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Abstract—A sharp upper bound for the maximum integer not
belonging to an ideal of a numerical semigroup is given and the
ideals attaining this bound are characterized. Then the result
is used, through the so-called Feng-Rao numbers, to bound the
generalized Hamming weights of algebraic-geometry codes. This
is further developed for Hermitian codes and the codes on one of
the Garcia-Stichtenoth towers, as well as for some more general
families.
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AG code, isometry-dual sets of AG codes, generalized Ham-
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I. INTRODUCTION

The generalized Hamming weights of a linear code are the

minimum size of the support of the linear subspaces of the

code of each given dimension. They have many applications

in a variety of fields of communications. The notion was first

used by Wei [40] to analyze the performance of the wire-

tap channel of type II introduced in [34] and in connection

to t-resilient functions. See also [28]. The connections with

the wire-tap channel have been updated recently in [37],

this time using network coding. The notion itself has also

been generalized for network coding in [30]. The generalized

Hamming weights have also been used in the context of list

decoding [21], [20]. In particular, Guruswami shows that his

(e, L)-list decodibility concept for erasures is equivalent with

the generalized Hamming weights for linear codes. Finally, the

generalized Hamming weights also appear for bounding the

covering radius of linear codes [24], and recently for secure

secret sharing based on linear codes [10], [26].
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A small part of the results presented in this paper (Section II and a reduced
version of Theorem 11) was presented in the Forum ”Galois Geometries and
Applications” held at the Royal Flemish Academy of Belgium for Science
and the Arts in 2012 [5].

In this contribution, we deal with the generalized Hamming

weights of one-point AG codes from the perspective of the

associated Weierstrass semigroup, that is, the set of pole

orders of the rational functions having a unique pole at the

defining one point. A numerical semigroup is a subset of

the nonnegative integers N0 that contains 0, is closed under

addition, and has a finite complement in N0. The elements

in this complement are called the gaps of the semigroup and

the number of gaps is called the genus. The maximum gap is

usually referred to as the Frobenius number of the semigroup

and the conductor is the Frobenius number plus one. By the

pigeonhole principle it is easy to prove that the Frobenius

number is at most twice the genus minus one, and there

are semigroups, called symmetric semigroups, attaining this

bound.

An ideal of a numerical semigroup is a subset of the

semigroup such that any element in the subset plus any

element of the semigroup add up to an element of the subset.

Again the ideal will be a subset of N0 with finite complement

in it. Our first result is an analogue of the upper bound on the

Frobenius number of the semigroup, for the largest integer not

belonging to an ideal, which will also be called the Frobenius

number of the ideal. Indeed, we prove that it is at most the size

of the complement of the ideal in the semigroup plus twice the

genus minus one (Theorem 3). This generalizes the bound on

the Frobenius number of the semigroup since that bound can

be derived from this bound by taking the ideal to be the whole

semigroup. Then we characterize the ideals whose Frobenius

number attains the bound. It turns out that the set of codes in

a sequence of one-point AG codes are pairwise isometric to

the set of duals of the same codes if and only if the set of

pole-orders defining the codes is exactly the complement of

one such ideal [19].

A nice tool for tackling the generalized Hamming weights

for AG codes are the generalized order bounds introduced in

[22], involving Weierstrass semigroups. In [13], a constant

depending only on the semigroup and the dimension of the

Hamming weights was introduced, from which the order

bounds could be completely determined for codes of rate low

enough. This constant was called Feng-Rao number. In the

present contribution, using the upper bound on the Frobenius

number of an ideal, we derive a lower bound on the Feng-Rao

numbers and consequently a new bound on the generalized

Hamming weights (Theorem 11, Corollary 13). This is done by

analyzing the intervals of consecutive gaps of the Weierstrass

semigroup. Consecutive gaps were already used in [16] for

bounding the minimum distance of codes and in [39] for

bounding the generalized Hamming weights, in this case for

http://arxiv.org/abs/1706.09770v1
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primal codes. In the last section, we study the intervals of

consecutive gaps for Hermitian codes and for codes in one of

the Garcia-Stichtenoth towers of codes attaining the Drinfeld-

Vlăduţ bound, as well as for their respective generalizations to

semigroups generated by intervals and inductive semigroups.

II. THE FROBENIUS NUMBER OF AN IDEAL

From now on, Λ will denote a numerical semigroup and

the elements of Λ are denoted {λ0 = 0 < λ1 < . . . }.

The Frobenius number is F , the conductor is c, and the

genus is g. Given an ideal I of a numerical semigroup Λ,

we call the size of Λ \ I the difference of I with respect to

Λ. We call the ideals of the form a + Λ for some a ∈ Λ
principal ideals. It was proved in [23, Lemma 5.15] that the

difference of the principal ideal a + Λ is exactly a. So, for

principal ideals, the Frobenius number of the ideal is at most

the difference plus twice the genus of the semigroup minus

one. In Theorem 3, we will prove that the same holds for any

ideal of a numerical semigroup. Then we will characterize the

semigroups for which the inequality is indeed an equality.

A. An upper bound for the Frobenius number of an ideal

Define the set of divisors of λi by

D(i) = {λj 6 λi : λi − λj ∈ Λ}

and νi = #D(i) for i ∈ N0. Some results related to the

sequence νi and also to its applications to coding theory can

be found for instance in [25], [3], [4], [29], [31], [32], [33].

Barucci [2] proved the next result.

Lemma 1. Any ideal of a numerical semigroup is an inter-

section of irreducible ideals and irreducible ideals have the

form Λ \D(i) for some i.

The next result was proved in [23, Theorem 5.24].

Lemma 2. Let g(i) be the number of gaps smaller than λi

and G(i) the number of pairs of gaps adding up to λi. Then

νi = i− g(i) +G(i) + 1.

Now we can state the main result of this section.

Theorem 3. Suppose that a numerical semigroup has genus

g. Suppose that I is an ideal of the semigroup with difference

d. Then, the Frobenius number of I is at most d+2g−1. That

is, d+ 2g + i ∈ I for all i > 0.

Proof: If two ideals satisfy the result, then their intersec-

tion also satisfies it. So by Lemma 1, it suffices to prove the

result for irreducible ideals. Now we want to prove the result

for the ideal I = Λ\D(i). That is, νi+2g > max{c, λi+1},

where c is the conductor of Λ. If c > λi + 1 then we are

done since c 6 2g. Suppose then that λi + 1 > c. Then

g(i) = g, λi = i + g, and hence by Lemma 2, νi + 2g =
(i−g+G(i)+1)+2g = i+g+1+G(i) = λi+1+G(i) > λi+1.

B. Ideals attaining the upper bound

We will devote this section to characterize the ideals of

semigroups that attain the upper bound on the Frobenius

number of the ideal. We first need some preliminary lemmas.

Lemma 4. If G(i) = 0 then λi > c.

Proof: If G(i) = 0 then, since 1, . . . , λ1 − 1 are gaps,

λi − λ1 + 1, . . . , λi − 1 are non-gaps. But also λi ∈ Λ so

the interval [λi − λ1 + 1, . . . , λi] is included in Λ. Now, by

adding multiples of λ1 to the elements in this interval we get

the whole set of integers λi + k with k > 0. Then λi > c.

Lemma 5. G(i) = 0 if and only if {λi − F} ∪ {λi −F + h :
h 6∈ Λ, F − h 6∈ Λ} ⊆ Λ.

Proof: Suppose G(i) = 0. Then obviously λi − F ∈ Λ.

Now suppose that h 6∈ Λ, F − h 6∈ Λ. We need to see that

λi − F + h ∈ Λ. But λi − F + h = λi − (F − h) ∈ Λ since

G(i) = 0 and F − h 6∈ Λ. On the other hand, suppose that

{λi−F}∪{λi−F +h : h 6∈ Λ, F −h 6∈ Λ} ⊆ Λ and we want

to prove that G(i) = 0. If G(i) 6= 0 then there exists a gap h′

such that λi−h′ is a gap. But λi−h′ = (λi−F )+ (F −h′).
Since λi−F ∈ Λ by hypothesis, F −h′ must be a gap. Let us

call this gap h = F−h′. Then both h and F−h = h′ are gaps

and, by the hypothesis, λi−F+h ∈ Λ. But λi−F+h = λi−h′

is a gap, a contradiction. Then G(i) = 0.

Lemma 6. If G(i) = 0 then Λ\D(i) = {λi−h : h ∈ Z\Λ}.

Proof: By Lemma 4, we know that λi > c. To see the

inclusion ⊇ suppose that h ∈ Z\Λ. If h < 0 then λi−h > λi

and thus λi ∈ Λ \ D(i). If h > 0 then h < c and, since

λi > c, λi − h > 0. Then λi − h ∈ Λ because G(i) = 0.

Finally λi − h 6∈ D(i) by definition of D(i). For the reverse

inclusion, suppose that λ ∈ Λ\D(i). If λ > λi then λ = λi−h
with h < 0 and so h ∈ Z \ Λ. If λ < λi then λi − λ is a gap

h because otherwise λ ∈ D(i). So, λ ∈ {λi − h : h ∈ Z \Λ}.

Theorem 7. Suppose that Λ is a numerical semigroup of genus

g. Let I be an ideal of Λ with difference d > 0. Then the next

statements are equivalent:

1) The Frobenius number of I is exactly d+ 2g − 1.

2) I = Λ \D(i) for some i with G(i) = 0.

3) Λ\I = Λ∩((d+2g−1)−Λ) = {λ ∈ Λ : d+2g−1−λ ∈
Λ}

4) I = {λi − h : h ∈ Z \ Λ} for some i with G(i) = 0.

5) {a + h : h 6∈ Λ, F − h 6∈ Λ} ⊆ Λ and I = (a + Λ) ∪
{a+ h : h 6∈ Λ, F − h 6∈ Λ} for some a ∈ Λ, a > 0.

Proof: (1)⇐⇒(2): Suppose first that I = Λ \ D(i) for

some i with G(i) = 0. Then d = νi. Also, by Lemma 4,

g(i) = g and λi = i + g. Now, by Lemma 2, d + 2g − 1 =
λi 6∈ I .

Conversely, suppose that the Frobenius number of I is d+
2g − 1. If I is a proper intersection of two ideals I ′ and I ′′

with difference d′ and d′′ respectively, then I has difference d
strictly larger than d′ and strictly larger than d′′. If d+2g− 1
does not belong to I then it does not belong either to I ′ or

to I ′′, but d + 2g − 1 is strictly larger than d′ + 2g − 1 and
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strictly larger than d′′ + 2g− 1, contradicting Theorem 3. So,

I must be, by Lemma 1, Λ \D(i) for some i.
Since I = Λ \ D(i), it holds d = νi. If λi < c, then

νi + 2g − 1 > 1 + 2g − 1 = 2g > c and so d + 2g − 1 ∈ I ,

which contradicts our assumption. Therefore λi > c. Then

νi = i−g+G(i)+1 by Lemma 2. So d+2g−1 = i+g+G(i) =
λi +G(i). Since d+ 2g − 1 6∈ I , it follows that G(i) = 0.

(2)⇐⇒(3) is immediate by replacing i by d+ g − 1.

(2)⇐⇒(4) follows immediatelly from Lemma 6.

(4)⇐⇒(5) follows from Lemma 5, by setting a = λi − F ,

and using the equality {λi − h : h ∈ Z \Λ} = {a+ (F − h) :
h ∈ Z \Λ}, and the fact that {F − h : h ∈ Z \Λ} = Λ∪ {h :
h 6∈ Λ, F − h 6∈ Λ}.

As an example, consider the semigroup

Λ = {0, 4, 5, 8, 9, 10, 12, 13,→}.

We will list all the ideals I satisfying d + 2g − 1 6∈ I (d the

difference of I). Since the largest i for which G(i) > 0 is 16
as 11 + 11 = 22 = λ16, all ideals I = Λ \D(i) with i > 17
attain the bound. It remains to see what indices i between 6
and 15 satisfy G(i) = 0.

For i = 6, G(i) > 0 since λi = 12 = 11 + 1.

For i = 7, G(i) > 0 since λi = 13 = 11 + 2.

For i = 8, G(i) > 0 since λi = 14 = 11 + 3.

For i = 9, G(i) = 0. Indeed, {15 − 1 = 14, 15 − 2 =
13, 15− 3 = 12, 15− 6 = 9, 15− 7 = 8, 15− 11 = 4} ⊆ Λ.

For i = 10 G(i) = 0. Indeed, {16 − 1 = 15, 16 − 2 =
14, 16− 3 = 13, 16− 6 = 10, 16− 7 = 9, 16− 11 = 5} ⊆ Λ.

For i = 11 G(i) > 0 since λi = 17 = 11 + 6.

For i = 12 G(i) > 0 since λi = 18 = 11 + 7.

For i = 13 G(i) = 0. Indeed, {19 − 1 = 18, 19 − 2 =
17, 19− 3 = 16, 19− 6 = 13, 19− 7 = 12, 19− 11 = 8} ⊆ Λ.

For i = 14 G(i) = 0. Indeed, {20 − 1 = 19, 20 − 2 =
18, 20− 3 = 17, 20− 6 = 14, 20− 7 = 13, 20− 11 = 9} ⊆ Λ.

For i = 15 G(i) = 0. Indeed, {21 − 1 = 20, 21 − 2 =
19, 21−3 = 18, 21−6 = 15, 21−7 = 14, 21−11 = 10} ⊆ Λ.

Hence, all ideals attaining the bound in Theorem 3 are

I9 = Λ\D(9) = {4, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, . . .},

with D(9) = {0, 5, 10, 15}, d= 4, d+ 2g − 1 = 15;

I10 = Λ\D(10) = {5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, . . .},

with D(10) = {0, 4, 8, 12, 16}, d= 5, d+ 2g − 1 = 16;

I13 = Λ \D(13) = {8, 12, 13, 16, 17, 18, 20, 21, 22, . . .},

with D(13) = {0, 4, 5, 9, 10, 14, 15, 19}, d = 8, d+ 2g − 1 =
19;

I14 = Λ \D(14) = {9, 13, 14, 17, 18, 19, 21, 22, . . .},

with D(14) = {0, 4, 5, 8, 10, 12, 15, 16, 20}, d = 9, d + 2g −
1 = 20;

I15 = Λ \D(15) = {10, 14, 15, 18, 19, 20, 22, . . .},

with D(15) = {0, 4, 5, 8, 9, 12, 13, 16, 17, 21}, d = 10, d +
2g − 1 = 21;

I17 = Λ \D(17) = {12, 16, 17, 20, 21, 22, 24, . . .},

with D(17) = {0, 4, 5, 8, 9, 10, 13, 14, 15, 18, 19, 23}, d = 12,

d + 2g − 1 = 23; and Λ \ D(i) for all i > 17. In this last

case, D(i) = {0, 4, 5, 8, 9, 10, 12, 13, . . . , i + 6 − 12, i + 6 −
10, i+ 6− 9, i+ 6− 8, i+ 6− 5, i+ 6− 4, i+ 6}, d = i− 5,

d+ 2g − 1 = i+ 6.

In the next corollary we prove that for a symmetric semi-

group, the ideals attaining the bound on the Frobenius number

of the ideal are exactly the principal ideals.

Corollary 8. Let Λ be a symmetric numerical semigroup with

Frobenius number F and genus g. Suppose that I is an ideal

of Λ with difference d. Then the Frobenius number of I is

d+ 2g − 1 if and only if I is principal.

Proof: It follows from Theorem 7 and the fact that for

any gap h of a symmetric semigroup, F − h ∈ Λ.

This can be checked again with the previous example since

the semigroup Λ in there is symmetric. Notice though that the

hypothesis of being symmetric is necessary. For instance, take

Λ = {0, 4, 8, 9, . . .} which has genus 6 and Frobenius number

7 and so it is not symmetric. Consider its ideal

I = Λ\D(10) = Λ\{0, 4, 8, 12, 16}= {9, 10, 11, 13, 14, 15, 17, . . .}

Its difference is d = 5 and its Frobenius number is d+2g−1 =
16. However, I is not

9 + Λ = {9, 13, 17, 18, . . .}.

The elements 10, 11, 14, 15 have to be included in I in order

to have d + 2g − 1 6∈ I . Hence, I is not principal as I =
(9 + Λ) ∪ {10, 11, 14, 15}.

Remark 9. It is shown in [19] that the ideals attaining the

bound in Theorem 3 arise in the characterization of sequences

of one-point AG codes that are auto-dual in the following

sense. Two codes C,D ⊆ F
n
q are said to be x-isometric, for

x ∈ F
n
q if and only if the map χx : Fn

q → F
n
q given by the

component-wise product χx(v) = x ∗ v satisfies χx(C) = D.

Then, a sequence of codes (Ci)i=0,...,n is said to satisfy the

isometry-dual condition if there exists x ∈ (F∗
q)

n such that

Ci is x-isometric to C⊥
n−i for all i = 0, 1, . . . , n. Now let

P1, . . . , Pn, Q be different rational points of a (projective, non-

singular, geometrically irreducible) curve with genus g and

define Cm = {(f(P1), . . . , f(Pn)) : f ∈ L(mQ)}. Note that

it can be the case that Cm = Cm−1. Let W be the Weierstrass

semigroup at Q and let W ∗ = {0} ∪ {m ∈ N,m > 0 : Cm 6=
Cm−1} = {m0 = 0,m1, . . . ,mn}. Then W \W ∗ is an ideal

of W (this is stated in different words in [19, Corollary 3.3.]).

In particular, Cm0 , Cm1 , . . . , Cmn
satisfies the isometry-dual

condition if and only if n+2g− 1 ∈ W ∗, that is, if and only

if W \ W ∗ hits the bound in Theorem 3. This is proved in

[19, Proposition 4.3.].

III. A LOWER BOUND ON THE FENG-RAO NUMBERS

A. Feng-Rao numbers

Suppose Λ = {λ0 = 0 < λ1 < . . . } is a numerical

semigroup. In coding theory, the ν sequence of Λ defined

above is very important. In particular, for an algebraic curve

with Weierstrass semigroup Λ at a rational point P , the order
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(or Feng-Rao) bound on the minimum distance of the duals of

the one-point codes defined on P by the evaluation of rational

functions having only poles at P of order at most λm is defined

as δ(m) = min{νi : i > m} [15], [25], [23]. Some results on

its computation can be found in [8], [23], [3], [29], [31], [32],

[33].

A generalization of this bound is the r-th order bound on the

generalized r-th generalized Hamming weight. For this define

D(i) as before and

D(i1, . . . , ir) = D(i1) ∪ · · · ∪D(ir).

Then the r-th order bound is defined as

δr(m) = min{#D(i1, . . . , ir) : i1, . . . , ir > m}.

This definition was introduced in [22]. It is proved by Farrán

and Munuera in [13] that for each numerical semigroup Λ
and each integer r > 2 there exists a constant Er = E(Λ, r),
called r-th Feng-Rao number, such that

1) δr(m) = m+2−g+Er for all m such that λm > 2c−2
[13, Theorem 3],

2) δr(m) > m+ 2− g + Er for any m such that λm > c
[13, Theorem 8],

where c and g are respectively the conductor and the genus of

Λ. Note that this is an extension of the Goppa bound for the

case r = 1, with Er = 0 [23, Theorem 5.24].

Furthermore, Er satisfies

3) r 6 Er 6 λr−1 if g > 0 (and r > 2) [13, Proposition

5],

4) Er = λr−1 if r > c [13, Proposition 5],

5) Er = r − 1 if g = 0.

Some further results related to the Feng-Rao number can be

found in [13], [14], [11]. Here we use the main result in the

previous section to obtain a lower bound on Er, which is

strictly better than the bound Er > r for r > 2 and for

semigroups with more than two intervals of gaps.

B. Bound on the Feng-Rao numbers

For our bound on the Feng-Rao numbers we first need the

next lemma.

Lemma 10. Consider the set of sets

A(a1, ar, r, ℓ) = {A ⊂ N0 : #A = r,

min(A) = a1,max(A) = ar,

A contains at least ℓ consecutive integers}.

For each A ∈ A define α(A) = max{a ∈ A : a − ℓ +
1, . . . , a ∈ A}. If A has minimum α(A) among the sets in A,

then

α(A) = max{a1 + ℓ− 1, a1 + (ℓ − 1)(a1 − ar) + ℓ(r − 1)}.

Proof: Suppose that A has minimum α(A) among the

sets in A. If a1, a1 + 1, . . . , a1 + (ℓ − 1) ∈ A and α(A) =
aℓ = a1 + ℓ − 1, this means that there must be at least r−ℓ

ℓ−1
integers in the interval [a1, ar] not belonging to A since for

each ℓ− 1 integers remaining in A there must be at least one

element not in A. But the number of integers in [a1, ar] \ A

is ar − a1+1− r. So, ar − a1+1− r > r−ℓ
ℓ−1 or, equivalently,

ℓ−1 > (ℓ−1)(a1−ar)+ℓ(r−1). Hence, α(A) = a1+ℓ−1 =
max{a1 + ℓ− 1, a1 + (ℓ− 1)(a1 − ar) + ℓ(r − 1)}.

Otherwise, we can assume that α(A) > a1+(ℓ−1). In this

case, A must be equal to

{a1, a1 + 1, a1 + 2, . . . , α(A) = ar − ℓt} ∪ {ar − ℓt+ 2, . . . , ar − ℓ(t− 1)}

∪ · · · ∪ {ar − 2ℓ+ 2, . . . , ar − ℓ} ∪ {ar − ℓ + 2, . . . , ar},

for t the number of integers in the interval [a1, ar] not

belonging to A, that is, t = ar − a1 + 1 − r. So, α(A) =
a1 +(ℓ− 1)(a1− ar)+ ℓ(r− 1) = max{a1+ ℓ− 1, a1+(ℓ−
1)(a1 − ar) + ℓ(r − 1)}.

Theorem 11. Suppose that ℓ > 1 is an integer and that nℓ−1

is the number of intervals of at least ℓ − 1 gaps of Λ. Then

the following inequality holds.

Er > min

{

r − 2 +

⌈

r

ℓ− 1

⌉

, r − 1 +

⌈

(ℓ − 1)nℓ−1

ℓ

⌉}

.(1)

Proof: By definition of δr(m), there exist integers

i1, . . . , ir with m < i1 < · · · < ir such that

δr(m) = #D(i1, . . . , ir). The integers i1, . . . , ir minimize

#D(i1, . . . , ir). Denote A the set {i1, . . . , ir}. Suppose that

m is an integer with m > 2c− 1− g. By the definition of Er,

δr(m) = m+ 2− g + Er.

Since A minimizes #D(i1, . . . , ir), it necessarily holds that

i1 = m+1. Applying Theorem 3 to the ideal Λ\D(i1, . . . , ir),
we get (m+2−g+Er)+(2g−1) > λir = g+ir. Reorganizing

the inequality gives

ir 6 m+ 1 + Er. (2)

Suppose now that there are no ℓ consecutive integers in A.

Then

ir > m+ 1 + r − 1 +

⌈

r − (ℓ− 1)

ℓ − 1

⌉

. (3)

Now, by (2), Er > r− 2+
⌈

r
ℓ−1

⌉

. Suppose on the other hand

that there are at least ℓ consecutive integers in A. Let ij be

the maximum integer in A such that ij − ℓ + 1, . . . , ij ∈ A
and so ij−ℓ+1 = ij − ℓ+ 1, . . . , ij−1 = ij − 1 and

λij−ℓ+1
= λij − ℓ+ 1, . . . , λij−1 = λij − 1.

Let

Γ = {λ ∈ Λ : λ+ 1, . . . , λ+ ℓ− 1 6∈ Λ}.

In particular, if λ ∈ Γ then λ < c, for c the conductor of Λ.

Obviously #Γ = nℓ−1. If λ ∈ Γ then

(λij − 1)− λ ∈ D(ij−1) \D(ij),

(λij − 2)− λ ∈ D(ij−2) \D(ij),

...

(λij − ℓ+ 1)− λ ∈ D(ij−ℓ+1) \D(ij).

and so

{λij−1−λ, λij−2−λ, . . . , λij−ℓ+1−λ} ⊆ D(ij−ℓ+1, . . . , ij−1)\D(ij).

In fact,

∪λ∈Γ{λij−1−λ, . . . , λij−ℓ+1−λ} ⊆ D(ij−ℓ+1, . . . , ij−1)\D(ij)
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and the sets in this union are disjoint. Indeed, for λ, λ′ ∈ Γ,

with λ > λ′, it holds λ − λ′ > ℓ. Then, min{λij − 1 −
λ′, . . . , λij − ℓ+ 1− λ′} = λij − ℓ+ 1− λ′ > λij + 1− λ >
max{λij − 1− λ, . . . , λij − ℓ+ 1− λ}.

So,

#D(i1, . . . , ir) > #D(ij−ℓ+1, . . . , ij) (4)

> (ℓ− 1)nℓ−1 + νij

= (ℓ− 1)nℓ−1 + ij + 1− g.

Since D(i1, . . . , ir) = m + 2 − g + Er we get that m+ 2 −
g + Er > (ℓ− 1)nℓ−1 + ij + 1− g, so

Er > (ℓ − 1)nℓ−1 + ij −m− 1. (5)

Now, by the maximality of j, and by Lemma 10,

ij > max{i1 + ℓ− 1, i1 + (ℓ− 1)(i1 − ir) + ℓ(r − 1)}. (6)

This implies

ij > i1 + ℓ− 1, (7)

and

ij > i1 + (ℓ− 1)(i1 − ir) + ℓ(r − 1). (8)

On one hand, using (5) and (7), we deduce that Er > (ℓ−
1)(nℓ−1 + 1). On the other hand, using (5) and (8), and then

(2),

Er > (ℓ− 1)nℓ−1 + i1 + (ℓ − 1)(i1 − ir) + ℓ(r − 1)−m− 1

= (ℓ− 1)nℓ−1 + (ℓ− 1)(i1 − ir) + ℓ(r − 1)

> (ℓ− 1)nℓ−1 − (ℓ− 1)Er + ℓ(r − 1)

and we conclude that Er > r − 1 +
⌈

(ℓ−1)nℓ−1

ℓ

⌉

.

We have seen that, depending on whether I contains ℓ

consecutive integers or not, either Er > r − 2 +
⌈

r
ℓ−1

⌉

or

Er > max{(ℓ− 1)(nℓ−1 + 1), r − 1 +
⌈

(ℓ−1)nℓ−1

ℓ

⌉

}. So, we

deduce the bounds

Er > min{r − 2 +

⌈

r

ℓ− 1

⌉

, (ℓ− 1)(nℓ−1 + 1)},

Er > min{r − 2 +

⌈

r

ℓ− 1

⌉

, r − 1 +

⌈

(ℓ − 1)nℓ−1

ℓ

⌉

}.

Notice, though, that the second bound is always at least as

good as the first one, so the first one can be ommitted. Indeed,

if r−2+
⌈

r
ℓ−1

⌉

6 r−1+
⌈

(ℓ−1)nℓ−1

ℓ

⌉

, then we are done. On

the contrary, assume that r−2+
⌈

r
ℓ−1

⌉

> r−1+
⌈

(ℓ−1)nℓ−1

ℓ

⌉

.

We need to prove that in this case r − 1 +
⌈

(ℓ−1)nℓ−1

ℓ

⌉

>

(ℓ− 1)(nℓ−1 + 1).

If r − 2 +
⌈

r
ℓ−1

⌉

> r − 1 +
⌈

(ℓ−1)nℓ−1

ℓ

⌉

then
⌈

r
ℓ−1

⌉

>

1+
⌈

(ℓ−1)nℓ−1

ℓ

⌉

which implies that r
ℓ−1 > 1+

(ℓ−1)nℓ−1

ℓ and

so r > (ℓ− 1)(1 +
(ℓ−1)nℓ−1

ℓ ) = (ℓ− 1)((nℓ−1 + 1)−
nℓ−1

ℓ ).

This implies r +
(ℓ−1)nℓ−1

ℓ > (ℓ − 1)(nℓ−1 + 1) and so r −

1 +
⌈

(ℓ−1)nℓ−1

ℓ

⌉

> (ℓ− 1)(nℓ−1 + 1) as desired.

Remark 12. Notice that if r 6 2(ℓ − 1) then the bound in

Theorem 11 does not improve the bound Er > r. So, the

bound makes sense when ℓ < r/2+ 1. The same happens for

nℓ−1 = 0. So, we are interested in the values of ℓ such that

• nℓ−1 > 0
• ℓ < r/2 + 1.

Corollary 13. Let m be such that λm > c and let ℓ > 2. Then

δr(m) > m+2−g+min{r−2+

⌈

r

ℓ− 1

⌉

, r−1+

⌈

(ℓ− 1)nℓ−1

ℓ

⌉

}.

Remark 14. From bound (1), taking ℓ = 2, we deduce that, if

n is the number of intervals of (at least one) gaps of Λ, then

Er > min{2(r − 1), r − 1 + ⌈n/2⌉}. (9)

Remark 15. If r = 2 or n 6 2 then bound (9) equals the

bound Er > r. But in any other case, bound (9) is better.

Corollary 16. If Λ is a semigroup with conductor c and n
intervals of gaps then, for any m with λm > c,

δr(m) >

{

m− g + 2r if r 6 ⌈n/2⌉+ 1,
m− g + r + ⌈n/2⌉+ 1 otherwise.

C. Sharpness of the bound

Analyzing the proof of Theorem 11 we see that the

bound (1) may be sharp only if

1) The inequality in (2), obtained applying Theorem 3 to

the ideal Λ \ D(i1, . . . ir), is indeed an equality. This

means, by applying Theorem 7 to the same ideal, that

D(i1, . . . , ir) = D(ir), and so i1, . . . , ir−1 ⊆ ir−Λ. In

particular, ir − ir−1 > λ1.

2) Either the inequality in (3) or both the inequalities in

(4) and (6) are indeed equalities, which means that the

difference between ir and ir−1 is at most two. So, ir −
ir−1 6 2.

We conclude that the only semigroups for which the bound

may be sharp are hyperelliptic semigroups, that is, semigroups

that contain 2.

It is proved in [14, Theorem 1] that for hyperelliptic

semigroups, Er = λr−1 = 2(r − 1). The bound (1) for the

hyperelliptic semigroup of genus g is

Er >







r − 1 if ℓ > 2
2(r − 1) if ℓ = 2 and r − 1 6 ⌈g/2⌉
r − 1 + ⌈g/2⌉ if ℓ = 2 and r − 1 > ⌈g/2⌉

Hence the bound is sharp if and only if Λ is hyperelliptic,

ℓ = 2, and r 6 1 + ⌈g/2⌉.

D. An example

As an example consider the semigroup

{0, 3, 6, 9, . . . , 36, 37, 38, . . .},

with ℓ = 3. Let us analyze the bounds in (1) and (9) for

different values of r. In this case nℓ−1 = n1 = 12 and so the

bound in (1) is

min{r − 2 +
⌈ r

2

⌉

, r + 7}

while the bound in (9) is

min{2(r − 1), r + 5}.
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Case r = 6: Bound (1) is min{7, 13} = 7 while bound (9)

is min{10, 11} = 10. So, bound (9) (with the first element

being the minimum) is better than bound (1).

Case r = 8: Bound (1) is min{10, 15} = 10 while bound

(9) is min{14, 13} = 13 So, bound (9) (with the second

element being the minimum) is better than bound (1).

Case r = 15: Bound (1) is min{21, 22} = 21 while bound

(9) is min{28, 20} = 20 So, bound (1) (with the first element

being the minimum) is better than bound (9).

Case r = 20: Bound (1) is min{28, 27} = 27 while bound

(9) is min{38, 25} = 25 So, bound (1) (with the second

element being the minimum) is better than bound (9).

IV. EXAMPLES OF THE COMPUTATION OF THE NUMBER OF

INTERVALS OF GAPS

Now we analyze nℓ for two classical families of codes,

that is, for Hermitian codes and for codes in one of the

Garcia-Stichtenoth’s towers of codes attaining the Drinfeld-

Vlăduţ bound, as well as their respective generalizations to

semigroups generated by intervals and inductive semigroups.

A. Hermitian codes

Let q be a prime power. The Hermitian curve over Fq2 is

defined by the affine equation

xq+1 = yq + y

and it has a single rational point at infinity and q3 more

rational points. Its weight hierarchy has already been studied

in [41], [1]. However, for its simplicity, we wanted to give a

description of nℓ. The Weierstrass semigroup at the rational

point at infinity is generated by q and q + 1 [38], [23]. Some

results concerning this semigroup can be found in [6] and, in

particular, concerning the weight hierarchy, in [12].

The semigroup generated by q and q + 1 is {0} ∪ {q, q +
1}∪{2q, 2q+1, 2q+2}∪· · ·∪{(q−2)q, (q−2)q+1, . . . , (q−
2)q + (q − 2) = (q − 1)q − 2} ∪ {j ∈ N0 : j > (q − 1)q}. It

is easy then to see that the lengths of the intervals of gaps, as

they appear in the semigroup, are q − 1, q − 2, . . . , 1. So,

nℓ =

{

q − ℓ if 1 6 ℓ 6 q
0 if ℓ > q

B. A generalization: semigroups generated by intervals

The semigroup of the Hermitian curve can be thought as

generated by the interval of length 2 starting at q. Suppose

that a numerical semigroup is generated by the interval of

x integers starting at a: {a, a + 1, . . . , a + x − 1}. These

semigroups can be found, for instance, in [18]. Also, the Feng-

Rao numbers of such semigroups are studied in [11].

In this case, the semigroup is {0} ∪ {a, a+ 1, . . . , a+ x−
1}∪{2a, 2a+1, . . . , 2a+2x− 2}∪ · · ·∪ {ka, . . . , ka+ kx−
k} ∪ {(k + 1)a, . . . , (k + 1)a+ (k + 1)x− (k + 1)} ∪ . . . .

The gap intervals correspond to the sets between ka+kx−
k + 1 and (k + 1)a− 1 for k > 0 and whenever (k + 1)a −

1 > ka + kx − k + 1. The number of gaps of these sets is

(a− 1)− k(x− 1). So,

nℓ = #

{

k such that

{

(a− 1)− k(x− 1) > ℓ
k > 0

}

= #

{

k such that 0 6 k 6
a− 1− ℓ

x− 1

}

=

{ ⌊

a−1−ℓ
x−1

⌋

+ 1 if 1 6 ℓ 6 a

0 if ℓ > a

We see that this result generalizes the one previously found

for Hermitian codes. We leave it as an open problem to

compare the bound proved in Theorem 11, using this value

of nℓ with the results in [11].

C. Codes on the Garcia-Stichtenoth tower of codes

Garcia and Stichtenoth gave in [17] a celebrated tower of

function fields attaining the Drinfeld-Vlăduţ bound, which

became of great importance in the area of algebraic coding

theory. Since then other towers have also been found, although

we will focus on the tower in [17]. It is defined over the finite

field with q2 elements Fq2 for q a prime power. It is given by

F1 = Fq2(x1); Fm = Fm−1(xm), with xm satisfying

xq
m + xm =

xq
m−1

xq−1
m−1 + 1

.

It is shown in [17] that the number of its rational points is

Nq(Fm) > (q2 − q)qm−1 and that the genus gm of Fm is

gm = (q⌊
m+1

2 ⌋ − 1)(q⌈
m−1

2 ⌉ − 1). Hence, the ratio between

the genus g(Fm) and Nq2(Fm) converges to 1/(q − 1), the

Drinfeld-Vlăduţ bound, as m increases. From these curves one

can construct asymptotically good sequences of codes.

For every function field Fm in the tower we distinguish

the rational point Qm that is the unique pole of x1. The

Weierstrass semigroup Λm at Qm in Fm was recursively

described in [35]. Indeed, the semigroups are given recursively

by

Λ1 = N0

Λm = q · Λm−1 ∪ {i ∈ N0 : i > qm − q⌊
m+1

2 ⌋}.
(10)

In [7] a non-recursive description of these semigroups is given

as follows.

Λm =

⌊m
2 ⌋
⊔

i=1

qm−2i+1Ai ⊔ {j ∈ N0 : j > cm}, (11)

where cm is the conductor of Λm, which is qm− q⌊
m+1

2 ⌋, and

Ai = {c2i−1 + j : j = 0, . . . , qi−1(q − 1)− 1}.

From (11) we can deduce that there are exactly #Ai =
qi−1(q − 1) intervals of length qm−2i+1 − 1. Now, if j
is maximum such that ℓ 6 qm−2j+1 − 1 then nℓ =
∑j

i=1 q
i−1(q−1) = qj−1. But ℓ 6 qm−2j+1−1 is equivalent

to j 6
m+1−logq(ℓ+1)

2 and we can take j = ⌊
m+1−logq(ℓ+1)

2 ⌋.

So,

nℓ = q⌊
m+1−logq(ℓ+1)

2 ⌋ − 1. (12)
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D. Inductive semigroups

In [36] an inductive sequence of semigroups is defined as a

sequence for which there exist sequences (am : m ∈ N) and

(bm : m ∈ N), with ambm 6 bm+1 such that Λ1 = N0 and

Λm = amΛm−1 ∪ {n ∈ N0 : n > ambm} or all m > 1. See

also [9], [27].

The semigroups in the previous subsection are an example

of inductive sequence of semigroups with am = q for all

m. In general, if am = q for all m, then the semigroup Λm

equals the disjoint union of the next sets (recall the condition

qbm 6 bm+1 for all m > 1).

Λ(qm−1)
m = {qm−1, 2qm−1, . . . , b2q

m−1},

Λ(qm−2)
m = {b2q

m−1 + qm−2, b2q
m−1 + 2qm−2, . . . , b3q

m−2},

Λ(qm−3)
m = {b3q

m−2 + qm−3, b3q
m−2 + 2qm−3, . . . , b4q

m−3},

...

Λ(q)
m = {bm−1q

2 + q, bm−1q
2 + 2q, . . . , bmq},

Λ(1)
m = {bmq + 1, bmq + 2, . . . }.

So, Λm has b2 intervals of qm−1 − 1 gaps, b3q
m−2−b2q

m−1

qm−2 =

b3 − qb2 intervals of qm−2 − 1 gaps, b4q
m−3−b3q

m−2

qm−3 = b4 −

qb3 intervals of qm−3 − 1 gaps, and so on. In general, it has

bk+1 − qbk intervals of qm−k − 1 gaps, for k > 1, where b1
may be assumed to be 0.

Now, when looking for intervals with at least ℓ consecutive

gaps, we need to take into account that qm−k − 1 > ℓ if and

only if k 6 m − logq(ℓ + 1). Let N = ⌊m − logq(ℓ + 1)⌋.

Then,

nℓ =
N
∑

k=1

bk+1 − qbk

= bN+1 +

N
∑

k=1

(1− q)bk. (13)

Let us check that this result generalizes (12). In fact, for the

inductive semigroups in the previous section, one has bm =
qm−1 − q⌊

m−1
2 ⌋. Substituting this value in (13) we get

nℓ = qN − q⌊
N
2 ⌋ + (1− q)

(

N
∑

k=1

(qk−1 − q⌊
k−1
2 ⌋)

)

= qN − q⌊
N
2 ⌋ − (q − 1)

(

N
∑

k=1

qk−1

)

+ (q − 1)

(

N
∑

k=1

q⌊
k−1
2 ⌋

)

= qN − q⌊
N
2 ⌋ − (q − 1)

qN − 1

q − 1
+ (q − 1)

(

N
∑

k=1

q⌊
k−1
2 ⌋

)

= 1− q⌊
N
2 ⌋ + (q − 1)

(

N
∑

k=1

q⌊
k−1
2 ⌋

)

.

If N is even then

(q − 1)

(

N
∑

k=1

q⌊
k−1
2 ⌋

)

= 2(q − 1)(1 + q + q2 + · · ·+ q
N
2 −1)

= 2(q − 1)
qN/2 − 1

q − 1

= 2(qN/2 − 1),

while, if N is odd, then

(q − 1)

(

N
∑

k=1

q⌊
k−1
2 ⌋

)

= 2(q − 1)(1 + q + q2 + · · ·+ q
N−1

2 −1) + (q − 1)q
N−1

2

= 2(q − 1)
q

N−1
2 −1

q − 1
+ (q − 1)q

N−1
2

= 2(q
N−1

2 − 1) + q
N+1

2 − q
N−1

2

= q
N+1

2 + q
N−1

2 − 2.

In both cases, we obtain that nℓ = q⌊
N+1

2 ⌋−1. Now, substitut-

ing N by its value, we check that nℓ = q⌊
⌊m+1−logq(ℓ+1)⌋

2 ⌋−1.

The floor in the numerator of the exponent is redundant, and

so this result coincides with (12).
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Barcelona. Her main research interests are in the area of coding theory and
discrete mathematics.

Kwankyu Lee received the B.Sc., M.Sc., and Ph.D. degrees in Mathematics
in 1998, 2000, and 2005 respectively, from Sogang University in Korea. He
is an associate professor in the Department of Mathematics and Education at
Chosun University in Gwangju, Korea. His research interests include algebraic
coding theory, cryptography, and discrete mathematics.

Albert Vico-Oton received his PhD in Computer Science in 2013 from the
University Rovira i Virgili, Catalonia, Spain. He is currently a member of the
engineering team at Midokura, working on the innovative Midokura’s software
defining networking solutions for private clouds and data center management.
He also worked as the team leader of the Distributed Applications and
Networks Area - DANA http://dana.i2cat.net at the i2CAT Foundation research
center of Catalonia, where he leaded different network research projects based
on Future Internet with special focus on SDN technologies. His research
interests include software defined networking, network function virtualization,
coding theory, and discrete mathematics.

http://dana.i2cat.net

	I Introduction
	II The Frobenius number of an ideal
	II-A An upper bound for the Frobenius number of an ideal
	II-B Ideals attaining the upper bound

	III A lower bound on the Feng-Rao numbers
	III-A Feng-Rao numbers
	III-B Bound on the Feng-Rao numbers
	III-C Sharpness of the bound
	III-D An example

	IV Examples of the computation of the number of intervals of gaps
	IV-A Hermitian codes
	IV-B A generalization: semigroups generated by intervals
	IV-C Codes on the Garcia-Stichtenoth tower of codes
	IV-D Inductive semigroups

	References
	Biographies
	Maria Bras-Amorós
	Kwankyu Lee
	Albert Vico-Oton


