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Abstract

The interference channel with common information (IC-CI) consists of two transmit-receive pairs

that communicate over a common noisy medium. Each transmitter has an individual message for its

paired receiver, and additionally, both transmitters have a common message to deliver to both receivers.

In this paper, through explicit inner and outer bounds on the capacity region, we establish the capacity

region of the Gaussian IC-CI to within a bounded gap of one bit, independently of the values of all

channel parameters. Using this constant-gap characterization, the generalized degrees of freedom (GDoF)

region is determined. It is shown that the introduction of the common message leads to an increase in

the GDoF over that achievable over the Gaussian interference channel without a common message, and

hence to an unbounded improvement in the achievable rate. A surprising feature of the capacity-within-

one-bit result is that most of the available benefit (i.e., to within one bit of capacity) due to the common

message is achieved through a simple and explicit coding scheme that involves independent signaling

at the two transmitters so that, in effect, this scheme forgoes the opportunity for transmitter cooperation

that is inherently available due to shared knowledge of the common message at both transmitters.
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I. INTRODUCTION

THE interference channel (IC) consists of two transmit-receive pairs that communicate over a

common noisy medium. Each transmitter must convey an individual message to its paired receiver.

For even this elemental network, even after decades of research, the capacity region is known only in

some special cases [1]–[7]. It is remarkable also that in the general case, the rate region proposed by Han

and Kobayashi in 1981 in [8] (henceforth, the HK rate region) remains the best known inner bound to date

on the capacity region1. The intractability of the exact capacity characterization notwithstanding however,

Etkin et al. [12] made significant progress by proving – via a simple and explicit HK scheme (that involves

rate-splitting/partial interference decoding) – that the corresponding rate region is within a universal gap

of no more than one bit of the capacity region regardless of the values of the channel parameters. This

constant gap result was obtained for the scalar Gaussian IC in [12], and was recently generalized, also

through explicit inner and outer bounds on the capacity region, by Karmakar and Varanasi in [13] to the

multiple-input multiple-output (MIMO) Gaussian IC with an arbitrary number of antennas at each of the

four terminals.

A generalization of the IC, known as the IC with common information (henceforth referred to as

the IC-CI), has also been considered in the literature (see Fig. 1). In the IC-CI, in addition to the two

individual messages, both transmitters have a common message, which they must communicate to both

1In [9], the authors proposed a coding scheme and the corresponding achievable rate, which was shown to be at least as big

as the HK rate region. However, in [10], the region of [9] is shown to be equal to the HK rate region. Recently, [11] has claimed

an improvement over the HK rate region but it is not clear if this improvement is strict.
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Fig. 1. The Gaussian Interference Channel with Common Information (IC-CI)
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receivers2. The discrete memoryless (DM) IC-CI was first studied by Tan [14] to obtain inner and outer

bounds to the capacity region. More recently, Jiang, Xin, and Garg [15] improved Tan’s inner-bound and

gave the best-known achievable rate region to date (the rate regions of [16] and [15] are equivalent). The

coding scheme of [15], referred henceforth as the JXG scheme, is a generalization of the HK coding

scheme. More specifically, the JXG scheme borrows the message-splitting idea from the HK scheme,

and involves splitting the individual message at each sender into the public and the private sub-messages,

where the former is to be decoded by both receivers while the latter is intended only for the paired

receiver. Further, these (sub-)messages are encoded using a three-level superposition encoding scheme

with the order of superposition being the common message, followed by the public sub-message, and

finally the private sub-massage at the top-most level. Finally, the receivers employ joint typical decoding

to extract the desired messages. The main idea of the JXG scheme is to have an identical codeword

for the common message at both transmitters, which allows the transmit signals to be dependent, thus

provisioning for a collaborative transmission of the common message. It is important to note that the JXG

region coincides with the capacity region in some special cases such as the IC-CI with strong interference

[17], the deterministic IC-CI, a generalization of the Gamal-Costa deterministic IC [3], [15], and a class

of semi-deterministic IC-CI [18].

While all the above results concern the DM IC-CI, the Gaussian version of this channel has also been

explicitly studied. Indeed, the authors of [15] itself propose a class of coding schemes for the real-valued

Gaussian IC-CI by specializing their corresponding result on the DM IC-CI. This class of coding schemes

is nonspecific in that it consists of uncountably many three-level Gaussian linear superposition coding

schemes that are parameterized by four real numbers. As a result, it is impossible to comment on how

the rate region of [15], which is the union of rate regions achieved by each member of that class of

coding schemes, relates to the capacity region. Further, for the real Gaussian IC-CI, an outer-bound to

the capacity region has been proposed in [19]. While this bound is tighter than the one by Tan [14],

nothing is known about its tightness relative to the capacity region. Thus, in summary, the known inner

and outer bounds fail to provide any guarantee in general on the closeness of the achievable rates to the

capacity region.

In this paper, we study the complex-valued Gaussian IC-CI, and determine its capacity region to

within a gap of one bit independently of the values of the channel parameters. To establish this result, we

first choose an explicit two-level Gaussian superposition coding scheme, which can be seen as being a

2The term interference channel or IC, henceforth, refers to the case of no common information



3

𝛼 

DoF 

0.5 

1 

1.25 

1
2  2 3  1 2 0 

𝑑IC 𝛼  

𝑑ICCI 𝛼  

with Common Message 

without Common Message 

Fig. 2. Maximum Number of Degrees of Freedom Achievable per User over the Symmetric Gaussian IC-CI

member of the class of (uncountably many) coding schemes of Jiang et al., and then adopt its achievable

rate region as our explicit inner-bound to the capacity region. Next, a new explicit outer-bound to the

capacity region is proposed, which has a shape similar to that of the derived inner-bound. This facilitates

an easy comparison of the inner and outer-bounds. Further, this comparison reveals that the gap between

the two bounds is at most one bit irrespective of the channel parameters, leading to the sought-after

characterization of the capacity region of the Gaussian IC-CI to within a bounded gap of one bit.

Using the above constant gap result, we determine the generalized degrees of freedom (GDoF) region,

which denotes the rate of growth, in the regime of high nominal SNR, of the capacity region with respect

to log SNR, when the ratio log SNRi

log SNR = αii and log INRi

log SNR = αij with i, j ∈ {1, 2} and j 6= i [12]. Focusing

on the Gaussian IC-CI where αii = 1 and αij = α, so that the channel is symmetric with respect to two

transmit-receive pairs, and defining the per-user DoF to be equal to half of the sum GDoF achievable

over the channel, we plot in Fig. 2 the maximum number of DoF achievable per user with and without

the common message. From this figure, it is evident that over a wide range of values of α, the presence

of common message can significantly enhance the per-user DoF. In other words, an unbounded increase

in the achievable rate is possible due to the presence of the common message. This result is interesting

because in the cases of the multiple-access and the broadcast channels, the common message can not

improve the DoF. Indeed, our result is the first instance in which a common message provides a DoF

enhancement. An heuristic explanation of this phenomenon is that in the absence of the common message,

the total DoF available at the receivers can not be utilized, whereas, on the contrary, in the presence of

the common message, these unused DoF can be completely exploited to produce a DoF improvement.

Based on the forgoing discussion, it would be natural to expect that the constant gap to capacity (and
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GDoF-region-optimal) coding scheme would involve sending correlated signals from the two transmitters,

and hence that some form of transmitter cooperation would in fact be the key to realizing the potentially

unbounded rate improvement promised due to the common message. Remarkably however, the coding

scheme proposed here employs independent signaling across the transmitters, as in the case of the IC –

where correlated signaling is not an option, of course– and yet, it is achieves the capacity region to within

one bit. Because of the independence between the two inputs, this scheme involves only a simple and

explicit two-level Gaussian superposition coding at each sender (as opposed to the nonspecific and typical

three-level JXG superposition schemes). The key insight that emerges due to this paper is therefore that

independent inputs, and hence non-cooperative transmission, is optimal to within one bit of the capacity

region of the Gaussian IC-CI.

The rest of the paper is organized as follows. The next section describes the model of the Gaussian

IC-CI and states some important definitions. The subsequent section contains a brief overview of the

coding scheme proposed by Jiang et al. [15]. In Section IV-A, we describe our main results regarding the

capacity region and the GDoF region. In Section IV-B, we show that the common message can enhance

the DoF. In Section IV-C, we explain how the DoF benefit can be realized with just independent inputs

through a simple example. The proofs of the main results are given in Sections V-VII. Finally, the paper

concludes with Section VIII.

II. CHANNEL MODEL OF THE GAUSSIAN IC-CI AND DEFINITIONS

We begin by formally defining the Gaussian IC-CI model and then provide some key definitions, in

terms of which the main results of this paper are conveniently stated.

A. The Gaussian IC-CI

The IC-CI (shown in Fig. 1) consists of two transmitters, T1 and T2, and their corresponding receivers,

R1 and R2, and has three messages that need to be conveyed to the receivers. In particular, each transmitter

needs to communicate an individual message to its paired receiver, and additionally, both transmitters

together need to convey a common message to both receivers. The input-output relationship for the

Gaussian IC-CI is described by the following two equations:

Y1(t) = h11X1(t) + h12X2(t) + Z1(t)

Y2(t) = h21X1(t) + h22X2(t) + Z2(t),

where at time t, Y1(t) ∈ C and Y2(t) ∈ C are respectively the signals received by R1 and R2; X1(t) ∈ C

and X2(t) ∈ C are the signals transmitted by T1 and T2, respectively; Z1(t), Z2(t) ∼ CN (0, 1) are the
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additive Gaussian3 noises at the two receivers and the noise realizations are assumed to be independent

and identically distributed (i.i.d.) across time; hij ∈ C represents the channel fading coefficient between

the ith receiver and the jth transmitter; and we impose a power constraint of 1 on the transmit signals.

Finally, the channel coefficients are taken to be deterministic and known to all terminals.

The signal-to-noise ratio (SNR) and the interference-to-noise ratio (INR) corresponding to the two

receivers are defined as follows: For each i ∈ {1, 2},

SNRi
4
= |hii|2 and INRi

4
= |hij |2

with j ∈ {1, 2} such that j 6= i.

Notation: For any vector V (t) and an n ∈ N, V n is defined as the vector with entries V (1), V (2),

· · · , V (n). For instance,

Y n
i =

[
Y ∗i (1) Y ∗i (2) · · · Y ∗i (n)

]∗
Further, H

4
= (h11, h12, h21, h22).

Consider now an (n,R0, R1, R2, P
(n)
e ) coding scheme for the Gaussian IC-CI. It consists of the

following components:

• messages M0, M1, and M2, where M1 and M2 are the two individual messages, M0 is the

common message, all messages are independent, and Mi is distributed uniformly over the set{
1, 2, 3, · · · , 2nRi

}
of cardinality 2nRi ;

• encoding functions f1(·) and f2(·), which are used by the transmitters to generate the transmit signal

so that for each i ∈ {1, 2},

Xi(t) = fi

(
M0,Mi, t,H

)
and

1

n

n∑
t=1

E|Xi(t)|2 ≤ 1;

• decoding functions g1(·) and g2(·), which are used by the two receivers to compute the estimates

of their desired messages so that

M̂0i, M̂i = gi

(
Y n
i , H

)
;

and

• probability of error P (n)
e , which is defined as

P (n)
e

4
= Pr

{
M1 6= M̂1 or M2 6= M̂2 or M0 6= M̂01 or M0 6= M̂02

}
.

The achievability of the rate 3-tuple (R0, R1, R2) is defined as follows.

3Here, CN (0, σ2) denotes a circularly symmetric complex Gaussian distribution with mean 0 and variance σ2.
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Definition 1 (Achievability of the rate 3-tuple): A rate 3-tuple (R0, R1, R2) is said to be achievable

if there exists a sequence of (n,R0, R1, R2, P
(n)
e ) coding schemes such that P (n)

e → 0 as n→∞.

The capacity region and the GDoF region are defined as follows.

Definition 2 (Capacity region): The capacity region C(H) is defined as the closure of the set of all

achievable rate 3-tuples.

Suppose Rb+ denotes the set of all b-tuples of the non-negative real numbers.

Definition 3 (GDoF region): For a vector α = (α11, α12, α21, α22)
T ∈ R4

+, the GDoF region D(α)

is defined as

D(α) =

{
(d0, d1, d2) ∈ R3

+

∣∣∣∣ for a P > 0, |hij |2 = Pαij ∀ i, j ∈ {1, 2}

and (R0, R1, R2) ∈ C(H) such that dk = lim
P→∞

Rk
log2 P

∀k = 1, 2, 3

}
.

B. More Definitions

As mentioned in the introduction, we make use of the rate region of Jiang et al. [15] to derive an

inner-bound to the capacity region C(H). In order to state their rate region, which is done in Theorem

1 of the next section, we need the following three definitions.

Consider some jointly distributed random variables (U0, U1, U2, X1, X2, Y1, Y2). A class of their joint

distributions is defined below.

Definition 4: For random variables (U0, U1, U2, X1, X2, Y1, Y2), the set of their joint probability dis-

tributions p(·) that factor as

p(u0, u1, u2, x1, x2, y1, y2) = p(u0)p(u1, x1|u0)p(u2, x2|u0)p(y1, y2|x1, x2)

is denoted by P .

We now define some mutual information terms involving these random variables.

Definition 5: For a p(·) ∈ P and an i ∈ {1, 2}, if j ∈ {1, 2} such that j 6= i, then

ai
4
= I(Xi;Yi|U0, Ui, Uj), di

4
= I(Xi;Yi|U0, Uj),

ei
4
= I(Xi, Uj ;Yi|U0, Ui), gi

4
= I(Xi, Uj ;Yi|U0),

g′i
4
= I(U0, Xi, Uj ;Yi).

Using these mutual information terms, we define a subset of R3
+ as follows.
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Definition 6: For a p ∈ P , the region R(p) ⊂ R3
+ is defined as the set of all 3-tuple (R0, R1, R2)

that satisfy the following constraints: R0, R1, R2 ≥ 0 and

R0 +R1 ≤ g′1, R0 +R2 ≤ g′2,

R1 ≤ d1, R2 ≤ d2,

R1 +R2 ≤ e1 + e2,

R1 +R2 ≤ a1 + g2, R1 +R2 ≤ a2 + g1,

R0 +R1 +R2 ≤ a1 + g′2, R0 +R1 +R2 ≤ a2 + g′1,

2R1 +R2 ≤ a1 + g1 + e2, R1 + 2R2 ≤ a2 + g2 + e1,

R0 + 2R1 +R2 ≤ a1 + g′1 + e2, R0 +R1 + 2R2 ≤ a2 + g′2 + e1.

We now define two subsets of R3
+, namely, Cinner(H) and Couter(H), which are later proved in

Theorems 2 and 3 to be the inner and outer bounds to C(H), respectively. These regions are given in

Definitions 9 and 10, respectively, using some functions of H , which are defined next.

Definition 7: Suppose C(P )
4
= log2(1 + P ) for a P ≥ 0. Then

x21
4
= min

(
1,

1

|h21|2

)
, x12

4
= min

(
1,

1

|h12|2

)
,

A1
4
= C

(
|h11|2x21

1 + |h12|2x12

)
, A2

4
= C

(
|h22|2x12

1 + |h21|2x21

)
,

D1
4
= C

(
|h11|2

1 + |h12|2x12

)
, D2

4
= C

(
|h22|2

1 + |h21|2x21

)
,

E1
4
= C

(
|h11|2x21 + |h12|2(1− x12)

1 + |h12|2x12

)
, E2

4
= C

(
|h22|2x12 + |h21|2(1− x21)

1 + |h21|2x21

)
,

G1
4
= C

(
|h11|2 + |h12|2(1− x12)

1 + |h12|2x12

)
, G2

4
= C

(
|h22|2 + |h21|2(1− x21)

1 + |h21|2x21

)
,

G′1
4
= C

(
1 + |h11|2 + |h12|2

1 + |h12|2x12
− 1

)
, G′2

4
= C

(
1 + |h22|2 + |h21|2

1 + |h21|2x21
− 1

)
.

Consider some more non-negative real-valued functions of H , which are required for defining Couter(H).

Definition 8: Consider the following parameters:

A1
4
= C

(
|h11|2

1 + |h21|2

)
, A2

4
= C

(
|h22|2

1 + |h12|2

)
,

D1
4
= C

(
|h11|2

)
, D2

4
= C

(
|h22|2

)
,

E1
4
= C

(
|h12|2 +

|h11|2

1 + |h21|2

)
, E2

4
= C

(
|h21|2 +

|h22|2

1 + |h12|2

)
,

G1
4
= C

(
|h11|2 + |h12|2

)
, G2

4
= C

(
|h22|2 + |h21|2

)
,

G
′
1
4
= C

(
[|h11|+ |h12|]2

)
, G

′
2
4
= C

(
[|h22|+ |h21|]2

)
.
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We define now the two subsets Cinner(H) and Couter(H) in terms of these real numbers.

Definition 9: The region Cinner(H) ⊂ R3
+ is defined as the set of all 3-tuple (R0, R1, R2) that satisfy

the following constraints: R0, R1, R2 ≥ 0 and

R0 +R1 ≤ G′1, R0 +R2 ≤ G′2,

R1 ≤ D1, R2 ≤ D2,

R1 +R2 ≤ E1 + E2,

R1 +R2 ≤ A1 +G2, R1 +R2 ≤ A2 +G1,

R0 +R1 +R2 ≤ A1 +G′2, R0 +R1 +R2 ≤ A2 +G′1,

2R1 +R2 ≤ A1 +G1 + E2, R1 + 2R2 ≤ A2 +G2 + E1,

R0 + 2R1 +R2 ≤ A1 +G′1 + E2, R0 +R1 + 2R2 ≤ A2 +G′2 + E1.

Definition 10: The region Couter(H) ⊂ R3
+ is defined as the set of all 3-tuple (R0, R1, R2) that satisfy

the following constraints: R0, R1, R2 ≥ 0 and

R0 +R1 ≤ G
′
1, R0 +R2 ≤ G

′
2,

R1 ≤ D1, R2 ≤ D2,

R1 +R2 ≤ E1 + E2,

R1 +R2 ≤ A1 +G2, R1 +R2 ≤ A2 +G1,

R0 +R1 +R2 ≤ A1 +G
′
2, R0 +R1 +R2 ≤ A2 +G

′
1,

2R1 +R2 ≤ A1 +G1 + E2, R1 + 2R2 ≤ A2 +G2 + E1,

R0 + 2R1 +R2 ≤ A1 +G
′
1 + E2, R0 +R1 + 2R2 ≤ A2 +G

′
2 + E1.

We need to define a region D(α) ⊂ R3
+ as a function of α = (α11, α12, α21, α22)

T ; this region is

shown in Theorem 5 to be equal to the GDoF region D(α). As before, this region D(α) is defined in

terms of some non-negative real numbers, which are first given below, and subsequently, the region D(α)

is given by Definition 12.

Definition 11: Suppose for two real numbers a and b, (a− b)+ 4= max{0, a− b}. Then

a1
4
= (α11 − α21)

+ , a2
4
= (α22 − α12)

+ ,

d1
4
= α11, d2

4
= α22,

e1
4
= max {(α11 − α21) , α12} , e2

4
= max {(α22 − α12) , α21} ,

g1
4
= max {α11, α12} , g2

4
= max {α22, α21} .
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Definition 12: The region D(α) ⊂ R3
+ is defined as the set of all 3-tuple (d0, d1, d2) that satisfy the

following constraints: d0, d1, d2 ≥ 0 and

d0 + d1 ≤ g1, d0 + d2 ≤ g2,

d1 ≤ d1, d2 ≤ d2,

d1 + d2 ≤ e1 + e2,

d0 + d1 + d2 ≤ a1 + g2, d0 + d1 + d2 ≤ a2 + g1,

d0 + 2d1 + d2 ≤ a1 + g1 + e2, d0 + d1 + 2d2 ≤ a2 + g2 + e1.

Note here the distinction between di and di; while the former denotes the DoF corresponding to Mi,

the latter is a function of α given by Definition 11.

Finally, to state the capacity region of the Gaussian IC-CI to within a constant gap, we need the

following definition.

Definition 13: Let R1, R2 ∈ R3
+. The region R1 is said to be within b ≥ 0 bits of the region R2 if

for any 3-tuple (R0, R1, R2) ∈ R2, there exists a 3-tuple (R′0, R
′
1, R

′
2) ∈ R1 such that Ri − R′i ≤ b ∀

i ∈ {1, 2, 3}.

III. AN ACHIEVABLE RATE REGION FOR THE DM IC-CI

As mentioned before, the HK rate region [8] is the best-known inner-bound to the capacity region of

the general DM IC. Generalizing the coding scheme developed by Han and Kobayashi [8], Jiang, Xin

and Garg [15] proposed an achievable rate region for the DM IC-CI (referred to henceforth as the JXG

rate region). We state below this rate region and briefly explain the main idea behind the coding scheme

of [15] (referred to as the JXG coding scheme), because these ideas are useful when dealing with the

Gaussian IC-CI.

We first define the DM IC-CI, which, like the Gaussian IC-CI, consists of two individual messages

M1 and M2, and a common message M0. The DM IC-CI is described in terms of the 5-tuple(
X1,X2,Y1,Y2, p(y1, y2|x1, x2)

)
,

where X1, X2, Y1, and Y2 are finite-cardinality sets, and the transmit-receive signals at time t, namely,

X1(t), X2(t), Y1(t), and Y2(t) belong to sets X1, X2, Y1, and Y2, respectively; p(y1, y2|x1, x2) denotes

the conditional transition probability and the channel is memoryless in a sense that

p (yn1 , y
n
2 |xn1 , xn2 ) =

n∏
t=1

p (y1(t), y2(t) |x1(t), x2(t)) .
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For the DM IC-CI, the achievability of the rate tuple (R0, R1, R2) and the capacity region C
(
p(y1, y2|x1, x2)

)
are defined in a manner similar to their definitions for the Gaussian IC-CI. Then the JXG achievable rate

region for the DM IC-CI is given by the following theorem, which is stated using Definitions 4-6.

Theorem 1 (JXG rate region, [15]): The region

RJXG
4
=
⋃
p∈P
R(p)

is achievable over the DM IC-CI, i.e., RJXG ⊆ C
(
p(y1, y2|x1, x2)

)
.

We now provide a brief explanation of the JXG coding scheme.

Remark 1 (JXG coding scheme [15]): This scheme can be considered as a generalization of the HK

coding scheme [8] in the sense that it superposes an HK scheme on the common message code. As in the

HK scheme, each individual messageMi is split into private and public sub-messages, denoted asMi,pr

and Mi,pu. The private sub-message Mi,pr is to be decoded only by the ith receiver, while the public

sub-message Mi,pu is to be decoded by both the receivers. The transmitters use superposition encoding

and the receivers use joint typical decoding. Furthermore, the rate 3-tuple (R0, R1, R2) is attained by

achieving rates R0, R1,pu, R1,pr, R2,pu, and R2,pr for messages M0, M1,pu, M1,pr, M2,pu, and M2,pr,

respectively, so that R1 = R1,pu +R1,pr and R2 = R2,pu +R2,pr.

The codebooks in the JXG scheme are generated as follows. The messagesMi,pu andMi,pr are taken

to be uniformly distributed over sets
{

1, 2, 3, · · · , 2nRi,pu

}
and

{
1, 2, 3, · · · , 2nRi,pr

}
, respectively. A

code consisting of 2nR0 n-length i.i.d. codewords u0(k) with k ∈
{

1, 2, · · · , 2nR0

}
is generated (corre-

sponding to U0) according to the probability law
∏n
t=1 p

(
u0(t)

)
. Next, for each i ∈ {1, 2} and for each

codeword u0(k), 2nRi,pu i.i.d. codewords ui(k, li) with li ∈
{

1, 2, · · · , 2nRi,pu

}
are generated according

to
∏n
t=1 p

(
ui(t)

∣∣u0(t)). Finally, for every i ∈ {1, 2} and for each pair of codewords
(
u0(k),ui(li)

)
,

2nRi,pr i.i.d. codewords xi(k, li,mi) with mi ∈
{

1, 2, · · · , 2nRi,pr

}
are generated according to the law∏n

t=1 p(xi(t)|u0(t), ui(t)). These codebooks are then revealed to all terminals before the start of data

communication.

Now, to encode messagesM0 = m0,Mi,pu = mi,pu, andMi,pr = mi,pr, the ith transmitter transmits

codeword xi
(
m0,mi,pu,mi,pr

)
. On the other hand, the receivers compute the estimates of the transmitted

common message, two public sub-messages, and the intended private sub-message by finding unique

codewords corresponding to these messages that are jointly typical with its received signal. From these

estimates, they decode the desired messages.

Note that in the above encoding scheme, the common message is not conveyed by just the codeword

corresponding to U0, but also by those corresponding to U1, X1, U2, and X2. This is because the choices
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of these codewords depend on the value/realization of the common message. Similarly, the ith public

message is encoded not just via Ui but also via Xi.

IV. MAIN RESULTS AND DOF IMPROVEMENT DUE TO THE COMMON MESSAGE

In this section, we describe our main results and also the key insight obtained about the DoF improve-

ment possible with the common message.

A. The Capacity Region to within One Bit and the GDoF region

Here, we provide a constant-gap characterization of the capacity region and then the GDoF region.

Toward this end, we first derive an inner-bound to the capacity region C(H) in the following theorem,

which is stated using Definitions 7 and 9.

Theorem 2: The region Cinner(H) is achievable over the Gaussian IC-CI, i.e.,

Cinner(H) ⊆ C(H).

Proof: We use the JXG coding scheme with the following choice for the distribution of the transmit-

side random variables: For i, j ∈ {1, 2} with j 6= i,

U0 = 0, Ui ∼ CN (0, 1− xji)

Xi = Ui + Ui,pr, where Ui,pr ∼ CN (0, xji) ,

and U1, U2, U1,pr, U2,pr are independent. Note that in choosing the power split between Ui and Ui,pr,

i.e., between the public and the private sub-messages, we have used the key insight from Etkin et.

al. in [12] for the IC that the private sub-message should appear at the noise floor of the unintended

receiver. Further, this choice of p(u0, u1, u2, x1, x2) induces a joint distribution on random variables

(U0, U1, U2, X1, X2, Y1, Y2), which is referred in the sequel as pG. Note that pG ∈ P and is hence a

valid, if fringe or degenerate, JXG coding scheme (since U0 = 0). Now, various mutual information

terms, defined in Definition II-B, can be easily evaluated for p = pG to verify that for each i ∈ {1, 2},

ai = Ai, di = Di, ei = Ei, gi = Gi, and g′i = G′i.

The details are straightforward and omitted here. This implies that R
(
pG
)

= Cinner(H). Hence, the

region Cinner(H) is achievable, as per Theorem 1.

Remark 2 (On the coding scheme used in Theorem 2): The intriguing feature of the apparently

degenerate pG coding scheme used to prove the achievability of Cinner(H) is that the random variable

U0, which represents the cooperation between the two transmitters in sending the common message, is
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set equal to 0. Thus, the transmitters ignore the fact that the common message is known to both of

them. Rather, each transmitter combines the common message with its individual message, treats their

combination as its new individual message, and then encodes disregarding the fact that a part of this new

individual message is also known to the other transmitter. The receivers, on the other hand, must decode

the desired messages accounting for the presence of the common message. Remarkably, as proved in

Theorem 4, this degenerate JXG coding scheme, which in spite of forgoing entirely the opportunity for

transmitter cooperation, is capacity optimal to within one bit.

Remark 3 (On the JXG coding scheme for the (real) Gaussian IC-CI in [15]): On the contrary,

the JXG rate region in [15, Section VI-A] is (a) specified for the Gaussian IC-CI as a union of a

collection of uncountably infinitely many subsets of R3
+, where the collection is parameterized by four

numbers belonging to the set [0, 1] and (b) there is no assurance about its distance to the capacity region.

To show that the inner-bound to the capacity region of Theorem 2 is tight up to 1 bit, we need a tight

outer-bound. The next theorem gives us such an outer bound, and is stated using Definitions 8 and 10.

Theorem 3: The region Couter(H) is an outer-bound to the capacity region C(H) of the Gaussian

IC-CI, i.e.,

C(H) ⊆ Couter(H).

Proof: See Section V.

The following result shows that the bounds of Theorems 2 and 3 are within a one bit gap.

Theorem 4: The inner-bound Cinner(H) is within one bit of the outer-bound Couter(H) ∀ H . Hence,

Cinner(H) is within a bounded gap of one bit to the capacity region C(H), independently of the channel

parameters.

Proof: See Section VI-A.

Next, using the previous theorem, the GDoF region of the Gaussian IC-CI is computed.

Theorem 5: For the Gaussian IC-CI, the GDoF region is equal to D(α), i.e.,

D(α) = D(α).

where D(α) is defined in Definitions 11 and 12.

Proof: Since the inner-bound Cinner(H) is within one bit of the outer-bound Couter(H) for any H ,

these two regions for tight in the sense of GDoF. Hence, the GDoF region can computed using either

one of the two bounds. See SectionVI-B for the details of this computation.

Note that in the special of d0 = 0, i.e., in the absence of the common message, the region D(α)

reduces to the well known GDoF region of the IC (without common message) of [12]. Moreover, in the



13

special case of d1 = d2 = 0, i.e., when the individual messages are not transmitted, the above theorem

recovers the result on the DoF of the broadcast channel with just a common message.

Having determined the GDoF region, it is now possible to quantify the benefit of having the common

message, which is the topic of the next sub-section.

Remark 4 (On [19]): Four outer-bounds to the capacity region of the Gaussian IC-CI have been pro-

posed before in [19]. However, none of these outer-bounds put any constraint on the linear combinations

R0 + 2R1 +R2 and R0 +R1 + 2R2. However, bounds on these linear combinations are important even

in the DoF sense, i.e., corresponding to these, we get bounds on d0 + 2d1 + d2 and d0 + d1 + 2d2 while

characterizing the GDoF region, and these bounds can be shown to be non-redundant. Thus, we conjecture

that all outer-bounds of [19] have an unbounded gap to the capacity region. Hence, their outer-bounds

are not used here to obtain a constant-gap characterization of the capacity region.

Remark 5 (On [20]): Recently, following the conference version of this paper in [21], a companion

paper by Romero and Varanasi in [20] generalizes the inner and outer bounds of Telatar and Tse [22] for

a class of DM semi-deterministic ICs to the class of DM semi-deterministic IC-CIs. When specialized

to the Gaussian IC-CI, the result in [20] also obtains the one bit gap result. However, as in the case of

[22], the work in [20] obtains inner and outer bounds to the capacity region that are both expressed as

the union of a collection of (possibly uncountably) infinitely many subsets of R3
+, where this collection

of subsets is parameterized by the joint distributions of a certain set of random variables. In other words,

the result of [20], while general (it is also applicable, for example, to MIMO IC-CIs), does not provide an

explicit characterization of the capacity region, unlike this paper. Another shortcoming of the approach

of [20], as in the case with [22]), is that due to the lack of explicit characterizations of the bounds,

it is difficult to obtain further insights, such as proving that the common message can lead to a DoF

improvement, as is done in this paper and its conference version [21].

B. GDoF Benefit due to Common Message

To simply quantify the benefit of having a common message, we focus here on the symmetric Gaussian

IC-CI, where h11 = h22, h12 = h21, α11 = α22 = 1, α12 = α21 = α, and R1 = R2 and d1 = d2. Since

we achieve an equal number of DoF for the two individual messages in the symmetric case and the sum

(d0 +d1 +d2) represents the total DoF achieved over the channel, the number 1
2(d0 +d1 +d2) represents

the per-user DoF. Hence, the quantity

dIC(α)
4
= max

(d0,d1,d2)∈D(α)

1

2
(d0 + d1 + d2) , subject to

 α11 = α22 = 1, d1 = d2

α12 = α21 = α, d0 = 0,

 ,
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denotes the maximum number of DoF achievable per user without the common message, whereas

dICCI(α)
4
= max

(d0,d1,d2)∈D(α)

1

2
(d0 + d1 + d2) , subject to

 α11 = α22 = 1

α12 = α21 = α
, d1 = d2

 .

represents the per user DoF with the common message. As a result, the difference

d↑(α)
4
= dICCI(α)− dIC(α)

signifies the improvement attainable in the per-user DoF due to the common message. Thus, to quantify

the benefit of having the common message, it is sufficient to characterize d↑(α). Toward this end, we

first determine dIC, and then derive dICCI to obtain an expression for d↑(α) in Theorem 7.

Theorem 6 (Etkin et al [12]): Over the symmetric Gaussian IC-CI, we have

dIC(α) =



1− α if 0 ≤ α < 1
2 ,

α if 1
2 ≤ α <

2
3 ,

1− α
2 if 2

3 ≤ α < 1,

α
2 if 1 ≤ α < 2,

1 if 2 ≤ α.

(1)

Proof: In the absence of the common message or d0 = 0, the IC-CI reduces to IC, and therefore,

we get dIC(α) from [12, equation (25)].

Theorem 7: Over the symmetric Gaussian IC-CI, we have

dICCI(α) =



dIC(α) + α
2 if 0 ≤ α < 1

2 ,

dIC(α) + 2−3α
2 if 1

2 ≤ α <
2
3 ,

dIC(α) if 2
3 ≤ α < 1,

dIC(α) if 1 ≤ α < 2,

dIC(α) + α−2
2 if 2 ≤ α,

(2)

and therefore,

d↑(α) =



α
2 if 0 ≤ α < 1

2 ,

2−3α
2 if 1

2 ≤ α <
2
3 ,

0 if 2
3 ≤ α < 1,

0 if 1 ≤ α < 2,

α−2
2 if 2 ≤ α.

(3)
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Proof: See Section VII.

The functions dIC(α) and dICCI(α) are plotted in Fig. 2. From this figure, we observe that the common

message can lead to a significant improvement in per-user DoF over a wide range of values of α.

Remark 6: It is interesting that in the cases of the multiple-access and broadcast channels, the

introduction of the common message can not result in a DoF improvement. In other words, if either

the transmitter or the receivers are cooperating, then at most max(1, α) DoF can be achieved per user,

and these DoF are achievable even in the absence of the common message. Hence, the common message

can not produce a DoF improvement over the multiple-access and broadcast channels, unlike in the case

of the IC. We provide an example illustrating why d↑(α) is non-zero in general for the IC-CI next.

C. Common Message Leads to a GDoF Improvement: An Illustration

In the absence of a common message, a simple HK coding scheme is constant-gap-to-capacity (and

hence GDoF) region optimal for the Gaussian IC [12]. In the HK coding scheme, each (individual)

message is split into two sub-messages, of which the private sub-message is decoded by just the intended

receiver, whereas the public sub-message is to be decoded by both receivers. Thus, each receiver decodes

three sub-messages, namely, the intended private and the two public sub-messages, while treating the

contribution due to the unintended private sub-message as noise. However, in so doing, all available DoF

are not used at the two receivers. In contrast, these unused DoFs are used by the common message in

the Gaussian IC-CI to effect a DoF improvement. We next give a concrete example to explicitly illustrate

this point.

Consider the symmetric Gaussian IC-CI with α = 0.6. While this implies that |h11|2 = |h22|2 = P and

|h12|2 = |h21|2 = P 0.6 with P →∞, we assume here for simplicity that h11 = h22 =
√
P and h21 =

h12 =
√
P 0.6. Further, at α = 0.6, dIC(0.6) = 0.6 and dICCI(0.6) = 0.7 which implies d↑ = 0.1. We

will show here that while achieving 0.6 DoF for the two individual messages, 0.2 DoF can be achieved

for the common message, which implies, in the achievability sense, that d↑ = 0.1. Moreover, we will

achieve 0.4 and 0.2 DoF for the private and the public sub-messages.

Toward this end, we use a JXG coding scheme with the following choice for the transmit-side random

variables: for i ∈ {1, 2},

U0 = 0, Ui = U0i + Ui,pu, and Xi = Ui + Ui,pr, where

U0i ∼ CN
(
0, P−0.2

)
, Ui,pu ∼ CN (0, 1) , Ui,pr ∼ CN

(
0, P−0.6

)
,

and all random variables, namely, U01, U1,pu, U1,pr, U02, U2,pu, and U1,pr are independent. Here, random
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variables {U01, U02}, Ui,pu, and Ui,pr carry messages M0, Mi,pu, and Mi,pr, respectively. Essentially,

under this scheme, the ith transmitter generates independent Gaussian codebooks for random variables

U0i, Ui,pu, and Ui,pr; appropriate codewords of these codebooks are selected in order to encode messages

M0, Mi,pu, and Mi,pr, respectively; and finally, Xi, the transmit signal, is generated as the sum of all

three codewords. Since Ui is set equal to the sum of the codewords for U0i and Ui,pu, this scheme treats

the combination of the common message and public sub-message as the new/effective public sub-message.

A minor detail about the above scheme is that it does not strictly satisfy the power constraint but this

issue can be easily handled (we omit it to keep the focus on the main point). Moreover, except for this

issue, the scheme here is identical to the one suggested in Theorem 2, which achieves the capacity region

to within 1 bit. Also, we have suppressed the time index here, since the signals are i.i.d. across time.

Consider the decoding operation at R1 without loss of generality (due to symmetry). Its received signal

can be written as

Y1 =
√
P U01 +

√
P 0.6 U02︸ ︷︷ ︸

M0

snr = P 0.8

+
√
P U1︸ ︷︷ ︸
M1,pu

snr = P

+
√
P U1,pr︸ ︷︷ ︸
M1,pr

snr = P 0.4

+
√
P 0.6 U2︸ ︷︷ ︸
M2,pu

snr = P 0.6

+
√
P 0.6 U2,pr + Z1,︸ ︷︷ ︸

interference+noise

snr = 2 ∀P

where snr denotes the signal-to-noise ratio (SNR) of the corresponding signal. Since the ratio log snr
logP has

relevance in the DoF calculations, we plot this ratio in Fig. 3 for all messages.

The receiver R1 thus sees equivalently a multiple-access channel, where it needs to decode messages

M0, M1,pu, M2,pu, and M1,pr, while treating the interference due to M2,pr as noise. To this end,

the receiver can employ sequential decoding with successive interference cancellation with the order of

decoding beingM1,pu →M0 →M2,pu → M1,pr, and thereby, it can extract 0.2, 0.2, 0.2, and 0.4 DoF

for these messages respectively (see also Fig. 3). In other words, R1 can achieve 0.4+0.2 = 0.6 DoF for

its individual message and 0.2 DoF for the common message, as desired. Note here that R1 can decode

the common message M0 using just U01, i.e., while decoding M0, U02 can be regarded as noise; but,

after decoding the common message, it can subtract contribution due to U01 and U02, since they are both

generated by the two transmitters based on the same message. This is the key that allows us to realize

the DoF benefit, even with independent transmit signaling.

Now, in the absence of common message, we can use the same scheme outlined above but with

U01 = U02 = 0. With this change, we can achieve 0.6 DoF for each individual message. Since at

α = 0.6, one can not attain more than 0.6 DoF for the two individual messages (as per Theorem 6), our

scheme with U01 = U02 = 0 is indeed GDoF-optimal, even in the absence of the common message. The
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Fig. 3. Receive Signal Level Space of R1: in presence of M0
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Fig. 4. Receive Signal Level Space of R1: in absence of M0

signal level space of R1, in the absence of common message, is depicted in Fig. 4.

Let us focus on the decoding of message M1,pu in the absence of common message. While de-

coding this message, R1 treats all other signals as noise. In this sense, M1,pu experiences the signal-

to-interference-plus-noise ratio (SINR) of P 0.4 (because the next interfering signal, namely, U2,pu is

received at the SNR of P 0.6). However, only 0.2 DoF are to be achieved for this message. This implies

that a part of the receive signal space level space of R1 remains unused in the absence of the common

message. Moreover, on comparing Figs. 3 and 4, we observe that the common message produces a DoF

improvement precisely by exploiting this unused portion.

In fact, it is clear that the unused DoF without the common message can be completely exploited by

the common message to produce a DoF enhancement.

V. PROOF OF THEOREM 3

Recall that the capacity region of the deterministic DM IC-CI, which can be considered as a gener-

alization of the El Gamal-Costa deterministic IC [3], is derived in [15]. The outer-bounds in this proof

are inspired by the converse argument of [15, Theorem 4] in the same manner that the outer bounds
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for the Gaussian IC in [12] are inspired from the converse arguments of Gamal and Costa [3, Theorem

1]. However, the techniques in [15, Proof of Theorem 4] must be suitably modified to account for the

presence of noise. For instance, the outer-bounds here make use of different genie-aided side-information

models than those considered in [15, Proof of Theorem 4]. Furthermore, the analysis here is different

from that of [12] because the transmit signals of the IC-CI can be arbitrarily correlated, unlike the case

of the IC (without common message). Clearly, to derive a tight outer bound, it is necessary to limit, in

some sense, the correlation between the transmit messages. This is done by noting that these signals are

independent when conditioned on the common message (see Fact 3). In what follows, we detail how

these general ideas are made to yield a tight outer-bound.

Let us first define V1(t)
4
= h21X1(t) + Z2(t) and V2(t)

4
= h12X2(t) + Z1(t) so that

Y1(t) = h11X1(t) + V2(t) and Y2(t) = h22X2(t) + V1(t).

The following simple facts are used repeatedly in this proof.

Fact 1: GivenM0 andMi, Xn
i is deterministic for i = 1, 2. Moreover, conditioned onM0, the pairs

(M1, X
n
1 ) and (M2, X

n
2 ) are independent.

Fact 2: Given M0, V n
i is independent of Mj , Xn

j , and V n
j for j 6= i.

Fact 3: Given M0, the transmit signals are independent.

Fact 4: The additive noise Zni is independent of the messages and the transmit signals.

Lastly, εn is a sequence such that εn → 0 as n→∞.

We next prove each bound separately starting with the derivation of the bound on R0 +R1.

Proof of R0 +R1 ≤ G
′
1 : Recall, G′1 is given in Definition 8.

By Fano’s inequality, we have

n(R0 +R1 − εn) ≤ I
(
M0,M1;Y

n
1

)
≤ I
(
M0,M1,M2;Y

n
1

)
= h

(
Y n
1

)
− h
(
Y n
1

∣∣∣M0,M1,M2

)
= h

(
Y n
1

)
− h
(
Y n
1

∣∣∣Xn
1 , X

n
2 ,M0,M1,M2

)
(using Fact 1)

= h
(
Y n
1

)
− h
(
Zn1

∣∣∣Xn
1 , X

n
2 ,M0,M1,M2

)
(since differential entropy is translation invariant)

= h
(
Y n
1

)
− h
(
Zn1

)
(using Fact 4)

≤
n∑
t=1

{
h
(
Y1(t)

)
− h
(
Z1(t)

)}
,

where the last inequality follows since conditioning reduces differential entropy. Since translation does

not change differential entropy, we may assume that Y1(t) is zero mean, ∀ t, which implies the same
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about X1(t) and X2(t). We will now prove that the variance of Y1(t) (denoted as Var(Y1(t))) is bounded,

which allows us to bound its differential entropy. Consider the following:

Var
(
Y1(t)

)
= E

∣∣∣Y1(t)Y ∗1 (t)
∣∣∣

= 1 + |h11|2E|X1(t)|2 + |h12|2E|X2(t)|2 + 2 · Re
(
h11h

∗
12E|X1(t)X

∗
2 (t)|

)
≤ 1 + |h11|2P1,t + |h12|2P2,t + 2|h11||h12|

√
P1,tP2,t, · · · E|Xi(t)|2 = Pi,t, (4)

≤ 1 + |h11|2P1,t + |h12|2P2,t + 2|h11||h12|
1

2

[
P1,t + P2,t

]
, (5)

where Re(z) denotes the real part of the complex number z; inequality in (4) holds because (a) Re(z) ≤ |z|

for any z ∈ C and (b) the Cauchy-Schwartz inequality; and the one in (5) is true because the arithmetic

mean is greater than or equal to the geometric mean. Since for a given variance, Gaussian distribution

maximizes differential entropy, we get

1

n

n∑
t=1

{
h
(
Y1(t)

)
− h
(
Z1(t)

)}
≤ 1

n

n∑
t=1

log2

{
1 + |h11|2P1,t + |h12|2P2,t + 2|h11||h12|

1

2

[
P1,t + P2,t

]}

≤ log2

{
1 + |h11|2

1

n

n∑
t=1

P1,t + |h12|2
1

n

n∑
t=1

P2,t + 2|h11||h12|
1

n

n∑
t=1

1

2

[
P1,t + P2,t

]}
(6)

≤ log2
{

1 + |h11|2 + |h12|2 + 2|h11||h12|
}

(7)

= log2

{
1 +

[
|h11|+ |h12|

]2}
= G

′
1, (8)

where the inequality (6) holds due to Jensen’s inequality; and inequality (7) is true because of the power

constraint. Now, since εn → 0 as n→∞, we get

R0 +R1 ≤ G
′
1,

as desired.

Proof of R0 +R2 ≤ G
′
2 : follows by symmetry.

Proofs of R1 ≤ D1 and R2 ≤ D2 : These bounds follow from the capacity of the point-to-point Gaus-

sian channel.

Proof of R1 +R2 ≤ E1 + E2 : recall Ei’s are given in Definition 8. Note here that this bound looks

identical to the one derived by Etkin et al for the IC [12, Theorem 1]. We argue below that the proof of

[12, Theorem 1] is applicable to the IC-CI if the receivers are assumed to know the common message.

Applying Fano’s inequality, we obtain

(R1 +R2 − εn) ≤ I
(
M1;Y

n
1

∣∣∣M0

)
+ I
(
M2;Y

n
2

∣∣∣M0

)
.
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Now, conditioned on M0, the transmit signals X1(t) and X2(t) are independent, and therefore, in the

analysis henceforth, the IC-CI can just be regarded as the IC. Therefore, this bound can now be derived

as in [12, Theorem 1]. Consequently, we have (cf. [12, equation (13)])

n(R1 +R2 − εn) ≤
n∑
t=1

{
h
(
Y1(t)

∣∣∣M0, V1(t)
)
− h
(
Z1(t)

)
+ h
(
Y2(t)

∣∣∣M0, V2(t)
)
− h
(
Z2(t)

)}
and (cf. [12, equation (14)])

1

n

n∑
t=1

{
h
(
Yi(t)

∣∣∣M0, Vi(t)
)
− h
(
Zi(t)

)}
≤ Ei (9)

to obtain the desired result.

Proof of R0 +R1 +R2 ≤ A2 +G
′
1 :

We apply Fano’s inequality assuming that R2 knows V n
2 , Xn

1 , and M0 to derive the following:

n(R0 +R1 +R2 − εn) ≤ I
(
M1,M0;Y

n
1

)
+ I
(
M2;Y

n
2 , V

n
2 , X

n
1 ,M0

)
= I
(
M1,M0;Y

n
1

)
+ I
(
M2;Y

n
2 , V

n
2

∣∣∣Xn
1 ,M0

)
(using Fact 1)

= h
(
Y n
1

)
− h
(
Y n
1

∣∣∣M1,M0

)
+ h
(
V n
2

∣∣∣M0, X
n
1

)
− h
(
V n
2

∣∣∣M0,M2, X
n
1

)
+ h
(
Y n
2

∣∣∣M0, X
n
1 , V

n
2

)
− h
(
Y n
2

∣∣∣M0,M2, X
n
1 , V

n
2

)
(10)

= h
(
Y n
1

)
− h
(
V n
2

∣∣∣M0

)
+ h
(
V n
2

∣∣∣M0

)
− h
(
Zn1

)
+ h
(
h22X

n
2 + Zn2

∣∣∣M0, V
n
2

)
− h
(
Zn2

)
(11)

≤
n∑
t=1

{
h
(
Y1(t)

)
− h
(
Z1(t)

)
+ h
(
h22X2(t) + Z2(t)

∣∣∣M0, h12X2(t) + Z1(t)
)
− h
(
Z2(t)

)}
, (12)

where the equality (11) holds due to Facts 1-4, and the subsequent inequality follows since conditioning

reduces entropy. From equation (8), we have

1

n

n∑
t=1

{
h
(
Y1(t)

)
− h
(
Z1(t)

)}
≤ G′1.

It remains to bound h
(
h22X2(t) +Z2(t)

∣∣∣M0, h12X2(t) +Z1(t)
)

. If Y ′2(t)
4
= h22X2(t) +Z2(t), then the

covariance matrix of Y ′2(t) and V2(t) is given by

cov

Y ′2(t)

V2(t)

 =

|h22|2P2,t + 1 h22h
∗
12P2,t

h∗22h12P2,t |h12|2P2,t + 1

 ,
where E|X2(t)|2 = P2,t. Since the Gaussian distribution maximizes conditional differential entropy for
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a given covariance matrix, we obtain

1

n

n∑
t=1

h
(
h22X2(t) + Z2(t)

∣∣∣M0, h12X2(t) + Z1(t)
)
− h
(
Z2(t)

)
≤ 1

n

n∑
t=1

log
(

1 +
|h22|2P2,t

1 + |h12|2P2,t

)
≤ log

(
1 +

|h22|2 1
n

∑n
t=1 P2,t

1 + |h12|2 1
n

∑n
t=1 P2,t

)
≤ log

(
1 +

|h22|2

1 + |h12|2
)

= A2, (13)

where the second inequality holds due to Jensen’s inequality. Hence, we have R0 +R1 +R2 ≤ A2 +G
′
1.

Proof of R1 +R2 ≤ A2 +G1 : The proof of this bound is similar to that of the earlier one.

We apply Fano’s inequality assuming that R1 knows M0 and R2 knows V n
2 , Xn

1 , and M0 to derive

the following:

n(R1 +R2 − εn) ≤ I
(
M1;Y

n
1 ,M0

)
+ I
(
M2;Y

n
2 , V

n
2 , X

n
1 ,M0

)
= h

(
Y n
1

∣∣∣M0

)
− h
(
Y n
1

∣∣∣M1,M0

)
+ h
(
V n
2

∣∣∣M0

)
− h
(
V n
2

∣∣∣M0,M2

)
.

≤
n∑
t=1

{
h
(
Y1(t)

∣∣∣M0

)
− h
(
Z1(t)

)
+ h
(
h22X2(t) + Z2(t)

∣∣∣M0, h12X2(t) + Z1(t)
)

− h
(
Z2(t)

)}
.

where the last inequality is obtained from the analysis that leads from (10) to (12). With inequality (13)

already derived, it is sufficient to show that
∑n

t=1

{
h
(
Y1(t)

∣∣∣M0

)
− h
(
Z1(t)

)}
≤ G1. The derivation

of this bound is similar to that of (8). The goal is to bound the variance of Y1(t), conditioned M0.

Toward this end, we observe that the derivation of inequality (5) allows us to write Var
(
Y1(t)

∣∣∣M0

)
≤

1 + |h11|2P1,t + |h12|2P2,t on noting that the transmit signals are independent conditioned on M0. Now,

the analysis leading to bound (V) and the above bound on the conditional variance of Y1(t) together

imply the desired inequality (V).

Proofs of Bounds R0 +R1 +R2 ≤ A1 +G
′
2 and R1 +R2 ≤ A1 +G2 : These follow by symmetry.
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Proof of R0 + 2R1 +R2 ≤ A1 +G
′
1 + E2 : Consider the following arguments:

n(R0 + 2R1 +R2 − εn) = n
(

[R0 +R1] +R1 +R2 − εn
)

≤ I
(
M0,M1;Y

n
1

)
+ I
(
M1;Y

n
1 , V

n
1 , X

n
2 ,M0

)
+ I
(
M2;Y

n
2 ,M0, V

n
2

)
= I
(
M0,M1;Y

n
1

)
+ I
(
M1;Y

n
1 , V

n
1

∣∣∣Xn
2 ,M0

)
+ I
(
M2;Y

n
2 , V

n
2

∣∣∣M0

)
(using Fact 1)

= h
(
Y n
1

)
− h
(
Y n
1

∣∣∣M0,M1

)
+ h
(
V n
1

∣∣∣Xn
2 ,M0

)
− h
(
V n
1

∣∣∣Xn
2 ,M0,M1

)
+ h
(
Y n
1

∣∣∣V n
1 , X

n
2 ,M0

)
− h
(
Y n
1

∣∣∣V n
1 , X

n
2 ,M0,M1

)
+ h
(
V n
2

∣∣∣M0

)
− h
(
V n
2

∣∣∣M0,M2

)
+ h
(
Y n
2

∣∣∣V n
2 ,M0

)
− h
(
Y n
2

∣∣∣V n
2 ,M0,M2

)
= h

(
Y n
1

)
− h
(
V n
2

∣∣∣M0

)
+ h
(
V n
1

∣∣∣M0

)
− h
(
Zn2

)
+ h
(
h11X

n
1 + Zn1

∣∣∣V n
1 ,M0

)
− h
(
Zn1

)
+ h
(
V n
2

∣∣∣M0

)
− h
(
Zn1

)
+ h
(
Y n
2

∣∣∣V n
2 ,M0

)
− h
(
V n
1

∣∣∣M0

)
(using Facts 1-4)

= h
(
Y n
1

)
− h
(
Zn1

)
+ h
(
h11X

n
1 + Zn1

∣∣∣V n
1 ,M0

)
− h
(
Zn1

)
+ h
(
Y n
2

∣∣∣V n
2 ,M0

)
− h
(
Zn2

)
≤

n∑
t=1

{
h
(
Y1(t)

)
− h
(
Z1(t)

)}
+

n∑
t=1

{
h
(
h11X1(t) + Z1(t)

∣∣∣V1(t),M0

)
− h
(
Z1(t)

)}
+

n∑
t=1

{
h
(
Y2(t)

∣∣∣V2(t),M0

)
− h
(
Z2(t)

)}
since conditioning reduces entropy.

Now the desired bound can be obtained by applying inequalities in (8), (13), and (V).

Proof of 2R1 +R2 ≤ A1 +G1 + E2 :

The analysis is almost similar to that of the bound R0 + 2R1 +R2 ≤ A1 +G
′
1 + E2. Recall that we

modified the proof of the bound R0 +R1 +R2 ≤ A2 +G
′
1 to derive the bound R1 +R2 ≤ A2 +G1. In

an analogous fashion, we can modify the proof of bound R0 + 2R1 +R2 ≤ A1 +G
′
1 +E2 to obtain this

bound.

Proofs of Bounds R0 +R1 + 2R2 ≤ A2 +G
′
2 + E1 and R1 + 2R2 ≤ A2 +G2 + E1 : These follow

by symmetry.

VI. PROOFS OF THEOREMS 4 AND 5

The two proofs are provided in the following two sub-sections.

A. Proof of Theorem 4

Since the inner and outer bounds have the same shape, it is possible to perform a bound-by-bound

analysis to prove that the gap between the two is at most one bit. Suppose ∆Ri
be the difference between

the outer bound in Ri, which is equal to Di and inner bounds on it, which is Di, i.e., set ∆Ri
= Di−Di
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(see Definitions of Cinner(H) and Couter(H)). Similarly, we define ∆R0+Ri
, ∆R1+R2

, ∆R0+R1+R2
,

∆2Ri+Rj
, and ∆R0+2Ri+Rj

as follows: For each i ∈ {1, 2}, if j ∈ {1, 2} such that i 6= j, then

∆Ri

4
= Di −Di,

∆R0+Ri

4
= G

′
i −Gi,

∆R1+R2

4
= min

{
E1 + E2, A1 +G2, A2 +G1

}
−min {E1 + E2, A1 +G2, A2 +G1}

≤ max
{
E1 + E2 − E1 − E2, A1 +G2 −A1 −G2, A2 +G1 −A2 −G1

}
,

∆R0+R1+R2

4
= min

{
A1 +G

′
2, A2 +G

′
1

}
−min

{
A1 +G′2, A2 +G′1

}
≤ max

{
A1 +G

′
2 −A1 −G′2, A2 +G

′
1 −A2 −G′1

}
,

∆2Ri+Rj

4
= Ai +Gi + Ej −Ai −Gi − Ej ,

∆R0+2Ri+Rj

4
= Ai +G

′
i + Ej −Ai −G′i − Ej .

Suppose the following inequalities for each i ∈ {1, 2} are true:

∆Ai
4
= Ai −Ai < 1, ∆Di

4
= Di −Di < 1, ∆Ei

4
= Ei − Ei < 1, (14)

∆Gi
4
= Gi −Gi ≤ 1, ∆G′i

4
= G

′
i −G′i < 2. (15)

Then, it can be easily verified that for each i ∈ {1, 2}, if j ∈ {1, 2} such that i 6= j, then

∆Ri
< 1, ∆R0+Ri

< 2, ∆R1+R2
< 2, ∆R0+R1+R2

< 3, ∆2Ri+Rj
< 3, ∆R0+2Ri+Rj

< 4,

which together imply that the per-coordinate gap between the inner and outer bounds is at most one bit,

for all values of H .

Thus, it remains to prove the five inequalities in (14)-(15). All these inequalities can be proved in a

similar manner. We prove below the last one with i = 1. We first lower-bound G′1. By definition of x12,

|h12|2x12 ≤ 1. Therefore,

G′1 = log2
1 + |h11|2 + |h12|2

1 + |h12|2x12
≥ log2

(
1 + |h11|2 + |h12|2

)
− 1.

Hence,

∆G′1 ≤ log2
1 + |h11|2 + |h12|2 + 2|h11||h12|

1 + |h11|2 + |h12|2
+ 1

= log2

(
1 +

2|h11||h12|
1 + |h11|2 + |h12|2

)
+ 1

< 2,

where the last inequality holds since 1 > 2|h11||h12|
1+|h11|2+|h12|2 (because 1 + (|h11| − |h12|)2 > 0).
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B. Proof of Theorem 5

Since the inner and outer-bounds are within one bit for all values of H , we can compute the GDoF

region by treating the outer-bound Couter(H) as the capacity region. That is, we have

D(α) =

{
(d0, d1, d2) ∈ R3

+

∣∣∣∣ for a P > 0, |hij |2 = Pαij ∀ i, j ∈ {1, 2}

and (R0, R1, R2) ∈ Couter(H) such that dk = MG(Rk) ∀k = 1, 2, 3

}
,

where MG(x) = limP→∞
x

log2 P
. Note we have Couter(H) in place of the capacity region C(H). Thus,

to prove this theorem, it is sufficient to prove that

MG(A1) = a1, MG(D1) = d1, MG(E1) = e1, and MG(G1) = MG(G
′
1) = g1. (16)

While the above equalities can be easily verified, we provide below the details of one of them, namely,

MG(G
′
1) = g1:

G
′
1 = C

(
[|h11 + h12|2]

)
= log2

(
1 + |h11|2 + |h12|2 + 2|h11| · |h12|

)
= log2

(
1 + Pα11 + Pα12 + P

1

2
(α11+α12)

)
=⇒ MG(G

′
1) = g1 = max

{
α11, α12,

1

2
(α11 + α12)

}
= max {α11, α12} .

Similarly, we can prove all equalities in (16) to complete the proof of this theorem.

VII. PROOF OF THEOREM 7

For the symmetric Gaussian IC-CI, the GDoF region simplifies to

Dsym(α) =
{

(d0, d1, d1)
∣∣∣ d0, d1 ≥ 0;

d0 + d1 ≤ max
{

1, α
}

;

d1 ≤ min
(

1,max
{
α, 1− α

})
;

d0 + 2d1 ≤ max
{

1, α
}

+ (1− α)+
}
.

where we have made use of the equalities d1 = d2, α11 = α22 = 1, and α12 = α21 = α; and for

simplicity, we have denoted the GDoF region by Dsym(α), instead of D(α).

Define d?(α) to be equal to the function on the right hand of equation (2). Hence, we need to prove

that dICCI(α) = d?(α). Further, let dIC(α) be as in equation (1) of Theorem 6; and define d?0(α)
4
=

2
(
d?(α)−dIC(α)

)
so that d?0(α) is twice the function on the right hand side of equation (3). Alternatively,

d?(α) = 1
2d

?
0(α) + dIC(α).
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Note from the definitions of dICCI(α) and Dsym(α) that

dICCI(α) = max
(d0,d1,d1)∈Dsym(α)

1

2
(d0 + 2d1) . (17)

To show the equality dICCI(α) = d?(α), we prove, respectively, in the following two sub-sections that

dICCI(α) ≥ d?(α) and dICCI(α) ≤ d?(α), which together imply the desired equality.

A. Proof of Inequality dICCI(α) ≥ d?(α)

With simple substitution, we observe that(
d?0(α),dIC(α),dIC(α)

)
∈ Dsym(α), (18)

which implies dICCI(α) ≥ 1
2d

?
0(α) +dIC(α) = d?(α). In fact, the point

(
d?0(α),dIC(α),dIC(α)

)
lies on

the boundary of Dsym(α), i.e.,

(d0, d1, d1) ∈ Dsym(α) and d1 = dIC(α) ⇒ d0 ≤ d?0(α). (19)

B. Proof of Inequality dICCI(α) ≤ d?(α)

Suppose
(
dopt0 (α), dopt1 (α), dopt1 (α)

)
be the argument of the maximization in (17), i.e.,(

dopt0 (α), dopt1 (α), dopt1 (α)
) 4

= arg max
(d0,d1,d1)∈Dsym(α)

1

2
(d0 + 2d1)

and

dICCI(α) =
1

2
dopt0 (α) + dopt1 (α).

If suppose dopt1 (α) = dIC(α), then dopt0 (α) = d?0(α) because of the implication in (19), which

immediately implies that dICCI(α) = 1
2d

?
0(α) + dIC(α) = d?(α), and hence the theorem. Therefore,

let us consider the remaining case, where dopt1 (α) 6= dIC(α). Note, by definition of dIC(α), that

dIC(α) = max
(d0,d1,d1)∈Dsym(α)

d1.

Hence, in the following, we may consider that dopt1 (α) < dIC(α). Let ε
4
= dIC(α)− dopt1 (α). Now since

dICCI(α) ≥ d?(α), we have

1

2
dopt0 (α) + dopt1 (α) ≥ 1

2
d?0(α) + dIC(α)

⇒ dopt0 (α)− 2ε ≥ d?0(α) + 2
(
dIC(α)− dopt1 (α)

)
− 2ε

⇒ dopt0 (α)− 2ε ≥ d?0(α) ≥ 0.
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Hence, from the definition of Dsym(α), we observe that(
dopt0 (α), dopt1 (α), dopt1 (α)

)
∈ Dsym(α)

=⇒ P (α) ≡
(
dopt0 (α)− 2ε, dopt1 (α) + ε, dopt1 (α) + ε

)
∈ Dsym(α).

Therefore, (
d1 +

d0
2

)∣∣∣∣
P (α)

= dopt1 (α) +
dopt0 (α)

2
= dICCI(α).

Moreover, since d1-coordinate of P (α) is equal to dIC(α), (19) implies that d0-coordinate of P (α) can

at most be equal to d?0(α). Hence,(
d1 +

d0
2

)∣∣∣∣
P (α)

= dICCI(α) ≤ 1

2
d?0(α) + dIC(α) = d?(α),

as desired.

VIII. CONCLUSION

Explicit inner and outer bounds to the capacity region of the Gaussian IC-CI are determined and shown

to be within a universal bounded gap of one bit, independently of channel parameters. Remarkably, the

simple achievable scheme whose achievable rate region is the inner bound involves independent signaling

at the transmitters which implies that it entirely forgoes the opportunity for transmitter cooperation that

exists due to the shared knowledge of the common message at both transmitters. Nevertheless, through a

characterization of the generalized degree of freedom region of the Gaussian IC-CI, it is shown that the

presence of common message can lead to a very substantial (possibly unbounded) improvement in the

total achievable rate over that achievable over the usual interference channel without a common message,

to the extent that even the degrees of freedom achievable per user increase. An intuitive explanation of

this DoF improvement is provided through which it is seen that sending just individual messages over

the interference channel fundamentally doesn’t fully exploit the available signal level dimensions at the

receivers but the transmission of a common message allows for the full use of the potential of same

physical (interference) channel.
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