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Abstract

The algebraic formulation for linear network coding in acyclic networks with the links having

integer delay is well known. Based on this formulation, for agiven set of connections over an arbitrary

acyclic network with integer delay assumed for the links, the output symbols at the sink nodes, at any

given time instant, is aFpm-linear combination of the input symbols across different generations where,

Fpm denotes the field over which the network operates (p is prime andm is a positive integer). We

use finite-field discrete fourier transform (DFT) to convertthe output symbols at the sink nodes, at

any given time instant, into aFpm-linear combination of the input symbols generated during the same

generationwithout making use of memory at the intermediate nodes. We call this as transforming the

acyclic network with delay inton-instantaneous networks(n is sufficiently large). We show that under

certain conditions, there exists a network code satisfyingsink demands in the usual (non-transform)

approach if and only if there exists a network code satisfying sink demands in the transform approach.

When the zero-interference conditions are not satisfied, wepropose three Precoding Based Network

Alignment (PBNA) schemes for three-source three-destination multiple unicast network with delays (3-

S3-D MUN-D) termed as PBNA using transform approach and time-invariant local encoding coefficients

(LECs), PBNA using time-varying LECs, and PBNA using transform approach and block time-varying
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LECs. We derive sets of necessary and sufficient conditions under which throughputs close ton
′+1

2n′+1 ,

n′

2n′+1 , and n′

2n′+1 are achieved for the three source-destination pairs in a3-S 3-D MUN-D employing

PBNA using transform approach and time-invariant LECs, andPBNA using transform approach and

block time-varying LECs where,n′ is a positive integer. For PBNA using time-varying LECs, we obtain

a sufficient condition under which a throughput demand ofn1

n
, n2

n
, and n3

n
can be met for the three

source-destination pairs in a3-S 3-D MUN-D where,n1, n2 andn3 are positive integers less or equal

to the positive integern. This condition is also necessary whenn1 + n3 = n1 + n2 = n where,

n1 ≥ n2 ≥ n3.

Index Terms

Acyclic network, Delays, Interference, Linear Network Coding, Network Alignment, Transform

Approach.

I. INTRODUCTION

The notion of Network Coding was introduced in [1] where the capacity of wireline multicast

networks is characterized. Scalar linear network coding was found to achieve the capacity of

multicast networks [2]. The existence problem of scalar linear network coding for networks

without delay (i.e., instantaneous networks) was converted into an algebraic problem in [3]. In

the meanwhile, it was shown that [4] there exist solvable non-multicast networks where scalar

linear network coding is insufficient. In addition, [4] alsoshowed that determining the existence

of linear network coding solution for multiple unicast networks is NP-hard in general. In [5],

it was conjectured that vector linear network coding suffices to solve networks with arbitrary

message demands. Subsequently, Dougherty et al. [6] disproved the conjecture by showing that

there exists networks where vector linear network coding does not achieve network capacity

and that nonlinear network coding are required in general. However, the practicality of linear

network codes led to construction of suboptimal network codes for Multiple Unicast networks

based on linear programming [7].

The concept of interference alignment originally introduced in interference channels [8] was

applied by Das et al. [9], [10] in a three-source three-destination instantaneous multiple unicast

network (3-S 3-D I-MUN), where the zero interference conditions of Koetter et al. [3] cannot

be met, to achieve a rate close to half for each source-destination pair. Since precoding matrices

are used at the sources for interference alignment and exploited for network coding in3-S 3-D
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I-MUN, it came to be known as Precoding Based Network Alignment (PBNA) [11]. Though

PBNA is not optimal in general for a3-S 3-D I-MUN [10], it provides a simple and systematic

manner of network code construction that can guarantee (under certain conditions) an asymptotic

rate of half for every source-destination pair when the zerointerference conditions cannot be

met.

A set of sufficient conditions for feasibility of PBNA in a3-S 3-D I-MUN were obtained in

[9]. However, the set of conditions were infinite and hence, impossible to check. Moreover, the

sufficient conditions were constrained by the use of particular precoding matrices at the sources.

These motivated the work of Meng et al. [11] where, a finite setof conditions are obtained for

feasibility of PBNA in a3-S 3-D I-MUN that are both necessary and sufficient. We call these

finite set of conditions as the“reduced feasibility conditions”. The highlight of their result is

that PBNA with arbitrary precoding matrices is feasible iffPBNA is feasible with the choice of

precoding matrices as in [9] (with the number of symbol extensions being greater than or equal

to five). The derivation of the result involved taking into account graph related properties.

The case of acyclic networks with delays was abstracted in [3] as acyclic networks where

each link in the network has an integer delay associated withit. In the current work, we look

at a technique similar to [9] for providing throughput guarantees in certain acyclic networks

with delays where the zero-interference conditions cannotbe satisfied whilenot making use of

any memory at the intermediate nodes(i.e., nodes other than the sources and sinks). The set

of all Fpm-symbols generated by the sources at the same time instant are said to constitute a

generationwhere,Fpm denotes the field over which the network operates (p is a prime number

andm is a positive integer). The output symbols at the sink nodes,at any given time instant,

is a Fpm-linear combination of the input symbols across different generations. We convert the

output symbols at the sink nodes, at any given time instant, into aFpm-linear combination of

the input symbols generated during the same generation, by using techniques similar to Multiple

Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) [13]. We

call this technique as thetransform technique, since we use Discrete Fourier Transform (DFT)

over a finite field towards achieving this instantaneous behaviour in the network.

As a first step towards guaranteeing a minimum throughput when the zero-interference con-

ditions cannot be satisfied in an acyclic network with delay,we consider a three-source three-

destination multiple unicast network with delays (3-S 3-D MUN-D) with the source-destination
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pair denoted bySi-Ti, i = 1, 2, 3. We also assume a min-cut of one between sourceSi and

destinationTi. Under this set-up, we derive a sufficient condition under which PBNA using time-

varying local encoding coefficients (LECs)is feasible whenever the throughput demands for the

three source-destination pairs are given byn1

n
, n2

n
and n3

n
where,n1, n2, n3, andn are positive

integers withn1, n2, n3 ≤ n. This condition is also necessary whenn1+n3 = n1+n2 = n where,

it is assumed without loss of generality thatn1 ≥ n2 ≥ n3. The condition is purely algebraic.

But, this condition is often difficult to verify in practice.However, whentime- invariantLECs

are used, our transform technique aids in obtaining networkalignment matrices of the form

similar to [9], and the derived set of necessary and sufficient conditions under which PBNA

is feasible under the transform technique are simpler to verify for a given number of symbol

extensionsn = 2n′+1. We term this PBNA scheme asPBNA using transform approach and time-

invariant LECs. Under this PBNA scheme, throughputs ofn′+1
2n′+1

, n′

2n′+1
, and n′

2n′+1
are achieved

for S1 − T1, S2 − T2, and S3 − T3 respectively, wheren′ is a positive integer. So, for large

n′, each of the throughputs is close to half. However, these conditions are applicable only to

the case of precoding over a fixed number of symbol extensions, i.e., if the feasibility test fails

over a symbol extension of length2n′ + 1, it is not known if the test would fail for a symbol

extension of length greater than2n′ +1. Hence, on the look-out for an elegant set of conditions

that would help check the feasibility of PBNA in a3-S 3-D MUN-D over any number of symbol

extensions (like in [11]), we propose a PBNA scheme for3-S 3-D MUN-D which is different

from PBNA using transform approach and time-invariant LECs, and PBNA using time-varying

LECs. This scheme is termed asPBNA using transform approach and block time-varying LECs

and we show that its feasibility conditions are the same as the reduced feasibility conditions of

Meng et al. The drawback in PBNA using transform approach andblock time-varying LECs is

that the decoding delay is higher compared to PBNA using time-varying LECs, and PBNA using

transform approach and time-invariant LECs. Formally, we define block time-varying LECs as

follows.

Definition 1: A 3-S 3-D MUN-D is said to use block time varying LECs when the LECs are

varied with every time block of lengthk > 1 and remain constant within each time block.

The contributions of this paper are summarized as follows.

• Given an acyclic network with delay, we convert the output symbols at the sink nodes at

any given time instant into aFpm-linear combination of the input symbols generated during
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the same generation, using finite-field DFT. We call this as transforming the acyclic network

with delay inton-instantaneous networkswhere,n is sufficiently large.

• Using a constructive proof, we show that there exists a network code (satisfying a certain

property) that achieves the sink demands in the usual (non-transform) approach if and only

if there exists a network code satisfying sink demands in thetransform approach .

• PBNA with time-varying LECs:For 3-S 3-D MUN-D, which do not satisfy the zero-

interference conditions, we obtain a sufficient condition (called thefeasibility condition

for PBNA with time-varying LECs) under which a throughput close ton1

n
, n2

n
, and n3

n
are

achieved for the source-destination pairsS1-T1, S2-T2, andS3-T3 respectively using time-

varying LECs where,n1, n2, and n3 are positive integers less than or equal ton. This

condition is also necessary whenn1 + n3 = n1 + n2 = n where, without loss of generality,

it is assumed thatn1 ≥ n2 ≥ n3.

• PBNA using transform approach and time-invariant LECs:Assuming time-invariant LECs,

for a given number of symbol extensionsn = 2n′ + 1, we use our transform technique

to achieve throughputs close ton
′+1

2n′+1
, n′

2n′+1
, and n′

2n′+1
for S1 − T1, S2 − T2, andS3 − T3

respectively under certain conditions, along with the use of alignment strategies. Whenn′ is

large, the throughputs are close to half. The derived set of necessary and sufficient conditions

under which PBNA using transform approach and time-invariant LECs is feasible are easier

to verify when compared to the feasibility condition for PBNA with time-varying LECs.

The set of necessary and sufficient conditions for this scheme can be derived as a special

case of that of PBNA with time-varying LECs.

• PBNA using transform approach and block time-varying LECs:Using transform techniques

and block time-varying LECs, a PBNA scheme different from the above two is proposed.

The highlight of this scheme is that the derived set of necessary and sufficient conditions

for feasibility of this PBNA scheme are shown to be the same asthe reduced feasibility

conditions for3-S 3-D I-MUN which are independent of the number of symbol extensions

2n′ + 1 ≥ 5 over which the independent symbols of each source are precoded. However,

the decoding delay is higher in this scheme compared to the two other PBNA schemes

proposed in this paper.

A comparison of the three proposed PBNA schemes is summarized in Table I.

The organization of this paper is as follows. In Section II, after a brief overview of the

December 20, 2017 DRAFT
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TABLE I

COMPARISON OF THE THREE PROPOSEDPBNA SCHEMES WHEREPBNA 1 DENOTESPBNA USING TRANSFORM APPROACH

AND TIME -INVARIANT LECS, PBNA 2 DENOTESPBNA USING TIME-VARYING LECS, AND PBNA 3 DENOTESPBNA

USING TRANSFORM APPROACH AND BLOCK TIME-VARYING LECS

PBNA 1 PBNA 2 PBNA 3

Decoding Delay for

the firstp symbols, 2n′ + 1 n = 2n′ + 1 k(2n′ + 1)

p ≤ k for some positive integerk

Dependence of the derived Dependent Dependent Independent

feasibility conditions onn′/n (on n′) (on n) (of n)

Existence of3-S 3-D MUN-D Cannot exist Can exist

where one PBNA scheme is feasible(Proposition 3, (Example 4, Not known

when the other two are not. Section VI) in Section VI)

system model for acyclic networks with delays using time-invariant LECs [3], we derive the

system model for acyclic networks with delays, using time-varying LECs. Section III presents

the transform technique using which we convert the usual convolutional behaviour of the network

with delay into instantaneous behaviour. In Section III, wealso prove the interchangeability of

solving the usual (non-transform) network code existence problem and the counterpart in the

transform technique. In Section IV-A, PBNA using transformapproach and time-invariant LECs

is described for3-S 3-D MUN-D where the zero-interference conditions cannot be satisfied.

PBNA with time-varying LECs is described in Section IV-B, and PBNA using transform approach

and block time-varying LECs is described in Section V. The feasibility conditions of the three

PBNA schemes are compared in Section VI. In Section VII, we discuss the potential of on-

off schemes in achieving half-rate for every source-destination pair in a3-S 3-D MUN-D. We

conclude our paper in Section VIII with discussion and directions for further research.

Notations:The cardinality of a setE is denoted by|E|. A superscript oft accompanying any

variable (for example,ǫ(t)) or any matrix (for example,M (t)) denotes that they are a function of

time t, unless mentioned otherwise. Theith row, j th column element of a matrixA is denoted

by [A]ij . The notation Col(P ) ⊂ Col(Q) denotes that the columns of the matrixP are a subset

December 20, 2017 DRAFT
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of the columns of the matrixQ. The notation Span(P ) indicates the sub-space spanned by the

columns of the matrixP . The notation Span(P ) ⊂ Span(Q) denotes that the space spanned

by the columns of the matrixP is a sub-space of the space spanned by the columns of the

matrix Q. The determinant of a square matrixA is denoted bydet(A). An identity matrix of

sizeµ × µ is denoted byIµ. For three-source three-destination unicast networks we shall use

the term destination to denote sink. The Galois Field of cardinality pm is denoted byGF (pm)

where,p is a prime number andm is a positive integer. The notationa|b denotes thata divides

b where,a and b belong to a ring. The notationa ∤ b denotes thata does not divideb. For

positive integersa andb, LCM(a, b) denotes the least common multiple ofa andb. The notation

f(A) where,A is a matrix, denotes thatf is a function of elements of the matrixA. The

notationdiag(a1, a2, · · · , an) denotes a diagonal matrix whoseith diagonal entry is given byai,

for i = 1, 2, · · · , n.

II. SYSTEM MODEL

First, we shall briefly review the system model from [3]. We consider a network represented

by a Directed Acyclic Graph (DAG)G = (V,E), whereV is the set of nodes andE is the

set of directed links. We assume that every directed link between a pair of nodes represents an

error-free link and has a capacity of oneFpm symbol per link-use. Multiple links between two

nodes are allowed and theith directed link fromv1 ∈ V to v2 ∈ V is denoted by(v1, v2, i). The

head and tail of a linke = (v1, v2, i) are denoted byv2 = head(e) and v1 = tail(e). Without

loss of generality, we assume that a link between a pair of nodes has a unit delay (if the link

has any other non-zero integer delay, we could introduce an appropriate number of dummy

nodes in between the pair of nodes which are then connected bylinks of unit delays). Let

X (v) = {X(v, 1), X(v, 2), ..., X(v, µv)} be the collection of discrete random processes that

are generated at the nodev. Let Xv = [X(v, 1) X(v, 2) ... X(v, µv)]
T . The random process

transmitted through linke is denoted byZ(e). Communication is to be established between

selected nodes in the network, i.e., we are required to replicate a subset of the random process

in X (v) at some different nodev′. This subset is denoted byX (v, v′). A connectionc is defined as

a triple (v, v′, X(v, i)) ∈ V × V × X (v, v′), for somei ∈ {1, 2, · · · , µv}
1. For the connectionc,

1The definition of connection adopted here is different from that in [3].
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v is called the source andv′ is called the sink ofc, i.e.,v = source(c) andv′ = sink(c) (source(c)

6= sink(c)). The collection ofνv′ random processesY(v′) = {Y (v′, 1), Y (v′, 2), ..., Y (v′, νv′)}

denotes the output at sinkv′. Let Yv′ = [Y (v′, 1) Y (v′, 2) ... Y (v′, νv′)]
T .

The input random processesX(v, i), output random processesY (u, j) and random processes

Z(e) transmitted on the linke are considered as a power series in a delay parameterD, i.e.,

X(v, i) =
∑∞

t=0 X
(t)(v, i)Dt, Y (u, j) =

∑∞
t=0 Y

(t)(u, j)Dt, andZ(e) =
∑∞

t=0 Z
(t)(e)Dt.

Let G = (V,E) be an acyclic network with arbitrary finite integer delay on its links. G is

taken to be aFpm-linear network [3] where, for all links the random processZ(e) on a link

e = (v, u, i) ∈ E satisfies

Z(t+1)(e) =

µv
∑

j=1

αj,eX
(t)(v, j) +

∑

e′:head(e′)=tail(e)

βe′,eZ
(t)(e′)

where,αj,e andβe′,e belong toFpm. The output at any sink nodev′, is taken to be

Y (t+1)(v′, j) =
∑

e′:head(e′)=v′

ǫe′,jZ
(t)(e′) (1)

whereǫe′,j ∈ Fpm . The coefficients,αj,e, βe′,e andǫe′,j are also calledlocal encoding coefficients

(LECs). The vector consisting of all LECs is denoted byε. Note that in [3], the definition for the

output processes at any given time instant at any sink involves linear combinations of the received

processes and output processes across different previous time instants, and hence the variables

involved in such linear combinations together performed the function of decoding the received

processes at the sinks to the demanded input processes. However, in (1), at every sink, we only

define a preprocessing of the received symbols corresponding to the previous time instant alone.

The outputsY (t+1)(v′, j) ast varies, will then be used by sink-v′ to decode the demanded input

processes using sufficient delay elements for feed-forwardand feedback operations. The LECs

are time-invariant unless mentioned otherwise.

We assume some ordering among the sources so that the random process generated by the

sources can be denoted, without loss of generality, asX1(D), X2(D), ..., Xs(D), wheres denotes

the number of sources andXi(D) is a µi × 1 column vector given by

Xi(D) = [Xi1(D) Xi2(D) . . .Xiµi
(D)]T .

Similarly, we assume some ordering among the sinks so that the output random process at the

sinks can be denoted, without loss of generality, asY1(D), Y2(D), ..., Yr(D), wherer denotes

December 20, 2017 DRAFT
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the number of sinks andYi(D) is a νi × 1 column vector given by

Yi(D) = [Yi1(D) Yi2(D) . . . Yiνi(D)]T .

Let

Y (D) = [Y1(D)T Y2(D)T ... Yr(D)T ]T

= [y1(D) y2(D) ... yν(D)]T ,

X(D) = [X1(D)T X2(D)T ... Xs(D)T ]T

= [x1(D) x2(D) ... xµ(D)]T

where,xk1(D) andyk2(D) represent the input and output random process of some source-i and

sink-j respectively, andµ =
∑s

i=1 µi andν =
∑r

i=1 νi. We now have [3]

Y (D) = M(D)X(D) (2)

where,M(D) denotes thenetwork transfer matrixof size ν × µ with elements fromFpm[D],

the ring of polynomials in the delay parameterD with coefficients fromFpm . Now, M(D) can

also be written as

M(D) =















M11(D) M21(D) · · · Ms1(D)

M12(D) M22(D) · · · Ms2(D)
...

...
...

...

M1r(D) M2r(D) · · · Msr(D)















. (3)

whereMij(D) denote the network transfer matrix from source-i to sink-j and is of sizeνj ×µi.

Let d′max andd′min denote the maximum and the minimum of all the path delays fromsource-i

to sink-j, for all (i, j), between which a path exists. Let

dmax = d′max − d′min

Then,M(D) can be written as

M(D) =

d′max
∑

d=d′min

M (d)Dd =

(

dmax
∑

d=0

M (d)Dd

)

Dd′min ,

whereM (d) ∈ Fν×µ
pm represents the matrix-coefficients ofDd.
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SinceDd′min just adds a constant additional delay to all the outputs, without loss of generality,

we can takeM(D) to be

M(D) =
dmax
∑

d=0

M (d)Dd. (4)

Hence,Mij(D) can be alternatively written as

Mij(D) =

dmax
∑

d=0

M
(d)
ij Dd. (5)

For each sink-j, we also defineMj(D) to be theνj × µ submatrix ofM(D) that captures the

transfer function between all the sources and the sink-j, i.e.,

Mj(D) = [M1j(D) M2j(D) ... Msj(D)] . (6)

In the networkG, let Cj denote the set of all connections to sink-j. Let C = ∪r
j=1Cj.

Definition 2: An acyclic network with delay is said to be solvable if the demands of the sinks,

as specified by the set of connections, can be met.

The following lemma from [3] states the conditions for solvability of acyclic networks with

delay.

Lemma 1 ( [3]): An acyclic network with delay is solvable iff there exists anassignment to

the LECsε such that the following conditions are satisfied.

1) Zero-Interference:M (d)
ij (li) = 0, for all pairs (source-i, sink-j) of nodes such that (source-

i, sink-j, Xi
(li)(D)) 6∈ Cj for all 0 ≤ d ≤ dmax, whereM (d)

ij (li) denotes thelthi column of

M
(d)
ij andXi

(li)(D) denotes thelthi element ofXi(D).

2) Invertibility: For every sink-j, the square submatrixM ′
j(D) of Mj(D) formed by juxtapo-

sition of the columns ofMij(D), for all i other than those involved in the zero-interference

conditions, is invertible overFpm(D), the field of rationals overFpm.

A network code for(G, C) is defined to be afeasible network codeif it achieves the given set

of demands at the sinks i.e., if the above zero-interferenceand the invertibility conditions are

satisfied.

A. System Model for time-varying LECs

When the LECs are time-varying, we can’t express the input-output relation as in (2). Hence,

first, we need to derive the input-output relation involvingtransfer matrices which are dependent

December 20, 2017 DRAFT
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on varying LECs. Retaining the notations as already introduced, we only point out the changes

in the system model here.

For a given DAGG with integer delay on its links, define the adjacency matrix of G at time

t as the|E| × |E| matrix K(t), whose elements are given by

[K(t)]ij =







β
(t)
ei,ej head(ei) = tail(ej)

0 otherwise.

Let the entries ofµ× |E| matrix A(t), at timet, be given by

[A(t)]ij =







α
(t)
l,ej

xi = Xtail(ej)l for somel, 1 ≤ l ≤ µtail(ej)

0 otherwise.

where, the tail of an edge originating from a source is identified by the source number. Also,

let the entries ofν × |E| matrix B(t), at timet, be given by

[B(t)]ij =







ǫ
(t)
ej ,l

yi = Yhead(ej)l for somel, 1 ≤ l ≤ νhead(ej)

0 otherwise.

where, the head of an edge terminating at a sink is identified by the sink number. Denote the

matrix of LECs from time instantt1 to time instantt2 (t2 ≥ t1) by ε(t1,t2), i.e.,

ε(t1,t2) =
[

ε(t1) ε(t1+1) . . . ε(t2)
]

whereε(ti) denotes the LECs at timeti. Since the LECs are time varying, define a time-varying

network transfer matrix given by

M(D, t)T=
(

A(t−1)I D+ A(t−2)K(t−1)D2+ A(t−3)K(t−2)K(t−1)D3

+ . . .+ A(t−dmax)K(t−(dmax−1))..K(t−2)K(t−1)Ddmax
)

B(t)T

,

dmax
∑

d=0

M (d)T (ε(t−d,t))Dd (7)

where the matricesM (d)T (ε(t−d,t)) are a matrix functions ofε(t−d,t), andM (0)T = 0, i.e., the

zero matrix, as each link in the network is assumed to have a unit delay. The matrixM(D, t)T

can also be written as

M(D, t)T =

















M11(D, t) M21(D, t) · · · Ms1(D, t)

M12(D, t) M22(D, t) · · · Ms2(D, t)
...

...
...

...

M1r(D, t) M2r(D, t) · · · Msr(D, t)

















(8)

December 20, 2017 DRAFT



12

where,Mij(D, t) defines a time-varying network transfer matrix of sizeνj × µi from source-i

to sink-j. The matrixMij(D, t) can also be written in terms of the delay parameterD as

Mij(D, t) =
dmax
∑

d=0

M
(d)
ij (ε(t−d,t))Dd. (9)

We shall now derive the relation between the input and the output symbols.

Definition 3: The impulse responsehk1,k2(t
′, d) of the network between a source generating

xk1(D) and a sink whose output isyk2(D) is defined as the value of the output symboly
(t′)
k2

when

x
(t)
k =







1 k = k1 and t = t′ − d

0 k 6= k1 or t 6= t′ − d

where,1 and0 denote the multiplicative and additive identity of the fieldFp respectively.

So, for a given value ofd, if

x
(t)
k =







ak1 k = k1 and t = t′ − d

0 k 6= k1 or t 6= t′ − d

whereak1 ∈ Fpm then, the value of the output symboly(t
′)

k2
is given byak1hk1,k2(t

′, d) as the

intermediate nodes linearly combine the symbols on its incoming links. If

x
(t)
k =







ak k = 1, 2, · · · , µ, and t = t′ − d

0 t 6= t′ − d

then, the value of the output symboly
(t′)
k2

is given by
∑µ

k=1 akhk,k2(t
′, d) as the intermediate nodes

linearly combine the symbols on its incoming links. Now, observe that for a givend and t′, the

values ofhk,k2(t
′, d) for k = 1, 2, · · · , µ, is given by thekth

2 -row of the matrixM (d)T (ε(t
′−d,t′))

which directly follows from the definition ofM (d)T (ε(t
′−d,t′)) in (7). Hence, from (8) and (9),

the relation between the output and the input symbols follows as

Yj
(t) =

s
∑

i=1

dmax
∑

d=0

M
(d)
ij (ε(t−d,t))Xi

(t−d). (10)

The above input-output relation can also be seen by observing that acyclic networks with delay

employing time-varying LECs are analogous to multiple-transmitter multiple-receiver MIMO

channel with linear time-varying impulse response betweenevery transmitter and every receiver

[14].
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III. T RANSFORM TECHNIQUES FORACYCLIC NETWORKS WITH DELAY

In this section, we show that the output symbols at all the sinks which was originally a

Fpm-linear combination of the input symbols across the different generations, at any given time

instant, can be transformed into aFpm-linear combination of the input symbols across the same

generation.

Consider a matrixA of sizenν × nµ given by














A(0) A(1) · · · A(L−1) A(L) 0 0 · · · 0

0 A(0) · · · A(L−2) A(L−1) A(L) 0 · · · 0
...

...
...

...
...

...
...

...
...

A(1) A(2) · · · A(L) 0 0 0 · · · A(0)















whereA(i) for all i, 0 ≤ i ≤ L, are matrices of sizeν × µ whose elements belong toFpm and

n >> L. Note that the(i+ 1)th row of matrices is a circular shift of theith row of matrices in

A. We assume thatn dividespm− 1. The choice ofn is such that, there exists anα ∈ Fpm such

that n is the smallest integer for whichαn = 1. This is indeed possible [15]. Define matrices

Â(j) of sizeν × µ, for 0 ≤ j ≤ n− 1, as

Â(j) =

L
∑

i=0

α(n−1−j)iA(i).

Let F be the finite-field DFT matrix given by

F =























1 1 1 · · · 1

1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
...

...

1 αn−1 α2(n−1) · · · α(n−1)(n−1)























. (11)

Define the matrixQµ as

Qµ =























Iµ Iµ Iµ · · · Iµ

Iµ αIµ α2Iµ · · · αn−1Iµ

Iµ α2Iµ α4Iµ · · · α2(n−1)Iµ
...

...
...

...
...

Iµ αn−1Iµ α2(n−1)Iµ · · · α(n−1)(n−1)Iµ























. (12)
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



















Yj
(n−1)

Yj
(n−2)

...

Yj
(0)

Yj
(−1)

...

Yj
(−dmax)





















=
s∑

i=1




















M
(0)
ij M

(1)
ij · · · M

(dmax)
ij 0 0 · · · 0 0

0 M
(0)
ij · · · M

(dmax−1)
ij M

(dmax)
ij 0 · · · 0 0

...
...

...
...

. . .
. . .

. . .
...

...

0 0 · · · 0 M
(0)
ij M

(1)
ij · · · M

(dmax−1)
ij M

(dmax)
ij

0 0 · · · 0 0 M
(0)
ij · · · M

(dmax−2)
ij M

(dmax−1)
ij

...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 0 0 M
(0)
ij







































Xi
(n−1)

Xi
(n−2)

...

Xi
(0)

Xi
(n−1)

...

Xi
(n−dmax)




















(14)

Similarly, we can define matrixQν . The following theorem will be useful in establishing the

results subsequently.

Theorem 1:The matrixA can be block diagonalized as

A = QνÂQ
−1
µ ,

where,Â is given by

Â =















Â(n−1) 0 0 · · · 0

0 Â(n−2) 0 · · · 0
...

...
... · · ·

...

0 0 · · · 0 Â(0)















.

Proof: Proof is given in Appendix A.

Now, consider an arbitrary acyclic network with delay. From(2) and (3),

Yj(D) =

s
∑

i=1

Mij(D)Xi(D). (13)

Consider a transmission scheme where, in order to transmitn (>> dmax) generations of input

symbols at each source, the lastdmax generations (which we call thecyclic prefix) is transmitted

first followed by then generations of input symbols. Hence,n+ dmax time slots at each source

are used to transmitn generations. From (13) and (4), the output symbols at any time instantt

can be written as

Yj
(t) =

s
∑

i=1

dmax
∑

d=0

M
(d)
ij Xi

(t−d).

EvaluatingYj
(t) at the time instantst = −dmax, · · · , (n− 1), we have (14). Discarding the first
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









Yj
(n−1)

Yj
(n−2)

...

Yj
(0)











=
s∑

i=1











M
(0)
ij M

(1)
ij · · · M

(dmax−1)
ij M

(dmax)
ij 0 · · · 0 0 0

0 M
(0)
ij

· · · M
(dmax−2)
ij

M
(dmax−1)
ij

M
(dmax)
ij

· · · 0 0 0

...
...

...
...

...
...

...
...

...
...

M
(1)
ij M

(2)
ij · · · M

(dmax)
ij 0 0 · · · 0 0 M

(0)
ij











︸ ︷︷ ︸

Mij











Xi
(n−1)

Xi
(n−2)

...

Xi
(0)











(15)

dmax outputs at sink-j, (14) can be re-written as (15). Using Theorem 1, (15) can be re-written

as

Yj
n =

s
∑

i=1

QνjM̂ijQ
−1
µi
Xi

n (16)

where,

Yj
n =















Yj
(n−1)

Yj
(n−2)

...

Yj
(0)















; Xi
n =















Xi
(n−1)

Xi
(n−2)

...

Xi
(0)















;

M̂ij =















M̂
(n−1)
ij 0 0 · · · 0

0 M̂
(n−2)
ij 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · M̂
(0)
ij















.

where,M̂ (t)
ij =

∑dmax

d=0 α(n−1−t)dM
(d)
ij . At each source-i, X ′

i
n = Qµi

Xi
n is transmitted instead of

Xi
n. At each sink-j, the received symbols are denoted byY ′

j
n. Let Yj

n = Q−1
νj
Y ′
j
n. Then, from

(16) we have,

Y ′
j
n
=

s
∑

i=1

QνjM̂ijQ
−1
µi
X ′

i
n

⇒ Yj
n =Q−1

νj

s
∑

i=1

QνjM̂ijQ
−1
µi
Qµi

Xi
n

⇒ Yj
n =

s
∑

i=1

M̂ijXi
n. (17)

For 0 ≤ t ≤ n− 1, (17) can be re-written as

Yj
(t) =

s
∑

i=1

M̂
(t)
ij Xi

(t). (18)
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Hence, each element ofYj
(t) is a Fpm-linear combination of the input symbols across the

same generation. We now say that we have transformed the acyclic network with delay into

n-instantaneous networks.

Remark 1:Note that the linear processing of multiplying by matricesQµi
at source-i andQ−1

νj

at sink-j are done in a distributed fashion which is necessary becausethe sources and sinks are

distributed in the actual network.

Remark 2:One can observe that transmittingX ′
i
n = Qµi

Xi
n implies taking DFT across

n generations of each of theµi random-processes generated at source-i. Similarly, the pre-

multiplication by Q−1
νj

at sink-j simply implies taking IDFT acrossn generations of each of

the νj random-processes received. The entire processing, including addition of cyclic prefix at

source-i and removal of cyclic prefix at sink-j is shown in a block diagram in Fig. 1.

X
(n−1)
i1 · · ·X

(k−1)
i1 · · ·X

(1)
i1 X

(0)
i1

X
(n−1)
i2 · · ·X

(k−1)
i2 · · ·X

(1)
i2 X

(0)
i2

.

.

.

X
(n−1)
iµi

· · ·X
(k−1)
iµi

· · ·X
(1)
iµi

X
(0)
iµi

n point
DFT

.

.

.

X
′(n−1)
i1 · · ·X

′(1)
i1 X

′(0)
i1

X
′(n−1)
i2 · · ·X

′(1)
i2 X

′(0)
i2

.

.

.

X
′(n−1)
iµi

· · ·X
′(1)
iµi

X
′(0)
iµi

Add
CP

Add
CP

Add
CP

.

.

.

X
′(n−1)
i1 · · ·X

′(1)
i1 X

′(0)
i1 X

′(n−1)
i1 · · ·X

′(n−dmax)
i1

X
′(n−1)
i2 · · ·X

′(1)
i2 X

′(0)
i2 X

′(n−1)
i2 · · ·X

′(n−dmax)
i2

.

.

.

X
′(n−1)
iµi

· · ·X
′(1)
iµi

X
′(0)
iµi

X
′(n−1)
iµi

· · ·X
′(n−dmax)
iµi

n point
DFT

n point
DFT

k
th generation DFT

Block
Cyclic

Prefix(CP)

(a) Linear Processing at Source-i

Remove
CP

.

.

.

Y
′(n−1)
j1 · · ·Y

′(1)
j1 Y

′(0)
j1 Y

′(−1)
j1 · · ·Y

′(−dmax)
j1

Y
′(n−1)
j2 · · ·Y

′(1)
j2 Y

′(0)
j2 Y

′(−1)
j2 · · ·Y

′(−dmax)
j2

.

.

.

Y
′(n−1)
jνj

· · ·Y
′(1)
jνj

Y
′(0)
jνj

Y
′(−1)
jνj

· · ·Y
′(−dmax)
jνj

Remove
CP

Remove
CP

Y
′(n−1)
j1 · · ·Y

′(1)
j1 Y

′(0)
j1

Y
′(n−1)
j2 · · ·Y

′(1)
j2 Y

′(0)
j2

.

.

.

Y
′(n−1)
jνj

· · ·Y
′(1)
jνj

Y
′(0)
jνj

n point
IDFT

.

.

.

n point
IDFT

n point

IDFT

IDFT
Block

Y
(n−1)
j1 · · ·Y

(1)
j1 Y

(0)
j1

Y
(n−1)
j2 · · ·Y

(1)
j2 Y

(0)
j2

.

.

.

Y
(n−1)
jνj

· · ·Y
(1)
jνj

Y
(0)
jνj

(b) Linear Processing at Sink-j

Fig. 1. Block Diagram to illustrate linear processing at Source-i and Sink-j.
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Now, (18) is re-written as

Yj
(t) =

s
∑

i=1

µi
∑

li=1

M̂
(t)
ij (li)Xi

(t)(li)

where,M̂ (t)
ij (li) denotes thelthi column ofM̂ (t)

ij andXi
(t)(li) denotes thelthi element ofXi

(t).

Similar to the zero-interference and invertibility conditions in Lemma 1, we have the following

theorem for solvability of the network implementing the transform technique.

Theorem 2:An acyclic network(G, C) with delay, incorporating the transform techniques, is

solvable iff there exists an assignment toε such that the following conditions are satisfied.

1) Zero-Interference:M̂ (t)
ij (li) = 0 for all pairs (source-i, sink-j) of nodes such that (source-i,

sink-j,Xi
(t)(li)) /∈ Cj for 0 ≤ t ≤ n− 1.

2) Invertibility: If Cj comprises the connections

{

(source-i1, sink-j, Xi1
(t)(li1)),

(source-i2, sink-j, Xi2
(k)(li2)),

...

(source-is′ , sink-j, Xis′
(t)(lis′ ))

}

then, the sub-matrix[M̂ (t)
i1j
(li1) · · · M̂

(t)
is′ j

(lis′ )] is a nonsingularνj × νj matrix for 0 ≤ t ≤

n− 1.

Proof: Proof is given in Appendix B.

The network code which satisfies the invertibility and the zero-interference conditions for

(G, C) in the transform approach using a suitable choice ofα for the DFT operations is defined

as afeasible transform network codefor (G, C).

A. Existence of a network code in the transform approach

In this section, we prove that under certain conditions there exists a feasible network code for

a given(G, C) if and only if there exists a feasible transform network code. Towards that end,

we prove Lemma 2 which is given below. We first define the polynomial f(D) which will be

used henceforth throughout this paper.

f(D) =

r
∏

j=1

det
(

M ′
j(D)

)

(19)
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where, M ′
j(D) is the square submatrix ofMj(D) indicating the source processes that are

demanded by sink-j.

Lemma 2:Suppose there exists a feasible network code for(G, C) over some fieldFpm. For

someα ∈ Fpa (for some positive integera), the LECs defined by the feasible network code for

(G, C) (viewed in the extension fieldFpb where,b = LCM(a,m)) result in a feasible transform

network code for(G, C) if and only if f(αt) 6= 0 for all 0 ≤ t ≤ n− 1.

Proof: Proof is given in Appendix C.

We now prove the following theorem which concerns with the relationship between the

existence of a feasible network code and a feasible transform network code for(G, C).

Theorem 3:Let (G, C) be the given acyclic delay network with the set of connections C

demanded by the sinks. There exists a feasible transform network code for(G, C) if and only if

there exists a feasible network code for(G, C) such that(D − 1) ∤ f(D), i.e., f(1) 6= 0.

Proof: Proof is given in Appendix D.

We now present an example acyclic network in which there exists a feasible network code,

using which we obtain a feasible transform network code for some choice ofn ≥ 7.

Fig. 2. A unit-delay network with3 sources and5 sinks

Example 1:Consider the networkG shown in Fig. 2. This is a unit-delay network (where each

edges have a delay of one unit associated with it) taken from [19]. For 1 ≤ i ≤ 3, each source

si has an information sequencexi(D). This network has non-multicast demands, with sinksuj,
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TABLE II

Sink Network transfer Invertible submatrix Determinant of M ′

uj
(D),

matrix Muj
(D) M

′

uj
(D) of Muj

(D) det(M ′

uj
(D))

u1











D 0 0

0 D 0

D3 D3 D3











Mu1(D) D5

u2











D 0 0

0 0 D

D3 D3 D3











Mu2(D) D5

u3











0 D 0

0 0 D2

D3 D3 D3











Mu3(D) D6

u4





D4 0 D4 +D5

0 0 D









D4 D4 +D5

0 D



 D5

u5





0 D3 D4

0 0 D









D3 D4

0 D



 D4

1 ≤ j ≤ 3, requiring all three information sequences, while sinku4 requires{x1(D), x3(D)} and

u5 demands{x2(D), x3(D)} . Let C denote these set of demands. A feasible network code for

(G, C) overF2 as obtained in [19] can be obtained by using1 as the local encoding coefficient

coefficient at all non-sink nodes. The transfer matrixMuj
(D), the invertible submatrixM ′

uj
(D)

of Muj
(D), and their determinants for the sinksuj, 1 ≤ j ≤ 5, are tabulated in Table 1.

We therefore havef(D) = D25. Note thatf(1) 6= 0 anddmax = 4 for this network. Therefore,

with n = 2m − 1 for any positive integerm ≥ 3, i.e., α being the primitive element ofF2m ,

we will then havef(αt) 6= 0 for any 0 ≤ t ≤ n − 1. By Lemma 2, we then have a feasible

transform network code for(G, C).
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B. Comparison of complexity of the proposed transform approach and the non-transform ap-

proach

Based on the constructive proof of Theorem 3, a large field might be required for the existence

of a suitable value forα that defines the necessary transform for the network, under the condition

that the rate-loss
(

dmax

n

)

due to the transform approach be less. The transformed network would

then have to be operated over this large field, i.e., the matricesM̂ (t)
ij have elements from this large

field (which is at least a degreen extension over the base field over which the non-transform

network code is defined). It is known that (see [17], for example) inverting aνj × νj matrix

(at some sink-j) takesO(ν3
j ) computations, however over the extension field. In the process

of computing these inverses, the information symbols corresponding to then generations are

obtained by Gauss-Jordan elimination. In terms of base fieldcomputational complexity, the

complexity of computing the inverse of the transfer matrix becomesO
(

ν3
j n(log n)(log logn)

)

,

as each multiplication in the extension field involvesO (n(log n)(log logn)) computations over

the base field [18] (it is equivalent to multiplying two polynomials of degree at leastn− 1 over

the base field). The total complexity of recovering the inputsymbols at all then generations is

thenO
(

n2ν3
j (logn)(log logn)

)

.

On the other hand, if the non-transform network code is used as such, the transfer matri-

ces M ′
j(D) consist of polynomials of degree uptodmax in D over the base field. Again, it

is known (see [17], for example) that finding the inverse of such a matrix has complexity

O(ν3
j dmax). To do a fair comparison with the transform case, we considerdecoding ofn-

generations (n being large as in the transform case) of information. Note that inversion of the

matrixM ′
j(D) does not give us the information polynomials directly. A naive method of obtaining

the each information polynomial would then requireν2
j multiplications of polynomials over the

base field (each of which has complexityO (n(log n)(log log n)), assuming thatνjdmax < n.)

and one division between polynomials (again with complexity O (n(log n)(log log n))). There-

fore, the total complexity involved in recovering the information sequences would then be

O
(

ν3
jn(log n)(log logn)

)

+O (νjn(logn)(log log n)) +O(ν3
j dmax) computations.

Thus, we see that there is an advantage in the complexity of decoding in the non-transform

network compared to the transform network (inspite of usingthe least possible size for the

extension field). Therefore, based on the constructive proof of Theorem 3, complexity reduction
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is not an advantage of the transform process. We however notethat the construction shown in

the proof of Theorem 3 need not be the only method to constructa transform network code.

It remains an open problem to see if a suitable DFT matrix can be defined over a field of

smaller size than that suggested by the proposed construction. In that case, the complexity of

our transform technique could be lesser than the usual non-transform technique.

The transform technique is useful for PBNA in3-S 3-D MUN-D which will be discussed in

the subsequent sections. In the next section, we shall consider the feasibility problem of PBNA

using time-varying LECs and PBNA using time-invariant LECswhere we apply the transform

techniques to obtain precoding matrices similar to the onesin [9].

IV. PBNA USING TIME-INVARIANT AND TIME-VARYING LECS IN 3-S 3-D MUN-D

In [9], it was shown that for a class of3-S 3-D I-MUN, it is possible to achieve a throughput

close to1/2 for every source-destination pair via network alignment. In this section, we deal

with 3-S 3-D MUN-D where each source-destination pair has a min-cut of1. In Section IV-A,

we employ the results from Section III and show that, even when the zero-interference conditions

of Lemma 1 (or Theorem 2) cannot be satisfied, for a class of3-S 3-D MUN-D, we can achieve

a throughputs of n
′+1

2n′+1
, n′

2n′+1
and n′

2n′+1
(for some positive integern′) for the three source-

destination pairs by making use of network alignment. The throughputs are close to half when

n′ is large. This scheme is termed as PBNA using transform approach and time-invariant LECs.

In Section IV-B, we proceed to generalize the conditions forfeasibility of network alignment

using time-varying LECs, i.e., we obtain a sufficient condition under which throughputs ofn1

n
,

n2

n
and n3

n
can be achieved for the three source-destination pairs where,n1, n2 andn3 are positive

integers less than or equal ton. The condition is also a necessary one whenn1+n3 = n1+n2 = n

where it is assumed, without loss of generality, thatn1 ≥ n2 ≥ n3.

Let the random process injected into the network by sourceSi, i = 1, 2, 3, beXi(D). Source

Si needs to communicate only with destinationTi. Here,µi = 1 andνj = 1, i, j = 1, 2, 3.

We shall consider the following two cases separately.

1) The min-cut betweenSi andTj is greater than or equal to1, for all i 6= j.

2) The min-cut betweenSi andTj is equal to0, for somei 6= j.

Case 1: The min-cut between source-i and sink-j is greater than or equal to1, for all i 6= j.
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A. PBNA using transform approach and time-invariant LECs

Consider a transmission scheme where, in order to transmit2n′ + 1 (>> dmax) generations

of input symbols at each source, the cyclic prefix comprisingdmax generations is transmitted

first, followed by the2n′ + 1 generations of input symbols. LetQ1X
2n′+1
i be the input symbols

transmitted by sourcei, where,

X2n′+1
i = [X

(2n′)
i X

(2n′−1)
i · · · X

(0)
i ]T

Also, let

X2n′+1
1 = V1X

′
1
n′+1

, X2n′+1
2 = V2X

′
2
n′

, andX2n′+1
3 = V3X

′
3
n′

where,V1 is a (2n′ + 1)× (n′ + 1) matrix, V2 is a (2n′ + 1)× n′ matrix, V3 is a (2n′ + 1)× n′

matrix, and

X ′
1
n′+1

= [X ′
1
(0)

X ′
1
(1)

· · · X ′
1
(n′)

]T

X ′
2
n′

= [X ′
2
(0)

X ′
2
(1)

· · · X ′
2
(n′−1)

]T

X ′
3
n′

= [X ′
3
(0)

X ′
3
(1)

· · · X ′
3
(n′−1)

]T .

The quantitiesX ′
1
n′+1, X ′

2
n′

andX ′
3
n′

denote the(n′ +1), n′, andn′ independent input symbols

generated byS1, S2 andS3 respectively. From (17) we have, forj = 1, 2, 3,

Yj
2n′+1 = M̂1jV1X

′
1
n′+1

+ M̂2jV2X
′
2
n′

+ M̂3jV3X
′
3
n′

,

where,Yj
2n′+1 denotes the(2n′ + 1) output symbols at sink-j. The objective is to recover the

(n′+1) independent input symbols ofS1, n′ independent input symbols ofS2, andn′ independent

input symbols ofS3 at T1, T2, andT3 from Y 2n′+1
1 , Y 2n′+1

2 , andY 2n′+1
3 respectively.

For acyclic networks without delay, the network alignment concept in [9] involved varying

LECs at every time instant. But with delays it is possible, insome cases, to achieve network

alignment even with time-invariant LECs. This is what we show in this sub-section.

First, note that the elements of the matricesM̂ij are functions ofε.

Lemma 3:Determinants of the matriceŝMij , i, j = 1, 2, 3, are non-zero polynomials inε.

Proof: Proof is given in Appendix E.
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Let

Û = M̂−1
12 M̂32M̂

−1
31 M̂21M̂

−1
23 M̂13,

R̂ = M̂13M̂
−1
23 , Ŝ = M̂12M̂

−1
32 . (20)

Now, choose

V1 = [W ÛW Û2W · · · Ûn′

W ] (21)

V2 = [R̂W R̂ÛW R̂Û2W · · · R̂Ûn′−1W ] (22)

V3 = [ŜÛW ŜÛ2W · · · ŜÛn′

W ] (23)

where,W = [1 1 · · · 1]T (all ones vector of size(2n′ + 1)× 1). Since the transform approach

requires that2n′ + 1|pm − 1, we shall find it useful in stating the exact relationship between

2n′ + 1 andp which will be used in the result that follows.

Lemma 4:The positive integer2n′+1 dividespm−1 for some positive integerm iff p ∤ 2n′+1.

Proof: Proof is given in Appendix F.

Theorem 4:The input symbolsX ′
1
n′+1, X ′

2
n′

,andX ′
3
n′

can be exactly recovered atT1, T2,

andT3 from the output symbolsY 2n′+1
1 , Y 2n′+1

2 , andY 2n′+1
3 respectively subject top ∤ 2n′ + 1,

if the following conditions hold.

Rank[V1 M̂−1
11 M̂21V2] = 2n′ + 1 (24)

Rank[M̂−1
12 M̂22V2 V1] = 2n′ + 1 (25)

Rank[M̂−1
13 M̂33V3 V1] = 2n′ + 1 (26)

Proof: Proof is given in Appendix G.

When the conditions of the above Theorem are satisfied, we saythat PBNA using transform

approach and time-invariant LECs is feasible. When PBNA using transform approach and time-

invariant LECs is feasible, throughputs of(n′+1)
(2n′+1)

, n′

(2n′+1)
, and n′

(2n′+1)
are achieved for the source-

destination pairsS1 − T1, S2 − T2, andS3 − T3 respectively. Whenn′ is large, the throughputs

are close to half. The throughput loss due to the addition of cyclic prefix is not accounted for,

since it is assumed that2n′ + 1 >> dmax.

It will be shown in Section VI that the conditions of Theorem 4are also necessary conditions

for feasibility of PBNA using transform approach and time-invariant LECs, i.e., the choice of

the precoding matrices in (21)-(23) do not restrict the conditions for network alignment.
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Remark 3: In a 3-S 3-D I-MUN considered in [9], it was not possible to achieve network

alignment without changing the LECs with time. When there isno delay, the matriceŝU , R̂, and

Ŝ given in (20), would simply be equal tof(ε)I2n′+1 (where,f(ε) is some polynomial inε) and

hence, the matricesV1, V2 andV3 as given in (21)-(23) are themselves not full-rank matrices.

Hence,ε was varied with time in [9]. However, in the case of delay it iseasy to see from the

structure of the matrixM̂ij that the matriceŝU , R̂, and Ŝ are not necessarily scaled identity

matrices.

The following example, taken from [9] (but considered with delays), illustrates the existence

of a network where network alignment is feasible with time-invariant LECs.

Example 2:Consider the network shown in Fig. 3. Each link is taken to have unit-delay. In

Fig. 3. A 3-S 3-D MUN-D where PBNA using transform approach and time-invariant LECs is feasible.

accordance with the LECs denoted as in the figure, the transfer matricesMij(D) are as given
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below.

M11(D) = M
(5)
11 D

5 = apD5,

M12(D) = M
(3)
12 D

3 +M
(5)
12 D

5 = uD3 + atD5,

M13(D) = M
(5)
13 D

5 = arD5,

M21(D) = M
(5)
21 D

5 = bpD5,

M22(D) = M
(5)
22 D

5 = btD5

M23(D) = M
(3)
23 D

3 +M
(5)
23 D

5 = sD3 + brD5,

M31(D) = M
(3)
31 D

3 +M
(5)
31 D

5 = qD3 + cpD5,

M32(D) = M
(5)
32 D

5 = ctD5,

M33(D) = M
(5)
33 D

5 = crD5.

As explained in Section II, without loss, the network transfer function betweenSi − Tj can

be taken to be equal toMijD
−2. Note that the network does not satisfy the zero-interference

conditions of Lemma 1. Here,dmax = 2. Consider the following (random) assignment to the

LECs.

a = b = c = p = r = t = 1

s = 1 + β2 + β3 + β4 + β5

q = 1 + β + β2

u = 1 + β4

where,β is a primitive element ofGF (26) whose minimal polynomial is given by(1+x+x6).

The DFT parameterα is given byα = β9 and the number of symbol extensions is given by
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2n′ + 1 = 7. The transformed network transfer matrices are given by

M̂11 = diag
(

1, α2, · · · , α12
)

,

M̂12 = diag
((

1 + β4
)

+ 1,
(

1 + β4
)

+ α2, · · · ,
(

1 + β4
)

+ α12
)

,

M̂13 = diag
(

1, α2, · · · , α12
)

,

M̂21 = diag
(

1, α2, · · · , α12
)

,

M̂22 = diag
(

1, α2, · · · , α12
)

,

M̂23 = diag

(

5
∑

j=0

βj + 1,

5
∑

j=0

βj + α2, · · · ,

5
∑

j=0

βj + α12

)

,

M̂31 = diag
((

1 + β + β2
)

+ 1,
(

1 + β + β2
)

+ α2, · · · ,
(

1 + β + β2
)

+ α12
)

,

M̂32 = diag
(

1, α2, · · · , α12
)

,

M̂33 = diag
(

1, α2, · · · , α12
)

.

It can be verified using the softwareMathematica2 that the rank conditions of Theorem 4 (in

(24)-(26)) are satisfied using the above assignment to the LECs andα.

B. PBNA with time-varying LECs

The feasibility problem for PBNA with time-varying LECs is stated as follows. SourceSi

demands a throughput ofni

n
where,n is a positive integer andni, i = 1, 2, 3, are positive

integers less than or equal ton. Without loss of generality, we assume thatn1 ≥ n2 ≥ n3. We

need to determine if the throughput demands can be met through a PBNA scheme similar to

the one described in the previous sub-section while permitting the use of time-varying LECs.

The solution to this problem will also generalize Theorem 4.Moreover, there can exist3-S 3-D

MUN-D where PBNA using transform approach and time-invariant LECs is infeasible for alln′

while PBNA using time-varying LECs is feasible for some positive integer tuple(n1, n2, n3, n).

Example 4 in Section VI is an instance of such a network.

We shall observe in this sub-section that, unlike in the caseof time-invariant LECs, the network

cannot be decomposed into instantaneous networks using thetransform method. Throughout the

2A Galois Field package forMathematicais available at [21].
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sub-section we shall assume that the LECs and the other variables that we shall encounter belong

to the algebraic closure of the fieldFp which is denoted byFp. Clearly, once an assignment to

the LECs and variables are made, they belong to a finite extension of Fp.

Consider a transmission scheme, where we taken (>> dmax) generations of input symbols

at each source and first transmit lastdmax generations (i.e., the cyclic prefix) followed by then

generations of input symbols. LetXn
i be the input symbol that needs to be transmitted bySi

where,

Xn
i = [X

(n−1)
i X

(n−2)
i · · · X

(0)
i ]T .

Let Xn
1 = V1X

′
1
n1 , Xn

2 = V2X
′
2
n2, andXn

3 = V3X
′
3
n3 where,V1 is a n × n1 matrix, V2 is a

n× n2 matrix, V3 is a n× n3 matrix, and

X ′
1
n1 = [X ′

1
(0)

X ′
1
(1)

· · · X ′
1
(n1−1)

]T ,

X ′
2
n2 = [X ′

2
(0)

X ′
2
(1)

· · · X ′
2
(n2−1)

]T ,

X ′
3
n3 = [X ′

3
(0)

X ′
3
(1)

· · · X ′
3
(n3−1)

]T .

The quantitiesX ′
1
n1 , X ′

2
n2 , and X ′

3
n3 denote then1, n2, and n3 independent input symbols

generated byS1, S2, andS3 respectively. Thus, the independent input symbols are coded overn

time slots by the matricesV1, V2, andV3 before they are transmitted over the network after the

addition of cyclic prefix. Now, from (10) and following the same steps as involved in writing

(14) and (15), forj = 1, 2, 3, we get

Yj
n = M1jV1X

′
1
n1 +M2jV2X

′
2
n2 +M3jV3X

′
3
n3

where,Yj
n denotes then output symbols atTj andMij is as given in (27) (at the top of the

next page). The structure ofMij is such that it becomes a circulant matrix when the LECs are

time-invariant, i.e.,ε(−dmax) = ε(−dmax+1) = . . . = ε(n−1). The objective is to determine if theni

independent input symbols ofSi can be recovered atTi, from Y n
i .

Note that the matricesMij are not a circulant matrices and therefore, cannot be simultaneously

diagonalized in general. Letε′ =
[

ε(−dmax) ε(−dmax+1) · · · ε(n−1)
]

.

Lemma 5:Determinant of the matrixMij , for all (i, j), is a non-zero polynomial inε′.

Proof: Proof is given in Appendix H.
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









M
(0)
ij (ε(n−1,n−1)) M

(1)
ij (ε(n−2,n−1)) · · · M

(dmax−1)
ij (ε(n−dmax,n−1)) M

(dmax)
ij (ε(n−1−dmax,n−1))

0 M
(0)
ij (ε(n−2,n−2)) · · · M

(dmax−2)
ij (ε(n−dmax,n−2)) M

(dmax−1)
ij (ε(n−1−dmax,n−2))

...
...

...
...

...

M
(1)
ij

(ε(−1,0)) M
(2)
ij

(ε(−2,0)) · · · M
(dmax)
ij

(ε(−dmax,0)) 0

(27)

0 0 · · · 0

M
(dmax)
ij (ε(n−2−dmax,n−2)) 0 · · · 0

...
...

...
...

0 0 · · · M
(0)
ij (ε(0,0))











︸ ︷︷ ︸

Mij

As a direct consequence of the above lemma, the inverses ofMijs exist. Now, let the elements

of V1 be given by

[V1]ij = θij ; i = 1, 2, · · · , n, j = 1, 2, · · · , n1 (28)

whereθij is a variable that takes values fromFp. Let

V2 = M−1
23 M13V1A andV3 = M−1

32 M12V1B (29)

where, the elements of the matricesA and B, of sizesn1 × n2 and n1 × n3, are given by

[A]ij = aij and [B]ij = bij respectively (aij and bij are variables that take values fromFp). Let

U = M−1
12 M32M

−1
31 M21M

−1
23 M13. (30)

Let f (k)
1 (V1, ε

′, A) and f
(k)
2 (V1, ε

′, A) denote the determinants of(n1 + n2) × (n1 + n2) submatri-

ces of [V1 M−1
11 M21V2] and [M−1

12 M22V2 V1] respectively, fork = 1, 2, . . . ,
(

n
n1+n2

)

. Similarly, let

f
(k)
3 (V1, ε

′, B) denote the determinants of(n1 + n3)× (n1 + n3) submatrices of[M−1
13 M33V3 V1], for

k = 1, 2, . . . ,
(

n

n1+n3

)

. Now, define
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f1(V1, ε
′, A) = 1−

( n

n1+n2
)

∏

k=1

(

1− δ
(k)
1 f

(k)
1 (V1, ε

′, A)
)

f2(V1, ε
′, A) = 1−

( n

n1+n2
)

∏

k=1

(

1− δ
(k)
2 f

(k)
2 (V1, ε

′, A)
)

f3(V1, ε
′, B) = 1−

( n

n1+n3
)

∏

k=1

(

1− δ
(k)
3 f

(k)
3 (V1, ε

′, B)
)

(31)

f4(ε
′) =

∏

(i,j)∈{1,2,3}

det(Mij)

f(V1, ε
′, A,B) = f1(V1, ε

′, A)f2(V1, ε
′, A)f3(V1, ε

′, B)f4(ε
′)

where,δ(k)i ∈ Fq, for all (i, k). Denote the elements of a matrixC of sizen2×n3 by [C]ij = cij

where,cij is a variable that takes values fromFq, for all (i, j). For i = 1, 2, · · · , n2 and j =

1, 2, · · · , n3, let

gij(V1, ε
′, A, B, C) = [UV1AC]ij − [V1B]ij . (32)

Let g(nr)ij (V1, ε
′, A, B, C) and g

(dr)
ij (V1, ε

′, A, B, C) denote the numerator and denominator re-

spectively of the rational-polynomialgij(V1, ε
′, A, B, C). Similarly, let f (nr)(V1, ε

′, A, B) and

f (dr)(V1, ε
′, A, B) denote the numerator and denominator respectively of the rational polynomial

f(V1, ε
′, A, B). We shall denotegij(V1, ε

′, A, B, C) andf(V1, ε
′, A, B) respectively asgij andf

for short. Similar notation is used for the numerator and denominator of the respective rational

polynomials.

Theorem 5:For an acyclic3-S 3-D MUN-D, the input symbolsX ′
1
n1 , X ′

2
n2 , andX ′

3
n3 can

be exactly recovered atT1, T2, and T3 from the output symbolsY n
1 , Y n

2 , and Y n
3 respec-

tively if the ideal generated by the polynomialsg(nr)ij , i = 1, 2, .., n and j = 1, 2, .., n3, and
(

1− δf (nr)f (dr)
∏

(i,j) g
(dr)
ij

)

does not include1, whereδ is a variable that can take value from

Fq. The condition is also necessary when(n1 + n2) = (n1 + n3) = n.

Proof: Proof is given in Appendix I.

When the conditions of the above Theorem are satisfied, we saythat PBNA using time-varying

LECs is feasible. When PBNA using time-varying LECs is feasible, asn >> dmax, throughputs

close ton1

n
, n2

n
, and n3

n
are achieved for the source-destination pairsS1−T1, S2−T2, andS3−T3

respectively. As seen from the proof of the above theorem, ifthe throughput demands are such

that n1 + n3 > n or n1 + n2 > n then, PBNA using time-varying LECs is infeasible.
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Remark 4:Theorem 5 implies that network alignment is feasible if there exists an assignment

to the LECs and the other variables such thatf (nr)f (dr)
∏

(i,j) g
(dr)
ij takes a non-zero value and

g
(nr)
ij take values of zero for network alignment to be feasible. Firstly, f (nr) has to be a non-zero

polynomial which requires thatV1 be a full-rank matrix. This is true from the choice ofV1.

Also, M−1
11 M21V2, M

−1
12 M22V2 andM−1

13 M33V3 should also be full-rank. Since the matricesMij

are invertible, it is equivalent to checking ifV2 andV3 are full-rank. This is also true becauseV1

is a full-rank matrix, and by choosingA andB as matrices that select the firstn2 columns ofV1

and the firstn3 columns ofV1 respectively,V2 andV3 become full-rank. Hence, the determinants

of all then2×n2 andn3×n3 sub-matrices ofV2 andV3 respectively are non-zero polynomials.

So, we have at least ensured that, by proper choice,M−1
11 M21V2, M

−1
12 M22V2 andM−1

13 M33V3

are full-rank matrices.

Remark 5:The network alignment matrices in Section IV-A can be derived as a special case

of the network alignment matrices in Section IV-B and Theorem 4 can be derived as a special

case of Theorem 5 as explained below. Chooseε(−dmax) = ε(−dmax+1) = ... = ε(2n
′) = ε and

n = 2n′+1, n1 = n′+1, n2 = n′, andn3 = n′. Also, choose the variablesθij such thatV1 in (28)

takes the form ofV1 in (21). ChooseA andB, respectively, to be the selection matrices which

select the firstn′ columns and the lastn′ columns of the matrices pre-multiplying them. Let

C = In′ . Since the input symbols at the sources were precoded byQ1 and the output symbols at

the destinations were pre-multiplied byQ−1
1 , the effective transfer matrix betweenSi andTj is

given byM̂ij. Hence,(UV1AC − V1B) becomes equal to the zero matrix. It can also be easily

seen that the full-rank conditions in Theorem 4 are the same as stating that the ideal generated

by
(

1− δf (nr)f (dr)
∏

(i,j) g
(dr)
ij

)

should not include1.

A systematic method of verifying the condition in Theorem 5 is by computing the reduced

Groebner basis for the given ideal with a chosen monomial ordering. The condition is satisfied

iff 1 is an element of the reduced Groebner basis [22]. However, ingeneral, Groebner basis

algorithms are known to have large exponential complexity in the number of variables and

solving multivariate polynomial equations is known to be NP-hard over any field [22] [23].

Hence, the conditions of Theorem 4 are easier to check than the condition of Theorem 5.

Case 2: The min-cut between source-i and sink-j is equal to0, for somei 6= j.

This means that at least one of the matricesMij , for i 6= j, is a zero-matrix. The choices

of V1 , V2 and V3 and the conditions for network alignment for this case are similar to the
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ones presented in Section IV-B. The only major difference will be the absence of conditions

on the lines that there must exist an assignment to the LECs and the other variables such that

the rational polynomialsgij take values of zero for network alignment to be feasible. There are

various possibilities in this case. We present feasibilityconditions for one possibility (i.e. min-cut

betweenS2-T1 is equal to0) and the rest are fairly straight-forward to derive. We assume the

same set-up as in Section IV-B.

Min-cut betweenS2-T1 is equal to0: This implies thatM21 = 0. Let the elements ofV1 be

given by

[V1]ij = θij , i = 1, 2, · · · , n, j = 1, 2, · · · , n1 (33)

where,θij is a variable that takes values fromFq. Let

V2 = M−1
23 M13V1A and V3 = M−1

32 M12V1B (34)

where, the elements of the matricesA and B, of sizesn1 × n2 and n1 × n3, are given by

[A]ij = aij and [B]ij = bij respectively (aij andbij are variables that take values fromFq). The

following theorem provides the conditions under which network alignment is feasible.

Theorem 6:For an acyclic3-S 3-D MUN-D, when the min-cut betweenS2-T1 is equal to

0 and the min-cut between the other sources and destinations are not zero, the input symbols

X ′
1
n1 , X ′

2
n2, andX ′

3
n3 can be exactly recovered atT1, T2, andT3 from the output symbolsY n

1 ,

Y n
2 , andY n

3 respectively, if

Rank[V1 M−1
11 M31V3] = n1 + n2,

Rank[M−1
12 M22V2 V1] = n1 + n2,

Rank[M−1
13 M33V3 V1] = n1 + n3.

The above conditions are also necessary when(n1 + n2) = (n1 + n3) = n.

Proof: Proof is given in Appendix J.

When the conditions of the above Theorem are satisfied, throughputs close ton1

n
, n2

n
, and n3

n

are achieved for the source-destination pairsS1 − T1, S2 − T2, andS3 − T3 respectively.

In the next section, we introduce PBNA using transform approach and block time-varying

LECs where we show that the reduced feasibility conditions of Meng et al. [11] for feasibility
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of PBNA in 3-S 3-D I-MUN are also necessary and sufficient for feasibility of PBNA using

transform approach and block time-varying LECs in3-S 3-D MUN-D.

V. PBNA USING TRANSFORM APPROACH AND BLOCK TIME-VARYING LECS

In this section, we propose a PBNA scheme for3-S 3-D MUN-D, different from those given

in Section IV-A and IV-B. The min-cut betweenSi−Ti, for all i, is assumed to be equal to1. We

restrict ourselves to the fieldF2m in this section and also the following section. For the PBNA

scheme proposed in this section, we shall show that the feasibility condition is the same as that

proposed for instantaneous networks in [11]. In addition, the feasibility condition is independent

of the number of symbol extensions over which the independent input symbols are precoded

unlike in the case of the other two proposed PBNA schemes.

Consider the following transmission where, every sourceSi is required to transmit ak(2n′+1)-

length block of symbols(k >> dmax) given by [X
(0)
i X

(1)
i · · · X

(k(2n′+1)−1)
i ]T for some positive

integern′ > 0. Partition the block of symbols into(2n′ + 1) blocks, each of lengthk symbols.

For each block ofk symbols, we add a cyclic prefix of lengthdmax. The partitioning of the

input symbols and the addition of cyclic prefix (CP) are shownin Fig. 4.

The LECs of the network are varied with every(k + dmax) time instants starting from the

time instantt=−dmax. Therefore, whenSi transmits its first block of data as shown in Fig. 4,

the LECs remain constant and when it starts the transmissionof the second block of data, the

LECs encountered in the network are different.

At each destinationTi, the first dmax outputs in each received block of length(k + dmax)

symbols, starting from time instantt = −dmax, is discarded. Denote the LECs duringlth-block

transmission byεl, for 1 ≤ l ≤ (2n′ + 1). Now, consider the second block of output symbols

(i.e., l = 2) at Tj after discarding the cyclic prefix. Since the LECs remain constant during one

block of transmission, from (10) and (14), we get (35). As in (15), (35) is re-written as (36).

Using Theorem 1,Mij(ε2) can be diagonalized tôMij(ε2), wherek is chosen so thatk|2m − 1.

Similarly, the lth-block of output symbols, after discarding the cyclic prefix, can be written in

terms of the matrixM̂ij(εl), for 1 ≤ l ≤ (2n′ + 1). We note that

M̂ij(εl) =diag
(

Mij(εl, 1), Mij(εl, α), · · · , Mij(εl, α
k−1)

)

. (37)

where,Mij(εl, α
q) denotes the transfer functionMij(D) evaluated atD = αq and ε = εl, for

q = 0, 1, · · · , (k−1) . LetX ′(n′+1)k
1 , X ′n′k

2 , andX ′n′k
3 denote the(n′+1)k-length,n′k-length, and
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Fig. 4. The figure demonstrates the transmission of(2n′ + 1) blocks of symbols, involving addition of CP for every block at

Si. The pre-multiplication of each block of symbols byF (not explicitly shown in the figure) is done after the precoding step

and before the addition of CP.
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n′k-length independent symbols generated byS1, S2, andS3 respectively. Partition each of the

independent input symbols intok blocks of equal length. Denote theqth-block of independent

input symbols ofSi by X ′
i(q), for 0 ≤ q ≤ k−1, which is a column vector of lengths(n′+1) for

S1, n′ for S2, andn′ for S3. The symbolsX ′
i(q) are precoded ontoXk(2n′+1)

i as follows. Define

X
(q⊕k)
i =

[

X
(q)
i X

(q+k)
i X

(q+2k)
i · · · X

(q+2nk)
i

]T

, for 0 ≤ q ≤ k − 1. Let V (q)
i denote the precoding

matrices atSi, for 0 ≤ q ≤ k − 1. These matrices, for allq, are of size(2n′ + 1) × (n′ + 1),

(2n′+1)×n′ and(2n′+1)×n′ for i = 1, 2, and3 respectively. Now, the symbols to be transmitted

by Si, before the pre-multiplication of each block byF (where, the matrixF is the DFT matrix

defined in (11)) and the addition of CP to every block, are given by X
(q⊕k)
i = V

(q)
i X ′

i(q). In

brief, the qth element of every block to be transmitted bySi, before the pre-multiplication of

each block byF and the addition of CP to every block, are obtained by precoding theqth block

of independent symbolsX ′
i(q). The instance ofq = 0 is shown in Fig. 4.

After discarding the CP and pre-multiplying byF−1 atTj , we obtain(2n′+1)k-output symbols.

These are partitioned intok-blocks, each of length(2n′ + 1)-symbols. Each block is given by

Y
(q⊕k)
i =

[

Y
(q)
i Y

(q+k)
i Y

(q+2k)
i · · · Y

(q+2n′k)
i

]T

, for 0 ≤ q ≤ k− 1. The input-output relation is now

given by

Y
(q⊕k)
i =

3
∑

i=1

diag
(

Mij(ε1, α
q), Mij(ε2, α

q), · · · , Mij(ε2n′ , αq), Mij(ε(2n′+1), α
q)
)

V
(q)
i X ′

i(q). (38)

For 0 ≤ q ≤ k − 1, define the matrix

M q
ij = diag

(

Mij(ε1, α
q), · · · , Mij(ε(2n′+1), α

q)
)

.

A. Feasibility of PBNA using Transform Approach and Block Time Varying LECs

We assume that the min-cut betweenSi − Tj is not zero for alli 6= j. The proof technique

for feasibility of PBNA in the case of min-cut betweenSi − Tj being zero for somei 6= j will

be similar to that used for non-zero min-cut.

PBNA using transform approach and block time-varying LECs requires that the following
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conditions be satisfied for0 ≤ q ≤ k − 1.

Span(M q
31V

(q)
3 ) ⊂ Span(M q

21V
(q)
2 ),Span(M q

32V
(q)
3 ) ⊂ Span(M q

12V
(q)
1 ),

Span(M q
23V

(q)
2 ) ⊂ Span(M q

13V
(q)
1 ),

Rank[M q
11V

(q)
1 M q

21V
(q)
2 ] = Rank[V (q)

1 M q
11

−1
M q

21V
(q)
2 ] = 2n′ + 1 (39)

Rank[M q
22V

(q)
2 M q

12V
(q)
1 ] = Rank[M q

12
−1M q

22V
(q)
2 V

(q)
1 ] = 2n′ + 1

Rank[M q
33V

(q)
3 M q

13V
(q)
1 ] = Rank[M q

13
−1
M q

33V
(q)
3 V

(q)
1 ] = 2n′ + 1.

From Lemma1 in [16], m can always be chosen large enough so that the above rank conditions

are satisfied, if the corresponding determinants are non-zero polynomials.

We first note that recoveringX ′
i(0), for all i, represents the feasibility problem of PBNA

in the instantaneous version of the original3-S 3-D MUN-D. Suppose that we cannot recover

X ′
i(0), for all i. But, if we can recoverX ′

i(q), for all q 6= 0 and for all i, we can still achieve

throughputs of(n
′+1)(k−1)
(2n′+1)k

, n′(k−1)
(2n′+1)k

, n′(k−1)
(2n′+1)k

for S1 − T1, S2 − T2 andS3 − T3 respectively. This

means that asn and k become arbitrarily large, a throughput close to1
2

can be achieved for

every source-destination pair. However, in this section weshow that ifX ′
i(0), for somei = i1,

cannot be recovered then,X ′
i1
(q) is not recoverable for anyq. Conversely, we also show that if

X ′
i(0), for all i, can be recovered thenX ′

i(q) is recoverable for allq and i.

Definition 4: PBNA in 3-S 3-D MUN-D using Transform Approach and Block Time Varying

LECs is said to be feasible ifX ′
i(q) can be recovered fromY (q⊕k)

i , for i = 1, 2, 3, q =

1, 2, · · · , k − 1, and for everyn′ > 1.

Henceforth in this section, PBNA in3-S 3-D MUN-D using transform approach and block

time-varying LECs shall be simply referred to as PBNA in3-S 3-D MUN-D. We now proceed

to prove that the reduced feasibility conditions of Meng et al. for feasibility of PBNA in 3-S

3-D I-MUN are also necessary and sufficient for PBNA in3-S 3-D MUN-D.

PBNA in 3-S 3-D MUN-D is feasible iff there exists a choice of(n′ + 1)× n′ matricesA(q)

andB(q), V (q)
1 , and an′ × n′ matrix C(q), for 0 ≤ q ≤ k − 1, all with entries fromF2m , such
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that

det[V (q)
1 M q

11
−1M q

21M
q
23

−1M q
13V

(q)
1 A(q)] 6= 0,

det[M q
12

−1
M22M

q
23

−1
M q

13V
(q)
1 A(q) V

(q)
1 ] 6= 0,

det[M q
13

−1
M q

33M
q
32

−1
M q

12V
(q)
1 B(q) V

(q)
1 ] 6= 0, (40)

U (q)V
(q)
1 AC = V

(q)
1 B

where,U (q) = M
q
12

−1
M

q
32M

q
31

−1
M

q
21M

q
23

−1
M

q
13. The above conditions are obtained from the network

alignment conditions in (39) and following the same steps asin the proof of Theorem 5. For

0 ≤ q ≤ k − 1 , define

η(q) =
M21(ε, α

q)M32(ε, α
q)M13(ε, α

q)

M31(ε, αq)M23(ε, αq)M12(ε, αq)
,

b1(q) =
M21(ε, α

q)M13(ε, α
q)

M11(ε, αq)M23(ε, αq)
,

b2(q) =
M22(ε, α

q)M13(ε, α
q)

M12(ε, αq)M23(ε, αq)
, (41)

b3(q) =
M33(ε, α

q)M12(ε, α
q)

M13(ε, αq)M32(ε, αq)
.

As in [11], we shall consider the two cases ofη(0) not being a constant3 and being a constant,

separately.

Case 1: η(0) is not a constant.

The precoding matrices which are similar to those in [9] [11]are given by

V
(q)
1 = [W U (q)W U (q)2W · · · U (q)n

′

W ],

V
(q)
2 = [R(q)W R(q)U (q)W R(q)U (q)2W · · · R(q)U (q)n

′−1
W ],

V
(q)
3 = [S(q)U (q)W S(q)U (q)2W · · · S(q)U (q)n

′

W ] (42)

where,R = M
q
13M

q
23

−1, S = M
q
12M

q
32

−1, for 0 ≤ q ≤ k − 1, andW = [1 1 · · · 1]T (all ones vector

of size(2n′ + 1)× 1). The above choice of precoding matrices satisfy the last condition in (40)

though not necessarily the other conditions in (40).

3The terminology ofη(q) or bi(q) being a constant or not is understood to be with respect toε and henceforth, this shall not

be explicitly mentioned.
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The following theorem of Meng et al. gives the reduced feasibility conditions for 3-S 3-D

I-MUN.

Theorem 7 ( [11] (Reduced Feasibility Conditions)):X ′
i(0) can be recovered fromY (0⊕k)

i , for

all i, iff

bi(0) /∈ S(0) =

{

1, η(0), η(0) + 1,
η(0)

η(0) + 1

}

. (43)

The following theorem shows that PBNA in3-S 3-D MUN-D is feasible iff bi(0) /∈ S(0).

Theorem 8:When η(0) is not a constant,X ′
i(q) can be recovered fromY (q⊕k)

i , for q =

1, 2, · · · , k − 1, iff X ′
i(0) can be recovered fromY (0⊕k)

i .

Proof: Proof is given in Appendix K.

In brief, the above theorem proves that the reduced feasibility conditions of Meng et al. for

feasibility of PBNA in3-S 3-D I-MUN are also necessary and sufficient for feasibility ofPBNA

in 3-S 3-D MUN-D when η(0) is not a constant.

Case 2: η(0) is a constant.

Whenη(0) is a constant, Theorem1 of [11] states thatX ′
i(0) can be recovered fromY (0⊕k)

i

iff bi(0) is not a constant, fori = 1, 2, 3. Similar to Theorem1 of [11] we have the following

lemma.

Lemma 6:PBNA in 3-S 3-D MUN-D is feasible iff bi(q) is not a constant, fori = 1, 2, 3,

and1 ≤ q ≤ k − 1.

Proof: Proof is the same as forq = 0 case in [11].

The following proposition in combination with Theorem1 of [11] and Lemma 6 shows that

PBNA in a 3-S 3-D MUN-D is feasible iff PBNA in the3-S 3-D I-MUN is feasible.

Proposition 1: bi(q), for 1 ≤ q ≤ k − 1, is a constant iffbi(0) is a constant.

Proof: The proof follows using similar arguments as in the “If Part”and “Only If Part” in

the proof of Theorem 8.

The feasibility conditions for PBNA in3-S 3-D MUN-D for the case of zero min-cut between

Si − Tj for some(i, j) are also the same as that for3-S 3-D I-MUN as given in [11]. For

example, when the min-cut betweenS2 − T1 is zero as considered in Case2 of the previous

section, re-defineb1(q) =
M31(ε,αq)M12(ε,αq)
M11(ε,αq)M32(ε,αq)

. In such a case, PBNA is feasible iffbi(0) is not a

constant fori = 1, 2, 3.
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Remark 6:The PBNA scheme proposed in this section is different from PBNA using trans-

form approach and time-invariant LECs, and PBNA using time-varying LECs where, the indepen-

dent symbols were precoded onto a single block of data which is transmitted after the addition of

CP. In PBNA using transform approach and block time-varyingLECs, the independent symbols

are precoded across multiple blocks of data which are demarcated by separate CPs. A drawback

in this scheme is that the decoding delay is higher compared to PBNA using transform approach

and time-invariant LECs, and PBNA using time-varying LECs for the same values ofn′ and

large values ofk. In order to decode the firstp symbols, forp ≤ k, the decoding delay for PBNA

using transform approach and block time-varying LECs is equal to k(2n′ +1) whereas for both

PBNA using transform approach and time-invariant LECs, andPBNA using time-varying LECs

(with n = 2n′ + 1) the decoding delay is equal2n′ + 1.

VI. COMPARISON OFFEASIBILITY OF THE PBNA SCHEMES IN SECTION IV-A, SECTION

IV-B, AND SECTION V

In this section, we tie-up the feasibility of the PBNA schemes in Section IV-A and Section

V. We also provide one example each for the cases where 1) the feasibility test fails for all the

PBNA schemes proposed, 2) PBNA using time-varying LECs is feasible for some(n1, n2, n3)

while the other two proposed PBNA schemes fail.

Consider the feasibility problem of PBNA using transform approach and time-invariant LECs

described in Section IV-A. Consider the case of non-zero min-cut between everySi − Tj with

bi(q) as defined in (41) andη(0) not being a constant. Using the results of [11], we shall show

that the conditions of Theorem 4 are also necessary for feasibility of PBNA using transform

approach and time-invariant LECs, i.e., the conditions arenot restricted by the choice of the

precoding matrices in (21)-(23). We also show that the derived set of necessary and sufficient

conditions for feasibility of PBNA using transform approach and block time-varying LECs,

i.e., (43) is also a necessary condition for feasibility of PBNA using transform approach and

time-invariant LECs.

Proposition 2: If the conditions of Theorem 4 are not satisfied then, PBNA using transform

approach and time-invariant LECs is infeasible for any choice of precoding matrices (i.e., even

when the matrices are not restricted to those in (21)-(23)).

Proof: Note that the diagonal elements of̂M−1
11 M̂21R̂, M̂−1

12 M̂22R̂, andM̂−1
13 M̂33Ŝ, where
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R̂ and Ŝ are defined in (20), are given byb1(q), b2(q), and b3(q) respectively, for0 ≤ q ≤

2n′ + 1. Therefore, for the conditions of Theorem 4 to be satisfied, the columns of the matrices

[V1 M̂−1
11 M̂21V2], [M̂

−1
12 M̂22V2 V1], and[M̂−1

13 M̂33V3 V1] must be linearly independent over the

field of rational polynomials inε where the choice of the precoding matrices are given by (21)-

(23). Alternatively, the conditions of Theorem 4 will fail iff for somei and for0 ≤ q ≤ 2n′+1,

bi(q) ∈

{

f(η(q))

g(η(q))

∣

∣

∣

∣

f(x), g(x) ∈ F2m(ε)[x], f(x)g(x) 6= 0, (44)

gcd(f(x), g(x)) = 1, deg(f) ≤ n′, deg(g) ≤ n′ − 1} .

Note that the functionsf(x) andg(x) must be the same for0 ≤ q ≤ 2n+ 1. If bi(q) ∈
{

f(η(q))
g(η(q))

}

,

for 0 ≤ q ≤ 2n′ + 1, such that the denominators off(x) and g(x) are not constants, then the

denominators can be subsumed in the numerators ofg(x) and f(x) respectively. Hence, (44)

can be re-stated as

bi(q) ∈

{

f(η(q))

g(η(q))

∣

∣

∣

∣

f(x), g(x) ∈ F2m [ε][x], f(x)g(x) 6= 0, (45)

gcd(f(x), g(x)) = 1, deg(f) ≤ n′, deg(g) ≤ n′ − 1} .

Using (45) and following exactly the same steps as in the proofs of Lemma5, Lemma8 and

Theorem2 of [11], it can be shown that when (45) is satisfied, choice of any other precoding

matrices would still not satisfy (60)-(62) (given in Appendix G) which are necessary conditions

for feasibility of PBNA using transform approach and time-invariant LECs.

The following proposition states that the necessary and sufficient condition for feasibility

of PBNA using transform approach and block time-varying LECs in (43) is also a necessary

condition for feasibility of PBNA using transform approachand time-invariant LECs.

Proposition 3: PBNA using transform approach and time-invariant LECs in3-S 3-D MUN-D

is infeasible ifbi(0) ∈ S(0) for every i = 1, 2, 3 where,S(0) is defined in (43).

Proof: The proposition is just a re-statement of the fact that ifbi(0) ∈ S(0), for instance

bi(0) =
η(0)

η(0)+1
then,bi(q) =

η(q)
η(q)+1

for 0 ≤ q ≤ 2n′ +1 which is proved using similar arguments

as in the “If” part in the proof of Theorem 8 (given in AppendixK). Thus, if bi(0) ∈ S(0) then

(45) will be satisfied which implies that PBNA using transform approach and time-invariant

LECs is infeasible.
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Hence, whenever PBNA using transform approach and block time-varying LECs is infeasible,

PBNA using transform approach and time-invariant LECs is also infeasible4. Conversely, if

PBNA using transform approach and time-invariant LECs is feasible then, PBNA using transform

approach and block time-varying LECs is feasible because the reduced feasibility conditions of

(43) will be satisfied. For example, PBNA using transform approach and block time-varying

LECs is also feasible for the network considered in Example 2. The sufficiency of the condition

in (43) for feasibility of PBNA using transform approach andtime-invariant LECs remains open.

So, the next natural question is whether PBNA using time-varying LECs is feasible for some

(n1, n2, n3) (where,n1, n2, n3 6= 0) or not when the other two PBNA schemes fail. This question

is difficult to answer in generality. However, we show through examples the existence of3-S

3-D MUN-D such that all the three PBNA schemes are infeasible and also the existence of

3-S 3-D MUN-D such that PBNA using time-varying LECs is feasible for some(n1, n2, n3, n)

while the other two PBNA schemes are infeasible. The following example taken from [10], but

with delays incorporated, is an instance where all the PBNA schemes described in the previous

sections are infeasible.

Example 3:Consider the network shown in Fig. 5. Each link is taken to have unit-delay. The

Fig. 5. A 3-S 3-D MUN-D where,(1) PBNA using transform approach and time-invariant LECs, andPBNA using transform

approach and block time-varying LECs are infeasible, and(2) PBNA using time-varying LECs is infeasible for all positive

integer-tuples(n1, n2, n3, n).

4This can also be proved for the case ofη(0) being a constant and for the case of zero min-cut betweenSi − Tj for some

(i, j). Both follow directly from the fact thatbi(0) is a constant iffbi(q) is a constant for allq ∈ {0, 1, · · · , 2n′ + 1}.
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local encoding coefficients at each node are indicated in thefigure. Here,dmax = 2.

Note thatb1(0) = 1 and hence, PBNA using transform approach and time-invariant LECs, and

PBNA using transform approach and block time-varying LECs are infeasible for alln′ > 1. We

shall now show that PBNA using time-varying LECs is infeasible for all (n1 > 0, n2 > 0, n3 > 0)

andn > 0. Let ai denote the LECa at time instanti and similarly denote the other LECs. Note

that bi inside a matrix will denote the LECb at time instanti. Now, we have

M11 =





























0 0 an−3rn−1 0 · · · 0

0 0 0 an−4rn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · a0r2

a−1r1 0 0 0 · · · 0

0 a−2r0 0 0 · · · 0





























M
−1
11 =





























0 0 0 · · · 1
a−1r1

0

0 0 0 · · · 0 1
a−2r0

1
an−3rn−1

0 0 · · · 0 0

0 1
an−4rn−2

0 · · · 0 0

...
...

...
...

...
...

0 0 · · · 1
a0r2

0 0





























Similarly,

M
−1
23 =





























0 0 0 · · · 1
b−1

0

0 0 0 · · · 0 1
b−2

1
bn−3

0 0 · · · 0 0

0 1
bn−4

0 · · · 0 0

...
...

...
...

...
...

0 0 · · · 1
b0

0 0





























.

The other transfer matrices involved in determining the feasibility of PBNA using time-varying

LECs are given by
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M21 =





























0 0 bn−3rn−1 0 · · · 0

0 0 0 bn−4rn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · b0r2

b−1r1 0 0 0 · · · 0

0 b−2r0 0 0 · · · 0





























M13 =





























0 0 an−3 0 · · · 0

0 0 0 an−4 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · a0

a−1 0 0 0 · · · 0

0 a−2 0 0 · · · 0





























.

Hence,M−1
11 M21M

−1
23 M13 = In. Thus, the matrix

[V1 M−1
11 M21V2] = [V1 M−1

11 M21M
−1
23 M13V1A] = [V1 V1A]

is not full-rank. This violates (66) (given in Appendix I) and hence, the condition of Theorem

5 is not satisfied.

The following example considers a modified version of the network dealt in Example 3 and

is an instance where PBNA using time-varying LECs is feasible for some(n1, n2, n3, n) while

the other two the PBNA schemes are infeasible.

Example 4:This example considers a network whose topology is the same as that in Fig. 5

where all the links except the incoming link atT3 have unit delays. The incoming link atT3 is

assumed to have a delay of4 time units. Hence,dmax is equal to5.

Note thatb1(0) = 1 and hence, PBNA using transform approach and time-invariant LECs,

and PBNA using transform approach and block time-varying LECs are infeasible for alln′ > 1.

We shall now show that PBNA using time-varying LECs is feasible for some(n1 > 0, n2 >

0, n3 > 0) andn > 0. The notation used for the LECs is the same as that in Example 3. Now,

the network transfer matrices are given by
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M11 =





























0 0 an−3rn−1 0 · · · 0

0 0 0 an−4rn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · a0r2

a−1r1 0 0 0 · · · 0

0 a−2r0 0 0 · · · 0





























,M21 =





























0 0 bn−3rn−1 0 · · · 0

0 0 0 bn−4rn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · b0r2

b−1r1 0 0 0 · · · 0

0 b−2r0 0 0 · · · 0





























,

M31 =





























s7 0 cn−3rn−1 0 · · · 0

0 s6 0 cn−4rn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · c0r2

c−1r1 0 0 0 · · · 0

0 c−2r0 0 0 · · · s0





























,M12 =





























q7 0 an−3pn−1 0 · · · 0

0 q6 0 an−4pn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · a0p2

a−1p1 0 0 0 · · · 0

0 a−2p0 0 0 · · · q0





























,

M22 =





























0 0 bn−3pn−1 0 · · · 0

0 0 0 bn−4pn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · b0p2

b−1p1 0 0 0 · · · 0

0 b−2p0 0 0 · · · 0





























,M32 =





























0 0 cn−3pn−1 0 · · · 0

0 0 0 cn−4pn−2 · · · 0

...
...

...
...

...
...

0 0 0 0 · · · c0p2

c−1p1 0 0 0 · · · 0

0 c−2p0 0 0 · · · 0





























,

M13 =









































0 0 · · · 0 an−6 0 · · · 0

0 0 · · · 0 0 an−5 · · · 0

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · a0

a−1 0 · · · 0 0 0 0 0

0 a−2 · · · 0 0 0 0 0

,
...

...
...

...
...

...
...

0 0 · · · a−5 0 0 · · · 0









































,M23 =









































0 0 · · · 0 bn−6 0 · · · 0

0 0 · · · 0 0 bn−5 · · · 0

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · b0

b−1 0 · · · 0 0 0 0 0

0 b−2 · · · 0 0 0 0 0

,
...

...
...

...
...

...
...

0 0 · · · b−5 0 0 · · · 0









































,

M33 =









































0 0 · · · 0 cn−6 0 · · · 0

0 0 · · · 0 0 cn−5 · · · 0

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · c0

c−1 0 · · · 0 0 0 0 0

0 c−2 · · · 0 0 0 0 0

,
...

...
...

...
...

...
...

0 0 · · · c−5 0 0 · · · 0









































.

Let n = 8, n1 = 5, n2 = 3, n3 = 3. Unlike in Example 3, here the matrixM−1
11 M21M

−1
23 M13 is
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a−5 = 1, a−4 = β, a−3 = 1, a−2 = β, a−1 = β6, a0 = β2, a1 = β12, a2 = β7,

a3 = β26, a4 = β3, a5 = β31,

b−5 = β54, b−4 = β52, b−3 = β13, b−2 = β35, b−1 = β8, b0 = β48, b1 = β27,

b2 = β18, b3 = β4, b4 = β24, b5 = β28,

c−5 = β45, c−4 = β54, c−3 = 1, c−2 = β, c−1 = β6, c0 = β2, c1 = β12, c2 = β7,

c3 = β26, c4 = β3, c5 = β32,

p0 = β45, p1 = β49, p2 = β38, p3 = β28, p4 = β41, p5 = β19, p6 = β56, p7 = β5, (46)

q0 = β24, q1 = β33, q2 = β16, q3 = β14, q4 = β52, q5 = β36, q6 = β54, q7 = β9,

r0 = β62, r1 = β25, r2 = β11, r3 = β34, r4 = β31, r5 = β17, r6 = β47, r7 = β15,

s0 = β32, s1 = β13, s2 = β35, s3 = β8, s4 = β48, s5 = β27, s6 = β18, s7 = β4.

not identity and is equal to






































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 a−3b5
a5b−3

0 0 0 0 0

0 0 0 a−4b4
a4b−4

0 0 0 0

0 0 0 0 a−5b3
a3b−5

0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1







































.

We now, chooseV1 = [W UW U2W U3W U4W ] where, the matrixU is defined in (30) and

W is the all-ones column vector of lengthn = 8. We choose the matricesA andB (defined

in (29)) respectively to be equal to the first three columns and the second three columns of the

identity matrix I5. The matrixC is taken to be equal to the identity matrixI3. Now, it can be

easily verified thatgij = 0, where the rational-polynomialgij is defined in (32). Now, for PBNA

with time-varying LECs to be feasible, it remains to be verified if there exists an assignment
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to the LECs such that (66)-(68) (given in Appendix I) are satisfied. The LECs involved are

chosen (randomly) as given in (46) where,β is a primitive element ofGF (26) whose minimal

polynomial is given by(1 + x + x6). With these choice of LECs, it can be verified using the

softwareMathematicathat (66)-(68) are satisfied.

In the next section, we shall motivate a discussion on the potential of a non-asymptotic

scheme, namely on-off scheme, to achieve a rate of half for every source-destination pair in3-S

3-D MUN-D.

VII. D ISCUSSION ONON-OFF SCHEMES

PBNA for 3-S 3-D I-MUN was primarily motivated by the breakthrough resultfor K-user

Gaussian interference channel (GIC) in [8] where IA helped achieve a sum-degrees of freedom

(DoF) of K
2

asymptotically. The presence of diagonal network transfermatrices in3-S 3-D I-

MUN and the ability to diagonalize the network transfer matrices in 3-S 3-D MUN-D helped

in readily adapting the IA problem formulation and the IA precoders proposed for theK-user

GIC to the3-S 3-D I-MUN and 3-S 3-D MUN-D settings.

We now discuss if some simple on-off schemes can achieve a rate of half for every source-

destination pair in3-S 3-D MUN-D. This discussion is motivated by an interesting result for the

K-user GIC with propagation delays [24] where, it was shown that by appropriately adjusting

the duration of transmission, at every destination all the interference symbols would arrive at

even time slots while the desired symbol would arrive at odd time slots. Hence, using a simple

on-off signaling each user could achieve a DoF of half almostsurely.

If on-off schemes could achieve a rate of half for every source-destination pair then, PBNA

would be unnecessary for3-S 3-D MUN-D. But, as we shall see, there exist networks where

the proposed PBNA schemes are feasible while on-off schemescannot achieve a rate of half for

every source-destination pair. Unlike in theK-user GIC with propagation delays, the advantage

offered by the on-off schemes cannot be completely realizedin 3-S 3-D MUN-D because of the

fundamental difference between the wireline system model for delay networks and the wireless

system model involving propagation delays. The model discussed in Section II assumed that the

link delays are positive integer multiples of the symbol duration. This gave rise to the input-output

relations in (2) and (10). Whereas in the wireless setting, the symbol duration is independent of

the propagation delays between the sources and destinations.
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Formally, we define an on-off scheme in a3-S 3-D MUN-D as follows.

Definition 5: A transmission scheme where every source switches itself onand off so that

the interference symbols at each of the destinations can be aligned in orthogonal time slots with

respect to the desired symbols is defined as an on-off scheme.

We shall now consider two examples of3-S 3-D MUN-D where, in the first example, an

on-off scheme can achieve a rate of half for every source-destination pair, and in the second, it

is impossible to achieve a rate of half for every source-destination pair using on-off schemes.

Example 5:Consider the3-S 3-D MUN-D in Fig. 6 where all the links have unit delay. It

can be easily verified that the reduced feasibility condition of Theorem 7 are satisfied and hence,

by Theorem 8, PBNA using transform approach and block time-varying LECs is feasible. Now,

Fig. 6. A 3-S 3-D MUN-D where, an on-off scheme can achieve a rate of half forevery source-destination pair. PBNA using

transform approach and block time-varying LEKs is feasibleand achieves half-rate asymptotically for every source-destination

pair.

consider the following on-off scheme. The destinationsT1 andT2 delays the incoming symbol

from the nodeP3 by two time slots and then linear combines it with the incoming symbol

from the nodeQ2 so that the random process at the imaginary output links atT1 and T2 are
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given by (a1c1x1 + a2c1x2 + a3c1x3)D
4 + r1x3D

4 and(a1c2x1 + a2c2x2 + a3c2x3)D
4 + r2x3D

4

respectively. Choosingr1 = −a3c1 and r2 = −a3c2, the interference fromS3 at T1 andT2 are

eliminated. Similarly, the interference fromS2 is eliminated atT3. Let ai = ci = 1, for all i so

that the output symbols atT1, T2, andT3 at every time instant are given byx1 + x2, x1 + x2,

andx1 + x3 respectively. Now, the sourcesS1, S2, andS3 are allowed to transmit only in odd,

even, and even time slots respectively. Hence, the on-off scheme achieves a rate of half for every

source-destination pair.

Example 6:Consider the3-S 3-D MUN-D in Fig. 7 where all the links have unit delay. This

network is essentially the same network as that in Example 2 but with the last link before each

of the destinations removed. Hence, PBNA using transform approach and time-invariant LECs,

and PBNA using transform approach and block time-varying LECs are feasible. Now, consider

Fig. 7. A 3-S 3-D MUN-D where, it is impossible to achieve a rate of half for every pairSi −Ti using on-off schemes while

PBNA using transform approach and time-invariant LECs, andPBNA using transform approach and block time-varying LECs

are feasible.

the following on-off scheme. Like in Example 5, the destinations T1, T2, and T3 cancel the

interference fromS3, S1, andS2 respectively by delaying the symbols received from the nodesP3,
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P1, andP2. The output random process atT1, T2, andT3 are now given by(a1c1x1+a2c1x2)D
4,

(a2c2x2 + a3c2x3)D
4, and(a3c3x3 + a1c3x1)D

4 respectively. Ifx1 andx2 are to be received in

orthogonal time slots atT1 then, letS1 transmit at odd time instants andS2 transmit at even

time instants. Similarly forx2 andx3 to be received in orthogonal time slots atT2, S3 has to

transmit at odd time instants. Now, it is impossible forx3 andx1 to be received in orthogonal

time slots atT3. Similarly in the case of interference not being canceled atsome destination

nodes, an on-off scheme cannot achieve a rate of half for every source-destination pair.

To summarize, Example 6 showed that there exists a3-S 3-D MUN-D where a PBNA scheme

can achieve a rate of half (asymptotically) for every source-destination pair while on-off schemes

cannot achieve a rate of half for every source-destination pair. This strengthens the case for PBNA

in 3-S 3-D MUN-D. On the other hand, Example 5 showed that there exists 3-S 3-D MUN-D

where an on-off scheme can achieve a rate of half for every source-destination pair. Though one

of the proposed PBNA schemes is feasible in Example 5, it is unnecessary because it achieves

a rate of half for every source-destination pair only asymptotically (n′ → ∞) unlike the on-off

scheme. Nevertheless, identifying the class of3-S 3-D MUN-D or wireline networks in general

where on-off schemes can provide a rate guarantee of half forevery source-destination pair

remains open.

VIII. C ONCLUSION

Using DFT, an acyclic network with delay was transformed into n-instantaneous networks

without making use of memory at the intermediate nodes. This was then applied to3-S 3-D

MUN-D and it was shown that there can exist networks where PBNA is feasible even by using

time-invariant LECs which is not possible in the delay-freecounterpart. The conditions for

feasibility of network alignment were then generalized with time-varying LECs and posed as

an algebraic geometry problem in Section IV-B under Case1. PBNA using transform approach

and block time-varying LECs was proposed, and it was shown that its feasibility conditions is

the same as the reduced feasibility conditions of3-S 3-D I-MUN. It was also shown that if

PBNA using transform approach and block time-varying LECs is infeasible then, PBNA using

transform approach and time-invariant LECs is also infeasible. The complete role of network

topology in determining the feasibility of PBNA in3-S 3-D I-MUN appears in [25] which is a

more recent version of [11]. Hence, the same is applicable toPBNA using transform approach
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and time-invariant LECs, and PBNA using transform approachand block time-varying LECs.

It was also shown that there exists a3-S 3-D MUN-D where PBNA using time-varying LECs

is feasible while the other two proposed PBNA schemes are infeasible. The following questions

however remain open.

1) Under what condition is PBNA using time-varying LECs feasible when the reduced fea-

sibility conditions are not satisfied?

2) The sufficiency of the reduced feasibility conditions forfeasibility of PBNA using trans-

form approach and time-invariant LECs remains open, i.e., is PBNA using transform

approach and time-invariant LECs feasible whenever PBNA using transform approach

and block time-varying LECs is feasible?

Optimizing Groebner basis algorithms for specific networksis crucial to verifying the condition

of Theorem 5 and hence, is of significant interest.

Optimality of PBNA, when feasible, for the class of3-S 3-D MUN-D remains to be investi-

gated. PBNA for3-S 3-D MUN-D discussed in this paper as well as that for3-S 3-D I-MUN,

could be extended to the case where each source-destinationpair has a min-cut greater than

one. Another interesting direction of future research is extending PBNA to the case of arbitrary

number of sources and destinations with arbitrary message demands.

Though the transform method described was claimed to be applicable for acyclic networks

havingM(D) whose elements are only polynomial functions inD, it can also be applied to

networks havingM(D) whose elements are rational functions inD by multiplying by the LCM

of all the denominators of the rational functions, at all thesinks. This gives a finitedmax. The

same applies to cyclic networks too.
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APPENDIX A

PROOF OFTHEOREM 1

Proof: For 0 ≤ j ≤ n− 1, we have

A





















Iµ

αjIµ

α2jIµ
...

α(n−1)jIµ





















nµ×µ

=















∑L

i=0 α
ijA(i)

∑L

i=0 α
(i+1)jA(i)

...
∑L

i=0 α
(i+n−1)jA(i)















nν×µ

=





















Iν

αjIν

α2jIν
...

α(n−1)jIν





















nν×ν

(

L
∑

i=0

αijA(i)

)

. (47)

From (47), we have

AQµ = QνÂ. (48)

The matrixQµ defined in (12) can also be written asQµ = F ⊗ Iµ (i.e., the Kronecker product

of F andIµ). Similarly, Qν = F ⊗ Iν . The inverse of the matrixF is given by [15]

F−1 =n−1





















1 1 1 · · · 1

1 α−1 α−2 · · · α−(n−1)

1 α−2 α−4 · · · α−2(n−1)

...
. . . . . . . . . . . .

1 α−(n−1) α−2(n−1) · · · α−(n−1)(n−1)





















.

Now, det(Qµ) = [det(F )]µ[det(Iµ)]
n 6= 0 andQ−1

µ = F−1 ⊗ Iµ (∵ QµQ
−1
µ = (F ⊗ Iµ)(F

−1 ⊗

Iµ) = (FF−1)⊗ Iµ = Inµ). Hence, from (48)

A = QνÂQ
−1
µ .

December 20, 2017 DRAFT

http://arxiv.org/abs/1305.0868


52

APPENDIX B

PROOF OFTHEOREM 2

Proof: If Part: If both the conditions are satisfied after the assignment of values toε, then

sink-j can invert the matrix[M̂ (k)
i1j

(li1) M̂
(k)
i2j

(li2) · · · M̂
(k)
is′ j

(lis′ )] and decode the required input

symbols without any interference.

Only If Part: If Condition 1) is not satisfied for some sink-j then, sink-j receives superposition

of the required input symbols and interference from other input symbols, from which it cannot

decode the required input symbols.

If Condition 2) is not satisfied for some sink-j then, sink-j cannot invert the matrix

[M̂
(k)
i1j

(li1) M̂
(k)
i2j

(li2) · · · M̂
(k)
is′ j

(lis′ )] which is necessary for decoding the input symbols.

APPENDIX C

PROOF OFLEMMA 2

Proof: Following the terminology developed so far, for somen >> dmax and for0 ≤ t ≤

n− 1, let

X(t) =















X1
(t)

X2
(t)

...

Xs
(t)















.

Then, by (6), (18) and the structure of thêM (t)
ij matrices, we have for0 ≤ t ≤ n− 1,

Yj
(t) =

(

dmax
∑

d=0

αd(n−1−t)M
(d)
j

)

X(t), (49)

whereM (d)
j is a νj × µ matrix overFpm (considered as a subfield ofFpb) such that

Mj(D) =

dmax
∑

d=0

M
(d)
j Dd. (50)

We define a collection of ring homomorphismsφt : Fpm(D) → Fpb for 0 ≤ t ≤ n− 1, given

by φt(D) = αt andφt as an identity map onFpm . For some matrixP (D) overFpm(D), we also

defineφt(P (D)) to be equal to the matrixP with elements inFpb that are theφt-images of the

corresponding elements ofP (D). Then, from (49) and (50), we have

Yj
(n−1−t) = φt(Mj(D))X(n−1−t), (51)
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for 0 ≤ t ≤ n − 1. Clearly, the zero-interference conditions satisfied in theMj(D) matrices

continue to hold in theφt(Mj(D)) matrices, for0 ≤ t ≤ n − 1 and for any sink-j. Having

satisfied the zero-interference conditions, to recover thesource processes demanded by each

sink-j at time instantn− 1− t, the invertibility conditions also have to be satisfied, i.e.,
r
∏

j=1

det
(

φt(M
′
j(D))

)

6= 0, (52)

whereM ′
j(D) is the square submatrix ofMj(D) indicating the source processes that are de-

manded by sink-j. But then, we have

det
(

φt(M
′
j(D))

)

= φt(det(M
′
j(D))) (53)

and thus
r
∏

j=1

det
(

φt(M
′
j(D))

)

=

r
∏

j=1

φt

(

det(M ′
j(D))

)

= φt

(

r
∏

j=1

det(M ′
j(D))

)

= φt(f(D))

= f(αt),

wheref(D) is as defined in (19). Clearly,f(αt) 6= 0 implies that (52) is satisfied and the source

processes demanded at each sink can be recovered at time instant n − 1 − t in the transform

approach. Similarly, if the sink demands are satisfied at time instantn− 1− t in the transform

approach, clearly we must havef(αt) 6= 0. This holds for0 ≤ t ≤ n − 1, thus proving the

lemma.

APPENDIX D

PROOF OFTHEOREM 3

Proof: If part: Let Fpm be the field over which the feasible network code has been obtained

for (G, C). Consider the polynomialf(D) (given by (19)) with coefficients fromFpm. Let Fpm
′

be the splitting field of this polynomial, i.e., a suitable smallest extension field ofFpm in which

f(D) splits into linear factors.
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Let

pm
′

− 1 =
b=k
∏

b=1

p
m′

b

b ,

where eachpb is some prime andmb is some positive integer.

By Lemma 2, the choice ofα to be used for the DFT operations should be such thatf(αt) 6= 0,

for any 0 ≤ t ≤ n− 1. We now show that such anα exists and can be chosen.

Let Fpm
′′ be an extension field ofFpm

′ . Clearly,
(

pm
′

− 1
)

|
(

pm
′′

− 1
)

. However, we further

demand thatFpm
′′ is such that

pm
′′

− 1 =

b=k
∏

b=1

p
m′′

b

b

c=k′
∏

c=1

pm
′′

c
c , (54)

where eachpc is some prime andm′′
b andm′′

c are some positive integer such thatpb 6= pc for

1 ≤ b ≤ k and 1 ≤ c ≤ k′. Note thatm′′
b ≥ mb for 1 ≤ b ≤ k. Such extensions ofFpm

′′ can

indeed be obtained. For example,Fpm
′′ can be considered to be the smallest field which contains

Fpm
′ andFpm̃, m̃ being some positive integer coprime withm′. Then clearlyFpm

′′ is such that

(54) holds.

Following the notations of Section III, we now pickα ∈ Fpm
′′ (wherem′′ satisfies (54)) such

that the following condition holds.

• The cyclic subgroup{1, α, ..., αn−1} of Fpm
′′\ {0} with ordern(n > 1) is such thatn and

∏b=k

b=1p
m′′

b

b are coprime.

Such anα can be obtained by choosingα from the subgroup ofFpm
′′\ {0} with n =

∏c=k′

c=1 p
m′′

c
c

elements. We now claim that using such anα for the DFT will result in a feasible transform

network code for(G, C). The proof is as follows.

We first note that the zero-interference conditions are satisfied irrespective of the choice ofα

in the DFT operations. As for the invertibility conditions,by Lemma 2, it is clear that as long

asf(αt) 6= 0 for 0 ≤ t ≤ n− 1, we have a feasible transform network code for(G, C). Suppose

f(αt) = 0 for some1 ≤ t ≤ n−1. Let nt be the order ofαt, i.e., the number of elements in the

cyclic group generated byαt. Thennt|n and alsont|
∏b=k

b=1p
m′′

b

b asαt ∈ Fpm
′ is a zero off(D).

However this leads to a contradiction asn shares no common prime factor with
∏b=k

b=1p
m′′

b

b . Thus

no αt, 1 ≤ t ≤ n− 1, can be a zero off(D). This, coupled with the given fact thatf(1) 6= 0,

proves the claim and hence the if part of the theorem.
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Only If part: Let Fpm be the field over which a feasible transform network code has been

defined for (G, C), i.e., there exists a choice of LECs and forα from Fpm using which the

zero-interference and the invertibility constraints havebeen satisfied in the transform domain.

Note that a choice for the LECs implies that the matricesMj(D) given by (6) are well defined.

We will now prove that the invertibility and the zero-interference constraints also hold in these

Mj(D) matrices for all sinks, i.e., for1 ≤ j ≤ r.

We first prove the invertibility conditions. Towards that end, letM̂ (n−1)
j be defined as theνj×µ

transfer matrix at time instantn − 1 from all the sources to sink-j in the transform approach,

i.e.,

M̂
(n−1)
j =

[

M̂
(n−1)
1j M̂

(n−1)
2j ...M̂

(n−1)
sj

]

. (55)

By the structure of theM̂ (n−1)
ij matrices, we havêM (n−1)

j =
∑d=dmax

d=0 M
(d)
j = Mj(D)|D=1. Let

M̂
′(n−1)
j be the submatrix ofM̂ (n−1)

j which is known to be invertible, as it is given that the

invertibility conditions for the transform network code are all satisfied.

The invertibility conditions for sink-j of the usual (non-transform) network code for(G, C)

demand a suitable submatrixM ′
j(D) of the matrixMj(D) to be invertible. Note however that

M ′
j(D)|D=1 = M̂

′(n−1)
j , by (55). Therefore, we havedet

(

M̂
′(n−1)
j

)

= det
(

M ′
j(D)|D=1

)

6= 0.

As in (53), we havedet
(

M ′
j(D)

)

|D=1 = det
(

M ′
j(D)|D=1

)

6= 0. Therefore,det
(

M ′
j(D)

)

6= 0,

i.e.,det
(

M ′
j(D)

)

is a non-zero polynomial inD. Because the choice of the sink was arbitrary, it

is clear that the invertibility conditions hold for each sink in the usual network code for(G, C).

By (19), we also have(D − 1) ∤ f(D).

We now prove the zero-interference conditions. The zero-interference conditions in the trans-

form domain can be interpreted as follows. Having ordered the input processes at the source-i,

suppose the sink-j does not demand thekth process from the source-i. Then the matrixM̂ij

is such thatkth column of M̂ (t)
ij is an all-zero column for all0 ≤ t ≤ n − 1. To prove that

the zero-interference conditions continue to hold in the usual network code for(G, C), we must

then prove that for each source-i, each particular sink-j and eachk (such that thekth input

process at source-i is not demanded at sink-j, thekth columns ofM (d)
ij matrices are all-zero for

0 ≤ d ≤ dmax where,M (d)
ij , 0 ≤ d ≤ dmax are matrices such that

Mij(D) =

dmax
∑

d=0

M
(d)
ij Dd.
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Mij = QνjM̂ijQ
−1
µi

=

















Iνj Iνj Iνj · · · Iνj

Iνj β1Iνj β2
1Iνj · · · βn−1

1 Iνj
...

...
... · · ·

...

Iνj βn−1Iνj β2
n−1Iνj · · · βn−1

n−1Iνj

































M̂
(n−1)
ij 0 0 · · · 0

0 M̂
(n−2)
ij 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · M̂
(0)
ij

















×

















Iµi
Iµi

Iµi
· · · Iµi

Iµi
β−1
1 Iµi

β−2
1 Iµi

· · · β
−(n−1)
1 Iµi

...
...

... · · ·
...

Iµi
β−1
n−1Iµi

β−2
n−1Iµi

· · · β
−(n−1)
n−1 Iµi

















=

















∑n−1
t=0 M̂

(t)
ij

∑n−1
t=0 β−1

n−1−tM̂
(t)
ij · · ·

∑n−1
t=0 β

−(n−1)
n−1−t M̂

(t)
ij

∑n−1
t=0 βn−1−t

1 M̂
(t)
ij

∑n−1
t=0 M̂

(t)
ij · · ·

∑n−1
t=0 βn−1−t

1 β
−(n−1)
n−1−t M̂

(t)
ij

...
... · · ·

...
∑n−1

t=0 βn−1−t
n−1 M̂

(t)
ij

∑n−1
t=0 βn−1−t

n−1 β−1
n−1−tM̂

(t)
ij · · ·

∑n−1
t=0 M̂

(t)
ij

















. (56)

This is seen by observing the structure of theMij matrix, which is defined by (15). Using

Theorem 1 and withβa = αa, we have (56). Comparing the submatrices ofMij from (15) and

(56), we see that if thekth column of theM̂ (t)
ij matrices is all-zero for all0 ≤ t ≤ n− 1, then

the kth columns ofM (d)
ij matrices are all-zero for0 ≤ d ≤ dmax. As the choice of source-i

and sink-j are arbitrary, it is clear that the zero-interference conditions continue to hold in the

Mij(D) matrices for all1 ≤ i ≤ s and1 ≤ j ≤ r. This proves the only if part of the theorem

and hence, the theorem is proved.

APPENDIX E

PROOF OFLEMMA 3

Proof: ConsiderMij as defined in (15) which is a circulant matrix of size(2n′+1)×(2n′+1).

The diagonal elements of̂Mij , i.e.,M̂ (k)
ij , for k = 0, 1, · · · , 2n′, are the eigen values of the matrix

Mij . Note that the eigen values are equal to(2n′ + 1)-point finite-field DFT of the first row

of Mij . Since, the min-cut from source-i to sink-j is greater than or equal to1, by Menger’s

Theorem, there exists at least one link-disjoint directed path from source-i to sink-j. Consider
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one such directed path consisting of linkse1, e2, .., et. Now, we can assign the valuesα1,e1 = 1,

βei,ei+1
= 1 (i ∈ {1, 2, .., t− 1}), ǫet,1 = 1 and assign values of0 to all the other LECs. By such

an assignment of values to the LECs, exactly one amongM
(0)
ij , M (1)

ij , .., M (dmax)
ij is equal to1.

This implies that all the eigen values ofMij are non-zero. Hence, the diagonal elements ofM̂ij

are non-zero polynomials inε and so is its determinant.

APPENDIX F

PROOF OFLEMMA 4

Proof: If part: Euler’s theorem [20] states that if two positive integersa andb are coprime

then, b divides aφ(b) − 1 whereφ represents the Euler’s totient function. If2n′ + 1 < p then,

2n′ + 1 andp are coprime. If2n′ + 1 ≥ p then,p and2n′ + 1 are coprime iffp does not divide

2n′ + 1. Hence, by Euler’s theorem,2n′ +1|pφ(2n
′+1) − 1 if p ∤ 2n′ + 1. Thus if p ∤ 2n′ +1 then,

2n′ + 1|pm − 1, for all m such thatφ(2n′ + 1)|m.

Only If part: If 2n′ + 1 dividespm − 1 for some positive integerm then,pm − 1 = r(2n′ + 1)

for some positive integerr. So,pm − (2n′ + 1)r = 1 which means thatp and2n′ + 1 must be

coprime. Sincep is prime,p ∤ 2n′ + 1.
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APPENDIX G

PROOF OFTHEOREM 4

Proof: To exactly recoverX ′
1
n′+1, X ′

2
n′

andX ′
3
n′

at the sinks-1, 2 and3 respectively, it is

sufficient that the following network alignment conditionsare satisfied.

M̂21V2 = M̂31V3 (57)

Col
(

M̂32V3

)

⊂ Col
(

M̂12V1

)

(58)

Col
(

M̂23V2

)

⊂ Col
(

M̂13V1

)

(59)

Rank[M̂11V1 M̂21V2] = 2n′ + 1

⇔ Rank[V1 M̂−1
11 M̂21V2] = 2n′ + 1 (60)

Rank[M̂22V2 M̂12V1] = 2n′ + 1

⇔ Rank[M̂−1
12 M̂22V2 V1] = 2n′ + 1 (61)

Rank[M̂33V3 M̂13V1] = 2n′ + 1

⇔ Rank[M̂−1
13 M̂33V3 V1] = 2n′ + 1 (62)

Note that from Lemma 3, inverse of̂Mij ∀ (i, j) ∈ {1, 2, 3} is well-defined. It is easily seen that

the choice ofV1, V2 ,andV3 in (21)-(23) satisfy the conditions (57)-(59). Suppose that (60)-(62)

are satisfied. Let

f1(ε) = det([V1 M̂−1
11 M̂21V2])

f2(ε) = det([M̂−1
12 M̂22V2 V1])

f3(ε) = det([M̂−1
13 M̂33V3 V1])

f4(ε) =
∏

(i,j)∈{1,2,3}

det(Mij)

f(ε) =

4
∏

i=1

fi(ε).

Sincef1(ε), f2(ε) andf3(ε) are non-zero polynomials inε, f(ε) is also a non-zero polynomial

in ε. Hence, by Lemma1 in [3], for a sufficiently large field size, there exists an assignment

of values toε such that the network alignment conditions are satisfied. Since p ∤ 2n′ + 1, by

Lemma 4, for a sufficiently largem (in particular,m such thatφ(2n′+1)|m whereφ represents
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the Euler’s totient function), there exists an assignment of values toε such that the network

alignment conditions are satisfied. Hence, the theorem is proved.

APPENDIX H

PROOF OFLEMMA 5

Proof: If we assignε(−dmax) = ε(−dmax+1) = . . . = ε(n−1) = ε, Mij in (27) becomes a

circulant matrix. Since, the min-cut from source-i to sink-j is greater than or equal to1, by

Menger’s Theorem, there exists at least one link-disjoint directed path from source-i to sink-

j. Consider one such directed path consisting of linkse1, e2, .., et. Now, assign the values

α1,e1 = 1, βei,ei+1
= 1, for i = 1, 2, · · · , t− 1, ǫet,1 = 1 and assign values of0 to all the other

LECs. By such an assignment,Mij becomes a permuted identity matrix whose determinant is

non-zero. Hence, the determinant ofMij is a non-zero polynomial inε′.

APPENDIX I

PROOF OFTHEOREM 5

Proof: To exactly recoverX ′
1
n1 , X ′

2
n2 andX ′

3
n3 at T1, T2 andT3 respectively, it is sufficient

if the following network alignment conditions are satisfied.

Span(M31V3) ⊂ Span(M21V2) (63)

Span(M32V3) ⊂ Span(M12V1) (64)

Span(M23V2) ⊂ Span(M13V1) (65)

Rank[M11V1 M21V2] = n1 + n2

⇔ Rank[V1 M−1
11 M21V2] = n1 + n2 (66)

Rank[M22V2 M12V1] = n1 + n2

⇔ Rank[M−1
12 M22V2 V1] = n1 + n2 (67)

Rank[M33V3 M13V1] = n1 + n3

⇔ Rank[M−1
13 M33V3 V1] = n1 + n3 (68)

Note that (66)-(68) are also necessary conditions whereas (63)-(65) are necessary when(n1 +

n2) = (n1 + n3) = n (∵ n1 ≥ n2 ≥ n3). Clearly, (66) and (68) cannot be satisfied when(n1 +

n2) > n and (n1 + n3) > n respectively. Therefore,(n1 + n2) ≤ n.
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The choice ofV2 and V3 in (29) ensures that the conditions (64) and (65) are satisfied. To

satisfy (63), we have to ensure that

M31V3 = M21V2C

⇔ M−1
32 M12V1B = M−1

31 M21M
−1
23 M13V1AC

⇔ V1B = UV1AC (69)

is satisfied. In order to satisfy (69), every element ofUV1A must be equal to every element of

V1BC, i.e.,

gij = 0, for i = 1, 2, · · · , n, j = 1, 2, · · · , n3.

To ensure that (66) is satisfied, we require that at least one among f
(k)
1 , k = 1, 2, . . . ,

(

n

n1+n2

)

,

take a non-zero value after some assignment to the variablesand LECs. This necessitates that,

firstly, f (k)
1 should be a non-zero rational polynomial for somek. It can be easily seen that

f
(k)
1 is a non-zero rational polynomial for somek iff f1 =

(

1−
∏( n

n1+n2
)

k=1 (1 − δ
(k)
1 f

(k)
1 )

)

is a non-

zero rational polynomial. Similarly, from (67) and (68),f2 =

(

1−
∏( n

n1+n2
)

k=1 (1− δ
(k)
2 f

(k)
2 )

)

and

f3 =

(

1−
∏( n

n1+n3
)

k=1 (1 − δ
(k)
3 f

(k)
3 )

)

must be non-zero rational polynomials. Hence, to satisfy (66)-

(69) we need to find an assignment toV1, ε′, A, andB, such thatf 6= 0 and gij = 0, for

all (i, j). This means that there must exist an assignment such thatf (nr) 6= 0 and g
(nr)
ij = 0.

After the assignment to the variables, we require thatf (dr) 6= 0 and g
(dr)
ij 6= 0 as dividing by

zero is prohibited. In order to formulate this as an algebraic problem, introduce a new variable

δ and consider the polynomial
(

1− δf (nr)f (dr)
∏

(i,j) g
(dr)
ij

)

. From Weak Nullstellensatz [22],

an assignment toδ, V1, ε′, A, B, C, and δ
(k)
i , for all (i, k), exist such thatg(nr)ij = 0, for all

(i, j), and
(

1− δf (nr)f (dr)
∏

(i,j) g
(dr)
ij

)

= 0 iff 1 does not belong to the ideal generated by the

polynomialsg(nr)ij for all (i, j) and
(

1− δf (nr)f (dr)
∏

(i,j) g
(dr)
ij

)

.

APPENDIX J

PROOF OFTHEOREM 6

.

Proof: To exactly recoverX ′
1
n1 , X ′

2
n2 andX ′

3
n3 at T1, T2 andT3 respectively, it is sufficient
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if the following network alignment conditions are satisfied.

Span(M32V3) ⊂ Span(M12V1) (70)

Span(M23V2) ⊂ Span(M13V1) (71)

Rank[M11V1 M31V3] = n1 + n3

⇔ Rank[V1 M−1
11 M31V3] = n1 + n3 (72)

Rank[M22V2 M12V1] = n1 + n2

⇔ Rank[M−1
12 M22V2 V1] = n1 + n2 (73)

Rank[M33V3 M13V1] = n1 + n3

⇔ Rank[M−1
13 M33V3 V1] = n1 + n3 (74)

Note that (72)-(74) are also necessary conditions whereas (70) and (71) are necessary when

(n1 + n2) = (n1 + n3) = n. Clearly, (73) and (74) cannot be satisfied when(n1 + n2) > n and

(n1 + n3) > n respectively. Therefore,(n1 + n2) ≤ n.

It is easily seen that the choice ofV2 andV3, in (34), satisfy the conditions (70) and (71). If

(72)-(74) are satisfied then, the determinants of at least one of the(n1+n3)×(n1+n3) submatrices

of [M11V1 M31V3], (n1+n2)× (n1+n2) submatrices of[M−1
12 M22V2 V1], and(n1+n3)× (n1+n3)

submatrices of[M−1
13 M33V3 V1] will be non-zero rational polynomials. Letf be the product of

the numerators and denominators of these non-zero rationalpolynomials. Hence, by Lemma 1

in [3], for a sufficiently large field size, there exists an assignment of values toε and other

variables involved such that the network alignment conditions are satisfied. Hence, the theorem

is proved.

APPENDIX K

PROOF OFTHEOREM 8

.

Proof: If part: Using the precoding matrices given in (42), ifX ′
i(0) can be recovered from

Y
(0⊕k)
i for all i then, the determinants in (40) are non-zero polynomials in

(

ε1, · · · , ε2n′+1

)

for q = 0. Note that the transfer matricesMij (ε, α
q), for all q, in the 3-S 3-D MUN-D can

also be simulated as the ones obtained from its instantaneous network counterpart (i.e.,q = 0)
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by multiplying each of the LEC byαq. Suppose that one of the determinants in (40) is a zero-

polynomial for someq (i.e.,X ′
i(q) cannot be recovered fromY (q⊕k)

i for at least onei). Then, this

determinant is also a zero polynomial with
(

ε1, · · · , ε2n′+1

)

replaced by
(

ε1/α
q, · · · , ε2n′+1/α

q
)

where,εl/αq denotes each of the LECs multiplied by the inverse ofαq. But this contradicts the

fact that all the determinants in (40) are non-zero polynomials in
(

ε1, · · · , ε2n′+1

)

, in theq = 0

case. Hence, the determinants in (40) are non-zero polynomials for all q and all i. Using a

sufficiently large field size such thatk|2m − 1, by Lemma1 in [3], there exists an assignment

to
(

ε1, · · · , ε2n′+1

)

such that determinants in (40) are non-zero for allq.

Only-if part: Using the precoding matrices given in (42), ifX ′
i(q) can be recovered from

Y
(0⊕k)
i for all i and for someq 6= 0 then, the determinants in (40) are non-zero polynomials in
(

ε1, · · · , ε2n′+1

)

for someq = q′ 6= 0. Suppose that one of the determinants in (40) is a zero-

polynomial forq = 0 (i.e.,X ′
i(0) cannot be recovered fromY (0⊕k)

i for at least onei). Then, this

determinant is also a zero polynomial with
(

ε1, · · · , ε2n′+1

)

replaced by
(

ε1α
q′, · · · , ε2n′+1α

q′
)

where,εlαq′ denotes each of the LECs multiplied byαq′. But this contradicts the fact that all

the determinants in (40) are non-zero polynomials in theq = q′ case. Thus, the determinants in

(40) are non-zero polynomials forq = 0 and all i. Hence, using the “If part”, the determinants

in (40) are non-zero polynomials for allq and all i. Using a sufficiently large field size such

that k|2m − 1, by Lemma1 in [3], there exists an assignment to
(

ε1, · · · , ε2n′+1

)

such that

determinants in (40) are non-zero for allq.
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