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Abstract

We consider ensembles of channel codes that are partitioned into bins, and focus on analysis of
exact random coding error exponents associated with optimum decoding of the index of the bin
to which the transmitted codeword belongs. Two main conclusions arise from this analysis: (i) for
independent random selection of codewords within a given type class, the random coding exponent
of optimal bin index decoding is given by the ordinary random coding exponent function, computed
at the rate of the entire code, independently of the exponential rate of the size of the bin. (ii) for this
ensemble of codes, sub-optimal bin index decoding, that is based on ordinary maximum likelihood
(ML) decoding, is as good as the optimal bin index decoding in terms of the random coding error
exponent achieved. Finally, for the sake of completeness, we also outline how our analysis of exact
random coding exponents extends to the hierarchical ensemble that correspond to superposition
coding and optimal decoding, where for each bin, first, a cloud center is drawn at random, and
then the codewords of this bin are drawn conditionally independently given the cloud center. For
this ensemble, conclusions (i) and (ii), mentioned above, no longer hold necessarily in general.

Index Terms: Random coding, error exponent, binning, broadcast channels, superposition coding.
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1 Introduction

In multiuser information theory, one of the most frequently encountered building blocks is the notion

of superposition coding, namely, coding with an hierarchical structure, in which the codebook is

naturally partitioned into bins, or clouds. The original idea of superposition coding dates back to

Cover [2], who proposed it in the context of broadcast channels (see also [3], [6, Section 15.6] and

references therein). Later on, it has been proved extremely useful in a much wider variety of coded

communication settings, including the wiretap channel [7], [17], the Gel’fand–Pinsker channel [9]

(and in duality, Wyner-Ziv source encoding [18]), the relay channel [4], the interference channel [1],

the multiple access channel [10], and channels with feedback [5], [12], just to name a few.

Generally speaking, the aim of superposition coding is to encode pairs of messages jointly, such

that each message pair is mapped into a single codeword. To this end, the codebook is constructed

with an hierarchical structure of bins (or clouds), such that a receiver that operates under relatively

good channel conditions (high SNR) can decode reliably both messages, whereas a receiver that

works under relatively bad channel conditions (low SNR) can decode reliably at least one of the

messages, the one which consists of the index of the bin to which the codeword belongs.

This hierarchical structure of partitioning into bins is applicable even in achievability schemes

with simple code ensembles, where all codewords are drawn independently under a certain dis-

tribution. Consider, for example, a random code of size M1 = enR1 , where each codeword

xi = (x1,i, x2,i, . . . , xn,i), i = 0, 1, . . . , M1 − 1, is selected independently at random with a uni-

form distribution over a given type class. The code is then divided into M = enR (R ≤ R1)

bins {Cw}M−1
w=0 , Cw = {xwM2

, xwM2+1, . . . , x(w+1)M2−1}, where M2 = M1/M = en(R1−R) ∆
= enR2 .

Assuming that the choice of the index i of the transmitted codeword is governed by the uniform

distribution over {0, 1, . . . , M1 −1}, our focus, in this paper, will be on the user that decodes merely

the index w of the bin Cw that contains xi, namely, w = ⌊i/M2⌋. This problem setting, including

the above described random coding ensemble, is the very same as the one encountered from the

viewpoint of the legitimate receiver in the achievability scheme of the wiretap channel model [17],

as well as the decoder in the direct part of the Gel’fand–Pinsker channel [9].

Denoting the channel output vector by y = (y1, . . . , yn) and the channel transition probability
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function by P (y|x), the optimal bin index decoder is given by

w∗(y) = argmax0≤w≤M−1P (y|Cw) (1)

where

P (y|Cw)
∆
=

1

M2

∑

x∈Cw

P (y|x) =
1

M2

(w+1)M2−1
∑

i=wM2

P (y|xi). (2)

Another, suboptimal decoder, which is natural to consider for bin index decoding, is the one that

first estimates the index of the transmitted codeword using the ordinary maximum likelihood (ML)

decoder, i.e., îML(y) = argmax0≤i≤M1−1P (y|xi), and then decodes the bin index ŵ(y) as the one

that includes that codeword, i.e.,

ŵ(y) =

⌊

îML(y)

M2

⌋

. (3)

In fact, the decoder of the achievability scheme of [17] is closer in spirit to (3) than to (1), except that

the estimator of i can even be defined there in terms of joint typicality rather than in terms of ML

decoding (in order to facilitate the analysis). According to the direct part of the coding theorem

in [17], for memoryless channels, such a decoder is good enough (in spite of its sub-optimality)

for achieving the maximum achievable information rate, just like decoder (1). It therefore seems

conceivable that decoder (3) would achieve the same maximum rate too. Similar comments apply

to the decoder of [9], as well as those in many other related works that involve superposition coding.

The question that we will address in this paper is what happens if we examine decoder (3), in

comparison to decoder (1), under the more refined criterion of the error exponent as a function of

the rates R1 and R2. Would decoder (3) achieve the same optimal error exponent as the optimal

decoder (1)?

By analyzing the exact random coding error exponent associated with decoder (1), in comparison

to (3), for a given memoryless channel, we answer this question affirmatively, at least for the

ensemble of codes described above, where each codeword is selected independently at random,

under the uniform distribution within a given type class. In particular, our main result is that

both decoders achieve the error exponent given by Er(R1), independently of R2, where Er(·) is the

random coding error exponent function of ordinary ML decoding for the above defined ensemble.

In other words, decoder (3) is essentially as good as the optimal decoder (1), not only from the

viewpoint of achievable information rates, but moreover, in terms of error exponents.
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The fact that the two decoders have the same error exponent may appear surprising at first

glance. It indicates that for a considerable fraction1 of the error events of (1), the score P (y|Cw) for

a wrong bin may appear large (enough to exceed the one of the correct bin), mostly because of an

incidental fluctuation in the likelihood of a single codeword (or a few codewords) within that bin,

rather than due to a collective fluctuation of the entire bin (or a considerable fraction of it). Thus,

it appears conceivable that many of the error events will be common to both decoders. Now, given

that there is a single wrong codeword (in the entire codebook), whose likelihood is exceedingly

large, the probability that it would belong to an incorrect bin is about (M − 1)/M = 1 − 1/M

(due to symmetry), thus roughly speaking, erroneous bin index decoding is essentially as frequent

as erroneous decoding of the ordinary ML decoder. Consequently, its probability depends on R2

so weakly that its asymptotic exponent is completely independent of R2. This independence of R2

means that the reliability of decoding part of a message (nR out of nR1 nats) is essentially the

same as that of decoding the entire message, no matter how small or large the size of this partial

message may be.

The exponential equivalence of the performance of the two decoders should be interpreted as an

encouraging message, because the optimal decoder (1) is extremely difficult to implement numer-

ically, as the calculation of each score involves the summation of M2 terms {P (y|xi)}, which are

typically extremely small numbers for large n (usually obtained from long products of numbers

between zero and one). On the other hand, decoder (3) easily lends itself to calculations in the log-

arithmic domain, where products are transformed into sums, thus avoiding these difficult numerical

problems. Moreover, if the underlying memoryless channel is unknown, decoder (3) can easily be

replaced by a similar decoder that is based on the universal maximum mutual information (MMI)

decoder [8], while it is less clear how to transform (1) into a universal decoder.

Yet another advantage of decoder (3) is associated with the perspective of mismatch. Let the

true underlying channel P (y|xi) be replaced by an incorrect assumed channel P ′(y|xi), both in

(1) and (3). It turns out that the random coding error exponent of the latter is never worse (and

sometimes may be better) than the former. Thus, decoder (3) is more robust to mismatch.

For the sake of completeness, we also extend our exact error exponent analysis to account for

the hierarchical ensemble of superposition coding (applicable for the broadcast channel), where

1Namely, a fraction that maintains the exponential rate of the probability of the error event.
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first, M cloud centers, u0, u1, . . . , uM−1, are drawn independently at random from a given type

class, and then for each uw, w = 0, 1, . . . , M − 1, M2 codewords xwM2
, xwM2+1, . . . , x(w+1)M2−1

are drawn conditionally independently from a given conditional type class given uw. The resulting

error exponent is the exact2 random coding exponent of the weak decoder in the degraded broadcast

channel model. Here, it is no longer necessarily true that the error exponent is independent of R2

and that decoders (1) and (3) achieve the same exponent.

Finally, it should be pointed out that in a recent paper [14], a complementary study, of the

random coding exponent of correct decoding, for the optimal bin index decoder, was carried out

for rates above the maximum rate of reliable communication (i.e., the mutual information induced

by the empirical distribution of the codewords and the channel). Thus, while this paper is relevant

for the legitimate decoder of the wiretap channel model [17], the earlier work [14] is relevant for

the decoder of the wiretapper of the same model.

The outline of the remaining part of this paper is as follows. In Section 2, we establish notation

conventions. In Section 3, we formalize the problem and assert the main theorem concerning the

error exponent of decoders (1) and (3). Section 4 is devoted to the proof of this theorem, and in

Section 5, we discuss it. Finally, in Section 6, we extend our error exponent analysis to the case

where the ensemble of random codes is defined hierarchically.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will

be superscripted by their dimensions. For example, the random vector X = (X1, . . . , Xn), (n –

positive integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian

power of X , which is the alphabet of each component of this vector. The probability of an event E

will be denoted by Pr{E}, and the expectation operator will be denoted by E{·}. For two positive

sequences an and bn, the notation an
·

= bn will stand for equality in the exponential scale, that

2This is different from earlier work (see [11] and references therein), where lower bounds were derived.
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is, limn→∞
1
n log an

bn
= 0. Thus, an

.
= 0 means that an tends to zero in a super–exponential rate.

Similarly, an

·
≤ bn means that lim supn→∞

1
n log an

bn
≤ 0, and so on. The indicator function of an

event E will be denoted by I{E}. The notation [x]+ will stand for max{0, x}. Logarithms and

exponents will be understood to be taken to the natural base unless specified otherwise.

Probability distributions, associated with sources and channels, will be denoted by the letters

P and Q, with subscripts that denote the names of the random variables involved along with

their conditioning, if applicable, following the customary notation rules in probability theory. For

example, QXY stands for a generic joint distribution {QXY (x, y), x ∈ X , y ∈ Y}, PY |X denotes

the matrix of single–letter transition probabilities of the underlying memoryless channel from X

to Y , {PY |X(y|x), x ∈ X , y ∈ Y}, and so on. Information measures induced by the generic joint

distribution QXY , or Q for short, will be subscripted by Q, for example, IQ(X; Y ) will denote the

corresponding mutual information, etc. The weighted divergence between two channels, QY |X and

PY |X , with weight PX , is defined as

D(QY |X‖PY |X |PX)
∆
=

∑

x∈X

PX(x)
∑

y∈Y

QY |X(y|x) ln
QY |X(y|x)

PY |X(y|x)
. (4)

The type class, T (PX), associated with a given empirical probability distribution PX of X, is the

set of all x = (x1, . . . , xn), whose empirical distribution is PX . Similarly, the joint type class of

pairs of sequences {(u, x)} in Un × X n, which is associated with an empirical joint distribution

PUX , will be denoted by T (PUX). Finally, for a given PX|U and u ∈ Un, T (PX|U |u) denotes the

conditional type class of x given u w.r.t. PX|U , namely, the set of sequences {x} whose conditional

empirical distribution w.r.t. u is given by PX|U .

3 Problem Formulation and Main Result

Consider a discrete memoryless channel (DMC), defined by a matrix of single–letter transition

probabilities, {PY |X(y|x), x ∈ X , y ∈ Y}, where X and Y are finite alphabets. When the

channel is fed with an input vector x = (x1, x2, . . . , xn) ∈ X n, the output is a random vector

Y = (Y1, . . . , Yn) ∈ Yn, distributed according to

P (y|x) =
n

∏

t=1

PY |X(yt|xt), (5)
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where to avoid cumbersome notation, here and throughout the sequel, we omit the subscript “Y |X”

in the notation of the conditional distribution of the vector channel, from X n to Yn. Consider next

a codebook, C = {x0, x1, . . . , xM1−1}, where M1 = enR1 , and where each xi, i = 0, 1, . . . , M1 − 1,

is selected independently at random, under the uniform distribution across the type class T (PX),

where PX is a given distribution over X . Once selected, the codebook C is revealed to both the

encoder and the decoder. The codebook C is partitioned into M = enR bins, {Cw}M−1
w=0 , each one

of size M2 = enR2 (R + R2 = R1), where Cw = {xwM2
, xwM2+1, . . . , x(w+1)M2−1}.

Let xI ∈ C be transmitted over the channel, where I is a random variable drawn under the

uniform distribution over {0, 1, . . . , M1 − 1}, independently of the random selection of the code.

Let W = ⌊I/M2⌋ designate the random bin index to which xI belongs and let Y ∈ Yn be the

channel output resulting from the transmission of xI .

Consider the bin index decoders (1) and (3), and define their average error probabilities, as

P ∗
e = E[Pr{w∗(Y ) 6= W }], P̂e = E[Pr{ŵ(Y ) 6= W }], (6)

where the probabilities are defined w.r.t. the randomness of the index I of the transmitted codeword

(hence the randomness of W ) and the random operation of the channel, and the expectations are

taken w.r.t. the randomness of the codebook C.

Our goal is to assess the exact exponential rates of P ∗
e and P̂e, as functions of R1 and R2, that

is,

E∗(R1, R2)
∆
= lim

n→∞

[

−
ln P ∗

e

n

]

(7)

and

Ê(R1, R2)
∆
= lim

n→∞

[

−
ln P̂e

n

]

. (8)

At this point, a technical comment is in order. The case R = 0 (R1 = R2) should not be understood

as a situation where there is only one bin and C0 = C, since this is a degenerated situation,

where there is nothing to decode as far as bin index decoding is concerned, the probability of

error is trivially zero (just like in ordinary decoding, where there is only one codeword, which is

meaningless). The case R = 0 should be understood as a case where the number of bins is at least

two, and at most sub-exponential in n. On the other extreme, for R2 = 0 (R1 = R), it is safe to

consider each bin as consisting of a single codeword, rendering the case of ordinary decoding as a

special case.
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Our main result is the following.

Theorem 1 Let R1 and R2 be given (R2 ≤ R1). Let E∗(R1, R2) and Ê(R1, R2) be defined as in

eqs. (7) and (8), respectively. Then,

E∗(R1, R2) = Ê(R1, R2) = E
r
(R1) (9)

where E
r
(R1) is the random coding error exponent function, i.e.,

E
r
(R1) = min

QXY : QX=PX

{D(QY |X‖PY |X |PX) + [IQ(X; Y ) − R1]+}. (10)

4 Proof of Theorem 1

For a given y ∈ Yn, and a given joint probability distribution QXY on X × Y, let N1(QXY ) denote

the number of codewords {xi} in C1 whose conditional empirical joint distribution with y is QXY ,

that is

N1(QXY ) =
2M2−1

∑

i=M2

I{(xi, y) ∈ T (QXY )}. (11)

We also denote

f(QXY ) =
1

n
ln P (y|x) =

∑

(x,y)∈X ×Y

QXY (x, y) ln PY |X(y|x), (12)

where QXY is understood to be the joint empirical distribution of (x, y) ∈ X n × Yn. Without loss

of generality, we assume throughout, that the transmitted codeword is x0, and so, the correct bin

is C0. The average probability of error, associated with decoder (1), is given by

P ∗
e

·
= E [min{1, M · Pr{P (Y |C1) ≥ P (Y |C0)}}] , (13)

where the expectation is w.r.t. the randomness of X0, X1, · · · , XM2−1 and Y , and where given

X0 = x0, Y is distributed according to P (·|x0). For a given y, the pairwise error probability,

Pr{P (y|C1) ≥ P (y|C0)}, is calculated w.r.t. the randomness of C1 = {XM2
, XM2+1, . . . , X2M2−1},

but for a given C0. To see why (13) is true, first observe that the right–hand side (r.h.s.) of this

equation is simply the (expectation of the) union bound, truncated to unity. On the other hand,

since the pairwise error events are conditionally independent given C0 and y, the r.h.s. times a
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factor of 1/2 (which does not affect the exponent), serves as a lower bound to the probability of

the union of the pairwise error events [15, Lemma A.2] (see also [16, Lemma 1]).

We next move on to the calculation of the pairwise error probability. For a given C0 and y, let

s
∆
=

1

n
ln





M2−1
∑

i=0

P (y|xi)



 , (14)

and so, the pairwise error probability becomes Pr{M2 · P (y|C1) ≥ ens}, where it is kept in mind

that s is a function of C0 and y. Now,

Pr{M2 · P (y|C1) ≥ ens} = Pr







2M2−1
∑

i=M2

P (y|X i) ≥ ens







(15)

= Pr







∑

QX|Y

N1(QXY )enf(QXY ) ≥ ens







(16)

·
= Pr

{

max
QX|Y ∈S(QY )

N1(QXY )enf(QXY ) ≥ ens

}

(17)

= Pr
⋃

QX|Y ∈S(QY )

{

N1(QXY )enf(QXY ) ≥ ens
}

(18)

·
=

∑

QX|Y ∈S(QY )

Pr
{

N1(QXY )enf(QXY ) ≥ ens
}

(19)

·
= max

QX|Y ∈S(QY )
Pr

{

N1(QXY ) ≥ en[s−f(QXY )]
}

, (20)

where for a given QY , S(QY ) is defined as the set of all {QX|Y }, such that
∑

y∈Y QY (y)QX|Y (x|y) =

PX(x) for all x ∈ X . Now, for a given QXY , N1(QXY ) is a binomial random variable with enR2

trials and probability of ‘success’ which is of the exponential order of e−nIQ(X;Y ). Thus, a standard

large deviations analysis (see, e.g., [13, pp. 167–169]) yields

Pr
{

N1(QX|Y ) ≥ en[s−f(QXY )]
}

·
= e−nE0(QXY ), (21)

where

E0(QXY ) =











[I(QXY ) − R2]+ f(QXY ) ≥ s
0 f(QXY ) < s, f(QXY ) ≥ s − R2 + I(QXY )
∞ f(QXY ) < s, f(QXY ) < s − R2 + I(QXY )

(22)

=



















I(QXY ) − R2 f(QXY ) ≥ s, R2 < I(QXY )
0 f(QXY ) ≥ s, R2 ≥ I(QXY )
0 f(QXY ) < s, f(QXY ) ≥ s − R2 + I(QXY )
∞ f(QXY ) < s, f(QXY ) < s − R2 + I(QXY )

(23)
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=











I(QXY ) − R2 f(QXY ) ≥ s, R2 < I(QXY )
0 f(QXY ) ≥ s − [R2 − I(QXY )]+, R2 ≥ I(QXY )
∞ f(QXY ) < s − [R2 − I(QXY )]+

(24)

=

{

[I(QXY ) − R2]+ f(QXY ) ≥ s − [R2 − I(QXY )]+
∞ f(QXY ) < s − [R2 − I(QXY )]+

(25)

Therefore, maxQX|Y ∈S(QY ) Pr{N1(QXY ) ≥ en[s−f(QXY )]} decays according to

E1(s, QY ) = min
QX|Y ∈S(QY )

E0(QXY ),

which is given by

E1(s, QY ) = min{[IQ(X; Y ) − R2]+ : f(QXY ) + [R2 − IQ(X; Y )]+ ≥ s} (26)

with the understanding that the minimum over an empty set is defined as infinity. Finally,

P ∗
e

·
= E min{1, M · e−nE1(S,QY )} = Ee−n[E1(S,QY )−R]+ , (27)

where the expectation is w.r.t. to the randomness of

S =
1

n
ln





M2−1
∑

i=0

P (Y |Xi)



 (28)

and the randomness of QY , the empirical distribution of Y . This expectation will be taken in

two steps: first, over the randomness of {X1, . . . , XM2−1} while X0 = x0 (the real transmitted

codeword) and Y = y are held fixed, and then over the randomness of X0 and Y . Let x0 and y

be given and let ǫ > 0 be arbitrarily small. Then,

Pe(x0, y0)
∆
= E[exp{−n[E1(S, QY ) − R]+}|X0 = x0, Y = y]

=
∑

s

Pr{S = s|X0 = x0, Y = y} · exp{−n[E1(s, QY ) − R]+}

≤
∑

i

Pr{iǫ ≤ S < (i + 1)ǫ|X0 = x0, Y = y} · exp{−n[E1(iǫ, QY ) − R]+}, (29)

where i ranges from 1
nǫ ln P (y|x0) to R2/ǫ. Now,

ens = P (y|x0) +
M2−1
∑

i=1

P (y|Xi)

= enf(QX0Y ) +
∑

QX|Y

N0(QXY )enf(QXY ), (30)

10



where QX0Y is the empirical distribution of (x0, y) and N0(QXY ) is the number of codewords in

C0 \ {x0} whose joint empirical distribution with y is QXY . The first term in the second line of

(30) is fixed at this stage. As for the second term, we have (similarly as before):

Pr







∑

QX|Y

N0(QXY )enf(QXY ) ≥ ent







·
= e−nE1(t,QY ). (31)

On the other hand,

Pr







∑

QX|Y

N0(QXY )enf(QXY ) ≤ ent







·
= Pr

⋂

QX|Y

{

N0(QXY ) ≤ en[t−f(QXY )]
}

. (32)

Now, if there exists at least one QX|Y ∈ S(QY ) for which IQ(X; Y ) < R2 and R2 − IQ(X; Y ) >

t − f(QXY ), then this QX|Y alone is responsible for a double exponential decay of the probability

of the event {N0(QXY ) ≤ en[t−f(QXY )]}, let alone the intersection over all QX|Y ∈ S(QY ). On the

other hand, if for every QX|Y ∈ S(QY ), either IQ(X; Y ) ≥ R2 or R2 −IQ(X; Y ) ≤ t−f(QXY ), then

we have an intersection of polynominally many events whose probabilities all tend to unity. Thus,

the probability in question behaves exponentially like an indicator function of the condition that

for every QX|Y ∈ S(QY ), either IQ(X; Y ) ≥ R2 or R2 − IQ(X; Y ) ≤ t − f(QXY ), or equivalently,

Pr







∑

QXY

N0(QXY )enf(QXY ) ≤ ent







·
= I

{

R2 ≤ min
QX|Y ∈S(QY )

{IQ(X; Y ) + [t − f(QXY )]+}

}

. (33)

Let us now find what is the minimum value of t for which the value of this indicator function is

unity. The condition is equivalent to

min
QX|Y ∈S(QY )

max
0≤a≤1

{IQ(X; Y ) + a[t − f(QXY )]} ≥ R2 (34)

or, equivalently:

∀QX|Y ∈ S(QY ) ∃0 ≤ a ≤ 1 : IQ(X; Y ) + a[t − f(QXY )] ≥ R2, (35)

which can also be written as

∀QX|Y ∈ S(QY ) ∃0 ≤ a ≤ 1 : t ≥ f(QXY ) +
R2 − IQ(X; Y )

a
(36)

or equivalently,

t ≥ max
QX|Y ∈S(QY )

min
0≤a≤1

[

f(QXY ) +
R2 − IQ(X; Y )

a

]

(37)
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= max
QX|Y ∈S(QY )

[

f(QXY ) +

{

R2 − IQ(X; Y ) R2 ≥ IQ(X; Y )
−∞ R2 < IQ(X; Y )

]

(38)

= R2 + max
{QX|Y ∈S(QY ): IQ(X;Y )≤R2}

[f(QXY ) − IQ(X; Y )] (39)

∆
= s0(QY ). (40)

Similarly, it is easy to check that E1(t, QY ) vanishes for t ≤ s0(QY ). Thus, in summary, we have

Pr







ent ≤
∑

QX|Y

N0(QXY )enf(QXY ) ≤ en(t+ǫ)







·
=

{

0 t < s0(QY ) − ǫ

e−nE(t,QY ) t ≥ s0(QY )
(41)

Therefore, for a given (x0, y), the expected error probability w.r.t. {X1, . . . , XM2−1} yields

Pe(x0, y) = E{e−n[E1(S,QY )−R]+ |X0 = x0, Y = y} (42)

≤
∑

i

Pr







eniǫ ≤
∑

QX|Y

N0(QXY )enf(QXY ) ≤ en(i+1)ǫ)







×

exp(−n[E1(max{iǫ, f(QX0Y )}, QY ) − R]+) (43)

·
≤

∑

i≥s0(QY )/ǫ

exp{−nE1(iǫ, QY )} · exp(−n[E1(max{iǫ, f(QX0Y )}, QY ) − R]+), (44)

where the expression max{iǫ, f(QX0Y )} in the argument of E1(·, QY ) is due to the fact that

S =
1

n
ln



enf(QX0Y ) +
∑

QX|Y

N0(QXY )enf(QXY )



 (45)

≥
1

n
ln

[

enf(QX0Y ) + eniǫ
]

(46)

·
= max{iǫ, f(QX0Y )}. (47)

By using the fact that ǫ is arbitrarily small, we obtain

Pe(x0, y)
·
= exp(−n[E1(max{s0(QY ), f(QX0Y )}, QY ) − R]+), (48)

since the dominant contribution to the sum over i is due to the term i = s0(QY )/ǫ (by the non–

increasing monotonicity of the function E1(·, QY )). Denoting s1(QX0Y ) = max{s0(QY ), f(QX0Y )},

we then have, after averaging w.r.t. (X0, Y ),

E∗(R1, R2) = min
QY |X0

{D(QY |X0
‖PY |X0

|PX0
) + [E1(s1(QX0Y ), QY ) − R]+}, (49)

where the random variable X0 is a replica of X, that is, PX0
= PX .

12



We next simplify the formula of E∗(R1, R2). Clearly,

E(s1(QX0Y ), QY ) = E1(max{s0(QY ), f(QX0Y )}, QY ) (50)

= max{E1(s0(QY ), QY ), E1(f(QX0Y ), QY )} (51)

= max{0, E1(f(QX0Y ), QY )} (52)

= E1(f(QX0Y ), QY ). (53)

Therefore,

E∗(R1, R2) = min
QY |X0

{D(QY |X0
‖PY |X0

|PX) + [E1(f(QX0Y ), QY ) − R]+}. (54)

Finally, using the simple identity [[x − a]+ − b]+ ≡ [x − a − b]+ (b ≥ 0), we can slightly simplify

this expression to be

E∗(R1, R2) = min
QY |X0

{D(QY |X0
‖PY |X0

|PX) + [I0(QX0Y ) − R1]+}, (55)

where

I0(QX0Y )
∆
= min

QX|Y ∈S(QY )
{IQ(X; Y ) : f(QXY ) + [R2 − IQ(X; Y )]+ ≥ f(QX0Y )}. (56)

Now, let us define

E′
r
(R1)

∆
= min

QY |X0

{D(QY |X0
‖PY |X0

|PX) + [I ′
0(QX0Y ) − R1]+}, (57)

where

I ′
0(QX0Y ) = min

QX|Y ∈S(QY )
{IQ(X; Y ) : f(QXY ) ≥ f(QX0Y )}. (58)

At this point, E′
r
(R1) is readily identified as the ordinary random coding error exponent associated

with ML decoding (i.e., the special case of E∗(R1, R2) where R2 = 0), which is known [8, p. 165,

Theorem 5.2] to be identical to the random coding error exponent, Er(R1), achieved by maximum

mutual information (MMI) universal decoding, defined similarly, except that I ′
0(QX0Y ) is replaced

by

I ′′
0 (QX0Y ) = min

QX|Y ∈S(QY )
{IQ(X; Y ) : IQ(X; Y ) ≥ IQ(X0; Y )} = IQ(X0; Y ), (59)

thus leading to equivalence with eq. (10).

To complete the proof, we now argue that Er(R1) = E∗(R1, R2) = Ê(R1, R2). The inequality

Er(R1) ≡ E′
r
(R1) ≥ E∗(R1, R2) is obvious since the minimization that defines I ′

0(QX0Y ) is over a

13



smaller set of distributions than the one that defines I0(QX0Y ). On the other hand, the converse

inequality, Er(R1) ≤ E∗(R1, R2), is also true because of the following consideration. We claim that

Er(R1) ≤ E′(R1, R2) ≤ Ê(R1, R2) ≤ E∗(R1, R2), (60)

where definitions and explanations are now in order: As defined, Er(R1) is the random coding

error exponent associated with ordinary ML decoding and the ordinary probability of error for a

random code at rate R1. Now, let E′(R1, R2) be defined as the random coding exponent of the

ML decoder, where only errors associated with winning codewords that are outside the correct bin

C0 are counted. In other words, assuming that x0 was transmitted, this is the exponent of the

probability of the event {maxi≥M2
P (y|xi) ≥ P (y|x0)}. Since this error event is a subset of the

ordinary error event, its exponent is at least as large as Er(R1), hence the first inequality. Now,

Ê(R1, R2), which is the error exponent of decoder (3), is in fact, the exponent of the probability

of the event {maxi≥M2
P (y|xi) ≥ maxi<M2

P (y|xi)} (given x0)), which in turn is a subset of the

previous error event defined, hence the second inequality. Finally, the last inequality follows from

the optimality of decoder (1), whose error exponent cannot be smaller than that of (3). Thus, we

conclude that all inequalities are, in fact, equalities, and so, E∗(R1, R2) = Ê(R1, R2) = Er(R1),

completing the proof of Theorem 1.

5 Discussion

When R2 = 0, that is, a subexponential number of codewords within each bin, Theorem 1 is

actually not surprising since
∑

x∈Cw
P (y|x)

·
= maxx∈Cw P (y|x), but for R2 > 0, the results are not

quite trivial (at least for the author of this article). As explained in the Introduction, the intuition

is that the error probability is dominated by few codewords within some bin, whose likelihood

score is exceptionally high. Note also that bin index decoding is different from the situation in

list decoding, where even for a subexponential list size, the error exponent is improved. This is

not surprising, because in list decoding, the list depends on the likelihood scores, and they are not

given by a fixed bin, which is arbitrary.

Theorem 1 tells us that, under the ordinary random coding regime, decoding only a part of a

message (say, a header of nR nats out of the total of nR1) is as reliable as decoding the entire

message, as far as error exponents go. As discussed in the Introduction, decoder (3) is easier to
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implement. It is also clear how to universalize this decoder: for an unknown DMC, replace îML(y)

in (3) by

îMMI(y) = argmax0≤i≤M1−1IQ(Xi; Y ), (61)

where IQ(Xi; Y ) designates the empirical mutual information induced by (xi, y). This universal

bin index decoder still achieves Er(R1).

As for the mismatched case, the only change in the derivation in Section 4 is that the definition of

the function f(QXY ) is changed to f(QXY ) =
∑

x,y Q(x, y) ln P ′
Y |X(y|x) (or more generally. to an

arbitrary function of QXY ), where P ′
Y |X(y|x) is the mismatched channel. Here, it will still be true

that E′
r(R1) defined as in (57) (but with f being redefined) is not smaller than the corresponding

E∗(R1, R2), but the converse inequality (that was leading to equality before) can no longer be

claimed since it was based on the optimality of decoder (1), but now both decoders are suboptimal.

This means that, for the purpose of bin index decoding, decoder (3), but with PY |X replaced by

P ′
Y |X , is never worse than the corresponding mismatched version of decoder (1).

6 Extension to Hierarchical Ensembles

Consider again a random code C of size M1 = enR1 , but this time, it is drawn from a different

ensemble, which is in the spirit of the ensemble of the direct part of the coding theorem for the

degraded broadcast channel (see, e.g., [6, Section 15.6.2]). Specifically, let U be a finite alphabet,

let PU be a given probability distribution on U , and let PX|U be a given matrix of conditional

probabilities of X given U . We first select, independently at random, M = enR n–vectors (“cloud

centers”), u0, u1, . . . , uM−1, all under the uniform distribution over the type class T (PU ). Next, for

each w = 0, 1, . . . , M − 1, we select conditionally independently (given uw), M2 = enR2 codewords,

xwM2
, xwM2+1, . . . , x(w+1)M2−1, under the uniform distribution across the conditional type class

T (PX|U |uw). Obviously, the ensemble considered in the previous sections is a special case, where

PU is a degenerate distribution, putting all its mass on one (arbitrary) letter of U . All other

quantities are defined similarly as before.

We next present a more general formula of E∗(R1, R2), the exact random coding error exponent

of decoder (1), that accommodates the above defined ensemble. This is then the exact random

coding error exponent of the optimal decoder for the weak user in the degraded broadcast channel.
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Here, we no longer claim that E∗(R1, R2) is independent of R2 and that it is achieved by decoder

(3) as well.

To present the formula of E∗(R1, R2), we first need a few definitions. For a given generic joint

distribution QUXY , of the random variables U , X, and Y , let IQ(X; Y |U) denote the conditional mu-

tual information between X and Y given U . For a given marginal QUY of (U, Y ), let S(QUY ) denote

the set of conditional distributions {QX|UY } such that
∑

y QUY (u, y)QX|UY (x|u, y) = PUX(u, x)

for every (u, x) ∈ U × X , where PUX = PU × PX|U . We first define

E1(s, QUY ) = min
QX|UY ∈S(QUY )

{[IQ(X; Y |U) − R2]+ : f(QXY ) + [R2 − IQ(X; Y |U)]+ ≥ s}, (62)

where s is an arbitrary real number. Next, for a given marginal QY , define

E2(s, QY ) = min
QU|Y

[IQ(U ; Y ) + E1(s, QUY )], (63)

where the minimization is across all {QU |Y } such that
∑

y QY (y)QU |Y (u|y) = PU (u) for every

u ∈ U . Finally, let

s0(QU0Y ) = R2 + max
{QX|U0Y ∈S(QU0Y ): IQ(X;Y |U0)≤R2}

[f(QXY ) − IQ(X; Y |U0)], (64)

and

s1(QU0X0Y ) = max{s0(QU0Y ), f(QX0Y )}. (65)

Our extended formula for E∗(R1, R2) is given in the following theorem.

Theorem 2 Let R1 and R2 be given (R2 ≤ R1) and let the ensemble of codes be defined as in the

first paragraph of this section. Then,

E∗(R1, R2) = min
QY |X0U0

{D(QY |X0U0
‖PY |X0

|PU0X0
) + [E2(s1(QU0X0Y ), QY ) − R]+}. (66)

where (U0, X0) is a replica of (U, X), i.e., PU0X0
= PUX .

Proof Outline. The proof of Theorem 2 is quite a straightforward generalization of the proof of

Theorem 1, which was given in full detail in Section 4. We will therefore give here merely an outline

with highlights mostly on the differences. Once again, we start from the expression,

Pe
·
= E [min{1, M · Pr{P (Y |C1) ≥ P (Y |C0)}}] , (67)
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where this time, the expectation is w.r.t. the randomness of U 0, C0 and Y , with the latter being

the channel output in response to the input X0 (which is again, the transmitted codeword, without

loss of generality). Here, for a given y, the pairwise error probability, Pr{P (y|C1) ≥ P (Y |C0)}, is

calculated w.r.t. the randomness of U 1, C1 = {XM2
, XM2+1, . . . , X2M2−1}, but for a given u0, and

C0.3

Defining s as in the proof of Theorem 1, the pairwise error probability is calculated once again,

using the large deviations properties of N1(·), which are now binomial random variables given u1.

Thus, we first calculate the pairwise error probability conditioned on U1 = u1, and then average

over U 1. Now, for a given QUXY , designating the joint empirical distribution of a randomly chosen

x together with (u1, y), the binomial random variable N1(QUXY ) has enR2 trials and probability

of success which is of the exponential order of e−nIQ(X;Y |U). Everything else in this large devia-

tions analysis remains intact. Thus, E0(QXY ), in the proof of Theorem 1, should be replaced by

E0(QUXY ), which is defined by

E0(QUXY ) =

{

[IQ(X; Y |U) − R2]+ f(QXY ) ≥ s − [R2 − IQ(X; Y |U)]+
∞ f(QXY ) < s − [R2 − IQ(X; Y |U)]+

(68)

Therefore, E1(s, QUY ) of the proof of Theorem 1, should now be replaced by E1(s, QUY ) as defined

eq. (62). The conditional pairwise error probability, that includes also conditioning on U1 = u1, is

then of the exponential order of e−nE1(s,QUY ). After averaging this exponential function w.r.t. the

randomness of U1 (thus relaxing the conditioning U1 = u1), the resulting expression becomes of

the exponential order of e−nE2(s,QY ), where E2(s, QY ) is defined as in (63). The remaining part of

the proof is exactly in the footsteps of the proof of Theorem 1, except that here, the simplifications

given near the end of the proof do not seem to hold anymore. �
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