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Abstract

The algebraic formulation for linear network coding in daymetworks with the links having
integer delay is well known. Based on this formulation, fagigen set of connections over an arbitrary
acyclic network with integer delay assumed for the linkg thutput symbols at the sink nodes, at any
given time instant, is &,~-linear combination of the input symbols across differegnigrations where,
F,~ denotes the field over which the network operajess(prime andm is a positive integer). We
use finite-field discrete fourier transform (DFT) to convéré output symbols at the sink nodes, at
any given time instant, into &,~-linear combination of the input symbols generated durlmg dame
generationwithout making use of memory at the intermediate notlés call this as transforming the
acyclic network with delay intm-instantaneous network® is sufficiently large). We show that under
certain conditions, there exists a network code satisfigimy demands in the usual (non-transform)
approach if and only if there exists a network code satighgimk demands in the transform approach.

When the zero-interference conditions are not satisfiedpmpose three Precoding Based Network
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Alignment (PBNA) schemes for three-source three-destinanultiple unicast network with delay8<
S 3-D MUN-D) termed as PBNA using transform approach and timexiant local encoding coefficients

(LECs), PBNA using time-varying LECs, and PBNA using tramef approach and block time-varying
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LECs. We derive sets of necessary and sufficient conditieruwhich throughputs close tgl',*Tl

/

347 and 57— are achieved for the three source-destination pairs 3aSa83-D MUN-D employing

PBNA using transform approach and time-invariant LECs, BBINA using transform approach and
block time-varying LECs wherey’ is a positive integer. For PBNA using time-varying LECs, vidain
a sufficient condition under which a throughput demand>ef =2, and 22 can be met for the three
source-destination pairs in&S 3-D MUN-D where,n1, ns andng are positive integers less or equal
to the positive integen. This condition is also necessary when + n3 = n; + ny = n where,

ni > ng > ns.

Index Terms

Acyclic network, Delays, Interference, Linear Network @ugl Network Alignment, Transform

Approach.

. INTRODUCTION

The notion of Network Coding was introduced in [1] where tl@acity of wireline multicast
networks is characterized. Scalar linear network coding feaind to achieve the capacity of
multicast networks![[2]. The existence problem of scalaedinnetwork coding for networks
without delay (i.e., instantaneous networks) was condeirteo an algebraic problem inl[3]. In
the meanwhile, it was shown that [4] there exist solvable-muiticast networks where scalar
linear network coding is insufficient. In addition, [4] alsbowed that determining the existence
of linear network coding solution for multiple unicast netnks is NP-hard in general. In[5],
it was conjectured that vector linear network coding suffit@ solve networks with arbitrary
message demands. Subsequently, Dougherty éetlal. [6] dieghtie conjecture by showing that
there exists networks where vector linear network codingsdoot achieve network capacity
and that nonlinear network coding are required in generalvéver, the practicality of linear
network codes led to construction of suboptimal networkesotbr Multiple Unicast networks
based on linear programming| [7].

The concept of interference alignment originally introeddn interference channels| [8] was
applied by Das et all [9]/ [10] in a three-source three-d@sitbn instantaneous multiple unicast
network @-S 3-D I-MUN), where the zero interference conditions of Koet¢ al. [3] cannot
be met, to achieve a rate close to half for each source-agistmpair. Since precoding matrices

are used at the sources for interference alignment and iegblfor network coding ir8-S 3-D
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I-MUN, it came to be known as Precoding Based Network Alignm@BNA) [11]. Though
PBNA is not optimal in general for 8-S 3-D I-MUN [L0], it provides a simple and systematic
manner of network code construction that can guaranteesfuredtain conditions) an asymptotic
rate of half for every source-destination pair when the zaterference conditions cannot be
met.

A set of sufficient conditions for feasibility of PBNA in &S 3-D I-MUN were obtained in
[9]. However, the set of conditions were infinite and henogyassible to check. Moreover, the
sufficient conditions were constrained by the use of pddrcprecoding matrices at the sources.
These motivated the work of Meng et al. [11] where, a finitecfaetonditions are obtained for
feasibility of PBNA in a3-S 3-D I-MUN that are both necessary and sufficient. We call these
finite set of conditions as th&educed feasibility conditions” The highlight of their result is
that PBNA with arbitrary precoding matrices is feasibleRBNA is feasible with the choice of
precoding matrices as in/[9] (with the number of symbol egiens being greater than or equal
to five). The derivation of the result involved taking intocaant graph related properties.

The case of acyclic networks with delays was abstracted Jirma$3acyclic networks where
each link in the network has an integer delay associated wvith the current work, we look
at a technique similar ta [9] for providing throughput guaees in certain acyclic networks
with delays where the zero-interference conditions catweosatisfied whilenot making use of
any memory at the intermediate nodg®., nodes other than the sources and sinks). The set
of all F,~-symbols generated by the sources at the same time insergaat to constitute a
generationwhere,F,» denotes the field over which the network operatess(a prime number
andm is a positive integer). The output symbols at the sink nodesny given time instant,
is aF,~-linear combination of the input symbols across differeah@rations. We convert the
output symbols at the sink nodes, at any given time instaio, & F,~-linear combination of
the input symbols generated during the same generationsibg techniques similar to Multiple
Input Multiple Output-Orthogonal Frequency Division Mplexing (MIMO-OFDM) [13]. We
call this technique as thieansform techniquesince we use Discrete Fourier Transform (DFT)
over a finite field towards achieving this instantaneous \aehba in the network.

As a first step towards guaranteeing a minimum throughpuinwthe zero-interference con-
ditions cannot be satisfied in an acyclic network with delag, consider a three-source three-

destination multiple unicast network with delays$ 3-D MUN-D) with the source-destination
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pair denoted bys;-T;, « = 1,2,3. We also assume a min-cut of one between sowcand
destinationl;. Under this set-up, we derive a sufficient condition undeicif?PBNA using time-
varying local encoding coefficients (LEQs)feasible whenever the throughput demands for the
three source-destination pairs are givendy “2 and ¢ where,n,, ny, ns3, andn are positive
integers withnq, ny, n3 < n. This condition is also necessary whey-ns; = n;+ny = n where,

it is assumed without loss of generality that > n, > n3. The condition is purely algebraic.
But, this condition is often difficult to verify in practicédowever, whertime- invariantLECs

are used, our transform technique aids in obtaining netvadidnment matrices of the form
similar to [9], and the derived set of necessary and sufficoemditions under which PBNA

is feasible under the transform technique are simpler tdwésr a given number of symbol

extensions: = 2n/+1. We term this PBNA scheme &#BNA using transform approach and time-

invariant LECs Under this PBNA scheme, throughputs B, -7, and ;7" are achieved
for S, — T, S; — 15, and S3 — T3 respectively, where)' is a positive integer. So, for large
n’/, each of the throughputs is close to half. However, theselitons are applicable only to
the case of precoding over a fixed number of symbol extensiansif the feasibility test fails
over a symbol extension of length’ + 1, it is not known if the test would fail for a symbol
extension of length greater th&n’ + 1. Hence, on the look-out for an elegant set of conditions
that would help check the feasibility of PBNA in3aS 3-D MUN-D over any number of symbol
extensions (like in[[11]), we propose a PBNA scheme &8 3-D MUN-D which is different
from PBNA using transform approach and time-invariant LE&sd PBNA using time-varying
LECs. This scheme is termed BBNA using transform approach and block time-varying LECs
and we show that its feasibility conditions are the same ag¢luced feasibility conditions of
Meng et al. The drawback in PBNA using transform approachldadk time-varying LECs is
that the decoding delay is higher compared to PBNA using-tiarging LECs, and PBNA using
transform approach and time-invariant LECs. Formally, veéine block time-varying LECs as
follows.

Definition 1: A 3-S 3-D MUN-D is said to use block time varying LECs when the LECs ar
varied with every time block of length > 1 and remain constant within each time block.

The contributions of this paper are summarized as follows.

« Given an acyclic network with delay, we convert the outpunbyls at the sink nodes at

any given time instant into B,~-linear combination of the input symbols generated during
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the same generation, using finite-field DFT. We call this asgforming the acyclic network
with delay inton-instantaneous networkshere,n is sufficiently large.

« Using a constructive proof, we show that there exists a nétwode (satisfying a certain
property) that achieves the sink demands in the usual (ramsfiorm) approach if and only
if there exists a network code satisfying sink demands intridwesform approach .

« PBNA with time-varying LECsFor 3-S 3-D MUN-D, which do not satisfy the zero-
interference conditions, we obtain a sufficient conditicalled thefeasibility condition
for PBNA with time-varying LECs) under which a throughpuos¢ to=*, “2, and = are
achieved for the source-destination pasT;, S>-15, and S3-T3 respectively using time-
varying LECs wherepn,, ny,, andns are positive integers less than or equalntoThis
condition is also necessary when+ n3 = n; + ny = n where, without loss of generality,
it is assumed that; > ny > ns.

« PBNA using transform approach and time-invariant LE@ssuming time-invariant LECs,
for a given number of symbol extensions= 2n’ + 1, we use our transform technique

oL, 5, and o for Sy — Ty, Sy — Ty, and S5 — T

respectively under certain conditions, along with the usalignment strategies. Whetf is

to achieve throughputs close

large, the throughputs are close to half. The derived setoéssary and sufficient conditions
under which PBNA using transform approach and time-invariid&Cs is feasible are easier
to verify when compared to the feasibility condition for PBNvith time-varying LECs.
The set of necessary and sufficient conditions for this seheam be derived as a special
case of that of PBNA with time-varying LECs.

« PBNA using transform approach and block time-varying LEQsing transform techniques
and block time-varying LECs, a PBNA scheme different frora #bove two is proposed.
The highlight of this scheme is that the derived set of nergsand sufficient conditions
for feasibility of this PBNA scheme are shown to be the saméhasreduced feasibility
conditions for3-S 3-D I-MUN which are independent of the number of symbol exiens
2n’ + 1 > 5 over which the independent symbols of each source are pedcatbwever,
the decoding delay is higher in this scheme compared to tleeotlver PBNA schemes
proposed in this paper.

A comparison of the three proposed PBNA schemes is sumndainz&ablel].

The organization of this paper is as follows. In Section fiema brief overview of the
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TABLE |
COMPARISON OF THE THREE PROPOSEBBNA SCHEMES WHEREPBNA 1 DENOTESPBNA USING TRANSFORM APPROACH
AND TIME-INVARIANT LECS, PBNA 2 DENOTESPBNA USING TIME-VARYING LECS, AND PBNA 3 DENOTESPBNA

USING TRANSFORM APPROACH AND BLOCK TIMEVARYING LECs

PBNA 1 PBNA 2 PBNA 3
Decoding Delay for
the firstp symbols, 2n' +1 n=2n"+1 | k(2n +1)
p < k for some positive integek
Dependence of the derived Dependent Dependent | Independent
feasibility conditions om'/n (onn)) (onn) (of n)
Existence of3-S 3-D MUN-D Cannot exist Can exist
where one PBNA scheme is feasibl¢Propositior B,| (Example[4, | Not known

when the other two are not. SectionVl) | in Section[V)

system model for acyclic networks with delays using timeamant LECs [[3], we derive the
system model for acyclic networks with delays, using tinaeying LECs. Section Ill presents
the transform technique using which we convert the usualalational behaviour of the network
with delay into instantaneous behaviour. In Secfioh lll, algo prove the interchangeability of
solving the usual (non-transform) network code existenmblpm and the counterpart in the
transform technique. In Section IM-A, PBNA using transfoapproach and time-invariant LECs
is described for3-S 3-D MUN-D where the zero-interference conditions cannot basfed.
PBNA with time-varying LECs is described in Section IV-B,daRBNA using transform approach
and block time-varying LECs is described in Sectidn V. Thasfkility conditions of the three
PBNA schemes are compared in Section VI. In Secliod VII, wecuks the potential of on-
off schemes in achieving half-rate for every source-dasin pair in a3-S 3-D MUN-D. We
conclude our paper in Section MIll with discussion and dimets for further research.
Notations:The cardinality of a set’ is denoted by E|. A superscript of accompanying any
variable (for examples) or any matrix (for example)/®)) denotes that they are a function of
time ¢, unless mentioned otherwise. TE® row, ;™ column element of a matrix is denoted

by [A];;. The notation CdlP) C Col()) denotes that the columns of the matfixare a subset
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of the columns of the matrix). The notation Sp&arP) indicates the sub-space spanned by the
columns of the matrix?. The notation Spa) C Sparf{)) denotes that the space spanned
by the columns of the matri¥’ is a sub-space of the space spanned by the columns of the
matrix (). The determinant of a square matuXis denoted bydet(A). An identity matrix of
size . x p is denoted byl,. For three-source three-destination unicast networks hvedl sise
the term destination to denote sink. The Galois Field of icatdy p™ is denoted byG F(p™)
where,p is a prime number angh is a positive integer. The notationib denotes that divides

b where,a and b belong to a ring. The notation t b denotes that: does not divideb. For
positive integers andb, LCM(a, b) denotes the least common multiplecondb. The notation
f(A) where, A is a matrix, denotes thaf is a function of elements of the matrit. The
notationdiag(ay, as, - - - ,a,) denotes a diagonal matrix who#@ diagonal entry is given by;,

fori=1,2,---,n.

II. SYSTEM MODEL

First, we shall briefly review the system model from [3]. Wensier a network represented
by a Directed Acyclic Graph (DAGY = (V, E), whereV is the set of nodes and is the
set of directed links. We assume that every directed linkvbeh a pair of nodes represents an
error-free link and has a capacity of ofig. symbol per link-use. Multiple links between two
nodes are allowed and thi#& directed link fromv, € V to v, € V is denoted by(v,, vy, ). The
head and tail of a linke = (v;,v5,47) are denoted by, = heade) and v; = tail(e). Without
loss of generality, we assume that a link between a pair obsdhs a unit delay (if the link
has any other non-zero integer delay, we could introduce pgmogriate number of dummy
nodes in between the pair of nodes which are then connecteéhks of unit delays). Let
X(w) = {X(v,1), X(v,2),..., X(v,,)} be the collection of discrete random processes that
are generated at the node Let X, = [X(v,1) X(v,2) ... X(v,u,)]*. The random process
transmitted through linke is denoted byZ(e). Communication is to be established between
selected nodes in the network, i.e., we are required toaaelia subset of the random process
in X (v) at some different node. This subset is denoted By(v, v"). A connection: is defined as

a triple (v, v, X (v,i)) € V. x V x X(v,v"), for somei € {1,2,---, u, . For the connection,

The definition of connection adopted here is different frdvattin [3].
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v is called the source and is called the sink ot, i.e.,v = sourcéc) andv’ = sink(c) (sourcéc)
# sink(c)). The collection ofv,, random processe¥(v') = {Y(v/,1),Y(¢/,2),....Y (v, vy)}
denotes the output at sink. LetY,, = [Y(v/,1) Y(v/,2) ... Y (¢, vy)]".

The input random processeés(v, i), output random processé§w, j) and random processes
Z(e) transmitted on the linlke are considered as a power series in a delay paranigtése.,
X(v,0) = 220 XO(0,0) D, Y (u, 5) = Y72 YO (u, j)DY, and Z(e) = Yor2, 20 (e) D",

Let G = (V, E) be an acyclic network with arbitrary finite integer delay ¢® links. G is
taken to be &F,~-linear network [[3] where, for all links the random procesé&:) on a link
e = (v,u,i) € E satisfies

Zt (e) = f:aj,exw )+ Y BeZY(e)
j=1 e’:heade’)=tail (¢)
where,«a; . and ., . belong toF,~. The output at any sink nodeg, is taken to be
YO )= > ez ()
e:heade’)=v’
wheree.. ; € F,n. The coefficientsy; ., 5. . ande. ; are also calledocal encoding coefficients
(LECs). The vector consisting of all LECs is denoted:byote that in[[3], the definition for the
output processes at any given time instant at any sink iegdimear combinations of the received
processes and output processes across different prewoesrstants, and hence the variables
involved in such linear combinations together performeal fimction of decoding the received
processes at the sinks to the demanded input processesvétowe(l), at every sink, we only
define a preprocessing of the received symbols correspgidithe previous time instant alone.
The outputsy *+1) (', 5) ast varies, will then be used by sink-to decode the demanded input
processes using sufficient delay elements for feed-fonaart feedback operations. The LECs
are time-invariant unless mentioned otherwise.

We assume some ordering among the sources so that the ramdoesp generated by the

sources can be denoted, without loss of generalitk ), X5(D), ..., X(D), wheres denotes

the number of sources anki;(D) is ay; x 1 column vector given by
Xi(D) = [Xa(D) Xia(D) ... Xy, (D)]".

Similarly, we assume some ordering among the sinks so teabulput random process at the

sinks can be denoted, without loss of generalityYad), Y5(D), ..., (D), wherer denotes
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the number of sinks an¥f;(D) is av; x 1 column vector given by
Yi(D) = [Ya(D) Yaa(D) ... Ya,(D)]".

Let

= [11(D) y2(D) ... y, (D)),
X(D) = [Xui(D)" Xao(D)" ... Xy (D)T]"
= [21(D) z9(D) ... z,(D)]"

where,z;, (D) andy, (D) represent the input and output random process of some soarce

T

sink-j respectively, ande = >"7_ p; andv = >, v;. We now have[[3]
Y(D) = M(D)X(D) (2)

where, M (D) denotes thenetwork transfer matribof size v x p with elements fromF,.[D],
the ring of polynomials in the delay parameterwith coefficients fromF,~. Now, A/ (D) can

also be written as

(My(D) My(D) -+ Ma(D)]
M(p) = | MeD) MnlD) e MaD)| o
| M. (D) Ms,.(D) -+ My (D)]

whereM;;(D) denote the network transfer matrix from souid®-sink-j and is of sizev; x p;.
Letd,, . andd,

max min

denote the maximum and the minimum of all the path delays fsoorce:

to sink-j, for all (4, j), between which a path exists. Let

/

dmax - d/

max

Then, M (D) can be written as

d

;naz dmaw
MD)= Y MYD= (Z M<d>Dd> Dmin,
d=0

where M (@) ¢ F”* represents the matrix-coefficients BF.
p
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10

Since D% just adds a constant additional delay to all the outputdout loss of generality,
we can takeM (D) to be

M(D)=>_ MYD" (4)

Hence,)M;;(D) can be alternatively written as

d’UL(L(L'
M;(D) =Y MD* (5)
d=0
For each sinki, we also definel/;(D) to be thev; x p submatrix of M (D) that captures the

transfer function between all the sources and the ginle.,
M;(D) = [My;(D) My;(D) ... My(D)]. (6)

In the networkg, let C; denote the set of all connections to sipktet C = U7_,C;.

Definition 2: An acyclic network with delay is said to be solvable if the @ams of the sinks,
as specified by the set of connections, can be met.
The following lemma from[[3] states the conditions for sdiiidy of acyclic networks with
delay.

Lemma 1 ([[3]): An acyclic network with delay is solvable iff there exists assignment to

the LECse such that the following conditions are satisfied.

1) Zero-Interference/.(I;) = 0, for all pairs (source; sink-j) of nodes such that (source-
i, sink=j, X;"(D)) ¢ C; for all 0 < d < dyae, where M (1;) denotes thé! column of
M and X, (D) denotes thé!" element ofX; (D).

2) Invertibility: For every sinkj, the square submatrix/;(D) of M;(D) formed by juxtapo-
sition of the columns of\/;;(D), for all ¢ other than those involved in the zero-interference
conditions, is invertible oveF,~ (D), the field of rationals oveF .

A network code for(G, C) is defined to be d&easible network cod# it achieves the given set

of demands at the sinks i.e., if the above zero-interferearme the invertibility conditions are

satisfied.

A. System Model for time-varying LECs

When the LECs are time-varying, we can't express the inpiiut relation as in[(2). Hence,

first, we need to derive the input-output relation involvingnsfer matrices which are dependent
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11

on varying LECs. Retaining the notations as already intcedywe only point out the changes
in the system model here.
For a given DAGG with integer delay on its links, define the adjacency matfixgaat time
t as the|E| x |E| matrix K, whose elements are given by
KO, = 5L, heade;) = tail(e;)
0 otherwise

Let the entries of: x |E| matrix A®, at timet, be given by

[A(t)] o Oél(te) xTr; = Xtail(ej)l fOI’ Somel, 1 S l S ,Utail(ej)
! 0 otherwise

where, the tail of an edge originating from a source is idigtiby the source number. Also,

let the entries o x |E| matrix B®), at timet, be given by

(t) _

(B, = €1 Yi = Yheade,) for somel, 1 <1 < vheaqe,)
0 otherwise

where, the head of an edge terminating at a sink is identifiethe sink number. Denote the

matrix of LECs from time instant, to time instantt, (£, > ¢,) by e, i.e.,

gltit2) — [é(tl) §(t1+1) g(t2)]

wheres*) denotes the LECs at timg. Since the LECs are time varying, define a time-varying

network transfer matrix given by

M(D,t)T=(ACD] D A2 gD P2y A3 g2 (=1 3

+o o Altmee) g mas =) (1=2) j(t=1) pmaz) BOT

drnaz

_ZM(d (t— dt)D (7)

where the matrices/@” (c(t-49) are a matrix functions of(~%%, and M©" = 0, i.e., the
zero matrix, as each link in the network is assumed to haveitadaetay. The matrixA/ (D, t)T

can also be written as

Mu(D,t) Mor(Dyt) --- Ma(D,t)
M(D’t)T: Mlg(:D,t) MQQ(:D,t) MSQ(:D,t) (8)
M (D,t) Mop(D,t) --- My.(D,t)
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12

where, M;;(D, t) defines a time-varying network transfer matrix of sizex ., from sourcer

to sink-j. The matrixAZ;;(D,t) can also be written in terms of the delay paramédeas

M;;(D, t) Z M (44 9)
We shall now derive the relation between the input and theuiwgymbols.
Definition 3: The impulse responsk;, x,(t', d) of the network between a source generating
xy, (D) and a sink whose output ig,, (D) is defined as the value of the output symly{ii)

when

1 k=k and t=t —d
0 k#k or t#t —

where,1 and0 denote the multiplicative and additive identity of the fiég respectively.

2 —

So, for a given value ofl, if

(t) akl k:kl and t:t/_d
€T =
‘ 0 k#k or t#£t —

wherea;, € F,» then, the value of the output symbg),ji') is given by a, hy, 1, (', d) as the

intermediate nodes linearly combine the symbols on itsnmnog links. If

(t) Qe k:1,2,"‘,/.,b, andt:t/—d
xk ==
0 t#4t—

then, the value of the output symhg|’ is given by>""_, axhy, (¢, d) as the intermediate nodes
linearly combine the symbols on its incoming links. Now, ebv& that for a givenl andt’, the
values ofhy 4, (', d) for k = 1,2,---  p, is given by thekl-row of the matrix /(@ (g('=dt))
which directly follows from the definition ofi/@” (c#~4)) in (7). Hence, from[{8) and19),

the relation between the output and the input symbols falas

s dmax

ZZM (t— dt t d). (10)

i=1 d=0
The above input-output relation can also be seen by obgethat acyclic networks with delay

employing time-varying LECs are analogous to multiplexsmaitter multiple-receiver MIMO
channel with linear time-varying impulse response betwaary transmitter and every receiver
[14].
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Ill. TRANSFORMTECHNIQUES FORACYCLIC NETWORKS WITH DELAY

In this section, we show that the output symbols at all thé&ssiwhich was originally a
IF,~-linear combination of the input symbols across the difiégenerations, at any given time
instant, can be transformed intdFg--linear combination of the input symbols across the same
generation.

Consider a matrixA of sizenv x nu given by

A0 AQ) o0 ALY AWD) 0O 0 --- 0
0 AO® ... AL=2) A=) AL) o ...
AL 4@ o0 AW@) 0 o 0 .--- A0

where A® for all i, 0 < i < L, are matrices of size x u whose elements belong 1, and
n >> L. Note that the(i + 1)™ row of matrices is a circular shift of th&" row of matrices in
A. We assume that dividesp™ — 1. The choice of: is such that, there exists ane F,~ such
thatn is the smallest integer for which™ = 1. This is indeed possible [15]. Define matrices

AV of sizev x p, for0< j<n—1, as
L
A9 = 37 aln1-i 4
=0

Let F' be the finite-field DFT matrix given by

1 1 1 e 1
1 a a? e an~!
F=|1 o at e o?(n=1) . (12)
1 "1 O[2(n71) L a(nfl)(nfl)
Define the matrix?), as
I, I, I, I,
I, ad, QQIN a"’llu
Qu= I, %I, atr, - a?bp | (12)
1 a” 1, b, . a(n—l)(n—l)[M_
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[y, (n—1) ] a0 €3]
ﬁ Mij Mi({))
&(0) :Z

_ i=1
ﬁ( 1)
Yj(*dmam) L 0 0

Mi(]d7na'17) O
(dmaz—1) (dmax)
Mij Mij

0 M
0
0 0

0
0

(1)
it
MZ.].

(dmax)
ij Mij
Mmas=2)  py(dmas=1)

Ap(dmaz—1)

(0)
0 M;;

14

X,L. (n—dmaz)

(14)

Similarly, we can define matrix),. The following theorem will be useful in establishing the

results subsequently.

Theorem 1:The matrix A can be block diagonalized as

where, 4 is given by

S

A=Q,AQ;",

[A-D 0

0 Ar-2
0 0

Proof: Proof is given in AppendikA.

Now, consider an arbitrary acyclic network with delay. Fr@ and [(3),

Yi(D) = > My(D)Xi(D).

(13)

Consider a transmission scheme where, in order to transnit> d,,....) generations of input

symbols at each source, the ldst,, generations (which we call theyclic prefiy is transmitted

first followed by then generations of input symbols. Heneei d,,.., time slots at each source

are used to transmit generations. Froni_(13) andl (4), the output symbols at ang timstantt

can be written as

Evaluatingy;*) at the time instants = —d, ..., - - -
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ﬁ(nfl) MZ(JO) ML(]D .. Mi(;lmaxfl) MZ(Jdmaa:) 0 ... 0 0 0 &(nfl)
Y*j(n72) s 0 M’L(jO) .. Mi(;lmaac*m M,L-(Jdmazil) Mi(;'imaz) ... 0 0 0 &(n72)
- => | . S : : . o . (15)
. i=1 : : . : . . . . . . .
(1) 2 (dmaz) (0)
v;© My M M 0 0 w00 MY @
M

ij

dmq. OUtputs at sinkr, (I4) can be re-written a& (115). Using Theoriem[1] (15) canebaritten

as

= Q,M;Q,' X" (16)
=1
where,
YJ(" 1) -X,(”_l)
v (n-2) x,02)
== s Xt = T |
Y*J,(O) X,
MY 00 0 ]
R 0 Mé’?‘m 0o --.. 0
M;; = . . .
0 0 0 - MY

where, M) = Sqmar oln=1-040(P. At each source; X;" = Q,,X," is transmitted instead of
X;". At each sinkj, the received symbols are denoted ¥iy'. Let ;" = Q;jle’". Then, from
(@86) we have,

- Z Qv MUQ;;&”
=1
= V" =0Q,' ) Q,M;Q,' QX"
=1

= MyX" (17)
i=1
For0 <t <n—1, (1) can be re-written as

Z MY X, (18)
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Hence, each element dﬁ(t) is a F,»-linear combination of the input symbols across the
same generation. We now say that we have transformed thdicaogtwork with delay into
n-instantaneous networks

Remark 1:Note that the linear processing of multiplying by matricgs at source- andQ;j1
at sink< are done in a distributed fashion which is necessary bedhessources and sinks are
distributed in the actual network.

Remark 2:One can observe that transmittin’g" = @, X;" implies taking DFT across
n generations of each of thg; random-processes generated at sourcgimilarly, the pre-
multiplication by Q;J_l at sinks simply implies taking IDFT across generations of each of
the v; random-processes received. The entire processing, inglidition of cyclic prefix at

sourcet and removal of cyclic prefix at sink-s shown in a block diagram in Figl 1.

R e o e D | B e B

XXX PP 0 [ A ||l )

(n—1) k—1) 1 () n point H(n—1 /(1 (0 /(n—1) 1(1) (0 1(n—1) H(n—dmaz
> SHERETE D sl BED b e ' X XX | Add X XXX X )

Qg

CP L
k" generation DFT Cyclic
Block Prefix(CP)

(a) Linear Processing at Source-

H(n—1 1(1)xA(0)x (=1 —dmaz Remove (n—1 1(1)x (0 n point (n—1) (1) -(0)
L L g 1 A SRR 10 | 755 et SRR ST A

n point (n—1) (1)y-(0)
IDFT || Y2 Y Vi

/(n—1) /(1)y,7(0)y,/(—1) H(~dmaz) /(n—1) /(1)y,(0)
szn YJQ sz sz sz - Recnlljove 4>Yj2n Y]2 sz — ™

/(n—1) 1(1)1(0)y/(—1) /(=dmaz) —po| [Remove » /(1) 1(1),/(0)__p| [0 pOINt » (=D 3 ()30
Jvj e }/.7V.7 YjVJ 1/.'7"’;/ o }/.7.".7 CP Y.7Vy e YJVJ Yfl’;/ IDFT Yj”J }/j”J Yj”]

IDFT
Block

(b) Linear Processing at Sink-

Fig. 1. Block Diagram to illustrate linear processing at ®ed and Sinky.
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Now, (18) is re-written as

s

Y(t ZZM(t Z)

i=1 [;=1
where, M, (1;) denotes thé! column of 17" and X, (l;) denotes thé!" element ofX, "
Similar to the zero-interference and invertibility conalits in Lemma.l, we have the following
theorem for solvability of the network implementing thernséorm technique.
Theorem 2:An acyclic network(G, C) with delay, incorporating the transform techniques, is
solvable iff there exists an assignmentzstguch that the following conditions are satisfied.
1) Zero-lnterferenceMi(;)(li) = 0 for all pairs (source; sink-j) of nodes such that (source-
sink-,X;V(1;)) ¢ C; for 0 <t <n — 1.

2) Invertibility: If C; comprises the connections

{(sourcet,, sink-j, X;,“(1;,)),

(sourced,, sink-j, X, (i,,)),

(sourcet,, sink-j, X; (lis,))}

then, the sub-matrix\7;}(1;,) -~ M;".(1; )] is a nonsingulaw; x v; matrix for 0 < ¢ <
n — 1.
Proof: Proof is given in Appendik B. [ |
The network code which satisfies the invertibility and theoz@aterference conditions for
(G,C) in the transform approach using a suitable choice d6r the DFT operations is defined

as afeasible transform network coder (G,C).

A. Existence of a network code in the transform approach

In this section, we prove that under certain conditionsdlexists a feasible network code for
a given(G,C) if and only if there exists a feasible transform network cofiewards that end,
we prove Lemmal2 which is given below. We first define the pafyiad /(D) which will be

used henceforth throughout this paper.

= H det (M.(D)) (19)
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where, M}(D) is the square submatrix of/;(D) indicating the source processes that are
demanded by sink-

Lemma 2:Suppose there exists a feasible network code(doC) over some fieldF,~. For
somea € F,. (for some positive integet), the LECs defined by the feasible network code for
(G,C) (viewed in the extension fiellf,, where,b = LCM(a,m)) result in a feasible transform
network code forG,C) if and only if f(a') A0 forall 0 <t <n —1.

Proof: Proof is given in Appendix IC. [ |

We now prove the following theorem which concerns with th&atrenship between the
existence of a feasible network code and a feasible tramsfmtwork code for(G,C).

Theorem 3:Let (G,C) be the given acyclic delay network with the set of connedtiGn
demanded by the sinks. There exists a feasible transforwonlettode for(G,C) if and only if
there exists a feasible network code fdt,C) such that(D — 1) 1 f(D), i.e., f(1) # 0.

Proof: Proof is given in Appendik D. [ |

We now present an example acyclic network in which theretgxsfeasible network code,

using which we obtain a feasible transform network code @ne choice ofi > 7.

{ X1, X2, X3} { X1, X3}

Fig. 2. A unit-delay network witl8 sources and sinks

Example 1:Consider the network shown in Fig[2. This is a unit-delay network (where each
edges have a delay of one unit associated with it) taken fi®h For1 < i < 3, each source

s; has an information sequeneg D). This network has non-multicast demands, with sinks
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TABLE Il

Sink Network transfer Invertible submatrix | Determinant of M;j(D),
matrix M, (D) M{Lj(D) of M, (D) det(M;j(D))
D 0 0
(4 0 D 0 M., (D) D>
D3 D3 D3
D 0 O
Uy 0 0 D M,,(D) D5
D3 D3 D3
0 D 0
u3 0 0 D? M,,(D) D°
D? D* D3
D* 0 D*+D° D* D*+ D°
Uy D5
0 0 D 0 D
0 D3 D* D3 Dt
Us D4
0 0 D 0 D

1 < j < 3, requiring all three information sequences, while sinkequires{x,(D), z3(D)} and
us demands{z.(D), z3(D)} . Let C denote these set of demands. A feasible network code for
(G,C) overF, as obtained in[[19] can be obtained by usings the local encoding coefficient
coefficient at all non-sink nodes. The transfer mat¥ix, (D), the invertible submatrix\Z;, (D)
of M,,(D), and their determinants for the sinks, 1 < j < 5, are tabulated in Table 1.

We therefore have (D) = D?. Note thatf(1) # 0 andd,,., = 4 for this network. Therefore,
with n = 2™ — 1 for any positive integern > 3, i.e., « being the primitive element afym,
we will then havef(a') # 0 for any0 <t < n — 1. By Lemmal2, we then have a feasible

transform network code fofgG,C).
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B. Comparison of complexity of the proposed transform aggoand the non-transform ap-

proach

Based on the constructive proof of Theorem 3, a large fielchtrhig required for the existence
of a suitable value for that defines the necessary transform for the network, uh@ecdndition
that the rate-los§%==) due to the transform approach be less. The transformed retwauld
then have to be operated over this large field, i.e., the nmﬂfj) have elements from this large
field (which is at least a degree extension over the base field over which the non-transform
network code is defined). It is known that (seel[17], for exmhmverting av; x v; matrix
(at some sinkf) takesO(v}) computations, however over the extension field. In the m®ce
of computing these inverses, the information symbols epoading to then generations are
obtained by Gauss-Jordan elimination. In terms of base fielthputational complexity, the
complexity of computing the inverse of the transfer matrectmesO (V?n(log n)(log log n)),
as each multiplication in the extension field invol@gn(log n)(loglogn)) computations over
the base field [18] (it is equivalent to multiplying two potymials of degree at least— 1 over
the base field). The total complexity of recovering the inpymbols at all the: generations is
thenO (n?v?(logn)(loglogn)).

On the other hand, if the non-transform network code is usedueh, the transfer matri-
ces M;(D) consist of polynomials of degree uptbh,,. in D over the base field. Again, it
is known (seel[[17], for example) that finding the inverse ofhsia matrix has complexity
O(ufdmax)- To do a fair comparison with the transform case, we consa#roding of n-
generations1{ being large as in the transform case) of information. Notd thversion of the
matrix M} (D) does not give us the information polynomials directly. Aveanethod of obtaining
the each information polynomial would then requzi/r]%multiplications of polynomials over the
base field (each of which has complexity(n(logn)(loglogn)), assuming that,d,,.. < n.)
and one division between polynomials (again with compjexit(n(log n)(loglogn))). There-
fore, the total complexity involved in recovering the infoation sequences would then be
O (vin(logn)(log logn)) + O (vyn(logn)(loglogn)) + O(vdyme,) computations.

Thus, we see that there is an advantage in the complexity aidiigg in the non-transform
network compared to the transform network (inspite of uding least possible size for the

extension field). Therefore, based on the constructivefpgb@heoren{ 3, complexity reduction
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is not an advantage of the transform process. We howeverthatehe construction shown in
the proof of Theoreni]3 need not be the only method to consaucansform network code.
It remains an open problem to see if a suitable DFT matrix cardéfined over a field of
smaller size than that suggested by the proposed consinudti that case, the complexity of
our transform technique could be lesser than the usual ramsform technique.
The transform technique is useful for PBNA 3rS 3-D MUN-D which will be discussed in

the subsequent sections. In the next section, we shalldemgie feasibility problem of PBNA
using time-varying LECs and PBNA using time-invariant LE@kere we apply the transform

techniques to obtain precoding matrices similar to the am¢g8].

IV. PBNA USING TIME-INVARIANT AND TIME-VARYING LECs IN 3-S3-D MUN-D

In [9], it was shown that for a class 6tS 3-D I-MUN, it is possible to achieve a throughput
close to1/2 for every source-destination pair via network alignmentthis section, we deal
with 3-S 3-D MUN-D where each source-destination pair has a min-cut. dh Section IV-A,
we employ the results from Sectibnl Il and show that, evennithe zero-interference conditions

of Lemmall (or Theorernl 2) cannot be satisfied, for a class®8-D MUN-D, we can achieve

a throughputs oftL, ' and -%— (for some positive integen’) for the three source-
destination pairs by making use of network alignment. Thieubhputs are close to half when
n' is large. This scheme is termed as PBNA using transform agprand time-invariant LECs.
In Section[IV-B, we proceed to generalize the conditionsféasibility of network alignment
using time-varying LECs, i.e., we obtain a sufficient corditunder which throughputs 6,
=2 and 2 can be achieved for the three source-destination pairseyhgrm, andn; are positive
integers less than or equalito The condition is also a necessary one wheftns = ni;+ns =n
where it is assumed, without loss of generality, that> ny > ns.

Let the random process injected into the network by sofce = 1,2, 3, be X;(D). Source
S; needs to communicate only with destinatitn Here,;,; =1 andy; =1, 4,5 = 1,2, 3.

We shall consider the following two cases separately.

1) The min-cut betweers; andl} is greater than or equal tg for all 7 # j.

2) The min-cut betweey; and7; is equal to0, for some: # j.

Case 1: The min-cut between sourcgeand sinky is greater than or equal to for all i # j.
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A. PBNA using transform approach and time-invariant LECs

Consider a transmission scheme where, in order to trar&wit 1 (>> d,...) generations
of input symbols at each source, the cyclic prefix comprisipg, generations is transmitted
first, followed by the2n’ + 1 generations of input symbols. LQthf”’“ be the input symbols

transmitted by sourcé where,

X'21’Ll+1 _ [X(Qn’) X<(2n,_1) X(O)]T

K3 3 3

Also, let
X2y X X2 — 1, x0T and X2 = VXY

where,V; is a(2n’ + 1) x (n/ + 1) matrix, V5 is a(2n’ + 1) x n/ matrix, Vs is a(2n' + 1) x n’/

matrix, and
X{n'-l-l _ [X{(O) X{(l) X{("l)]T
X = gt
X = X0 X X

The quantitiesX]” "', X" and X}" denote the(n’ + 1), n/, andn’ independent input symbols
generated bys;, S, and S; respectively. From(17) we have, fgr=1, 2, 3,

n' ~ n'+1 ~ n’ ~ n'
V2 = My VX Mo Vo X" 4+ M Vs X3

Where,YjZ"'“ denotes theg2n’ + 1) output symbols at sink- The objective is to recover the
(n’+1) independent input symbols 6f, »’ independent input symbols 6§, andr’ independent
input symbols ofS; at 73, Ty, and 75 from Y2¥' 1, Y2+ and Y, 2" +! respectively.

For acyclic networks without delay, the network alignmeaheept in [[9] involved varying
LECs at every time instant. But with delays it is possiblesome cases, to achieve network
alignment even with time-invariant LECs. This is what wewha this sub-section.

First, note that the elements of the matrides are functions ot.

Lemma 3:Determinants of the matrice?!ifij, i,j = 1,2,3, are non-zero polynomials in

Proof: Proof is given in AppendikE. [ |
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Let

g =L A= =1
U = M3 Nsp N, Moy Ny My,

~

R = MsMy3', S = My, M, (20)
Now, choose
Vi=[W UW U*W .- U"W] (21)
Vo = [RW RUW RU*W ... RU™'W] (22)
Vs = [SUW SUPW ... SU"W] (23)
where,IV =11 --- 1]7 (all ones vector of sizé2n’ + 1) x 1). Since the transform approach

requires than’ + 1|p™ — 1, we shall find it useful in stating the exact relationshipwasn
2n’ 4+ 1 andp which will be used in the result that follows.
Lemma 4:The positive intege?2n’+1 dividesp™—1 for some positive integen iff p { 2n'+1.
Proof: Proof is given in Appendik]F. [ |
Theorem 4:The input symbolsx™ ™, X" and X;” can be exactly recovered @, 75,
and Ty from the output symbold>*' !, Y2¥'*1, andY.?" ! respectively subject tp { 2n + 1,

if the following conditions hold.

RankV; M My Vs] =20/ + 1 (24)
Rank M, Mo, Vo V4] = 20" + 1 (25)
Rank M MasVs Vi) = 2n' + 1 (26)
Proof: Proof is given in Appendix G. [ |

When the conditions of the above Theorem are satisfied, weéhs@yPBNA using transform
approach and time-invariant LECs is feasible. When PBNAgisiansform approach and time-
invariant LECs is feasible, throughputs §£2, %+, and % are achieved for the source-
destination pairsS; — 11, Ss — T, and S; — T3 respectively. Whem' is large, the throughputs

are close to half. The throughput loss due to the additionyofic prefix is not accounted for,
since it is assumed that' + 1 >> d, 4.

It will be shown in Section VI that the conditions of Theoreha also necessary conditions
for feasibility of PBNA using transform approach and tinmedriant LECs, i.e., the choice of

the precoding matrices in_(R1)-(23) do not restrict the dmaks for network alignment.
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Remark 3:In a 3-S 3-D I-MUN considered in[[9], it was not possible to achieve watk
alignment without changing the LECs with time. When theraasdelay, the matrice§, R, and
S given in [20), would simply be equal to(c) lo,r11 (Where, f(g) is some polynomial iz) and
hence, the matrice®;, V5, and V5 as given in[(2l)E(23) are themselves not full-rank matrices
Hence,c was varied with time in[[9]. However, in the case of delay ie&sy to see from the
structure of the matrix\/;; that the matriced/, i, and S are not necessarily scaled identity
matrices.

The following example, taken fron [[9] (but considered witklays), illustrates the existence
of a network where network alignment is feasible with timeariant LECs.

Example 2:Consider the network shown in Figl. 3. Each link is taken toehamit-delay. In

(ax +bx_+cx_)D?
1 2 3

(apD®)x +(bpD®)x +(cpD°+qD°)x,
O T
1

(atD*+uD)x +(btD)x, +(ctD)x,
—»0 T
2

(arD®)x, +(brD*+sD%)x, +(crD)x,

3

Fig. 3. A 3-S 3-D MUN-D where PBNA using transform approach and time-iraatr LECs is feasible.

accordance with the LECs denoted as in the figure, the transd¢rices)/;;(D) are as given
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below.

As explained in Sectiofillll, without loss, the network tramsfunction betweert; — 7; can
be taken to be equal td/;;D~2. Note that the network does not satisfy the zero-interfezen
conditions of Lemma]l. Herel,... = 2. Consider the following (random) assignment to the
LECs.

a=b=c=p=r=t=1
s=1+8+p5" 48"+
qg=1+05+p
u=1+p"

where, 3 is a primitive element of7 F'(2°) whose minimal polynomial is given bt + z + x%).

The DFT parametetn is given bya = 3° and the number of symbol extensions is given by
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2n’ + 1 = 7. The transformed network transfer matrices are given by

My = diag (1,02, -+, a'?

( ).
My = diag (14 8") +1, (1+ ) + % -, (1+8) +a'?),
Mz = diag (1,02, ,a'?),
My, = diag (1,02, -+, a'?),

My = diag (1, a? - ,a12) ,

It can be verified using the softwal\deathematiceg that the rank conditions of Theordm 4 (in
(24)-(28)) are satisfied using the above assignment to thesLahdo.

B. PBNA with time-varying LECs

The feasibility problem for PBNA with time-varying LECs idased as follows. Sourcé;
demands a throughput ¢ where,n is a positive integer and,;, : = 1,2,3, are positive
integers less than or equal to Without loss of generality, we assume that> ny, > n3;. We
need to determine if the throughput demands can be met thraugBNA scheme similar to
the one described in the previous sub-section while pangithe use of time-varying LECs.
The solution to this problem will also generalize TheofdnMreover, there can existS 3-D
MUN-D where PBNA using transform approach and time-invatriaECs is infeasible for alh’
while PBNA using time-varying LECs is feasible for some piosiinteger tuple(n;, no, ns, n).
Example[4 in Sectioh VI is an instance of such a network.

We shall observe in this sub-section that, unlike in the chsene-invariant LECs, the network

cannot be decomposed into instantaneous networks usirtgatieform method. Throughout the

2A Galois Field package foMathematicais available at[[21].
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sub-section we shall assume that the LECs and the othebiesithat we shall encounter belong
to the algebraic closure of the fielt), which is denoted byF,. Clearly, once an assignment to
the LECs and variables are made, they belong to a finite extens I,,.

Consider a transmission scheme, where we take-> d,,..) generations of input symbols
at each source and first transmit ldst,, generations (i.e., the cyclic prefix) followed by the
generations of input symbols. Lef* be the input symbol that needs to be transmittedSpy

where,

Let X7 = ViX{™, X = VLX5™, and XI = V3X.™ where,V; is an x n; matrix, V; is a

n X ny Matrix, V5 is an x nz matrix, and
XM = [Xi(o) Xi(l) . X{("l—l)]T’
X = [Xé(o) Xé(l) . Xé(?@z—l)]T7
Xéns _ [Xé(o) Xé(l) . Xé(ng_l)]T.

The quantitiesX ™, X}", and X" denote then;, n,, and n3 independent input symbols
generated bys, S,, and.S; respectively. Thus, the independent input symbols aredcogiern
time slots by the matriceg;, V5, and V3 before they are transmitted over the network after the

addition of cyclic prefix. Now, from[(10) and following the re@ steps as involved in writing
(I4) and [(1b), forj = 1,2, 3, we get

V" = My ViX{™ 4 Mo Vo X5™ + M3 V3 X5™

where,Y;" denotes the: output symbols afl; and M/;; is as given in[(27) (at the top of the
next page). The structure @f/;; is such that it becomes a circulant matrix when the LECs are
time-invariant, i.e.g(-%mas) = ¢(=dmaztl) — = c(»=1) The objective is to determine if the
independent input symbols ¢f can be recovered &f;, from Y;".

Note that the matrices/;; are not a circulant matrices and therefore, cannot be samedtusly
diagonalized in general. Let = [g(-dmes) g(=dmantl) ... =D,

Lemma 5: Determinant of the matri¥/;;, for all (i, j), is a non-zero polynomial ig'.

Proof: Proof is given in AppendixH. u
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MZ(]O) (é(nfl,nfl)) J\/[,L-(jl)(é(n72’n71)) .. JV[’L_(;imazfl)(é(nfdmaz,nfl)) Mi(;lmaa:)(g(n—lfdmaz,nfl))
0 J‘/lg)) (g(n—Q,n—2)) . J\/li(;imaz*ﬁ (é(n—dmaz,n72)) J\/li(;imazfl) (é(n—lfdm,m,nfw)
(27)
(1) -(—1,0 (2) /-(-2,0 . (dmaz) ( ~(—dmaw,0

M (=10 M (e(=20) My (e ) 0

0
(dmax) n—2—dmazx,n—2
M;; (e )) 0
(0) /(0,0

0 0 - My (£0:9))

My

As a direct consequence of the above lemma, the inversgf;sfexist. Now, let the elements

of V; be given by
Vilij=0i; i=1,2,---,n, j=1,2,--- 'm (28)
whered,; is a variable that takes values frdﬁ. Let
Vo = My Mi3Vi A and Vs = Mg, M1, Vi B (29)

where, the elements of the matricdsand B, of sizesn; x ny, and n; x ns, are given by

[A];j = a;; and [B];; = b;; respectively ¢;; andb,; are variables that take values frdfp). Let
U - M1_21M32M3_11M21M2_31M13. (30)

Let ¥ (v1, ¢, A) and £ (V1,¢, A) denote the determinants of, + 1) x (11 + n) Submatri-
ces of [Vi M;,'Ms,Vs] and [M,' My, Vo V4] respectively, fork = 1,2,...,(, » ). Similarly, let

fé'“)(vl,g’, B) denote the determinants of; + n3) x (ny +n3) submatrices ofd ;' Ms3v; V4], for

k=1,2,....(, % ). Now, define

ni+mns
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(ny )
fl(th/,A):l— H (1_6§k)ffk)(‘/17§/714))
k=1
(ny )

e A =1- T (1-8"1 0.2, 2)

k=1
(71]1713)
k=1
aE)y= I  det()
(¢,7)€4{1,2,3}

f(vlvélvAvB) = fl(vlvé/vA)fQ(Vlaé/vA)f3(V17§/vB).f4(§/)

Where,éi('“) € I, for all (i, k). Denote the elements of a matiiX of sizen, x nz by [C];; = ¢
where,¢;; is a variable that takes values frafy, for all (i,7). Fori = 1,2,--- ,ny, andj =

1,2, ng, let
9;;(V1,€", A, B,C) = [UV,AC);; — [ViBJ;;. (32)

Let gi(j’.”")(vl,g’,A, B,C) and gz-(;lr)(%,g’,A, B, C) denote the numerator and denominator re-
spectively of the rational-polynomia};;(V1, <, A, B,C). Similarly, let f®™(V;,¢', A, B) and
U (Vy, ¢, A, B) denote the numerator and denominator respectively of tiened polynomial
f(Vi, €, A, B). We shall denote;;(V1,¢', A, B,C) and f(V1, €', A, B) respectively ag;; and f

for short. Similar notation is used for the numerator andodeinator of the respective rational
polynomials.

Theorem 5:For an acyclic3-S 3-D MUN-D, the input symbolsX;™, X}", and X}"* can
be exactly recovered iy, 75, and 73 from the output symbols7", Y7*, and Y;* respec-
tively if the ideal generated by the polynomiag}g”), i =1,2,..,nandj = 1,2,..,n3, and
(1 —ofr T gi(;.l’")> does not includd, wheres is a variable that can take value from
[F,. The condition is also necessary when + ny) = (n1 + n3) = n.

Proof: Proof is given in Appendix . [ |
When the conditions of the above Theorem are satisfied, wehs@yPBNA using time-varying
LECs is feasible. When PBNA using time-varying LECs is febsiasn >> d,,.., throughputs
close to™, =2, and”* are achieved for the source-destination pairs- T, S, — T3, and.S; — T3
respectively. As seen from the proof of the above theorenhefthroughput demands are such

thatn,; + n3 > n or n; + ny > n then, PBNA using time-varying LECs is infeasible.
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Remark 4: Theorenib implies that network alignment is feasible if éhexists an assignment
to the LECs and the other variables such tfigt) /() [T, gi(;.”) takes a non-zero value and
9" take values of zero for network alignment to be feasiblestfyir /) has to be a non-zero
polynomial which requires that; be a full-rank matrix. This is true from the choice bf.
Also, My Moy Va, My,! My, Vy and M3 Mss Vs should also be full-rank. Since the matricks;
are invertible, it is equivalent to checkinglit andV; are full-rank. This is also true becauge
is a full-rank matrix, and by choosing and B as matrices that select the first columns ofl;
and the firsth; columns ofV; respectively), andV; become full-rank. Hence, the determinants
of all the ny, x ny andns x ng sub-matrices o¥, and Vs respectively are non-zero polynomials.
So, we have at least ensured that, by proper chdi€g: My Vo, M;,' My, Vy and M3 MssVs
are full-rank matrices.

Remark 5: The network alignment matrices in Section IV-A can be detiase a special case
of the network alignment matrices in Section TV-B and TheoH can be derived as a special
case of Theorer]5 as explained below. Chogséras) = g(-dmaatl) — = ") — ¢ and
n=2n'4+1,n; = n'+1, ny = n/, andnz = n’. Also, choose the variablés; such that/; in (28)
takes the form of/; in (21). Choosed and B, respectively, to be the selection matrices which
select the first»’ columns and the last’ columns of the matrices pre-multiplying them. Let
C = I,,. Since the input symbols at the sources were precodeg,; tand the output symbols at
the destinations were pre-multiplied I6y; ', the effective transfer matrix betweeh and 7} is
given byMij. Hence,(UV; AC — V1 B) becomes equal to the zero matrix. It can also be easily
seen that the full-rank conditions in Theoréim 4 are the sasmgtaing that the ideal generated
by (1= /) f*) [, 9" ) should not include.

A systematic method of verifying the condition in Theorems5by computing the reduced
Groebner basis for the given ideal with a chosen monomiarard. The condition is satisfied
iff 1 is an element of the reduced Groebner basis [22]. Howevegemeral, Groebner basis
algorithms are known to have large exponential complexitythe number of variables and
solving multivariate polynomial equations is known to be-hd&td over any field[[22][[23].
Hence, the conditions of Theordm 4 are easier to check tharahdition of Theorerhl5.

Case 2: The min-cut between sourcgeand sinks is equal to0, for somei # ;.

This means that at least one of the matriddg, for i # j, is a zero-matrix. The choices

of V1 , V5 and V3 and the conditions for network alignment for this case areilar to the
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ones presented in Section TV-B. The only major differenc# ke the absence of conditions
on the lines that there must exist an assignment to the LE@dhanother variables such that
the rational polynomialg;; take values of zero for network alignment to be feasible.rétee
various possibilities in this case. We present feasibdagditions for one possibility (i.e. min-cut
betweenS,-T; is equal to0) and the rest are fairly straight-forward to derive. We assuhe
same set-up as in Sectibn 1V-B.

Min-cut betweenS,;-T; is equal to0: This implies thatM,; = 0. Let the elements of; be

given by

[‘/1]”':92']',i:1,2,"',n,j:1,2,"',n1 (33)

where,d;; is a variable that takes values fraly. Let

Vo = My' MyzVi A and Vs = My, My, Vi B (34)

where, the elements of the matricdsand B, of sizesn; x ny, andn; x ns, are given by
[A];; = a;; and [B];; = b;; respectively ¢;; andb;; are variables that take values frdfy). The
following theorem provides the conditions under which ratwalignment is feasible.
Theorem 6:For an acyclic3-S 3-D MUN-D, when the min-cut betweel,-7; is equal to
0 and the min-cut between the other sources and destinatrenscd zero, the input symbols
X", X5™, and X" can be exactly recovered @, 7>, andT; from the output symbol37,

Yy', andY3' respectively, if

Ranl{‘/l Ml_llMgl‘/g] = Ny + No,
RanKM ;' My Vo Vi] = ny + na,
Ranl{Ml_glMgg‘/g ‘/1] =n1 + ns.
The above conditions are also necessary whgmnt- ny) = (n; + ng) = n.
Proof: Proof is given in Appendik]J. [ |
When the conditions of the above Theorem are satisfied, gimuts close té*, ~2, and ™=
are achieved for the source-destination paiys- 77, S; — T», and S; — T respectively.

In the next section, we introduce PBNA using transform apphoand block time-varying

LECs where we show that the reduced feasibility conditiohMeng et al. [11] for feasibility
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of PBNA in 3-S 3-D I-MUN are also necessary and sufficient feadibility of PBNA using
transform approach and block time-varying LECs3#$ 3-D MUN-D.

V. PBNA USING TRANSFORM APPROACH AND BLOCK TIMEVARYING LECs

In this section, we propose a PBNA scheme 3e 3-D MUN-D, different from those given
in Sectior IV-A and IV-B. The min-cut betwee$} —T;, for all 7, is assumed to be equal toWe
restrict ourselves to the fiel,~ in this section and also the following section. For the PBNA
scheme proposed in this section, we shall show that thebiégscondition is the same as that
proposed for instantaneous networkslin/[11]. In additibe, feasibility condition is independent
of the number of symbol extensions over which the independgut symbols are precoded
unlike in the case of the other two proposed PBNA schemes.

Consider the following transmission where, every soufcs required to transmit &(2n'+1)-
length block of symbolgk >> d,...) given by [x® x®... x*C"+D=17 for some positive
integern’ > 0. Partition the block of symbols int®®n’ + 1) blocks, each of lengttk symbols.
For each block oft symbols, we add a cyclic prefix of length,... The partitioning of the
input symbols and the addition of cyclic prefix (CP) are shamifrig. [4.

The LECs of the network are varied with evefy + d,...) time instants starting from the
time instantt=—d,,,.,. Therefore, whert; transmits its first block of data as shown in Hig. 4,
the LECs remain constant and when it starts the transmissitine second block of data, the
LECs encountered in the network are different.

At each destinatiorf;, the firstd,,,, outputs in each received block of length + d,,..)
symbols, starting from time instant= —d,,.., is discarded. Denote the LECs duritigsblock
transmission by, for 1 <[ < (2n’ + 1). Now, consider the second block of output symbols
(i.e.,l = 2) at T} after discarding the cyclic prefix. Since the LECs remainstant during one
block of transmission, from_(10) and_(14), we detl(35). As[i8)( (35) is re-written ad (36).
Using Theorenfl]1)/;;(e,) can be diagonalized td7;;(<,), wherek is chosen so that|2" — 1.
Similarly, the I™-block of output symbols, after discarding the cyclic prefian be written in
terms of the matrixiZ;;(g,), for 1 < 1 < (2n’ 4+ 1). We note that

Mij<§l) =diag (Mij(§l7 1), Mz’j(ézyoé)a R Mij(§laak_1>) . (37)

where, M;;(g;, a?) denotes the transfer functiall;;(D) evaluated atD = a? ande = ¢, for
g=0,1,---,(k=1). Let X;™FV* xm'k and X'k denote then’+1)k-length,n’k-length, and
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t=-d =k = 2k+d
max max

l 1% Block 2" Block (2n'+1)" Block

CP| X xtkv cp| XMW Xz CP| Xtz x(ken+1)-1)

i~ - i | i i 5 P - — i i
~ , - - —
| ~ —
|_| ~ . —
d ~AVaq— ~
max V(iO) X-I(O)

Fig. 4. The figure demonstrates the transmissioii2af + 1) blocks of symbols, involving addition of CP for every block a

S;. The pre-multiplication of each block of symbols By (not explicitly shown in the figure) is done after the precapstep

and before the addition of CP.

Yj(2k+dma171) Mi(J('))(§2) Mi(jl)(§2) Mi(;imam)(§2) 0
Y Chtdmas =] s 10 M () Mg ) M) 0
¥ bt dmar) 0 0 0 MP () MP(e) M ey) Mo (e,)
(35)

« [Xi(%’l) X,(2k—2) X, x,(2k=1) Xi(Qk—dmam)]T
Yj(zkmmam—l) Mi(J(_))(gQ) Mi(]})(§2) Mi(;imaz—l)(gQ) Mi(;_imaz)(éz) 0 ... 0 0 0 X, (2k-1)
Yy Ghtdmas =2 s |0 M () M ey) MG () M () o 00000 IXOR)

: = : : : : AR :

¥ (ktdmaz) MP () M () M) (ey) 0 0 0 0 MPE)f X

M;;(g2)
(36)
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n’'k-length independent symbols generateddy S,, and S; respectively. Partition each of the
independent input symbols into blocks of equal length. Denote th&-block of independent
input symbols ofS; by X!(q), for 0 < ¢ < k—1, which is a column vector of length{ig’+ 1) for

2n’+1

Si1, n’ for Sy, andn’ for S3. The symbolsX/(q) are precoded onté(f( ) as follows. Define

Xk _ [qu> xR x etz qu“"’“)r, for 0 < ¢ < k — 1. Let V;” denote the precoding
matrices atS;, for 0 < ¢ < k — 1. These matrices, for alf, are of size(2n’ + 1) x (n’ + 1),
(2n'+1)xn’ and(2n'4+1) xn' for i = 1,2, and3 respectively. Now, the symbols to be transmitted
by S;, before the pre-multiplication of each block by (where, the matrix' is the DFT matrix
defined in [11L)) and the addition of CP to every block, are mibg X **" = V9 X/(¢). In
brief, the ¢" element of every block to be transmitted I8y, before the pre-multiplication of
each block byF and the addition of CP to every block, are obtained by prewpthieq™ block
of independent symbolX/(q). The instance off = 0 is shown in Fig[4.

After discarding the CP and pre-multiplying by ' at7;, we obtain(2n’+1)k-output symbols.
These are partitioned intb-blocks, each of lengtli2n’ + 1)-symbols. Each block is given by
Y = [y ylath) y e qu*?"/’“)r, for 0 < ¢ < k — 1. The input-output relation is now

given by
3
VO = 3 diag (Mij(21,0%), Misleg,0®), - s Mij(Eaws 0"y Mij(eu i1y a®)) VIO X/(a).  (38)
=1
For0 < ¢ < k — 1, define the matrix

MZqJ - dlag (Mij(§17 aq)v T Mij(g(gnq_l), Oéq)) .

A. Feasibility of PBNA using Transform Approach and BloakdiVarying LECs

We assume that the min-cut betwe&n— T is not zero for alli # j. The proof technique
for feasibility of PBNA in the case of min-cut betweeh — 7 being zero for some # j will
be similar to that used for non-zero min-cut.

PBNA using transform approach and block time-varying LEEguires that the following
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conditions be satisfied fdr < ¢ < k£ — 1.
Spar{Mg,V,”) C Spar{My, V,”), Spar{Mi, Vi?) < SpariM, Vi),
SparMg; ;") C SpartM{;1,”),
RankKM% V9 ML VY] = RankV? MY M9y VP = 20/ + 1 (39)
RanK MLV, ME,V] = RankMf, ' MGV V] = 20’ 4 1
Rank M, Vy» M VI?] = RankMf, ™' M Vi® Vi) = on' + 1.
From Lemmal in [16], m can always be chosen large enough so that the above rankioasdi
are satisfied, if the corresponding determinants are nom{zeynomials.
We first note that recovering(/(0), for all i, represents the feasibility problem of PBNA
in the instantaneous version of the origidab 3-D MUN-D. Suppose that we cannot recover

X!(0), for all i. But, if we can recovetX/(q), for all ¢ # 0 and for alli, we can still achieve

throughputs o*‘("(“, Jf’f)kl), (275,’“;11)2 5 (,’111 for S, — Ty, S — Ty and S; — T3 respectively. This

means that as and £ become arbitrarily large, a throughput close%tccan be achieved for

every source-destination pair. However, in this sectionsivew that if X/(0), for somei = iy,
cannot be recovered thei, (¢) is not recoverable for any. Conversely, we also show that if
X/(0), for all 7, can be recovered thek!(q) is recoverable for aly andi.

Definition 4: PBNA in 3-S 3-D MUN-D using Transform Approach and Block Time Varying
LECs is said to be feasible if{/(q) can be recovered fromy;““* for i = 1,2,3, ¢ =
1,2,---,k—1, and for everyn’ > 1.

Henceforth in this section, PBNA i-S 3-D MUN-D using transform approach and block
time-varying LECs shall be simply referred to as PBNA3% 3-D MUN-D. We now proceed
to prove that the reduced feasibility conditions of Meng letf@r feasibility of PBNA in 3-S
3-D I-MUN are also necessary and sufficient for PBNA3#S 3-D MUN-D.

PBNA in 3-S 3-D MUN-D is feasible iff there exists a choice 0f’ + 1) x n’ matricesA@

and B@, V7, and an’ x n’ matrix C@, for 0 < ¢ < k — 1, all with entries fromF, such
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that
delﬂ/l(q) Mfl_1M§1M2(13_1M{13V1(q)/4(q)] # 0,
defMf, ™ My Mgy~ ME VIV AW V@] 20,
de{ M, ™ M, Mg, ™ MLV BY V] £, (40)
U(q)Vl(Q)AC _ Vl(lI)B
where, U@ = Ma, " M, Mg, ~ g i, M, The above conditions are obtained from the network
alignment conditions in((39) and following the same stepsnathe proof of Theoreral5. For

0<qg<k-1,define
M21(§7 Oéq)M32 (§7 aq)M13(§7 aq)

n(a) = M3 (g, a9) Mas(g, a?) Mys(g, a?)’
Mgl(&f,Oéq)Mlg(é Oéq)

bi(q) = ;
M11(8 Oéq)Mgg(é, Oéq)
MQQ(E aq)M13(€,Oéq)

41
bZ(q) MlZ(E aq)Mzg (5, Oéq) ) ( )
bs(q) = Ms33(g, a?) Mis(g, )

s Mys(g, ) M3y (g, )
As in [11], we shall consider the two casesgf)) not being a consta@mand being a constant,

separately.
Case 1: n(0) is not a constant.

The precoding matrices which are similar to those_ in [9] [4dd given by

Vl(q) =W UQw U@ ... U(q)"/WL
Vz(q) _ [R(q)W ROy @y R(q)U(q)2W R(q)U(‘I)nl_lI/V],
‘/3(‘1) = [S@y@w S@@yy ... S(q)U(Q)”lw] (42)

where,r = MM, S = MLMEL, T, for0 < g < k—1,andw =[11 --- 1]7 (all ones vector
of size(2n’ + 1) x 1). The above choice of precoding matrices satisfy the lastlition in (40)

though not necessarily the other conditions[inl (40).

*The terminology of;(q) or b;(¢) being a constant or not is understood to be with respeetaind henceforth, this shall not

be explicitly mentioned.
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The following theorem of Meng et al. gives the reduced fahsilbconditions for 3-S 3-D
I-MUN.

Theorem 7 ([[11] (Reduced Feasibility Conditions)X:/(0) can be recovered froni(()@k), for
all 4, iff

5.0) ¢ 59 = {1,000 700) +1, A0 3)
The following theorem shows that PBNA S 3-D MUN-D is feasible iff b;(0) ¢ S©.
Theorem 8:When 7(0) is not a constantX/(¢) can be recovered frorﬁfi(q%), for ¢ =
1,2,--- k—1,iff X/(0) can be recovered frori’l’i(()@k).
Proof: Proof is given in Appendik K. [ |

In brief, the above theorem proves that the reduced fe#gibibnditions of Meng et al. for
feasibility of PBNA in3-S 3-D I-MUN are also necessary and sufficient for feasibilityREBNA
in 3-S 3-D MUN-D whenn(0) is not a constant.

Case 2: 77(0) is a constant.

When(0) is a constant, Theorerh of [11] states thatX(0) can be recovered frori’r;(()@k)
iff b;(0) is not a constant, for = 1,2,3. Similar to Theoreml of [11] we have the following
lemma.

Lemma 6:PBNA in 3-S 3-D MUN-D is feasible iff b;(¢) is not a constant, fof = 1,2, 3,
andl1 <g<k-—1.

Proof: Proof is the same as for= 0 case in[[11]. [ ]
The following proposition in combination with Theoreinof [11] and Lemmé& 6 shows that
PBNA in a3-S 3-D MUN-D is feasible iff PBNA in the3-S 3-D I-MUN is feasible.

Proposition 1: b;(q), for 1 < ¢ < k — 1, is a constant ifb;(0) is a constant.

Proof: The proof follows using similar arguments as in the “If Paatid “Only If Part” in
the proof of Theoreril8. [

The feasibility conditions for PBNA i3-S 3-D MUN-D for the case of zero min-cut between
S; — T; for some(z,j) are also the same as that f4S 3-D I-MUN as given in [11]. For

example, when the min-cut betweéh — 77 is zero as considered in Ca8eof the previous

M3 (g,0) M2 (g,09)
M1 (g,a%) M32(g,09)

section, re-definé, (¢) = . In such a case, PBNA is feasible #f(0) is not a

constant fori = 1,2, 3.
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Remark 6: The PBNA scheme proposed in this section is different fronNRRIsing trans-
form approach and time-invariant LECs, and PBNA using tiragring LECs where, the indepen-
dent symbols were precoded onto a single block of data wkittansmitted after the addition of
CP. In PBNA using transform approach and block time-vanliggs, the independent symbols
are precoded across multiple blocks of data which are deteatdy separate CPs. A drawback
in this scheme is that the decoding delay is higher compar&BNA using transform approach
and time-invariant LECs, and PBNA using time-varying LE@s the same values of’ and
large values of. In order to decode the firgtsymbols, forp < k, the decoding delay for PBNA
using transform approach and block time-varying LECs isabtpu/(2n' + 1) whereas for both
PBNA using transform approach and time-invariant LECs, BBMNA using time-varying LECs
(with n = 2n’ + 1) the decoding delay is equah’ + 1.

VI. COMPARISON OFFEASIBILITY OF THE PBNA SCHEMES IN SECTIONTV-A] SECTION
TV-B] AND SECTION[V]

In this section, we tie-up the feasibility of the PBNA schenie Sectio IV-A and Section
VI We also provide one example each for the cases where 1p#sibility test fails for all the
PBNA schemes proposed, 2) PBNA using time-varying LECs @sifde for somgny, ns, n3)
while the other two proposed PBNA schemes fall.

Consider the feasibility problem of PBNA using transfornpagach and time-invariant LECs
described in Section IV-A. Consider the case of non-zero-cninbetween eveny; — T; with
b;(q) as defined in[(41) ang(0) not being a constant. Using the results[of/[11], we shall show
that the conditions of Theorefd 4 are also necessary forkfidisiof PBNA using transform
approach and time-invariant LECs, i.e., the conditions raverestricted by the choice of the
precoding matrices if_(21)-(23). We also show that the éeriset of necessary and sufficient
conditions for feasibility of PBNA using transform apprbaand block time-varying LECs,
i.e., (43) is also a necessary condition for feasibility &NA using transform approach and
time-invariant LECs.

Proposition 2: If the conditions of Theoreml]4 are not satisfied then, PBNAggransform
approach and time-invariant LECs is infeasible for any caaf precoding matrices (i.e., even
when the matrices are not restricted to thosd in (21)-(23)).

Proof: Note that the diagonal elements df;;' My, R, M3 Mo R, and Mi5' M35, where
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R and S are defined in[{20), are given by (q), b2(¢), and bs(¢) respectively, for0 < ¢ <

2n’ 4+ 1. Therefore, for the conditions of Theorém 4 to be satisfied,dolumns of the matrices
(Vi My My Va), [M My, Vs Vi, and [ M5  MssVs V4] must be linearly independent over the
field of rational polynomials iz where the choice of the precoding matrices are giveri by (21)-
(23). Alternatively, the conditions of Theorém 4 will faff for somei and for0 < ¢ < 2n'+1,

(@) e
mwe{gmwnh<xm>ewz@ﬂLﬂ)ﬂ)#O, (44)

ged(f(x),9(x)) = 1, deg(f) < n', deg(g) <n' —1}.

Note that the functiong(x) andg(x) must be the same for< ¢ < 2n + 1. If b;(q) € {ﬁzggg }
for 0 < ¢ < 2n’ + 1, such that the denominators ¢fz) and ¢g(z) are not constants, then the
denominators can be subsumed in the numeratorg:of and f(x) respectively. Hence[ (44)
can be re-stated as
f(n(q))
bi(q) € {
9(n(q))

‘f@%ﬂ@éFthhﬂ@M@%O, (45)

ged(f(x),9(x)) = 1, deg(f) < n', deg(g) <n' —1}.

Using (45%) and following exactly the same steps as in thefprobLemmas, Lemmas and
Theorem2 of [11], it can be shown that whef_(45) is satisfied, choice rof ather precoding
matrices would still not satisfy (60)-(62) (given in Appéx@) which are necessary conditions
for feasibility of PBNA using transform approach and tinmeariant LECs. [ ]

The following proposition states that the necessary anficgrit condition for feasibility
of PBNA using transform approach and block time-varying IsE@ (43) is also a necessary
condition for feasibility of PBNA using transform approaahd time-invariant LECs.

Proposition 3: PBNA using transform approach and time-invariant LEC8-& 3-D MUN-D
is infeasible ift;(0) € S© for everyi = 1,2, 3 where, S is defined in [(4B).

Proof: The proposition is just a re-statement of the fact thai; () ¢ S, for instance

bi(0) = A then,bi(g) = -0 for 0 < ¢ < 2n'+ 1 which is proved using similar arguments
as in the “If” part in the proof of Theoref 8 (given in Append. Thus, if b;(0) € S© then
(45) will be satisfied which implies that PBNA using transfomapproach and time-invariant

LECs is infeasible. |
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Hence, whenever PBNA using transform approach and bloog-tianying LECs is infeasible,
PBNA using transform approach and time-invariant LECs 'EDeihfeasibIJ%. Conversely, if
PBNA using transform approach and time-invariant LECs ésilele then, PBNA using transform
approach and block time-varying LECs is feasible becausedtuced feasibility conditions of
@3) will be satisfied. For example, PBNA using transform rapgh and block time-varying
LECs is also feasible for the network considered in Exarnpl€h2 sufficiency of the condition
in (43) for feasibility of PBNA using transform approach amde-invariant LECs remains open.

So, the next natural question is whether PBNA using timeiugrLECs is feasible for some
(n1,n9,n3) (Where,ny, ny, n3 # 0) or not when the other two PBNA schemes fail. This question
is difficult to answer in generality. However, we show thrbugxamples the existence 8fS
3-D MUN-D such that all the three PBNA schemes are infeasillé also the existence of
3-S 3-D MUN-D such that PBNA using time-varying LECs is feasibte some(ny, ny, n3, n)
while the other two PBNA schemes are infeasible. The folhmuexample taken from [10], but
with delays incorporated, is an instance where all the PBbl#emes described in the previous
sections are infeasible.

Example 3:Consider the network shown in Fig. 5. Each link is taken toehanit-delay. The

(apD*+gD°)x,
+ bpD°x + cpD°x,

r,s)

5. 5. T
arDx + brD X, *
+(crD°+sD%x

3

Fig. 5. A 3-S 3-D MUN-D where, (1) PBNA using transform approach and time-invariant LECs, BBINA using transform
approach and block time-varying LECs are infeasible, é&)dPBNA using time-varying LECs is infeasible for all positive

integer-tuplegni, n2, n3, n).

“This can also be proved for the casergh) being a constant and for the case of zero min-cut betwen T; for some

(4,7). Both follow directly from the fact thab;(0) is a constant iffo;(q) is a constant for aly € {0,1,--- ,2n’ + 1}.
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local encoding coefficients at each node are indicated ifigluee. Hered, .. = 2.

Note thatb; (0) = 1 and hence, PBNA using transform approach and time-inviakiB@s, and
PBNA using transform approach and block time-varying LE@siafeasible for alln’ > 1. We
shall now show that PBNA using time-varying LECs is infegesifor all (n; > 0,n, > 0,n3 > 0)
andn > 0. Let a; denote the LEG: at time instant and similarly denote the other LECs. Note

that b, inside a matrix will denote the LEG at time instant. Now, we have

0 0 an—-3Tn—1 0 0
0 0 0 Ap—_4Tn_9 +-- 0
M = '
0 0 0 0 apra
a—17T1 O O O 0
0 a—27To 0 0 0
[ o 0 0 1 0 |
a_17m1
0 0 0 0o L
—27T0
) n 317, - 0 0 0
Mot | asas
" 0 an741rn72 0 0 0
| 0 0 ﬁ 0 0 |
Similarly,
_ ) i
0 0 0 0
1
0 0 0 0 35
L 0 0
Mol | B
» 0 7= o0 0 0
| 0 0 w0 0]

The other transfer matrices involved in determining thesitatity of PBNA using time-varying

LECs are given by
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0 0 bnffj"'nfl 0 0
0 0 0 b7L747'7L72 0
My = ’
0 0 0 0 bora
b717‘1 0 0 0 O
0 b_sro 0 0 0
0 0 an—3 0 0
0 0 0 An—4 0
Mz = '
0 0 0 0 ao
a—1 0 0 0 0
0 a—sz 0 0 0

Hence, M, My My' M3 = I,,. Thus, the matrix
\Z MﬂleVz] =W M1_11M21M2_31M13V1A] =[Vi ViA4]

is not full-rank. This violates[(66) (given in Appendik I) drence, the condition of Theorem
is not satisfied.

The following example considers a modified version of thevoek dealt in Examplél3 and
is an instance where PBNA using time-varying LECs is feasibl some(n,, ny, n3,n) while
the other two the PBNA schemes are infeasible.

Example 4:This example considers a network whose topology is the santbad in Fig[ b
where all the links except the incoming link & have unit delays. The incoming link &t is
assumed to have a delay #ftime units. Henced,,... is equal to5.

Note thatb;(0) = 1 and hence, PBNA using transform approach and time-invati&cs,
and PBNA using transform approach and block time-varyin€&Ere infeasible for ath’ > 1.
We shall now show that PBNA using time-varying LECs is feksitor some(n; > 0,ny >
0,n3 > 0) andn > 0. The notation used for the LECs is the same as that in Exanmp\o®,

the network transfer matrices are given by
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[ o 0 an_srn_1 0 0] [ o 0 bu_srn_1 0 0
0 0 0 An—-4Tn—-2 - 0 0 0 0 bn—arpn—o - 0
My = : : : : : : Moy =
0 0 0 0 aopr2 0 0 0 0 bo?“z
a—17T1 0 0 0 0 b717’1 0 0 0 0
L 0 a—27T0 0 0 0 ] L 0 b727‘0 0 0
[ s7 0 Cn—3Tn—1 0 0 ] [ qr 0 An—3Pn—1 0 0
0 S6 0 Cn—aTn—2 -+ 0 0 s 0 Qn—aPn—2 - 0
May = : : : : : : My =
0 0 0 0 e CcoT2 0 0 0 0 s aogp2
c_17r1 0 0 0 0 a—1p1 0 0 0 0
0 C—_27T0 0 0 So 0 a—2pPo 0 0 qo
[ o 0 baspnt 0 0] [ o 0 Cnspnoi 0 0]
0 0 0 bn74pn72 s 0 0 0 0 Cn—4Pn—2 e 0
Moy — : : : : : : My =
0 0 0 0 bopz 0 0 0 0 Cop2
b_1p1 0 0 0 0 c_1p1 0 0 0 0
0 bfgpo 0 0 0 0 C—2DPo 0 0 0
[0 o 0 ans O 0] [0 0 0 bunes O 0]
0 0 0 0 An—5 0 0 0 0 0 bn—s 0
0 0 ... 0 0 0 S ag 0 0 e 0 0 0 R
M13 = 7M23 - )
a—1 0 0 0 0 0 0 b_1 0 0 0 0 0 0
0 a—s 0 0 0 0 0 0 b_2o 0 0 0 0 0
L 0 0 a—s 0 0 0 | L O 0 b_s 0 0 0]
[0 0 0 ¢ne O 0]
0 0 0 0 Cn—5 0
0 0O --- 0 0 0 e
M3z =
c_1 0 0 0 0 0 O
0 c-9 0 0 0 0 O
| 0 0 - c_s 0 0 e 0]

Let n = 8,n; = 5,ny = 3,n3 = 3. Unlike in Example B, here the matrix/;,' My, M,;' M3 is
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as=1lay=0a3=1a,=0a,= 567% = 527a1 = 5127% = 577

as = 526, ay = 537 as = 5317

bos =B by =B b_g = %, by = %, by = by = B, by = 57,

by = (%03 = 8%, by = 5%, b5 = %,

C5 = 54570—4 = 55470—3 =l,co=0c1= 56700 = ﬁ2701 = 512702 = 577

C3 = 526,04 = 53705 = 532,

Po = 5457171 = 549,]92 = 5387173 = 5287174 = 5417]95 = 5197176 = 5567177 = 557 (46)
qdo = 5247 q1 = 5337 a2 = 5167 43 = 514, 44 = 5527 45 = 5367 6 = 5547 a7 = 597

To = 562,7“1 = 525,7“2 2511,7“3 2534,7’4 2531,7’5 2517,7’6 = 547,7“7 2515,

So = ﬁ327 §1 = ﬁ137 So = 5357 S3 = 587 S4 = 5487 S5 = 5277 S6 = ﬁ187 St = ﬁ4'

not identity and is equal to

10 0o o0 0 00 0
01 0 0 0 000
00 & g 0 00 0
asb_3
00 0 =™ 0o 000
agb—4
00 0 0 22 000
azb_s
00 O 0 0 100
00 O 0 0 010
00 0 0 0 00 1

We now, choosé/; = [W UW U*W U3W U*W|] where, the matrixJ is defined in[(3D) and
W is the all-ones column vector of length= 8. We choose the matriced and B (defined
in (29)) respectively to be equal to the first three columns e second three columns of the
identity matrix /5. The matrixC' is taken to be equal to the identity matrlx. Now, it can be
easily verified thay;; = 0, where the rational-polynomiai; is defined in[(3R). Now, for PBNA
with time-varying LECs to be feasible, it remains to be vedfiif there exists an assignment
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to the LECs such thaf (66)-(68) (given in Appendix 1) are fad. The LECs involved are
chosen (randomly) as given ih{46) whergijs a primitive element of7 F'(2°) whose minimal
polynomial is given by(1 + z + 2°). With these choice of LECs, it can be verified using the
softwareMathematicathat [66){(68) are satisfied.

In the next section, we shall motivate a discussion on ther@l of a non-asymptotic
scheme, namely on-off scheme, to achieve a rate of half feryesource-destination pair S
3-D MUN-D.

VIlI. DISCUSSION ONON-OFF SCHEMES

PBNA for 3-S 3-D I-MUN was primarily motivated by the breakthrough restdt K-user
Gaussian interference channel (GIC)lin [8] where IA helpehieve a sum-degrees of freedom
(DoF) of % asymptotically. The presence of diagonal network transfatrices in3-S 3-D I-
MUN and the ability to diagonalize the network transfer neats in 3-S 3-D MUN-D helped
in readily adapting the IA problem formulation and the IA goders proposed for th&-user
GIC to the3-S 3-D I-MUN and 3-S 3-D MUN-D settings.

We now discuss if some simple on-off schemes can achieveeeofdtalf for every source-
destination pair ir8-S 3-D MUN-D. This discussion is motivated by an interestingutefor the
K-user GIC with propagation delays |24] where, it was showat thy appropriately adjusting
the duration of transmission, at every destination all thterference symbols would arrive at
even time slots while the desired symbol would arrive at odgktslots. Hence, using a simple
on-off signaling each user could achieve a DoF of half alnsosely.

If on-off schemes could achieve a rate of half for every sewtestination pair then, PBNA
would be unnecessary f&S 3-D MUN-D. But, as we shall see, there exist networks where
the proposed PBNA schemes are feasible while on-off schear@sot achieve a rate of half for
every source-destination pair. Unlike in tihé-user GIC with propagation delays, the advantage
offered by the on-off schemes cannot be completely reaiize€dS 3-D MUN-D because of the
fundamental difference between the wireline system maotetiélay networks and the wireless
system model involving propagation delays. The model dised in Sectionlll assumed that the
link delays are positive integer multiples of the symbolatiom. This gave rise to the input-output
relations in [(2) and (10). Whereas in the wireless setting,dymbol duration is independent of

the propagation delays between the sources and destisation
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Formally, we define an on-off scheme in3&S 3-D MUN-D as follows.

Definition 5: A transmission scheme where every source switches itsednohoff so that
the interference symbols at each of the destinations catidreed in orthogonal time slots with
respect to the desired symbols is defined as an on-off scheme.

We shall now consider two examples &S 3-D MUN-D where, in the first example, an
on-off scheme can achieve a rate of half for every sourcérdg®n pair, and in the second, it
is impossible to achieve a rate of half for every sourcetdagon pair using on-off schemes.

Example 5:Consider the3-S 3-D MUN-D in Fig. [6 where all the links have unit delay. It
can be easily verified that the reduced feasibility conditié Theoreni 7 are satisfied and hence,

by Theorem B, PBNA using transform approach and block tiamging LECs is feasible. Now,

3
(axtax+ax)D

c(ax+ax+ax)D*
111 2 2 3 3

T

1
4 2
S, 7(a LCX AL X, AL 1:(3)D +r x D
4
c(axtax +ax)D
T 4 2
S 2(acx+acx+acx)D+rx D
2 121 222 323 23

—————— [
c.(ax +ax+ax)D*
3v 11 2 2 3 3

I 4 2
ac +ac +ac D™+ D
8 ( 1 3X1 2 3X2 3 3X3) r3X2

- -7 - - "= T

Fig. 6. A 3-S 3-D MUN-D where, an on-off scheme can achieve a rate of halfef@ry source-destination pair. PBNA using
transform approach and block time-varying LEKs is feasdole achieves half-rate asymptotically for every sourcsidation

pair.

consider the following on-off scheme. The destinati@dhsand 7; delays the incoming symbol
from the nodeP; by two time slots and then linear combines it with the incagnsymbol

from the node(, so that the random process at the imaginary output links, aand 75 are
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given by (a;c121 + asc1mo + azeyw3) DY + rizs DY and (aycozy + ascoxy + ascoxs) D + roxs D
respectively. Choosing, = —azc; andry = —asc,, the interference fronds; at 77 and 7, are
eliminated. Similarly, the interference fro, is eliminated atl;. Let a; = ¢; = 1, for all 7 so
that the output symbols &f;, 75, andT; at every time instant are given by + o, x1 + o,
andz;, + x3 respectively. Now, the sources, S;, andS; are allowed to transmit only in odd,
even, and even time slots respectively. Hence, the on-b#ree achieves a rate of half for every
source-destination pair.

Example 6:Consider the3-S 3-D MUN-D in Fig. [ where all the links have unit delay. This
network is essentially the same network as that in Exaimplet2vith the last link before each
of the destinations removed. Hence, PBNA using transforpragch and time-invariant LECs,

and PBNA using transform approach and block time-varyingckEare feasible. Now, consider

3
(ax+ax+ax)D

c(ax+ax+ax)D*
111 2 2 3 3

-
1

4 2

S, 7(a LCX AL X, AL 1:(3)D +r x D
4
c(axtax +ax)D

S Tz(acx+acx+acx)D4+rxD2

2 121 222 32 3 21

- -~ - = - T

c.(ax +ax+ax)D*
3v 11 2 2 3 3

I 4 2
ac +ac +ac D™+ D
3 ( 1 3X1 2 3X2 3 3X3) r3X2

- - T - - "= T

Fig. 7. A 3-S3-D MUN-D where, it is impossible to achieve a rate of half feery pairS; — T; using on-off schemes while
PBNA using transform approach and time-invariant LECs, BBINA using transform approach and block time-varying LECs

are feasible.

the following on-off scheme. Like in Examplg 5, the destioas$ 7, 7>, and 73 cancel the

interference fronbs, Sy, andS, respectively by delaying the symbols received from the sdte
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Py, and P,. The output random process’at, T,, andT; are now given by(a,c, x| + aycix5) D,
(agcams + azcows) DY, and (ascszs + aycszy) D* respectively. Ifz; andz, are to be received in
orthogonal time slots al’ then, letS; transmit at odd time instants arft} transmit at even
time instants. Similarly forr, and x3 to be received in orthogonal time slots’Af, S; has to
transmit at odd time instants. Now, it is impossible figrand z; to be received in orthogonal
time slots at73. Similarly in the case of interference not being canceledahe destination
nodes, an on-off scheme cannot achieve a rate of half foy es@rrce-destination pair.

To summarize, Examplé 6 showed that there existsS88-D MUN-D where a PBNA scheme
can achieve a rate of half (asymptotically) for every sowtestination pair while on-off schemes
cannot achieve a rate of half for every source-destinat&n phis strengthens the case for PBNA
in 3-S 3-D MUN-D. On the other hand, Example 5 showed that there £%i8 3-D MUN-D
where an on-off scheme can achieve a rate of half for evergceeadestination pair. Though one
of the proposed PBNA schemes is feasible in Exarhple 5, it ieoessary because it achieves
a rate of half for every source-destination pair only asytipally (n’ — oo) unlike the on-off
scheme. Nevertheless, identifying the class$-& 3-D MUN-D or wireline networks in general
where on-off schemes can provide a rate guarantee of halévery source-destination pair

remains open.

VIII. CONCLUSION

Using DFT, an acyclic network with delay was transformed intinstantaneous networks
without making use of memory at the intermediate nodéss was then applied t8-S 3-D
MUN-D and it was shown that there can exist networks where RiB\feasible even by using
time-invariant LECs which is not possible in the delay-fre®unterpart. The conditions for
feasibility of network alignment were then generalizedhwiitme-varying LECs and posed as
an algebraic geometry problem in Section IV-B under CaseBNA using transform approach
and block time-varying LECs was proposed, and it was showh ith feasibility conditions is
the same as the reduced feasibility conditions3«3 3-D I-MUN. It was also shown that if
PBNA using transform approach and block time-varying LES€ifeasible then, PBNA using
transform approach and time-invariant LECs is also infdasiThe complete role of network
topology in determining the feasibility of PBNA i8S 3-D I-MUN appears in([[25] which is a

more recent version of [11]. Hence, the same is applicabBNA using transform approach
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and time-invariant LECs, and PBNA using transform approact block time-varying LECs.

It was also shown that there exist$ 3-D MUN-D where PBNA using time-varying LECs
is feasible while the other two proposed PBNA schemes agasilble. The following questions
however remain open.

1) Under what condition is PBNA using time-varying LECs fie#s when the reduced fea-

sibility conditions are not satisfied?

2) The sufficiency of the reduced feasibility conditions feasibility of PBNA using trans-
form approach and time-invariant LECs remains open, i€.PBNA using transform
approach and time-invariant LECs feasible whenever PBNi#gusransform approach
and block time-varying LECs is feasible?

Optimizing Groebner basis algorithms for specific netwasksucial to verifying the condition

of Theoreni 5 and hence, is of significant interest.

Optimality of PBNA, when feasible, for the class &S 3-D MUN-D remains to be investi-
gated. PBNA for3-S 3-D MUN-D discussed in this paper as well as that 368 3-D I-MUN,
could be extended to the case where each source-destiniomas a min-cut greater than
one. Another interesting direction of future research iereding PBNA to the case of arbitrary
number of sources and destinations with arbitrary messegendds.

Though the transform method described was claimed to bdacapje for acyclic networks
having M (D) whose elements are only polynomial functionsii it can also be applied to
networks havingV/ (D) whose elements are rational functionsZinby multiplying by the LCM
of all the denominators of the rational functions, at all #weks. This gives a finite,,,,,. The

same applies to cyclic networks too.
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APPENDIX A

PROOF OFTHEOREM[I

Proof: For0 < j <n — 1, we have

1
" SE ot AW
J =
L S a0 A
A azjlﬂ = " .
S alitn=1i AG)
Oé(n_l)jfu - Li=0 - nUxup
- = nuXpu
S
ol I, B
=| o¥I, (Z aV Am) : (47)
. =0
a(n_l)j],/
- = nvXv
From (47), we have
AQ, = Q,A. (48)

The matrix@,, defined in [(IR) can also be written &5, = F' ® I, (i.e., the Kronecker product
of F and/,). Similarly, Q, = F ® I,. The inverse of the matri¥’ is given by [15]

1 1 1 e 1

]_ a_l a_2 cee a_(n_l)
Fl=pt|1 a2 a—t ... g2

1 a—(n—l) a—2(n—1) a—(n—l)(n—l)

Now, det(Q,) = [det(F)*[det(I,)]" #0and Q' = F' ® I, (- QMQ-QI = (F®IL)(F'®
I,)=(FF')Y®I,=1I,,). Hence, from[(48)

A=Q,AQ;"
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APPENDIX B

PROOF OFTHEOREM[Z2

Proof: If Part: If both the conditions are satisfied after the assignmentbfes tos, then
sink-j can invert the matrifM,") (;,) M) (1;,) -~ M*(1;,)] and decode the required input

2] 141]

symbols without any interference.

Only If Part If Condition 1) is not satisfied for some sinkthen, sinksy receives superposition
of the required input symbols and interference from otheuirsymbols, from which it cannot
decode the required input symbols.

If Condition 2) is not satisfied for some sinkthen, sink;j cannot invert the matrix
[M (1) M® (liy) - M(k)( ,)] which is necessary for decoding the input symbols. &

(W) i2] igr]

APPENDIX C

PROOF OFLEMMA 2

Proof: Following the terminology developed so far, for some-> d,,,, and for0 <t <
n—1, let

(1) i
Then, by [(6), [(IB) and the structure of thé;’ matrices, we have fob <t <n —1,

dmaz
Y(t (Za n—1— t)M(d)> X(t) (49)

d=0

whereM}d) is av; x pu matrix overlF,» (considered as a subfield &f:) such that

dmafr

D)= M"D". (50)
d=0

We define a collection of ring homomorphisms: F,» (D) — F,» for 0 <t <n — 1, given
by ¢:(D) = o' and¢, as an identity map ofi,~. For some matrixP(D) overF,~ (D), we also
define¢,(P(D)) to be equal to the matri¥ with elements inF,. that are thep,-images of the
corresponding elements &f(D). Then, from [49) and_ (50), we have

Y, = g (M (D)) X0, (51)
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for 0 <t < n — 1. Clearly, the zero-interference conditions satisfied in g D) matrices
continue to hold in thep,(M;(D)) matrices, for0 < ¢ < n — 1 and for any sinki. Having
satisfied the zero-interference conditions, to recoverdiarce processes demanded by each

sink-j at time instanth — 1 — ¢, the invertibility conditions also have to be satisfied,,i.e.
H det (¢(M(D))) # 0, (52)

where M} (D) is the square submatrix aof/;(D) indicating the source processes that are de-

manded by sink: But then, we have

det (¢(M;(D))) = ¢u(det(M;(D))) (53)

and thus

T

Hdet du(M H@ (det(M}(D)))

= ¢ (H det(M}(D)))

where f(D) is as defined in((19). Clearly;(a’) # 0 implies that[(52) is satisfied and the source
processes demanded at each sink can be recovered at timetinst 1 — ¢ in the transform
approach. Similarly, if the sink demands are satisfied ag tinstantn — 1 — ¢ in the transform
approach, clearly we must hayéa®) # 0. This holds for0 < ¢ < n — 1, thus proving the

lemma. [ ]

APPENDIX D

PROOF OFTHEOREM[3

Proof: If part: Let F,~ be the field over which the feasible network code has beennsuta
for (G,C). Consider the polynomiaf (D) (given by [19)) with coefficients fron,~. Let ¥ .
be the splitting field of this polynomial, i.e., a suitableadlast extension field of,~ in which

f(D) splits into linear factors.
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Let
b=k ,
P =1=]]n"
b=1
where eaclp, is some prime andan, iS Some positive integer.
By Lemmd2, the choice af to be used for the DFT operations should be such fhat) # 0,
for any0 <t¢ <n — 1. We now show that such am exists and can be chosen.

LetF,..» be an extension field df ... Clearly, (p™ — 1) | (p™" — 1) . However, we further

demand thaiF‘pmn is such that

P —1=]Im" P, (54)

where eaclp, is some prime andn; andm. are some positive integer such that# p. for
1 <b<kandl <c<FE. Note thatm; > m, for 1 < b < k. Such extensions dem,, can
indeed be obtained. For examplg,.- can be considered to be the smallest field which contains
F,.~ andF,~, m being some positive integer coprime with'. Then clearlyF .~ is such that
(&4) holds.

Following the notations of Sectidn lll, we now picke F,,.» (wherem” satisfies[(54)) such

that the following condition holds.

« The cyclic subgroud1, a, ...,a" '} of F,.»\ {0} with ordern(n > 1) is such that and

_ " .
=k are coprime.

c=k" m/
c=1 F¢

Such ano can be obtained by choosingfrom the subgroup of .\ {0} with n = []
elements. We now claim that using such arfor the DFT will result in a feasible transform
network code for(G, C). The proof is as follows.

We first note that the zero-interference conditions arestadi irrespective of the choice of
in the DFT operations. As for the invertibility conditionlsy Lemmal2, it is clear that as long
asf(a') #£0for 0 <t <n-—1, we have a feasible transform network code f@rC). Suppose
f(a!) =0 for somel <t < n-—1. Let n, be the order of, i.e., the number of elements in the
cyclic group generated by!. Thenn,|n and alson,|[[="p;"* asat € F,. is a zero off(D).
However this leads to a contradictionashares no common prime factor szzfpl:n;’,. Thus
noa', 1<t <n-1, can be a zero of (D). This, coupled with the given fact thgt1) # 0,
proves the claim and hence the if part of the theorem.
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Only If part Let F,~ be the field over which a feasible transform network code hsenb
defined for (G,C), i.e., there exists a choice of LECs and ferfrom F,~ using which the
zero-interference and the invertibility constraints héeen satisfied in the transform domain.
Note that a choice for the LECs implies that the matritég D) given by [6) are well defined.
We will now prove that the invertibility and the zero-interénce constraints also hold in these
M, (D) matrices for all sinks, i.e., fot < j <r.

We first prove the invertibility conditions. Towards thadeltet]\?[}"_l) be defined as the; x 1
transfer matrix at time instant — 1 from all the sources to sink-in the transform approach,
ie.,

HOY = [ D g, ] (55)

J sJ]

By the structure of the\Z,' " matrices, we have\"™V = Y4t MY = M;(D)|p-;. Let

M;("_l) be the submatrix ofM}"‘l) which is known to be invertible, as it is given that the
invertibility conditions for the transform network codeeaall satisfied.

The invertibility conditions for sinkf of the usual (non-transform) network code @, C)
demand a suitable submatri¥;(D) of the matrix M;(D) to be invertible. Note however that
M(D)|p=y = M,V by (58). Therefore, we havéet (Mf"‘”) = det (M}(D)|p=1) # 0.

As in (53), we havelet (M/(D)) |p=1 = det (M}(D)|p=1) # 0. Therefore,det (M!(D)) # 0,
i.e.,det (MJ’.(D)) is a non-zero polynomial iv. Because the choice of the sink was arbitrary, it
is clear that the invertibility conditions hold for each Isim the usual network code faig, C).

By (19), we also havéD — 1) t f(D).

We now prove the zero-interference conditions. The zetedi@rence conditions in the trans-
form domain can be interpreted as follows. Having ordereditiput processes at the sourice-
suppose the sink-does not demand the* process from the sourde-Then the matrixMij
is such thatt™ column of Mg) is an all-zero column for alb <t < n — 1. To prove that
the zero-interference conditions continue to hold in thealisietwork code fofg, C), we must
then prove that for each souréeeach particular sink-and eachk (such that thek* input
process at sourceis not demanded at sink-the £ columns ofMi(;l) matrices are all-zero for
0<d<dnme Where,Mi(j‘.i), 0 < d < d,. are matrices such that

d’UL(L(L'
M;(D) =Y M D"

) %]
d=0
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_ v —1
M;j = Qv Mi;Q,;

[r(n=1)
L, I, L, - L, |[a 0 0 - 0
n—1 “r(n—2)
_ Il/j /Blluj %ij 1 Il/j O M’L] O O
_IVJ' ﬂnflL’j B’?l*lll/j e /BZ:%IL/]‘_ L 0 0 o --- Ml(_]O)_
Iﬂi IHi Ipq', et IMi
— — —(n—1
y L, B7'L, B, - VI
- — —(n—1
Iﬂi Bnillﬂi ﬁnzl‘[lhﬂ T Bn£1 )Ipq',
i n—1 25 (¢ n—1 H— ~r(t n—1 p—(n—1) 2 (¢ )
t=0 MKJ) 2= ﬁn*llftMi(j) 2 t—0 Bnilft)Mi(j)
n—1 gn—1—t yr(t) n—1 yr(t) n—1 pn—1—t o—(n—1) yr(t)
_ B Mz _ Mz "~ ﬁ T ]\/[z
_ t=0 1. J t=0 J t=0 M1 . 1-t 7 (56)
DY Kot VS DA i sl M.V LS L |

This is seen by observing the structure of the; matrix, which is defined by (15). Using
Theorentll and wittg, = o, we have[(56). Comparing the submatrices\f from (15) and
(B6), we see that if thé®* column of the]\?[,-(;) matrices is all-zero for al) <t <n — 1, then
the k" columns ofMi(f) matrices are all-zero fob < d < d,,... As the choice of source-
and sink4 are arbitrary, it is clear that the zero-interference ctods continue to hold in the
M;;(D) matrices for alll <: < sandl < j <r. This proves the only if part of the theorem

and hence, the theorem is proved. [ |

APPENDIX E

PROOF OFLEMMA

Proof: Consider);; as defined in[(I5) which is a circulant matrix of si2&'+1) x (2n/+1).
The diagonal elements df[,-j, i.e.,]\?[l.(f), fork=0,1,---,2n/, are the eigen values of the matrix
M;;. Note that the eigen values are equal(?@’ + 1)-point finite-field DFT of the first row
of M;;. Since, the min-cut from sourceto sink- is greater than or equal tb, by Menger's

Theorem, there exists at least one link-disjoint directath grom source-to sink-j. Consider
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one such directed path consisting of links e,, .., e,. Now, we can assign the values,., = 1,
Beiess =1 (1 €{1,2,..,t—1}), e,1 = 1 and assign values @f to all the other LECs. By such
an assignment of values to the LECs, exactly one amapl, A, .., M) is equal tol.
This implies that all the eigen values 8f;; are non-zero. Hence, the diagonal element8/of

are non-zero polynomials inand so is its determinant. [ |

APPENDIX F

PROOF OFLEMMA [4]

Proof: If part: Euler’s theorem[[20] states that if two positive integerandb are coprime
then, b divides a®® — 1 where ¢ represents the Euler’s totient function.2f’ + 1 < p then,
2n' + 1 andp are coprime. If2n’ + 1 > p then,p and2n’ + 1 are coprime iffp does not divide
2n’ + 1. Hence, by Euler’s theoremp’ + 1[p?"+1) — 1 if pt2n’ + 1. Thus if pf 20/ + 1 then,
2n’ + 1|p™ — 1, for all m such thatp(2n’ + 1)|m.

Only If part: If 2n’ + 1 dividesp™ — 1 for some positive integem then,p™ — 1 = r(2n' + 1)
for some positive integer. So, p™ — (2n’ + 1)r = 1 which means thap and 2»’ + 1 must be

coprime. Sincep is prime,p { 2n’ + 1. [ |
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APPENDIX G

PROOF OFTHEOREM[4

Proof: To exactly recover!™ ™, X" and X:;"' at the sinkst, 2 and 3 respectively, it is

sufficient that the following network alignment conditioage satisfied.

My Vy = My Vs (57)
Col (Mgzvg,)  Col (Mlzvl) (58)
Col (MQ?,VQ) c Col (Mlgvl) (59)

RanKM Vi My Vi) = 2n' + 1

& RankVy M My Vs =20/ +1 (60)
RankMy, Vs M,V =20’ +1

& RanKMp My Vs Vi) =20 + 1 (61)
Rank M3V MisVi) =20/ + 1

& RanKMp' MasVs Vi) =2n' +1 (62)

Note that from Lemmal3, inverse af/;; V (4, j) € {1,2,3} is well-defined. It is easily seen that

the choice ofl/}, V5 ,andV; in (21)-(23) satisfy the condition§ (67)-(59). Supposé (68)-(62)
are satisfied. Let

fi(e
fa(e
fa(e
fale

det([V1 M11 M21V2])

det([Mp' My Ve V1))

det([M3' Ma3Vs Vi)
H d6t<M2]>

(4,7)€{1,2,3}

g) = Hfi(é)

Since fi(g), f2(g) and f3(g) are non-zero polynomials i, f(e) is also a non-zero polynomial

)
)
)
) =

in e. Hence, by Lemmd in [3], for a sufficiently large field size, there exists anigsment
of values toe such that the network alignment conditions are satisfiedceSp 1 2n’ + 1, by

Lemmal4, for a sufficiently large: (in particular,m such thatp(2n' + 1)|m where¢ represents
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the Euler’s totient function), there exists an assignmdnvadues toe such that the network

alignment conditions are satisfied. Hence, the theoremasgegk. [ |

APPENDIX H

PROOF OFLEMMA

Proof: If we assigng(~dmes) = g(-dmeatl) = = = =1 = ¢ M, in (27) becomes a
circulant matrix. Since, the min-cut from sourcée sink-j is greater than or equal to, by
Menger’s Theorem, there exists at least one link-disjoirtaled path from sourcéto sink-

j. Consider one such directed path consisting of liakses, .., e;. Now, assign the values
Qre, = 1, ey, = 1, fori=1,2,---t -1, ¢,, =1 and assign values df to all the other
LECs. By such an assignment/;; becomes a permuted identity matrix whose determinant is

non-zero. Hence, the determinantaf; is a non-zero polynomial ig’. [ |

APPENDIX |

PROOF OFTHEOREM[S

Proof: To exactly recoveiX|™, X" and X}"* atTy, T, andTj respectively, it is sufficient

if the following network alignment conditions are satisfied

Spar(Mgl‘/g) C Spar(M21V2) (63)
Spar{Msz;Vs) C SpariMi2V1) (64)
Spar(M23V2) C Spar(Mlg‘/l) (65)

RanKMy1 Vi My V| = ng + ng

& RankKVy M ' My Vo) = ny + ny (66)
RanK My Vo MioVi| = ng + ng

& RankM ' Mo Ve Vi] = ny + ny (67)
RanKM 53V MisVi] = ny + ng

& RanKMi' MssVs Vil =g +ng (68)

Note that [66){(68) are also necessary conditions whel@2)s(63) are necessary whén; +
ng) = (n1 +n3) = n (.- ny > ng > ng). Clearly, [66) and[(68) cannot be satisfied when +
ne) > n and (n; + n3) > n respectively. Thereforgpn, + ny) < n.
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The choice ofl, and Vs in (29) ensures that the conditioris (64) ahd] (65) are satisTie

satisfy [63), we have to ensure that
M3 Vs = My VaC
& Mg MoV B = Mgt Moy My Mis Vi AC
& ViB =UVAC (69)

is satisfied. In order to satisfi (69), every elemenfidf, A must be equal to every element of
ViBC, i.e.,

gi; =0, for 1=1,2,--- n, j=1,2,--- ns.

To ensure that(86) is satisfied, we require that at least aveng /", k = 1,2,...,(,.".. ).
take a non-zero value after some assignment to the variablgd ECs. This necessitates that,
firstly, fl('“) should be a non-zero rational polynomial for sorelt can be easily seen that
f™ is a non-zero rational polynomial for sonteiff f, = <1 - ,ng”z)(l —5§’“)f1(’“))> is a non-
zero rational polynomial. Similarly, froni (67) an@ {68}, = (1— ,Eg}nz>(1_5gk>f§k>>) and
fy = (1 - 1‘[,&";5"3)(1 - §§k)f§k))) must be non-zero rational polynomials. Hence, to satisE)-(6
(69) we need to find an assignment i, ¢’, A, and B, such thatf # 0 andg;; = 0, for
all (4,7). This means that there must exist an assignment suchftiat= 0 and gi(;”) = 0.
After the assignment to the variables, we require tH&t £ 0 and gi(;.”) # 0 as dividing by
zero is prohibited. In order to formulate this as an algebpaioblem, introduce a new variable
§ and consider the polynomiaél —afr AT gz.(j‘.”)). From Weak Nullstellensatz [22],

an assignment té, Vi, ¢, A, B, C, andé®, for all (4, k), exist such thaygm = 0, for all

(,4), and (1 — o T g}j’”)) = 0 iff 1 does not belong to the ideal generated by the
polynomialsg."" for all (i, ;) and (1 —0frm T gi(;”)>. n

APPENDIX J

PROOF OFTHEOREM[G@

Proof: To exactly recovelX;™, X" and X" at Ty, T, andT5 respectively, it is sufficient
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if the following network alignment conditions are satisfied

Spar{Ms,V3) C SpaniMi, Vi) (70)
Spar{Ms;V2) C SpariMi3V7) (71)
RanKA, Vi M3 Vs = ny +ng

& RanKVy M' M3 Vs = ny + ng (72)
RanK My Vo MioVi| = ng + ng

& RankM ' Mo Ve Vi] = ny + ny (73)
RanKMss3Vs MisVi] = ny +ng

& RanKMp;' MssVs Vi) =ny + ng (74)

Note that [[7R){(74) are also necessary conditions whefé@s dnd [(7]l) are necessary when
(n1 + ng) = (ny + n3) = n. Clearly, [78) and[(74) cannot be satisfied when + n,) > n and
(n1 + n3) > n respectively. Therefordn; + ny) < n.

It is easily seen that the choice ©f and V3, in (34), satisfy the conditions (¥0) and {71). If
(72)-(74) are satisfied then, the determinants of at leasbbthe(n; +n3) x (n;+n3) submatrices
of [My1 Vi M31V3), (ng +ng) X (ng +nsy) submatrices ofM ;! Ma Vs V3], and(ng +n3) X (ng +ns)
submatrices ofM ;' Ms3v; V] will be non-zero rational polynomials. Let be the product of
the numerators and denominators of these non-zero ratgmighomials. Hence, by Lemma 1
in [3], for a sufficiently large field size, there exists anigsment of values te and other
variables involved such that the network alignment condgiare satisfied. Hence, the theorem

is proved. [ |

APPENDIX K

PROOF OFTHEOREMI[8

Proof: If part: Using the precoding matrices given [n{42)4f(0) can be recovered from
Yim@k) for all 7 then, the determinants ih_(40) are non-zero polynomial:{@ e ,%>
for ¢ = 0. Note that the transfer matrice¥;; (¢, a?), for all ¢, in the 3-S 3-D MUN-D can
also be simulated as the ones obtained from its instantaneetwork counterpart (i.eq, = 0)
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by multiplying each of the LEC by?. Suppose that one of the determinants[in (40) is a zero-
polynomial for somey (i.e., X/(¢) cannot be recovered from(q@k) for at least ong). Then, this
determinant is also a zero polynomial wi@@, e ,%) replaced by(g/aq, e ,%/oﬂ)
where,e; /o denotes each of the LECs multiplied by the inversevafBut this contradicts the
fact that all the determinants in_(40) are non-zero polyraisnin <5_1, e ,%), intheqg =0
case. Hence, the determinants [inl(40) are non-zero polaisrfor all ¢ and alli. Using a
sufficiently large field size such that2™ — 1, by Lemmal in [3], there exists an assignment
to <5_1, e ,%) such that determinants ih_(40) are non-zero forgall

Only-if part Using the precoding matrices given in_[42), Xf/(¢) can be recovered from
Yim@k) for all 7 and for some; # 0 then, the determinants i (40) are non-zero polynomials in
<ﬂ, e ,%) for someq = ¢’ # 0. Suppose that one of the determinants[in (40) is a zero-

%8) for at least ong). Then, this

polynomial forq = 0 (i.e., X/(0) cannot be recovered from(
determinant is also a zero polynomial wi(@, e ,%> replaced by(e_laq’, e ,%aq’>
Where,@oﬂ’ denotes each of the LECs multiplied by'. But this contradicts the fact that all
the determinants ir_(40) are non-zero polynomials in¢he ¢’ case. Thus, the determinants in
(40) are non-zero polynomials fgr= 0 and alli. Hence, using the “If part”, the determinants
in (40) are non-zero polynomials for ajl and alli. Using a sufficiently large field size such
that £|2™ — 1, by Lemmal in [3], there exists an assignment (@_1, e ,%> such that

determinants in[(40) are non-zero for all [ ]
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