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Abstract

This paper studies the impact of interactive fusion on detection performance in tandem fusion networks with
conditionally independent observations. Within the Neyman-Pearson framework, two distinct regimes are considered:
the fixed sample size test and the large sample test. For the former, it is established that interactive distributed detection
may strictly outperform the one-way tandem fusion structure. However, for the large sample regime, it is shown that
interactive fusion has no improvement on the asymptotic performance characterized by the Kullback-Leibler (KL)
distance compared with the simple one-way tandem fusion. The results are then extended to interactive fusion systems
where the fusion center and the sensor may undergo multiple steps of memoryless interactions or that involve multiple
peripheral sensors, as well as to interactive fusion with soft sensor outputs.

Index Terms

Decision theory, Distributed detection, Interactive fusion, Neyman-Pearson test, Kullback-Leibler distance.

I. INTRODUCTION

A simple tandem sensor network typically consists of two or more sensors, one of them serving as a
fusion center (FC) that makes a final decision using its own observation as well as input from the other
sensors. Practical constraints often dictate that the input from the other sensors is maximally compressed. The
extreme case is that the observation at each one of the other sensors is mapped to a single bit, often referred
to as a local decision. Distributed detection with such a tandem network has been relatively well understood
under the conditional independence assumption, i.e., the observations at distributed nodes are independent
conditioned on a given hypothesis. Specifically, it was known that the optimal local sensor decision rule is in
the form of a likelihood ratio test [1]. Fusion architecture, and in particular, the impact of communication
direction in a two sensor system was studied in [2]–[4].

This paper revisits this simple tandem distributed detection network by replacing the static message passing
(from the sensor node to the fusion node) with an interactive one: it is assumed that the FC may send an
initial bit to the local sensor based on the observation at the FC. The local sensor then makes a local decision
based on its own observation as well as the input from the FC before passing it back to the FC. In the most
general setting, as to be discussed in Section V, multiple rounds of interactions may occur, the interaction
may occur between the FC and multiple sensors, and soft (i.e., multi-bit) output may be exchanged. For
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Fig. 1. (a) One-way tandem fusion (YX process), (b) Interactive fusion (XYX process).

the most part, we limit ourselves to a single round of interaction between two sensors and we refer to this
communication protocol as the so-called interactive fusion. The contrast between the traditional one-way
tandem fusion network and the interactive fusion network is illustrated in Fig. 1.

Let x be the observation of sensor X and y be the observation of sensor Y. Then for a one-way tandem
network the decision variables (v, w) are based on x and y through dependencies of the form v = δ(y), w =

ρ(x, v), where δ and ρ are integer-valued mappings. Similarly, for the interactive model the decision processes
based on observations x and y yield outputs (u, v, w), where u = γ(x), v = δ(y, u), w = ρ(x, v), with
integer-valued mappings γ, δ, and ρ. For simplicity, we refer to the fusion architecture in Fig. 1(a) as the
YX process whereas to that in Fig. 1(b) as the XYX process. We assume, throughout this paper, that the
observations x and y are conditionally independent given any hypothesis under test.

This interactive fusion network has been studied under the Bayesian framework and was shown to improve
the error probability performance for fixed-sample size test [5]. A similar model was also used in [6] to study
the test of independence where the interaction is subject to a rate constraint. This interactive fusion model
is different from the traditional feedback setting considered in [8]–[10] where a global FC first receives
information from local sensors and sends a summary information back to the local sensors.

This paper focuses on the Neyman-Pearson (NP) framework and we address whether the additional input
from the FC would improve

1) the performance of the fixed sample size NP test;
2) the asymptotic performance, quantified using the Kullback-Leibler distance which is known to be the

error exponent of the type II error for an NP test, a.k.a., the Chernoff-Stein Lemma [7].

We show that while the answer to the first question is affirmative, interactive fusion does not improve
the asymptotic performance, i.e., the answer to the second question is negative. We note that in our setup
asymptotics is with respect to the number of independent samples taken over time while the number of sensors
remains fixed. Our setup is different from [9]–[12] where asymptotics is taken with respect to the number
of sensors. Preliminary results were reported in [13] where we considered strictly the simple two-sensor
system with single bit sensor output. In the present work, detailed proofs and analysis are given along with
extensions to more complicated fusion systems as described in Section V.

The analysis for the asymptotic case assumes sample-by-sample processing, i.e., scalar quantization is
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used at each stage. An alternative approach is to use vector quantization: samples are processed in blocks
with block length tending to infinity when warranted. Scalar quantization is chosen as it is much simpler to
implement than vector quantization and is much more amenable to analysis. Another important advantage
is that it incurs minimum delay as processing incurs zero delay for the first two stages in the interactive
scheme. For vector quantization, however, processing at each stage in the interactive fusion scheme is only
completed at the end of each block and such delays are cumulative among different stages. We note that
scalar quantization has been used before for asymptotic analysis in distributed detection [14].

Our presentation is organized as follows. Section II describes the procedure for obtaining decision rules
given a convex objective function. The obtained result in Proposition II.1 will be applied in subsequent
sections. We demonstrate in Section III that interactive fusion does improve performance of a fixed sample
size NP test. For the large sample regime, however, we show in Section IV that interactive fusion does
not improve detection performance as characterized using the error exponent. Generalizations of our result
to multiple-step memoryless interactive fusion, interactive fusion involving multiple sensors, and with soft
sensor outputs are included in Section V. Section VI contains concluding remarks.

Notation: In order to avoid clutter with symbols and obscuring of essential details, we use lower case
letters such as x, y, ... to denote both random variables and their values. For the same reasons, we use the
same symbol

∑
x to denote both summation, when x is a discrete variable, and integration, when x is a

continuous variable. Likewise, δxx′ denotes the Kronecker delta when x and x′ are discrete, and the Dirac
delta when x and x′ are continuous. Therefore, throughout we apply the familiar functional identity

∂f(x)/∂f(x′) = δxx′ ,

where x and x′ can be tuples of several discrete or continuous variables, for which we naturally define
δ(x1,...,xN )(x′1,...,x

′
N ) by

δ(x1,x2,··· ,xN )(x′1,x
′
2,··· ,x′N ) , δx1x′1

δx2x′2
· · · δxNx′N .

II. THE UNDERLYING DECISION THEORY

Consider the test of M simple hypotheses

Hi : x ∼ pi(x), i = 0, 1, ...,M − 1, (1)

where x ∈ X is the observation with distribution

pi(x) , p(x|Hi)

under the ith hypothesis Hi. Under Hi, we will denote the probability of a data set A ⊂ X by

Pi(A) =
∑
x∈A

pi(x).

The observation space X may be of arbitrary dimension. A decision rule is a mapping defined as

γ : x 7→ i ∈ {0, 1, ..., N − 1}, (2)

where γ is a deterministic function. We refer to the assignment γ(x) = i as a decision based on the
observation x. In this paper, without loss of generality, we assume that the decision output has the same
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alphabet as the underlying hypothesis; i.e., N = M . Thus, γ(x) = i can be interpreted as acceptance of the
ith hypothesis Hi.

The desired decision rule γ so defined is deterministic in the sense that p(γ(x) = i|x) = δi,γ(x), where
δa,b , 1 if a = b and 0 otherwise. Therefore, once x is given γ(x) is precisely known. As the optimum
decision rule is not necessarily deterministic, we consider the larger set containing all deterministic and
nondeterministic decision rules. Let us write the generic decision rule as

Γ : x 7→ i ∈ {0, 1, ...,M − 1}, (3)

and let u = Γ(x). Then Γ = γ denotes a deterministic choice of the decision rule. Recall as in [15] that the
set of Γ is the convex hull of the set of γ. Therefore

p(Γ(x) = i) =
∑
g

p(g) p
(
γg(x) = i

)
(4)

where g is a random variable with probability mass, or density, function p(g) and is independent of x. The
decision process simply picks the appropriate p(g), and hence the desired p(Γ(x) = i).

As u is a random variable, making an optimal guess u = i is equivalent to choosing p(u = i|x) such that
some objective function, which we denote by S, is optimized. Here S is a function of p(u = i|x) for all
i = 0, 1, ...,M − 1 and for all data points x ∈ X .

In general, 0 ≤ p(u = i|x) ≤ 1, i = 0, 1, ...,M − 1. A deterministic decision rule is one for which
p(u = i|x) takes on only the boundary values 0 and 1. For such cases, the decision rule is equivalently
expressed as a partition of the data space into disjoint decision regions, i.e.,

p(u = i|x) , p(γ(x) = i|x) = IRu=i
(x), (5)

where IRu=i
(x) = δi,γ(x) is the indicator function of the region Ru=i = {x : γ(x) = i}, i.e., the decision

region for the ith hypothesis.
In the following proposition, we establish the general structure of the optimal decision rule for an important

class of decision problems namely, those with convex objective functions.

Proposition II.1. Let x be a random variable or vector, and suppose the objective function S to be maximized
is a differentiable convex function of p(u|x) for any given x in the observation sample space X . For each i
suppose further that the set of data points

Cu=i =
⋃
j 6=i

{x : ∂S/∂popt(u = i|x) = ∂S/∂popt(u = j|x)} (6)

has zero probability measure, where

∂S/∂popt(u = j|x) = ∂S/∂p(u = j|x)|p(u=j|x)=popt(u=j|x).

Then the resulting optimal rule is deterministic, and is given by

popt(u = i|x) = IRu=i
(x), i = 0, 1, ...,M − 1, (7)

where the ith decision region Ru=i is specified as

Ru=i =
⋂
j 6=i

{x : ∂S/∂popt(u = i|x) > ∂S/∂popt(u = j|x)} . (8)
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Proof: We want to maximize S with respect to ~r(x) =
(
p(u = 0|x), ..., p(u = M − 1|x)

)
∈ [0, 1]M , with∑M−1

i=0 p(u = i|x) = 1 and p(u = i|x) ≥ 0 for i = 0, · · · ,M − 1, i.e., ~r(x) is a point on the M -dimensional
probability simplex

∆M(x) =

{
~r(x) =

(
p(u = 0|x), ..., p(u = M − 1|x)

)
:
M−1∑
i=0

p(u = i|x) = 1

}
.

If S is convex in ~r(x), then its maximum occurs at one or more corner points of ∆M(x), i.e., ~ropt(x) = ~ej
where ~ej = (0, ..., 0, 1︸︷︷︸

jth spot

, 0, ..., 0) for some j ∈ {0, ...,M − 1}. For each data point x ∈ X , and any given

point ~r(x) on the probability simplex ∆M(x), let ~ti(x) = ~ei − ~r(x). Then by geometry of the graph of S as
a differentiable convex function of ~r(x), we observe that

~ropt(x) = ~ei ⇐⇒ popt(u = i|x) = 1

⇐⇒ for all ~r(x) ∈ ∆M(x)\{~ei}, ~ti(x) · ∂S/∂~ropt(x) > 0,
(9)

and,
~ropt(x) 6= ~ei ⇐⇒ popt(u = i|x) = 0

⇐⇒ for some ~r(x) ∈ ∆M(x)\{~ei}, ~ti(x) · ∂S/∂~ropt(x) < 0,
(10)

where ∂S/∂~ropt = ∂S/∂~r
∣∣
~r=~ropt

, ~ti(x) · ∂S/∂~ropt(x) is the dot-product of the vectors ~ti(x) and ∂S/∂~ropt(x),
and A\B denotes the set difference, i.e., A\B = {a : a ∈ A and a /∈ B}.

The region defined by x satisfying popt(u = i|x) = 1 is

Ru=i =
{
x : ~ti(x) · ∂S/∂~ropt(x) > 0 for all ~r(x) ∈ ∆M(x)\{~ei}

}
(a)
= {x : ∂S/∂popt(u = i|x) > ∂S/∂popt(u = j|x) for all j 6= i}

=
⋂
j 6=i

{x : ∂S/∂popt(u = i|x) > ∂S/∂popt(u = j|x)} ,
(11)

which by (6) is measure-wise complementary to the region defined by x satisfying popt(u = i|x) = 0.
Therefore, equation (9) covers both cases, and is equivalent to the deterministic rule (7). Note that step (a) in
(11) is due to the following. For fixed i, let ∆

(i)
M−1(x) be the convex hull of {~ej : for all j 6= i}, which is

the face of ∆M(x) opposite to ~ei. Then the set of vectors{
~ti(x) = ~ei − ~r(x) : ~r(x) ∈ ∆

(i)
M−1(x)

}
is the convex hull of {~bj = ~ei − ~ej, for all j 6= i}, i.e., for each ~r(x) ∈ ∆

(i)
M−1(x), we can write ~ei − ~r(x) =∑

j 6=i αj(~ei − ~ej) for some nonnegative numbers αj ≥ 0 such that
∑

j αj = 1. Finally, for any point
~r(x) ∈ ∆M(x), we can write

~r(x)− ~ei =
(
λ~s(x) + (1− λ)~ei

)
− ~ei = λ

(
~s(x)− ~ei

)
for some λ ∈ [0, 1] and some ~s(x) ∈ ∆

(i)
M−1(x).

The above proposition will be used in Sections III and IV to determine optimal decision regions with the
probability of detection and KL distance as objective functions. Before proceeding to the next section, we
illustrate the key observations (9) and (10) in the proof of the proposition with the simple case of binary
decisions, followed by some remarks regarding applicability and possible extensions of the proposition.
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max
max

p(u = 1|x)

p(u = 0|x) p(u = 0|x)

p(u = 1|x)

~e1 = (0, 1)

~e0 = (1, 0)
~e0 = (1, 0)

~e1 = (0, 1)

(a) (b)

S S

Fig. 2. Visualization of the objective function S for M = 2: In case (a), x ∈ Ru=1, and in case (b), x ∈ Ru=0.

Consider the binary case, i.e. M = 2, in Fig. 2. We will verify in detail the equivalences (9) and (10)
for this special case, while noting that verification of the same equivalences for M > 2 follows by noticing
that the higher dimensional probability simplex ∆M(x) can be viewed as a collection of line segments, and
along the line segment from any point ~r(x) ∈ ∆M(x) to any one of the corner points {~ei} of ∆M(x), the
shape (of the graph) of the objective function S is similar to its shape along ∆2(x). This similarity in shape
is due to the fact that a function is convex if and only if it is convex along each line segment through its
domain. For the convex function S depicted in Fig. 2, it is apparent that in case (a) the optimum occurs at
~ropt = ~e1 = (0, 1), and in case (b) the optimum occurs at ~ropt = ~e0 = (1, 0). Let ~ti(x) = ~ei − ~r(x), i = 1, 0,
and

∆2(x) =
{(
p(u = 0|x), p(u = 1|x)

)
: p(u = 0|x) + p(u = 1|x) = 1

}
.

For a given x ∈ X , suppose that we have the situation in Fig. 2(a), i.e., ~ropt(x) = ~e1. It is straightforward
to check that for all ~r(x) ∈ ∆2(x)\{~e1}, the projection (~e1 − ~r(x)) · ∂S/∂~r(x)

∣∣
~r(x)=~e1

of the slope
∂S/∂~r(x)

∣∣
~r(x)=~e1

along the direction ~e1 − ~r(x) is positive. However, since only the direction of the vector
~e1 − ~r(x) is relevant, it suffices to consider only the point ~r(x) = ~e0 = (1, 0), in which case we have that

(~e1 − ~e0) ·
∂S

∂~r(x)

∣∣
~r(x)=~e1

=
∂S

∂p(u = 1|x)

∣∣
p(u=1|x)=1

− ∂S

∂p(u = 0|x)

∣∣
p(u=0|x)=0

=
∂S

∂p(u = 1|x)

∣∣
p(u=1|x)=popt(u=1|x) −

∂S

∂p(u = 0|x)

∣∣
p(u=0|x)=popt(u=0|x)

> 0, ⇒ x ∈ Ru=1.

This explains the forward implication⇒ in equivalence (9). The reverse implication⇐ in the same equivalence
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is also true for the following reason. Suppose(
~e1 − ~r(x)

)
· ∂S

∂~ropt(x)
> 0 for each ~r(x) ∈ ∆2(x)\{~e1}. (12)

By convexity of S, for any α ∈ (0, 1),

S
(
α~r(x) + (1− α)~ropt(x)

)
≤ αS

(
~r(x)

)
+ (1− α)S

(
~ropt(x)

)
,

which in the limit α→ 0 implies(
~ropt(x)− ~r(x)

)
· ∂S

∂~ropt(x)
≥ S

(
~ropt(x)

)
− S

(
~r(x)

)
. (13)

With ~ropt(x) = ~e1, the above inequality (13) is consistent with (12), i.e., the LHS of (13) has a consistently
nonnegative sign. However, the same is not true with ~ropt(x) = ~e0, which completes the verification of the
reverse implication ⇐ in (9). Noting that statement (10) is simply the negation of statement (9) up to the
zero probability data sets (6), the complementary picture in Fig. 2(b) explains the complementary equivalence
(10) in the same way.

Remarks.
1) The binary decision rule can be simplified further. In this case, the probability simplex ∆2(x) is the

single line with equation p(u = 0|x) + p(u = 1|x) = 1. Thus by the chain rule of differentiation, the
differential operator ~ti(x) · ∂/∂~ropt(x) along ∆2(x) is equivalent to a derivative, which we denote by
∂B/∂popt(u = i|x), with the property

∂Bp(u|x)/∂p(u′|x′) = (−1)u−u
′
δxx′ (14)

in addition to linearity and the Leibnitz rule. Hence the binary decision regions take the compact form

Ru=i =
{
x : ∂BS/∂popt(u = i|x) > 0

}
, (15)

where the superscript B in ∂B serves as a reminder to the reader of the property (14) which ensures
that the derivative is restricted to the probability simplex ∆2(x). The compact form of the binary
decision rule as implemented by (14) and (15) will greatly simplify calculations later on.

2) Notice that (7) is an implicit equation in popt(u = i|x) since the region Ru=i also depends on
popt(u = i|x). Therefore we must proceed to substitute the equations

{popt(u = i|x) = IRu=i
(x) : i = 0, 1, ...,M − 1}

into the objective function S, and then compute the optimal threshold values that explicitly determine
the decision regions. In the case of distributed networks of sensors where more than one set of local
decision rules are involved, the resulting system of equations is often analytically intractable and one
has to resort to numerical computation.

3) Recall that the set of data points satisfying (6) must be null with respect to the probability measure.
Otherwise, the deterministic rule (7) is replaced by a randomized version

popt(u = i|x) = IRu=i
(x) +

∑
k

ρikICk(x), (16)

where {Ck} is a partition of the set
⋃
iCu=i and ρik ∈ [0, 1],

∑
i ρik = 1, are arbitrary (i.e., free)

coefficients but which must be consistent with all the constraints of the optimization problem. It is
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worthwhile to remark that the deterministic rule (7) is more easily realized when x is continuous than
when x is discrete. Thus, the randomized rule (16) is often required when x is a discrete random
variable.

4) Since the Bayes risk is an affine (hence convex/concave) function of p(u|x), Proposition II.1 is a
direct generalization of the familiar procedure whereby the unconditional Bayes risk

R(γ) =
∑
i,j

Cijp(γ(x) = i,Hj) =
∑
i,x

p(γ(x) = i|x)Ri(x), (17)

is minimized over γ simply by separately minimizing the associated conditional Bayes risks Ri(x) =∑
j Cijp(x|Hj)p(Hj) over i by means of the choice

p(γ(x) = i|x) =

{
1, Ri(x) < Rj(x) for all j 6= i,

0, otherwise,

where we have assumed for simplicity that P
(
Ri(x) = Rj(x)

)
= 0 for all i and j 6= i. Note that

our method of optimization is different from the optimal control theoretical approach considered in
[16]. Using standard methods of convex optimization, Proposition II.1 can be further extended to
include non-differentiable convex objective functions by replacing the derivative ∂S/∂p(u = i|x) with
a subdifferential.

For ease of presentation, we consider the case of M = 2 in Sections III and IV, i.e., binary hypotheses
with binary sensor output. For the same reason, we will consider only cases where the optimal decision rule
is deterministic as stated in Proposition II.1. Generalizations to that of multi-level sensor outputs as well as
to systems involving multiple sensors will be described in Section V.

III. THE FIXED SAMPLE SIZE NEYMAN-PEARSON TEST

We will now consider an NP test with observations that can be of arbitrary but fixed dimension, i.e., the
test is a fixed sample size NP test. From Fig. 1(a) the decisions (v, w) for the YX process are based on the
observations (x, y), which satisfy the conditional independence relation pi(x, y) = pi(x)pi(y). Similarly
Fig. 1(b) describes the XYX process with decisions (u, v, w).

Since we have more than one decision in a decentralized sensor network, we also have more than one
optimization variable. Thus, to apply Proposition II.1 to the YX process for example, we must first replace
p(u|x) by the variables p(v|y) and p(w|x, v). We then optimize the objective function by separately applying
Proposition II.1 to each variable (whilst the other variables are held constant) to obtain the system of
deterministic decision rules

popt(v = 1|y) = IRv=1(y), (18)

popt(w = 1|x, v) = IRw=1|v(x), (19)

which is a coupled system of equations at the overall optimal point
(
popt(v|y), popt(w|x, v)

)
. By Proposition

II.1, if the deterministic decision rules (18) and (19) are based on a convex objective function S, then

Rv=1 =
{
y : ∂BS/∂popt(v = 1|y) > 0

}
,

Rw=1|v =
{
x : ∂BS/∂popt(w = 1|x, v) > 0

}
.
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We will use the above optimization technique for all problems in this section and in subsequent sections.
At this point, we would like to remark that using this optimization technique, the decision/fusion rules that
underly the work of Zhu et al in [17], [18] readily follow from Proposition II.1.

The objective for the NP test is the maximization of the probability of detection whilst the probability of
false alarm must not exceed a certain fixed value α:

maximize Pd = p1(w = 1)

subject to Pf = p0(w = 1) ≤ α (20)

The Lagrangian for this optimization problem is given by

L = p1(w = 1) + λ
(
α− p0(w = 1)

)
, λ ≥ 0. (21)

For the YX process, L is a function of λ, p(v|y), and p(w|x, v), and

pi(w) =
∑
x,y,v

p(w|x, v)p(v|y) pi(x)pi(y), (22)

while for the XYX process, L is a function of λ, p(u|x), p(v|y, u), and p(w|x, v), and

pi(w) =
∑
x,v,y,u

p(w|x, v)p(v|y, u)p(u|x) pi(x)pi(y). (23)

Furthermore, for the YX process, we need to minimize L over λ in the dual problem, or we can equivalently
solve p0(w = 1) = α for λ(α) since p1(w = 1) and p0(w = 1) are linear and have the same monotonicity
properties as functions of p(w = 1|x, v) and p(v = 1|y). Similarly for the XYX process, we need to minimize
L over λ in the dual problem, or we can equivalently solve p0(w = 1) = α for λ(α) since p1(w = 1) and
p0(w = 1) are linear and have the same monotonicity properties as functions of p(w = 1|x, v), p(v = 1|y, u),
and p(u = 1|x).

The fact that the XYX process performs at least as well as the YX process is trivial: any detection
performance achieved by a YX process can be achieved by an XYX process that simply ignores the first
decision variable u. It remains to show that there are cases where the involvement of the initial decision
variable u, i.e., the interactive fusion, strictly improves upon the one-way tandem fusion.

Notice that the Lagrangian (21) has essentially the same form as a Bayes risk function such as the
probability of error used in [5], the only difference being the presence of the Lagrange multiplier λ as a new
optimization variable.

Theorem III.1. The NP test with objective given by (21) has the following decision regions. For the YX
process, we have

Rv=1 =

{
y :

p1(y)

p0(y)
> λ(2)

}
, Rw=1|v =

{
x :

p1(x)

p0(x)
> λ(3)v

}
, (24)

where λ(2) = λ
P0(Rw=1|v=1)−P0(Rw=1|v=0)

P1(Rw=1|v=1)−P1(Rw=1|v=0)
and λ(3)v = λ P0(Rv)

P1(Rv)
. For the XYX process, we have

Ru=1 =

{
x :

p1(x)

p0(x)
Q(x) > λ(1)Q(x)

}
,

Rv=1|u =

{
y :

p1(y)

p0(y)
> λ(2)u

}
,

Rw=1|v =

{
x :

p1(x)

p0(x)
>
∑
u

λ(3)vu IRu(x)

}
,

(25)
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where λ(1) = λ
P0(Rv=1|u=1)−P0(Rv=1|u=0)

P1(Rv=1|u=1)−P1(Rv=1|u=0)
, Q(x) = IRw=1|v=1

(x)− IRw=1|v=0
(x),

λ
(2)
u = λ

P0(Rw=1|v=1∩Ru)−P0(Rw=1|v=0∩Ru)
P1(Rw=1|v=1∩Ru)−P1(Rw=1|v=0∩Ru)

, and λ(3)vu = λ
P0(Rv|u)

P1(Rv|u)
.

Proof: See APPENDIX A.

Remarks.
5) Note that the compact form of the decision rules in Theorem III.1 includes the case in which the

denominator of λ(1), λ(2), or λ(2)u approaches zero, i.e., infinite threshold values are not meaningless. In
other words, the decision rules as stated in Theorem III.1 incur no inconsistency or loss of generality
as long as the thresholds are allowed to take infinitely large values (e.g., when a threshold denominator
approaches zero). There are indeed cases where the objective function (as a function of the thresholds)
attains its optimum only when one or more of these thresholds approach infinity. This corresponds to
the degenerate decision regions where the decision is independent of the observation (i.e., the output of
the decision rule is a constant). Alternatively, one can circumvent the issue of diminishing denominator
by rewriting the decision rule in a less compact form; The way to do this explicitly is apparent from
the intermediate steps in the proof of the theorem in APPENDIX A. The above remarks will apply to
the asymptotic test as well.

6) While it is apparent that for the YX process, both decision rules amount to a LRT, the same is not true
for the XYX process. This is because of the dependence introduced in the interactive fusion scheme:
while the observations x and y are themselves conditionally independent, the two step interaction
introduces conditional dependence between x and v due to the initial input u from X to Y. The situation
here is similar to that found in [5] as well as for the “Unlucky Broker Problem” of [19], [20], where
the observations are conditionally independent but the decision rules are not determined by simple
likelihood ratio tests.

The Lagrangian in (21) can be equivalently expressed in terms of the obtained decision regions in Theorem
III.1, i.e.,

L =
∑
v

P1(Rv)P1(Rw=1|v) + λ

[
α−

∑
v

P0(Rv)P0(Rw=1|v)

]
(26)

for the YX Process, and

L =
∑
u,v

P1(Rv|u)P1(Rw=1|v ∩Ru) + λ

[
α−

∑
u,v

P0(Rv|u)P0(Rw=1|v ∩Ru)

]
for the XYX Process.

A. Example: Constant Signal in White Gaussian Noise

We now use a simple example to show that the XYX process can strictly outperform the YX process for
fixed sample NP test. Consider the detection of a constant signal s in white Gaussian noise with observations

x = s+ z1, y = s+ z2, (27)

where z1 ∼ N(0, σ2
x), z2 ∼ N(0, σ2

y) and z1 and z2 are independent of each other, and the two hypotheses
under test are

H0 : s = 0, H1 : s = 1.
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After simplifying assumptions for the XYX process (see APPENDIX B), the decision regions for this example
take the following simple forms. For YX,

Rv=1 =
{
y > t(2) = σ2

y log λ(2) + 1/2
}
,

Rw=1|v =
{
x > t(3)v = σ2

x log λ(3)v + 1/2
}
,

and for XYX,
Ru=1 =

{
x > t(1) = σ2

x log λ(1) + 1/2
}
,

Rv=1|u =
{
y > t(2)u = σ2

y log λ(2)u + 1/2
}
,

Rw=1|v =
⋃
u

Rw=1|v,u,

Rw=1|v,u =
{
x > t(3)vu = σ2

x log λ(3)vu + 1/2
}
,

where the thresholds (i.e., the λ’s) are as in (24) and (25), and we have assumed for simplicity that each
sensor’s observation consists of only one real sample, i.e., x, y ∈ R = X = Y . Fig. 3 shows the dependence
of the probability of detection on σx when σy is fixed. The corresponding false alarm probability Pf = 0.2.
Thus, the XYX process has strictly larger probability of detection compared with the YX process.

The curve corresponding to centralized fusion in Fig. 3 is obtained by repeating the same optimization
procedure using (20) and (21), but with the probability of the centralized decision w = ρ(x, y) given by
pi(w = 1) =

∑
x,y p(w = 1|x, y)pi(x, y). Here, the decision rule p(w = 1|x, y) = IRw=1(x, y), the constant

false alarm probability constraint α = p0(w = 1), and the detection probability Pd = p1(w = 1) can be easily
written as

Rw=1 =

{
(x, y) :

x

σ2
x

+
y

σ2
y

> t = lnλ+
1

2σ2
x

+
1

2σ2
y

}
,

α =

∫ ∞
−∞

Q

(
σyt−

σy
σx

x

σx

)
e
− x2

2σ2
x√

2πσ2
x

dx,

Pd =

∫ ∞
−∞

Q

(
σyt−

σy
σx

x

σx
− 1

σy

)
e
− (x−1)2

2σ2
x√

2πσ2
x

dx,

where the threshold t as a function of α is obtained by solving the constant false alarm probability constraint.

IV. THE ASYMPTOTIC NEYMAN-PEARSON TEST

Let us consider n observation samples (x1, y1), ..., (xn, yn), and suppose processing is carried out on a
sample-by-sample basis. Using the XYX process as an illustration, the two sensors go through, for each
k = 1, · · · , n, a decision process with uk = γk(xk), vk = δk(yk, uk). The final decision at node X utilizes
the entire observation sequence xn and the output sequence vn from node Y, i.e., w = ρ(xn, vn). We have,
therefore,

pi(w) =
∑
xn,vn

p(w|xn, vn)pi(x
n, vn),

where p(w|xn, vn) is determined by the final decision rule.
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Fig. 3. Performance of XYX and YX processes: These graphs were generated via numerical iteration following the analysis carried out in
Section III and Appendix B.

Using Proposition II.1 we obtain the decision region for w as

Rw=1 = arg max
R⊂Xn×{0,1}n,

p0(R)≤α

p1(R) =

{
(xn, vn) :

p1(x
n, vn)

p0(xn, vn)
> λ

}
, (28)

where λ is the Lagrange multiplier as in (21). We could proceed by Proposition II.1 to find decision regions
for vn.

However, we are interested mainly in the asymptotic detection performance, i.e., when n grows large.
We emphasize here that the processing at node Y is memoryless, i.e., vk is only a function of the current
observation yk. As such, given that yk is an i.i.d. sequence and that the decision rule γ(·) for each k is
identical, the pairs (xk, vk) form an i.i.d. sequence. Recall that by the weak law of large numbers, under H0,

1

n
log

p0(x
n, vn)

p1(xn, vn)
=

1

n

n∑
k=1

log
p0(xk, vk)

p1(xk, vk)

n→∞−→ Ep0(x,v) log
p0(x, v)

p1(x, v)
= D(p0(x, v)‖p1(x, v)),

where v = δ(y, u), u = γ(x). By the Chernoff-Stein Lemma, [7], the test with acceptance region for H0

Rn
ε (p0|p1) =

{
(xn, vn) : D(p0‖p1)− ε ≤

1

n
log

p0(x
n, vn)

p1(xn, vn)
≤ D(p0‖p1) + ε

}
,

is asymptotically optimal, with error exponent

− lim
n→∞

1

n
log p1

(
(xn, vn) ∈ Rn

ε (p0|p1)
)

= D(p0(x, v)‖p1(x, v)), (29)

which is the KL distance that we will now use as our objective function for the asymptotic performance of
the NP test.
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We show in the following that with the KL distance as objective, interactive fusion provides no improvement
over one-way tandem fusion. Therefore, for large sample size n→∞, interactive fusion does not perform
better than one-way tandem fusion.

A. One-way tandem fusion (YX process)

In the one-way tandem fusion network, as illustrated in Fig. 1(a), Y makes a decision v = δ(y) and passes
v to X. The optimal decision v is chosen so as to maximize the KL distance

K[x, v] = D
(
p0(x, v)‖p1(x, v)

)
(30)

at sensor X.
Since pi(x, v) = pi(x)pi(v), we have

K[x, v] = D
(
p0(x)‖p1(x)

)
+
∑
v

p0(v) log
(
p0(v)/p1(v)

)
(31)

where pi(v) =
∑

y p(v|y)pi(y).

Theorem IV.1. The optimal decision region at Y is given by

Rv=1 =

{
y :

p1(y)

p0(y)
> λ

}
, (32)

λ =

(
log

β(1− α)

α(1− β)

)/(
β − α
β(1− β)

)
, (33)

where α = P0 (p1(y)/p0(y) > λ) and β = P1 (p1(y)/p0(y) > λ) . Thus α, β, and λ are coupled with each
other.

Proof: The key observation is that the KL distance (31) is differentiable and convex in p(v|y). This follows
because the KL distance is jointly convex in

(
p0(v), p1(v)

)
while p0(v) and p1(v) are each affine functions

of p(v|y). Thus Proposition II.1 applies. In addition, because of the constraint p(v = 1|y) + p(v = 0|y) = 1,
the derivative of K[x, v] , KYX requires the differentiation rule

∂Bp(v|y)/∂p(v′|y′) = (−1)v−v
′
δyy′ , (34)

which holds for binary decisions. It remains only to evaluate the derivative of K[x, v], which we do in the
following.

∂BK[x, v]

∂p(v = 1|y)
=

∂B

∂p(v = 1|y)

[∑
v

∑
y′

p(v|y′)p0(y′) log

∑
y′ p(v|y′)p0(y′)∑
y′ p(v|y′)p1(y′)

]
(a)
=
∑
v

∑
y′

(−1)v−1δyy′p0(y
′) log

p0(v)

p1(v)
+
∑
v

p0(v)

[∑
y′(−1)v−1δyy′p0(y

′)

p0(v)
−
∑

y′(−1)v−1δyy′p1(y
′)

p1(v)

]
(b)
= p0(y)

∑
v

(−1)v−1 log
p0(v)

p1(v)
− p1(y)

∑
v

(−1)v−1
p0(v)

p1(v)

(c)
= −p0(y) log

p1(v = 1)[1− p0(v = 1)]

p0(v = 1)[1− p1(v = 1)]
+ p1(y)

p1(v = 1)− p0(v = 1)

p1(v = 1)[1− p1(v = 1)]

(d)
= −p0(y) log

β(1− α)

α(1− β)
+ p1(y)

β − α
β(1− β)

.
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Step (a) follows by the chain rule of differentiation and (34). The last but one term at step (a) is zero,
leading to the simplification at step (b). It is already apparent at this stage that we have a likelihood ratio
test. Step (c) is obtained after summing over v and carrying out some elementary rearrangements. Finally, at
step (d) we make the substitution α = p0(v = 1) which is equal to P0(Rv=1),P0 (p1(y)/p0(y) > λ), and
similarly β = p1(v = 1), which is equal to P1(Rv=1),P1 (p1(y)/p0(y) > λ). On application of Proposition
II.1, the condition ∂K[x, v]/∂popt(v = 1) > 0 leads directly to (32) and (33).

Notice that the decision region defined in (32) and the threshold of the likelihood ratio of y given in (33)
are coupled with each other. Iterative process is thus needed for finding the optimal λ and the associated α
and β. An alternative is to directly obtain the optimal values for the thresholds as those that optimize the
objective as a function of the thresholds, which typically involves exhaustive search but is immune to the
issue of local optimum.

The maximum KL distance is given by

KYX
max = K[x] + α∗ log

α∗

β∗
+ (1− α∗) log

1− α∗

1− β∗
, (35)

where K[x] = D(p0(x)‖p1(x)) and α∗ and β∗ are the values of α and β that maximize the KL distance.
We now revisit the hypothesis test described in (27). By Theorem IV.1, the optimal decision region at Y

is Rv=1 =
{
y : y > t = σ2

y log λ(t) + 1
2

}
, where

λ(t) =

log
Q
(
t−1
σy

)(
1−Q

(
t
σy

))
Q
(

t
σy

)(
1−Q

(
t−1
σy

))
/ Q

(
t−1
σy

)
−Q

(
t
σy

)
Q
(
t−1
σy

)(
1−Q

(
t−1
σy

))
 .

The corresponding maximum KL distance is

Kmax[x, v] =
1

2σ2
x

+Q

(
t∗

σy

)
log

Q
(
t∗

σy

)
Q
(
t∗−1
σy

) +

(
1−Q

(
t∗

σy

))
log

1−Q
(
t∗

σy

)
1−Q

(
t∗−1
σy

) ,
where t∗ is the threshold that maximizes the KL distance. While the decision is still in the (equivalent) form
of an LRT, this threshold is different from that of the fixed sample size test.

B. Interactive fusion (XYX process)

For interactive fusion illustrated in Fig. 1(b), X makes a decision u = γ(x) and passes u onto Y. Y further
makes a decision v = δ(y, u) and sends it back to X. The optimal decisions u and v are chosen so as to
maximize the KL distance K[x, v],KXYX in the final step at X. The KL distance can be written as

KXYX = D
(
p0(x, v)‖p1(x, v)

)
= D

(
p0(x)‖p1(x)

)
+
∑
x

p0(x)
∑
v

p0(v|x) log
p0(v|x)

p1(v|x)
, (36)

where pi(v|x) =
∑

u p(u|x)
∑

y p(v|y, u)pi(y). Different from the YX process, v is now conditionally
dependent of X as v takes u = γ(x) as its input.

Theorem IV.2. For the XYX process, the optimal decision region at sensor X is given by

Ru=1 = {x :
∑

u IRu(x)AuBu > 0} , (37)

Au = β
(2)
u −α

(2)
u

β
(2)
u (1−β(2)

u )
, Bu =

β
(2)
1 −β

(2)
0

α
(2)
1 −α

(2)
0

− λ(2)u , (38)
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and the optimal decision regions at sensor Y are given by

Rv=1|u =

{
y : p1(y)

p0(y)
> λ

(2)
u

}
, (39)

λ
(2)
u =

(
log β

(2)
u (1−α(2)

u )

α
(2)
u (1−β(2)

u )

)/(
β

(2)
u −α

(2)
u

β
(2)
u (1−β(2)

u )

)
, (40)

where α
(2)
u = P0(Rv=1|u), and β(2)

u = P1(Rv=1|u).

The proof requires the following lemma whose proof follows immediately from the properties of a partition
of a given set.

Lemma IV.1. Let {Ri : i = 1, ...,m} be any partition of the data space X . Then for any continuous
multivariate function f , and for each x ∈ X ,

f

(
m∑
i=1

IRi(x)ai1,
m∑
i=1

IRi(x)ai2, ...

)
=

m∑
i=1

IRi(x) f
(
ai1, ai2, ...

)
, (41)

where aij for all i and j are numbers.

Proof of Theorem IV.2: The KL distance (36) is differentiable and convex in p(v|y, u) and p(u|x),
and thus Proposition II.1 applies. With this observation, we only need to evaluate the derivatives of the KL
distance with respect to p(v = 1|y, u) and p(u = 1|x).

For the region Ru=1 at sensor X , we have

∂BK[x, v]

∂p(u = 1|x)
=

∂B

∂p(u = 1|x)

[∑
x′

p0(x
′)
∑
v

p0(v|x′) log
p0(v|x′)
p1(v|x′)

]

(a)
=
∑
x′,v

p0(x
′)

 ∂Bp0(v|x′)
∂p(u = 1|x)

log
p0(v|x′)
p1(v|x′)

+ p0(v|x′)

 ∂Bp0(v|x′)
∂p(u=1|x)

p0(v|x′)
−

∂Bp1(v|x′)
∂p(u=1|x)

p1(v|x′)


(b)
=
∑
x′,v,u

p0(x
′)(−1)u−1δxx′

(
P0(Rv|u) log

p0(v|x′)
p1(v|x′)

+ p0(v|x′)
[
P0(Rv|u)

p0(v|x′)
−
P1(Rv|u)

p1(v|x′)

])
(c)
= p0(x)

∑
v,u

(−1)u−1
(
P0(Rv|u) log

p0(v|x)
p1(v|x)

− P1(Rv|u)
p0(v|x)
p1(v|x)

)
(d)
= p0(x)

∑
v,u′

(−1)u
′−1
(
P0(Rv|u′) log

∑
u IRu

(x)P0(Rv|u)∑
u IRu

(x)P1(Rv|u)
− P1(Rv|u′)

∑
u IRu

(x)P0(Rv|u)∑
u IRu

(x)P1(Rv|u)

)
(e)
= p0(x)

∑
v,u

IRu
(x)

(∑
u′

(−1)u
′−1P0(Rv|u′) log

P0(Rv|u)

P1(Rv|u)
−
∑
u′

(−1)u
′−1P1(Rv|u′)

P0(Rv|u)

P1(Rv|u)

)
.

(a) is from the chain rule for differentiation, (b) is due to the differentiation rule (34), the last but one term at
step (b) is zero - leading to (c), (d) is expansion by chain rule for probabilities showing dependence on the
indicator functions of the decision regions (due to (5)) and finally, (e) follows from (d) by the identity (41).

Thus we obtain the region given by (37). Similarly, for the regions Rv=1|u in (39), the same steps as above
apply as follows.
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∂BK[x, v]

∂p(v = 1|y, u)
=

∂B

∂p(v = 1|y, u)

[∑
x

p0(x)
∑
v

p0(v|x) log
p0(v|x)
p1(v|x)

]

(a)
=
∑
x

p0(x)
∑
v

 ∂Bp0(v|x)
∂p(v = 1|y, u)

log
p0(v|x)
p1(v|x)

+ p0(v|x)

 ∂Bp0(v|x)
∂p(v=1|y,u)

p0(v|x)
−

∂Bp1(v|x)
∂p(v=1|y,u)

p1(v|x)


(b)
=
∑
x

p0(x)p(u|x)
∑
v

(−1)v−1
(
p0(y) log

p0(v|x)
p1(v|x)

+ p0(v|x)
[
p0(y)

p0(v|x)
− p1(y)

p1(v|x)

])
(c)
=
∑
x

p0(x)p(u|x)
∑
v

(−1)v−1
(
p0(y) log

p0(v|x)
p1(v|x)

− p1(y)
p0(v|x)
p1(v|x)

)
(d)
=
∑
x

p0(x)IRu
(x)
∑
v

(−1)v−1
(
p0(y) log

∑
u′ IRu′ (x)P0(Rv|u′)∑
u′ IRu′ (x)P1(Rv|u′)

− p1(y)
∑

u′ IRu′ (x)P0(Rv|u′)∑
u′ IRu′ (x)P1(Rv|u′)

)

=
∑
x

p0(x)IRu
(x)
∑
u′

IRu′ (x)
∑
v

(−1)v−1
(
p0(y) log

P0(Rv|u′)

P1(Rv|u′)
− p1(y)

P0(Rv|u′)

P1(Rv|u′)

)
(e)
=
∑
x

p0(x)IRu(x)
∑
v

(−1)v−1
(
p0(y) log

P0(Rv|u)

P1(Rv|u)
− p1(y)

P0(Rv|u)

P1(Rv|u)

)

= P0(Ru)

[
p0(y)

∑
v

(−1)v−1 log
P0(Rv|u)

P1(Rv|u)
− p1(y)

∑
v

(−1)v−1
P0(Rv|u)

P1(Rv|u)

]

= P0(Ru)

[
−p0(y) log

β
(2)
u (1− α(2)

u )

α
(2)
u (1− β(2)

u )
+ p1(y)

β
(2)
u − α(2)

u

β
(2)
u (1− β(2)

u )

]
.

Thus we obtain likelihood ratio tests at Y .
Using (41), the KL distance (36) can be expressed as

KXYX = K[x] +
∑
u,v

P0(Ru) P0(Rv|u) log
P0(Rv|u)

P1(Rv|u)

= K[x] + α(1)f(α
(2)
1 , β

(2)
1 ) + (1− α(1))f(α

(2)
0 , β

(2)
0 ),

(42)

where K[x] = D(p0(x)‖p1(x)), α(1) is a constant independent of the thresholds, and

f(α, β) = α log
α

β
+ (1− α) log

1− α
1− β

. (43)

Thus we have the following theorem.

Proposition IV.1. The YX and XYX processes achieve identical K[x, v]. That is,

KYX
max = KXYX

max. (44)

Proof: The KL distances achieved by the two fusion systems, KYX from (35) and KXYX from (42), are
respectively

KYX = K[x] + f(α, β) (45)

KXYX = K[x] + α(1)f(α
(2)
1 , β

(2)
1 ) + (1− α(1))f(α

(2)
0 , β

(2)
0 ), (46)

where the function f(α, β) is defined in (43).
Let α∗ and β∗ be the optimal values that maximize f(α, β) in KYX. Comparing (32)-(33) and (39)-(40), it

is apparent that the same α∗ and β∗ also maximize both f(α
(2)
1 , β

(2)
1 ) and f(α

(2)
0 , β

(2)
0 ) in KXYX. This is so
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Fig. 4. Comparison of KL distances of one-way tandem fusion and interactive fusion with different communication directions. For this plot, we
fix σy = 1 throughout while varying σx.

since for each value of u, the threshold dependence of the LRT using y is identical to that used in the YX
process. Thus, the optimal decision on v at Y for the XYX process simply ignores the input from u, leading
to identical LRTs for both values of u.

Proposition IV.1 holds for any probability distribution. The results for the constant signal in WGN under
hypotheses (27) are shown in Fig. 4, where the KL distances of YX and XYX processes coincide with each
other. Also plotted are the KL distances of XY and YXY that also coincide with each other. An interesting
observation from the plot is that the two sets of curves, each corresponding to making final decision at
different nodes, intercept each other at the point when σx = σy = 1. Thus for this example, it is always
better to make the final decision at the sensor with better signal to noise ratio.

V. GENERALIZATIONS

We have shown that while interactive fusion may strictly improve the detection performance of fixed
sample size NP test, there is no advantage for the large sample test as the one-way fusion achieves exactly
the same error exponent. The result was derived under a two-sensor system model with a single round of
interaction and 1-bit sensor output. We now generalize the result to more realistic settings that may involve
multiple round of iterations involving multiple sensors and soft (i.e., multi-bit) sensor output.

A. Multiple-step memoryless interactive fusion (MIF)

In multiple round interactive fusion, sensors exchange 1-bit information iteratively in N > 3 steps. It is
not difficult to show that this multiple round interactive fusion may strictly improve that of the one-way
tandem fusion in its asymptotic performance, i.e., it achieves a higher KL distance compared with that of the
one-way tandem fusion. We note that an N -round interactive fusion should perform at least as well as that
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u2 = Γ2(y, u1)

u3 = Γ3(x, u2)

X Y

p(x, y|Hi)

u1 = Γ1(x)

y

X Y

p(x, y|Hi)

(a) (b)

u1 = Γ1(x)

u2 = Γ2(y, u1)

u4 = Γ4(y, u3)

u5 = Γ5(x, u4)

x y
x

u3 = Γ3(x, u2)

Fig. 5. Sample MIF processes: (a) N = 3 MIF (XYX process), and (b) N = 5 MIF (XYXYX process).

of one-way fusion where the output from sensor Y has N bits. It is apparent that a one-way tandem fusion
with N bits may strictly outperform that with a single bit. Indeed, for N large enough, the performance will
approach that of the centralized detection.

However, there might be situations where the multiple round interactive fusion may proceed in a memoryless
fashion, which we refer to as memoryless interactive fusion (MIF). That is, the sensor output depends only
on the previous input from the other sensor as well as its own observation. We show that for this memoryless
processing model, multiple-step interactive fusion has no advantage in its asymptotic detection performance
over the one-way tandem fusion.

We begin with the expansion of the probability pi(uN) = p(uN |Hi) of the final decision uN . Denote any
sequence s1, ..., sN by sN . Let uN be the sequence of decisions in the MIF process XYXY· · ·YX involving
two independent sensors X and Y, and let

zN ≡ (z1, ..., zN) = (x, y, x, y, ..., y, x) (47)

be the corresponding sequence of observations used at processing, as shown in Fig. 5 for N = 3, 5.
Here we assume N is odd, thus the decision process always starts with and ends at node X . Then using
uk = Γk(zk, uk−1), and that zk = x when k is odd, and zk = y when k is even, we obtain

pi(uN) =
∑

zN ,uN−1

pi(z
N)

N∏
k=1

p(uk|zk, uk−1)

=
∑

x,y,uN−1

pi(x, y)

(N−1)/2∏
r=1

[p(u2r−1|x, u2r−2)p(u2r|y, u2r−1)] .

(48)

Now using pi(x, y) = pi(x)pi(y), we have

pi(uN |x) =
∑
y,uN−1

pi(y)

(N−1)/2∏
r=1

[p(u2r−1|x, u2r−2)p(u2r|y, u2r−1)] . (49)
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Based on this expansion of pi(uN), the following lemma (proved in Appendix C) gives the peculiar nature
of the resulting decision regions that are determined by an observation that is directly involved in the KL
distance.

Lemma V.1 (Degenerate MIF decision regions). Let uN = ΓN(x, uN−1) be the decision at the final step of
a MIF process XYXY· · ·YX with independent observations x and y. Let the objective function be given by
the KL distance at the final step

K[x, uN−1] =
∑

x,uN−1

p0(x, uN−1) log
p0(x, uN−1)

p1(x, uN−1)
. (50)

Then all decision regions based on x, with decisions u2r−1 = Γ2r−1(x, u2r−2), r = 1, 2, ..., N−1
2

, have the
following general form.

Ru2r−1=1|u2r−2 =

{
x :

∑
α

IDα(x)Aα,r,u2r−2 > 0

}
, (51)

where {Dα} is a partition of the data space X , and the coefficients Aα,r,u2r−2 are independent of x.

Notice that (37) is a special case of (51). The following are some remarks about the degenerate decision
regions (51):
• They depend on the distributions p0(x) and p1(x) only globally over X , and not pointwise in x. Therefore

given a single data point x ∈ X , they cannot distinguish between H0 and H1.
• They are determined by piecewise constant functions with discrete probability distributions, and hence

cannot define independent continuous threshold parameters; i.e., they contain no independent thresholds.
• They have piecewise constant probability; i.e., have same probability under both hypotheses.
• Their only role is to reparametrize the thresholds of the other regions. Consequently, they cannot improve

optimality of the KL distance (as the next lemma shows).
The following lemma shows that the decision regions given by (51) are trivial in the sense that they do not
participate in the decision process.

Lemma V.2. With respect to dependence on thresholds, the decision regions (51) of Lemma V.1 have piece-
wise constant probability measures. Moreover, such probability measures play no role at convergence and
therefore do not contribute to the overall decision process.

Proof: Under Hi, the probability Pi
(
Ru2r−1=1|u2r−2

)
of the region Ru2r−1=1|u2r−2 is given by

Pi

(∑
α

IDα(x)Aα,r,u2r−2 > 0

)
=
∑
x

pi(x) I

(∑
α

IDα(x)Aα,r,u2r−2 > 0

)
(41)
=
∑
x

pi(x)
∑
α

IDα(x) I
(
Aα,r,u2r−2 > 0

)
=
∑
α

Pi(Dα) I
(
Aα,r,u2r−2 > 0

)
.

(52)

On the other hand, we can expand the probabilities of the decision regions {Ru2r−1=1|u2r−2 : r = 1, ..., (N −
1)/2} as follows. For each r we have some subset {αr} ⊂ {α} of the index set {α} such that

Pi
(
Ru2r−1=1|u2r−2

)
= Pi

(
IRu2r−1=1|u2r−2

(x) = 1
)

= Pi

 ∑
αr∈{αr}

IDαr (x) = 1


=
∑
αr

Pi(Dαr).

(53)
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x ~y

~v = ~δ(~y)

w = ρ(x, ~v)

X

p(x, ~y|Hi)

x ~y

~v = ~δ(~y, u)

w = ρ(x, ~v)

X ~Y

p(x, ~y|Hi)

u = γ(x)

(b)(a)

~Y

Fig. 6. (a) = one-way tandem fusion (~YX process), and (b) = interactive fusion (X~YX process)

Hence equating (52) and (53) for each r ∈ {1, ..., (N − 1)/2}, we can solve the resulting linear system of
equations for the values of {Pi(Dα)}, from which it is clear that P0(Dα) = P1(Dα) for each α, and that the
probabilities are piecewise constant in the thresholds even if the system of equations is underdetermined
(i.e., has more unknowns than equations). Therefore, the probabilities Pi

(
Ru2r−1=1|u2r−2

)
are also piecewise

constant with respect to threshold dependence at X.
Ultimately to have convergence in the iteration, Pi

(
Ru2r−1=1|u2r−2

)
must settle on one of its possible

constant values. That is, Pi
(
Ru2r−1=1|u2r−2

)
is ultimately constant in the iteration process. Thus beyond what

initial conditions can achieve, {Pi
(
Ru2r−1=1|u2r−2

)
} do not play any role in determining the point at which

convergence occurs.
Therefore, careful analysis of the MIF process shows that whenever a sensor’s data is explicitly summed

over in the KL distance, the decision process becomes independent of that particular sensor’s data. Since
repetition of the decision process involving only one sensor’s data cannot improve performance, it follows
that MIF processing does not improve performance with respect to the KL distance.

B. Interactive fusion between the FC and K sensors

Consider our main setup in Fig. 1 and maintain sensor X as the FC while replacing sensor Y by K different
sensors ~Y = {Y1, ...,YK}, with respective independent observations ~y = {y1, ..., yK}. The resulting system is
shown in Fig. 6. For the ~YX process, we have decisions (~v, w) ≡ (v1, ..., vK , w) based on observations (x, ~y) ≡
(x, y1, ..., yK), where ~v = ~δ(~y) =

(
δ1(y1), ..., δK(yK)

)
and w = ρ(x,~v) ≡ ρ(x, v1, ..., vK). Similarly, in the

X~YX process, the decisions (u,~v, w) ≡ (u, v1, ..., vK , w) are based on observations (x, ~y) ≡ (x, y1, ..., yK),
with u = γ(x), ~v = ~δ(~y, u) =

(
δ1(y1, u), ..., δK(yK , u)

)
and w = ρ(x,~v) ≡ ρ(x, v1, ..., vK).

In the fixed sample size NP test with Lagrangian (21), pi(w) is given by

pi(w) =
∑
x,~y,~v

p(w|x,~v)p(~v|~y) pi(x)pi(~y) =
∑
x,~y,~v

p(w|x,~v)
K∏
k=1

p(vk|yk) pi(x)
K∏
k=1

pi(yk) (54)
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for the ~YX process, and

pi(w) =
∑
x,~v,~y,u

p(w|x,~v)p(~v|~y, u)p(u|x) pi(x)pi(~y)

=
∑
x,~v,~y,u

p(w|x,~v)
K∏
k=1

p(vk|yk, u) p(u|x) pi(x)
K∏
k=1

pi(yk)

(55)

for the X~YX process. It suffices to find the X~YX decision regions only since those for ~YX can be deduced
from them by simply deleting the first decision u. Using Proposition II.1, and with the same steps as in the
proof of Theorem III.1 in APPENDIX A, we obtain the following.

Ru=1 =

{
x :

∂BS

∂p(u = 1|x)
> 0

}
=

{
x :

p1(x)

p0(x)
Q(x) > λ(1)Q(x)

}
, (56)

where λ(1) = λ(0)
∏K
k=1 P0(Rvk=1|u=1)−

∏K
k=1 P0(Rvk=1|u=0)∏K

k=1 P1(Rvk=1|u=1)−
∏K
k=1 P1(Rvk=1|u=0)

, λ(0) is still given by (70),

Q(x) = −
∑

~v(−1)v1+...+vKIRw=1|~v(x), and the objective function S is given by (65).
For each k = 1, ..., K,

Rvk=1|u =

{
yk :

∂BS

∂p(vk = 1|yk, u)
> 0

}
=

{
yk :

p1(yk)

p0(yk)
> λ

(2)
k,u

}
, (57)

where

λ
(2)
k,u = λ(0)

∑
v\vk

[
P0

(
Rw=1|v\vk,vk=1 ∩Ru

)
− P0

(
Rw=1|v\vk,vk=0 ∩Ru

)]∏
k′ 6=k P0

(
Rvk′ |u

)∑
v\vk

[
P1

(
Rw=1|v\vk,vk=1 ∩Ru

)
− P1

(
Rw=1|v\vk,vk=0 ∩Ru

)]∏
k′ 6=k P1

(
Rvk′ |u

) .
Similarly, at X ,

Rw=1|~v =

{
x :

∂BS

∂p(w = 1|x,~v)
> 0

}
=

{
x :

p1(x)

p0(x)
>
∑
u

λ
(3)
~vu IRu(x)

}
, (58)

where λ
(3)
~vu = λ(0)

∏K
k=1 P0(Rvk|u)∏K
k=1 P1(Rvk|u)

.

Similarly, for the asymptotic Neyman-Pearson test, the KL distance KX~YX , K[x,~v] = D
(
p0(x,~v)‖p1(x,~v)

)
can be expressed as

D
(
p0(x,~v)‖p1(x,~v)

)
= D

(
p0(x)‖p1(x)

)
+
∑
x

p0(x)
∑
~v

p0(~v|x) log
p0(~v|x)

p1(~v|x)
, (59)

where pi(~v|x) =
∑

u p(u|x)
∑

y p(~v|y, u)pi(y). Through the same steps as in the proof of Theorem IV.2 for
the X~YX process, the decision region at sensor X is

Ru=1 =

{
x :

∂BK[x,~v]

∂p(u = 1|x)
> 0

}
=

{
x :
∑
u

IRu(x)Cu > 0

}
,

Cu =
∑
~v

(∑
u′

(−1)u
′−1P0(R~v|u′) log

P0(R~v|u)

P1(R~v|u)
−
∑
u′

(−1)u
′−1P1(R~v|u′)

P0(R~v|u)

P1(R~v|u)

)
,

(60)

and the pair of decision regions Rv=1|u at sensor Y has the following K analogues corresponding to the
sensors ~Y; for each k = 1, ..., K,

Rvk=1|u =

{
yk :

∂BK[x,~v]

∂p(vk = 1|yk, u)
> 0

}
=

{
yk :

p1(yk)

p0(yk)
> λ

(2)
ku

}
,

λ
(2)
ku =

∑
~v(−1)vk−1

∏
k′ 6=k P0

(
Rvk′ |u

)
log

P0(R~v|u)
P1(R~v|u)∑

~v(−1)vk−1
∏

k′ 6=k P1

(
Rvk′ |u

) P0(R~v|u)
P1(R~v|u)

,

(61)
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x
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u1 = Γ1(x)

~u2 = ~Γ2(~y, u1)

u3 = Γ3(x, ~u2)

~u4 = ~Γ4(~y, u3)

u5 = Γ5(x, ~u4)

(a)

x ~y

~u2 = ~Γ2(~y, u1)

u3 = Γ3(x, ~u2)
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p(x, ~y|Hi)

u1 = Γ1(x)

~Y

p(x, ~y|Hi)

~y

~Y

Fig. 7. Sample MIF processes with K peripheral sensors: (a) N = 3 multi-sensor MIF (X~YX process), and (b) N = 5 milti-sensor MIF
(X~YX~YX process).

where Pi
(
R~v|u

)
=
∏K

k=1 Pi
(
Rvk|u

)
. The degenerate decision regions of Lemma V.1 maintain their form as

well. Since the decision rules have the same critical features (including threshold structure), our conclusions
hold for this more general setup as well. This includes the multiple-step MIF of Section V-A with K

peripheral sensors, shown in Fig. 7 for N = 3, 5 steps.

C. Interactive fusion with soft sensor outputs

We established in Section IV that the two systems, namely the Y X and XYX processes, have identical
asymptotic detection performance when the sensor output is always binary. Consider the other extreme case
where the exchange of information is endowed with unlimited bandwidth. In that case, entire observations
can be exchanged between sensors and thus both the YX and XYX processes are tantamount to centralized
detection. Therefore, the two systems again achieve exactly the same detection performance. It remains to
see if that is still the case for interactive fusion when soft information is exchanged, i.e., sensor outputs are
of multiple but finite number of bits.

Consider the case where u and v can take respectively m and l bits. Equivalently, we have u ∈ {0, 1, ..., 2m−
1} and v ∈ {0, 1, ..., 2l − 1}. Improvement of performance in the fixed-sample NP test is immediate by
induction since the single bit decisions are a particular case of the multiple bit decisions. Therefore we
consider the situation for the asymptotic test.

By Proposition II.1, the decision regions at X are given by

Ru=k =
⋂
k′ 6=k

{
x :

∂K[x, v]

∂p(u = k|x)
− ∂K[x, v]

∂p(u = k′|x)
> 0

}
,

k = 0, 1, ..., 2m − 1,

(62)

and those at Y are given by

Rv=k|u =
⋂
k′ 6=k

{
y :

∂K[x, v]

∂p(v = k|y, u)
− ∂K[x, v]

∂p(v = k′|y, u)
> 0

}
,

k = 0, 1, ..., 2l − 1,

(63)
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where the objective function K[x, v] is defined by (36). It is straightforward, with the help of equation (7),
to verify that all the critical features of our analysis remain unchanged. In particular, by the same procedure
as in the proofs of Theorem IV.2 and Lemma V.1, the decision regions Ru=k in (62) have the form

Ru=k =
⋂
k′ 6=k

{
x :

2m−1∑
k′′=0

IRu=k′′
(x)ak′′k′ > 0

}
, k = 0, 1, ..., 2m − 1, (64)

which admits a piecewise constant probability. Hence multiple bit passing before the final decision does not
alter our results.

VI. CONCLUSION

We have considered a class of decision theory problems that involve convex objective functions and used it
to study two-sensor tandem fusion networks with conditionally independent observations. We first established
the optimum decision structure of a decision problem where a convex objective function is to be maximized.
This result was then used to show that while interactive fusion improves the performance of fixed sample size
NP test, it does not affect the asymptotic performance as characterized by the error exponent of type II error.

Several extensions of the above result were considered. The lack of improvement in the asymptotic detection
performance of the one-step interactive fusion was shown to extend to multiple-step memoryless interactive
fusion. Furthermore, the result was shown to be valid in a more general setting where the FC simultaneously
interacted with K ≥ 1 independent sensors as well as that involve multi-bit sensor output.

APPENDIX A
PROOF OF THEOREM III.1

For conciseness, we embed the Lagrangian (21) into a class of objective functions of the form

S =
∑
w

f(p0(w), p1(w)), (65)

where f(x, y) is differentiable and convex in (x, y), and hence differentiable and convex in any variables on
which x and y depend linearly. Let fiw denote ∂f(p0(w),p1(w))

∂pi(w)
, which are, as we shall see, the essential threshold

structure constants that distinguish one objective function of the class (65) from another. In particular, for
the Lagrangian (21),

f01 = −λ, f11 = 1, f10 = 0, f00 = 0. (66)

Using the dependence structure of the observation and decision variables, we can express the probability
of the decision at the final step as in (22) and (23). That is, for YX,

pi(w) =
∑
x,y,v

p(w|x, v)p(v|y) pi(x)pi(y), (67)

meanwhile for XYX,

pi(w) =
∑
x,v,y,u

p(w|x, v)p(v|y, u)p(u|x) pi(x)pi(y). (68)
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A. The YX process

By Proposition II.1 the decision regions for the YX process are the following. For the decision v at sensor
Y,

Rv=1 =

{
y :

∂BS

∂p(v = 1|y)
> 0

}
(a)
=

{
y :

p1(y)

p0(y)
> λ(2)

}
,

λ(2) = λ(0)
P0(Rw=1|v=1)− P0(Rw=1|v=0)

P1(Rw=1|v=1)− P1(Rw=1|v=0)

and for the decision w at sensor X,

Rw=1|v =

{
x :

∂BS

∂p(w = 1|x, v)
> 0

}
(b)
=

{
x :

p1(x)

p0(x)
> λ(3)v

}
,

λ(3)v = λ(0)
P0(Rv)

P1(Rv)
,

where λ(0) is as in (70). Step (a) is given by

∂BS

∂p(v = 1|y)

(65)
=
∑
w

∂Bf(p0(w), p1(w))

∂p(v = 1|y)
=
∑
i,w

fiw
∂Bpi(w)

∂p(v = 1|y)

(67)
=
∑
i,w

fiw
∑
x,y′,v′

p(w|x, v′) ∂
Bp(v′|y′)

∂p(v = 1|y)
pi(x)pi(y

′)

(14)
=
∑
i,w

fiw
∑
x,y′,v

p(w|x, v)(−1)v−1δyy′ pi(x)pi(y
′) =

∑
i,w

fiw
∑
x,v

p(w|x, v)(−1)v−1 pi(x)pi(y)

(5)
=
∑
i,w

fiw
∑
x,v

IRw|v(x)(−1)v−1 pi(x)pi(y) =
∑
i,w

pi(y)fiw
∑
v

Pi
(
Rw|v

)
(−1)v−1

=
∑
i,w

pi(y)fiw
[
Pi
(
Rw|v=1

)
− Pi

(
Rw|v=0

)]
(a1)
=
∑
i

pi(y)(fi1 − fi0)
[
Pi
(
Rw=1|v=1

)
− Pi

(
Rw=1|v=0

)]
= p1(y)(f11 − f10)

[
P1

(
Rw=1|v=1

)
− P1

(
Rw=1|v=0

)]
+ p0(y)(f01 − f00)

[
P0

(
Rw=1|v=1

)
− P0

(
Rw=1|v=0

)]
= p0(y)(f11 − f10)

[
P1

(
Rw=1|v=1

)
− P1

(
Rw=1|v=0

)]
×

[
p1(y)

p0(y)
− f00 − f01
f11 − f10

P0

(
Rw=1|v=1

)
− P0

(
Rw=1|v=0

)
P1

(
Rw=1|v=1

)
− P1

(
Rw=1|v=0

)]

= p0(y)(f11 − f10)
[
P1

(
Rw=1|v=1

)
− P1

(
Rw=1|v=0

)] [p1(y)

p0(y)
− λ(2)

]
,

where step (a1) uses Pi(Rw=0|v) = 1− Pi(Rw=0|v), and the rest of the labeled steps
(...)
= reference equations

from which the equality comes.
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Likewise, step (b) is given by

∂BS

∂p(w = 1|x, v)

(65)
=
∑
w

∂Bf(p0(w), p1(w))

∂p(w = 1|x, v)
=
∑
i,w

fiw
∂Bpi(w)

∂p(w = 1|x, v)

(67)
=
∑
i,w′

fiw′
∑
x′,y,v′

∂Bp(w′|x′, v′)
∂p(w = 1|x, v)

p(v′|y) pi(x
′)pi(y)

(14)
=
∑
i,w

fiw
∑
x′,y,v′

(−1)w−1δxx′δvv′p(v
′|y) pi(x

′)pi(y) =
∑
i,w

fiw
∑
y

(−1)w−1p(v|y) pi(x)pi(y)

(5)
=
∑
i,w

fiw
∑
y

(−1)w−1IRv(y) pi(x)pi(y) =
∑
i,w

pi(x)fiw(−1)w−1Pi (Rv) =
∑
i

pi(x)(fi1 − fi0)Pi (Rv)

= p1(x)(f11 − f10)P1 (Rv) + p0(x)(f01 − f00)P0 (Rv)

= p0(x)(f11 − f10)P1 (Rv)

[
p1(x)

p0(x)
− f00 − f01
f11 − f10

P0 (Rv)

P1 (Rv)

]
= p0(x)(f11 − f10)P1 (Rv)

[
p1(x)

p0(x)
− λ(3)v

]
,

where the labeled steps
(...)
= reference equations from which the equality comes.

With pimax(w) =
∑

v Pi(Rw|v)Pi(Rv), the maximum value of S is

Smax =
∑
w

f

(∑
v

P0(Rv)P0(Rw|v) ,
∑
v

P1(Rv)P1(Rw|v)

)
.

B. The XYX process

Similarly, for the XYX process, we obtain the following decision regions. For the first decision u at sensor
X,

Ru=1 =

{
x :

∂BS

∂p(u = 1|x)
> 0

}
(c)
=

{
x :

p1(x)

p0(x)
Q(x) > λ(1)Q(x)

}
, (69)

where λ(1) = λ(0)
P0(Rv=1|u=1)−P0(Rv=1|u=0)

P1(Rv=1|u=1)−P1(Rv=1|u=0)
,

λ(0) =

∂f(p0(w),p1(w))
∂p0(w)

∣∣
w=0
− ∂f(p0(w),p1(w))

∂p0(w)

∣∣
w=1

∂f(p0(w),p1(w))
∂p1(w)

∣∣
w=1
− ∂f(p0(w),p1(w))

∂p1(w)

∣∣
w=0

, (70)

and Q(x) = IRw=1|v=1
(x)− IRw=1|v=0

(x). Step (c) involves the following evaluations.

∂BS

∂p(u = 1|x)

(65)
=
∑
w

∂Bf(p0(w), p1(w))

∂p(u = 1|x)
=
∑
i,w

fiw
∂Bpi(w)

∂p(u = 1|x)

(68)
=

∑
i,w

fiw
∑

x′,v,y,u′

p(w|x′, v)p(v|y, u′) ∂
Bp(u′|x′)

∂p(u = 1|x)
pi(x

′)pi(y)

(14)
=
∑
i,w

fiw
∑
x′,v,y,u

p(w|x′, v)p(v|y, u)(−1)u−1δxx′ pi(x
′)pi(y)

=
∑
i,w

fiw
∑
v,y,u

p(w|x, v)p(v|y, u)(−1)u−1 pi(x)pi(y)
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(5)
=
∑
i,w

fiw
∑
v,y,u

IRw|v(x)IRv|u(y)(−1)u−1 pi(x)pi(y)

=
∑
i,w

pi(x)fiw
∑
v

IRw|v(x)
∑
u

Pi(Rv|u)(−1)u−1

=
∑
i,w

pi(x)fiw
∑
v

IRw|v(x)
(
Pi(Rv|u=1)− Pi(Rv|u=0)

)
(c1)
=
∑
i,w

pi(x)fiw

(
IRw|v=1

(x)− IRw|v=0
(x)
) (
Pi(Rv=1|u=1)− Pi(Rv=1|u=0)

)
(c2)
=
∑
i

pi(x)(fi1 − fi0)
(
IRw=1|v=1

(x)− IRw=1|v=0
(x)
) (
Pi(Rv=1|u=1)− Pi(Rv=1|u=0)

)
=
(
IRw=1|v=1

(x)− IRw=1|v=0
(x)
)∑

i

pi(x)(fi1 − fi0)
(
Pi(Rv=1|u=1)− Pi(Rv=1|u=0)

)
= Q(x)

[
p1(x)(f11 − f10)

(
P1(Rv=1|u=1)− P1(Rv=1|u=0)

)
+p0(x)(f01 − f00)

(
P0(Rv=1|u=1)− P0(Rv=1|u=0)

)]
= p0(x)(f11 − f10)

(
P1(Rv=1|u=1)− P1(Rv=1|u=0)

)
×Q(x)

[
p1(x)

p0(x)
− f00 − f01
f11 − f10

P0(Rv=1|u=1)− P0(Rv=1|u=0)

P1(Rv=1|u=1)− P1(Rv=1|u=0)

]
= p0(x)(f11 − f10)

(
P1(Rv=1|u=1)− P1(Rv=1|u=0)

)
Q(x)

[
p1(x)

p0(x)
− λ(1)

]
,

where step (c1) uses Pi(Rv=0|u) = 1− Pi(Rv=0|u), step (c2) uses IRw=0|v(x) = IX (x)− IRw=1|v(x), and the

rest of the labeled steps
(...)
= reference equations from which the equality comes.

For the decision v at sensor Y,

Rv=1|u =

{
y :

∂BS

∂p(v = 1|y, u)
> 0

}
(d)
=

{
y :

p1(y)

p0(y)
> λ(2)u

}
, (71)

where λ
(2)
u = λ(0)

P0(Rw=1|v=1∩Ru)−P0(Rw=1|v=0∩Ru)
P1(Rw=1|v=1∩Ru)−P1(Rw=1|v=0∩Ru)

. Step (d) is derived as follows.

∂BS

∂p(v = 1|y, u)

(65)
=
∑
w

∂Bf(p0(w), p1(w))

∂p(v = 1|y, u)
=
∑
i,w

fiw
∂Bpi(w)

∂p(v = 1|y, u)

(68)
=
∑
i,w

fiw
∑

x,v′,y′,u′

p(w|x, v′) ∂
Bp(v′|y′, u′)

∂p(v = 1|y, u)
p(u′|x)pi(x)pi(y

′)

(14)
=
∑
i,w

fiw
∑

x,v,y′,u′

p(w|x, v)(−1)v−1δyy′δuu′ p(u
′|x)pi(x)pi(y

′)

=
∑
i,w

fiw
∑
x,v

p(w|x, v)(−1)v−1 p(u|x)pi(x)pi(y)

(5)
=
∑
i,w

fiw
∑
x,v

IRw|v(x)(−1)v−1IRu(x)pi(x)pi(y)

=
∑
i,w

fiw
∑
x,v

IRw|v∩Ru(x)(−1)v−1pi(x)pi(y) =
∑
i,w

pi(y)fiw
∑
v

Pi
(
Rw|v ∩Ru

)
(−1)v−1

=
∑
i,w

pi(y)fiw
[
Pi
(
Rw|v=1 ∩Ru

)
− Pi

(
Rw|v=0 ∩Ru

)]
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(d1)
=
∑
i

pi(y)(fi1 − fi0)
[
Pi
(
Rw=1|v=1 ∩Ru

)
− Pi

(
Rw=1|v=0 ∩Ru

)]
= p1(y)(f11 − f10)

[
P1

(
Rw=1|v=1 ∩Ru

)
− P1

(
Rw=1|v=0 ∩Ru

)]
+ p0(y)(f01 − f00)

[
P0

(
Rw=1|v=1 ∩Ru

)
− P0

(
Rw=1|v=0 ∩Ru

)]
= p0(y)(f11 − f10)

[
P1

(
Rw=1|v=1 ∩Ru

)
− P1

(
Rw=1|v=0 ∩Ru

)]
×

[
p1(y)

p0(y)
− λ(0)

P0

(
Rw=1|v=1 ∩Ru

)
− P0

(
Rw=1|v=0 ∩Ru

)
P1

(
Rw=1|v=1 ∩Ru

)
− P1

(
Rw=1|v=0 ∩Ru

)]

= p0(y)(f11 − f10)
[
P1

(
Rw=1|v=1 ∩Ru

)
− P1

(
Rw=1|v=0 ∩Ru

)] [p1(y)

p0(y)
− λ(2)u

]
,

where step (d1) uses Pi
(
Rw=0|v ∩Ru

)
= Pi (Ru)− Pi

(
Rw=1|v ∩Ru

)
, and the rest of the labeled steps

(...)
=

reference equations from which the equality comes.
Finally, for the second decision w at sensor X,

Rw=1|v=

{
x :

∂BS

∂p(w = 1|x, v)
> 0

}
(e)
=

{
x :

p1(x)

p0(x)
>
∑
u

λ(3)vu IRu(x)

}
, (72)

where λ
(3)
vu = λ(0)

P0(Rv|u)

P1(Rv|u)
. Note that only two out of these four thresholds are independent. Step (e) is

derived as follows.

∂BS

∂p(w = 1|x, v)

(65)
=
∑
w

∂Bf(p0(w), p1(w))

∂p(w = 1|x, v)
=
∑
i,w

fiw
∂Bpi(w)

∂p(w = 1|x, v)

(68)
=

∑
i,w′

fiw′
∑

x′,v′,y,u

∂Bp(w′|x′, v′)
∂p(w = 1|x, v)

p(v′|y, u) p(u|x′)pi(x′)pi(y)

(14)
=

∑
i,w

fiw
∑

x′,v′,y,u

(−1)w−1δxx′δvv′p(v
′|y, u) p(u|x′)pi(x′)pi(y)

=
∑
i,w

fiw
∑
y,u

(−1)w−1p(v|y, u) p(u|x)pi(x)pi(y)

(5)
=

∑
i,w

fiw(−1)w−1
∑
y,u

IRv|u(y)IRu(x)pi(x)pi(y) =
∑
i

pi(x)(fi1 − fi0)
∑
u

Pi
(
Rv|u

)
IRu(x)

= p0(x)(f11 − f10)
∑
u

P1

(
Rv|u

)
IRu(x) + p0(x)(f01 − f00)

∑
u

P0

(
Rv|u

)
IRu(x)

= p0(x)(f11 − f10)
∑
u

P1

(
Rv|u

)
IRu(x)

[
p1(x)

p0(x)
− f00 − f01
f11 − f10

∑
u P0

(
Rv|u

)
IRu(x)∑

u P1

(
Rv|u

)
IRu(x)

]
(41)
= p0(x)(f11 − f10)

∑
u

P1

(
Rv|u

)
IRu(x)

[
p1(x)

p0(x)
− f00 − f01
f11 − f10

∑
u

P0

(
Rv|u

)
P1

(
Rv|u

)IRu(x)

]

= p0(x)(f11 − f10)
∑
u

P1

(
Rv|u

)
IRu(x)

[
p1(x)

p0(x)
−
∑
u

λ(3)vu IRu(x)

]
,

where the labeled steps
(...)
= reference equations from which the equality comes.
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The probability of the final decision at the optimal point is pimax(w) =
∑

u,v Pi(Rv|u)Pi(Rw|v ∩Ru), and
the maximum value Smax of the objective function is∑

w

f

(∑
u,v

P0(Rv|u)P0(Rw|v ∩Ru) ,
∑
u,v

P1(Rv|u)P1(Rw|v ∩Ru)

)
.

The region Rw=1|v in (72) can be written as Rw=1|v =
⋃
uRw=1|v,u, where

Rw=1|v,u =
{
x : p1(x)/p0(x) > λ

(3)
vu

}
and we recall that λ(3)vu has only two independent components. For

our case of interest where the objective S is the Lagrangian L in equation (21), we can easily check that
λ(0) = λ, with

L =
∑
v

P1(Rv)P1(Rw=1|v) + λ

[
α−

∑
v

P0(Rv)P0(Rw=1|v)

]
(73)

for the YX Process, and L is∑
u,v

P1(Rv|u)P1(Rw=1|v ∩Ru) + λ

[
α−

∑
u,v

P0(Rv|u)P0(Rw=1|v ∩Ru)

]
(74)

for the XYX Process.

APPENDIX B
DETAILS OF THE FIXED SAMPLE SIZE NP TEST FOR A CONSTANT SIGNAL IN WGN

Consider the example (27) for a constant signal in white Gaussian noise. The YX regions and their
probabilities are as follows.

Rv=1 =
{
y > t(2) = σ2

y log λ(2) + 1/2
}
,

Rw=1|v =
{
x > t(3)v = σ2 log λ(3)v + 1/2

}
,

Pi(Rv) =

[
Q

(
t(2) − i
σy

)]v [
1−Q

(
t(2) − i
σy

)]1−v
,

Pi(Rw|v) =

[
Q

(
t
(3)
v − i
σx

)]w [
1−Q

(
t
(3)
v − i
σx

)]1−w
,

where λ(2) and λ(3)v are defined as in (24).
Observe that the XYX decision rule is invariant if we switch the two decision regions for w and the two

decision regions for v, i.e.,

Rw=1|v=1 ←→ Rw=1|v=0, Rv=1|u=1 ←→ Rv=1|u=0. (75)

In addition, our Gaussian example has a monotone likelihood ratio (i.e., p1(z)/p0(z) is a monotone function
of z). Therefore, without loss of generality, we assume that Rv=1|u=0 ⊂ Rv=1|u=1, Rw=1|v=0 ⊂ Rw=1|v=1.
This assumption implies that Q(x) = IRw=1|v=1

(x) − IRw=1|v=0
(x) > 0, Pi(Rv=1|u=1) − Pi(Rv=1|u=0) > 0,

which simplifies the region Ru=1 to a region defined by an LRT. Thus with λ(1), λ(2)u , and λ(3)vu defined as in
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(25), the decision regions are given by

Ru=1 =
{
x > t(1) = σ2

x log λ(1) + 1/2
}
,

Rv=1|u =
{
y > t(2)u = σ2

y log λ(2)u + 1/2
}
,

Rw=1|v =
⋃
u

Rw=1|v,u,

Rw=1|v,u =
{
x > t(3)vu = σ2

x log λ(3)vu + 1/2
}
,

(76)

and their probabilities are

Pi(Ru) =

[
Q

(
t(1) − i
σx

)]u [
1−Q

(
t(1) − i
σx

)]1−u
,

Pi(Rv|u) =

[
Q

(
t
(2)
u − i
σy

)]v [
1−Q

(
t
(2)
u − i
σy

)]1−v
,

Pi(Rw|v,u) =

[
Q

(
t
(3)
vu − i
σx

)]w [
1−Q

(
t
(3)
vu − i
σx

)]1−w
,

Pi(Rw|v) = Pi(Rw|v,u=0 ∪Rw|v,u=1) = Pi(Rw|v,u=0) + Pi(Rw|v,u=1)− Pi(Rw|v,u=0 ∩Rw|v,u=1),

Pi(Rw|v ∩Ru) = Pi
(
[Rw|v,u=0 ∪Rw|v,u=1] ∩Ru

)
= Pi(Rw|v,u=0 ∩Ru) + Pi(Rw|v,u=1 ∩Ru)− Pi(Rw|v,u=0 ∩Rw|v,u=1 ∩Ru),

where

Pi(Rw=1|v=0 ∩Ru=0) = Q

(
t
(3)
00 − i
σx

)
−Q

(
max(t

(3)
00 , t

(1))− i
σx

)

Pi(Rw=1|v=0 ∩Ru=1) = Q

(
max(t

(3)
00 , t

(1))− i
σx

)

Pi(Rw=1|v=1 ∩Ru=0) = Q

(
t
(3)
10 − i
σx

)
−Q

(
max(t

(3)
10 , t

(1))− i
σx

)

Pi(Rw=1|v=1 ∩Ru=1) = Q

(
max(t

(3)
10 , t

(1))− i
σx

)

Pi(Rw=0|v=0 ∩Ru=0) = 1−Q
(
t(1) − i
σx

)
−Q

(
t
(3)
00 − i
σx

)
+Q

(
max(t

(3)
00 , t

(1))− i
σx

)

Pi(Rw=0|v=0 ∩Ru=1) = Q

(
t(1) − i
σx

)
−Q

(
max(t

(3)
00 , t

(1))− i
σx

)

Pi(Rw=0|v=1 ∩Ru=0) = 1−Q
(
t(1) − i
σx

)
−Q

(
t
(3)
10 − i
σx

)
+Q

(
max(t

(3)
10 , t

(1))− i
σx

)

Pi(Rw=0|v=1 ∩Ru=1) = Q

(
t(1) − i
σx

)
−Q

(
max(t

(3)
10 , t

(1))− i
σx

)
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Notice from (76) and (25) that the thresholds are coupled by relations of the form

t(1) = g(1)
(
t(1), t(2)u , t(3)vu

)
,

t(2)u = g(2)u

(
t(1), t(2)u , t(3)vu

)
,

t(3)vu = g(3)vu

(
t(1), t(2)u , t(3)vu

)
,

(77)

where g(1), g
(2)
u , g

(3)
uv (with g(3)uv having only two independent components) are determined by dependence

of the probabilities of the decision regions on the thresholds. Numerical iteration can thus be used to compute
the thresholds. Note however that by Remark 2 following Proposition II.1, we can alternatively substitute the
decision regions (76) into the objective function, i.e., the Lagrangian, (74) and then directly optimize the
Lagrangian over the thresholds.

Due to the simplifying assumptions that follow upon noticing invariance of the XYX decision rule under
the transformation (75), initial conditions, i.e., initial values for the thresholds in (76) during numerical
computation via iteration must be chosen to satisfy t(3)1u < t

(3)
0u , t

(3)
v0 < t

(3)
v1 , and t(2)1 < t

(2)
0 , meanwhile t(1) can

take any initial value.
If properly implemented, the above details lead to the graphs corresponding to the YX and XYX processes

in Figure 3.

APPENDIX C
PROOF OF LEMMA V.1

Observe that the KL distance (50) has the form

K[x, uN−1] = K[x] +
∑
x

p0(x)K[uN−1|x], (78)

where K[uN−1|x] =
∑

uN−1
p0(uN−1|x) log p0(uN−1|x)

p1(uN−1|x) is independent of p0(x) and p1(x), since from the even N
case of (49),

pi(uN−1|x) =
∑
y,uN−2

pi(y)

(N−1)/2∏
r=1

[p(u2r−1|x, u2r−2)p(u2r|y, u2r−1)]
(a)
=
∑
uN−2

IR
uN−1

(x) ρi,uN−1 ,

RuN−1 =

(N−1)/2⋂
r=1

Ru2r−1|u2r−2 , ρi,uN−1 =
∑
y

pi(y)

(N−1)/2∏
r=1

p(u2r|y, u2r−1)
(b)
= Pi

(N−1)/2⋂
r=1

Ru2r|u2r−1

 ,

(79)
where equalities (a) and (b) are due to (5). By Proposition II.1 we have that

Ru2r−1=1|u2r−2 =

{
x :

∂BK[x, uN−1]

∂pmax(u2r−1 = 1|x, u2r−2)
> 0

}
. (80)
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To evaluate ∂BK[x,uN−1]
∂pmax(u2r−1=1|x,u2r−2)

, we first evaluate ∂Bpi(u
′
N−1|x

′)

∂p(u2r−1=1|x,u2r−2)
as follows.

∂Bpi(u
′
N−1|x′)

∂p(u2r−1 = 1|x, u2r−2)
=

∑
y,u′N−2

pi(y)
∂Bp(u′2r−1|x′, u′2r−2)
∂p(u2r−1 = 1|x, u2r−2)

× p(u′2r|y, u′2r−1)
(N−1)/2∏
s 6=r

p(u′2s−1|x′, u′2s−2)p(u′2s|y, u′2s−1)

= δxx′
∑

y,u′N−2

pi(y)(−1)u
′
2r−1−1δu′2r−2u2r−2

p(u′2r|y, u′2r−1)
(N−1)/2∏
s 6=r

p(u′2s−1|x′, u′2s−2)p(u′2s|y, u′2s−1)

(a)
= δxx′

∑
u′N−2

IR
u′rN−1

(x) ρi,u′N−1|u2r−2
, (81)

Ru′r
N−1 =

(N−1)/2⋂
s 6=r

Ru′2s−1|u′2s−2
,

ρi,u′N−1|u2r−2
=
∑
y

pi(y)(−1)u
′
2r−1−1δu′2r−2u2r−2

(N−1)/2∏
s=1

p(u′2s|y, u′2s−1)

(b)
= (−1)u

′
2r−1−1δu′2r−2u2r−2

Pi

(N−1)/2⋂
s=1

Ru′2s|u′2s−1

 ,

where equalities (a) and (b) come from (5). Therefore from (78),
∂BK[x, uN−1]

∂pmax(u2r−1 = 1|x, u2r−2)
=
∑
x′

p0(x
′)

∂BK[uN−1|x′]
∂pmax(u2r−1 = 1|x, u2r−2)

=
∑

x′,u′N−1

p0(x
′)

[
∂Bp0(u

′
N−1|x)

∂pmax(u2r−1 = 1|x, u2r−2)

(
log

p0(u
′
N−1|x′)

p1(u′N−1|x′)
+ 1

)

−
p0(u

′
N−1|x′)

p1(u′N−1|x′)
∂Bp1(u

′
N−1|x′)

∂pmax(u2r−1 = 1|x, u2r−2)

]
(a)
=

∑
x,x′,u′N−1

p0(x
′)δxx′IR

u′rN−1
(x)
[
ρ0,u′N−1|u2r−2

×
(

log
p0(u

′
N−1|x′)

p1(u′N−1|x′)
+ 1

)
−
p0(u

′
N−1|x′)

p1(u′N−1|x′)
ρ1,u′N−1|u2r−2

]
(b)
= p0(x)

∑
u′N−1

IR
u′rN−1

(x)

[
log

p0(u
′
N−1|x)

p1(u′N−1|x)
ρ0,u′N−1|u2r−2

−
p0(u

′
N−1|x)

p1(u′N−1|x)
ρ1,u′N−1|u2r−2

]
(c)
= p0(x)

∑
α

IDα(x)Aα,r,u2r−2 ,

where (a) is from equation (81), (c) from equations (41) and (79), {Dα} is some partition of the data space
X , and the coefficients Aα,r,u2r−2 do not depend on x. The second term of the previous step evaluates to
zero at step (b). Note that from step (b), in order to apply (41) at the next step, we have chosen a partition
that allows us to first write for each r ∈ {1, ..., (N − 1)/2},

IRu2r−1=1|u2r−2
(x) =

∑
αr∈{αr}

IDαr (x), αr = αr(u2r−2),
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for some subset {αr} ⊂ {α} of the index set {α}.
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