint probability distribution matriR vy, is defined similarly.

Definition6. (Spectral representatiofi28, Eqns. (12)—(13)]) We define the matiixy asPyy £ P;(%]nylp;%,
and the vectopx aspx = p)%(, where p)%( stands for an element-wise square rootpof. The conditional

distributions]PXy|z andpx|, are defined similarly.

Note that not every matri® vy can correspond to a given joint distribution matiix:y. This is because a
valid joint distribution matrixIP xy must have all its elements to be nonnegative and add {o_L.T2®8,. 1] gives

a necessary and sufficient condition By to correspond to a joint distribution matriXxy-:

Theorem.([28, Thm. 1]) LetlPx andPy be a pair of marginal distributions. A nonnegative maffixy is a joint
distribution matrix with marginal distribution® x and Py if and only if the singular value decompaosition (SVD)

of the corresponding nonnegative matfty satisfies:
l
. 1 1IN\T
Pxy = MDN” = p% (pé) +Y o], (20)
=2
wherel = min{|X|, |V}, M £ [, o, ... ;] andIN £ [vy, vo, ... 1] are two matrices such tha”IM = I and
1 1 .

NT'IN = I, andD £ diaqal,Ug,...7O'l]H; t, =p%,v1 =pg,andoy =1>0y > --- >0, > 0. That is, all
the singular values oP vy are non-negative and smaller than or equal to 1. We someténetes; = Ui(]lsxy)

to explicitly indicate the matrix for which the singular ual is computed. The largest singular valueRofy is 1,

and its corresponding left and right singular vectorslaieand pé.
Next, we define the set of all possible conditional distiitnsp (1, 22|11, s2,1) satisfying the Markov chaim(19):

pX17X2|51.,52 (‘T17x2|817178271) :
dn € m+7pxl|s;b ($1|3?)7PX2\53 (2]s%)

S.t. V(Il,IQ,Sl_’l,SQ’l) S Xl X XQ X 81 X 82,

EX X IS S
1A2[0102
pX17X2|S1;S2 (.fC],Zng|S]7] B Sjgy]) -

e O sy @St pxisy (w23 psy sy (5T, 85)

n n—1
51,2631
n n—1
52,2632

wherepsn sy (s7,s%) = [1i_; Psi,s. (51, 52,5)- Note that as: can be arbitrarily large, the set of all conditional
distributionspx, |s» (z1]s7) andpx, sz (z2]s%), for all positive integers:, is countably infinite. Therefore, we are
interested in a characterization of thdetter Markov chain[(19) via a set which habaunded and finite cardinality
In order to achieve this, we first note thatias s, (s1,1, s2,1) iS given,px, x, (21, 72),x,  x.|s, (21, 2|s1,1) and
DX, X,|S. (71, 22]52,1) are all uniquely determined byx, x, s, s, (%1, 22|s1,1, 52,1). Furthermore, in[[33, Sec. 4]

H'E D ok * * * * H
it is shown thatrs(Px, x,) = p¥, x,- Thereforepy ., PX, Xals1.1° PX0 X500 andpxllesl,l,32,1 are all functions

SWe useD = diagja] to denote a rectangular matrix s.tD;; = a;,D; ; =0,Vi # j.
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of px, x,15:,5, (1, 2|s1,1, 52,1) for a givenps, s,(s1,1,52,1). The following theorem characterizes constraints on

these maximal correlations, and thereby gives a necessadition for then-letter Markov chain[@d%:

Theorem.([28, Thm. 4]) Let(ST, S%) be a pair of length: independent and identically distributed (i.i.d.) sequenc
such thatps, , s, ,(a,b) = ps,,s,(a,0),¥(a,b) € S x S»,Vk € {1,2,...,n}, and let the variables(; and X,
satisfy the Markov chain[(19). Le$, ; and S, ; be arbitrary elements oB?, and S%,, respectively, that is,
k,7€{1,2,...,n}, then

PX) Xals1 50 < P515s" (21)

1 ! .
Now, we define the selBX] X2|5:9, aS follows:

Px,,X2|51,52 (z1,2[51,1,82,1)

V(s1,1,82,1) € S1 X S2

* *
s ) PX.X, < P8, 8,0

/
BX1X2\5152 « < o
lexz\Sl,l = P58

* *
lexz\Sz,l < P5,8s

PX, Xals11,801 = P515
Note that by [[28, Thm. 4] the seiB’Xle‘Sls2 is invariant to the symbol index, that is; ; and sy, can be
replaced bys; , andsy i, for anyk € {2,3,...,n}. Since [28, Thm. 4] gives necessary conditions for thetter
Markov chain [(ID), it follows thaBx, x, s, s.

the singular valugsof the matricesP x, x,. Px, x,(s1 1+ Px1 x50, @A Px, x, /5, .50, Therefore, while the set

, , , ,
C B, x,|s,5,- Furthermore, the sé¥'y ¢ ¢ is characterized by

Bx, x|s:s, has countably infinite dimensions, the #&t ¢ o has finite and bounded dimensions.

B. A MAC Bound

Next, we derive a new set of necessary conditions which israniscent of the so-called “MAC bound” for the

relay channel[[34, Ch. 16], that takes into accolnt (19).

Theorem4. Any source pair(Sy, S2) that can be reliably transmitted over the DM MARC with reegiside

information, as defined in Sectidn I[iB, must satisfy the constraints:

H(S51]52, W) <I(X1,X3;Y|S2, X2, W, Q) (22a)
H(S2]51, W) <I(X2, X3;Y|[S1, X1, W, Q) (22b)
H(S,,5:|W) <I(X1, X2, X3, YW, Q), (22c¢)

for a joint distribution that factorizes as:
p(qa S§1,82,W,T1,T2,T3, y) = p(Q)p(Sla 52, w)p(‘rlaleSla 52, q)p($3|$1, X2, 81,52, Q)p(y|xl7 X2, ‘T3)a (23)

with |Q| < 4, and for everyg € Q, it follows that:

SHere we present a simplified version bf[28, Thm. 4].

"Recall thatoo (Px, x,) = P X,
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p(a1, 2251, 52,Q = q) € Bx, x,/5,5, € By, x5 55+ (24)

Proof: The proof is given in Appendik FIA. ]
Remark15. This bound does not includé’s because decoding is done based only on the informationaineaiat
the destination, while the relay channel input is allowedlépend onX;, X», S and.S,. Therefore 5 does not

add any useful information for generating the relay chammgalt.

C. Broadcast Bounds
The next two new sets of necessary conditions are a remittis€¢he so-called “broadcast bound” for the relay

channel,[[34, Ch. 16].

Proposition 6. Any source pair(S;,.S2) that can be reliably transmitted over the DM MARC with relagles

information W3 and receiver side informatiol’, as defined in Sectidn I[IB, must satisfy the constraints:

H(S1|S2, W, W3) < I(X1;Y, Y3]S2, Xo, W, V) (25a)
H (82|51, W, W3) < I(X2;Y, Y3|S1, X1, W, V) (25b)
H(Sy, S2|W, W3) < I(X1, Xo; Y, Y3|[W, V), (25¢)
for some joint distribution of the form:
p(v, 51, 82, w, w3, 1, T2, 23,Y,Y3) = (v, 51, 52, w, w3)p(x1, T2|s1, 52, V)p(23|V)P(Y, Y3l 21, 22, 3), (26)
with [V] < 4.
Proof: The proof is given in Appendik FiB. ]

Remark16. In Prop.[6 we did not place restrictions @1, z2|s1, s2) as in Thm[#. This is because [28, Thm.
4] requires(ST, S¥) to be a pair ofi.i.d sequencesf lengthn. However, in the proof of Prof] & is not an

i.i.d sequenceand therefore ST, S5, V™) is not a triplet of i.i.d sequencesHence, it is not possible to use the
approach of{[28] to tighten Profgl 6. It is possible, howet@gstablish a different set of “broadcast-type” necessary

conditions which benefits from the results bf [28]. This iatstl in Thm[b.

Theorenb. Any source paif .Sy, S2) that can be reliably transmitted over the DM MARC with rel&jesinformation

W3 and receiver side informatiol/, as defined in Sectidn [[1B, must satisfy the constraints:

H(S1|S27W7 W3) SI(Xl;Y7n|S27X23X37Wa Q) (273)
H(S2|S17W7 W3) SI(XQ;Y7}/3|S17X13X37W5 Q) (27b)
H(Sy, S2|W, W3) < I(Xy, XY, Y3| X3, W, Q), (27c)

for a joint distribution that factorizes as:
p(qa S1,82,W,wWs,x1,x2,T3,Y, y3) =
p(Q)p(Slv 52, W, w3)p('r17 CC2|51, 52, q)p(CC3|CC1, T2, ws, q)p(yv y3|I17 T2, CCg), (28)
with |Q] < 4, and for everyg € Q, it follows that:

p(x1,w2(51,52,Q = q) € Bx,x35,5, € folxﬂslsz’ (29)
Proof: The proof follows similar arguments to the proofs of THih. 4l d&rop [, thus, it is omitted herem
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D. Discussion

Remarkl17. Note that the side information may affect the correspondimgin, see e.g., Thrl 5.

Remark18. For independent source®(6i1,s2) = p(s1)p(s2)) and W = W3 = ¢, a combination of Thm[J4
and Thm[b specializes to the cut-set bound for the MARC ddriv [7, Thm. 1]. To see this, note that in this
case the RHSs of (27) are identical to the first term in the RAFI0Eqn. (7)], while the RHSs of (22) are
identical to the second term in the RHS bf [7, Eqn. (7)], o= {1}, {2}, {1, 2}, respectively. Furthermore, we
have that[(28) and_(28) are the same. Next, note that for emwgnt sourcesys s, = 0, which implies that
PX1Xs = PXoXalsia = PXiXalssn = PXiXals1,s.. — O Therefore X, and X, are independent and conditions
(4) and [(2D) are satisfied for amy, s, (s1,52) = ps, (51)ps,(s2). Finally, letting Ry £ H(S1), Ry = H(S2)
implies thatH (S, .52) = Ry + Rs, and therefore for independent sources the combinatiorhaf.[@ and Thm[15
coincides with [[7, Egn. (7)].

Remark19. For Gaussian MARCs subject to i.i.d phase fading, and fordh@nnel inputs that maximize the
achievable region at the destination obtained via DF, thaemable region at the destination is a subset of
the corresponding achievable region at the relay (i.e.pdieg at the relay does not constrain the rate to the
destination). In this case, Thral 4 specializes [t [35, Pﬂjﬁ. From [1, Thm. 8] it follows that in this case
mutually independent channel inputs simultaneously midrthe RHSs of [35, Eqgns. (3)]. Additionally, note that
for mutually independent channel inputs, Eqhsl (22) caimeiith [35, Eqns. (3)]. Lastly we observe that the mutual
independence of the channel inputs implies Wiatx, = p% .16, , = X, X151 = PX; Xa|s1 1,50, = 0o thus [22)

is satisfied for any joint distribution of the sources.

Remark20. When specialized to the MAC with correlated sources Thin. d &hm.[5 coincide and both are
tighter than Profd.]6. Settings = )5 = W5 = ¢, the expressions il_L(22], (25) aid{27) become identicalvever,
note that in[(ZB) a general joint distributigitv, s1, s2, w) is considered, while il (23) an@(28&) I (51, S2, W).
Moreover, the required Markov chain ¢f {19) is not accourftedby the chain of Profd.]6, contrary to Thid. 4 and
Thm.[8. Therefore, we conclude that when specialized to t&Mcenario, Thm[J4 and Thra] 5 give the same
bound which is tighter then the one in Prgp. 6.

Setting X3 = V3 = W5 = ¢ as well asWW = ¢, specializes our model to the MAC with no side information
at the receiver. For this model, both Thinh. 4 and Thin. 5 speeiab [28, Thm. 7], which establishes necessary

conditions for the MAC with correlated sources.

E. Numerical Examples
We now demonstrate the improvement of Thin. 4 and THm. 5 upemrdl-set bound of [34, Ch. 18.1]. In order
to simplify the arguments, we consider a scenario with ne sidormation?V = W5 = ¢, and focus on the bound

on H(S1,S2). In the following, we consider explicit PSOMARC and souréeswhich we show that the cut-set

8In [9, Thm. 4] we showed that for Gaussian MARCs subject td jphase fading, when decoding at the relay does not comgtrairate to

the destination, then source-channel separation is optima
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bound fails to indicate whether reliable transmission @& #ources over the channel is possible, while a relaxed
version of our outer bounds do indicate that reliable traasion of the sources over the channel is impossible.

Consider the PSOMARC defined by, = X» = V5 = Vs = {0, 1}, the channel transition probabilities detailed
in Tabled1ll and 1V, and leC3 = 0.1.

Y3 \(X1,X2) | 0,0)] (01) | (1.0) | (1,1)
0 0.87 | 0.25 | 0.51 | 0.24
1 0.13 | 0.75 | 0.49 | 0.76

TABLE IlI: The transition probability( X, X2) — Y3.

Y \(X1,X2) | (00) | 0.1) | (1,0) | (1.1)
0 0.23 | 0.19 | 0.65 | 0.91
1 0.77 | 0.81 | 0.35 | 0.09

TABLE IV: The transition probability(X1, X2) — Y.
Next, consider the cut-set bound for the sum-rate of the PARE| [8, Eqn. (9)]. When evaluated for the
PSOMARC defined in Tablds]I[_IV the necessary conditiong8hfEqn. (9)] yield:

H(S1, 82) < loeset® max {I(Xl,XQ;YS)+min{C’3,I(X1,X2;Y3|Y5)}} ~ 05168 (30)

p(z1,22)

The maximum in [(30) is achieved byPr((Xi, X2)=(0,0)) ~ 0.1, Pr((X1,X2) =(0,1)) =~ 0.39,
Pr((X1,X2) =(1,0)) =~ 0, Pr((X1,X2) = (1,1)) = 0.51. This and the following optimizations are done nu-
merically using an exhaustive search over all relevantmatars with a step size of 0.01 in each variable. Next,
we consider the combination of the relaxed versiond ofl(22a) [27t), with'W = W5 = ¢, specialized to the
PSOMARC:

H(S1,55) < Inew2 max {I(Xth; Ys) + min {Cs, I(X1, Xo; Y3|Y5)}}. (31)

P(@1,@2):0%, x, <P%, 5,
Note that [(31L) is less restrictive than_(22c) ahd (27c), asrtaximization in[(311) includes only the restriction
due toPx, x,, while the restrictions due to the conditional distribu® v, x, s, Px, x,|s, andPyx, x, s, s, are
ignored. Finally, we recall the sum-rate condition of THist&ted in[(IB) obtained by combinirlg (12c) ahd{12f)
and specializing the expressions to the PSOAMRC:

H(S1,52) < lsuff & max min {I(X1, Xo;Ys), I(X1, X2;Ys) + Cs}. (32)

p(s1,52)p(x1]51)p(22]52)

Let (S1, S2) be a pair of sources such thét = S, = {0, 1}, and their joint distribution is given in Tablel V.

S1 \S2 0 1
0 0 0.04
1 0.045 | 0.915

TABLE V: The joint distributionp(s1, s2).
For this joint distribution we evaluatél (S;, S2) ~ 0.504, therefore, the cut-set necessary condition (30) does

not indicate whether these sources can be transmittedlseliet not. Furthermore, for the joint distribution given
9Note that the cut-set bound ih_{30) depends only on the charamesition probabilities andiot on the joint distribution of the sources.
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in Table[M, the RHS 0of[(32) is evaluated agsl =~ 0.274. This value is achieved b¥r (X; = 0]|S; = 0) = 0,
Pr(X; =0[S; =1) ~ 1, Pr(X; =1|S; = 0) ~ 0.84, Pr(X; = 1|S; = 1) ~ 0.16, Pr (X, = 0|Sy = 0) ~ 0.98,
Pr(Xs =0[S2 =1) = 0.02, Pr (X2 = 1S = 0) = 0.49, Pr (X2 = 1|S3 = 1) =~ 0.51. Thus, the scheme of Thinl. 3
cannot transmit these sources reliably since condifioh 8ot satisfied.

In contrast to[(3D), which is larger thadi(S1, S2), for the joint distribution given in TablelV we havg., ~ 0.485.
This value is achieved bPr ((X1, X2)=(0,0)) ~ 0.08, Pr((X1, X2)=(0,1)) ~ 0.41, Pr ((X1, X2) =(1,0)) =
0.07, Pr((Xy1,X2)=(1,1)) =~ 0.44. Hence, our new necessary conditipn](31), explicitly iaths that reliable
transmission of these sources is impossible.

This demonstrates the improvement of Thih. 4 and THm. 5 upertit-set bound.

Remark21. This numerical exampleloes not follow immediately from the results of Kang and Uufor the
MAC, detailed in[[28, Subsection III.C]. To see this, consider PSOMARC and sources as defined in Tablés I,
[Vland[V, and letCs = 0.2 (instead of0.1). Here, [30) is evaluated agdset~ 0.60, while (31) is evaluated
as hew ~ 0.51. Moreover, recall thafi(S;, S2) = 0.504. Hence, forC3 = 0.2, (31) does not indicate whether
reliable transmission of the sources is possible, whilefpe= 0.1, (31) explicitly indicates that reliable transmission
is impossible. Observe that the necessary conditions éeetedl by the presence of the relay. Also note that the

cut-set conditiond (30) does not indicate whether religtdlasmission is possible or not, for either value(sf.

Remark22. In the above numerical example we assume that side infoomagi not present. To see the effect
of side information at the relay ofi (81) consider the PSOMAR@ sources as defined in Tables [T] IV V,
and letC5 = 0.5. Here, I(X1, X2; Ya|Ys) ~ 0.185, (X1, X2;Ys) =~ 0.329 and hew ~ 0.51. Therefore, in this
casel (X1, X»;Y5|Ys) is the dominant term in the minimization on the RHS [of](31)mN&et W3 = (54, .52),
which makes[(217c) redunda@[ln this case, the RHS of (B1) becomes max I(X1,X2;Ys) + Cs, and

p(21,%2):p%, x, <SPS, 5y

we have jew ~ 0.91. To conclude, in this case, the presence of side informadiothe relay significantly

enlarges Jew

Remark23. We note that the necessary conditions presented in Thm. 4Tand [ are not tight in general.
For instance, consider the PSOMARC specified in Table | with = 1, and the pair of sources defined in
Table[dl. Prop.[b implies that the sources defined in TaOleah be reliably transmitted over this PSOMARC

by using the scheme of Thinl 3. Here, the maximal sum-ratecirffi condition which is evaluated using {32) is

10This value was found via an exhaustive search over ovemp@lh,z2) and can be achieved bPr ((X1,X2)=(0,0)) ~ 0.26,
Pr((X1,X2)=(0,1)) = 0.24, Pr (X1, X2) = (1,0)) = 0, Pr (X1, X2) = (1,1)) = 0.5.
UThis value was found via an exhaustive search over over p@ly,z2) s.t p}lxz < pglsz, and can be achieved by

Pr((X1, X2)=(0,0)) = 0.2, Pr ((X1, X2) = (0,1)) ~ 0.36, Pr (X1, X2) = (1,0)) ~ 0.14, Pr ((X1, X2) =(1,1)) ~ 0.3.
Pr ((Xl,Xz) = (0, 0)) =~ 0.04, Pr ((Xl,Xz) = (0, 1)) =~ 0.46, Pr ((Xl,XQ) = (1, 0)) =~ 0.03, Pr ((Xl, X2) = (1, 1)) =~ 0.47.

Bwhen W3 = (S1, S2) the chains[(2B) and(28) are the same, &S, So|W, W3) = 0.

14This value is found via an exhaustive search over ovep(all, z2) stpk, x, < P%, s, and can be achieved Br ((X1, X2) =(0,0)) =
0.01, Pr (X1, X2) = (0,1)) & 0.47, Pr ((X1, X2) =(1,0)) ~ 0.01, Pr ((X1, X2) = (1,1)) ~ 0.51.

12These value were found via an exhaustive search over ovemp(@all,z2) sit p}‘{lxz < pglsz, and can be achieved by
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Isuit = log, 3. For this combination of sources and channel, the sum-etessary condition due to the cut-set bound
is evaluated via{30) asu-set= 2, Which is achieved by settingr ((X1, X2) = (0,0)) = Pr ((X1, X2) = (0,1)) =
Pr((X1,X2) =(1,0)) = Pr((X:,X2) = (1,1)) = 0.25. Furthermore, using the same, x,(z1,22) we also
evaluate the newly derived sum-rate necessary condittom(gither Thm[¥ or Thni]5) via (81) ag) = 2. Thus,
for this combination of channel and sources the RHS$ df (8@)(&1) are strictly larger than the RHS 6f132).
On the other hand, there are sources and channels for which: £ lnew = lsu. AS an example, consider a
PSOMARC, defined by} = X, = {0,1,2},)5 ={0,1,2,3,4,5} andYs = {0,1,2}. Let C5 = 1, and consider
the deterministic channel mapping,, X2) — (Y3,Ys) specified in Tablé V.

(X1, X2) | 0,00 | 1,1 | 1,2) | 2,0 | 2,2) | otherwise
Y3 0 2 3 4 5 1
Ys 0 2 1 2 0 1

TABLE VI: A deterministic channel mappingX1, X2) — (Y3, Ys) for the PSOMARC.

The source$S:,.52) are defined over the sef§ =S, ={0, 1, 2} with the joint distribution specified in Table VII.

S1 \S2 0 1 2
0 1/6 | 1/6 0
1 0 1/6 | 1/6
2 1/6 0 1/6

TABLE VII: The joint distribution of (S1,.S2). The entry in the;™ row and m™ column, j,m = 0,1,2, corresponds to
Pr((51,52) = (4, m)).

Following the arguments presented in Appendix E, it can mvshthat, using the scheme of Thid. 3 the sources
defined in Tabl& VIl can be reliably transmitted over the PSXRWE defined in Table VI, witiC3 = 1. In particular,

we haveH (S1, S2) = lsuif = log, 6 (note that sincé);| = 6, it follows from (32) that {4 < log, 6). For the channel
mapping specified in Table VI, we also havgy < log, 6 and Lyt.set < log, 6. This follows from the fact that
|Vs| = 3 and from the fact thaf’s = 1. In fact, kurset= Inew = log, 6 is obtained by setting(x1, z2) = p(s1, s2).
Hence, for this combination of channel and sources the RHYBQ), (31) and [(3R) coincide and tightness in
sum-rate is achieved. Furthermore, for evély> 1 we obtain hew = lsus. TO understand this equality, first recall
from the above discussion that4 < log, 6 with equality obtained with the assignmeritc,, z2) = p(s1, s2). For

evaluating few, We recall the expression fogely given by [31), repeated here for ease of reference:

lnew = max {I(Xl,Xg;YS) +min{C3,I(X1,X2;Y3|Y5)}}.

p(@1,@2):0%, x, <P5, 5y
Now, since|Ys| = 3 we have thatl (X, X2;Ys) < log, 3, and this is achieved with equality by the assignment
p(x1,x2) = p(s1, s2). For [(X7, Xo; Y3|Ys) we write:
a (b)
1(X0, X33 YY) @ H(YaYs) < 1,
where (a) follows from the the fact that in the considered FB®C the mapping from(X;, X3) to Y3 is

deterministic, and (b) follows from the fact that for evernysgible value oft’s there are only two possible values
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of Y3. An equality in (b) is achieved with the assignmexit,, z2) = p(s1, s2). Hence, forCs > 1 the active term
in the minimization on the RHS of (B1) i(X1, X»; Y3|Ys), and we havepky = lsur, both maximized with the
assignmenp(x1, z2) = p(s1, s2). Finally, note that ifC3 < 1 then the necessary conditios1(30) ahd (31) are not

satisfied.

VII. CONCLUSIONS

In this work we studied JSCC for lossless transmission ofetated sources over DM MARCs. We derived
a new DF-based JSCC scheme which uses the CPM techniquedodieg the correlated source sequences for
transmission to both the relay and the destination, while Wrce coding is used for cooperation between the
sources and the relay. This combination allows removingcibrestraints on the distribution chain required by a
previously derived scheme which used CPM to the destin{iohhm. 2] (quoted as Thrh] 2 in this manuscript). The
new scheme of Thni] 3 applies simultaneous backward decaditfye destination to simultaneously decode both
source sequences and the cooperation information. As tiense implements CPM-based encoding of the source
sequences at the transmitters, both the relay and the agstirbenefit from the joint source-channel encoding.
This is in contrast to the JSCC schemes derivedin [6] (quase@hm[L and Thni]2 in this manuscript), in which
either the relay or the destination benefits from the CPM dimgp but not both simultaneously.

We then provided a detailed comparison of the new schememf[Btwith the two JSCC schemes bf [6] and with
the scheme of Propl 2 which apply sequential decoding of dliece sequences and the cooperation information
at the destination. We showed that the scheme of Thm. 3 isrltétin the scheme derived [A [6, Thm. 1] and the
scheme of Prod.]2. We also showed that there are cases in Wigicscheme of Thni] 3 strictly outperforms the
schemes of Thnil1 and Thid. 2. However, we cannot show thatetivesaheme of ThnfLl3 is universally better than
the scheme of |6, Thm. 2]. This follows from the different adsible joint distributions (see Remarks 1 did 4).

Finally, we derived three different sets of necessary d@mmb for reliable transmission of correlated sources
over DM MARCs. We also showed that the newly derived sets aiteast as tight as previously known results.
One of the new sets is in the spirit of the “MAC bound” for thasdic relay channel, while the other two sets
are in the spirit of the “broadcast bound” for the relay chelnfiwo of the new sets use the Markov relationship

between the sources and the channel inputs to restrict thef éeasible distributions.

APPENDIXA

PROOF OFTHEOREM[3|
A. Codebook Construction

« For eachi = 1,2, consider a set 02"% bins and let/; = {1,2,...,2"f} i = 1,2, be the corresponding
set of bin indices. Foi = 1,2, assign every, € S" to one of the2"%: bins independently according to a
uniform distribution over the bin indices. Denote this gasient byf; : S — U;,i = 1,2.

« Fori=1,2, generate"? codewordsv;(u;),u; € U;, by choosing the letters; . (u;),k = 1,2,...,n, inde-
pendently according to the p.mpf;, (v; 1 (u;)). For each paifs;, u;) € S xU;,i = 1,2, generate one codeword

x;(si, u;) by choosing the letters; ;. (s;, u;) independently according to the p.mp.t, s, v, (i k|5i, &, vk (1)),
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k=1,2,...,n. Finally, generate one relay codewaxgl(u1, us2) for each pairuy, us) € Uy x Us, by choosing

the letterses 1. (u1, uo) independently according to the p.mat, v, v, (23,5 V1, (u1), v2 1 (u2)), B = 1,2,...,n.

B. Encoding

Consider two source sequences each of Ier@rthsff € 8P i = 1,2. Partition each sequence inkblengthn
subsequences; ;, € S'*,b = 1,2,..., B. Similarly partition the side information sequenaeg? and wB" into
B lengthn subsequencess;, € Wi, w, € W" b= 1,2,..., B, respectively. A total ofBn source samples is
transmitted ove3 + 1 blocks, such that at each bloekchannel symbols are transmitted.

At block 1, transmitteri, i = 1, 2, transmits the channel codewaxgl(s; 1,1). At block b,b = 2,3,..., B, trans-
mitter ¢ transmits the channel codewoxd(s; », u; p—1), Wherew; ,_1 = fi(s;»—1) € U; is the bin index of source
vectors; ;1. Let (a1, as) € S xS be two sequences generated according#a, az) = [[;_, ps,,s,(a1,k, a2,k)-
These sequences are known to all nodes. At biBck 1, transmitteri, i = 1,2, transmitsx; (a;, u;,g).

At block b = 1, the relay transmitxs(1,1). Assume that at block,b = 2,3,..., B, B + 1, the relay has the
estimates(8; p—1,82,—1) Of (s15—1,82,—-1). It then finds the corresponding bin indicés,—1 = fi(Sip-1) €

U;,1 = 1,2, and transmits the channel codeworg(; ;—1, U2 ,—1) at timeb.

C. Decoding
The relay decodes the source sequences sequentially. Anthef channel block the relay decodes ;.7 = 1, 2,
as follows: Using the estimatd$, ,_1, u2,5—1), the received signays ;, and the side informatiows ;, the relay
decodeqs; »,s2,5) by looking for a unique paifs;,82) € S x S such that:
(81,82, vi(1,p-1), Vo (fiz,p—1), X1 (81, W1,p—1), X2 (82, U2,p—1), X3 (1,51, Ua,p—1), Wb, ¥3,) € ALM. (A1)
Decoding at the destination is done via simultaneous backdecoding. Letx € WW" be an i.i.d sequence such
that each letter, is selected independently accordingpi@ s, s, (ax|a1k, a2 k), k = 1,2,...,n. The destination
node waits until the end of channel blogk+ 1. It first tries to decodéu., 5, u2 ) using the received signal at
channel blockB + 1, y,+1, and usinga;, a;, and . Going backwards from the last channel block to the first,
we assume that at blodkthe destination has estimatés, j, @2 ) Of (u1 5, u2). The destination simultaneously
decodeg(ss 5,825, u1,—1, U2,5—1) based on the received signgl, and the side informatiom,, by looking for a
unique combinatior{sy, o, i1, ti2) € St X 8§ x Uy x Uz such that:
(81,82, v1(ti1), va(ii2), x1(81, 1), X2 (82, 2, X3 (@1, U2), Wi, ) € AF™, (A.2)
and f1(81) = 41, f2(82,5) = Gg. Denote the decoded variables B 1, $2 b, t1,5—1, U2,6—1)-
D. Error Probability Analysis
Relay error probability: The relay error probability analysis follows the same argota as the relay error
probability analysis detailed in[9, Appendix B].
Destination error probability: The average probability of error in decoding at the dedtinaat blockb, Pd(gs)tb,

is defined by:
Pé;;’w £ Pr((S1,6,S2,) # (S1,6.S2,))-
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Due to backward decoding, the pair of source sequences séimeab is decoded after the pair at timtet 1

is decoded. LefF, £ {(Sl,lh S27b, Ul,b—la Ug)b_l) 75 (Sl,b7 8271,, U17b_1, Ug)b_l)}. Then, as in [18, Eqgn. (40)]1 we

write: B
P < S pr (A7) (A3)
b=1
Let €, €1,. .., €3 be positive numbers such that > ¢; > €,¢,, > € ande,, — 0 ase — 0, form =0,1,...,8.

Now, define two error events at blodk
« Joint-typicality fails:
Eip = {(51,1;, Sob, Vi(Uip-1), Vo (U2,p-1), X1(S1,6, U1,p—1),

X2(S2,6, Uz,p—1), X3(Urp—1, Uz p—1), Wp, Yy) ¢ A:(n)}-
« Simultaneous decoding of the bin indices (for the next stey) the source sequences fails:
Ea0 2 {3(51,80, i1, 12) € ST X S x Uy x U,

(81,82, 41, 12) # (S1,6,S2,6, Urp—1,Usp—1), f1(81) = Ut p, f2(82) = Usy,

(81,82, Va(iin), Va(ii2), X (81, 1), X (82, ), X, ), Wi, Yo) € A2 |
Then, Fy, = &1, U &2, and we bound:
Pr(FoNFfpy) S Pr(&1pUEp|Fiyy) = Pr(Evp| Fipy) + Pr(Eap|E8 0 N Fiyy).
By applying the properties of strong typicality. [29, Theor 6.9] we have that fom sufficiently large,

Pr (Sl,b‘}‘gﬂ) < e. For boundingPr (62,1)]810717 N F¢,,) we consider the following error events:
52(117) £ {3111 €Uy, i1 # Unp—1, (S1,6,S2,6, Vi(ti1), Vo (U p-1),
X1(S1.p, 1), X2(S2,0, Usp-1), X3 (i1, Unp—1), Wi, Y3) € A:<n>}.
52(217) £ {3112 € Us, iy # Uapp—1, (S1., Sob, Vi(Urp-1), Va(ila),
X1(S1,0, Unp—1), X2(So,p, 12), Xa (U p—1,2), W, Y3) € A:<n>},
£ & {3@1 €Ut # Urp1, o € Us,itn # Usy1,
(S1.6,S2., Vi (i11), Va(t12), X1 (S1,p, 1), Xo(Sa,p, ti2), X3 (tr,12), Wy, Yy) € A:<n>}_
52(%1,) £ {3§1 € 8P,81 # Sip, f1(81) = Ury, (81,825, V1i(U1,5-1), V2 (U2,5-1),
X181, Utp—1), X2(So,5, Uz p—1), X3 (U p—1, Uzp—1), Wi, Y3) € A:(n)}_
52(51,) £ {3§2 € Sp,82 # Sop, f2(82) = Usyp, (81,6582, V1i(U1,5-1), V2 (U2,5-1),
X1 (81,6, Urp-1), X2 (82, Uzp-1), Xs(Urp-1, Uz p-1), Wi, Yy) € A:(")}.
62(,617) = {3(§1,§2) € S X 83,81 # S1,0,82 # Sap, f1(81) = Ut p, f2(82) = Unyp, (81,82, Vi(Urp-1),
Vz(Uz,b—l),X1(é1,Ul,b_l),f(g(ég,U27b_1),X3(U17b_1,U2,b_1)7wb’yb) c A:(")},

15As stated in Subsectidd AlB, at blodR + 1, source terminat transmitsx; (a;, u;, ), wherea; € SP*,i = 1,2, is known to all nodes.
Therefore, at blockB + 1 we defineFg41 2 {(U1,5,U2,5) # (U1,5,U2,58)}.
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52(71,) £ {351 € 8P,81 # Sip, f1(31) = Urp, Fn € Uy, iy # Urp1, (81, So.4, Vi (i),
Vo (Usp—1), X1 (81, 01), X2(Sa.p, Usp1), Xs (1, Usp—1), Wy, Yy) € A:(")}-
52(1,) = {352 € Sy,82 # Sap, f2(82) = Uz, Jiio € Us, itz # Uz p1, (S1.6,82, V1i(U1p-1),
Vz(ﬂz),Xl(Sl,b, Ul,bfl);XZ(éZ;ﬁQ);XS(Ul,bflaﬁQ);Wbbe) € A:(n)}-
52(17) £ {351 € 81,81 # Sip, f1(31) = Unp, Jia € Usn, tig # Uz p1, (81,826, V1i(U1,p-1),
Vz(ﬂQ),Xl(él, U1,b71),XQ(SQ,b,ﬁz),X3(U1,b71,ﬁ2),Wb,Yb) € A:(n)}-
g0 & {352 € S8 # Sap, fo(82) = Uy, Fig € Uy, ity # Ur 1, (S1.,82, Vi (i),
Vo (Uzp1), X1(S1p, 1), Xo (82, U 1), Xa (i1, Usp—1), Wy, Yy) € A:(")}-
55,1171 £ {351 € 8,81 # S1p, f1(81) = Urp, 3y € Uy, ity # Urp1, Flig € Us, g # Ua 1,
(81, S2,p, Vi(i11), Vo (iin), X1 (81, 1), Xo(Sap, tia), X5 (i1, G2), Wy, Yp) € A:<n>},
&g e {3§2 € 8,82 # Sop, fo(82) = Usp, 3y € Uy, ity # Uy py, iy € Us, ity # Usp_1,
(1,0, 82, V1(ti1), Va(iiz), X1(S1,5, 01), Xa(82, ti2), X3 (i1, t2), Wy, Y3) € A:(”)}.
52(,1b3) 2 {3§1 € ST 81 # S, f1(81) = Urp, 38 € S, 82 # Sa, fo(82) = Usyp, Ity € Uy, iy # Un o1,
(81,82, Vi (iin), Vo (Uap—1), X1 (81, ), X2 (82, Unp—1), X3 (i1, Uz p—1), Wi, Y3) € Aj(")},
52(,1;) 2 {3§1 € ST.81 # S, f1(81) = Urp, 38 € S§,82 # Sa, fo(82) = Usyp, Itia € Us, la # Usp—1,
(81,80, Vi(Urp-1), Va(@i2), X1(81, Urp—1), Xa(82, tia), X3 (Us p-1,12), Wy, Y3) € A:(n)},
D) & {3@1 €8P 81 # 10, f1(81) = Urp, Fo € ST, 80 £ Sop, fo(82) = Us,
Jay € Uy, Gy # Uy p—1, I € U,z # Usp1,
(81,82, Vi (itr), Vi (i), Xy (81, 11 ), X (82, i1a), X (i, 1), W), Y) € A:W}.
Following the same arguments as in the error probabilityyaisa detailed in[[9, Appendix B, Egns. (B.37)—

(B.45)], we have that the probabilit§r (52(?|5f)b N Fg.,) can be made arbitrarily small fon = 1,2,3, by

increasing the block length, if the following conditions are satisfied correspondingly

Ry <I(X1,X3;Y|51,V2,X2)—262 (A4a)
Ry < I(XQ,X3;Y|SQ,‘/1,X1) — 2¢9 (A4b)
Ri+ Ry < I(Xl,XQ,Xg;Y|Sl, Sg) — 2¢s. (A4C)

The bounds foPr (82(?;)}810717 NFg1),4 < m <15, follow similar arguments. We demonstrate the technique

for m = 7. We begin by writing:
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7 C C
Pr(gZ(,l;)|61,b NFii1)
=Pr (3?’1 € 87,81 # Sip, f1(81) = Urp, 3y € Uy, ity # U1, (81, Sob, Vi(t1), Va(Usp-1),

X1 (81,11), Xa(Sap, Usp—1), Xa(t1, Uzp-1), W, Yy) € Axm)

C C
160 b+1)

= Z pu, (01,6)PU, U, (U1,5-1,5 U2,p—1) X

1,5 €U UL b1 EUL U2 1 EU
Pr (5|§1 € 87,81 # S, f1(81) = t1p, Iy € Uy, @y # w1 p—1, (81, S2,6, Vi(@), Va(uzp—1),

Xl (élv ﬂl)v XQ(SQ,bv u2,b71)7 X3 (ﬁla U27b,1), Wb7 Yb) S A:(n)

&N Fin).
We now bound:

Pr (3§1 € 87,81 # S, f1(81) = 15, I € U, Gy # w1 p—1, (81, So.4, Vi (1i1), Va(ugp_1),

X (81,41), X2 (S2.6, u2,5-1), X (1, uz,5-1), Wy, Y3) € A €5, 0 ffﬂ)
(a)
= > p(stbsan va(uzp-1), Xa(S2,6,u2,5-1), Wi, ¥b) X
(Sl,b752,b7V2(u2,b—1)7x2(s2,b=u2,b—1)wwb-,Yb) eArm
Z Z Pr (f1(§1) = i1y, (81, V1(i1), X1 (81, ), Xs(ti1, ug5-1)) €
U1 €U,

s1€47™ (51 }52,b7V2(u2,b—1)7x2(52,b=u2,b—1)-,Wb-,Yb) ,
81781

Ar™ (81, V7, X1, X |s2,6, V2 (u2,6—1), X2(S2,5, U2,6—1), Wb, Yb))

U1 AU, p—1

b)
® > p(s1ers2m valuzp-1), Xa(S2,6, u2,6-1), Wp, y3) X
(51,b752,b;V2(u2,b—1);x2(52,b7u2,b*1)7wb’yb)eAZ(n)
Z Z 9—nRi py ((\71 (1), X1 (81, 1), X3 (1, ugp-1)) €

a1 €U,

N §A*(")(S‘s va(ug,p—1),%X2(82,b,u2,p—1),W )
a1 Fur 1€AL 1[82,6,v2(u2,6-1),%2(82,6,U2,6—1),Wb,¥b ) ,

S1#s81.p
A (VlaXlaXS‘élaS2,baV2(U2,b—1)7X2(S2,baU2,b—1)awb7}’b))
where (a) follows from the conditioning off ; which implies that the sequences at bldcéare jointly typical, and
from consistency of strong typicality [29, Theorem 6.7]t lzg £ (szyb,vQ(uQ,b,l), X2(82,ps ulb,l),wb,yb). By
[29, Eqgn. (6.110)], whenz, € A:(")(SQ,VQ,XQ,W, Y), the conditionally typical seﬂi(")(Sl, Vi, X1, X3|zp) is
defined as:
AZM (81, Vi, X1, Xalze) £ {(81,V1,%1,%3) € A7 (81, Vi, X1, X3) : (81, V1, %1, %3,25) € AT}
Next, note that due to consistency
(81, V1,%1,%3,20) € AT = (81,2) € AX™,
hence ifs; ¢ Ai(”)(51|zb), then (81,v1,%1,%3) ¢ A:(")(Sl,Vl,Xl,X3|zb), and we therefore can restrict the
summation oves; to the setA;™(S,|z,). Step (b) follows as whe#; € A:(")(S1|zb), then joint typicality is
achieved when:
(vl(ﬂl)yxl(élyﬂl)y}tB(ﬁl,UQ,bfl)) € A:(n)(Vth,XB‘élyS2,b,V2(U2,b71),x2(52,b,U2,b71)awba}’b)-

Next, we bound
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Pr((Vl (1), X1 (81, 1), X3(i1, Usp-1)) € A (V1, X1, X3 ’él, 2,5, Va(U2,6—1), X2(S2,5, U2,6—1), W, Yb))

= > p(Va(dn), X (81, ), Ks(dn, uz,-1)|81, 82,6, Va(tiz,p-1) X2 (2,6, U2,5-1) Wi, ¥b)
({’1 (ﬁl);f(l(élxﬁl);f{?:(ﬁlvu&b—l)) €

«(n R
AE( ) (V17X1 ;XS‘51;52,17;V2(u2,b—1)7x2(52,b7u2,b71)7wb7)’b)

@ on (V1. X1,X5191.82.V. Xa. WY ) 460 ) o (H(Vi X1, X581 Va) —ex)

where (a) follows from the properties of conditionally tgpi sequences, [29, Theorem 6.9] and [29, Theorem 6.10].

Thus, we have:

Pr(E5Y)| €5, N FELy)

< > p(stesan va(uzp-1), Xa(S2.6, U2,5-1) W, ¥) X
(Sl,b752,b-,v2(u2,b—1)7x2(52,b7u2,b—1)7wb=y17) cAx™
Z Z g—nRign(H(Vi,X1,X3|81,82,Va,X2,W,Y ) +e0) o —n (H(V1, X1, X5]51,V2)—e1 )
a1 €Uy,

grear™ (51 |52,b-,V2(“2,b—1)=x2(52,b7u2,b—1)7wb7§’b)7

U1 AU, p—1 K
S17#s1.p

_ 2n (H(Sl Vi1,X, .,X3|S2,V2,X2,W,Y)+250) 2*" (H(Vl -,Xl-,X3|Sl-,V2)751)
- ’

which implies that in order to get an arbitrarily small probiy of error asn increases, it must hold that:
H(S1,V1, X1, X3|S2, Vo, Xo, W Y) — H(V1, X1, X5|51,V2) + 3¢p < 0.

Note thatH (S1, V1, X1, X3|S2, Vo, Xo, W, Y') — H(V1, X1, X3|51, V2) can also be written as

H(S1,V1, X1, X3]52, Vo, Xo, W, Y) — H(V1, X1, X3|51, V%)

= H(S1,V1, X1, X3]S2, Vo, Xo, W, Y') — H(S1, V1, X1, X3[Va) + H(S1|V2)

. H(S1) — I(S1, V1, X1, X3; 52, X2, W, Y|V2)

= H(S1) — I(51,V1, X1, X3; 82, Xo, W|Va) — I(S1, V1, X1, X3;Y|S2, Va, Xo, W)

= H(S1) — I(51;S2, Xo, W|Va) — I(V1, X1, X3; S2, Xo, W|S1,Va) — I(S1, V1, X1, X3;Y|S2, Vo, Xo, W)

b
O H(S)) — H(S1|Va) + H(S1|S2, Va, Xa, W) — I(S1, Vi, X1, X3; Y |Sa, Va, Xo, W)

D H(S1[82, W) — I(X1, X3; Y |Sa, Vi, Xo, W),
where (a) follows form the independenég and Va; (b) follows from the Markov relationshifSs, Xo, W)
(51, V2) < (V1, X1, X3); and (c) follows from the Markov relationshifiz, X3) < (S2, W) «<» S; and from the
Markov relationship(Sy, V1) < (S2, Vo, X1, Xo, X3, W) + Y. Therefore, we conclude that as long as:
H(S1|S2, W) < I(X1,X3;Y|[S2, V2, X2, W) — 3eo, (A.5)
thenPr (52(772\510717 N Fg,.,) can be made arbitrarily small by takinglarge enough.
Using similar arguments we can show tIPat(géf’;)\EibﬁFgH),m =4,5,6,8,9...,15, can be made arbitrarily

small by takingn large enough, if the following conditions are satisfied espondingly:
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H(51|SQ,W) < I(Xl;Y|SQ,‘/1,X2,X3,W) + Ry — 3e3 (A6a)

H(S3]S1, W) < I(Xa;Y|S1, Vi, X1, X3, W) + Ro — 3¢5 (A.6b)
H(S1, Sa|W) < I(X1, Xo; Y|V, Va, X3, W) + Ry + R — 3es, (A.6¢)
H(S5[S1, W) < I(Xa, X3;Y|S1, Vi, X1, W) — 3eq (A.6d)
Ro + H(S1|S2, W) < I(X1, Xa, Xa;Y|Sa, Vi, W) + Ry — 3¢5 (A.6e)
Ry + H(Ss|S0, W) < I(X1, X2, X3; Y|S1, Va, W) + Ro — 3es (A.6f)
Ry + H(S1|S2, W) < I(X1, X2, X3;Y|S2, W) — 3e6 (A.69)
Ry + H(S2|S1, W) < I(X1, Xa, Xa: Y|S1, W) — 3¢ (A.6h)
H(S1, Ss|W) < I(X1, Xa, X3;Y|Va, W) + Ry — 3¢r (A.6i)
H(S1,82|W) < I(X1, X2, X5, Y|V, W) + Ry — 3e7 (A.6))
H(S1, Ss|W) < I(X1, Xa, X3;Y|W) — 3cs. (A.6K)

Now, definee’ = max{eg, €1, -..,€s}, then it follows that constraint$ (A.4]=(A.6) hold with,k = 0,1,...,8,
replaced by’. Finally, by using Fourier-Motzkin algorithm to eliminai&y and R, from the constraint§ (Al4)E(AL6),

we obtain [(12H)-£(T2f).

APPENDIXB

PROOF OFPROPOSITIONZ
A. Codebook Construction and Encoding

The codebook construction and encoding are identical to. Threee AppendikA.

B. Decoding
Decoding at the relay is identical to Thiid. 3, see Appehdix Ac@ing at the destination is done using successive
backward decoding. Lek € W" be an i.i.d sequence such that each lettgiis selected independently according
to pw s, s, (aklaik, a2k), k = 1,2,...,n. The destination node waits until the end of channel blétk- 1. It
first tries to decodéu,, 5, us,5) using the received signal at channel bld8k- 1, yz+1, anda. Going backwards
from the last channel block to the first, the destination hasestimate$i, 4, t2,) Of (u1.,u2,) When decoding
at blockd. Now, for decoding at block the destination first recovers the bin indiggg_1,¢ = 1, 2, corresponding
to s; ,—1, based on its received signg and the side informatiomw;. This is done by looking for a unique pair
(ti1,2) € Uy x Uz such that:
(vi(in), va(iia), x5(t1, i2), W, y5) € AZ™. (B.1)

Denote the decoded indices K§1.,—1, G2,,—1). Next, the destination decodés, ;,s2 ;) by looking for a unique
pair (§1,82) such that:

(81,82, vi(Q1,5-1), v2(@2,-1), X1 (81, G1,5-1), X2 (82, Gi2,p—1), X3(@1,5—1, U2,0—1), Wb, ¥p) € A, (B.2)

and f1(81) = @1, f2(82) = 12,,. Denote the decoded sequences with,, Sz 5).
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C. Error Probability Analysis

Following arguments similar to those in Appenfix’A-D it cae shown that decoding the source sequences at
the relay can be done reliably as long Bs{1%a)4(15c) hold,detoding the source sequences at the destination
can be done reliably as long ds (158)-{15f) hold.

APPENDIXC

PROOF OFPROPOSITION3
A. Thm[3B Vs. Thni]1
First we compare (12d) anfl ([7d). The first term on the RHS off{tan be written as:

I(X1, X3;Y|Sa, Va, Xo, W) Y 1(81:Y|Sa, Va, Xo, W) + I(X1, X3; Y[S1, Vo, Xo)

> I(X1, X3;Y[S1, Va, Xa), (C.1)
where (a) follows from the Markov chain$; +» (Ss, Vo, X1, Xo, X3, W) & Y, (53, W) + (51,Ve, X5) & YV
and from the chain rule for mutual information. From the mmmativity of mutual information it follows that
the second term on the RHS &f(12d),X, X3;Y|S1, Vo, X2) + I(X1;Y|S2, V1, Xo, X3, W) is greater than or
equal to (X1, X3;Y|S1, V2, X2). As the LHSs of [(12d) and (¥d) are the same, we conclude &) (5 less
restrictive than[(7d). Using similar arguments it alsodwlé that [12k) is less restrictive thdnl(7e). Next, compare
(@21) and [(ZF):

(X1, X, X3; Y|W) > I(X1, Xo, X3; Y51, 52), (C.2)
where [C.2) follows from the Markov chaifSy, S2) < (X1, X2, X3, W) + Y, and from the non-negativity of
mutual information. As the LHSs of (12f) anld{7f) are the same conclude thaf (1Pf) is less restrictive thad (7f).
In conclusion: Thm[13 is at least as good as Thin. 1.

B. Thm[3B Vs. Prod.]2
First consider[(12d) and (1bd). We begin with the first termttosn RHS of [(12H):
(X4, X3;Y[S2, Va, Xo, W) — I(X1: Y52, Vi, Xo, X3, W) — I(V1, X3; YW, V3)

W [(Vi, X5, Y|, Vo, Xo, W) — I(Vi, X33 YW, V)

© 1(vi, X5 0, Xa|Va, W,Y) > 0, (C.3)

where (a) follows from the chain rule for mutual informatioand (b) follows from the Markov relationship
(Sa, X2) « (Va, W) « (V1, X3). Next, consider the second term on the RHS[of (12d):
(X1, X3; Y81, Va, Xo) + I(X1; Y52, Vi, Xo, X3, W) — I(X1; YS9, Vi, Xo, X3, W) — I(V1, X3; Y|V, W)

W I(X1:Y|S1, Vo, X1, Xo, W) + I(Vi, X3; Y[S1, Va, Xo, W) — I(Vi, X5 Y |W, V)

© (X1 Y|S0, Vo, X1, Xo, W) + I(Vi, X33 81, Xa|Va, W, Y) > 0, (C.4)

where (a) follows from the chain rule for mutual informaticend (b) follows from the Markov relationship
(S1,X2) < (Vo,W) < (V1, X3). As the LHS of [(I12H) and{15d) is the same, we conclude {hafl)(i2 less
restrictive than[(I3d). Using similar arguments it follothat [12&) is less restrictive thdn (15€). For the expreassio
involving H (S, S2|W), note that the RHS of (IPf) equals to the RHS[of [15f). Thefae conclude that Thr] 3
is at least as good as Prdg. 2.
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APPENDIXD

PROOF OFPROPOSITIONZ
It is enough to show that if at least one of the conditions[ih l{@lds with opposite strict inequality, then

reliable transmission is not possible via the scheme of THnThe same statement holds fot (9) and Thin. 2.
Furthermore, note that for the deterministic PSOMARC dptin Table[l, and for the pair of correlated sources
specified in Tabl&]l, reliable transmission to the destomatequires assistance from the relay. To see this note that
H(S1,52) = log, 3, while |Vs| = 2, which implies that the sources cannot be decoded at thindsh without
the help of the relay. In AppendXDIA we show that when theesah of Thm[L is used, if the sources can be
decoded at the relay then thegnnotbe decoded at the destination, i.e., conditfom (7f) holdb wirict inequality.
In Appendix[D-B we show that when the scheme of Thin. 2 is udeeh the sources cannot be decoded at the
relay, i.e., condition[(9c) holds with strict inequality.
A. Transmission Using the Scheme of Thedrem 1

We begin with specializing the conditions of Thid. 1 In](7&P-to the PSOMARC by lettingVs = W = ¢
and I(X3;Yg) = Cs. From the orthogonality of the relay-destination link itflfevs that the scheme of Thral 1
is optimized by lettingly = V2 = ¢. This fact and the resulting sufficient conditions are statethe following

proposition:

PropositionD.1. The sufficient conditions of Thnl 1 i {[7a)}(7f), speciatize the PSOMARC, are optimized by

letting V1 = Vs = ¢. The resulting conditions are:

H(81|S2) < min{I(Xl; }/3|S2,X2), I(Xl; Y5|81,X2) + 03} (Dla)
H(Sg|51) < min{I(Xg; Yg|Sl,X1), I(Xg; Y5|52,X1) + 03} (D.1b)
H(Sl, Sg) < min{I(Xl,Xg; }/3), I(Xl,Xg; Y5|Sl, 52) + 03}, (DlC)

subject to a joint distribution that factorizes as
p(s1, s2)p(x1]s1)p(z2|52)p(Ys, ys|r1, T2). (D.2)
Proof: We begin with the constraints due to decoding at the relagrgiw [7&)-f(7c). For the RHS of condition
(73) (with W3 = ¢) we write:
T(X1; Y3182, VA, Xo, Xs5) & H (Y]S5, Vi, X, X5) — H (Y3[S2, X1, Xa)
< H(Y3[S2. Xa) — H(Ya|S2, X, Xa)
= I(X1; V3|52, Xo), (D.3a)
where (a) follows from the definition of the PSOMARC which ilieg that the Markov chainVi, X3) «
(S2, X1, X2) < Y3 holds; and (b) follows from the fact the conditioning redsi@atropy. Similarly, for the RHS

of conditions [7b)-£(dc) we have:
I(Xo; 3|51, Vo, X1, X3) < I(X2; Y3]S1, X1) (D.3b)

I(X1, X2;Y3|V1, Vo, X3) < I(X1, Xo; Y3). (D.3c)
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Next, consider the constraints due to decoding at the deitim given by [[7H)L£(7f), and recall that for the
PSOMARC the channel output at the destinatibn,is replaced by the pair of channel outp(i&;, Ys). For the
RHS of [Zd) we write:

I(X1, X3; YR, Ys|S1, Vo, X2)

= I(X1;YR,Ys|S1, Vo, Xo) + I(X3; YR|S1, Va, X1, Xo) + I(X3; Ys|S1, Vo, X1, X2, YR)
W (X5 Ye|St, Vo, Xo) + I(X1; Yi|Sh, Vi, Xa, V) + (X Y| Sy, Vi, X1, Xa)
- I(XI;YS|S17 ‘/27X2) + H(YR|S17V27X27YS) - H(YR|S17V27X17X27YS)

+ H(Yr|S1, Vo, X1, Xo) — H(YR|S1, Va, X1, X2, X3)

b
Y (X1;Ys[S1, Vo, Xo) + H(YR|S1, Vo, Xa, Ys) — H(YR|X3)

< (X0 Y5181, Xa) + 1(Xs5 Vi), (D.42)
where (a) follows from the fact thats is uniquely determined byX; and X», and therefore it follows that
I1(X3;Ys|S1, Ve, X1, X2, YR) = 0; (b) follows from the Markov chairt’s « (51, V2, X1, X2) + Yr (which di-
rectly follows from the definition of the conditional didtrition function of the SOMARCp(y g, ys, ys|z1, T2, x3) =
p(yr|z3)p(ys, ys|z1, 22)), and from the Markov chaifSy, V2, X1, X2) < X3 + Yg; and (c) follows from the
arguments leading t6_(D.Ba) and from the fact that conditigreduces entropy. Similarly, for the RHS of conditions
(Z8)-[7F) we have:

I(X2, X3; YR, Ys[S2, V1, X1) < I(X2; Ys|S2, X1) + 1(X3; YR) (D.4b)
I(X1, X2, X3; YR, Ys|S1,S2) < I(X1, X2;Ys|S1,52) + I(X3;YR). (D.4c)
Finally, substitutingl (X3; Yz) = Cs in (BD.4) and combining with{DI3), we obtain the RHSs of cdiudis [D.1).
Note that conditiond (Dl1) are subject to the chain:
p(s1,82,v1,02, 71, T2, Y3, Ys) = p(s1, 52)p(v1)p(z1]s1, v1)p(v2)p(22|s2,v2)p(Ys, ys|z1, v2).

Furthermore, ad (Dl1) is independent(®f,, V») then the resulting chain is:

Z p(s1, 82,01, V2, 1, T2, Y3, Ys) =P(81, $2)p(w1|51)p(22|82)p(y3, ys|z1, 22). (D.5)
(v1,v2)EV1 X V2
Lastly, note that the upper bounds (D.8)=(D.4), subjechtod¢hain[(D.b), are obtained by letting = V> = ¢ in

(@) and [(8). Thus); =V, = ¢ maximizes the sufficient conditions of Thi. 1. [ |
Next, note that the LHS of condition (Dl1c), evaluated foe $ources defined in Tahlg I, equals, 3 bits.

Therefore, for successfully transmittirfy and .S, we must have that the RHS d¢f (Dl1c) is greater than (or equals

to) log, 3. Now, consider the RHS of conditioh (Dl1c) for these sourmed the PSOMARC defined in Talle I

finding the maximum off (X1, X»; Y3) over all p(z1]s1)p(x2|s2) we have:

1(X;1,X9;Y3) = max H(Y3), (D.6)

max
p(z1]s1)p(z2]s2) p(z1]s1)p(z2]s2)

which follows as the channel fro(X, X») to Y3 is deterministic. A3Y;| = 3, it follows that ( ‘m)ai( ‘ ‘?(1/3) =
p(T1]s1)p(T2]52

log, 3 if and only if Pr{Y; = j} = 1/3,j = 0,1, 2. This requires thaPr{(X1, X3) = (0,0)} = Pr{(X1, X3) =
(1,1)} =1/3 andPr{((X1,X2) = (0,1)) U ((X1,X2) = (1,0))} = 1/3. Since the sources distribution is given,
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Pr{(X1, X2) = (i,7)} depends only op(x1|s1)p(z2|s2), which consists of four unknowns. This corresponds to an
algebraic equations system with three equations, four ks, and the constraint that all the variables are in the
range[0, 1]. The two possible solutions of this system, solved uMaghematic, are deterministic mappings
from s; to :171- The expressiod (X1, X»; Ys|S1, S2) + Cs, evaluated using each of these conditional distributions,
equalsl bit. Therefore, the RHS of condition (D]1c), when evaluaisihg these conditional distributions, is strictly
smaller tharlog, 3. This implies that for these sources and PSOMARC, cond{fi@id) holds with opposite strict

inequality, and we conclude that reliable transmissiont@scheme of Thni] 1 is impossible.

B. Transmission Using the Scheme of Thedrem 2
Specializing the conditions of Thrial 2 ih{94)3(9f) to the RBARC by lettingWs =W = ¢ andI(X35;YR) =

Cs, results in the following sufficient conditions:

H(S1]S2) < min{I(X1;Y3|S1, X2), [(X1; Ys|S2, Xa) + C3} (D.7a)
H(SQ|S1) < min{I(XQ; }/3|S27X1), I(XQ; Y5|81,X1) + 03} (D?b)
H(Sl, Sg) < min{I(Xl,Xg; }/3|51, Sg), I(Xl,XQ; YS) + 03}, (D7C)

subject to the input distribution_(0.2).
Consider maximizing the mutual information expressidiX;, X»; Y3|S1,.52) on the RHS of conditior [(D.Tc) for
the considered sources and PSOMARC, ovepé@l |s1)p(x2|s2):

I(X1, X2;Y3]51, 52)

max
p(z1]s1)p(z2]s2)

W hax H(Y3|Sh, Sh)

p(z1]s1)p(z2|s2)

b - o~ ~ o~

o max E p(81,52) - H(Y3|(S1,52) = (51, 52))
p(z1|s1)p(z2ls2) _ _

(81,32)€81 xS2,

p(51,32)#0
(01 o o
S5 > max = > p(ysld1, 52) - logy p(ys|31, 52)
6 (51,82)€S1 xS p(@1]51)p(2|52) Y3E€Y3
1,52 1 2, [
p(51,52)#0
1 - .
6 Z (z |s~m)aé |52) _Z Z p(ys, x1, 2|51, 52) - logy Z p(ys, T1,2[51, 52)
(517(52)68)1;232710 1]51)p(w2|S2 Ys€YVs (x1,T2)EX1 X X2 (z1,m2)EXL X Xa
p(51,82)#0

16| et Di,j 2 Pr{X; = j|S; = 0},4,5 = 0, 1. The following algebraic equations system is solved:
Solve[poo - P10 + Poo - P11 + po1 - P11 == 1&&(1 — poo) - (1 — p10) + (1 —poo) - (1 — p11) + (1 —po1) - (1 — p11) == 1&&
poo - (1 —p1o) +poo (1 —p11) + po1 - (1 —p11) + (1 — poo) - P1o + (1 — poo) - P11 + (1 — po1) - p11 == 1&&
0 <= poo <= 1&&0 <= po1 <= 1&&0 <= p1o <= 1&&0 <= p11 <= 1, {poo, Pot, P10, P11},

to obtain {{poo = 0, po1 = 1,p10 = 0,p11 = 1}, {poo = 1,po1 = 0,p10 = 1,p11 = O}}.

1"This is also validated via an exhaustive search.
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—
S
=

>

(81,32)€S81 xSz,
p(51,32)#0

| =

max
p(z1|31)p(x2|32)

=YD p(@ils)p(walfa)p(ys|zr, we) logy | D pla1|51)p(wald2)p(ys|zr, v2)

Y3€YVs (x1,22)EX X X2 (x1,2)EXT X X2
(e) 1
=5 > pnax > > p(yslzr, @2) -logy [ D pla1)p(wa)p(ys|ar, z2)
(81,?2)68)1><32, Vp(az Y3E€Y3 (11,12)6X1><X2 (x1,2)EX1 X X2
p(51,52)#0

= max H(Y-

oy H(¥2)
D15, (D.8)

where (a) follows from the fact thdlt; is a deterministic function of X, X5); (b) follows from the definition
of conditional entropy; (c) follows from the joint distriban of the sources in Tablelll and the fact that the
maximum of a sum is less than the sum of the maximum of the sundsmdd) follows from the Markov chain
(51, 52) — (X1,X5) — Y3; (e) follows from the fact that sinc&, and 3, appear only in the conditioning of the
conditional distributiongp(z1|51), p(z2|52), the maximizingp(z1|51)p(x2|82) is the same for any paifs;, 52).
Thus, the maximizing(z1|51)p(x2|$2) is independent of the value @§,, 32); finally, (f) follows from [4].

Recall thatH (S;,52) = log, 3 bits. Thus,H (S1,S2) > maxp (g, |s,)p(ws|ss) L (X1, X2; ¥3|S1, 92), and [D.7E)
holds with strict opposite inequality. Therefore we cowéuhat reliable transmission via the scheme of Thm. 2 is

impossible. This concludes the proof of Prip. 4.

APPENDIXE

PrROOF OFPROPOSITIONY

Here, instead of specializing the conditions of THh. 3 to B®OAMRC, we analyze the decoding rules of
Thm.[3 given in[(A1)-{(AR) for a specifig(x;|s;),i = 1,2. Let p(z;]s;),7 = 1,2, be the deterministic distribution
p(x;|si) = 6(x; — s;), whered(z) is the Kronecker Delta function, and s¥f = V, = ¢. Hence, there is no
superposition encoding at the sources, and the coopetagioveen the sources and the relay is based only on the

codeword transmitted by the relay.

A. Encoding at the Relay

Let Q= {1,2,...,2"}, and letfs : (s1,s2) — Q, be the encoding function at the relay. At bldek 1, the relay
transmits the codewortl Assume that at block, b = 2,3, ..., B, B+1, the relay has the estimat&s ,_1,824-1)
of (s1,5—1,82,5—1). Then, at time, the relay transmits the channel codewqsd; = f5(51,5-1,82.4-1), gp—1 € O.
B. Decoding at the Relay

1) Decoding rule: For the mapping defined in Tallk | and the specifiéd;|s;), the relay decoding rulé (A.1)
is specialized to the following decoding rulthe relay decode ,,s2,,) by looking for a unique paifs:,s2) €

S x 8y such thalsy,82,y3,) € AX™ Denote the decoded sequences(®ys, 52.5)-
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2) Error probability analysis: Let &, £ {(glyb,gzyb) #+ (S1,b,Sz,b)}. The average probability of error for
decoding at the relay at blogk Pr(fg), is defined as:

pr(z) £ Z p(s1,6,82,) Pr (5r|51,b, Sz,b)

(81,5,82,5) ESTXSY
< > plsip.s2s) + > p(sips25) Pr (5r|(sl,b7 S2.p) € A:(n))- (E.1)
(s1,6,82,) AL (51,52) (s1,082,)€AL ™ (51,52)
From [29, Thm. 6.9] the first sum il_(B.1) can be boundedbiext, by the union bound we write:

Pr(&l(s1.,520) € AL} < Pr (51,082, Yau) & AL(s14,520) € A;))

+Pr (3(51,52) # (S1,0,82,0) ¢ (81,82, Y35) € AZ™|(51,5,80) € A:(")). (E.2)
For the specifiedh(x;|s;),i = 1,2, and the channel mapping defined in Tabl&7J,is a deterministic function of
the sourcesS; and S». Moreover, there is one-to-one mapping between the souwats (%1, .S2) andYs. Hence,
for each possible source pdif., S2) there is a unique value df;, and we conclude that:
Pr ((S1,b, S0, Y33) & AZ|(s1,,82) € A:(n)) =0. (E.3)
From the one-to-one mapping between the source p8irsS:) andYs, and from the definition of strong typicality,
[29, Ch. 6.1], it follows that:

Pr (3(51752) # (S1,6:82,0) : (81,82, Y35) € A7|(51,4,80,) € A:(n)) =0. (E.4)

Combining [E.2)-HEW) yieIdsPT(z) < ¢ for sufficiently largen. We conclude that the sources of Table Il can be
reliably transmitted over the channel to the relay.
C. Decoding at the Destination

1) Decoding rule:Recall thatg, is available at the destination assuming the relay cogretgtoded the source
sequences. The destination decoding rule of THm. 3,[seé, (&.8pecialized to the following decoding r@the
destination decodés ;, s ), by looking for a unique paif§,,s;) € S;' x Sy such thafsi,82,ys,) € A< ™) and
f3(81,82) = ¢. Denote the decoded sequences(fys, S24).

2) Error probability analysis: Let £; £ {(Slyb, Szyb) # (S1p, 8275)}. Following the same arguments that led
to (EJ), the average probability of decoding error at thstidation at bloclk, Péfz) can be upper bounded as:

PR et 3 psias20) Pr (&l (s10,520) € A1), (E.5)

(Sl,b;52,b)eA:(n)

Using the union boundx (gd|(5175752,b) € Ai(")) can be upper bounded by:
Pr ((Slvb’ s2.0: Ys.0) ¢ A:(n)‘(sl,ba S2.b) € A:("))+

Pr (3@1,@2) # (S1,0,82,0) : {(81,82, Ysp) € AXMW I {f3(81,8) = @ }|(s1,0,82,) € A:(n))- (E.6)
Sincex; = s;,7 = 1,2, andYg is a deterministic function ofX;, X») then as(s1 ,s24) € Ai(") it follows that
(S1,6:82,, Ys,5) € A:™ thus

Pr ((Sl,b, SgJ,,YSJ,) §é A:(")|((sl7b, 5271,) S A:(n)) =0. (E.7)
18This follows from the fact that the relay’s information immsmitted via an orthogonal link.
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The channel to the destination does not provide a one-tav@pping between the paif;, S2) andYs. Let 6(ys)
denote the inverse mapping from the channel oulfuto the sources, e.g#(0) = {(0,0), (0,1)}. From [29, Def.
6.6] it follows that if (s1, s, Ys) € A7 then:
Vysk : (S1k,S2.6) € O(ysk), k=1,2,...,n. (E.8)

Furthermoreyys € Vs : ||0(ys)|| = 2. Therefore, by mapping the two elementségf)s) into different symbols
transmitted from the relay we can guarantee that the camdjtj(s1, $2) = ¢, holds only for the transmitted source
sequence@ Hence, we conclude that the combination of the codewordsinitted by the relay an® g uniquely
identifies the transmitted source pair. Thus,

Pr (3(§1,§2) # (s1,,82,) : {(81,82, Yp) € A:(n)} N{f3(81,82) = Qb}‘(sl,baSQ,b) € A:(n)) =0. (E.9)
Combining [E.)-HEI9) yieldﬂf;) < e for n large enough. We conclude that the sources of Table Il caeltzbly

transmitted over the channel to the destination.

APPENDIXF

PROOFS OFTHEOREMI4IAND PROPOSITIONG
A. Proof of Thm[4

Assume a sequence of encod¢f§),z’ =1,2,3, and decoderg") is specified such thaPe(") — 0 asn — oo.
Fano’s inequality([29, Ch. 2.8], in the context of the cutrecenario, states that:
H(S},S5157,55) < 14 nP{M™ log, |S1 x Sa| £ ny(PM), (F.1)
where~(z) is a non-negative function that approac@;eRSx — 0. We also obtain:
H(ST, 53150, 83) 5 H(sp, spiwn, v S H(Splsg, W, Y™, (F2)
where (@) follows from the fact that conditioning reduces@py, and from the fact tha(ﬁ‘{l, S‘g) is a deterministic
function of (Y™, W"); (b) follows from non-negativity of the entropy functionrfdiscrete sources. Constraihi (P2a)

is a consequence of the following chain of inequalities:

Z (X1 &, X355 Y| S2k, Xo g, Wi)
=1

—~

a

N

|:H(Yk|82,k7X2,ka Wk) - H(Yk|8?7 ngX]ﬁle;la X?]f,la Wna W??;layk717 }/3]?1_1)]

—~
=
=

M= 1>

Y

[H(msg,xg,k, W YRy H(Y,|SP, S, W, W;l,yk—l)}

E
Il
—

(c) n n n|qQn n
:I(SlaW&l;Y |S'2,W)

@
> H(S7[S5, W™) — H(ST|S5, W™, Y™)

(e
> nH(S1|S2, W) —ny(P), (F3)
where (a) follows from the memoryless channel assumptiea [(&)) and the causal Markov relati¢8}, S5 W™,

W) < (XF, X5 XE YRL YETY) 0 Y (see [30]); (b) follows from the fact that conditioning rees

19From the fact thaty € Y : ||6(y)|| = 2 it follows that resolving the ambiguity if(y) requires 1 bit per source pair, and therefore, this
information can be transmitted from the relay via the redagtination link with capacity”’s = 1 bit.
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entropy; (c) follows from the fact thak, ;, is a deterministic function of3; (d) follows from the non-negativity
of the mutual information; and (e) follows from the memosgdesources and side information assumption and from
EDNHED).

Following arguments similar to those that led ffo {F.3) weaoht

1 n
H(Sa]51, W) < > I(Xok, Xa s Vel Sup, Xox, Wi) +9(P™) (F.4a)
k=1
Ly (n)
H(S1, 8 W) < — 3 T(Xu, Ko, Xa s Ye | Wi) +(P). (F.4b)
k=1

Note that the following three expressiod$.X1 x, X3 k; Y |S2.k, X2,k Wi)s I(Xo k, X355 Y| S1,k, X1,6, W), and
I(X1 k, Xo,k, X3.1; Y| W), depend on the marginal conditional distribution:
p(Il,k,IQ,k,I3,k|51,k, SQ,k) = p(xl.,k,IQ,k|51,k752,k)p($3,k|51,k, 52,k7$1,k7$2,k)7
and onp(syk, S2,k, W) and p(yk|x1 k, T2k, T2, ). Moreover, note thafX; ; is a function of S} while X, is a
function of S, and therefore the Markov chain ih{19) holds. Thus, it felicthat:
P(T1,1, T2,k [81,k, 82,6) € Bx,x518:5, € By, v, 55+ (F.5)
Next, we introduce the time-sharing random varia@leiniformly distributed over1,2,...,n} and independent

of all other random variables. We can write the following:

1 n
- D (X ks X ki Vil So ks Xo b, Wi) = I1(X1,0, X3,0; Yol S2.0, X2.0. Wa, Q)
k=1

= I(X1, X3;Y[S2, X2, W, Q), (F.6)
whereX; £ X1 g, Xo £ Xog, X3 2 X530, Y £ Yy, S2 2 S2.0 andW £ Wy. Furthermore, since for all values
of ¢ we havep(z1, 4, 2,4|51,4: 52,9 Q@ = k) = p(x1 k, T2 k|51,%, s2,x) Which satisfies[(F]5), then we have that for
k=1,2,...,n it holds that:

P(T1,q, X2,4|51,9: 52,0 Q@ = k) € B;(1X2‘Sls2' (F.7)
Finally, note that for allt, the expressions and structural constraints on the digimito chain are identical. Thus,

repeating the steps leading [0 (F.6) flor (F.4a) and {F.4t3),taking the limitn— oo, leads to the constraints in(22).

B. Proof of Proposition 16
First, define the auxiliary RW;, £ (ngl,ig’fl‘l),k = 1,2,...,n. Constraint[(25a) is a consequence of the

following chain of inequalities:
n

Z I( X155 Ye, Y3 1]S2,6, Xo ok, Wi, Vi)
=1

—

1

a

[H(Yk, Y3 1|92,k Xog, Wi, W3'y, Yglffl)

=~
Il
—

— H (Vi Ya sl Sa, XEy, X5 X5 Wi Wi, YR i)

V=
3

(e, Ya kS5, X YL WP W, VETY)

el
Il
—

- H(kaY3-,k|8?7ngXf,leg,leg,lv an nglaykilvyglffl)}

October 3, 2018 DRAFT



38

A
Ve

> [H (Y Yol S5, W Wit YEL VT = H(YVe, Ya ST, S5, W W, VAL Vi)
k=1

> H(Sy|Sy, W™, W) — H(ST|Sy, W™, Wi, Y™
(d)
> nH(S1|S2, W, W) — nry(P™), (F.8)

where (a) follows from the definition of, the fact thatX} , is a deterministic function o(ngl,}g’ffl) and
from the memoryless channel assumption, Eée (1); (b) fellivam the fact that conditioning reduces entropy and,
[30]; (c) follows from the fact thatX, ;, is a deterministic function of3, and from the property that conditioning
reduces entropy; (d) follows again from the fact that cdodihg reduces entropy, the memoryless sources and side
information assumption, an (F.10—(F.2).

Following arguments similar to those that led fo [F.8) we afmo show that:

1 n
H (82|51, W, Ws) < — > I(Xok; Ve, Ya il S1k, X1k, Wi, Vie) +7(P) (F.9a)
k=1
1 n
H(S1, 82| W, Ws) < — 3 " T(Xy, Xogi Vi, Ya [ Wi, Vie) + (P, (F.9b)
k=1

Next, we define the time-sharing random variafleuniformly distributed over1,2,...,n} and independent of

all other random variables. We can write the following:

1 n
- D (X0 k3 Vi, Ya el ok, Xoge, Wi, Vi) = 1(X1,05 Yo, Y3,0152,0, X2,0, Wa, Vi, Q)
k=1

:I(Xl;ya}/3|527X21VV7V)7 (Flo)
where X1 £ X109, Xo £ X0, Y £2Yg, Y3 £ Y30, S2 2 Saq, W 2 Wg andV £ (Vg, Q). Since(X1 x, Xo.1)
and X3 ;, are independent givef; i, S2 k, Vi), for o = (v, k) we have:

Pr (X1 =21, X2 = 22, X3 = 23]S1 = 51,52 = 52,V = 1)

=Pr (Xl =x1,Xg = $2|Sl =51,5 =59,V = T)) Pr (X3 = 1‘3|V = T)). (Fll)
Hence, the probability distribution is of the form given Bdj. Finally, repeating the steps leading fo (F.10) for
(E93) and[(EQ9b), and taking the limit— oo, leads to the constraints ih_(25).
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