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On a question of Babadi and Tarokh

Jing Xia1 , Maosheng Xiong2

Abstract

In a recent remarkable paper [3], Babadi and Tarokh proved the “randomness” of sequences arising from

binary linear block codes in the sense of spectral distribution, provided that their dual distances are sufficiently

large. However, numerical experiments conducted by the authors revealed that Gold sequences which have dual

distance 5 also satisfy such randomness property. Hence theinteresting question was raised as to whether or not

the stringent requirement of large dual distances can be relaxed in the theorem in order to explain the randomness

of Gold sequences. This paper improves their result on several fronts and provides an affirmative answer to this

question.

Index Terms

Asymptotic spectral distribution, coding theory, Marchenko-Pastur law, random matrix theory, randomness of

sequences.

I. INTRODUCTION

The elegant theory of random matrices, and in particular properties of their spectral distribution, have

been studied for a long time but remain a prominent and activeresearch area due to its wide and

important applications in many diverse disciplines such asmathematical statistics, theoretical physics,

number theory, and more recently in economics [10] and communication theory [12]. Most of the random

models considered so far are matrices whose entries have i.i.d. structures. In a remarkable paper, Babadi

and Tarokh [3] considered matrices formed by choosing randomly codewords from some linear block

codes with large dual distance and proved that these matrices behave like random matrices with i.i.d.

entries, as long as the empirical spectral distribution is concerned. To describe their beautiful result, we

need some notation.

Let C be an [n, k, d] binary linear block code of lengthn, dimensionk and minimum Hamming

distanced over GF(2). The dual code ofC, denoted byC⊥, is an [n, n − k, d⊥] binary linear block
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code overGF(2) such that all the codewords ofC⊥ are orthogonal to those ofC with the inner product

defined overGF(2)n. Let ǫ : GF(2)n → {−1, 1}n be the component-wise mappingǫ(vi) := (−1)vi , for

v = (v1, v2, . . . , vn) ∈ GF(2)n. For p < n, let ΦC be ap × n random matrix whose rows are obtained

by mapping a uniformly drawn set of sizep of the codewords ofC underǫ. The Gram matrixof ΦC is

defined asGC := ΦCΦ
T
C , whereΦT

C is the transpose ofΦC. Let {λ1, λ2, . . . , λn} be the set of eigenvalues

of an n× n matrix A. The spectral measureof A is defined by

µA :=
1

n

n
∑

i=1

δλi
,

whereδz is the Dirac measure. The empirical spectral distribution of A is defined as

MA(z) :=

∫ z

−∞
µA(dz).

Babadi and Tarokh proved the following result ([3, Theorem 2.1]):

Consider a sequence of[n, kn, dn] binary linear block codes{Cn}∞n=1. Let ΦCn be a p × n random

matrix based onCn, let GCn denote the Gram matrix of the matrix1√
n
ΦCn, and letMCn(z) denote the

empirical spectral distribution ofGCn . Finally, let rn be the greatest even integer less than or equal to

[(d⊥n − 1)/2], and letr := lim infn rn. Then, asn→ ∞ with y := p/n ∈ (0, 1) fixed, we have

lim sup
n

|MCn(z)−MMP(z)| ≤ c(y, r)
(

r−1 + r−2
)

almost surely for allz, where c(y, r) is a bounded function ofr (which can be given explicitly), and

MMP(z) is the distribution corresponding to the Marchenko-PasturmeasureµMP whose density is given

by
dµMP

dz
:=

1

2πzy

√

(b− z)(z − a) 1(a≤z≤b) ,

herea = (1−√
y)2 and b = (1 +

√
y)2.

It is well-known that as the dimensions grow to infinity, the empirical spectral distribution of the Gram

matrix of real i.i.d. random matrices follows the Marchenko-Pastur law [8]. With this respect, the above

result indicates that the matrix1√
n
ΦC based on the binary linear block codeC is very close to random i.i.d.

generated matrices asn→ ∞, if the dual distance of the codeC is large enough. Numerical experiments

conducted by the authors [3] on some low-rate BCH codes confirmed the significant similarity of the

empirical distribution to the Marchenko-Pastur law for dimensions (and consequently, dual distances) as
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small asn = 63.

However, there is an interesting phenomenon: the authors [2] also conducted some numerical experi-

ments on Gold sequences and found convincing similarity of the empirical distributions to the Marchenko-

Pastur law as well. This is a little surprising because Gold sequences arise from Gold codes [6] whose

dual distances are always 5, which is relatively small. In a more recent interesting paper [4], investigating

much further on the topic, the authors proved decisively the“randomness” of products of matrices arising

from different binary linear block codes under large dual distances. At the end of the paper [4] Babadi

and Tarokh also conducted numerical experiments and found numerical evidence of randomness on some

Gold sequences. Hence they raised the natural question as torelaxing the stringent requirement of large

dual distances in the results in order to explain the mysterious randomness of Gold sequences.

The purpose of this paper is to provide an affirmative answer to this questions. While binary linear block

codes are most useful in practice, it is worthwhile to consider, at least in theory, linear block codes over

a general finite fieldGF(q) whereq is a prime power, especially when it does not require any substantial

effort. For this purpose, denote byψ : GF(q) → C∗ the standard additive character given by

ψ(z) = exp

(

2π
√
−1Trq/l(z)

l

)

,

here l is any prime number andq is a power ofl, andTrq/l denotes the trace mapping fromGF(q) to

GF(l). When q = l = 2, thenψ(z) = (−1)z for z ∈ GF(2) which was considered before. It is known

thatψ(z) is a complexp-th root of unity.

Let C be an[n, k, d] linear block code of lengthn, dimensionk and minimum Hamming distanced over

GF(q). The dual code ofC, denoted byC⊥, is an[n, n−k, d⊥] linear block code overGF(q) such that all

the codewords ofC⊥ are orthogonal to those ofC with the natural inner product defined overGF(q)n. Let

ǫ : GF(q)n → (C∗)n be the component-wise mappingǫ(vi) := ψ(vi), for v = (v1, v2, . . . , vn) ∈ GF(q)n.

For p < n, let ΦC be ap × n random matrix whose rows are obtained by mapping a uniformlydrawn

set of sizep of the codewords ofC under ǫ. The Gram matrix of the p × n matrix ΦC is defined as

GC := ΦCΦ
∗
C, whereΦ∗

C is the conjugate transpose ofΦC. We prove

Theorem 1. Let C be an[n, k, d] linear block code overGF(q). LetΦC be ap×n random matrix based

on C, let GC denote the Gram matrix of1√
n
ΦC, and letMC(z) denote the empirical spectral distribution
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of GC . Supposen is sufficiently large. Then ifd⊥ ≥ 5 and for anyy := p/n ∈ (0, 1), we have

sup
z∈R

|MC(z)−MMP(z)| ≤
800√
y(1− y)

log logn

log n
. (1)

A. Discussion of the Main Theorem

Theorem 1 might look a little surprising, compared with the celebrated result by Sidel’nikov [11]: for

any [n, k, d] binary linear block codeC with d⊥ ≥ 3, we have

A(z)− Φ(z)| ≤ 9√
d⊥

asn→ ∞, whereA(z) is the cumulative weight distribution function of the codeC and

Φ(z) :=
1√
2π

∫ z

−∞
e−t2/2dt .

Hence the “randomness” of the weight distribution ofC is ensured ifd⊥ is sufficiently large. In Theorem

1, however, we only required⊥ ≥ 5.

Gold codes have three distinct non-zero weights which are known [6]. By applying the MacWilliams

identity [7] and by usingMathematica, it can be readily verified that the dual distance of Gold codes

is always 5, hence Theorem 1 is applicable and confirms that Gold sequences behave like random i.i.d.

sequences, in the sense of the spectral distribution.

The conditiond⊥ ≥ 5 in Theorem 1 can be slightly improved by assuming that the number of weight

4 codewords inC⊥ is relatively small (see Theorem 2 in Section II), and the inequality (1) of same kind

still holds true, if 800 replaced by a larger constant on the right hand side of (1). Onthe other hand,

however, ifd⊥ = 3, then Theorem 1 may not be true: Babadi, Ghassemzadeh and Tarokh ([2, Theorem

3.1]) proved that shortened first-order Reed-Muller (Simplex) codes which have dual distance 3 have

substantially different behavior in the sense of the spectral distribution.

The proof of Theorem 1 follows essentially the strategy usedby Babadi and Tarokh in [3], but here in

the paper some essence of number theory plays more prominentroles in the study. This might become

more apparent in Section II when we study thel-moment of the spectral measure. We shall prove Theorem

2, which improves [3, Lemma 3.3] substantially. Equipped with Theorem 2, in Section III we will prove

Theorem 1 directly. In the proof of Theorem 2, however, some very complicated issues of combinatorial

nature arise which need to be taken care of. To streamline theideas of the paper, we treat those issues in

Section IV.
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II. ESTIMATE OF THE l-TH MOMENT

In this section we study thel-th moment of the spectral distribution, similar to [3, Lemma 3.3]. We

use slightly different notation, which might be more suitedfor the problem.

As in Introduction, letC be an[n, k, d] linear block code overGF(q), and letǫ : GF(q)n → (C∗)n be

the component-wise mapping. DefineD = ǫ(C). Let N := qk be the cardinality ofD (andC). Let p < n.

In order to choose randomlyp elements fromD, we defineΩp to be the set of all mapss : [1, p] → D

endowed with the uniform probability, here[1, p] denotes the set of integers from1 to p. HenceΩp is a

probability space with cardinality|Ωp| = Np. For eachs ∈ Ωp, the p× n matrix Φs corresponding tos

is given by

Φ
T
s =

[

s(1)T , s(2)T , . . . , s(p)T
]

n×p
,

here we have writtens(i) ∈ D as 1 × n-row vectors. For anyu = (u1, . . . , un),v = (v1, . . . , vn) ∈ Cn,

the (Hermitian) inner product is

〈u,v〉 := u1v̄1 + · · ·+ unv̄n.

Let G(s) be the Gram matrix of 1√
n
Φs. This is ap × p Hermitian matrix with the(ij)-th entry given

by 〈s(i), s(j)〉/n. Let λ1(s), λ2(s), . . . , λp(s) ∈ R be the eigenvalues ofG(s). For any positive integerl,

define

Al(s) :=
1

p

p
∑

i=1

λi(s)
l =

1

p
Tr
(

G(s)l
)

.

The purpose of this section is to computeE (Al(s),Ωp), the l-th moment of the spectral measure. We

prove a general result:

Theorem 2. Let y := p/n ∈ (0, 1). Let A be the number of weight 4 codewords inC⊥. Then for any

2 ≤ l <
√
p, we have

E (Al(s),Ωp) =

l−1
∑

i=0

yi

i+ 1

(

l

i

)(

l − 1

i

)

+ El, (2)

whereEl is bounded by

|El| ≤
(

4 + 2

√

2A

q − 1
+

1

4

)

ll+1

n
,

The rest of this section is devoted to a proof of Theorem 2.
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A. Problem setting up

We say thatγ : [0, l] → [1, p] is a closed path ifγ is a map withγ(0) = γ(l). Denote byΠl,p the set

of all closed paths from[0, l] to [1, p]. For eachγ ∈ Πl,p ands ∈ Ωp, define

ωγ(s) := 〈s ◦ γ(0), s ◦ γ(1)〉〈s ◦ γ(1), s ◦ γ(2)〉 · · · 〈s ◦ γ(l − 1), s ◦ γ(l)〉.

ExpandingTr
(

G(s)l
)

, it is easy to see that

Al(s) =
1

pnl

∑

γ∈Πl,p

ωγ(s).

Hence

E (Al(s),Ωp) =
1

pnl

∑

γ∈Πl,p

E (ωγ(s),Ωp) .

Let Σp be the group of permutations of the set[1, p]. ThenΣp acts onΠk,p, sinceσ ◦ γ ∈ Πl,p whenever

γ ∈ Πl,p andσ ∈ Σp. Let [γ] be the equivalent class ofγ, that is,

[γ] = {σ ◦ γ : σ ∈ Σp}.

We may write

E (Al(s),Ωp) =
1

pnl

∑

γ∈Πl,p/Σp

∑

τ∈[γ]

E (ωτ (s),Ωp) .

For any fixedσ ∈ Σp, ass runs overΩp, clearly s ◦ σ also runs overΩp, hence

E (ωσ◦γ(s),Ωp) = E (ωγ(s ◦ σ),Ωp) = E (ωγ(s),Ωp) .

Moreover, let

Vγ := γ ([0, l]) ⊂ [1, p], vγ := #Vγ ,

and define the probability space

Ω(Vγ) := {s : Vγ → D}

assigned with the uniform probability. It is clear that#[γ] = p!
(p−vγ)!

,#Ω(Vγ) = Nvγ and

E (ωγ(s),Ωp) = E (ωγ(s),Ω(Vγ)) .
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Summarizing the above considerations, we have

E (Al(s),Ωp) =
1

pnl

∑

γ∈Πl,p/Σp

p!

(p− vγ)!
E (ωγ(s),Ω (Vγ)) . (3)

B. Study ofE (ωγ(s),Ω (Vγ))

Up to this point everything is essentially the same as in the proof of [3, Lemma 3.3]. The main

innovation of the paper is to use number theory to treatE (ωγ(s),Ω (Vγ)) in a more careful way.

Let H = (hij)n×k be a generating matrix ofC, that is, each codeword ofC is given by

c(x) := H [x1, . . . , xk]
T , (4)

for some uniquex = (x1, . . . , xk) ∈ GF(q)k. Hence eachs(i) ∈ D corresponds to a unique vector, which

we may record as(s(i)1, . . . , s(i)k) ∈ GF(q)k. From (4), thet-th entry ofs(i) is given by

s(i)[t] = ψ

(

k
∑

j=1

htjs(i)j

)

,

whereψ : GF(q) → C∗ is the standard additive character. So

〈s ◦ γ(u), s ◦ γ(u+ 1)〉 =
n
∑

t=1

ψ

(

k
∑

j=1

htjs ◦ γ(u)j −
k
∑

j=1

htjs ◦ γ(u+ 1)j

)

,

and hence

ωγ(s) =
∑

1≤t0,t1,...,tl−1≤n

ψ

(

k
∑

j=1

ht0j {s ◦ γ(0)j − s ◦ γ(1)j}
)

×ψ
(

k
∑

j=1

ht1j {s ◦ γ(1)j − s ◦ γ(2)j}
)

· · ·ψ
(

k
∑

j=1

htl−1j {s ◦ γ(l − 1)j − s ◦ γ(0)j}
)

.

Now suppose

Vγ = {za : 1 ≤ a ≤ vγ} ⊂ [1, p],

and for eacha, let Ia := γ−1(za). For eachu ∈ Ia, we haveγ(u) = za and clearly[0, l− 1] =
⋃

a Ia is a

partition. We may collect the terms(za) together on the right hand side ofωγ(s) above and rewrite it as

ωγ(s) =
∑

1≤t0,t1,...,tl−1≤n

vγ
∏

a=1

k
∏

j=1

ψ

(

s(za)j
∑

u∈Ia

{htuj − htu−1j}
)

.

Here whenu = 0, we interprett0−1 := tl−1 (we will use this convent multiple times in the paper).
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Therefore

E (ωγ(s),Ω (Vγ)) =
1

Nvγ

∑

s(za)j∈GF(q)
1≤a≤vγ
1≤j≤k

ωγ(s).

The orthogonality property

∑

z∈GF(q)

ψ(zx) =







0 : if x ∈ GF(q) \ {0};

q : if x = 0,

implies that if for somea and for somej we have

∑

u∈Ia

(

htuj − htu−1j

)

6= 0 ,

then their contribution toE (ωγ(s),Ω (Vγ)) is zero. So we conclude that the quantityE (ωγ(s),Ω (Vγ)) is

the same asWγ , which is the number of solutions(t0, t1, . . . , tl−1) such that1 ≤ t0, t1, . . . , tl−1 ≤ n and

∑

u∈Ia

(

htu − htu−1

)

= 0, ∀ 1 ≤ a ≤ vγ ,

herehi denotes thei-th row of the matrixH, and

E (Al(s),Ωp) =
1

pnl

∑

γ∈Πl,p/Σp

p!

(p− vγ)!
Wγ . (5)

C. Proof of Theorem 2

The combinatorial nature of solvingWγ, while elementary, presents some technical challenge. To

streamline the idea of the proof, and for the sake of clarity,we leave the analysis ofWγ to Section

IV. Here instead we quote the main results to continue our proof.

In Section IV we prove that there is a subsetΓ ⊂ Πl,p/Σp with the following property:







Wγ = nl−vγ+1 : if γ ∈ Γ;

0 ≤Wγ ≤ CA n
l−vγ : if γ /∈ Γ,

whereCA is given in (19). Using this we find that

E (Al(s),Ωp) =
n

p

∑

γ∈Πl,p/Σp

γ∈Γ

p!

(p− vγ)!nvγ
+ E1, (6)
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whereE1 is bounded by

|E1| ≤
CA

p

∑

γ∈Πl,p/Σp

p!

(p− vγ)!nvγ
≤ CA

p

l
∑

v=1

(p

n

)v ∑

γ∈Πl,p/Σp
vγ=v

1 .

It is easy to see that
∑

γ∈Πl,p/Σp
vγ=v

1 < vl ≤ ll,

and hence

|E1| ≤ CA l
l+1/n.

On the other hand, it is also proved in Section IV that

∑

γ∈Γ⊂Πl,p/Σp
vγ=v

1 =
1

v

(

l

v − 1

)(

l − 1

v − 1

)

.

Suppose2 ≤ l <
√
p. For v ≥ 2, using

pv ≥ p!

(p− v)!
> pv (1− v/p)v−1 ≥ pv (1− v(v − 1)/p) ,

in (6), we can finally obtain, after some simplifying, the desired result (2). This completes the proof of

Theorem 2. �

III. PROOF OFTHEOREM 1

Given Theorem 2, the proof of Theorem 1 follows essentially arguments in [3], though some of our

analysis is more precise.

A. Some lemmas

Fix y ∈ (0, 1), let x be a Marchenko-Pastur random variable whose density function is given by

dµMP

dz
:=

1

2πzy

√

(b− z)(z − a) 1(a≤z≤b) ,

herea = (1−√
y)2 and b = (1 +

√
y)2. It is known that thel-th moment ofx is given by

m
(l)
MP = E(xl) =

l−1
∑

i=0

yi

i+ 1

(

l

i

)(

l − 1

i

)

. (7)
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Define

b
(l)
MP := E

(

(x− 1)l
)

.

Clearly b(0)MP = 1, b
(1)
MP = 0. We first prove

Lemma 3. For any l ≥ 2 we have

∣

∣

∣
b
(l)
MP

∣

∣

∣
<
l3(8e2)ly

8π
. (8)

Proof. ExpandingE
(

(x− 1)l
)

and using (7) we have

b
(l)
MP =

l−1
∑

i=1

yi

i+ 1

l
∑

t=i+1

(−1)l−1

(

l

t

)(

t

i

)(

t− 1

i

)

.

Elementary estimates on binomial coefficients yield

∣

∣

∣
b
(l)
MP

∣

∣

∣
<

2l

2

l−1
∑

i=1

yil2i

(i!)2
< 2l−1(yl2)

l−1
∑

i=0

(yl2)i

(i!)2
≤ 2l−1(yl3) max

0≤i≤l−1

(yl2)i

(i!)2
.

By quotient test we find that the maximal value is attained ati0 = [
√
yl]. If i0 = 0 or 1, then the equality

(8) can be easily verified. Now supposei0 ≥ 2. Theni0 >
√
yr− 1 ≥ √

yr/2. Using the Stirling’s bound

on n!, given by

n! ≥
√
2πn(n/e)n, (9)

we obtain
∣

∣

∣
b
(l)
MP

∣

∣

∣
< 2l−1(yl3)

(yl2)i0

4π
(√

yl/2e
)2i0

=
l32l

8π
(4e2)i0y ≤ l32l

8π
(4e2)ly.

This completes the proof of Lemma 3.�

To prove Theorem 1, following the method of [3], we need a lemma from probability theory, which is

discussed in details in [5, Ch. XVI-3] (or see [3, Lemma 3.1]):

Lemma 4. Let F be a probability distribution with vanishing expectation and characteristic functionφ.

Suppose thatF −G vanishes at±∞ and thatG has a derivativeg such that|g| ≤ m. Finally, suppose

that g has a continuously differentiable Fourier transformγ such thatγ(0) = 1 and γ′(0) = 0. Then, for

all z and T > 0 we have

|F (z)−G(z)| ≤ 1

π

∫ T

−T

∣

∣

∣

∣

φ(t)− γ(t)

t

∣

∣

∣

∣

dt +
24m

πT
.
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B. Proof of Theorem 1

Using notation from Section II, for eachs ∈ Ωp, let λ1(s), . . . , λp(s) be the eigenvalues ofG(s). The

characteristic function we consider is

φC(t) :=
1

p

p
∑

k=1

E (exp (it(λk(s)− 1)) ,Ωp) .

For the Marchenko-Pastur random variablex we consider

γ(t) := E (exp(it(x− 1))) .

Define for eachl

Bl =
1

p

p
∑

k=1

E
(

(λk(s)− 1)l,Ωp

)

.

Expanding thel-th power we find that

Bl =

l
∑

t=0

(−1)l−t

(

l

t

)

E (At(s),Ωp) , (10)

where estimates onE (At(s),Ωp) is provided by Theorem 2. Using the inequality

∣

∣

∣

∣

∣

exp(it)−
r−1
∑

l=0

(it)l

l!

∣

∣

∣

∣

∣

≤ |t|r
r!
,

and choosingr ≥ 4 to be even, we find that
∣

∣

∣

∣

∣

φC(t)−
r−1
∑

l=0

(it)lBl

l!

∣

∣

∣

∣

∣

≤ trBr

r!
, (11)

and
∣

∣

∣

∣

∣

γ(t)−
r−1
∑

l=0

(it)lb
(l)
MP

l!

∣

∣

∣

∣

∣

≤ tr b
(r)
MP

r!
. (12)

We note thatBl = b
(l)
MP for l = 0, 1. For l ≥ 2, using the expression (10) and Theorem 2, given that

d⊥ ≥ 5, we find

∣

∣

∣
Bl − b

(l)
MP

∣

∣

∣
≤

l
∑

t=2

(

l

t

)

5 tt+1

n
<

15 ll+1

n
. (13)
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In writing

|φC(t)− γ(t)| ≤
∣

∣

∣

∣

∣

φC(t)−
r−1
∑

l=0

(it)lBl

l!

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

γ(t)−
r−1
∑

l=0

(it)lb
(l)
MP

l!

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

r−1
∑

l=0

(it)l
(

Bl − b
(l)
MP

)

l!

∣

∣

∣

∣

∣

∣

,

applying Lemma 4 and using the above estimates from (11)(12)(13) and Lemma 3, we collect terms

together and finally obtain

|MC(z + 1)−MMP(z + 1)| ≤ r2(8e2T )ry

2π2(r!)
+

60 r(Tr)r

πn(r!)
+

24

π2√y(1− y)T
. (14)

Finally, takingr to be a positive even integer of size

r ≈ log n

log logn
, and T =

r

16e3
,

and using the Stirling’s bound (9), whenn (and consequentlyr) is sufficiently large, it is easy to see that

the first two terms on the right side of (14) can be both boundedby log logn
logn

, while the third term is

24 · 16 · e3
π2√y(1− y)r

≈ 782 · log log n√
y(1− y) · logn.

Combining these terms completes the proof of Theorem 1.�

IV. THE ANALYSIS OFWγ

Let γ : [0, lγ] → [1, p] be a closed path withVγ = γ([0, lγ]) = {za : 1 ≤ a ≤ vγ}, vγ = |Vγ| and

Ia = γ−1(za). Denote byWγ the number of solutions(t0, t1, . . . , tlγ−1) such that1 ≤ t0, t1, . . . , tlγ−1 ≤ n

and
∑

u∈Ia

(

htu − htu−1

)

= 0, ∀ 1 ≤ a ≤ vγ ,

herehi denotes thei-th row of the matrixH, whose rows are all distinct by assumption, and the indices

shall be considered modulolγ, i.e., t−1 = tlγ−1. The purpose of this section is to studyWγ , which is

crucial in the proof of Theorem 2.

Definition 5. The closed pathγ is called “reduced” ifvγ = lγ = 1, or if vγ ≥ 2 and the following two

conditions are satisfied:

(i). each|Ia| ≥ 2, hencel =
∑

a |Ia| ≥ 2v ≥ 4;

(ii). eachIa does not contain consecutive indices, that is,γ(u) 6= γ(u+ 1) , ∀u.
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We first studyWγ whenγ is reduced.

A. Study ofWγ for γ reduced

Let γ be a reduced closed path withl = lγ ≥ 1 andv = vγ ≥ 1. If vγ = lγ = 1, then trivially we have

Wγ = n.

Now suppose thatvγ ≥ 2. For eachIa, defineI ′a := Ia − {1} = {u− 1 (mod lγ − 1) : u ∈ Ia}. For any

1 ≤ a ≤ vγ, the equation corresponding toIa is

∑

u∈Ia

htu −
∑

u∈I′a

htu = 0. (15)

We shall write down the equations (15) for1 ≤ a ≤ vγ as a matrix with respect to the variables

ht0 ,ht1 , . . . ,htl−1
, given in the same ordered.

Since∪aIa is a partition of [0, l − 1], and eachIa does not contain consecutive elements, there are

distinct indices, which we may say1 andv, such that0 ∈ I1 and1 ∈ Iv. Hencek − 1 ∈ I ′0, and the row

vector corresponding to the equation ofI1 with respect toht0 ,ht1 , . . . ,htl−1
is of shape

[1, ∗, · · · , ∗,−1].

Now let u2 be the smallest index in the set∪2≤a≤v−1 (Ia ∪ I ′a). We must haveu2 ≥ 1, andu2 ∈ I ′a for

some2 ≤ a ≤ v− 1, because if otherwise, thenu2 = 0, which contradicts the fact that0 ∈ I1 and1 ∈ Iv.

We may reorder the indices and sayu2 ∈ I ′2. Henceu2 +1 ∈ I2, and the row vector corresponding to the

equation ofI2 with respect toht0 ,ht1 , . . . ,htl−1
is of shape

[0 · · · 0,−1, 1, ∗, · · · , ∗, 0],

where the first non-zero entry “−1” appears at theu2-th column.

Now let u3 be the smallest index in the set∪3≤a≤v−1 (Ia ∪ I ′a). Similarly we must haveu3 ≥ u2 + 1,

andu3 ∈ I ′a for some3 ≤ a ≤ v − 1. We reorder the indices and sayu3 ∈ I ′3. Thenu3 + 1 ∈ I3, and the

row vector corresponding to the equation ofI3 with respect toht0 ,ht1 , . . . ,htl−1
is of shape

[0 · · ·0, 0 · · ·0,−1, 1, ∗, · · · , ∗, 0],

where the first non-zero entry “−1” appears at theu3-th column.
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We can continue this process up toa = v− 1 because each row contains at least two non-zero entries.

Clearly the row vectors corresponding to the equationsIa for 1 ≤ a ≤ v − 1 form an upper triangular

matrix with rank v − 1. So the number of free variables isl − v + 1. This proves thatWγ ≤ nl−v+1.

Actually we shall do much better.

Sincel ≥ 2v, and each row vector corresponding toIa, 1 ≤ a ≤ v−1 with respect toht0 ,ht1 , . . . ,htl−1

contains at least two1’s, we may findl − v free variables, say they aretv, . . . , tl−1 after reordering the

indices, so that for any given values oftv, . . . , tl−1 from 1 to n, solving the equations (15) becomes

looking for 1 ≤ t0, . . . , tv−1 ≤ n such that

hti = vi, ∀ 2 ≤ i ≤ v − 1,

ht0 + ht1 = v1,

where the vectorsvi are linear combinations of the rows ofH, depending only ontv, . . . , tl−1. Clearly

the number of solutions forti, 2 ≤ i ≤ v − 1 is at most one. One only needs to considert0, t1.

If v1 = 0, this enforces a new relation ontv, . . . , tl−1 which were free before, hence the number of

such(tv, . . . , tl−1)’s with v1 = 0 is at mostnl−v−1. On the other hand, for each givent0, there is at most

one valuet1 such thatht0 + ht1 = 0. Hence the total number of solutions ofti’s for this case is at most

nl−v. Let us define

Av = | {(t0, t1) : 1 ≤ t0, t1 ≤ n, andht0 + ht1 = v} |.

We have just proved that

Wγ ≤ nl−v

(

1 + sup
v 6=0

Av

)

. (16)

Now for a fixedv 6= 0, note that ift0 = t1, the equation2ht = v has at most one solution for1 ≤ t ≤ n.

So we have

Av ≤ 1 + 2Bv, (17)

whereBv is the cardinality of the set

Bv = {(t0, t1) : 1 ≤ t0 < t1 ≤ n, andht0 + ht1 = v} .

If Bv ≥ 2, then for any distinct elements(t0, t1), (t′0, t
′
1) ∈ Bv, we conclude thatt0, t1, t′0, t

′
1 are all distinct
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and

ht0 + ht1 − ht′
0
− ht′

1
= 0.

This gives a weight4 codeword inC⊥ with entries1, 1,−1,−1 at thet0, t1, t′0 andt′1-th places respectively.

From it we may multiply elements ofGF(q)−{0} to get new weight4 codewords. Now suppose thatA

is the number of weight4 codewords ofC⊥. The above argument shows that

A ≥ (q − 1)

(

Bv

2

)

=
q − 1

2
Bv (Bv − 1) .

Hence we have

Bv ≤
√

2A

q − 1
+

1

4
+

1

2
.

In relation to (17) and (16) we conclude that ifvγ ≥ 2,

Wγ ≤ CA n
lγ−vγ , (18)

where

CA = 3 + 2

√

2A

q − 1
+

1

4
. (19)

B. An example

To illuminate the combinatorial nature of solvingWγ in general, it may be useful to consider an example

first.

Let lγ = 9, andγ define the partition

{0, 1, . . . , 8} = {0, 1, 2, 7} ∪ {3, 5, 8} ∪ {4} ∪ {6}.

So vγ = 4. ThenWγ is the number of solutions(t0, t1, . . . , t8) such that1 ≤ t0, t1, . . . , t8 ≤ n and the

following four equations hold simultaneously:

ht0 + ht1 + ht2 + ht7 = ht8 + ht0 + ht1 + ht6 (20)

ht3 + ht5 + ht8 = ht2 + ht4 + ht7 (21)

ht4 = ht3 (22)

ht6 = ht5 (23)
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Clearly one equation is redundant: we can always remove one and keep the rest.

Consider (20), we find thatht0 ,ht1 can be canceled out on both sides. Hencet0 and t1 are free and

can be removed, and (20) becomes

ht2 + ht7 = ht8 + ht6 (24)

Consider (22). Since the rows ofH are all distinct, this implies thatt3 = t4, and under this restriction,

ht3 andht4 are also canceled out on both sides of (21). Thent3 = t4 is also a free variable and can be

removed.

Consider (23). Clearly we havet5 = t6, but this is not a free variable: replacingt5 by t6, we find that

Wγ = n3Wγ′ , whereWγ′ is the number of solutions(t2, t6, t7, t8) such that1 ≤ t2, t6, t7, t8 ≤ n and the

equation (24) is satisfied.

The γ′ can be reinterpreted as a closed path. It is a reduced path with lγ′ = 4, vγ′ = 2, hence the

quantityWγ′ can be estimated by (18), so we conclude that

Wγ ≤ n3CA n
lγ′−vγ′ = CA n

5.

C. Study ofWγ in general

As illustrated by the previous example, we shall isolate variables from the equations related toWγ, and

removing these variables would result in a new but simpler closed pathγ′, and three different situations

may arise and need to be examined carefully.

We use some notation. For a closed pathγ : [0, lγ] → [1, p], the termsVγ , vγ and Ia’s are as before.

γ yields a loopt0, t1, · · · , tu−1, tu, tu+1, · · · , tl−2, tl−1, t0, according to which we say thattu−1 and tu are

consecutive inγ, andt′u := tu−1 is the left neighbor oftu (as usualtl−1 is the left neighbor oft0). If we

removetu from γ, then in the resultingγ′, the loop ist0, . . . , tu−1, tu+1, . . . , tlγ−1, t0, hencelγ′ = l − 1,

and the left neighbor oftu+1 becomestu−1, but all other relations in terms of “left neighbors” stay the

same.

1) Case 1. Removing consecutive elements:Suppose that there are consecutive elements inIa for some

a, say, for exampleu, u+ 1 ∈ Ia. The equation with respect toIa is

· · ·+ htu + htu+1
+ · · · = · · ·+ htu−1

+ htu + · · · .
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Clearlyhtu can be canceled out on both sides of the equation, and it does not appear in any other equations

with respect toIb, b 6= a. Let γ′ be the closed path by removingtu, thentu−1 becomes the left neighbor

of tu+1 in γ′ and all other relations in terms of “neighbors” remain the same. Hence we have

Case 1: lγ′ = l − 1, vγ′ = vγ, Wγ = nWγ′ .

In Wγ′ , we may rename the variables so thatγ′ : [0, lγ′] → [1, p] is a closed path with variablest0, . . . , tlγ′−1
.

2) Case 2. Removing “leaves”:For a closed pathγ, the vertexu ∈ Ia is called a “leaf” if Ia = {u}

andγ(u− 1) = γ(u+ 1) 6= γ(u). Henceu− 1, u+ 1 ∈ Ib for someb 6= a. The equation with respect to

Ia is

htu = htu−1
=⇒ tu = tu−1. (25)

The equation with respect toIb is

· · ·+ htu−1
+ htu+1

+ · · · = · · ·+ htu−2
+ htu + · · · . (26)

Assuming (25), thenhtu andhtu−1
can be canceled out trivially on both sides of (26). Hence we have

solved thattu = tu−1, which can be removed from the variables. Letγ′ be the resulting closed path.

Removing bothtu, tu−1 from (25), it is clear that inγ′, tu−2 becomes the left neighbor oftu+1 and all

other relations in terms of “neighbors” remain the same. We have

Case 2: lγ′ = l − 2, vγ′ = vγ − 1, Wγ = nWγ′ .

3) Case 3. Removing “transition” vertices:For a closed pathγ, the vertexu ∈ Ia is called a “transition”

vertex if Ia = {u} and γ(u − 1), γ(u), γ(u + 1) are all distinct. Sayu − 1 ∈ Ib and u + 1 ∈ Ic, where

a, b, c are all distinct. The equation with respect toIa is still

htu = htu−1
=⇒ tu = tu−1. (27)

The equations with respect toIb, Ic are

· · ·+ htu−1
+ · · · = · · ·+ htu−2

+ · · · (28)

· · ·+ htu+1
+ · · · = · · ·+ htu + · · · (29)
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Assuming (27), that is, replacingtu by tu−1, then (28) stays the same but (29) becomes

· · ·+ htu+1
+ · · · = · · ·+ htu−1

+ · · ·

which means that by removingtu, in the resultingγ′, tu−1 becomes the left neighbor oftu+1 and all the

other relations in terms of “neighbors” remain the same. So we have

Case 3: lγ′ = l − 1, vγ′ = vγ − 1, Wγ = Wγ′ .

D. Conclusion onWγ

In conclusion, suppose that altogether we performu, v, andw(≥ 0) times of Case 1, Case 2 and Case

3 reductions respectively onγ, maybe in different orders and combinations, to finally arrive at, after

reordering the variables, a closed pathγ′ : [0, lγ′ ] → [1, p] with lγ′ , vγ′ ≥ 1, on which we could not do

any of the reductions as described above. Then by definitionγ′ is a reduced path, and we also have

lγ′ = lγ − u− 2v − w, vγ′ = vγ − v − w, Wγ = nu+vWγ′ . (30)

There are two cases:

Case 1.If vγ′ = lγ′ = 1, thenWγ′ = n. Hence in this caseWγ = nlγ−vγ+1.

Case 2.If vγ′ ≥ 2, thenWγ′ ≤ CA n
lγ′−vγ′ by (18). We have in this caseWγ ≤ CA n

lγ−vγ .

Denote byΓ the set of all theγ’s that can be reduced toCase 1. We conclude that







Wγ = nlγ−vγ+1 : if γ ∈ Γ;

0 ≤Wγ ≤ CA n
lγ−vγ : if γ /∈ Γ,

E. Combinatorial structure ofΓ

Finally we need to prove the identity

∑

γ∈Γ⊂Πl,p/Σp
vγ=v

1 =
1

v

(

l

v − 1

)(

l − 1

v − 1

)

. (31)

The theory of random matrices has been extensively studied (see [1], [9]), and the above identity might be

a well-known fact. Actually the left hand side appears naturally in the standard proof of the Marchenko-

Pastur law for random matrices. Since we can not find a reference, we may sketch a proof here.
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Let X = (xij) ∈ Rp×n be a random matrix wherexij ’s are i.i.d,E(xij) = 0,E(x2
ij) = 1 and p < n.

Define

S =
1

n
XXT .

Then

1

p
E
(

Tr(Sl)
)

=
1

pnl

∑

γ,τ

E
(

xγ(0)t0xγ(1)t0xγ(1)t1xγ(2)t1 . . .xγ(l−1)tl−1
xγ(0)tl−1

)

=
1

pnl

∑

γ,τ

E (γ, τ) ,

where the sum is over all mapsγ ∈ Πl,p and allτ := {ti}l−1
i=0 ∈ [1, n]l. Now this corresponds to a directed

loop on a bipartite graph from the vertex set{γ(0), . . . , γ(l− 1)} to the vertex set{t0, . . . , tl−1} with 2l

steps. As the standard proof goes, each edge must appear at least twice, otherwiseE(γ, τ) = 0. Hence

we have at mostl edges in the graph, and at mostl + 1 vertices in the skeleton. The optimal situation,

that is, graphs with exactlyl edges andl + 1 vertices, or “double trees” will give the main contribution.

Terms arising from other configuration of graphs are negligible and can be ignored. The standard result

on counting such “double trees” is that, for each1 ≤ v ≤ l, the number of double tree shapes withv

vertices inγ (i.e., vγ = v) and l− v+1 vertices inτ is given by the right hand side of (31) (see [1, page

20, Exercise 2.1.18]). A little thought about properties ofΓ concludes that the left hand side of (31) also

counts the total number of such double trees. The finishes theproof of the identity (31). �
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