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On a question of Babadi and Tarokh

Jing Xid , Maosheng Xiong

Abstract

In a recent remarkable papér [3], Babadi and Tarokh proved‘thndomness” of sequences arising from
binary linear block codes in the sense of spectral distiobutprovided that their dual distances are sufficiently
large. However, numerical experiments conducted by thhassitrevealed that Gold sequences which have dual
distance 5 also satisfy such randomness property. Henciatgresting question was raised as to whether or not
the stringent requirement of large dual distances can lbaedlin the theorem in order to explain the randomness
of Gold sequences. This paper improves their result on abfremts and provides an affirmative answer to this

question.

Index Terms

Asymptotic spectral distribution, coding theory, MarckefPastur law, random matrix theory, randomness of

sequences.

I. INTRODUCTION

The elegant theory of random matrices, and in particulapgnttes of their spectral distribution, have
been studied for a long time but remain a prominent and actdgearch area due to its wide and
important applications in many diverse disciplines suchmeghematical statistics, theoretical physics,
number theory, and more recently in economics [10] and comcation theory([12]. Most of the random
models considered so far are matrices whose entries havestiuctures. In a remarkable paper, Babadi
and Tarokh [[3] considered matrices formed by choosing raMyl@odewords from some linear block
codes with large dual distance and proved that these mstbebave like random matrices with i.i.d.
entries, as long as the empirical spectral distributionoiscerned. To describe their beautiful result, we
need some notation.

Let C be an|[n,k,d] binary linear block code of length, dimensionkt and minimum Hamming

distanced over GF(2). The dual code of’, denoted byC*, is an [n,n — k,d*] binary linear block
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code overGF(2) such that all the codewords 6f- are orthogonal to those @f with the inner product
defined overGF(2)". Lete : GF(2)" — {—1,1}" be the component-wise mappinf;) := (—1)", for

v = (v1,v9,...,0,) € GF(2)". Forp < n, let ®. be ap x n random matrix whose rows are obtained
by mapping a uniformly drawn set of sizeof the codewords of undere. The Gram matrixof ®. is
defined agj; := ®.®., whered? is the transpose ob.. Let {\;, Ao, ..., \,} be the set of eigenvalues

of ann x n matrix A. The spectral measuref A is defined by

1 n
HA ‘= E;é)\“

where/, is the Dirac measure. The empirical spectral distributibrAois defined as
Ma(2) ::/ pa(dz).
Babadi and Tarokh proved the following result!([3, Theorem])2
Consider a sequence o#, k,, d,] binary linear block codeqC, }°,. Let ®;, be ap x n random
matrix based orC,, let G, denote the Gram matrix of the matr%@cn, and let M, (z) denote the
empirical spectral distribution ofj.,. Finally, let r, be the greatest even integer less than or equal to

[(dF —1)/2], and letr := liminf, r,. Then, asn — oo with y := p/n € (0,1) fixed, we have
limsup | Me, (=) — Myp(2)| < c(y.r) (r +772)

almost surely for allz, wherec(y,r) is a bounded function of (which can be given explicitly), and

Myp(z) is the distribution corresponding to the Marchenko-Pastwasureu,» whose density is given

by

d 1
;;1:13 - (b—2)(z —a) La<s<)

27y

herea = (1 — /y)* andb = (1+ /y)*.

It is well-known that as the dimensions grow to infinity, thagrical spectral distribution of the Gram
matrix of real i.i.d. random matrices follows the MarcherRastur law([8]. With this respect, the above
result indicates that the matr%@c based on the binary linear block codes very close to random i.i.d.
generated matrices as— oo, if the dual distance of the codgis large enough. Numerical experiments
conducted by the authors![3] on some low-rate BCH codes coefirthe significant similarity of the

empirical distribution to the Marchenko-Pastur law for émsions (and consequently, dual distances) as



small asn = 63.

However, there is an interesting phenomenon: the authgral$® conducted some numerical experi-
ments on Gold sequences and found convincing similarithefmpirical distributions to the Marchenko-
Pastur law as well. This is a little surprising because Gelgugnces arise from Gold codés [6] whose
dual distances are always 5, which is relatively small. Inaxarecent interesting papér [4], investigating
much further on the topic, the authors proved decisively‘taerdomness” of products of matrices arising
from different binary linear block codes under large duataices. At the end of the papér [4] Babadi
and Tarokh also conducted numerical experiments and founterical evidence of randomness on some
Gold sequences. Hence they raised the natural questionratatong the stringent requirement of large
dual distances in the results in order to explain the mystisrrandomness of Gold sequences.

The purpose of this paper is to provide an affirmative answémis questions. While binary linear block
codes are most useful in practice, it is worthwhile to coesidt least in theory, linear block codes over
a general finite field5F(¢q) whereq is a prime power, especially when it does not require anytaunkial

effort. For this purpose, denote hy: GF(¢) — C* the standard additive character given by

(27r\/—_1lTrq /l(z))

Y(2) = exp

)

herel is any prime number and is a power ofl, andTr,,; denotes the trace mapping froGF'(¢) to
GF(I). Wheng = | = 2, then(z) = (—1)* for = € GF(2) which was considered before. It is known
that(z) is a complexp-th root of unity.

Let C be an[n, k, d] linear block code of length, dimensiont and minimum Hamming distancéover
GF(q). The dual code of, denoted byC*, is an[n,n —k, d*] linear block code oveGF(q) such that all
the codewords of - are orthogonal to those ¢fwith the natural inner product defined ov@F (¢)". Let
e : GF(q¢)™ — (C*)™ be the component-wise mappia@;) := ¥ (v;), for v = (vy,vs,...,v,) € GF(¢)".
Forp < n, let &, be ap x n random matrix whose rows are obtained by mapping a unifomndyvn
set of sizep of the codewords o undere. The Gram matrixof the p x n matrix ®. is defined as

Ge := @ P}, where®; is the conjugate transpose &f.. We prove

Theorem 1. LetC be an[n, k, d] linear block code ovef:F(q). Let . be ap x n random matrix based

onC, let G, denote the Gram matrix %(I)C, and letM.(z) denote the empirical spectral distribution



of Ge. Supposer is sufficiently large. Then i#+ > 5 and for anyy := p/n € (0,1), we have

800 loglogn
M, - M < .
oup [ Me(2) — My (2)| <~ = 2%

1)
A. Discussion of the Main Theorem

Theorenll might look a little surprising, compared with tledebrated result by Sidel’nikoVv [11]: for
any [n, k, d] binary linear block cod€ with d*+ > 3, we have

A(z) - B(2)] < —

5

asn — oo, where A(z) is the cumulative weight distribution function of the codeand

O(2) = \/%/ e P2t

Hence the “randomness” of the weight distributionCofs ensured if/* is sufficiently large. In Theorem
[, however, we only requiré- > 5.

Gold codes have three distinct non-zero weights which amwvkn[6]. By applying the MacWilliams
identity [7] and by usingMathematica, it can be readily verified that the dual distance of Gold sode
is always 5, hence Theorem 1 is applicable and confirms that &muences behave like random i.i.d.
sequences, in the sense of the spectral distribution.

The conditiond* > 5 in Theoren{lL can be slightly improved by assuming that the bemof weight
4 codewords inC* is relatively small (see Theorel 2 in Sectlah Il), and thegireity (1) of same kind
still holds true, if800 replaced by a larger constant on the right hand siddof (1)thH@nother hand,
however, ifd+ = 3, then Theorenl]1l may not be true: Babadi, Ghassemzadeh aokhT{#, Theorem
3.1]) proved that shortened first-order Reed-Muller (Sewplcodes which have dual distance 3 have
substantially different behavior in the sense of the spédistribution.

The proof of Theorerf]1 follows essentially the strategy usgdabadi and Tarokh i [3], but here in
the paper some essence of number theory plays more promiestin the study. This might become
more apparent in Sectigd Il when we study thmoment of the spectral measure. We shall prove Theorem
[2, which improves[[3, Lemma 3.3] substantially. EquippethviiheoreniR, in Sectionlll we will prove
Theoren{1L directly. In the proof of Theordm 2, however, somg womplicated issues of combinatorial
nature arise which need to be taken care of. To streamlin&#aes of the paper, we treat those issues in
Section1V.



[I. ESTIMATE OF THE!-TH MOMENT

In this section we study théth moment of the spectral distribution, similar {0 [3, Lemnr8.3]. We
use slightly different notation, which might be more suited the problem.

As in Introduction, letC be anin, k, d| linear block code ovetGF(q), and lete : GF(¢)" — (C*)" be
the component-wise mapping. Defifie= ¢(C). Let N := ¢* be the cardinality o> (and(). Let p < n.
In order to choose randomly elements fromD, we define(2, to be the set of all maps: [1,p] — D
endowed with the uniform probability, hef&, p] denotes the set of integers frotto p. Hence(2, is a
probability space with cardinalitjf2,| = N?. For eachs € €, the p x n matrix ®, corresponding t

is given by

here we have writter(i) € D as1 x n-row vectors. For anyu = (uy,...,u,), v = (vq,...,v,) € C",
the (Hermitian) inner product is

(u,v) := w10y + -+ - + Uy Uy.

Let G(s) be the Gram matrix o%@s. This is ap x p Hermitian matrix with the(:j)-th entry given
by (s(7),s(j))/n. Let \i(s), Aa(s), ..., Ay(s) € R be the eigenvalues @ (s). For any positive integef,

define
1< 1 l
A(s) == Ai(s)' == Tr (G(s)") .
b= P
The purpose of this section is to compuii€ A;(s),(2,), the [-th moment of the spectral measure. We
prove a general result:

Theorem 2. Lety := p/n € (0,1). Let A be the number of weight 4 codewordsdn. Then for any

2 <1< ,/p, we have

B9 -3 ()17 1) < B @

where £ is bounded by

2A 1\ I+t
B <|4+2y)——+- | —
| l|_< * q—1+4> n o’

The rest of this section is devoted to a proof of Theokém 2.



A. Problem setting up

We say thaty : [0,1] — [1,p] is a closed path ify is a map withy(0) = (). Denote byll, , the set

of all closed paths fron0, /] to [1, p|. For eachy € 11, and s € €2, define

wy(s) = (507(0), s 0 (1)) (s 07(1), 5 07(2)) - -- (s 07l = 1), 5 0 (1))

ExpandingTr (G(s)), it is easy to see that

Z%

Hence

E (A(s) Z E (w, (s

Let 3, be the group of permutations of the sétp]. Then, acts onlly ,, sinces oy € 11, ,, whenever

vell,, ando € ¥,. Let [y] be the equivalent class af that is,

[ ={ooy:oeX,}

We may write

E (Ai(s), Z ZE wr(s

'YEHI p/zp Teh}

For any fixedo € 3, ass runs over(,, clearly s o o also runs ovef?,, hence
E (Wooy (), ) = E (wy(s00),8) = E (wy(s),2p) .

Moreover, let

Vy:=~(0,1]) C [L,p], vy:=#V,,

and define the probability space

QV,) ={s:V, —» D}
assigned with the uniform probability. It is clear théfy] = (p = ,,#Q( ) = N" and

E (w,(5),8) = E (w,(s),2V;)) .



Summarizing the above considerations, we have

EA).2) = 3 By (9).0(%). ©

B. Study ofE (w,(s), 2 (V;))
Up to this point everything is essentially the same as in tfeofpof [3, Lemma 3.3]. The main

innovation of the paper is to use number theory to tieab. (s), 2 (V,)) in a more careful way.

Let H = (hij)n.xrx be a generating matrix af, that is, each codeword @f is given by
c(x) = Hlxy, ..., x]", (4)

for some uniquex = (1, ..., z;) € GF(¢)*. Hence each(i) € D corresponds to a unique vector, which

we may record ass(i)i,...,s(i),) € GF(q)*. From [8), thet-th entry of s(i) is given by

k
= (Z htjsu)j) :

wherev : GF(q) — C* is the standard additive character. So

(sovy(u),soy(u+1)) Z¢<th3307 Zhwsoy(u+1)>

7j=1
and hence

wy(s) = > (Z higj {5 07(0); = s 0 y(1); }>

1<to,t1,....,t;_1<n
k
Xy (Z hiyj {s0(1); — s 07(2); }> Y (Z hy_yj{ser(l=1); —so 7(0)]-}> :
j=1
Now suppose

V,={z:1<a<w,}C1,p],

and for eachy, let I, :=~y7'(z,). For eachu € I,, we havey(u) = z, and clearly(0,/ — 1] =, I, is a
partition. We may collect the term(z,) together on the right hand side of (s) above and rewrite it as
vy k
wy(s) = > JIBIE (5(%)]' > {hu - htuu’}> -
1<to,t1,...,t;—1<n a=1 j=1 u€l,

Here whenu = 0, we interprett,_; := t;_; (we will use this convent multiple times in the paper).



Therefore

The orthogonality property

0 : if x € GF(q)\{0};

> w(er) =

2€GF(q) q if v = 07
implies that if for somez and for somej we have
> (his; =i, 1j) #0,
uel,
then their contribution td (w,(s), 2 (V;)) is zero. So we conclude that the quantityw. (s), 2 (V5)) is
the same as$V,, which is the number of solution8,, ¢1,...,%_1) such thatl <t,,¢;,...,t_; <n and
> (b, —hy, ,)=0 Vi<a<uw,
uel,

hereh; denotes the-th row of the matrixH, and

B0 = S LW, ©

C. Proof of Theorerhl2

The combinatorial nature of solvinyy’,, while elementary, presents some technical challenge. To
streamline the idea of the proof, and for the sake of clanitg, leave the analysis dfl, to Section
V] Here instead we quote the main results to continue ouofpro

In Section[ IV we prove that there is a sub$et II, /3, with the following property:
W, =nl=ott . if yely
OSVVVSC’Anl_”7 c ify ¢,

whereC, is given in [19). Using this we find that

E(As),0) =2 S — 24 )

_ | pv
U~ )i =y
p VeIl /S, (p 'y)
vel



where E; is bounded by
Cy p! Ca = [P\
|Brl < ? Z (p—vy)Inv = Z <ﬁ> Z L.

It is easy to see that

VGHl,p/EP
Vy=v

and hence

|Ey| < Cal .

On the other hand, it is also proved in Section IV that

> =)0
DT /S, v\v—1 v—1

Suppose <[ < /p. Forv > 2, using

p!

p’ >
(p—v)!

>p’(L—v/p)"™" = p"(1—v(v—1)/p),

in (@), we can finally obtain, after some simplifying, the ided result [2). This completes the proof of

Theorenl . O

[1l. PROOF OFTHEOREM[I]

Given Theoreni]2, the proof of Theordm 1 follows essentiatbyuments in[[3], though some of our

analysis is more precise.

A. Some lemmas

Fix y € (0,1), let x be a Marchenko-Pastur random variable whose density fumdsi given by

d 1
,L(fll;/IP — (b — z)(Z — a) 1(a§z§b) )

27y

herea = (1 — /y)* andb = (1+ ,/y)*. It is known that thel-th moment ofx is given by
1—

mil}P:E(xl):Z;fl(ﬁ) (1) @)

7
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Define
l
W =E ((x—1)1).
Clearly bl(ﬁ)P =1, bl(\})P = 0. We first prove
Lemma 3. For any ! > 2 we have

I2(8e2)ly
‘bl(\?P‘ < (87r) ' ®

Proof. ExpandingE ((x — 1)) and using[(V) we have

=32 S e () ()

Elementary estimates on binomial coefficients yield

-1 g2 -1 2\i 2Yi
O] 2_ y'l I— 1 2 (yl*) < 9l=1(,13 (yl*)
‘bMP) 5 Z:: <27 (yl%) 2 < 27 (yl )ogz‘?ﬁl O

By quotient test we find that the maximal value is attained, at [,/yl]. If io = 0 or 1, then the equality
@) can be easily verified. Now suppoge> 2. Theniy > /yr —1 > /yr/2. Using the Stirling’s bound

onn!, given by
n! > v2mn(n/e)", 9)

we obtain

32! - 32!
= (4e*)oy < 87(462)13/-

-1/, 13 (yl?)e L2
)b \<z (z)MWl/Qe)%—gﬂ

This completes the proof of Lemnia 3.0
To prove Theorenil1, following the method of [3], we need a lenfrom probability theory, which is
discussed in details inl[5, Ch. XVI-3] (or s€€ [3, Lemma 3.1])

Lemma 4. Let F' be a probability distribution with vanishing expectationdacharacteristic functionp.
Suppose that' — GG vanishes attoco and thatG has a derivativey such that|g| < m. Finally, suppose
that ¢ has a continuously differentiable Fourier transforrsuch thaty(0) = 1 and+’(0) = 0. Then, for
all z andT > 0 we have

dt + —.
t

1 T
) -GGl <: | e

™ J-1

¢(t) — (1) ‘ 24m
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B. Proof of Theorerhll

Using notation from Sectionlll, for eache €, let A;(s),..., A\,(s) be the eigenvalues @(s). The
characteristic function we consider is

p

D E (exp (it(Mi(s) = 1)) ,9,) .

k=1

be(t) = ]13

For the Marchenko-Pastur random variakleve consider
y(t) = E (exp(it(x — 1))
Define for each
1 p
Br== > B(Ows) = 1)\0).
k=1

Expanding the-th power we find that

l
[
B, = Z(—l)l‘t (t)E (Ai(s),$2), (10)
t=0
where estimates oR (A,(s),(2,) is provided by Theorer 2. Using the inequality
r—=1 ..\ r
. it t
explit) - 3 L) < 1
=0
and choosing" > 4 to be even, we find that
r—1 ,.
(it)!By| "B,
de(t) - Z | < (11)
and
r—1 1) rp(r)
() - 3 | < Ul (12)
.
=0

We note thatB, = bféfp for | = 0,1. Forl > 2, using the expression _(10) and Theorem 2, given that

d+ > 5, we find

n n

l
N5 tt-i—l 15 lH—l
‘Bl - bggp\ <y (t) < . (13)
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In writing

de(t) —

|pc(t) — ()] <

! ’

applying Lemmd# and using the above estimates friom [(T({{3R)and Lemmal3, we collect terms

together and finally obtain

(14)

|Me(z+1) — Myp(z+1)] < r 5

Finally, takingr to be a positive even integer of size

logn r
nd 7=——
16¢3’

" loglogn’

and using the Stirling’s boundl(9), when(and consequently) is sufficiently large, it is easy to see that

the first two terms on the right side df{14) can be both bourtted?2%, while the third term is

24-16-¢*  782-loglogn
VYL —y)r Yl —y)-logn

Combining these terms completes the proof of Thedrem @

IV. THE ANALYSIS OF IV,
Let v : [0,1,] — [1,p] be a closed path with, = ~([0,,]) = {2 : 1 < a < v,},v, = |V,| and
I, = v !(z,). Denote byl the number of solution&, ¢y, ... .t —1) such thatl <ty t,....t, 1 <n
and

> (b, —h, ,)=0 Vi<a<u,

u€l,
hereh; denotes theé-th row of the matrix/{, whose rows are all distinct by assumption, and the indices
shall be considered modulo, i.e.,t_; = t;, _;. The purpose of this section is to studly,, which is

crucial in the proof of Theoreml 2.

Definition 5. The closed path, is called “reduced” ifv, = [, = 1, or if v, > 2 and the following two
conditions are satisfied:
(). eachl|l,| > 2, hencel =) |I,| > 2v >4;

(i). eachl, does not contain consecutive indices, thatjig) # v(u + 1), Vu.
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We first studylW, when+~ is reduced.

A. Study ofiV, for v reduced

Let v be a reduced closed path with= [, > 1 andv = v, > 1. If v, = [, = 1, then trivially we have
W, =n.

Now suppose that, > 2. For each/,, definel, := I, — {1} ={u—1 (mod I, — 1) : u € [,}. For any

1 <a < v,, the equation corresponding 1 is

> b, - h, =0 (15)

u€l, uel,
We shall write down the equations (15) far < « < v, as a matrix with respect to the variables
h,, b, ... h, ,, given in the same ordered.

Since U, 1, is a partition of[0,/ — 1], and each/, does not contain consecutive elements, there are
distinct indices, which we may sayandwv, such that) € I; and1 € I,,. Hencek — 1 € I/, and the row

vector corresponding to the equation lefwith respect toh,, hy,. ..., h; | is of shape
(1,5, -+ %, —1].

Now let u, be the smallest index in the seb<,<,—1 (I, U I). We must have., > 1, andu, € I! for
some2 < a < v — 1, because if otherwise, ther = 0, which contradicts the fact thate I, and1 € I,,.
We may reorder the indices and say< I). Henceu, + 1 € I,, and the row vector corresponding to the

equation of/, with respect toh,, h,,, ..., h;_, is of shape
[0“'07_1717*7‘“ 7*70]7

where the first non-zero entry-1" appears at theu,-th column.
Now let u3 be the smallest index in the set<,<,—1 (I, U I}). Similarly we must have; > us + 1,
andus € I/ for some3 < a < v — 1. We reorder the indices and say € I5. Thenuz + 1 € I3, and the

row vector corresponding to the equationgfwith respect toh,,, h,,, ..., h;,_, is of shape
[0...0’0.‘.07_171’*’... 7>|<7()]7

where the first non-zero entry-1" appears at theus-th column.
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We can continue this process upde= v — 1 because each row contains at least two non-zero entries.
Clearly the row vectors corresponding to the equatign$or 1 < a < v — 1 form an upper triangular
matrix with rankv — 1. So the number of free variables lis- v + 1. This proves thatV,, < n!=v+1,
Actually we shall do much better.

Sincel > 2v, and each row vector corresponding/tol < a < v—1 with respect tch,,, h;,, ..., hy, |
contains at least twa’s, we may findl — v free variables, say they atrg, ..., t,_; after reordering the
indices, so that for any given values of,...,t,_; from 1 to n, solving the equationd_(1l5) becomes

looking for 1 < tg,...,t,_1 < n such that

h, = v;, V2<i<wv-1,

7

hto + ht1 = Vv,

where the vectors; are linear combinations of the rows éf, depending only ort,, ..., ¢, ;. Clearly
the number of solutions far;,2 < < v — 1 is at most one. One only needs to consitlgt;.

If vi = 0, this enforces a new relation ap, ..., ¢,_; which were free before, hence the number of
such(t,, ..., t,_1)’s with v; = 0 is at mostn'~*~1. On the other hand, for each givey there is at most
one valuet; such thath;, + h;, = 0. Hence the total number of solutions ©B for this case is at most
n'~v. Let us define

Ay = [{(to,t1) : 1 < to,t1 <n, andhy, +hy, =v}|
We have just proved that
W, <n'™" (1 + sup AV> . (16)
v#0

Now for a fixedv # 0, note that ift, = ¢;, the equatior2h, = v has at most one solution far< ¢ < n.

So we have
A, <14 2B,, (17)
where B, is the cardinality of the set
By = {(to,t1) : 1 <ty <ty <n, andhy, +h;, = v}.

If B, > 2, then for any distinct elements,, ¢,), (t;,t}) € By, we conclude thaty, ¢, ¢, ¢, are all distinct
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and

hto + ht1 - h% - ht’l - 0

This gives a weight codeword inC+ with entriesl, 1, —1, —1 at thet,, t, ¢, andt}-th places respectively.
From it we may multiply elements d&F(q) — {0} to get new weightl codewords. Now suppose that

is the number of weight codewords of’+. The above argument shows that

Az(q—n(%) :q—ngv(Bv—l).

Hence we have

2A 1 1
By < \/——+—+=
= q—1+4+2
In relation to [17) and(16) we conclude thatif > 2,
W, < Cynb™, (18)
where
2A 1
Ca=3+2 2 11 (19)
qg—1 4

B. An example

To illuminate the combinatorial nature of solvifig, in general, it may be useful to consider an example
first.

Let [, =9, and~ define the partition
{0,1,...,8} ={0,1,2, 7} U {3,5,8} U {4} U {6}.

So v, = 4. ThenW,, is the number of solution§,, t;,...,ts) such thatl < ¢y,¢;,...,ts < n and the

following four equations hold simultaneously:

h, +hy, +h, +h,. = hy +hy +h, +hy, (20)
h, +h, +h, = hy,+h, +h,. (21)
h, = h, (22)

h, = h, (23)
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Clearly one equation is redundant: we can always remove nd&eep the rest.
Consider [(2D), we find that,,, h;, can be canceled out on both sides. Hencand ¢, are free and

can be removed, and (20) becomes
ht2 —|— ht7 — htg + htg (24)

Consider[(2R). Since the rows &f are all distinct, this implies that = t4, and under this restriction,
h,, andh,, are also canceled out on both sides[ofl (21). Thes ¢, is also a free variable and can be
removed.

Consider[(2B). Clearly we hawg = t¢, but this is not a free variable: replacing by t¢, we find that
W, = n®W.,, wherel,, is the number of solution§s, tg, t7,ts) such thatl < ¢, s, t7,ts < n and the
equation[(Z4) is satisfied.

The +' can be reinterpreted as a closed path. It is a reduced pathiwit= 4,v,, = 2, hence the

quantity W, can be estimated by ([18), so we conclude that

W7 < n’ Ca nhy ~Vy = Ca n’.

C. Study ofiV, in general

As illustrated by the previous example, we shall isolateaides from the equations relatediid,, and
removing these variables would result in a new but simplesad pathy’, and three different situations
may arise and need to be examined carefully.

We use some notation. For a closed path|[0,l,] — [1,p], the termsV,, v, and I,’s are as before.
~ yields a looptg, t1, - ,tu_1,tu, tus1, -+, ti_2,t;_1, g, according to which we say that_;, andt¢, are
consecutive iny, andt! :=t,_; is the left neighbor ot, (as usual,_; is the left neighbor of,). If we
removet, from ~, then in the resulting/, the loop isty, ..., t,—1,tus1,. .., t,—1,t0, hencel, =1 —1,
and the left neighbor of, ; becomes,_;, but all other relations in terms of “left neighbors” stayeth
same.

1) Case 1. Removing consecutive elemeBigopose that there are consecutive elements far some

a, say, for example,, u + 1 € I,. The equation with respect th, is

"‘+htu+htu+1"‘"':““"htu,l+htu+“‘-
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Clearlyh,, can be canceled out on both sides of the equation, and it ddegppear in any other equations
with respect tol,, b # a. Let 4’ be the closed path by removirg, thent,_; becomes the left neighbor

of t,.1 In 7/ and all other relations in terms of “neighbors” remain theneaHence we have
Case 1 lﬁ/ =1 - 1, Uyt = Uy, W7 = nW,Y/.

In W/, we may rename the variables so that [0, [,/] — [1, p] is a closed path with variablég. . . . N
2) Case 2. Removing “leaves’For a closed path, the vertexu € I, is called a “leaf” if I, = {u}
andvy(u—1) =~vy(u+1) # vy(u). Henceu — 1,u + 1 € [, for someb # a. The equation with respect to

1, is
h, =h;, , = t,=1t,1. (25)
The equation with respect tf is
+hy  +hy +o = 4hy, ,+hy +o (26)

Assuming [(25), therh;, andh;, , can be canceled out trivially on both sides of](26). Hence aeeh
solved thatt, = t,_;, which can be removed from the variables. hétbe the resulting closed path.
Removing botht,, t,_; from (28), it is clear that iny/, t,_, becomes the left neighbor @f.; and all

other relations in terms of “neighbors” remain the same. \Akeh
Case 2 ly=1-2, vy=v,—1, W, =nW,.

3) Case 3. Removing “transition” verticeszor a closed path, the vertex: € I, is called a “transition”
vertex if [, = {u} and~y(u — 1),v(u),y(u + 1) are all distinct. Say. — 1 € [, andu + 1 € I., where

a, b, c are all distinct. The equation with respect £pis still
htu - htu71 - tu - tu_l. (27)
The equations with respect g, /. are

...+htu71_¢_... — ..._._htu%_’_... (28)

"‘+htu+1+“‘ — "‘+htu+"‘ (29)
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Assuming [(2V), that is, replacing by ¢,_;, then [28) stays the same bLt](29) becomes

"‘+htu+1+"‘ = .-+ h + ...

u—1

which means that by removing, in the resultingy’, t,_; becomes the left neighbor of,; and all the

other relations in terms of “neighbors” remain the same. chave

Case 3 lﬁ//:l—l, 071207—1, WA/IWA/.

D. Conclusion onit,

In conclusion, suppose that altogether we perfarm, andw(> 0) times of Case 1, Case 2 and Case
3 reductions respectively om, maybe in different orders and combinations, to finally arat, after
reordering the variables, a closed path: [0,l,/] — [1,p] with [,,,v,, > 1, on which we could not do

any of the reductions as described above. Then by definitioa a reduced path, and we also have
Ly=1,—u—2v—w, vy=v,—v—w, W,=n"""W, . (30)

There are two cases:
Case 1.If v, =1, =1, thenW,, = n. Hence in this casé/,, = nl—v*1,
Case 2.If v, > 2, thenW., < Cyn~* by (I8). We have in this casé’, < Cynlr =,

Denote byl the set of all they’s that can be reduced Gase 1 We conclude that
W, = nh=vrtt . ifyely
0<W, < Cyanb= ¢ if v ¢ T,
E. Combinatorial structure of’

Finally we need to prove the identity

= )
e /S, v\v—1/\v—-1

The theory of random matrices has been extensively studesl[(], [9]), and the above identity might be
a well-known fact. Actually the left hand side appears redtyrin the standard proof of the Marchenko-

Pastur law for random matrices. Since we can not find a refeteme may sketch a proof here.
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Let X = (x;;) € R”" be a random matrix where;;’s are i.i.d, E(x;;) = 0,E(x};) = 1 andp < n.

Define

S = lXXT.

n

Then

1 1 1
p E (Tr(S")) = o] D B (%5010 X (110X (1t Xy )t - - X (1=t 1 K (1) = o Y E(y,7),
T T

where the sum is over all mapse 11;,, and all7 := {t;}\=} € [1,n]'. Now this corresponds to a directed
loop on a bipartite graph from the vertex det(0),...,~v(l — 1)} to the vertex se{t,...,t,_1} with 21
steps. As the standard proof goes, each edge must appeasttviece, otherwisé& (v, ) = 0. Hence
we have at most edges in the graph, and at mdst 1 vertices in the skeleton. The optimal situation,
that is, graphs with exactly edges and + 1 vertices, or “double trees” will give the main contribution
Terms arising from other configuration of graphs are nelgleggand can be ignored. The standard result
on counting such “double trees” is that, for eachk< v < [, the number of double tree shapes with
vertices invy (i.e., v, = v) andl — v + 1 vertices int is given by the right hand side df (31) (séé [1, page
20, Exercise 2.1.18]). A little thought about propertied’'ofoncludes that the left hand side bf31) also
counts the total number of such double trees. The finisheprb&f of the identity [(311). [
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