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On Cooperative Multiple Access Channels

with Delayed CSI at Transmitters
Abdellatif Zaidi Shlomo Shamai (Shitz)

Abstract

We consider a cooperative two-user multiaccess channel in which the transmission is controlled by

a random state. Both encoders transmit a common message and, one of the encoders also transmits an

individual message. We study the capacity region of this communication model for different degrees of

availability of the states at the encoders, causally or strictly causally. In the case in which the states are

revealed causally to both encoders but not to the decoder we find an explicit characterization of the capacity

region in the discrete memoryless case. In the case in which the states are revealed only strictly causally

to both encoders, we establish inner and outer bounds on the capacity region. The outer bound is non-

trivial, and has a relatively simple form. It has the advantage of incorporating only one auxiliary random

variable. In particular, it suggests that there is none, or at best only little, to gain from having the encoder

that transmits both messages also sending an individual description of the state to the receiver, in addition

to the compressed version that is sent cooperatively with the other encoder. We then introduce a class of

cooperative multiaccess channels with states known strictly causally at both encoders for which the inner

and outer bounds agree; and so we characterize the capacity region for this class. In this class of channels,

the state can be obtained as a deterministic function of the channel inputs and output. We also study the

model in which the states are revealed, strictly causally, in an asymmetric manner, to only one encoder.

Throughout the paper, we discuss a number of examples; and compute the capacity region of some of these

examples. The results shed more light on the utility of delayed channel state information for increasing

the capacity region of state-dependent cooperative multiaccess channels; and tie with recent progress in

this framework.

I. Introduction

In this paper, we study a two-user state-dependent multiple access channel with the channel states

revealed – depending on the scenario, only strictly-causally or causally, to both or only one of the encoders.
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Both encoders transmit a common message and, in addition, one of the encoders also transmits an

individual message. More precisely, let Wc and W1 denote the common message and the individual

message to be transmitted in, say, n uses of the channel; and Sn = (S1, . . . , Sn) denote the state sequence

affecting the channel during the transmission. In the causal setting, at time i both encoders know the

channel states up to and including time i, i.e., the sequence Si = (S1, . . . , Si−1, Si). In the strictly causal

setting, at time i the encoders know the channel states only up to time i − 1, i.e., the sequence Si−1 =

(S1, . . . , Si−1). We study the capacity region of this state-dependent MAC model under both causal and

strictly causal settings.

For the model with causal states, we characterize the capacity region in the discrete memoryless case.

We show that a cooperative scheme that is based on Shannon strategies [1] is optimal. This is to be

opposed to the case of MAC with independent inputs in which it has been shown in [2, Section III] that

Shannon strategies are suboptimal in general.

For the model with strictly causal states at both encoders, while building on the recent related work

[2] (see also [3]–[5]), it can be shown that the knowledge of the states strictly causally at the encoders is

generally helpful, characterizing the capacity region of this model does not seem to be easy to obtain,

even though one of the encoders knows both messages. In particular, while it can be expected that gains

can be obtained by having the encoders cooperate in sending a description of the state to the receiver

through a block Markov coding scheme, it is not easy to see how the compression of the state should be

performed optimally. For instance, it is not clear whether sending an individual layer of state compression

by the encoder that transmits both messages increases the transmission rates beyond what is possible

with only the cooperative layer. Note that for the non-cooperative MAC of [2] it is beneficial that each

encoder sends also an individual description of the state to the receiver, in addition to the description of

the state that is sent cooperatively by both encoders; and this is reflected therein through that the inner

bound of [2, Theorem 2] strictly outperforms that of [2, Theorem 1] – the improvement comes precisely

from the fact that, for both encoders, in each block a part of the input is composed of an individual

compression of the state and the input in the previous block.

In this paper, for the model with states known strictly causally at both encoders we establish inner and

outer bounds on the capacity region. The outer bound is non trivial, and has the advantage of having

a relatively simple form that incorporates directly the channel inputs X1 and X2 from the encoders and

only one auxiliary random variable. To establish this outer bound, we first derive another outer bound on

the capacity region whose expression involves two auxiliary random variables. We then show that this

outer bound can be recast into a simpler form which is more insightful, and whose expression depends

on only one auxiliary random variable. This is obtained by showing that the second auxiliary random

variable can be chosen optimally to be a constant. In addition to its simplicity, the resulting expression

of the outer bound has the advantage of suggesting that, by opposition to the MAC with independent

inputs of [2], for the model that we study there is no gain, or at best only little, to expect from having the
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encoder that transmits both messages also sending an individual compression of the state to the receiver,

in addition to the cooperative compression. Note, however, that optimal forms of compressions are still

to be found, since the tightness of the outer bound is still to be shown in general. Next, using the insights

that we gain from the obtained outer bound, we establish an inner bound on the capacity region. This

inner bound is based on a Block-Markov coding scheme in which the two encoders collaborate in both

transmitting the common message and also conveying a lossy version of the state to the decoder. In this

coding scheme, the encoder that transmits both messages does not send any individual compression of

the state beyond what is performed cooperatively with the other encoder.

The inner and outer bounds differ only through the associated joint measures; and, for instance, a

Markov-chain relation that holds for the inner bound and not for the outer bound. Next, by investigating

a class of channels for which the state can be obtained as a deterministic function of the channel inputs

and output, we show that the inner and outer bounds agree; and, so, we characterize the capacity region

in this case.

Furthermore, we also study the case in which the state is revealed (strictly causally) to only one encoder.

In this case, we show that revealing the state to the encoder that sends only the common message can

increase the capacity region, whereas revealing it to the encoder that sends both messages does not

increase the capacity region. In the former case, we show that there is dilemma at the informed encoder

among exploiting the available state and creating message-cooperation with the other encoder. We develop

a coding scheme that resolves this tension by splitting the codeword of the informed encoder into two

parts, one that is meant to carry only the description of the state and is independent of the other encoder’s

input and one which is sent cooperatively with the other encoder and is generated independently of the

state. We also show that this scheme is optimal in some special cases. Throughout the paper, we also

discuss a number of examples; and compute the capacity for some of these examples.

A. Related Work

There is a connection between the role of states that are known strictly causally at an encoder and that

of output feedback given to that encoder. In single-user channels, it is now well known that strictly causal

feedback does not increase the capacity [6]. In multiuser channels or networks, however, the situation

changes drastically, and output feedback can be beneficial — but its role is still highly missunderstood.

One has a similar picture with strictly causal states at the encoder. In single-user channels, independent

and identically distributed states available only in a strictly causal manner at the encoder have no effect

on the capacity. In multiuser channels or networks, however, like feedback, strictly causal states in general

increase the capacity.

The study of networks with strictly causal, or delayed, channel state information (CSI) has spurred

much interest over the few recent years, due to its importance from both information-theoretic and com-

munications aspects. Non-cooperative multiaccess channels with delayed state information are studied
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in [2] in the case in which the transmission is governed by a common state that is revealed with delay

to both transmitters, and in [3], [4] in the case in which the transmission is governed by independent

states each revealed with delay to a different transmitter. The capacity region of a multiaccess channel

with states known strictly causally at the encoder that sends only the common message and noncausally

at the other encoder is established in [5] (see also [7] and [8]).

A related line of research, initiated with the work of Maddah-Ali and Tse [9], investigates the usefulness

of stale or outdated channel state information - typically outdated values of fading coefficients, in wireless

networks. In such communication problems, the CSI is learned at the transmitters typically through

output CSI feedback; and the utility of the outdated CSI at the transmitters is demonstrated typically by

investigating gains in terms of the degrees of freedom or multiplexing [10] offered by the network. In this

regard, the availability of outdated CSI at the transmitters is generally exploited through coding schemes

that rely on some sorts of interferences alignment [11]. Examples include multiple-input multiple-output

(MIMO) broadcast channels [12]–[14], MIMO interference channels [15], [16] and MIMO X channels with

[17] and without [18], [19] security constraints.

A growing body of work studies multi-user state-dependent models. The problem of joint communica-

tion and state estimation, initiated in [20], has been studied recently in [21] for the causal state case and in

[22] in the presence of a helper node. Relay channels with states are studied in [23]–[31]. Recent advances

in the study of broadcast channels with states can be found in [32], [33] (see also the references therein);

and other related contributions on multiaccess channels with noncausal states at the encoders can be

found in [34]–[38], among other works. Finally, for related works on the connected area of multiuser

information embedding the reader may refer to [39] and [40] and the references therein.

B. Outline and Notation

An outline of the remainder of this paper is as follows. Section II describes in more details the problem

setup. In Section III we study the setting in which the states are revealed (strictly causally) to both

encoders; and in Section IV we study the setting in which the states are revealed (strictly causally) to

only one encoder. Section V characterizes the capacity region of the cooperative multiaccess channel with

states revealed causally to both encoders. Section VI provides some concluding remarks.

Throughout the paper we use the following notations. Upper case letters are used to denote random

variables, e.g., X; lower case letters are used to denote realizations of random variables, e.g., x; and

calligraphic letters designate alphabets, i.e., X. The probability distribution of a random variable X is

denoted by PX(x). Sometimes, for convenience, we write it as PX. We use the notation EX[·] to denote the

expectation of random variable X. A probability distribution of a random variable Y given X is denoted

by PY|X. The set of probability distributions defined on an alphabet X is denoted by P(X). The cardinality

of a set X is denoted by |X|. For convenience, the length n vector xn will occasionally be denoted in

boldface notation x. For integers i ≤ j, we define [i : j] := {i, i + 1, . . . , j}. Throughout this paper, we use
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h2(α) to denote the entropy of a Bernoulli (α) source, i.e., h2(α) = −α log(α) − (1 − α) log(1 − α) and p ∗ q

to denote the binary convolution, i.e., p ∗ q = p(1− q) + q(1 − p). Finally, throughout the paper, logarithms

are taken to base 2, and the complement to unity of a scalar u ∈ [0, 1] is sometimes denoted by ū, i.e.,

ū = 1 − u.

II. Problem Setup

We consider a stationary memoryless two-user state-dependent MAC WY|X1 ,X2,S whose output Y ∈ Y
is controlled by the channel inputs X1 ∈ X1 and X2 ∈ X2 from the encoders and the channel state S ∈ S
which is drawn according to a memoryless probability law QS. The state is revealed – depending on the

scenario – strictly causally or causally, to only one or both encoders. If the state is revealed causally to

Encoder k, k = 1, 2, at time i this encoder knows the values of the state sequence up to and including

time i, i.e., Si = (S1, . . . , Si−1, Si). If the state is revealed only strictly causally to Encoder k, k = 1, 2, at time

i this encoder knows the values of the state sequence up to time i − 1, i.e., Si−1 = (S1, . . . , Si−1).

MAC
Decoder

Encoder 2

Encoder 1

Si−1

Wc

Xn
2

Xn
1

Y n

WY |X1,X2,S
(Ŵc, Ŵ1)

W1

Si−1

Fig. 1. State-dependent MAC with degraded messages sets and states known, strictly causally, to both the encoders.

Encoder 2 wants to send a common message Wc and Encoder 1 wants to send an independent

individual message W1 along with the common message Wc. We assume that the common message

Wc and the individual message W1 are independent random variables drawn uniformly from the sets

Wc = {1, · · · ,Mc} and W1 = {1, · · · ,M1}, respectively. The sequences Xn
1

and Xn
2

from the encoders are

sent across a state-dependent multiple access channel modeled as a memoryless conditional probability

distribution WY|X1 ,X2,S. The laws governing the state sequence and the output letters are given by

Wn
Y|X1 ,X2,S

(yn|xn
1 , x

n
2, s

n) =

n
∏

i=1

WY|X1 ,X2,S(yi|x1i, x2i, si) (1)

Qn
S(sn) =

n
∏

i=1

QS(si). (2)
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The receiver guesses the pair (Ŵc, Ŵ1) from the channel output Yn.

In Figure 1, the state may model some common information which is received, with delay, only by

authorized (or connected) entities. Also, in a wireless context, while fading state variations are often

measured at the receivers and then possibly fed back to the transmitters, certain interfering signals

occurring at the vicinity of the transmitters may be measured or estimated more effectively directly by

these, due to proximity, rather than at the end nodes.

Definition 1: For positive integers n, Mc and M1, an (Mc,M1, n, ǫ) code for the cooperative multiple

access channel with states known strictly causally to both encoders consists of a sequence of mappings

φ1,i :Wc×W1×Si−1 −→ X1, , i = 1, . . . , n (3)

at Encoder 1, a sequence of mappings

φ2,i :Wc×Si−1 −→ X2, i = 1, . . . , n (4)

at Encoder 2, and a decoder map

ψ : Yn −→Wc×W1 (5)

such that the average probability of error is bounded by ǫ,

Pn
e = ES

[

Pr
(

ψ(Yn) , (Wc,W1)|Sn = sn
)]

≤ ǫ. (6)

The rate of the common message and the rate of the individual message are defined as

Rc =
1

n
log Mc and R1 =

1

n
log M1,

respectively. A rate pair (Rc,R1) is said to be achievable if for every ǫ > 0 there exists an (2nRc , 2nR1 , n, ǫ)

code for the channel WY|X1,X2,S. The capacity region Cs-c of the state-dependent MAC with strictly causal

states is defined as the closure of the set of achievable rate pairs.

Definition 2: For positive integers n, Mc and M1, an (Mc,M1, n, ǫ) code for the cooperative multiple

access channel with states known causally to both encoders consists of a sequence of mappings

φ1,i :Wc×W1×Si −→ X1, , i = 1, . . . , n (7)

at Encoder 1, a sequence of mappings

φ2,i :Wc×Si −→ X2, i = 1, . . . , n (8)

at Encoder 2, and a decoder map (5) such that the probability of error is bounded as in (6).

The definitions of a rate pair (Rc,R1) to be achievable as well as the capacity region, which we denote

by Cc in this case, are similar to those in the strictly-causal states setting in Definition 1.

Similarly, in the case in which the states are revealed strictly causally to only one encoder, the definitions

of a rate pair (Rc,R1) to be achievable as well as the capacity region can be obtained in a way that is

similar to that in Definition 1.

November 15, 2017 DRAFT
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III. Strictly Causal States at Both Encoders

In this section, it is assumed that the alphabets S,X1,X2 are finite.

A. Outer Bound on the Capacity Region

Let P̃out
s-c stand for the collection of all random variables (S,U,V,X1,X2,Y) such that U, V, X1 and X2

take values in finite alphabets U, V, X1 and X2, respectively, and satisfy

PS,U,V,X1,X2,Y(s, u, v, x1, x2, y) = PS,U,V,X1X2
(s, u, v, x1, x2)WY|X1,X2,S(y|x1, x2, s) (9a)

PS,U,V,X1,X2
(s, u, v, x1, x2) = QS(s)PX2

(x2)PX1 |X2
(x1|x2)PV|S,X1,X2

(v|s, x1, x2)PU|S,V,X1,X2
(u|s, v, x1, x2). (9b)

and

0 ≤ I(V,X2; Y) − I(V,X2; S). (10)

The relations in (9) imply that (U,V) ↔ (S,X1,X2) ↔ Y is a Markov chain, and X1 and X2 are

independent of S.

Define R̃out
s-c to be the set of all rate pairs (Rc,R1) such that

R1 ≤ I(U,X1; Y|V,X2) − I(U,X1; S|V,X2)

Rc + R1 ≤ I(U,V,X1,X2; Y) − I(U,V,X1,X2; S)

for some (S,U,V,X1,X2,Y) ∈ P̃out
s-c . (11)

As stated in the following theorem, the set R̃out
s-c is an outer bound on the capacity region of the state-

dependent discrete memoryless MAC with strictly-causal states.

Theorem 1: The capacity region of the multiple access channel with degraded messages sets and strictly

causal states known only at the encoders satisfies

Cs-c ⊆ R̃out
s-c . (12)

Proof: The proof of Theorem 1 is given in Appendix A.

We now recast the outer bound R̃out into a form that will be shown to be more convenient (see Remark 1

and Remark 2 below). This is done by showing that the maximizing auxiliary random variable U in R̃out is

a constant, i.e., U = ∅; and can be formalized as follows. Let Pout
s-c be the collection of all random variables

(S,V,X1,X2,Y) such that V, X1 and X2 take values in finite alphabets V, X1 and X2, respectively, and

satisfy

PS,V,X1,X2,Y = QSPX2
PX1 |X2

PV|S,X1,X2
WY|X1 ,X2,S (13)
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and the constraint (10). Also, define Rout
s-c to be the set of all rate pairs (Rc,R1) such that

R1 ≤ I(X1; Y|V,X2) (14a)

Rc + R1 ≤ I(V,X1,X2; Y) − I(V,X1,X2; S) (14b)

for some (S,V,X1,X2,Y) ∈ Pout
s-c .

It is easy to see that Rout
s-c ⊆ R̃out

s-c , as Rout
s-c can be obtained from R̃out

s-c by setting U = ∅. As shown in

the proof of the theorem that will follow, R̃out
s-c ⊆ Rout

s-c ; and so Rout
s-c = R̃out

s-c . Thus, by Theorem 1, Rout is

an outer bound on the capacity region of the state-dependent discrete memoryless MAC model with

strictly-causal states.

Theorem 2: The capacity region of the multiple access channel with degraded messages sets and strictly

causal states known only at the encoders satisfies

Cs-c ⊆ Rout
s-c . (15)

Proof: The proof of Theorem 2 is given in Appendix B.

The outer bound can be expressed equivalently using R̃out
s-c or Rout

s-c , since the two sets coincide. However,

the form Rout
s-c of the outer bound is more convenient and insightful. The following remarks aim at

reflecting this.

Remark 1: As we already mentioned, some recent works have shown the utility of strictly causal states

at the encoders in increasing the capacity region of multiaccess channels in certain settings. For example,

this has been demonstrated for a MAC with independent inputs and states known strictly causally at

the encoders [2]–[4], and for a MAC with degraded messages sets with the states known strictly causally

to the encoder that sends only the common-message and noncausally at the encoder that sends both

messages [5], [7], [8]. Also, in these settings, the increase in the capacity region is created by having

the encoders cooperate in each block to convey a lossy version of the state of the previous block to the

receiver. Furthermore, in the case of the MAC with independent inputs of [2], it is shown that additional

improvement can be obtained by having each encoder also sending a compressed version of the pair

(input, state) of the previous block, in addition to the cooperative transmission with the other encoder

of the common compression of the state. (This is reflected in [2] through the improvement of the inner

bound of Theorem 2 therein over that of Theorem 1). In our case, since one encoder knows the other

encoder’s message, it is not evident à-priori whether a similar additional improvement could be expected

from having the encoder that transmits both messages also sending another compression of the state, in

addition to that sent cooperatively. �

Remark 2: A direct proof of the outer bound in its form Rout
s-c does not seem to be easy to obtain because

of the necessity of introducing two auxiliary random variables in typical outer bounding approaches that

are similar to that of Theorem 1. In addition to that it is simpler comparatively, the form Rout
s-c of the outer
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bound is more convenient and insightful. It involves only one auxiliary random variable, V, (which, in a

corresponding coding scheme, would represent intuitively the lossy version of the state that is to be sent

by the two encoders cooperatively). Because the auxiliary random variable U (which, in a corresponding

coding scheme, would represent intuitively the additional compression of the state that is performed by

the encoder that transmits both messages) can be set optimally to be a constant, the outer bound Rout
s-c

suggests implicitly that there is no gain to be expected from additional compression at Encoder 1. That is,

by opposition to the case of the non-cooperative MAC of [2], for our model, for an efficient exploitation

of the knowledge of the states strictly causally at the encoders it seems1 enough to compress the state

only cooperatively. We should mention that, although somewhat intuitive given known results on the

role of feedback and strictly causal states at the encoder in point-to-point channels, a formal proof of the

aforementioned fact for the model that we study does not follow directly from these existing results. �

We now state a proposition that provides an alternative outer bound on the capacity region of the

multiaccess channel with degraded messages sets and states known only strictly causally at both encoders

that we study. This proposition will turn out to be useful in Section III-D.

Let R̆out
s-c be the set of all rate pairs (Rc,R1) satisfying

R1 ≤ I(X1; Y|X2, S)

Rc + R1 ≤ I(X1,X2; Y) (16)

for some measure

PS,X1,X2,Y = QSPX1,X2
WY|S,X1,X2

. (17)

Proposition 1: The capacity region Cs-c of the multiple access channel with degraded messages sets

and strictly causal states known only at the encoders satisfies

Cs-c ⊆ R̆out
s-c . (18)

Proof: The proof of Proposition 1 is given in Appendix C.

The bound on the sum rate of Theorem 2 is at least as tight as that of Proposition 1. This can be seen

through the following inequalities.

I(V,X1,X2; Y)−I(V,X1,X2; S)

= I(X1,X2; Y) + I(V; Y|X1,X2) − I(V; S|X1,X2) (19)

= I(X1,X2; Y) + I(V; Y|S,X1,X2) − I(V; S|X1,X2,Y) (20)

= I(X1,X2; Y) − I(V; S|X1,X2,Y) +H(Y|S,X1,X2) −H(Y|V, S,X1,X2) (21)

1Note, however, that since the tightness of the outer bound of Theorem 2 is still to be shown in general, optimal state compressions

for this model are still to be found.
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= I(X1,X2; Y) − I(V; S|X1,X2,Y) +H(Y|S,X1,X2) −H(Y|S,X1,X2) (22)

= I(X1,X2; Y) − I(V; S|X1,X2,Y) (23)

≤ I(X1,X2; Y) (24)

where: (19) follows since X1 and X2 are independent of the state S; (20) follows since for all random

variables A, B and C, we have I(A; B)−I(A; C) = I(A; B|C)−I(A; C|B); and (22) follows since V ↔ (S,X1,X2)↔
Y is a Markov chain.

For some channels, the sum-rate constraint of outer bound of Theorem 2 is strictly tighter than that of

the outer bound of Proposition 1. The following example, illustrates this.

Example 1: Consider the following discrete memoryless channel, considered initially in [2],

Y = XS (25)

where X1 = X2 = Y = {0, 1}, and the state S is uniformly distributed over the set S = {1, 2} and acts as a

random switch that connects a randomly chosen transmitter to the output.

For this channel, the rate-pair (Rc,R1) = (1/2, 1/2) is in the outer bound of Proposition 1, but not in that

of Theorem 2, i.e., (1/2, 1/2) ∈ R̆out
s-c and (1/2, 1/2) < Rout

s-c .

Proof: The analysis of Example 1 appears in Appendix D.

B. Inner Bound on the Capacity Region

Let Pin
s-c stand for the collection of all random variables (S,V,X1,X2,Y) such that V, X1 and X2 take

values in finite alphabets V, X1 and X2, respectively, and satisfy

PS,V,X1,X2,Y(s, v, x1, x2, y) = PS,V,X1,X2
(s, v, x1, x2)WY|X1,X2,S(y|x1, x2, s) (26a)

PS,V,X1,X2
(s, v, x1, x2) = QS(s)PX2

(x2)PX1 |X2
(x1|x2)PV|S,X2

(v|s, x2) (26b)

and

0 ≤ I(V,X2; Y) − I(V,X2; S). (27)

The relations in (26) imply that V ↔ (S,X1,X2) ↔ Y and X1 ↔ X2 ↔ V are Markov chains; and X1 and

X2 are independent of S.

Define Rin
s-c to be the set of all rate pairs (Rc,R1) such that

R1 ≤ I(X1; Y|V,X2) (28a)

Rc + R1 ≤ I(V,X1,X2; Y) − I(V,X1,X2; S) (28b)

for some (S,V,X1,X2,Y) ∈ Pin
s-c.

As stated in the following theorem, the set Rin
s-c is an inner bound on the capacity region of the state-

dependent discrete memoryless MAC with strictly-causal states.
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Theorem 3: The capacity region of the multiple access channel with degraded messages sets and strictly

causal states known only at the encoders satisfies

Rin
s-c ⊆ Cs-c. (29)

Proof: An outline proof of the coding scheme that we use for the proof of Theorem 3 will follow. The

associated error analysis is provided in Appendix E.

The following proposition states some properties of Rin
s-c and Rout

s-c .

Proposition 2: (properties of inner and outer bounds)

1. The sets Rin
s-c and Rout

s-c are convex.

2. To exhaust Rin
s-c and Rout

s-c , it is enough to restrict V to satisfy

|V| ≤ |S||X1||X2| + 2. (30)

Proof: The proof of Proposition 2 appears in Appendix F.

Remark 3: The inner bound Rin
s-c differs from the outer bound Rout

s-c only through the Markov chain

X1 ↔ X2 ↔ V. The outer bound requires arbitrary dependence of the auxiliary random variable V on the

inputs X1 and X2 by the encoders. For achievability results, while in block i the dependence of V on the

input X2 by the encoder that sends only the common message can be obtained by generating the covering

codeword v on top of the input codeword x2 from the previous block i − 1 and performing conditional

compression of the state sequence from block i− 1, i.e., conditionally on the input x2 by Encoder 2 in the

previous block i − 1, the dependence of V on the input X1 by the encoder that transmits both messages

is not easy to obtain. Partly, this is because i) the codeword v can not be generated on top of x1 (since

Encoder 2 does not know the individual message of Encoder 1), and ii) the input x1 by Encoder 1 has to

be independent of the state sequence s. �

Encoder 2

Encoder 1

Block 1 Block 2 Block 3 Block 4

x1(1, s3, 1)x1(wc,1, s0, w1,1) x1(wc,2, s1, w1,2) x1(wc,3, s2, w1,3)

x2(wc,1, s0) x2(wc,2, s1) x2(wc,3, s2) x2(1, s4)

v(wc,1, s0, z1) v(wc,2, s1, z2) v(wc,3, s2, z3)

Fig. 2. Block Markov coding scheme employed for the inner bound of Theorem 3, for B = 4.

Remark 4: The proof of Theorem 3 is based on a Block-Markov coding scheme in which the encoders

collaborate to convey a lossy version of the state to the receiver, in addition to the information messages.
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The lossy version of the state is obtained through Wyner-Ziv compression. Also, in each block, Encoder 1

also transmits an individual information. However, in accordance with the aforementioned insights that

we gain from the outer bound of Theorem 2, the state is sent to the receiver only cooperatively. That is, by

opposition to the coding scheme of [2, Theorem 2] for the MAC with independent inputs, Encoder 1 does

not compress or convey the state to the receiver beyond what is done cooperatively with Encoder 2. More

specifically, the encoding and transmission scheme is as follows. Let s[i] denote the channel state in block

i, and si the index of the cell Csi
containing the compression index zi of the state s[i], obtained through

Wyner-Ziv compression. In block i, Encoder 2, which has learned the state sequence s[i − 1], knows si−2

and looks for a compression index zi−1 such that v(wc,i−1, si−2, zi−1) is strongly jointly typical with s[i − 1]

and x2(wc,i−1, si−2). It then transmits a codeword x2(wc,i, si−1) (drawn according to the appropriate marginal

using (26)), where the cell index si−1 is the index of the cell containing zi−1, i.e., zi−1 ∈ Csi−1
. Encoder 1

finds x2(wc,i, si−1) similarly. It then transmits a vector x1(wc,i, si−1,w1i) (drawn according to the appropriate

marginal using (26)). For convenience, we list the codewords that are used for transmission in the first

four blocks in Figure 2. �

The scheme of Theorem 3 utilizes Wyner-Ziv binning for the joint compression of the state by the two

encoders. As it can be seen from the proof, the constraint

0 ≤ I(V,X2; Y) − I(V,X2; S) (31)

or, equivalently,

I(V; S|X2) − I(V; Y|X2) ≤ I(X2; Y), (32)

is caused by having the receiver decode the compression index uniquely. One can devise an alternate

coding scheme that achieves the region of Theorem 3 but without the constraint (27). More specifically,

let P̃in
s-c stand for the collection of all random variables (S,V,X1,X2,Y) such that V, X1 and X2 take values

in finite sets V, X1 and X2, respectively, and satisfy (26). Also, define R̃in
s-c to be the set of all rate pairs

(Rc,R1) satisfying the inequalities in (28) for some (S,V,X1,X2,Y) ∈ P̃in
s-c. Because the constraint (27) is

relaxed, the set R̃in
s-c satisfies

Rin
s-c ⊆ R̃in

s-c ⊆ Cs-c. (33)

The coding scheme that achieves the inner bound R̃in
s-c is similar to that of Theorem 3, but with the

state compression performed à-la noisy network coding by Lim, Kim, El Gamal and Chung [41] or the

quantize-map-and-forward by Avestimeher, Diggavi and Tse [42], i.e., with no binning. We omit it here

for brevity.2

2The reader may refer to [5] (see also [7] and [8]) where a setup with mixed – strictly causal and noncausal states, is analyzed

and the state compression is performed à-la noisy network coding.
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As the next example shows, the inner bound of Theorem 3 is strictly contained in the outer bound of

Theorem 2, i.e.,

Rin
s-c ( Rout

s-c . (34)

Example 2: Consider a two-user cooperative MAC with binary inputs X1 = X2 = {0, 1} and output

Y = (Y1,Y2) ∈ {0, 1}2 with

Y1 = X1 + SX1+X2
(35a)

Y2 = X2. (35b)

The transmission is controlled by a random state S = (S0, S1) ∈ {0, 1}2, where the state components S0

and S1 are i.i.d. Bernoulli (p), where p is the unique constant in the interval [0, 1/2] whose binary entropy

is 1/2, i.e.,

H(S0) = H(S1) = h2(p) =
1

2
. (36)

In (35), the addition is modulo two. Thus, if X1 = X2 then Y1 is the mod-2 sum of X1 and S0; otherwise,

it is the mod-2 sum of X1 and S1. For this example the rate-pair (Rc,R1) = (1/2, 1) is in the outer bound

of Theorem 2, but not in the inner bound of Theorem 3, i.e., (1/2, 1) ∈ Rout
s-c and (1/2, 1) < Rin

s-c.

Proof: The analysis of Example 2 appears in Appendix G. In what follows, we provide some intuition

onto why the rate-pair (Rc,R1) = (1/2, 1) is not in the inner bound Rin
s-c. In order for the rate R1 to be

equal 1, the receiver needs to learn SX1+X2
. In the coding scheme that yields the inner bound Rin

s-c, the

encoder that sends only the common message knows the values of the state S = (S0, S1) as well as those

of X2 from the previous blocks, but not that of X1; and, so, can not know the values of SX1+X2
from the

previous blocks.

C. On the Utility of the Strictly Causal States

The following example shows that revealing the states only strictly causally to both encoders increases

the capacity region.

Example 3: Consider the memoryless binary MAC shown in Figure 3. Here, all the random variables

are binary {0, 1}. The channel has two output components, i.e., Yn = (Yn
1
,Yn

2
). The component Yn

2
is

deterministic, Yn
2 = Xn

2 , and the component Yn
1
= Xn

1
+Sn +Zn

1
, where the addition is modulo 2. Encoder 2

has no message to transmit, and Encoder 1 transmits an individual message W1. The encoders know the

states only strictly causally. The state and noise vectors are independent and memoryless, with the state

process Si, i ≥ 1, and the noise process Z1,i, i ≥ 1, assumed to be Bernoulli ( 1
2 ) and Bernoulli (p) processes,

respectively. The vectors Xn
1

and Xn
2

are the channel inputs, subjected to the constraints

n
∑

i=1

X1,i ≤ nq1 and

n
∑

i=1

X2,i ≤ nq2, q2 ≥ 1/2. (37)
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Encoder 1

Decoder

Encoder 2
Xn

2

Xn
1 Y n

1

Y n
2

Si−1

Si−1

W1

Ŵ1

Zn

1

BSC

Fig. 3. Binary state-dependent MAC example with two output components, Yn = (Yn
1
,Yn

2
), with Yn

1
= Xn

1
+ Sn + Zn

1
and Yn

2
= Xn

2
.

For this example, the strictly causal knowledge of the states at Encoder 2 increases the capacity, and

in fact Encoder 1 can transmit at rates that are larger than the maximum rate that would be achievable

had Encoder 2 been of no help.

Claim 1: The capacity of the memoryless binary MAC with states known strictly causally at the encoders

shown in Figure 3 is given by

Cs-c = max
p(x1)

I(X1; Y1|S) (38)

where the maximization is over measures p(x1) satisfying the input constraint (37).

Proof: The proof of achievability is as follows. Set Rc = 0, V = S and Y2 = X2, with X2 independent of

(S,X1) in the inner bound of Theorem 3. Evaluating the first inequality, we obtain

R1 + ǫ ≥ I(X1; Y|V,X2) (39)

= I(X1; Y1,X2|S,X2) (40)

= I(X1; Y1|S,X2) (41)

= I(X1,X2; Y1|S) − I(X2; Y1|S) (42)

= I(X1; Y1|S) + I(X2; Y1|X1, S) − I(X2; Y1|S) (43)

= I(X1; Y1|S) − I(X2; Y1|S) (44)

= I(X1; Y1|S), (45)

where (44) follows since X2 = Y2 and Y2 ↔ (X1, S)↔ Y1 is a Markov chain, and the last equality follows

by the Markov relation X2 ↔ S↔ Y1 for this example.

Evaluating the second inequality, we obtain

R1 + ǫ ≥ I(V,X1,X2; Y) − I(V,X1,X2; S) (46)

= I(X1, S; Y1,X2) +H(X2|X1, S) −H(S) (47)

= I(X1, S; Y1) + I(X1, S; X2|Y1) +H(X2|X1, S) −H(S) (48)
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= I(X1, S; Y1) +H(X2|Y1) −H(X2|X1, S,Y1) +H(X2|X1, S) −H(S) (49)

= I(X1; Y1|S) + I(S; Y1) +H(X2|Y1) −H(S) (50)

= I(X1; Y1|S) +H(X2|Y1) −H(S|Y1) (51)

= I(X1; Y1|S) +H(Y1|X2) −H(Y1|S) +H(X2) −H(S) (52)

= I(X1; Y1|S) + I(S; Y1) +H(X2) −H(S) (53)

where (50) follows since X2 is independent of (X1, S,Y1).

Similarly, evaluating the constraint, we obtain

I(V,X2; Y) − I(V,X2; S) = I(S; Y1|X2) +H(X2) −H(S). (54)

Now, observe that with the choice X2 ∼ Bernoulli ( 1
2 ) independent of (S,X1), we have H(X2) = H(S) = 1

and, so, the RHS of (53) is larger than the RHS of (45); and the RHS of (54) is nonnegative. This shows

the achievability of the rate R1 = I(X1; Y1|S).

2) The converse follows straightforwardly by specializing Theorem 2 (or the cut-set upper bound) to

this example,

R ≤ I(X1; Y|X2, S) (55)

= I(X1; Y1|X2, S) (56)

= H(Y1|X2, S) −H(Y1|X1,X2, S) (57)

≤ H(Y1|S) −H(Y1|X1,X2, S) (58)

≤ H(Y1|S) −H(Y1|X1, S) (59)

= I(X1; Y1|S), (60)

where (58) holds since conditioning reduces entropy, and (60) holds by the Markov relation X2 ↔ (X1, S)↔
Y1. �

Claim 2: The capacity of the memoryless binary MAC with states known strictly causally at the encoders

shown in Figure 3 satisfies

Cs-c =



















h2(p ∗ q1) − h2(p) if 0 ≤ q1 ≤ 1
2

1 − h2(p) if q1 ≥ 1
2



















≥ Cno-s = max
p(x1)

I(X1; Y1). (61)

Proof: The explicit expression of Cs-c, i.e., Cs-c = h2(p ∗ q1) − h2(p) if 0 ≤ q1 ≤ 1/2 and Cs-c = 1 − h2(p) if

q1 ≥ 1/2, follows straightforwardly from Claim 1 by simple algebra, where h2(α) denotes the entropy of

a Bernoulli (α) source and p ∗ q denotes the binary convolution, i.e., p ∗ q = p(1 − q) + q(1 − p), as defined

in Section I-B. Let now Cno-s denote the capacity of the same model had the states been known (strictly

causally) only at Encoder 1. Since in this case the knowledge of the states only at Encoder 1 would not

increase the capacity (see also Proposition 4 below), Cno-s is also the capacity of the same model had the

November 15, 2017 DRAFT



16

states been not known at all. Thus, Cno-s is given by the RHS of (61). For this example, it is easy to see

that Cno-s = 0. This holds since h2(q1 ∗ 1/2 ∗ p)− h2(1/2 ∗ p) = 1− h2(1/2 ∗ p) = 0 ∀ (p, q1, q2) ∈ [0, 1]2×[1/2, 1]

– recall that the state is Bernoulli ( 1
2 ) and is independent of the inputs X1, X2 and the noise Z. Thus, the

inequality in (61) holds irrespective to the values of the tuple (p, q1, q2 ≥ 1/2). �

Observe that the inequality in (61) holds strictly if p , 1/2 and q1 , 0; and, so, revealing the states

strictly causally to Encoder 2 strictly increases the capacity in this case.

D. Capacity Results

Example 3 in Section III-C shows that the knowledge of the states strictly causally at the encoders

increases the capacity region of the cooperative MAC that we study. This fact has also been shown for

other related models, such as a multiaccess channel with independent inputs and strictly causal or causal

states at the encoders in [2]–[4], and a multiaccess channel with degraded messages sets and states known

noncausally to the encoder that sends both messages and only strictly causally at the encoder that sends

only the common message in [5], [7], [8]. Proposition 4 in Section IV will show that, for the model with

cooperative encoders that we study, the increase in the capacity holds precisely because the encoder that

sends only the common message, i.e., Encoder 2, also knows the states. That is, if the states were known

strictly causally to only Encoder 1, its availability would not increase the capacity of the corresponding

model. Proposition 3 shows that, like for the model with independent inputs in [2], the knowledge of

the states strictly causally at the encoders does not increase the sum rate capacity, however.

Proposition 3: The knowledge of the states only strictly causally at the encoders does not increase the

sum capacity of the multiple access channel with degraded messages sets, i.e.,

max
(Rc,R1) ∈ Cs-c

Rc + R1 = max
p(x1,x2)

I(X1,X2; Y). (62)

The converse proof of Proposition 3 follows immediately from Proposition 1. The achievability proof

of Proposition 3 follows simply by ignoring the state information at the encoders, since the RHS of (62)

is the sum-rate capacity of the same MAC without states.

Proposition 3 shows that revealing the state that governs a MAC with degraded messages sets strictly

causally to both encoders does not increase the sum-rate capacity. This is to be opposed to the case in

which the encoders send only independent messages for which revealing the state strictly causally to

both encoders can increase the sum-rate capacity [2].

In what follows, we extend the capacity result derived for a memoryless Gaussian example in [2,

Example 2] to the case of cooperative encoders and then generalize it to a larger class of channels. Consider

a class of discrete memoryless two-user cooperative MACs, denoted by Dsym

MAC
, in which the channel state

S, assumed to be revealed strictly causally to both encoders, can be obtained as a deterministic function

November 15, 2017 DRAFT



17

of the channel inputs X1 and X2 and the channel output Y, as

S = f (X1,X2,Y). (63)

Theorem 4: For any MAC in the class Dsym

MAC
defined above, the capacity region Cs-c is given by the set

of all rate pairs (Rc,R1) satisfying

R1 ≤ I(X1; Y|X2, S)

Rc + R1 ≤ I(X1,X2; Y) (64)

for some measure

PS,X1,X2,Y = QSPX1,X2
WY|S,X1,X2

. (65)

Proof: The proof of the converse part of Theorem 4 follows by Proposition 1. The proof of the direct

part of Theorem 4 follows by setting V = S in the region R̃in
s-c. (see (33) and the discussion after Remark 4).

Remark 5: The class Dsym

MAC
includes the following memoryless Gaussian example, which is similar to

that in [2, Example 2] but with the encoders being such that both of them send a common message and

one of the two also sends an individual message,

Y = X1 + X2 + S (66)

where the inputs Xn and Xn
2 are subjected to individual power constraints (1/n)

∑n
i=1E[X2

k,i
] ≤ Pk, k = 1, 2,

and the state Sn is memoryless Gaussian, S ∼ N(0,Q), and known strictly causally to both encoders. The

capacity region of this model is given by the set of all rate pairs (Rc,R1) satisfying

Rc + R1 ≤
1

2
log

(

1 +
(
√

P1 +
√

P2)2

Q

)

. (67)

The region (67) can be obtained by first extending the result of Theorem 4 for the DM case to memoryless

channels with discrete time and continuous alphabets using standard techniques [43, Chapter 7], and then

maximizing each bound utilizing the Maximum Differential Entropy Lemma [44, Section 2.2]. Note that, by

doing so, the first condition on the individual rate in (64) appears to be redundant for this Gaussian

model. �

The class Dsym

MAC
contains more channels along with the memoryless Gaussian model (66).

Example 4: Consider the Gaussian MAC with Y = (Y1,Y2), and

Y1 = X1 + X2 + S (68a)

Y2 = X2 + Z (68b)

where the state process is memoryless Gaussian, with S ∼ N(0,Q), and the noise process is memoryless

Gaussian independent of all other processes, Z ∼ N(0,N). Encoder 1 knows the state strictly causally, and

transmits both common message Wc ∈ [1, 2nRc] and private message W1 ∈ [1, 2nR1]. Encoder 2 knows the

state strictly causally, and transmits only the common message. We consider the input power constraints
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∑n
i=1E[X2

1,i
] ≤ nP1 and

∑n
i=1E[X2

2,i
] ≤ nP2. The capacity region of this model can be computed using

Theorem 4. It is characterized as

CG
s-c =































(Rc,R1) ∈ R2
+ :

Rc + R1 ≤ max0≤ρ12≤1
1
2 log

(

1 + P2

N

)

+ 1
2 log

(

1 +
(1−ρ2

12
)P1P2+N((

√
P1+ρ12

√
P2)2+(1−ρ2

12
)P2)

Q(P2+N)

)































. (69)

Proof: The analysis of Example 4 is given in Appendix I.

IV. Strictly Causal States at Only One Encoder

In this section we consider asymmetric state settings in which the state is revealed (strictly causally)

to only one encoder.

Proposition 4: The knowledge of the states strictly causally at only the encoder that sends both mes-

sages does not increase the capacity region of the cooperative MAC.

The proof of Proposition 4 appears in Appendix H.

In the case in which the state is revealed strictly causally to only the encoder that sends only the

common message, this increases the capacity region. In what follows, first we derive an inner bound on

the capacity of this model. Next, we generalize the capacity result derived in [4, Theorem 4] for discrete

memoryless channels in which 1) the channel output is a deterministic function of the inputs and the

state and 2) the state is a deterministic function of the channel output and inputs from the encoders, to

a larger class of channels. For instance, in addition to that the model is different since the transmitters

send a common message, the capacity result that will follow does not require that the channel output be

a deterministic functions of the inputs and the state, which then is arbitrary.

Let Pin
asym,s-c stand for the collection of all random variables (S,U,V,X1,X2,Y) such that U, V, X1 and

X2 take values in finite alphabets U, V, X1 and X2, respectively, and satisfy

PS,U,V,X1,X2,Y(s, u, v, x1, x2, y) = PS,U,V,X1,X2
(s, u, v, x1, x2)WY|X1 ,X2,S(y|x1, x2, s) (70a)

PS,U,V,X1,X2
(s, u, v, x1, x2) = QS(s)PU(u)PX2|U(x2|u)PX1|U(x1|u)PV|S,U,X2

(v|s, u, x2). (70b)

The relations in (70) imply that (U,V) ↔ (S,X1,X2) ↔ Y, X1 ↔ U ↔ X2 and X1 ↔ (U,V,X2) ↔ S are

Markov chains; and X1 and X2 are independent of S.

Define Rin
asym,s-c to be the set of all rate pairs (Rc,R1) such that

R1 ≤ I(X1; Y|U,V,X2)

R1 ≤ I(V,X1,X2; Y|U) − I(V; S|U,X2)

Rc + R1 ≤ I(U,V,X1,X2; Y) − I(V; S|U,X2)

for some (S,U,V,X1,X2,Y) ∈ Pin
asym,s-c. (71)
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As stated in the following theorem, the set Rin
asym,s-c is an inner bound on the capacity region of the state-

dependent discrete memoryless MAC with strictly-causal states known only at the encoder that sends

only the common message.

Theorem 5: The capacity region of the cooperative multiple access channel with states revealed strictly

causally to only the encoder that sends the common message satisfies

Rin
asym,s-c ⊆ Casym,s-c. (72)

Proof: A description of the coding scheme that we use for the proof of Theorem 5, as well a complete

error analysis, are given in Appendix J.

The following remark helps better understanding the coding scheme that we use for the proof of

Theorem 5.

Remark 6: For the model of Theorem 5, a good codebook at the encoder that sends only the common

message should resolve a dilemma among 1) exploiting the knowledge of the state that is available at this

encoder and 2) sending information cooperatively with the other encoder (i.e., the common message).

The coding scheme of Theorem 5 resolves this tension by splitting the common rate Rc into two parts.

More specifically, the common message Wc is divided into two parts, W = (Wc1,Wc2). The part Wc1 is sent

cooperatively by the two encoders, at rate Rc1; and the part Wc2 is sent only by the encoder that exploits

the available state, at rate Rc2. The total rate for the common message is Rc = Rc1 +Rc2. In Theorem 5, the

random variable U stands for the information that is sent cooperatively by the two encoders, and the

random variable V stands for the compression of the state by the encoder that sends only the common

message, in a manner that is similar to that of Theorem 3. �

Consider the following class of discrete memoryless channels, which we denote as DIH. Encoder 1

does not know the state sequence at all, and transmits an individual message W1 ∈ [1, 2nR1]. Encoder 2

knows the state sequence strictly causally, and does not transmits any message. In this model, Encoder

2 plays the role of a helper that is informed of the channel state sequence only strictly causally. This

network may model one in which there is an external node that interferes with the transmission from

Encoder 1 to the destination, and that is overheard only by Encoder 2 which then assists the destination

by providing some information about the interference. Furthermore, we assume that the state S can be

obtained as a deterministic function of the inputs X1, X2 and the channel output Y, as

S = f (X1,X2,Y). (73)

For channels with a helper that knows the states strictly causally, the class of channels DIH is larger than

that considered in [4], as the channel output needs not be a deterministic function of the channel inputs

and the state. The following theorem characterizes the capacity region for the class of channels DIH.

The capacity of the class of channels DIH can be characterized as follows.
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Theorem 6: For any channel in the class DIH defined above, the capacity Cs-c is given by

Cs-c = min
{

I(X1; Y|S,X2), I(X1,X2; Y)
}

(74)

where the maximization is over measures of the form

PS,X1,X2,Y = QSPX1
PX2

WY|S,X1,X2
. (75)

Proof: The proof of Theorem 6 is given in Appendix K.

Remark 7: The class DIH includes the Gaussian model Y = X1+X2+S where the state S ∼ N(0,Q) com-

prises the channel noise, and the inputs are subjected to the input power constraints (1/n)
∑n

i=1E[X2
k,i

] ≤ Pk,

k = 1, 2. Encoder 1 does not know the state sequence and transmits message W1. Encoder 2 knows the

state sequence strictly causally, and does not transmit any message. The capacity of this model is given

by

CG
s-c =

1

2
log(1 +

P1 + P2

Q
). (76)

The capacity (76) can be obtained from Theorem 6 by maximizing the two terms of the minimization

utilizing the Maximum Differential Entropy Lemma [44, Section 2.2]. Observe that the first term of the

minimization in (74) is redundant in this case. Also, we note that the capacity (76) of this example can

also be obtained as a special case of that of the Gaussian example considered in [4, Remark 4]. �

In the following example the channel output can not be obtained as a deterministic function of the

channel inputs and the channel state, and yet, its capacity can be characterized using Theorem 6.

Example 5: Consider the following Gaussian example with Y = (Y1,Y2), and

Y1 = X1 + X2 + S (77a)

Y2 = X2 + Z (77b)

where the state process is memoryless Gaussian, with S ∼ N(0,Q), and the noise process is memoryless

Gaussian independent of all other processes, Z ∼ N(0,N). Encoder 1 does not know the state sequence,

and transmits message W1 ∈ [1, 2nR1]. Encoder 2 knows the state strictly causally, and does not transmit any

message. The inputs are subjected to the input power constraints
∑n

i=1E[X2
1,i

] ≤ nP1 and
∑n

i=1E[X2
2,i

] ≤ nP2.

The capacity of this model can be computed easily using Theorem 6, as

CG
s-c =

1

2
log

(

1 +
P1

Q
+

P2

Q

N

P2 +N

)

+
1

2
log

(

1 +
P2

N

)

. (78)

Note that the knowledge of the states strictly causally at Encoder 2 makes it possible to send at positive

rates by Encoder 1 even if the allowed average power P1 is zero. The diamond on the y-axis of Figure 4

shows the capacity of the model (77) for the choice P1 = P2 = N = 1/2 and Q = 1. The figure also

shows the capacity region (69) of the same model had the state sequence been known (strictly causally)

to both encoders. The gap on the y-axis is precisely the gain in capacity enabled by also revealing the

state to the encoder that sends both messages. A similar improvement can be observed for the Gaussian
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Fig. 4. Capacity of the models (66) and (68), with different degrees of knowledge of the state sequence at the encoders. Numerical

values are: P1 = P2 = N = 1/2 and Q = 1.

model Y = X1 + X2 + S of Remark 7. The dot-dashed curve depicts the capacity region of this model

had the state sequence been not known at all, neither to encoders nor to the decoder [45], [46] – which

is the same capacity region has the state sequence been known (strictly causally) only to the encoder

that transmits both messages (see Proposition 4). Note that for both models, of Remark 7 and (77), if the

state sequence is known non-causally to the encoder that sends only the common message, a standard

dirty paper coding scheme [47] at this encoder cancels completely the effect of the state. The reader may

refer to [23], [24], [48] where a related model is referred to as the deaf helper problem. A related Gaussian

Z-channel with mismatched side information, revealed non-causally to one encoder, and interference is

studied in [49]. Other related multiaccess models with states revealed non-causally to one encoder can

be found in [50]–[52].

Example 6: Consider the following binary example in which the state models fading. The channel

output has two components, i.e., Y = (Y1,Y2), with

Y1 = S·X1 (79a)

Y2 = X2 + Z (79b)

where X1 = X2 = S = Z = {+1,−1}, and the noise Z is independent of (S,X1,X2) with Pr{Z = 1} = p and
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Pr{Z = −1} = 1 − p, 0 ≤ p ≤ 1, and the state S, known strictly causally to only Encoder 2, is such that

Pr{S = 1} = Pr{S = −1} = 1/2. Using Theorem 6, it is easy to compute the capacity of this example, as

CB
s-c = max

0≤q1,q2≤1
min

{

h2(q1), g(p, q2) − h2(p)
}

(80)

where

g(p, q2) = −pq2 log(pq2) − (1 − p)(1 − q2) log((1 − p)(1− q2)) − p ∗ q2 log(p ∗ q2). (81)

Observe that CB
s-c ≥ 1 − 1

2 h2(p) ≥ 0.5.

Proof: Using (79), we have S = Y1/X1, and, so, S is a deterministic function of (X1,X2,Y). Thus, the

capacity of this channel can be computed using Theorem 6. Let 0 ≤ q1 ≤ 1 such that Pr{X1 = 1} = q1

and Pr{X1 = −1} = 1 − q1. Also, let 0 ≤ q2 ≤ 1 such that Pr{X2 = 1} = q2 and Pr{X2 = −1} = 1 − q2. Then,

considering the first term on the RHS of (74), we get

I(X1; Y|S,X2) = H(Y|S,X2) −H(Y|S,X1,X2) (82)

= H(SX1,X2 + Z|S,X2) −H(Z|S,X1,X2) (83)

= H(X1,Z|S,X2) −H(Z) (84)

= H(X1,Z) −H(Z) (85)

= H(X1) (86)

= h2(q1) (87)

where (84) holds since Z is independent of (S,X1,X2), (85) holds since (X1,Z) is independent of (S,X2),

and (86) holds since X1 and Z are independent.

Similarly, considering the second term on the RHS of (74), we get

I(X1,X2; Y) = H(Y) −H(Y|X1,X2) (88)

= H(Y) − (SX1,Z|X1,X2) (89)

= H(Y) −H(Z) −H(S) (90)

= H(SX1) +H(X2 + Z) −H(Z) −H(S) (91)

= H(X2 + Z) −H(Z) (92)

= g(p, q2) − h2(p) (93)

where (90) holds since S and Z are independent of (X1,X2) and independent of each other, (91) holds

since Y1 = SX1 and Y2 = X2 + Z are independent, (92) follows because

Pr{SX1 = 1} = Pr{SX1 = −1} = 1

2
(94)
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and, so, H(SX1) = 1 = H(S), and (93) follows because

Pr{X2 + Z = 0} = p ∗ q2, Pr{X2 + Z = 2} = pq2, Pr{X2 + Z = −2} = (1 − p)(1 − q2) (95)

and, so, H(X2 + Z) = g(p, q2) as given by (81). �

Remark 8: The result of Theorem 6 can be extended to the case in which the encoders send separate

messages and each observes (strictly causally) an independent state. In this case, denoting by S1 the state

that is observed by Encoder 1 and by S2 the state that is observed by Encoder 2, it can be shown that,

if both S1 and S2 can be obtained as deterministic functions of the inputs X1 and X2 and the channel

output Y, then the capacity region is given by the convex hull of the set of all rates satisfying

R1 ≤ I(X1; Y|X2, S2) (96a)

R2 ≤ I(X2; Y|X1, S1) (96b)

R1 + R2 ≤ I(X1,X2; Y) (96c)

for some measure of the form QS1,S2,X1,X2
= QS1

QS2
PX1

PX2
. This result can also be obtained by noticing

that, if both S1 and S2 are deterministic functions of (X1,X2,Y), then the inner bound of [4, Theorem 2]

reduces to (96), which is also an outer bound as stated in [3, Proposition 3].

V. Causal States

Let Pc stand for the collection of all random variables (S,U,V,X1,X2,Y) such that U, V, X1 and X2 take

values in finite alphabets U, V, X1 and X2, respectively, and

PS,U,V,X1,X2,Y(s, u, v, x1, x2, y) = PS,U,V,X1X2
(s, u, v, x1, x2)WY|X1,X2,S(y|x1, x2, s) (97a)

PS,U,V,X1,X2
(s, u, v, x1, x2) = QS(s)PV(v)PU|V(u|v)PX2|V,S(x2|v, s)PX1|S,V,U(x1|s, v, u). (97b)

The relations in (97) imply that (U,V)↔ (S,X1,X2)↔ Y is a Markov chain; and that (V,U) is independent

of S.

Define Cc to be the set of all rate pairs (Rc,R1) such that

R1 ≤ I(U; Y|V)

Rc + R1 ≤ I(U,V; Y)

for some (S,U,V,X1,X2,Y) ∈ Pc. (98)

As stated in the following theorem, the set Cc is the capacity region of the state-dependent discrete

memoryless MAC model with causal states.

Theorem 7: The capacity region of the multiple access channel with degraded messages sets and states

known causally at both encoders is given by Cc.

Proof: The proof of Theorem 7 is given in Appendix L.
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Remark 9: For the proof of Theorem 7 , the converse part can be shown in a way very that is essentially

very similar to [53]. The coding scheme that we use to prove the achievability part is based on Shannon

strategies [1]. By opposition to the case of MAC with independent inputs in [53] or that with one common

message and two individual messages [54], in our case one of the two encoders knows the other encoder’s

message, and this permits to create the desired correlation among the auxiliary codewords that is required

by the outer bound. Also, we should mention that the fact that Shannon strategies are optimal for the MAC

with degraded messages sets that we study is in opposition with the case of the MAC with independent

inputs, for which it has been shown in [2, Section III] that Shannon strategies are suboptimal in general.

�

VI. Concluding Remarks

In this paper we study the transmission over a state-controlled two-user cooperative multiaccess

channel with the states known – depending on the scenario, strictly causally or causally to only one

or both transmitters. While, like the MAC with non-degraded messages sets of [2] (and also the related

models of [3], [4] and [5]), it can be expected that conveying a description of the state by the encoders to

the decoder can be beneficial in general, it is not clear how the state compression should be performed

optimally, especially at the encoder that sends both messages in the model in which the state is revealed

strictly causally to both transmitters. The role of this encoder is seemingly similar to that of each of the

two encoders in the model of [2]. However, because in our case the other encoder only sends a common

message, the outer bound of Theorem 2 suggests that, by opposition to the setting of [2], in each block the

private information of the encoder that sends both messages needs not carry an individual description

of the state. Intuitively, this holds because, in our model in order to help the other encoder transmit

at a larger rate, the encoder that transmits both messages better exploits any fraction of its individual

message’s rate by directly transmitting the common message, rather than compressing the state any

longer so that the decoder obtains an estimate of the state that is better than what is possible using only

the cooperative compression. Although a formal proof of this, as well as exact characterizations of the

capacity regions of some of the models studied in this paper, are still to be found, this work enlightens

different aspects relative to the utility of delayed CSI at transmitters in a cooperative multiaccess channel.
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Appendix

Throughout this section we denote the set of strongly jointly ǫ-typical sequences [55, Chapter 14.2]

with respect to the distribution PX,Y as T n
ǫ (PX,Y).
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A. Proof of Theorem 1

We prove that for any (Mc,M1, n, ǫ) code consisting of a sequence of mappings φ1,i :Wc×W1×Si−1 −→
X1 at Encoder 1, a sequence of mappings φ2,i : Wc×Si−1 −→ X2, i = 1, . . . , n, at Encoder 2, and a

mapping ψ : Yn −→ Wc×W1 at the decoder with average error probability Pn
e → 0 as n → 0 and rates

Rc = n−1 log2 Mc and R1 = n−1 log2 M1, there exists random variables (V,U,X1,X2) ∈ V×U×X1×X2 such

that the joint distribution PS,V,U,X1,X2
is of the form

PS,V,U,X1,X2
= QSPX2

PV|S,X2
PX1|V,X2

PU|V,S,X1,X2
, (A-1)

the marginal distribution of S is QS(s), i.e.,

∑

v,u,x1,x2

PS,V,U,X1,X2
(s, v, u, x1, x2) = QS(s) (A-2)

and the rate pair (Rc,R1) must satisfy (9).

Fix n and consider a given code of block length n. The joint probability mass function onWc×W1×Sn×Xn
1
×Xn

2
×Yn

is given by

p(wc,w1, s
n, xn

1 , x
n
2, y

n) = p(wc,w1)

n
∏

i=1

p(si)p(x1i|wc,w1, s
i−1)p(x2i|wc, s

i−1)p(yi|x1i, x2i, si), (A-3)

where, p(x1i|wc,w1, s
i−1) is equal 1 if x1i = f1(wc,w1, s

i−1) and 0 otherwise; and p(x2i|wc, s
i−1) is equal 1 if

x2i = f2(wc, s
i−1) and 0 otherwise.

The decoder map ψ recovers (Wc,W1) from Yn with the vanishing average error probability Pe. By

Fano’s inequality, we have

H(Wc,W1|Yn) ≤ nǫn, (A-4)

where ǫn → 0 as Pn
e → 0.

Define the random variables

V̄i = (Wc, S
i−1,Yn

i+1)

Ūi = (W1, V̄i). (A-5)

Observe that the random variables so defined satisfy

(Si, Ūi, V̄i,X1,i,X2,i,Yi) ∈ P̃out
s-c , ∀i ∈ {1, . . . , n}. (A-6)

i) We can bound the sum rate as follows.

n(Rc + R1) ≤ H(Wc,W1) (A-7)

= I(Wc,W1; Yn) +H(Wc,W1|Yn)

(a)
≤ I(Wc,W1; Yn) + nǫn
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(b)
= I(Wc,W1; Yn) − I(Wc,W1; Sn) + nǫn (A-8)

=

n
∑

i=1

I(Wc,W1; Yi|Yn
i+1) − I(Wc,W1; Si|Si−1) + nǫn (A-9)

=

n
∑

i=1

I(Wc,W1, S
i−1; Yi|Yn

i+1) − I(Si−1; Yi|Wc,W1,Y
n
i+1) − I(Wc,W1; Si|Si−1) + nǫn (A-10)

=

n
∑

i=1

I(Wc,W1, S
i−1; Yi|Yn

i+1) − I(Wc,W1; Si|Si−1) −
n

∑

i=1

I(Si−1; Yi|Wc,W1,Y
n
i+1) + nǫn (A-11)

(c)
=

n
∑

i=1

I(Wc,W1, S
i−1; Yi|Yn

i+1) − I(Wc,W1; Si|Si−1) −
n

∑

i=1

I(Yn
i+1; Si|Wc,W1, S

i−1) + nǫn (A-12)

=

n
∑

i=1

I(Wc,W1, S
i−1; Yi|Yn

i+1) −H(Si|Si−1) +H(Si|Wc,W1, S
i−1,Yn

i+1) + nǫn (A-13)

(d)
=

n
∑

i=1

I(Wc,W1, S
i−1; Yi|Yn

i+1) −H(Si) +H(Si|Wc,W1, S
i−1,Yn

i+1) + nǫn (A-14)

≤
n

∑

i=1

I(Wc,W1, S
i−1,Yn

i+1; Yi) − I(Wc,W1, S
i−1,Yn

i+1; Si) + nǫn (A-15)

(e)
=

n
∑

i=1

I(Ūi, V̄i; Yi) − I(Ūi, V̄i; Si) + nǫn (A-16)

( f )
=

n
∑

i=1

I(Ūi, V̄i,X1i,X2i; Yi) − I(Ūi, V̄i,X1i,X2i; Si) + nǫn (A-17)

(g)
=

n
∑

i=1

I(Ūi, V̄i,X1i,X2i; Yi) − I(Ūi, V̄i; Si|X1i,X2i) + nǫn (A-18)

where (a) follows by Fano’s inequality; (b) follows from the fact that messages Wc and W1 are independent

of the state sequence Sn; (c) follows from Csiszar and Korner’s Sum Identity [56]

n
∑

i=1

I(Yn
i+1; Si|Wc,W1, S

i−1) =

n
∑

i=1

I(Si−1; Yi|Wc,W1,Y
n
i+1) (A-19)

(d) follows from the fact that state Sn is i.i.d.; (e) follows by the definition of the random variables Ūi

and V̄i in (A-5); ( f ) follows from the fact that X1i is a deterministic function of (Wc,W1, S
i−1), and X2i is a

deterministic function of (Wc, S
i−1), and (g) follows from the fact that X1i and X2i are independent of Si.

ii) Also, we can bound the individual rate as follows.

nR1 ≤ H(W1|Wc) (A-20)

= I(W1; Yn|Wc) +H(W1|Yn,Wc)

(a)
≤ I(W1; Yn|Wc) + nǫn

(b)
= I(W1; Yn|Wc) − I(W1; Sn|Wc) + nǫn (A-21)
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=

n
∑

i=1

I(W1; Yi|Wc,Y
n
i+1) − I(W1; Si|Wc, S

i−1) + nǫn (A-22)

=

n
∑

i=1

I(W1, S
i−1; Yi|Wc,Y

n
i+1) − I(Si−1; Yi|Wc,W1,Y

n
i+1) − I(W1; Si|Wc, S

i−1) + nǫn (A-23)

(c)
=

n
∑

i=1

I(W1, S
i−1; Yi|Wc,Y

n
i+1) − I(Si; W1,Y

n
i+1|Wc, S

i−1) + nǫn (A-24)

=

n
∑

i=1

I(W1; Yi|Wc, S
i−1,Yn

i+1) + I(Si−1; Yi|Wc,Y
n
i+1) − I(Si; Yn

i+1|Wc, S
i−1) − I(Si; W1|Wc, S

i−1,Yn
i+1) + nǫn

(A-25)

(d)
=

n
∑

i=1

I(W1; Yi|Wc, S
i−1,Yn

i+1) − I(W1; Si|Wc, S
i−1,Yn

i+1) + nǫn (A-26)

(e)
=

n
∑

i=1

I(W1; Yi|Wc, S
i−1,Yn

i+1,X2,i) − I(Si; W1|Wc, S
i−1,Yn

i+1,X2,i) + nǫn (A-27)

( f )
=

n
∑

i=1

I(Ūi; Yi|V̄i,X2,i) − I(Ūi; Si|V̄i,X2,i) + nǫn

(g)
=

n
∑

i=1

I(Ūi,X1i; Yi|V̄i,X2,i) − I(Ūi,X1i; Si|V̄i,X2,i) + nǫn (A-28)

where (a) follows by Fano’s inequality; (b) follows from the fact that messages Wc and W1 are independent

of the state sequence Sn; (c) and (d) follow from Csiszar and Korner’s Sum Identity (A-19); (e) follows

since X2i is a deterministic function of (Wc, S
i−1); ( f ) follows by the definition of the random variables Ūi

and V̄i in (A-5); and (g) follows since X1i is a deterministic function of (Wc,W1, S
i−1).

From the above, we get that

R1 ≤
1

n

n
∑

i=1

I(Ūi; Yi|V̄i,X2,i) − I(Ūi; Si|V̄i,X2,i) + ǫn

Rc + R1 ≤
1

n

n
∑

i=1

I(Ūi, V̄i,X2,i; Yi) − I(Ūi, V̄i,X2,i; Si) + ǫn. (A-29)

Also, observe that the auxiliary random variable V̄i satisfies

n
∑

i=1

I(V̄i,X2,i; Yi) − I(V̄i,X2,i; Si) ≥ 0. (A-30)

This can be seen by noticing that

I(W1; Yn|Wc) =

n
∑

i=1

I(Ūi; Yi|V̄i,X2,i) − I(Ūi; Si|V̄i,X2,i) (A-31)

I(Wc,W1; Yn) ≤
n

∑

i=1

I(Ūi, V̄i,X2i; Yi) − I(Ūi, V̄i,X2i; Si). (A-32)

and then noticing that, since I(W1; Yn|Wc) ≤ I(Wc,W1; Yn), the constraint (A-30) should hold.

The statement of the converse follows now by applying to (A-29) and (A-30) the standard time-sharing

argument and taking the limits of large n. This is shown briefly here. We introduce a random variable
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T which is independent of S, and uniformly distributed over {1, · · · , n}. Set S = ST, Ū = ŪT, V̄ = V̄T,

X1 = X1,T, X2 = X2,T, and Y = YT. Then, considering the first bound in (A-29), we obtain

1

n

n
∑

i=1

I(Ūi; Yi|V̄i,X2,i) − I(Ūi; Si|V̄i,X2,i)

= I(Ū; Y|V̄,X2,T) − I(Ū; S|V̄,X2,T)

= I(Ū,T; Y|V̄,X2,T) − I(Ū,T; S|V̄,X2,T). (A-33)

Similarly, considering the second bound in (A-29), we obtain

1

n

n
∑

i=1

I(Ūi, V̄i,X2,i; Yi) − I(Ūi, V̄i,X2,i; Si)

= I(Ū, V̄,X2; Y|T) − I(Ū, V̄,X2; S|T)

= I(T, Ū, V̄,X2; Y) − I(T; Y)− I(T, Ū, V̄,X2; S) + I(T; S)

≤ I(T, Ū, V̄,X2; Y) − I(T, Ū, V̄,X2; S). (A-34)

Also, considering the constraint (A-30), we obtain

0 ≤ 1

n

n
∑

i=1

I(V̄i,X2,i; Yi) − I(V̄i,X2,i; Si)

= I(V̄,X2; Y|T) − I(V̄,X2; S|T)

= I(T, V̄,X2; Y) − I(T; Y) − I(T, V̄,X2; S) + I(T; S)

≤ I(T, V̄,X2; Y) − I(T, V̄,X2; S). (A-35)

The distribution on (T, S, Ū, V̄,X1,X2,Y) from the given code is of the form

PT,S,Ū,V̄,X1,X2,Y = QSPTPX2 |TPX1|X2 ,TPV̄|X1,X2,S,TPŪ|V̄,S,X1,X2,TWY|X1,X2,S. (A-36)

Let us now define U = (Ū,T) and V = (V̄,T). Using (A-29), (A-33) and (A-34), we then get

R1 ≤ I(U; Y|V,X2) − I(U; S|V,X2) + ǫn

Rc + R1 ≤ I(U,V,X2; Y) − I(U,V,X2; S) + ǫn, (A-37)

where the distribution on (S,U,V,X1,X2,Y), obtained by marginalizing (A-36) over the time sharing

random variable T, satisfies (S,U,V,X1,X2,Y) ∈ P̃out
s-c .

So far we have shown that, for a given sequence of (ǫn, n,Rc,R1)−codes with ǫn going to zero as n goes

to infinity, there exist random variables (S,U,V,X1,X2,Y) ∈ P̃out
s-c such that the rate pair (Rc,R1) essentially

satisfies the inequalities in (11), i.e., (Rc,R1) ∈ R̃out
s-c .
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B. Proof of Theorem 2

Recall the set R̃out
s-c which is an outer bound on the capacity region Cs-c as stated in Theorem 1. Let a

rate-pair (Rc,R1) ∈ R̃out
s-c . Then we have

R1 ≤ I(U,X1; Y|V,X2) − I(U,X1; S|V,X2) (B-1a)

Rc + R1 ≤ I(U,V,X1,X2; Y) − I(U,V,X1,X2; S) (B-1b)

Consider the first inequality (B-1a). We have

R1 ≤ I(U,X1; Y|V,X2) − I(U,X1; S|V,X2)

= I(X1; Y|V,X2) − I(X1; S|V,X2) + I(U; Y|V,X1,X2) − I(U; S|V,X1,X2)

≤ I(X1; Y|V,X2) + I(U; Y|V,X1,X2) − I(U; S|V,X1,X2)

≤ I(X1; Y|V,X2) + I(U; Y, S|V,X1,X2) − I(U; S|V,X1,X2)

= I(X1; Y|V,X2) + I(U; Y|S,V,X1,X2)

= I(X1; Y|V,X2) +H(Y|S,V,X1,X2) −H(Y|S,U,V,X1,X2)

(b)
= I(X1; Y|V,X2) +H(Y|S,X1,X2) −H(Y|S,X1,X2)

= I(X1; Y|V,X2) (B-2)

where (a) follows since (U,V)↔ (S,X1,X2)↔ Y is a Markov chain

Similarly, considering the second inequality (B-1b), we have

Rc + R1 ≤ I(U,V,X1,X2; Y) − I(U,V,X1,X2; S)

= I(V,X1,X2; Y) − I(V,X1,X2; S) + [I(U; Y|V,X1,X2) − I(U; S|V,X1,X2)]

(b)
≤ I(V,X1,X2; Y) − I(V,X1,X2; S) (B-3)

where (b) follows by following straightforwardly the lines of (B-2).

Finally, using (B-2) and (B-3) we obtain the desired simpler outer bound form (14). Summarizing, the

above shows that the region Rout
s-c is an outer bound on the capacity region of the multiaccess channel

with degraded messages sets and states known strictly causally at only the encoders. This completes the

proof of Theorem 2.

C. Proof of Proposition 1

We prove that for any (Mc,M1, n, ǫ) code consisting of sequences of mappings φ1,i :Wc×W1×Si−1 −→
X1 at Encoder 1, and φ2,i :Wc×Si−1 −→ X2 at Encoder 2, i = 1, . . . , n, and a mapping ψ : Yn −→Wc×W1

at the decoder with average error probability Pn
e → 0 as n → 0 and rates Rc = n−1 log2 Mc and R1 =

n−1 log2 M1, the rate pair (Rc,R1) must satisfy (17).
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Fix n and consider a given code of block length n. The joint probability mass function onWc×W1×Sn×Xn
1
×Xn

2
×Yn

is given by

p(wc,w1, s
n, xn

1 , x
n
2, y

n) = p(wc,w1)

n
∏

i=1

p(si)p(x1i|wc,w1, s
i−1)p(x2i|wc, s

i−1)p(yi|x1i, x2i, si), (C-1)

where, p(x1i|wc,w1, s
i−1) is equal 1 if x1i = f1(wc,w1, s

i−1) and 0 otherwise; and p(x2i|wc, s
i−1) is equal 1 if

x2i = f2(wc, s
i−1) and 0 otherwise.

The decoder map ψ recovers (Wc,W1) from Yn with the vanishing average error probability Pe. By

Fano’s inequality, we have

H(Wc,W1|Yn) ≤ nǫn, (C-2)

where ǫn → 0 as Pn
e → 0.

The proof of the bound on R1 follows trivially by revealing the state Sn to the decoder.

The proof of the bound on the sum rate (Rc + R1) follows as follows.

n(Rc + R1) ≤ H(Wc,W1)

= I(Wc,W1; Yn) +H(Wc,W1|Yn)

≤ I(Wc,W1; Yn) + nǫn

=

n
∑

i=1

I(Wc,W1; Yi|Yi−1) + nǫn

=

n
∑

i=1

H(Yi|Yi−1) −H(Yi|Wc,W1,Y
i−1) + nǫn

(a)
≤

n
∑

i=1

H(Yi) −H(Yi|Wc,W1,Y
i−1) + nǫn

(b)
≤

n
∑

i=1

H(Yi) −H(Yi|Wc,W1,Y
i−1, Si−1) + nǫn

(c)
=

n
∑

i=1

H(Yi) −H(Yi|Wc,W1,Y
i−1, Si−1,X1i,X2i) + nǫn

(d)
=

n
∑

i=1

H(Yi) −H(Yi|X1i,X2i) + nǫn

=

n
∑

i=1

I(X1i,X2i; Yi) + nǫn (C-3)

where (a) and (b) follow from the fact that conditioning reduces the entropy; (c) follows from the fact

that X1i is a deterministic function of (Wc,W1, S
i−1), and X2i is a deterministic function of (Wc, S

i−1), and

(d) follows from the fact that (Wc,W1,Y
i−1, Si−1) ↔ (X1i,X2i, Si) ↔ Yi and (Wc,W1,Y

i−1, Si−1,X1i,X2i) is

independent of Si.

The rest of the proof of Proposition 1 follows by standard single-letterization.
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D. Analysis of Example 1

Recall Example 1. For this example, it is easy to see that R̆out
s-c = {(R1,R2) : 0 ≤ R1 ≤ 1/2, 0 ≤ R2 ≤ 1/2}.

Thus, (1/2, 1/2) ∈ R̆out
s-c . We now show that (1/2, 1/2) < Rout

s-c .

Assume that the rate-pair (Rc,R1) = (1/2, 1/2) ∈ Rout
s-c for some measure of the form (13) and that satisfies

the constraint (10). Since Rc + R1 = 1, the constraint on the sum rate

I(V,X1,X2; Y) − I(V,X1,X2; S) = H(Y) −H(Y|V,X1,X2) − I(V,X1,X2; S) (D-1)

leads to

1 ≤ H(Y) −H(Y|V,X1,X2) − I(V,X1,X2; S) ≤ H(Y) ≤ 1 (D-2)

where the last inequality holds since |Y| = 2. Thus,

H(Y) = 1 (D-3a)

S is independent of (V,X1,X2) (D-3b)

H(Y|V,X1,X2) = 0. (D-3c)

Observing that the constraint on the sum rate (D-1) can also be written equivalently as

I(V,X1,X2; Y) − I(V,X1,X2; S) = H(Y) −H(Y|X1,X2) − I(V; S|X1,X2,Y) (D-4)

we obtain that

H(Y|X1,X2) = 0. (D-5)

Using (D-3b) and (D-5), and the fact that Y = XS, it follows that

Pr{X1 = X2} = 1. (D-6)

Now, using (D-6), the constraint on the individual rate R1 leads to

0 ≤ R1 ≤ I(X1; Y|V,X2) (D-7)

= H(X1|V,X2) −H(X1|V,X2,Y) (D-8)

≤ H(X1|V,X2) (D-9)

≤ H(X1|X2) (D-10)

= 0 (D-11)

where (D-10) follows from the fact that conditioning reduces entropy, and (D-11) follows by (D-6).

The above shows that R1 = 0. This contradicts the fact that the rate-pair (Rc,R1) = (1/2, 1/2) ∈ Rout
s-c . We

conclude that the rate-pair (1/2, 1/2) < Rout
s-c .
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E. Proof of Theorem 3

The transmission takes place in B blocks. The common message Wc is divided into B − 1 blocks

wc,1, . . . ,wc,B−1 of nRc bits each, and the individual message W1 is divided into B− 1 blocks w1,1, . . . ,w1,B−1

of nR1 bits each. For convenience, we let wc,B = w1,B = 1 (default values). We thus have BWc
= n(B − 1)Rc,

BW1
= n(B − 1)R1, N = nB, RWc

= BWc
/N = Rc·(B − 1)/B and RW1

= BW1
/N = R1·(B − 1)/B, where BWc

is

the number of common message bits, BW1
is the number of individual message bits, N is the number of

channel uses and RWc
and RW1

are the overall rates of the common and individual messages, respectively.

For fixed n, the average rate pair (RWc
,RW1

) over B blocks can be made as close to (Rc,R1) as desired by

making B large.

Codebook Generation: Fix a measure PS,V,X1,X2,Y ∈ Pin
s-c. Fix ǫ > 0 and denote Mc = 2n[Rc−ηcǫ], M1 = 2n[R1−η1ǫ],

K = 2n[T+µcǫ] and K̂ = 2n[T̂+µ̂cǫ].

1) We generate McK independent and identically distributed (i.i.d.) codewords x2(wc, s) indexed by

wc = 1, . . . ,Mc, s = 1, . . . ,K, each with i.i.d. components drawn according to PX2
.

2) For each codeword x2(wc, s), we generate K̂ independent and identically distributed (i.i.d.) codewords

v(wc, s, z) indexed by z = 1, . . . , K̂, each with i.i.d. components drawn according to PV|X2
.

3) For each codeword x2(wc, s), we generate M1 independent and identically distributed (i.i.d.) code-

words x1(wc, s,w1) indexed by w1 = 1, . . . ,M1, each with i.i.d. components drawn according to PX1 |X2
.

4) Randomly partition the set {1, . . . , K̂} into K cells Cs, s ∈ [1,K].

Encoding: Suppose that a common message Wc = wc and an individual message W1 = w1 are to be

transmitted. As we mentioned previously, message wc is divided into B − 1 blocks wc,1, . . . ,wc,B−1 and

message w1 is divided into B − 1 blocks w1,1, . . . ,w1,B−1, with (wc,i,w1,i) the pair messages sent in block i.

We denote by s[i] the channel state in block i, i = 1, . . . ,B. For convenience, we let s[0] = ∅ and z0 = 1 (a

default value), and s0 the index of the cell containing z0, i.e., z0 ∈ Cs0
. The encoding at the beginning of

the block i, i = 1, . . . ,B − 1, is as follows.

Encoder 2, which has learned the state sequence s[i − 1], knows si−2 and looks for a compression index

zi−1 ∈ [1, K̂] such that v(wc,i−1, si−2, zi−1) is strongly jointly typical with s[i− 1] and x2(wc,i−1, si−2). If there is

no such index or the observed state s[i− 1] is not typical, zi−1 is set to 1 and an error is declared. If there

is more than one such index zi−1, choose the smallest. One can show that the probability of error of this

event is arbitrarily small provided that n is large and

T̂ > I(V; S|X2). (E-1)

Encoder 2 then transmits the vector x2(wc,i, si−1), where the cell index si−1 is chosen such that zi−1 ∈ Csi−1
.

Encoder 1 finds x2(wc,i, si−1) similarly. It then transmits the vector x1(wc,i, si−1,w1i).

(Note that, other than the information messages, Encoder 1 sends only the cooperative compression index

si−1; no other individual compression index is sent by this encoder).
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Decoding: Let y[i] denote the information received at the receiver at block i, i = 1, . . . ,B. The receiver

collects these information until the last block of transmission is completed. The decoder then performs

Willem’s backward decoding [57], by first decoding the pair (wc,B−1,w1,B−1) from y[B − 1].

1) Decoding in Block B − 1:

The decoding of the pair (wc,B−1,w1,B−1) is performed in five steps, as follows.

Step (a): The decoder knows wc,B = 1 and looks for the unique cell index ŝB−1 such that the vector

x2(wc,B, ŝB−1) is jointly typical with y[B]. The decoding operation in this step incurs small probability of

error as long as n is sufficiently large and

T < I(X2; Y). (E-2)

Step (b): The decoder now knows the cell index ŝB−1 (but not the exact compression index zB−1). It then

decodes message wc,B−1 by looking for the unique ŵc,B−1 such that x2(ŵc,B−1, sB−2), v(ŵc,B−1, sB−2, zB−1),

x1(ŵc,B−1, sB−2,w1,B−1) and y[B− 1] are jointly typical for some sB−2 ∈ [1,K], zB−1 ∈ CŝB−1
and w1,B−1 ∈ [1,M1].

One can show that the decoder obtains the correct wc,B−1 as long as n and B are large and

Rc + R1 + T + (T̂ − T) ≤ I(V,X1,X2; Y). (E-3)

Step (c): The decoder now knows message ŵc,B−1 and, by proceeding as in the step a), finds the correct

cell index ŝB−2 as long as n is sufficiently large and (E-2) is true.

Step (d): The decoder calculates a set L(y[B− 1]) of zB−1 such that zB−1 ∈ L(y[B− 1]) if v(ŵc,B−1, ŝB−2, zB−1),

x2(ŵc,B−1, ŝB−2), y[B − 1] are jointly typical. It then declares that zB−1 was sent in block B − 1 if

ẑB−1 ∈ CŝB−1
∩ L(y[B − 1]). (E-4)

One can show that, for large n, ẑB−1 = zB−1 with arbitrarily high probability provided that n is sufficiently

large and

T̂ < I(V; Y|X2) + T. (E-5)

Step (e): Finally, the decoder, which now knows message ŵc,B−1, the cell indices (ŝB−2, ŝB−1) and the exact

compression index zB−1 ∈ CŝB−1
, estimates message w1,B−1 using y[B− 1]. It declares that ŵ1,B−1 was sent if

there exists a unique ŵ1,B−1 such that x2(ŵc,B−1, ŝB−2), v(ŵc,B−1, ŝB−2, ẑB−1), x1(ŵc,B−1, ŝB−2, ŵ1,B−1) and y[B− 1]

are jointly typical. The decoding in this step incurs small probability of error as long as n is sufficiently

large and

R1 ≤ I(X1; Y|V,X2). (E-6)

2) Decoding in Block b, b = B − 1,B − 2, . . . , 2:

Next, for b ranging from B − 1 to 2, the decoding of the pair (wc,b−1,w1,b−1) is performed similarly, in

four steps, by using the information y[b] received in block b and the information y[b − 1] received in

block b − 1. More specifically, this is done as follows.

November 15, 2017 DRAFT



34

Step (a): The decoder knows wc,b and looks for the unique cell index ŝb−1 such that the vector x2(wc,b, ŝb−1)

is jointly typical with y[b]. The decoding error in this step is small for sufficiently large n if (E-2) is true.

Step (b): The decoder now knows the cell index ŝb−1 (but not the exact compression indices zb−1). It

then decodes message wc,b−1 by looking for the unique ŵc,b−1 such that x2(ŵc,b−1, sb−2), v(ŵc,b−1, sb−2, zb−1),

x1(ŵc,b−1, sb−2,w1,b−1) and y[b − 1] are jointly typical for some sb−2 ∈ [1,K], zb−1 ∈ Cŝb−1
and w1,b−1 ∈ [1,M1].

One can show that the decoder obtains the correct wc,b−1 as long as n and B are large and (E-3) is true.

Step (c): The decoder knows message ŵc,b−1 and, by proceeding as in the step a), finds the correct cell

index ŝb−2 as long as n is sufficiently large and (E-2) is true.

Step (d): The decoder calculates a set L(y[b − 1]) of zb−1 such that zb−1 ∈ L(y[b − 1]) if v(ŵc,b−1, ŝb−2, zb−1),

x2(ŵc,b−1, ŝb−2), y[b − 1] are jointly typical. It then declares that zb−1 was sent in block b − 1 if

ẑb−1 ∈ Cŝb−1
∩L(y[b − 1]). (E-7)

One can show that, for large n, ẑb−1 = zb−1 with arbitrarily high probability provided that n is sufficiently

large and (E-5) is true.

Step (e): Finally, the decoder, which now knows message ŵc,b−1, the cell indices (ŝb−2, ŝb−1) as well as the

exact compression index ẑb−1 ∈ Cŝb−1
, estimates message w1,b−1 using y[b − 1]. It declares that ŵ1,b−1 was

sent if there exists a unique ŵ1,b−1 such that x2(ŵc,b−1, ŝb−2), v(ŵc,b−1, ŝb−2, ẑb−1), x1(ŵc,b−1, ŝb−2, ŵ1,b−1) and

y[b − 1] are jointly typical. One can show that the decoder obtains the correct wc,b−1 as long as n and B

are large and (E-6) is true.

Fourier-Motzkin Elimination: From the above, we get that the error probability is small provided that

n is large and

T̂ > I(V; S|X2) (E-8a)

T < I(X2; Y) (E-8b)

T̂ < I(V; Y|X2) + T (E-8c)

Rc + R1 + T̂ ≤ I(V,X1,X2; Y) (E-8d)

R1 ≤ I(X1; Y|V,X2) (E-8e)

(E-8f)

We now apply Fourier-Motzkin Elimination (FME) to successively project out T and T̂ from (E-8).

Projecting out T from (E-8), we get

T̂ > I(V; S|X2) (E-9a)

T̂ < I(V,X2; Y) (E-9b)

Rc + R1 + T̂ < I(V,X1,X2; Y) (E-9c)
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R1 < I(X1; Y|V,X2) (E-9d)

Next, projecting out T̂ from (E-8), we get

0 ≤ I(V,X2; Y) − I(V; S|X2) (E-10a)

R1 ≤ I(X1; Y|V,X2) (E-10b)

Rc + R1 < I(V,X1,X2; Y) − I(V; S|X2) (E-10c)

Finally, recalling that the measure PS,V,X1,X2,Y ∈ Pin
s-c satisfies that X1 and X2 are independent of S and also

implies that X1 ↔ (V,X2)↔ S is a Markov chain, it can be seen easily that the inequalities in (E-10) can

be rewritten equivalently as

0 ≤ I(V,X2; Y) − I(V,X2; S) (E-11a)

R1 ≤ I(X1; Y|V,X2) (E-11b)

Rc + R1 ≤ I(V,X1,X2; Y) − I(V,X1,X2; S). (E-11c)

This completes the proof of Theorem 3.

F. Proof of Proposition 2

In what follows we show that the outer bound Rout
s-c is convex, and that it is enough to restrict V to

satisfy (2). The proof for the inner bound Rin
s-c follows similarly.

Part 1– Convexity: Consider the region Rout
s-c . To prove the convexity of the region Rout

s-c , we use a standard

argument. We introduce a time-sharing random variable T and define the joint distribution

PT,S,V,X1,X2,Y(t, s, v, x1, x2, y) = PT,S,V,X1,X2
(t, s, v, x1, x2)WY|X1 ,X2,S(y|x1, x2, s) (F-1)

∑

v,x1,x2

PT,S,V,X1,X2
(t, s, v, x1, x2) = PT(t)QS(s). (F-2)

Let now (RT
c ,R

T
1
) be the common and individual rates resulting from time sharing. Then,

RT
1 ≤ I(X1; Y|V,X2,T) (F-3)

= I(X1; Y|Ṽ,X2) (F-4)

RT
c + RT

1 ≤ I(V,X1,X2; Y|T) − I(V,X1,X2; S|T) (F-5)

= I(V,X1,X2; Y|T) − I(V,X1,X2,T; S) (F-6)

≤ I(V,X1,X2,T; Y) − I(V,X1,X2,T; S) (F-7)

= I(Ṽ,X1,X2; Y) − I(Ṽ,X1,X2; S) (F-8)

where Ṽ := (V,T). Also, we have

I(Ṽ,X2; Y) − I(Ṽ,X2; S) = I(V,X2,T; Y) − I(V,X2,T; S) (F-9)
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= I(V,X2; Y|T) − I(V,X2; S|T) + I(T; Y) (F-10)

≥ I(V,X2; Y|T) − I(V,X2; S|T) (F-11)

where the second equality follows since T and S are independent.

The above shows that the time sharing random variable T is incorporated into the auxiliary random

variable V. This shows that time sharing cannot yield rate pairs that are not included in Rout
s-c and, hence,

Rout
s-c is convex.

Part 2– Bound on |V|: To prove that the region Rout
s-c is not altered if one restricts the random variable

V to have its alphabet restricted as indicated in (2), we invoke the support lemma [58, p. 310]. Fix a

distribution µ ∈ Pout
s-c of (S,V,X1,X2,Y) and, without loss of generality, let us denote the product set

S × X1 × X2 = {1, . . . ,m}, m = |S×X1×X2|.
To prove the bound (2) on |V|, note that we have

Iµ(X1; Y|V,X2) = Iµ(X1,X2; Y|V) − Iµ(X2; Y|V)

= Hµ(X2,Y|V) −Hµ(X1,X2,Y|V) +Hµ(X1,X2|V) −Hµ(X2|V) (F-12)

and

Iµ(V,X1,X2; Y) − Iµ(V,X1,X2; S)

= Iµ(X1,X2; Y|V) − Iµ(X1,X2; S|V) + Iµ(V; Y) − Iµ(V; S)

= Hµ(X1,X2, S|V) −Hµ(X1,X2,Y|V)+Hµ(Y) −Hµ(S). (F-13)

Similarly, we have

Iµ(V,X2; Y) − Iµ(V,X2; S) = Hµ(X2, S|V) −Hµ(X2,Y|V) +Hµ(Y) −Hµ(S). (F-14)

Hence, it suffices to show that the following functionals of µ(S,V,X1,X2,Y)

ri(µ) = µ(s, x, x′), i = 1, . . . ,m − 1 (F-15a)

rm(µ) =

∫

v

dµ(v)[Hµ(X2,Y|v)−Hµ(X1,X2,Y|v) +Hµ(X1,X2|v) −Hµ(X2|v)] (F-15b)

rm+1(µ) =

∫

v

dµ(v)[Hµ(X1,X2, S|v) −Hµ(X1,X2,Y|v) +Hµ(Y) −Hµ(S)] (F-15c)

rm+2(µ) =

∫

v

dµ(v)[Hµ(X2, S|v) −Hµ(X2,Y|v)+Hµ(Y) −Hµ(S)] (F-15d)

can be preserved with another measure µ′ ∈ Pout
s-c . Observing that there is a total of

(

|S||X1||X2| + 2
)

functionals in (F-15), this is ensured by a standard application of the support lemma; and this shows that

the alphabet of the auxiliary random variable V can be restricted as indicated in (2) without altering the

region Rout
s-c .
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G. Analysis of Example 2

First observe that for a given measure p(S,X1,X2)(s, x1, x2) of the form p(S,X1,X2)(s, x1, x2) = pS(s)p(X1,X2)(x1, x2),

i.e., with arbitrary joint p(X1,X2)(x1, x2), we have

H(SX1+X2
|X1,X2) = E(X1 ,X2)

[

H(SX1+X2
|X1 = x1,X2 = x2)

]

(G-1a)

= pX1,X2
(0, 0)H(S0|X1 = 0,X2 = 0) + pX1,X2

(1, 1)H(S0|X1 = 1,X2 = 1)

+ pX1,X2
(1, 0)H(S1|X1 = 1,X2 = 0) + pX1,X2

(0, 1)H(S1|X1 = 0,X2 = 1) (G-1b)

= H(S0)[pX1,X2
(0, 0)+ pX1,X2

(1, 1)]+H(S1)[pX1,X2
(1, 0)+ pX1,X2

(0, 1)] (G-1c)

= Pr{X1 = X2}H(S0) + Pr{X1 , X2}H(S1) (G-1d)

= H(S0) (G-1e)

=
1

2
(G-1f)

where (G-1c) holds since S0 and S1 are independent of the events {X1 = i,X2 = j}, (i, j) ∈ {1, 2}2, (G-1e)

holds since S = (S0, S1) is such that H(S0) = H(S1), and (G-1f) holds since H(S0) = 1/2.

Similarly, we have

H(S|X1,X2, SX1+X2
) = E(X1 ,X2)

[

H(S0, S1|X1 = x1,X2 = x2, Sx1+x2
)
]

(G-2a)

= pX1,X2
(0, 0)H(S1|X1 = 0,X2 = 0, S0) + pX1,X2

(1, 1)H(S1|X1 = 1,X2 = 1, S0)

+ pX1,X2
(1, 0)H(S0|X1 = 1,X2 = 0, S1) + pX1,X2

(0, 1)H(S0|X1 = 0,X2 = 1, S1) (G-2b)

= pX1,X2
(0, 0)H(S1) + pX1,X2

(1, 1)H(S1) + pX1,X2
(1, 0)H(S0) + pX1,X2

(0, 1)H(S0) (G-2c)

= Pr{X1 , X2}H(S0) + Pr{X1 = X2}H(S1) (G-2d)

= H(S0) (G-2e)

=
1

2
. (G-2f)

We first prove that (Rc,R1) = (1/2, 1) ∈ Rout
s-c . This can be seen by setting in (14) V = SX1+X2

and the

inputs X1 and X2 to be i.i.d with X1 ∼ Bernoulli (1/2) and X2 ∼ Bernoulli (1/2). More specifically, it is

easy to show that with this choice we have

H(X2,X1 + SX1+X2
) = 2 (G-3)

H(X1|SX1+X2
,X2) = 1 (G-4)

and, so, we also have

I(X1,X2; Y) = H(Y) −H(Y|X1,X2) (G-5a)

= H(X2,X1 + SX1+X2
) −H(SX1+X2

|X1,X2) (G-5b)
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= 2 − 1

2
(G-5c)

=
3

2
(G-5d)

where (G-5c) follows by using (G-1) and (G-3).

Thus, we have

I(X1; Y|V,X2) = I(X1; Y1,X2|SX1+X2
,X2) (G-6a)

= I(X1; X1|SX1+X2
,X2) (G-6b)

= H(X1|SX1+X2
,X2) (G-6c)

= 1 (G-6d)

where (G-6b) follows by setting V = SX1+X2
, and (G-6d) follows by (G-4).

Similarly, we have

I(V,X1,X2; Y) − I(V,X1,X2; S) = I(X1,X2; Y) − I(V; S|X1,X2,Y) (G-7a)

= I(X1,X2; Y) − I(SX1+X2
; S|X1,X2,Y1) (G-7b)

= I(X1,X2; Y) − I(SX1+X2
; S|X1,X2, SX1+X2

,Y1) (G-7c)

= I(X1,X2; Y) (G-7d)

=
3

2
(G-7e)

where (G-7b) follows by setting V = SX1+X2
, (G-7c) follows since V = SX1+X2

is a deterministic function

of (X1,Y1), and (G-7d) follows by (G-5).

It remains to show that the constraint (10) is satisfied with the choice V = SX1+X2
and the inputs X1 and

X2 to be i.i.d. with X1 ∼ Bernoulli (1/2) and X2 ∼ Bernoulli (1/2). This can be seen as follows

I(V,X2; Y) − I(V,X2; S) = I(SX1+X2
,X2; Y) − I(SX1+X2

,X2; S) (G-8a)

= H(X2,X1 + SX1+X2
) −H(X2,X1 + SX1+X2

|X2, SX1+X2
) −H(S) +H(S|X2, SX1+X2

) (G-8b)

= H(X2,X1 + SX1+X2
) −H(X1|X2, SX1+X2

) −H(S) +H(S|X2, SX1+X2
) (G-8c)

= H(X2) +H(X1 + SX1+X2
) −H(X1) −H(S) +H(S|X2, SX1+X2

) (G-8d)

= H(X1 + SX1+X2
) +H(S|X2, SX1+X2

) − 1 (G-8e)

= 1 +
1

2
− 1 (G-8f)

=
1

2
(G-8g)

≥ 0 (G-8h)
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where (G-8d) follows since X1 and X2 are independent of each other and independent of (S, SX1+X2
); (G-8e)

follows by substituting H(X1) = 1, H(X2) = 1 and H(S) = 1; (G-8f) follows by straightforward algebra to

obtain and then substitute using H(X1 + SX1+X2
) = 1 and H(S|X2, SX1+X2

) = 1/2.

The above shows that the outer bound Rout
s-c contains the rate pair (Rc,R1) = (1/2, 1).

We now turn to proving that (Rc,R1) = (1/2, 1) < Rin
s-c. Fix a distribution PS,V,X1,X2,Y of the form (26); and,

assume that (Rc,R2) ∈ Rin
s-c with R1 = 1. We will show that Rc must be zero.

First, note that, by R1 = 1 and (28a), X1 is not deterministic, i.e., pX1
(x1) > 0 for all x1 ∈ {0, 1}. Also, it

can be seen easily that if X2 is deterministic then one immediately gets Rc + R1 ≤ H(X1) ≤ 1 from (28a),

where the last inequality follows since X1 is binary. Therefore, in the rest of this proof we assume that

both X1 and X2 are not deterministic.

First consider (28b). We get

Rc + R1 ≤ I(V,X1,X2; Y) − I(V,X1,X2; S) (G-9a)

= I(X1,X2; Y) − I(V; S|X1,X2,Y) (G-9b)

= H(Y1,Y2) −H(X1 + SX1+X2
|X1,X2) − I(V; S|X1,X2,Y1) (G-9c)

= H(Y1,Y2) −H(SX1+X2
|X1,X2) −H(S|X1,X2,Y1) +H(S|X1,X2,Y1,V) (G-9d)

= H(Y1,Y2) −H(SX1+X2
|X1,X2) −H(S|X1,X2,Y1, SX1+X2

) +H(S|X1,X2,Y1,V, SX1+X2
) (G-9e)

= H(Y1,Y2) −H(SX1+X2
|X1,X2) −H(S|X1,X2, SX1+X2

) +H(S|X1,X2,V, SX1+X2
) (G-9f)

≤ 2 −H(SX1+X2
|X1,X2) −H(S|X1,X2, SX1+X2

) +H(S|X1,X2,V, SX1+X2
) (G-9g)

≤ 2 − 1

2
− 1

2
+H(S|X1,X2,V, SX1+X2

) (G-9h)

= 1 +H(S|X1,X2,V, SX1+X2
) (G-9i)

where (G-9e) follows since SX1+X2
= X1 + Y1 is a deterministic function of X1 and Y1, (G-9f) follows

since Y1 is a deterministic function of X1 and SX1+X2
, (G-9g) follows since the alphabet Y1×Y2 has four

elements, and (G-9h) follows since H(SX1+X2
|X1,X2) = 1/2 by (G-1) and H(S|X1,X2, SX1+X2

) = 1/2 by (G-2).

In what follows we will show that the term H(S|X1,X2,V, SX1+X2
) on the RHS of (G-9i) is zero, which

together with R1 = 1 will then imply that Rc = 0.

To this end, consider now (28a). Since R1 = 1 and X1 is binary, we have

1 ≤ H(X1|V,X2) −H(X1|V,X2,Y) ≤ H(X1) ≤ 1. (G-10)

Thus, H(X1|V,X2) = H(X1); and, so X1 is independent of (V,X2). Since X1 is also independent of S, we

then have that

X1 is independent of (S,V,X2). (G-11)

From (28a), we also obtain

1 = R1 ≤ H(Y|V,X2) −H(Y|V,X1,X2) (G-12a)
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= H(Y1|V,X2) −H(Y1|V,X1,X2) (G-12b)

≤ H(Y1) −H(Y1|V,X1,X2) (G-12c)

≤ H(Y1) (G-12d)

≤ 1 (G-12e)

where the last inequality follows since Y1 is binary. This implies that H(Y1) = 1 and H(Y1|V,X1,X2) = 0.

Thus,

0 = H(Y1|V,X1,X2) (G-13a)

= H(X1 + SX1+X2
|V,X1,X2) (G-13b)

= H(SX1+X2
|V,X1,X2). (G-13c)

The joint distribution of X1 and X2 satisfies

pX1,X2
(x1, x2) = pX1

(x1)pX2
(x2) > 0, ∀(x1, x2) ∈ {0, 1}2 (G-14)

where the equality follows by (G-11) from the independence of X1 and X2, and the strict positivity follows

since both X1 and X2 are assumed to be non deterministic. Next, from (G-13), we get

0 = H(SX1+X2
|V,X1,X2) (G-15a)

= E(X1 ,X2)

[

H(Sx1+x2
|V,X1 = x1,X2 = x2)

]

(G-15b)

= pX1,X2
(0, 0)H(S0|V,X1 = 0,X2 = 0) + pX1,X2

(1, 1)H(S0|V,X1 = 1,X2 = 1)

+ pX1,X2
(1, 0)H(S1|V,X1 = 1,X2 = 0) + pX1,X2

(0, 1)H(S1|V,X1 = 0,X2 = 1) (G-15c)

= pX1,X2
(0, 0)H(S0|V,X2 = 0) + pX1,X2

(1, 1)H(S0|V,X2 = 1)

+ pX1,X2
(1, 0)H(S1|V,X2 = 0) + pX1,X2

(0, 1)H(S1|V,X2 = 1) (G-15d)

where the last equality follows since, by (26), X1 ↔ (V,X2)↔ S is a Markov chain.

From (G-15), and the fact that, by (G-14), pX1,X2
(x1, x2) > 0 for all (x1, x2) ∈ {0, 1}2, we get that all the

conditional entropy terms on the RHS of (G-15) are zero,

H(S0|V,X2 = 0) = 0, H(S0|V,X2 = 1) = 0 (G-16a)

H(S1|V,X2 = 0) = 0, H(S1|V,X2 = 1) = 0. (G-16b)

Consider now the term H(S|X1,X2,V, SX1+X2
) on the RHS of (G-9i). We have

0 ≤ H(S|X1,X2,V, SX1+X2
) = E(X1 ,X2)

[

H(S|X1 = x1,X2 = x2,V, Sx1+x2
)
]

(G-17a)

= pX1,X2
(0, 0)H(S|X1 = 0,X2 = 0,V, S0) + pX1,X2

(1, 1)H(S|X1 = 1,X2 = 1,V, S0)
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+ pX1,X2
(0, 1)H(S|X1 = 0,X2 = 1,V, S1) + pX1,X2

(1, 0)H(S|X1 = 1,X2 = 0,V, S1)

(G-17b)

= pX1,X2
(0, 0)H(S1|X1 = 0,X2 = 0,V, S0) + pX1,X2

(1, 1)H(S1|X1 = 1,X2 = 1,V, S0)

+ pX1,X2
(0, 1)H(S0|X1 = 0,X2 = 1,V, S1) + pX1,X2

(1, 0)H(S0|X1 = 1,X2 = 0,V, S1)

(G-17c)

≤ pX1,X2
(0, 0)H(S1|X1 = 0,X2 = 0,V)+ pX1,X2

(1, 1)H(S1|X1 = 1,X2 = 1,V)

+ pX1,X2
(0, 1)H(S0|X1 = 0,X2 = 1,V) + pX1,X2

(1, 0)H(S0|X1 = 1,X2 = 0,V) (G-17d)

= pX1,X2
(0, 0)H(S1|X2 = 0,V)+ pX1,X2

(1, 1)H(S1|X2 = 1,V)

+ pX1,X2
(0, 1)H(S0|X2 = 1,V) + pX1,X2

(1, 0)H(S0|X2 = 0,V) (G-17e)

= 0 (G-17f)

where (G-17c) follows by substituting S = (S0, S1), (G-17d) follows since conditioning reduces entropy,

(G-17e) follows since by (26), X1 ↔ (V,X2) ↔ S is a Markov chain, and (G-17f) follows by substituting

using (G-16).

Finally, combining (G-9i) and (G-17f), we get that

0 ≤ Rc + R1 ≤ 1 (G-18)

which, together with R1 = 1, implies that Rc = 0.

The above shows that the inner bound Rin
s-c does not contain any rate pair of the form (Rc,R1 = 1) with

Rc > 0; and, so, in particular (Rc,R1) = (1/2, 1) < Rin
s-c.

H. Proof of Proposition 4

We show that the capacity region of the state-dependent MAC with strictly causal states known only

at the encoder that sends both messages is given by the set of all rate pairs (Rc,R1) such that

R1 ≤ I(X1; Y|X2) (H-1a)

Rc + R1 ≤ I(X1,X2; Y) (H-1b)

for some measure of the form

PS,X1,X2,Y = QSPX2
PX1 |X2

WY|X1 ,X2,S. (H-2)

i) The region described by (H-1) is the capacity region of the same MAC model without states; and,

so, it is also achievable in the presence of (strictly causal) states, as these states can always be ignored

by the transmitters.

ii) The proof of the converse is as follows.

The bound (H-1b) on the sum rate (Rc + R1) follows by using the result of Proposition 3.
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The bound (H-1a) on the individual rate R1 follows as follows.

nR1 ≤ H(W1)

= H(W1|Wc)

= I(W1; Yn|Wc) +H(W1|Wc,Y
n)

≤ I(W1; Yn|Wc) + nǫn

=

n
∑

i=1

I(W1; Yi|Wc,Y
i−1) + nǫn

=

n
∑

i=1

H(Yi|Wc,Y
i−1) −H(Yi|Wc,W1,Y

i−1) + nǫn

(a)
=

n
∑

i=1

H(Yi|Wc,Y
i−1,X2i) −H(Yi|Wc,W1,Y

i−1,X2i) + nǫn

(b)
≤

n
∑

i=1

H(Yi|X2i) −H(Yi|Wc,W1,Y
i−1,X1i,X2i) + nǫn

(c)
≤

n
∑

i=1

H(Yi|X2i) −H(Yi|X1i,X2i) + nǫn

=

n
∑

i=1

I(X1i; Yi|X2i) + nǫn (H-3)

where (a) follows by the fact that X1i is a deterministic function of Wc for the model in which the states

are known, strictly causally, at only the encoder that sends both messages; (b) follows since conditioning

reduces the entropy; and (c) follows from the fact that (Wc,W1,Y
i−1, Si−1) ↔ (X1i,X2i, Si) ↔ Yi and

(Wc,W1,Y
i−1, Si−1,X1i,X2i) is independent of Si.

The rest of the proof of Proposition 4 follows by standard single-letterization.

I. Analysis of Example 4

In this section, we use the result of Theorem 4 to show that the capacity region of the model of

Example 4 is given by (69).

1) Fix a joint distribution of (X1,X2, S,Y) of the form (65) and satisfying

E[X2
1] = P̃1 ≤ P1, E[X2

2] = P̃2 ≤ P2, E[X1X2] = σ12 (I-1)

We shall also use the correlation coefficient ρ12 defined as

ρ12 =
σ12

√

P̃1P̃2

. (I-2)

We first compute the RHS of the bound on the sum rate.

I(X1,X2; Y1,Y2) = h(Y1,Y2) − h(Y1,Y2|X1,X2) (I-3)
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= h(Y1,Y2) − h(S,Z|X1,X2) (I-4)

(a)
= h(Y1,Y2) − h(S) − h(Z) (I-5)

= h(Y1|X2 + Z) + h(X2 + Z) − h(S) − h(Z) (I-6)

(b)
≤ 1

2
log

∣

∣

∣E[Y1YT
1

] − E[Y1E[Y1|X2 + Z]]
∣

∣

∣

Q
+

1

2
log

(

1 +
P̃2

N

)

(I-7)

(c)
=

1

2
log

(

1 +
P̃1 + P̃2 + 2σ12

Q
− (σ12 + P̃2)2

Q(P̃2 +N)

)

+
1

2
log

(

1 +
P̃2

N

)

(I-8)

=
1

2
log

(

1 +
(1 − ρ2

12
)P̃1P̃2 +N((

√

P̃1 + ρ12

√

P̃2)2 + (1 − ρ2
12

)P̃2)

Q(P̃2 +N)

)

+
1

2
log

(

1 +
P̃2

N

)

(I-9)

where (a) follows since the state S and the noise Z are independent of each other and independent of the

channel inputs X1 and X2; (b) follows by the Maximum Differential Entropy Lemma [44, Section 2.2]; and

(c) follows by straightforward algebra, noticing that the minimum mean square estimator (MMSE) of Y1

given Y2 = X2 + Z is

E[Y1|X2 + Z] =
σ12 + P̃2

P̃2 +N
(X2 + Z). (I-10)

It is easy to see that the RHS of the bound on the individual rate is redundant.

For convenience, let us define the function Θ(P̃1, P̃2, ρ12) as the RHS of (I-9). The above shows that the

capacity region of the model of Example 4 is outer-bounded by the set of pairs (Rc,R1) satisfying

0 ≤ Rc + R1 ≤ max Θ(P̃1, P̃2, ρ12) (I-11)

where the maximization is over 0 ≤ P̃1, 0 ≤ P̃2 and −1 ≤ ρ12 ≤ 1.

Investigating Θ(P̃1, P̃2, ρ12), it can be see that it suffices to consider ρ12 ∈ [0, 1] for the maximization in

(I-11); and that Θ(P̃1, P̃2, ρ12) is maximized at P̃1 = P1 and P̃2 = P2.

2) As for the proof of achievability, choose in the inner bound of Theorem 4, random variables S,

X1, X2 and Y that are jointly Gaussian with second moments E[X2
1
] = P̃1 and E[X2

2
] = P̃2, and with

E[X1X2] = ρ12

√
P1P2. The rest of the proof of the direct part follows by straightforward algebra that is

very similar to that for the converse proof above and that we omit for brevity.

This completes the proof of Theorem 4.

J. Proof of Theorem 5

The transmission takes place in B blocks. The common message Wc and the individual message W1

are sent over all blocks. We thus have BWc
= nBRc, BW1

= nBR1, N = nB, RWc
= BWc

/N = Rc and

RW1
= BW1

/N = R1, where BWc
is the number of common message bits, BW1

is the number of individual

message bits, N is the number of channel uses and RWc
and RW1

are the overall rates of the common and

individual messages, respectively.
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Codebook Generation: Fix a measure PS,U,V,X1,X2,Y ∈ Pin
asym,s-c. Fix ǫ > 0, ηc > 0, η1 > 0, η̂ > 0, δ > 1 and

denote Mc = 2nB[Rc−ηcǫ], M1 = 2nB[R1−η1ǫ], and M̂ = 2n[R̂+η̂ǫ]. Also, let ηc1 > 0, ηc2 > 0 and Mc1 = 2nB[Rc1−ηc1ǫ]

and Mc2 = 2nB[Rc2−ηc2ǫ] such that Rc = Rc1 + Rc2.

We randomly and independently generate a codebook for each block.

1) For each block i, i = 1, . . . ,B, we generate Mc1 independent and identically distributed (i.i.d.) code-

words ui(wc1) indexed by wc1 = 1, . . . ,Mc1, each with i.i.d. components drawn according to PU.

2) For each block i, for each codeword ui(wc1), we generate Mc2M̂ independent and identically dis-

tributed (i.i.d.) codewords x2,i(wc1,wc2, t
′
i
) indexed by wc2 = 1, . . . ,Mc2, t′

i
= 1, . . . , M̂, each with i.i.d.

components drawn according to PX2 |U.

3) For each block i, for each pair of codewords (ui(wc1), x2,i(wc1,wc2, t
′
i
)), we generate M̂ i.i.d. codewords

vi(wc1,wc2, t
′
i
, ti) indexed by ti = 1, . . . , M̂, each with i.i.d. components drawn according to PV|U,X2

.

4) For each block i, for each codeword ui(wc1), we generate M1 independent and identically distributed

(i.i.d.) codewords x1,i(wc1,w1) indexed by w1 = 1, . . . ,M1, each with i.i.d. components drawn according

to PX1|U.

Encoding: Suppose that a common message Wc = wc = (wc1,wc2) and an individual message W1 = w1

are to be transmitted. As we mentioned previously, wc and w1 will be sent over all blocks. We denote by

s[i] the state affecting the channel in block i, i = 1, . . . ,B. For convenience, we let s[0] = ∅ and t−1 = t0 = 1

(a default value). The encoding at the beginning of block i, i = 1, . . . ,B, is as follows.

Encoder 2, which has learned the state sequence s[i − 1], knows ti−2 and looks for a compression in-

dex ti−1 ∈ [1 : M̂] such that vi−1(wc1,wc2, ti−2, ti−1) is strongly jointly typical with s[i − 1], ui−1(wc1) and

x2,i−1(wc1,wc2, ti−2). If there is no such index or the observed state s[i− 1] is not typical, ti−1 is set to 1 and

an error is declared. If there is more than one such index ti−1, choose the smallest. It can be shown that

the error in this step has vanishing probability as long as n and B are large and

R̂ > I(V; S|U,X2). (J-1)

Encoder 2 then transmits the vector x2,i(wc1,wc2, ti−1). Encoder 1 transmits the vector x1,i(wc1,w1).

Decoding: At the end of the transmission, the decoder has collected all the blocks of channel outputs

y[1], . . . , y[B].

Step (a): The decoder estimates message wc = (wc1,wc2) using all blocks i = 1, . . . ,B, i.e., simultaneous

decoding. It declares that ŵc = (ŵc1, ŵc2) is sent if there exist tB = (t1, . . . , tB) ∈ [1 : M̂]B and w1 ∈ [1 :

M1] such that ui(ŵc1), x2,i(ŵc1, ŵc2, ti−1), vi(ŵc1, ŵc2, ti−1, ti), x1,i(ŵc1,w1) and y[i] are jointly typical for all

i = 1, . . . ,B. One can show that the decoder obtains the correct wc = (wc1,wc2) as long as n and B are large

and

Rc2 + R1 ≤ I(V,X1,X2; Y|U) − R̂ (J-2)

Rc1 + Rc2 + R1 ≤ I(U,V,X1,X2; Y) − R̂. (J-3)
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Step (b): Next, the decoder estimates message w1 using again all blocks i = 1, . . . ,B, i.e., simultaneous de-

coding. It declares that ŵ1 is sent if there exist tB = (t1, . . . , tB) ∈ [1 : M̂]B such that ui(ŵc1), x2,i(ŵc1, ŵc2, ti−1),

vi(ŵc1, ŵc2, ti−1, ti), x1,i(ŵc1,w1) and y[i] are jointly typical for all i = 1, . . . ,B. One can show that the decoder

obtains the correct w1 as long as n and B are large and

R1 ≤ I(X1; Y|U,V,X2) (J-4)

R1 ≤ I(V,X1,X2; Y|U) − R̂. (J-5)

Probability of error analysis: We examine the probability of error associated with each of the encoding

and decoding procedures. The events E1, E2 and E3 correspond to encoding errors, and the events E4,

E5, E6 and E7 correspond to decoding errors. To bound the probability of error, we assume without loss

of generality that the messages equal to unity, i.e., wc1 = wc2 = w1 = 1; and, except for the anlysis of the

event E1, we also assume that the compression indices are all equal unity, i.e., t1 = t2 = . . . = tB = 1.

• Let E1 = ∪B
i=1

E1i where E1i is the event that, for the encoding in block i, there is no covering codeword

vi−1(1, 1, ti−2, ti−1) strongly jointly typical with s[i − 1] given ui−1(1) and x2,i−1(1, 1, ti−2), i.e.,

E1 =

B
⋃

i=1

{

∄ ti−1 ∈ [1 : M̂] s.t.:
(

vi−1(1, 1, ti−2, ti−1), s[i − 1],ui−1(1), x2,i−1(1, 1, ti−2)
)

∈ T n
ǫ (PV,S,U,X2

)
}

. (J-6)

For i ∈ [1 : B], the probability that (s[i− 1],ui−1(1), x2,i−1(1, 1, ti−2)) is not jointly typical goes to zero as

n→ ∞, by the asymptotic equipartition property (AEP) [55, p. 384]. Then, for (s[i−1],ui−1(1), x2,i−1(1, 1, ti−2))

jointly typical, the covering lemma [44, Lecture Note 3] ensures that the probability that there is

no ti−1 ∈ [1 : M̂] such that (vi−1(1, 1, ti−2, ti−1), s[i − 1]) is strongly jointly typical given ui−1(1) and

x2,i−1(1, 1, ti−2) is exponentially small for large n provided that the number of covering codewords

vi−1 is greater than 2nI(V;S|U,X2), i.e.,

R̂ > I(V; S|U,X2). (J-7)

Thus, if (J-7) holds, Pr(E1i) → 0 as n → ∞ and, so, by the union of bound over the B blocks,

Pr(E1)→ 0 as n→∞.

• For the decoding of the common message wc = (1, 1) at the receiver, let E2 = ∪B
i=1

E2i where E4i is the

event that
(

ui−1(1), x2,i(1, 1, 1), vi(1, 1, 1, 1), x1,i(1, 1), y[i]
)

is not jointly typical, i.e.,

E2 =

B
⋃

i=1

{(

ui−1(1), x2,i(1, 1, 1), vi(1, 1, 1, 1), x1,i(1, 1), y[i]
)

< T n
ǫ (PU,X2,V,X1,Y)

}

. (J-8)

Conditioned on Ec
1i

, the vectors s[i], ui−1(1), x2,i(1, 1, 1) and vi(1, 1, 1, 1) are jointly typical, and with

x1,i(1, 1). Then, conditioned on Ec
1i

, the vectors s[i], ui−1(1), x2,i(1, 1, 1) and vi(1, 1, 1, 1), x1,i(1, 1) and y[i]

are jointly typical by the Markov lemma [55, p. 436], i.e., Pr(E2i|Ec
1i

) → 0 as n → ∞. Thus, by the

union bound over the B blocks, Pr(E2|Ec
1
)→ 0 as n→∞.

• For the decoding of the common message wc = (1, 1) at the receiver, let E3 be the event that ui(wc1),

x2,i(wc1,wc2, ti−1), vi(wc1,wc2, ti−1, ti), x1,i(wc1,w1) and y[i] are jointly typical for all i = 1, . . . ,B and some
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wc1 ∈ [1 : Mc1], wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1] and tB = (t1, . . . , tB) ∈ [1 : M̂]B such that wc1 , 1, i.e.,

E3 =

{

∃ wc1 ∈ [1 : Mc1], wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1], tB = (t1, . . . , tB) ∈ [1 : M̂]B s.t.: wc1 , 1,

B
⋂

i=1

{(

ui(wc1), x2,i(wc1,wc2, ti−1), vi(wc1,wc2, ti−1, ti), x1,i(wc1,w1), y[i]
)

∈ T n
ǫ (PU,X2,V,X1,Y)

}

}

. (J-9)

To bound the probability of the event E3, define the following event for given wc1 ∈ [1 : Mc1],

wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1] and (ti−1, ti) ∈ [1 : M̂]2 such that wc1 , 1,

E3i(wc1,wc2, ti−1, ti,w1) =
{ (

ui(wc1), x2,i(wc1,wc2, ti−1), vi(wc1,wc2, ti−1, ti), x1,i(wc1,w1), y[i]
)

∈ T n
ǫ (PU,X2,V,X1,Y)

}

.

Note that for wc1 , 1 the vectors ui(wc1), x2,i(wc1,wc2, ti−1), vi(wc1,wc2, ti−1, ti) and x1,i(wc1,w1) are

generated independently of y[i]. Hence, by the joint typicality lemma [44, Lecture Note 2], we get

Pr
(

E3i(wc1,wc2, ti−1, ti,w1)|Ec
1,E

c
2

)

≤ 2−n[I(U,V,X1,X2;Y)−ǫ]. (J-10)

Then, conditioned on the events Ec
1

and Ec
2
, the probability of the event E3 can be bounded as

Pr(E3|Ec
1,E

c
2) = Pr

(
⋃

wc1,1

⋃

wc2∈[1,Mc2]

⋃

w1 ∈ [1:M1]

⋃

tB ∈ [1:M̂]B

B
⋂

i=1

E3i(wc1,wc2, ti−1, ti,w1)|Ec
1,E

c
2

)

(a)
≤

∑

wc1,1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

Pr
(

B
⋂

i=1

E3i(wc1,wc2, ti−1, ti,w1)|Ec
1,E

c
2

)

(b)
=

∑

wc1,1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

B
∏

i=1

Pr
(

E3i(wc1,wc2, ti−1, ti,w1)|Ec
1,E

c
2

)

≤
∑

wc1,1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

B
∏

i=2

Pr
(

E3i(wc1,wc2, ti−1, ti,w1)|Ec
1,E

c
2

)

(c)
≤

∑

wc1,1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

B
∏

i=2

2
−n

[

I(U,V,X1,X2;Y)−ǫ
]

=
∑

wc1,1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]

2
n(B−1)

[

R̂+η̂ǫ

]

2
−n(B−1)

[

I(U,V,X1,X2;Y)−ǫ
]

≤Mc1Mc2M1M̂2
−n(B−1)

[

I(U,V,X1,X2;Y)−R̂−(η̂+1)ǫ

]

= 2
−nB

[

B−1
B

(

I(U,V,X1,X2;Y)−R̂

)

−(Rc1+Rc2+R1)− R̂
B+

(

ηc1+ηc2+η1−η̂− B−1
B

)

ǫ

]

(J-11)

where: (a) follows by the union bound; (b) follows since the codebook is generated independently

for each block i ∈ [1 : B] and the channel is memoryless; and (c) follows by (J-10).

The right hand side (RHS) of (J-11) tends to zero as n→ ∞ if

Rc1 + Rc2 + R1 ≤
B − 1

B

(

I(U,V,X1,X2; Y) − R̂
)

− R̂

B
. (J-12)

Taking B→∞, we get Pr(E3|Ec
1
,Ec

2
)→ 0 as long as

Rc + R1 ≤ I(U,V,X1,X2; Y) − R̂. (J-13)
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• For the decoding of the common message wc = (1, 1) at the receiver, let E4 be the event that ui(1),

x2,i(1,wc2, ti−1), vi(1,wc2, ti−1, ti), x1,i(1,w1) and y[i] are jointly typical for all i = 1, . . . ,B and some

wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1] and tB = (t1, . . . , tB) ∈ [1 : M̂]B such that wc2 , 1, i.e.,

E4 =

{

∃ wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1], tB = (t1, . . . , tB) ∈ [1 : M̂]B s.t.: wc2 , 1,

B
⋂

i=1

{(

ui(1), x2,i(1,wc2, ti−1), vi(1,wc2, ti−1, ti), x1,i(1,w1), y[i]
)

∈ T n
ǫ (PU,X2,V,X1,Y)

}

}

. (J-14)

To bound the probability of the event E4, define the following event for given wc2 ∈ [1 : Mc2],

w1 ∈ [1 : M1] and (ti−1, ti) ∈ [1 : M̂]2 such that wc2 , 1,

E4i(wc2, ti−1, ti,w1) =
{ (

ui(1), x2,i(1,wc2, ti−1), vi(1,wc2, ti−1, ti), x1,i(1,w1), y[i]
)

∈ T n
ǫ (PU,X2,V,X1,Y)

}

.

For wc2 , 1 the vectors x2,i(1,wc2, ti−1), vi(1,wc2, ti−1, ti) and x1,i(1,w1) are generated independently of

y[i] conditionnally given ui(1). Hence, by the joint typicality lemma [44, Lecture Note 2], we get

Pr
(

E4i(wc2, ti−1, ti,w1)|Ec
1,E

c
2,E

c
3

)

≤ 2−n[I(V,X1 ,X2;Y|U)−ǫ]. (J-15)

Then, conditioned on the events Ec
1
, Ec

2
and Ec

3
, the probability of the event E4 can be bounded as

Pr(E4|Ec
1,E

c
2,E

c
3) = Pr

(
⋃

wc2,1

⋃

w1 ∈ [1:M1]

⋃

tB ∈ [1:M̂]B

B
⋂

i=1

E4i(wc2, ti−1, ti,w1)|Ec
1,E

c
2,E

c
3

)

(a)
≤

∑

wc2,1

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

Pr
(

B
⋂

i=1

E4i(wc2, ti−1, ti,w1)|Ec
1,E

c
2,E

c
3

)

(b)
=

∑

wc2,1

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

B
∏

i=1

Pr
(

E4i(wc2, ti−1, ti,w1)|Ec
1,E

c
2,E

c
3

)

≤
∑

wc2,1

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

B
∏

i=2

Pr
(

E4i(wc2, ti−1, ti,w1)|Ec
1,E

c
2,E

c
3

)

(c)
≤

∑

wc2,1

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]B

B
∏

i=2

2
−n

[

I(V,X1 ,X2;Y|U)−ǫ
]

=
∑

wc2,1

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]

2
n(B−1)

[

R̂+η̂ǫ

]

2
−n(B−1)

[

I(V,X1 ,X2;Y|U)−ǫ
]

≤Mc2M1M̂2
−n(B−1)

[

I(V,X1 ,X2;Y|U)−R̂−(η̂+1)ǫ

]

= 2
−nB

[

B−1
B

(

I(V,X1 ,X2;Y|U)−R̂

)

−(Rc2+R1)− R̂
B+

(

ηc2+η1−η̂− B−1
B

)

ǫ

]

(J-16)

where: (a) follows by the union bound; (b) follows since the codebook is generated independently

for each block i ∈ [1 : B] and the channel is memoryless; and (c) follows by (J-15).

The right hand side (RHS) of (J-16) tends to zero as n→ ∞ if

Rc2 + R1 ≤
B − 1

B

(

I(V,X1,X2; Y|U)− R̂
)

− R̂

B
. (J-17)
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Taking B→∞, we get Pr(E4|Ec
1
,Ec

2
,Ec

3
)→ 0 as long as

Rc2 + R1 ≤ I(V,X1,X2; Y|U) − R̂. (J-18)

• For the decoding of the individual message w1 = 1 at the receiver, let E5 = ∪B
i=1

E5i where E5i is the

event that
(

x2,i(1, 1, 1), vi(1, 1, 1, 1), x1,i(1, 1), y[i]
)

is not jointly typical conditionnally given ui−1(1), i.e.,

E5 =

B
⋃

i=1

{(

ui−1(1), x2,i(1, 1, 1), vi(1, 1, 1, 1), x1,i(1, 1), y[i]
)

< T n
ǫ (PU,X2,V,X1,Y)

}

. (J-19)

Conditioned on Ec
1i

, the vectors s[i], ui−1(1), x2,i(1, 1, 1) and vi(1, 1, 1, 1) are jointly typical, and with

x1,i(1, 1). Then, conditioned on Ec
1i

, the vectors s[i], ui−1(1), x2,i(1, 1, 1) and vi(1, 1, 1, 1), x1,i(1, 1) and y[i]

are jointly typical by the Markov lemma [55, p. 436], i.e., Pr(E2i|Ec
1i

) → 0 as n → ∞. Thus, by the

union bound over the B blocks, Pr(E5|Ec
1
,Ec

2
,Ec

3
)→ 0 as n→∞.

• For the decoding of the individual message w1 = 1 at the receiver, let E6 be the event that ui(1),

x2,i(1, 1, ti−1), vi(1, 1, ti−1, ti), x1,i(1,w1) and y[i] are jointly typical for all i = 1, . . . ,B and some w1 ∈ [1 :

M1] and tB = (t1, . . . , tB) ∈ [1 : M̂]B such that w1 , 1, i.e.,

E6 =

{

∃ w1 ∈ [1 : M1], tB = (t1, . . . , tB) ∈ [1 : M̂]B s.t.: w1 , 1,

B
⋂

i=1

{(

ui(1), x2,i(1, 1, ti−1), vi(1, 1, ti−1, ti), x1,i(1,w1), y[i]
)

∈ T n
ǫ (PU,X2,V,X1,Y)

}

}

. (J-20)

To bound the probability of the event E6, define the following event for given w1 ∈ [1 : M1] and

(ti−1, ti) ∈ [1 : M̂]2,

E6i(ti−1, ti,w1) =
{ (

ui(1), x2,i(1, 1, ti−1), vi(1, 1, ti−1, ti), x1,i(1,w1), y[i]
)

∈ T n
ǫ (PU,X2,V,X1,Y)

}

.

Then, we have

Pr(E6|Ec
1,E

c
2,E

c
3,E

c
4,E

c
5) = Pr

(
⋃

w1,1

⋃

tB ∈ [1:M̂]B

B
⋂

i=1

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4,E

c
5,

)

(d)
≤

∑

w1,1

∑

tB ∈ [1:M̂]B

Pr
(

B
⋂

i=1

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4, 5

c
)

(e)
=

∑

w1,1

∑

tB ∈ [1:M̂]B

B
∏

i=1

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4, 5

c
)

≤
∑

w1,1

∑

tB ∈ [1:M̂]B

B
∏

i=2

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4, 5

c
)

(J-21)

where: (d) follows by the union bound and (e) follows since the codebook is generated independently

for each block i ∈ [1 : B] and the channel is memoryless.

For w1 , 1, the probability of the event E6i(ti−1, ti,w1) conditioned on Ec
1
,Ec

2
,Ec

3
,Ec

4
,Ec

5
can be bounded

as follows, depending on the values of ti−1 and ti:
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i) if ti−1 , 1 then
(

x2,i(1, 1, ti−1), vi(1, 1, ti−1, ti), x1,i(1,w1)
)

is generated independently of the output

vector y[i] conditionnally given ui(1) irrespective to the value of ti, and so, by the joint typicality

lemma [44, Lecture Note 2]

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4,E

c
5

)

≤ 2−n[I(V,X1,X2;Y|U)−ǫ]. (J-22)

ii) if ti−1 = 1 and ti , 1, then
(

vi(1, 1, ti−1, ti), x1,i(1,w1)
)

is generated independently of the output

vector y[i] conditionnally given ui(1) and x2,i(1, 1, ti−1); and, hence,

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4,E

c
5

)

≤ 2−n[I(V,X1 ;Y|U,X2)−ǫ]. (J-23)

iii) if ti−1 = 1 and ti = 1 then x1,i(1,w1) is generated independently of the output vector y[i]

conditionnally given ui(1), x2,i(1, 1, ti−1) and vi(1, 1, ti−1, ti); and, hence,

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4,E

c
5

)

≤ 2−n[I(X1 ;Y|U,V,X2)−ǫ]. (J-24)

Now, note that since I(V,X1; Y|U,X2) ≥ I(X1; Y|U,V,X2), if w1 , 1 and ti−1 = 1 the following holds

irrespective to the value of ti,

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4,E

c
5

)

≤ 2−n[I(X1 ;Y|U,V,X2)−ǫ]. (J-25)

Let I1 := I(X1; Y|U,V,X2) and I2 := I(V,X1,X2; Y|U). If the sequence (t1, . . . , tB−1) has k ones, we have

B
∏

i=2

Pr
(

E6i(ti−1, ti,w1)Ec
1,E

c
2,E

c
3,E

c
4,E

c
5

)

≤ 2−n[kI1+(B−1−k)I2−(B−1)ǫ]. (J-26)

Continuing from (J-21), we then bound the probability of the event E6 as

Pr(E6|Ec
1,E

c
2,E

c
3,E

c
4,E

c
5)

≤
∑

w1,1

∑

tB ∈ [1:M̂]B

B
∏

i=2

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4, 5

c
)

=
∑

w1,1

∑

tB ∈ [1:M̂]

∑

tB−1 ∈ [1:M̂]B−1

B
∏

i=2

Pr
(

E6i(ti−1, ti,w1)|Ec
1,E

c
2,E

c
3,E

c
4, 5

c
)

≤
∑

w1,1

∑

tB ∈ [1:M̂]

B−1
∑

k=0

(

B − 1

k

)

2
n(B−1−k)

[

R̂+η̂ǫ

]

2
−n

[

kI1+(B−1−k)I2−(B−1)ǫ

]

=
∑

w1,1

∑

tB ∈ [1:M̂]

∑

jB−1 ∈ [1:J]B−1

B−1
∑

k=0

(

B − 1

k

)

2
−n

[

kI1+(B−1−k)(I2−R̂)−(B−1−k)η̂ǫ−(B−1)ǫ

]

=
∑

w1,1

∑

tB ∈ [1:M̂]

B−1
∑

k=0

(

B − 1

k

)

2
−n

[

kI1+(B−1−k)(I2−R̂)−(B−1)(η̂+1)ǫ

]

≤
∑

w1,1

∑

tB ∈ [1:M̂]

B−1
∑

k=0

(

B − 1

k

)

2
−n

[

(B−1) min(I1 , I2−R̂)−(B−1)(η̂+1)ǫ

]

≤M1M̂2B2
−n

[

(B−1) min(I1, I2−R̂)−(B−1)(η̂+1)ǫ

]
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= 2
−nB

[

B−1
B min(I1, I2−R̂)−R1− R̂

B− 1
n+

(

η1− η̂B−
(B−1)(η̂++1)

B

)

ǫ

]

= 2
−nB

[

B−1
B min(I1, I2−R̂)−R1− R̂

B− 1
n+

(

η1−η̂− B−1
B

)

ǫ

]

. (J-27)

The right hand side (RHS) of (J-27) tends to zero as n→ ∞ if

R1 ≤
B − 1

B

(

min(I1, I2 − R̂) − R̂

B
. (J-28)

Taking B→∞, we get Pr(E6|Ec
1
,Ec

2,E
c
3),Ec

4
,Ec

5 → 0 as long as

R1 ≤ I(X1; Y|U,V,X2) (J-29)

R1 ≤ I(V,X1,X2; Y|U) − R̂. (J-30)

Summarizing: From the above, we get that the error probability is small provided that n and B are large

and

R1 ≤ I(X1; Y|U,V,X2) (J-31a)

R1 ≤ I(V,X1,X2; Y|U)− R̂ (J-31b)

Rc2 + R1 ≤ I(V,X1,X2; Y|U)− R̂ (J-31c)

Rc + R1 ≤ I(U,V,X1,X2; Y) − R̂. (J-31d)

Finally, using Fourier-Motzkin Elimination to successively project out Rc2 and R̂ from (J-31), we get

R1 ≤ I(X1; Y|U,V,X2) (J-32a)

R1 ≤ I(V,X1,X2; Y|U)− I(V; S|U,X2) (J-32b)

Rc + R1 ≤ I(U,V,X1,X2; Y) − I(V; S|U,X2). (J-32c)

This completes the proof of Theorem 5.

K. Proof of Theorem 6

1) Direct Part: Recall the inner bound of Theorem 5. Setting Rc = 0, we obtain

R1 ≤ I(X1; Y|U,V,X2) (K-1a)

R1 ≤ I(V,X1,X2; Y|U)− I(V; S|U,X2) (K-1b)

for some measure

PS,U,V,X1,X2,Y = QSPUPX2 |UPX1|UPV|S,U,X2
WY|S,X1,X2

. (K-2)

(Note that the bound on the sum rate is redundant).
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Setting V = S and U = ∅ in (K-1a), we obtain the first term of the minimum in the capacity expression

(74). Similarly, setting V = S and U = ∅ in (K-1b), we obtain

R1 ≤ I(V,X1,X2; Y|U)− I(V; S|U,X2) (K-3)

= I(X1,X2; Y|U) − I(V; S|U,X1,X2,Y) (K-4)

= I(X1,X2; Y) −H(S|X1,X2,Y) (K-5)

= I(X1,X2,Y) (K-6)

where the last equality holds since the state S is a deterministic function of (X1,X2,Y).

2) Converse Part: The converse proof also follows in a manner that is similar to that of Proposition 1,

by noticing that in this case the channel inputs are independent.

L. Proof of Theorem 7

To see that the knowledge of the states strictly causally at the encoders does not increase the sum-rate

capacity, observe that we can bound the sum rate as follows.

1) Direct Part: The achievability follows straightforwardly by using Shannon strategies, without Block-

Markov coding.

2) Converse Part: The converse proof also follows through straightforward steps. More specifically, let

us define Vi = (Wc,Y
i−1) and Ui = (W1,Vi), i = 1, . . . , n.

We can bound the sum rate (Rc + R1) as follows.

n(Rc + R1) ≤ H(Wc,W1)

= I(Wc,W1; Yn) +H(Wc,W1|Yn)

≤ I(Wc,W1; Yn) + nǫn

=

n
∑

i=1

I(Wc,W1; Yi|Yi−1) + nǫn

≤
n

∑

i=1

I(Wc,W1,Y
i−1; Yi) + nǫn

(a)
≤

n
∑

i=1

I(Vi,Ui; Yi) + nǫn (L-1)

where (a) follows by substituting using the definitions of Ui and Vi.

Similarly, we can bound the individual rate R1 as follows

nR1 ≤ H(W1)

= H(W1|Wc)
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= I(W1; Yn|Wc) +H(W1|Wc,Y
n)

≤ I(W1; Yn|Wc) + nǫn

=

n
∑

i=1

I(W1; Yi|Wc,Y
i−1) + nǫn

≤
n

∑

i=1

I(W1,Wc,Y
i−1; Yi|Wc,Y

i−1) + nǫn

(b)
≤

n
∑

i=1

I(Ui; Yi|Vi) + nǫn (L-2)

where (b) follows by substituting using the definitions of Ui and Vi.

The rest of the proof of Theorem 7 follows by standard single-letterization.
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