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Variable-Length Limited Feedback Beamforming in
Multiple-Antenna Fading Channels

Erdem Koyuncu, Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract—We study a multiple-input single-output fading
channel where we would like to minimize the channel out-
age probability or the symbol error rate (SER) by employing
beamforming via quantized channel state information at the
transmitter (CSIT). We consider a variable-length limited feed-
back scheme where the quantized CSIT is acquired through
feedback binary codewords of possibly different lengths. We
design and analyze the performance of the associated variable-
length quantizers (VLQs) and compare their performance with
the previously-studied fixed-length quantizers (FLQs). For the
outage probability performance measure, we construct VLQs
that can achieve the full-CSIT performance with finite rate.
Moreover, as the signal-to-noise ratio P tends to infinity, we
show that VLQs can achieve the full-CSIT outage probability
performance with asymptotically zero feedback rate. For the SER
performance measure, we show that while the SER with full-
CSIT is not achievable at any finite feedback rate, the diversity
and array gains with full-CSIT can be achieved using VLQs
with asymptotically zero feedback rate as P → ∞. Our results
show that VLQs can significantly improve upon the traditional
FLQs that require infinite feedback rate to achieve the outage
probability or the diversity and array gains with full-CSIT.

Index Terms—Multiple antenna systems, limited feedback,
channel quantization, variable-length quantization, beamform-
ing, outage probability, error probability, diversity and array
gains.

I. INTRODUCTION

A. Limited Feedback in Multiple Antenna Systems

The availability of channel state information (CSI) at
the transmitter and/or the receiver can greatly improve the
performance of multiple antenna communication systems.
Typically, in a point-to-point multiple antenna system with
slow fading channels, the receiver can acquire the CSI via
training sequences from the transmitter. Obtaining CSI at the
transmitter (CSIT) is however more difficult and generally
requires feedback from the receiver. A complication in this
context is that the channel state itself can take any value
in a multidimensional complex space. Therefore, its exact
representation requires an “infinite number of feedback bits.”
In practice, the feedback link has a finite bandwidth, which
means that only a finite number of feedback bits per channel
state can be utilized for feedback. One way to model such
a limited feedback scenario is to formulate it as a source
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coding problem. The core element of such a formulation is
a (channel) quantizer that specifies (i) for each channel state,
the finite sequence of feedback bits to be fed back by the
receiver; and (ii) for each such sequence, the codeword (e.g. a
beamforming vector) to be employed by the transmitter. One
is then concerned with the design of an optimal quantizer with
respect to a specific performance measure such as outage or
error probability, subject to the rate constraint of the feedback
link.

B. Related Work

A comprehensive overview on the design and performance
analysis of channel quantizers for multiple antenna systems
can be found in [1]. In particular, beamforming with limited
feedback has been extensively studied with several different
approaches some of which we summarize in the following.

Applications of Grassmannian line packings to the quan-
tized beamforming problem have been studied in [2]–[4].
The design and analysis of limited feedback beamforming
systems using vector quantizer design algorithms such as the
Generalized Lloyd Algorithm can be found in [5]–[8]. In
[9], the authors employ high resolution approximations of
the source coding theory to analyze quantized beamforming
systems. The combination of quantized beamforming with
space-time coding has been studied in [10]–[12]. Multicarrier
limited feedback beamforming schemes have been introduced
and analyzed in [13], [14]. Random vector quantizers for
multiple antenna systems have been studied in [15]–[17]. In
[18], the authors design trellis-coded quantizers for coopera-
tive beamforming systems. Capacity-optimality of quantized
beamforming have been studied in [19]. The performance
of quantized beamforming for distributed MISO systems has
been analyzed in [20]–[24]. Limited feedback beamforming
schemes for temporally/spatially correlated channels have been
considered in [25]–[27]. Other approaches to quantized beam-
forming include [28]–[33].

The research on limited feedback is not limited to the
particular quantized CSI scenarios that we have mentioned
here, numerous other schemes have been devised for different
transmission strategies, performance measures, and system
models; we refer the interested readers to the aforementioned
survey article [1].

C. Scope of the Paper

Most of the previous work on finite-rate CSI feedback
has been based on fixed-length quantizers (FLQs), in which
the number of feedback bits per channel state is a fixed
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nonnegative integer. In general, different binary codewords of
different lengths can be fed back for different channel states,
resulting in what is called a variable-length quantizer (VLQ).
An FLQ is a special case of a VLQ, and therefore, with the
same constraint on the feedback rate, we expect the achievable
performance with VLQs to be better (at least not worse) than
the one with FLQs.

In this work, we consider the VLQ design problem for a
multiple-input single-output (MISO) system with t transmitter
antennas and a short term power constraint at the transmitter.
We assume a quasi-static block fading channel model in which
the channel realizations vary independently from one fading
block to another while within each block they remain constant.
We also assume that the receiver has full CSI, while the
transmitter has only partial CSI provided by the receiver via
error-free and delay-free feedback channels. The partial CSI
is in the form of quantized instantaneous CSI provided by
a VLQ, whose “informal structure” is as described in Sec-
tion I-A. We design outage-minimizing and error-minimizing
VLQs for both beamforming and precoding strategies. For
the error probability performance measure, we investigate the
achievable diversity and array gains of the system.

The focus of this paper is specifically on MISO systems
with beamforming, and we will not consider the multiple-
input multiple-output (MIMO) case where the receiver also has
multiple antennas. Note that if both the transmitter and the re-
ceiver has multiple antennas, beamforming in general becomes
a suboptimal strategy as it can only provide a multiplexing
gain of 1. Hence, in MIMO systems, one should utilize the
more general precoding strategies where several independent
data streams are simultaneously transmitted over the multiple
transmitter antennas. Despite extensive research efforts in
the last two decades, the understanding on MIMO limited
feedback systems with precoding is quite limited. For example,
in any quantization process, one at least hopes the quantized
performance to approach the unquantized performance as
the quantization resolution (the number of codewords in the
quantizer codebook) increases. It is not even known whether
this fundamental property holds in the case of MIMO systems
with the outage probability performance measure. In other
words, it is not known whether or not one can get arbitrarily
close to the full-CSIT outage probability performance by using
FLQs with high-enough resolution. The lack of such basic
fundamental results makes the analysis of MIMO VLQs very
challenging.

D. Organization of the Paper

The rest of this paper is organized as follows: We first
focus on the design of outage-optimal VLQs. In Section II,
we provide a formal description of the system model, the
outage probability performance measure, and the variable-
length channel quantizers. In Section III, we discuss how to
design an optimal VLQ for a given codebook. In Section IV,
we state our main results. In Section V, we discuss how to
design VLQs with fast encoders/decoders and discuss some
other practical issues regarding variable-length quantization.
In Section VI, we provide extensions of our results to the

case where non-Gaussian input distributions with finite support
are used for data transmission. In Section VII, we present
numerical evidence that confirms our analytical results. In
Section VIII, we design and analyze VLQs that minimize
the symbol error rate. Finally, in Section IX, we draw our
main conclusions. Some technical proofs are provided in the
appendices.

E. Notation

The symbols o(·), ω(·), O(·),Ω(·), Θ(·), ∼ are the standard
symbols that describe the asymptotic growth of functions [34].
Also, ‖·‖ is the 2-norm, 〈·|·〉 is the complex inner product. C,
R and N represent the sets of complex numbers, real numbers,
and natural numbers, respectively. The set Ct×r represents the
collection of all matrices with t rows, r columns, and entries
that belong to C. tr(A) is the trace of a square matrix A.
AT , A† denote the transpose and the Hermitian transpose of
A, respectively. Let A∗ = (AT )†. <(A) , 1

2 (A + AH) and
=(A) , 1

2 (A−AH) are the real and imaginary parts of the
matrix A = <(A)+j=(A). P represents the probability. fX(·)
is the probability density function (PDF) of a random variable
X . E[X] is the expected value of X . h ' CN(K) means that
h is a circulary-symmetric complex Gaussian random vector
with covariance matrix K. I is the identity matrix, 0 is the all-
zero matrix. For any sets A and B, A−B is the set of elements
in A, but not in B. |A| is the cardinality of A. ∅ is the empty
set. For any logical statement ST, 1(ST) = 1 if ST is true, and
1(ST) = 0, otherwise. Finally, Q(x) = 1√

2π

∫∞
x
e−

u2

2 du, x ∈
R is the Gaussian tail function, log(·) is the natural logarithm,
log2(·) is the logarithm to base 2, and Γ(·) is the gamma
function.

II. PRELIMINARIES

A. System Model

Consider a t × 1 MISO system. Denote the channel from
transmitter antenna i to the receiver antenna by hi, and let
h = [ h1 · · · ht ]T ∈ Ct×1 represent the channel state.
Throughout the paper, we assume that h ' CN(I). We also
assume that the fading is sufficiently slow so that the receiver
can estimate the channel state and feed back its quantized
version to the transmitter.

Let s ∈ C denote the information-bearing symbol that we
wish to transmit. Unless otherwise specified, we assume that
s ' CN(1). In other words, we assume that s is a circulary-
symmetric complex Gaussian symbol with unit energy. For
a given channel state h, suppose that the transmitter sends
sx†
√
P over its t antennas, where x ∈ x is a beamforming

vector and

x , {x ∈ Ct×1 : ‖x‖ = 1} (1)

is the set of all feasible beamforming vectors. The channel
input-output relationship with such a transmission strategy can
be expressed as

y = s〈h,x〉
√
P + η, (2)

where y is the received signal, η ∈ CN(1) is the noise at the
receiver, and P is the ratio of the short term power constraint
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of the transmitter to the noise power at the receiver. Note that
since the noise power is normalized to unity, P is also equal
to the short-term power constraint of the transmitter.

For a fixed channel state h and a fixed beamforming vector
x, the mutual information of the MISO channel in (2) is
log2(1 + |〈x,h〉|2P ) bits per channel use. For a given target
data transmission rate ρ, we say that an outage event occurs
if log2(1 + |〈x,h〉|2P ) < ρ.

When h is random, we can choose a different beamforming
vector for different h. In this case, we define the outage
probability as the fraction of channel realizations for which
outage events occur. The clear goal is to minimize this
outage probability. Formally, consider an arbitrary mapping
m : Ct → x . Then, the outage probability with mapping m can
be expressed as

OUT(m) , P(|〈m(h),h〉|2 < α), (3)

where

α ,
2ρ − 1

P
. (4)

B. Full-CSIT and No-CSIT Systems

At one extreme case, the transmitter may know h perfectly,
in which case we say that we have a “full-CSIT system.”
In such a scenario, we can choose an optimal beamforming
vector, say Full(h) for a given h. We have |〈Full(h),h〉| ≤
‖h‖, and the upper bound is achievable by choosing, for
example,

Full(h) =
h∗

‖h‖ . (5)

This gives us

OUT(Full) = P(‖h‖2 < α). (6)

At the other extreme, the transmitter may not know h at all,
in which case we say that we have a no-CSIT system or an
open loop system. In this case, the transmitter uses a single
beamforming vector for all the channel states. Therefore, a no-
CSIT system can be described by the mapping open : Ct →
{o} for some o ∈ x . We assume that such an open loop
system is optimally designed in the sense that

o = arg min
x∈x

P(|〈x,h〉|2 < α) (7)

with ties broken arbitrarily. For any x ∈ x , we have 〈x,h〉 ∼
CN(1), which implies P(|〈x,h〉|2 < α) = 1 − e−α. In other
words, the probability in the minimization in (7) does not
depend on x. Without loss of optimality, we may therefore
set o = [1 0 · · · 0]T . This gives us OUT(open) = P(|h1|2 <
α) = 1− e−α.

We now consider the case where the transmitter has partial
CSI via feedback from the receiver. Using a source coding
formulation, such a partial CSI system can be described by a
channel quantizer as we explain in what follows.

C. The Channel Quantizer

Let I ∈ {{0}, {0, 1}, {0, 1, 2}, . . . ,N} be a possibly infinite
index set whose elements are either the first |I| natural
numbers or all the natural numbers. We use the notations
{an}I and {an : n ∈ I} interchangeably to represent a
set whose elements are the real numbers an, n ∈ I. Similar
definitions hold for sets of vectors, collection of sets, etc.

For a given index set I, let {xn}I be a set of quantized
beamforming vectors with {xn}I ⊂ x . Also, let {En}I with
En ⊂ Ct, ∀n ∈ N be a collection of mutually disjoint
measurable subsets of Ct with

⋃
n∈I En = Ct. Finally, let

{bn}I be a collection of feedback binary codewords with
{bn}I ⊂ {0, 1}?, where {0, 1}? , {ε, 0, 1, 00, 01, . . .} is the
set of all binary codewords including the empty codeword ε.
We assume bm 6= bn whenever m 6= n. We call the collection
of triples

q := {xn, En, bn}I (8)

a quantizer q for the beamforming strategy. We call q an
infinite-level quantizer if I is an infinite set. Otherwise, we
call q an |I|-level quantizer.

The quantizer definition in (8) immediately induces a
feedback transmission scheme that operates in the following
manner: For a fixed channel state h, the receiver feeds back the
binary codeword bn, where the index n here satisfies h ∈ En.
Such an index n always exists and is unique as En, n ∈ N is
a disjoint covering of Ct. The transmitter recovers the index
n and uses the corresponding beamforming vector xn. The
recovery of n by the transmitter is always possible since
bns are distinct. We write q(h) = xn whenever h ∈ En to
emphasize the quantization operation. We call the set {xn}I
the quantizer (or beamforming) codebook.

For any b ∈ {0, 1}?, let L(b) denote the “length” of b. For
example, L(ε) = 0, L(01) = 2. A quantizer q is called an FLQ
if L(bm) = L(bn), ∀m,n ∈ I. Otherwise, we call q a VLQ.

A quantizer q is thus a mapping Ct → {xn}I supplied
with a feedback binary codeword bn for each xn. Treated
solely as a mapping, it is a special case of the mapping
m : Ct → x discussed in the previous section with the
requirement of a countable image {xn}I . According to (3),
we can therefore calculate the outage probability with q as
OUT(q) = P(|〈q(h),h〉|2 < α), which does not depend on bn.
As a result, we do not specify/mention bn when we would like
to talk only about the outage performance of a quantizer and
write {xn, En, ·}I instead. The binary codewords bn however
determine the rate R(q) of the quantizer q by the formula

R(q) ,
∑
n∈I

P(h ∈ En)L(bn). (9)

We measure the quality of the quantizer by the outage prob-
ability it provides. We can also define the “binary” distortion
measure

d(h,x) = 1(|〈x,h〉|2 < α and ‖h‖2 ≥ α) (10)

= 1(|〈x,h〉|2 < α)− 1(‖h‖2 < α) ∈ {0, 1} (11)

that measures the quality of reproduction of the channel
sample h by x. For a given quantizer q, the expected distortion
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E[d(h, q(h))] is nothing but the quantity OUT(q)−OUT(Full).
Therefore, minimizing the expected distortion with q is equiv-
alent to minimizing the outage probability with q.

It is well-known that the outage performance of any finite-
level quantizer is strictly worse than the full-CSIT performance
OUT(Full) [28]. In other words, any finite-level quantizer
has non-zero distortion. Hence, if we would like to achieve
OUT(Full), we need to use an infinite-level quantizer with
encoding regions {En}N that satisfy P(h ∈ En) > 0 for
infinitely many n (As otherwise, we may ignore the En with
P(h ∈ En) = 0 and obtain a finite-level quantizer that
achieves OUT(Full), which is a contradiction.) Unfortunately,
the rate of an FLQ with such encoding regions cannot be finite.
Therefore, FLQs cannot achieve the full-CSIT performance
with finite rate, and we have to consider VLQs for this
purpose. Fortunately, the rate of an infinite-level VLQ may be
finite even if all its encoding regions have non-zero probability.

We show that there is indeed a VLQ that achieves
OUT(Full) with finite rate. We provide an explicit construction
of such a VLQ. We also estimate the minimum rate at which
OUT(Full) is achievable as a function of α, or equivalently,
as a function of P . We start with the design of the encoding
regions for a given codebook.

III. A NEW ENCODING RULE

In this section, we introduce a new encoding rule for VLQs.
In order to motivate the new encoding rule, we first review the
standard encoding rule used for FLQs and discuss why it will
not work in the case of VLQs.

A. The Standard Encoding Rule

Let B = {x0, . . . ,xN−1} be a finite-cardinality beamform-
ing codebook. In the case of FLQs, the standard encoding
rule (see e.g. [6], [28]) is to choose the beamforming vector
in B that is “closest” to h with respect to the absolute inner
product. In other words, the standard approach is to work with
the quantizer

q̄B(h) , arg max
x∈B
|〈x,h〉|, (12)

with ties broken arbitrarily. It can be shown that q̄B is an
optimal quantizer for the codebook B in the sense that for any
quantizer qB : Ct → B, we have OUT(q̄B) ≤ OUT(qB).

One way to design a VLQ might be to keep the standard
encoding rule but instead use a variable-length code instead
of a fixed-length code. There are two problems with this
approach. The first problem, which is of a rather technical
nature, is that the standard encoding rule is not well-defined
for infinite-level quantizers as a maximizer may not exist for
countably infinite codebooks. The second and more important
issue is that even for a finite cardinality codebook, this rule
is quite ill-suited for variable-length quantization as we shall
discuss in the following.

It is well-known that the beamforming vectors in a well-
designed codebook should be “evenly distributed” on x (A
formal treatment of this argument gives rise to e.g. Grass-
mannian codebooks [2]). For such a well-designed codebook
B = {x0, . . . ,xN−1} and an index i ∈ {0, . . . , N − 1}, the

standard encoder picks xi if ∀n ∈ {0, . . . , N−1}, |〈xi,h〉| ≥
|〈xn,h〉|. Due to the even distribution of codevectors, this
results in quantization cells with roughly equal probability 1

N .
In such a scenario, it can be shown that even the best variable-
length code results in a VLQ rate of log2N (up to an additive
constant). Hence, VLQs designed via the standard encoding
rule cannot achieve the full-CSIT performance with finite rate
since we need N →∞ (In fact, we can already design a rate-
dlog2Ne FLQ that is optimal for B; a VLQ with almost the
same rate is superfluous). We thus first introduce an alternate
encoding strategy.

B. The New Encoding Rule

For any given beamforming vector x ∈ x , let

Ox = {h ∈ Ct : |〈x,h〉|2 < α} (13)

denote the channel states for which using x results in outage.
Also, let Ocx denote the complement of Ox. The simple but
key observation is that the standard encoder is “excessively
precise” as it always picks the (intuitively best) beamforming
vector in {x0, . . . ,xN−1} that is closest to h. In fact, without
loss of optimality in terms of the outage probability, for any
j ∈ {0, . . . , N − 1}, the transmitter can use xj whenever
using xj does not result in outage (i.e. whenever h ∈ Ocxj ). It
can also use xj whenever all the beamforming vectors in the
codebook result in outage (i.e. whenever h ∈ ⋂N−1

n=0 Oxn ),
as using any other beamforming vector in {x0, . . . ,xN−1}
would result in an inevitable outage anyway. In other words,
for the set Ocxj ∪

⋂N−1
n=0 Oxn of source samples, choosing xj

instead of the beamforming vector that is closest to h will not
change the distortion. We exploit this property of the outage
probability performance measure to design a new encoding
strategy that yields low rates without sacrificing performance.

Formally, for a given arbitrary beamforming codebook
{xn}I , we set

E?0 , Ocx0
∪
⋂
n∈I
Oxn , (14)

and use x0 as the beamforming vector whenever h ∈ E?0 . We
have now allocated the part E?0 of the channel state space Ct.
In general, whenever |I| ≥ 2, for any n ∈ I − {0}, we set

E?n = Ocxn ∩
n−1⋂
k=0

Oxk , (15)

and use xn whenever h ∈ E?n. For any n ∈ I − {0}, by
definition, E?n consists of channel states for which using the
beamforming vector xn does not result in outage while using
any of the preceding beamforming vectors x0, . . . , xn−1

results in outage.
It follows immediately from the definitions that {E?n}I is

a disjoint collection of measurable sets that cover Ct. We
may therefore define the (possibly infinite-level) quantizer
{xn, E?n, ·}I .

An alternate more natural definition can be given as follows:
The quantizer {xn, E?n, ·}I selects the beamforming vector

arg min
x∈{xn}I

d(h,x) = arg min
x∈{xn}I

1(|〈x,h〉|2 < α), (16)
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with ties broken in favor of the vector with the smallest index.
In this form, the new encoding rule resembles the standard
encoding rule we have discussed before, but there is a key
difference: It is now specifically tailored for the outage prob-
ability measure, and is no longer a nearest-neighbor encoding
rule in an inner-product-distance sense. However, it can still
be considered to be a nearest-neighbor encoding rule with a
“distance function” that can only take the values 0 and 1.

Let us now calculate the outage probability with the quan-
tizer {xn, E?n, ·}I . Meanwhile, we show that it is also in fact
an optimal quantizer for the codebook {xn}I .

Proposition 1. Let {xn}I be a given codebook. For any
quantizer q : Ct → {xn}I , we have

OUT(q) ≥ P

(
h ∈

⋂
i∈I
Oxi

)
. (17)

Furthermore,

OUT({xn, E?n, ·}I) = P

(
h ∈

⋂
i∈I
Oxi

)
, (18)

and therefore {xn, E?n, ·}I is an optimal quantizer for {xn}I .

Proof. For any quantizer q = {xn, En, ·}I , the event h ∈⋂
n∈I Oxn results in outage regardless of how {En}I is

chosen. This proves the lower bound. As for the quantizer
{xn, E?n, ·}I , by construction, an outage event happens if and
only if h ∈ E?0 = Ocx0

∪⋂n∈I Oxn , for which the transmitter
uses the beamforming vector x0. Since x0 does not result in
outage when h ∈ Ocx0

, we have the desired result.

The notion of “optimality for a given codebook” does not
incorporate the rate of the quantizer. For example, both the
standard encoder and our new encoding rule yield optimal
quantizers for a given codebook, but which one has the lowest
feedback rate? The main question here is to determine the
optimal encoding structure in a rate-distortion (feedback rate-
outage probability) sense. Formally, for any given target outage
probability p ∈ [OUT(Full), 1], let

r?(p) = inf
q
{R(q) : OUT(q) ≤ p}, (19)

denote the infimum of rates of all quantizers that can achieve
an outage probability of at most p. Note that the quantity
r?(p) depends on α (and P ). A quantizer q is then called p-
optimal (or simply optimal) if OUT(q) = p and R(q) = r?(p).
Existence of optimal quantizers is a non-trivial problem and
will not be discussed here. We can however investigate the
structure of these quantizers under the assumption that they
exist.

We show in the following that if an OUT(Full)-optimal
quantizer exists, then there is another OUT(Full)-optimal
quantizer whose encoding regions are in the form given by
(14) and (15). In other words, in the search for an OUT(Full)-
optimal quantizer, which is the main focus of this work, we
may confine ourselves to the encoding strategy given by (14)
and (15) without loss of generality or optimality. Meanwhile,
we consider a slightly more general scenario, and find a similar

“sufficient” encoding strategy for an arbitrary p-optimal quan-
tizer, where OUT(Full) < p ≤ 1. These optimality results
will provide a theoretical basis for our “intituive choice” of
the encoding rule. The uninterested reader may therefore skip
to Section IV, as these optimality results will not play any role
in the actual construction of quantizers.

C. Optimality of the New Encoding Rule

Let q = {xn, En, bn}I be an arbitrary quantizer (not
necessarily optimal for {xn}I) that satisfies L(bn) ≤
L(bn+1), ∀n, (n+1) ∈ I without loss of generality. Note that
an outage event with q happens if and only if h is a member
of the set

O ,
⋃
n∈I

(En ∩ Oxn). (20)

We thus have OUT(q) = P(h ∈ O).
Let us now define the encoding regions

E ′0 = Ocx0
∪ O, (21)

E ′n = Ocxn ∩
n−1⋂
k=0

Oxk ∩ Oc, n ∈ I − {0}. (22)

It is straightforward to show that {E ′n}I is a disjoint covering
of Ct. Now, let

q′ = {xn, E ′n, bn}I . (23)

We have the following result.

Proposition 2. We have OUT(q′) ≤ OUT(q) and R(q′) ≤ R(q).

Proof. See Appendix A.

For a given p ∈ [OUT(Full), 1], if a p-optimal quantizer
exists, then according to Proposition 2, we can find another
p-optimal quantizer whose encoding regions are given by (21)
and (22). Hence, in the quest of finding optimal quantizers, it
is sufficient to consider quantizers with encoding regions of
the form given by (21) and (22) (for some O).

Also, in such a quest, a natural approach might be to
consider quantizers that are optimal for their codebooks. Then,
if q = {xn, En, bn}I is an optimal quantizer for {xn}I , we
have O =

⋂
n∈I Oxn up to a set of (probability) measure

zero. Substituting O =
⋂
n∈I Oxn in (21) and (22), we obtain

E ′n = E?n, ∀n ∈ I. Hence, quantizers that employ the encoding
rule specified by (14) and (15) are in fact optimal among all
quantizers that are optimal for their codebooks.

Moreover, for the class of quantizers that can achieve the
full-CSIT performance, we need O = {h : ‖h‖2 < α} up to a
set of measure zero, regardless of whether or not the quantizer
is optimal for its codebook. In this case, the encoding rules
that correspond to {E ′n}I and {E?n}I coincide. This verifies our
claim that in the search for an OUT(Full)-optimal quantizer,
it is sufficient to consider the encoding strategy given by (14)
and (15).
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IV. CONSTRUCTION OF VLQS

Having determined the optimal encoding rule, we now con-
struct VLQs that can achieve OUT(Full) with low rates. Here,
we argue that with an appropriate choice for {xn}N and the
feedback binary codewords {bn}N the quantizer {xn, E?n, ·}N
can achieve OUT(Full) with finite rate. We first provide a
graphical sketch that verifies our argument.

A. A Graphical Sketch

For a simpler illustration, we first consider a MISO system
with two transmitter antennas and assume that the channel
state h is a real-valued random vector in the two-dimensional
space R2 (The PDF of this real-valued h is irrelevant for
our discussion here; any PDF will “work” as long as it
is bounded from above.). In such a scenario, the regions
Ox = {h : |〈x,h〉| < √α} and Ocx are as shown in Fig.
1a for some α > 1. In the figure, the entire space R2 is
represented by the interior of the outer disk ‖h‖ ≤ ∞ that
is bounded by the circle ‖h‖ =∞. The inner disk represents
the set {h : ‖h‖2 ≤ α}. In fact, the probability that h remains
in the interior of this disk is the full-CSIT outage probability
OUT(Full) (evaluated with respect to the PDF of the real-
valued h). The beamforming vector x resides on the circle
‖h‖ = 1 (not shown). The lighter shaded region in the middle
is Ox and the remaining two darker shaded regions constitute
Ocx. The regions Ox and Ocx are separated by the two parallel
lines {h : 〈x,h〉 = −√α} and {h : 〈x,h〉 =

√
α}.

According to (14) and (15), the encoding regions given a
quantizer codebook {x0, . . . ,x3} will then be as shown as
in Fig. 1b. In the figure, E?0 comprises of the interior of the
hexagon formed at the center, and the two half planes on
the left and right sides of the figure. By Proposition 1, the
probability that h remains in the interior of the hexagon is the
outage probability with the quantizer {xn, E?n, ·}0≤n≤3. It is
greater than the full-CSIT outage probability as the hexagon
cannot “completely cover” the inner circle. Now, as shown in
Fig. 2, at Step 0, we start with the codebook {x0, . . . ,x3} in
Fig. 1b, and at Step `, we add 2`+1 new beamforming vectors
in between the ones we had in Step ` − 1. Repeating this
process indefinitely gives us an infinite codebook {xn}N with
a layered structure.

If we were to draw the codebook {xn}N as we drew
{x0, . . . ,x3} we would observe that now

⋂
n∈NOx coincides

with ‖h‖ < α (up to a null set). This means that {xn, E?n, ·}N
can achieve OUT(Full). We now specify the feedback binary
codewords for each quantization cell. Let b?0 = ε, where
ε is the empty codeword, b?1 = 0, b?2 = 1, b?3 = 00,
b?4 = 01, and sequentially so on for all the feedback binary
codewords in {0, 1}?. We have L(b?n) = blog2(n + 1)c, and
we consider the rate of the quantizer {xn, E?n, b?n}N. From
our figure for the encoding regions on {xn}N, we would
also observe that the probabilities P(h ∈ E?n) decay rather
fast. In fact, for our two-dimensional space, it can be shown
that they decay as 1

n2 . This means that the quantization rate∑
n∈N P(h ∈ E?n)L(b?n) ∼ ∑

n∈Nblog2(n + 1)c 1
n2 remains

finite, and concludes our proof by figures for R2.

‖h‖ =
√
α

‖h‖ = ∞

x−x

Ox

Oc
xOc

x

(a) Outage (Ox) and no-outage (Ocx) regions of x.

x0

x1
x3

x2

E⋆
0

E⋆
0

E⋆
0

E⋆
1

E⋆
1

E⋆
2

E⋆
2

E⋆
3

E⋆
3

(b) The encoding regions of a 4-level quantizer.

Fig. 1: An illustration of the new encoding rule.

Consider now our actual problem that takes place in Ct.
Compared to the R2-scenario described above, the only dif-
ference is that we shall consider inner products in Ct instead of
in R2. We thus intuitively expect that a quantizer with our new
encoding rule and a Ct-analogoue of the layered codebook in
Fig. 2 to achieve the full-CSIT performance with finite rate.
In the following, we formally verify this intuition. We first
construct a codebook that resides in Ct and has the layered
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Fig. 2: A layered codebook structure.

structure in Fig. 2.

B. A Layered Codebook

For any ` ∈ N, let S` = {−1 + k
2`+1 , k = 0, . . . , 2`+2}.

For example, we have S0 = {−1,− 1
2 , 0,

1
2 , 1}, and S1 =

{−1,− 3
4 ,− 1

2 ,− 1
4 , 0,

1
4 ,

1
2 ,

3
4 , 1}. For a given `, we construct

a codebook Y` of beamforming vectors by setting

Y`=
{ y

‖y‖ : <y1, =y1, . . . ,<yt, =yt ∈ S`, ‖y‖ > 0
}
, (24)

where <yi and =yi denote the real and imaginary parts of yi,
respectively. It is straightforward to verify that for any ` ∈ N,

Y` ⊂ Y`+1, (25)

and

|Y`| ≤ 22t(`+3). (26)

The sequence of codebooks {Y`}`∈N looks like the sequence
of layered codebooks in Fig. 2, with the index “`” representing
the layer. For large `, S` provides a fine quantization of the
interval [−1, 1]. The corresponding Y` is roughly a product
quantizer codebook, and thus provides an increasingly finer
quantization of x as ` increases. Let us now verify this claim.
We shall find, for any channel direction h ∈ x , a beamforming
vector y ∈ Y` such that |〈y,h〉|2 → 1 as ` → ∞. For this
purpose, for any ` ∈ N and x ∈ [−1, 1], let

q`(x) , sign(x)
1

2`+1

⌊
|x|2`+1

⌋
. (27)

We have q`(x) ∈ S`. For a given h = [h1 · · ·ht]T ∈ x , we
construct the vector

Q`(h) ,

 q`(<h1) + jq`(=h1)
...

q`(<ht) + jq`(=ht)

 (28)

by applying q`(·) to the real and imaginary parts of the
components of h. We show in Appendix B that for any
` ≥ dlog2(2t)e,

0 < ‖Q`(h)‖ ≤ 1, (29)

and

|〈Q`(h),h〉|2 > 1− 2t

2`
. (30)

Therefore, normalizing Q`(h) as

Q`(h) ,
Q`(h)

‖Q`(h)‖
, (31)

we have

Q`(h) ∈ Y` (32)

by the definition of Y` in (24), and

|〈Q`(h),h〉|2 > 1− 2t

2`
. (33)

We have just proved the following result.

Proposition 3. For any ` ≥ dlog2(2t)e,

∀h ∈ x , ∃y ∈ Y`, |〈y,h〉|2 > 1− 2t

2`
. (34)

In other words, Y` can indeed provide an arbitrarily fine
quantization of x for large enough `.

We now “glue” the codebook layers Y`, ` ∈ N together
(in the same manner as in Fig. 2) to come up with a single
codebook with a layered structure. For this purpose, for any
i ∈ {1, . . . , t}, let ei = [ei1 · · · eit]† with eii = 1, eij =
0, ∀j 6= i denote the beamforming vector that selects the ith
transmitter antenna. We have ei ∈ Y0, ∀i ∈ {1, . . . , t} by the
construction of Y0. In particular, e1, e2 ∈ Y0, and we may
therefore construct a quantizer codebook {yn}N that satisfies

y0 = e1, (35)
y1 = e2, (36)

and

∀` ∈ N,
|Y`|−1⋃
n=0

{yn} = Y`. (37)

In other words, the “first” two elements y0 and y1 of Y0 are
e1 and e2, respectively (In fact, instead of e1 and e2, any
two linearly independent beamforming vectors will work fine
too. The motivation for choosing e1 and e2 is nothing but to
simplify the analysis and avoid unnecessary technicalities.).
Also, for any ` ∈ N, the “first” |Y`| elements y0, . . . ,y|Y`|−1

of {yn}N form the set Y`. Such a set {yn}N always exists
since e1, e2 ∈ Y0, and by Proposition 3, Y` ⊂ Y`+1 with
|Y`| <∞. In fact, it is also straightforward to construct {yn}N
by setting y0 = e1, y1 = e2,

{y2, . . . ,y|Y0|−1} = Y0 − {e1, e2}, (38)
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(It does not matter which element of Y0 − {e1, e2} is set to
be e.g. y2 as long as the equality holds), and

{y|Y`|, . . . ,y|Y`+1|−1} = Y`+1 − Y`, ` ≥ 1. (39)

We thus have our easily constructable quantizer codebook
{yn}N. We now show that this codebook can achieve the full-
CSIT performance with finite-rate.

C. The Main Achievability Result

Let {Fn}N be defined as in (14) and (15) with respect
to {yn}N. Also, let {b?n}N be as defined in Section III-B.
Consider the quantizer q? , {yn,Fn, b?n}N. In the following
theorem, we analyze the outage probability and the rate of q?.

Theorem 1. For any P , we have

OUT(q?) = OUT(Full), (40)

and

R(q?) ≤ exp

(
−2ρ − 1

P

)[
2ρ − 1

P
+

C0

(
2ρ − 1

P

)2

+ C0

(
2ρ − 1

P

)t]
, (41)

where C0 is a constant that is independent of ρ and P .

Proof. See Appendix C.

Theorem 1 shows that the explicitly constructable variable-
length quantizer q? achieves the full-CSIT performance with
finite rate. Moreover, according to the rate upper bound on
R(q?) in Theorem 1, for a fixed ρ, we have R(q?)→ 0 when
P → 0 or P → ∞. Also, it is straightforward to show that
for any P , the upper bound is in fact bounded from above
by a constant that is independent of P . Hence, regarding
r?(p), which is the minimum rate that guarantees an outage
probability of p (as defined in (19)), we can conclude that for
any P ≥ 0, ρ ≥ 0, and p ∈ [OUT(Full), 1], r?(p) ≤ C1 for
some absolute constant C1 that is independent of P and ρ.

A natural question is then to determine the minimum rate
that guarantees the full-CSIT performance. We discuss this
problem in the next section.

D. P -Asymptotically Optimal Quantizers

In the following, consider a fixed ρ. It is difficult to calculate
the minimum rate that guarantees the full-CSIT performance.
We can however determine how this minimum rate behaves as
P →∞. Such a result is useful as one is usually interested in
the medium-to-high P regime, where the outage probability
is naturally low. First, we state the following result.

Theorem 2. For any quantizer q : Ct → x , we have OUT(q) ≥
OUT(open)− R(q).

Proof. See Appendix D.

We now let r?(OUT(Full)) denote the infimum of the rates
of those quantizers that achieve the full-CSIT performance, as
defined in (19). We can then obtain the following result as a
corollary to Theorems 1 and 2.

Corollary 1. We have limP→∞
(
r?(OUT(Full))/ 2ρ−1

P

)
= 1.

Proof. See Appendix E.

By Corollary 1, we thus conclude that the necessary and
sufficient feedback rate to achieve the full-CSIT performance
is ∼ 2ρ−1

P . According to Theorem 1, the quantizer q? is thus
a “P -asymptotically optimal” quantizer.

V. IMPLEMENTATION ISSUES

In the previous section, we have provided an explicit con-
struction of a VLQ (namely q?) that can achieve the full-
CSIT performance with finite rate. The purpose of this section
is to discuss and resolve some certain challenges that one
may face in the process of an implementation of q?. One can
obviously come up with an arbitrarily long list of “practical
implementation issues,” and we shall neither attempt to address
nor claim to solve all these issues in an exhaustive manner.
Still, a certain aspect of q?, namely the fact that it has an
infinite codebook, immediately stands out as arguably the
most problematic and critical for implementation purposes. We
first discuss the practical challenges of implementing infinite
codebooks and propose methods to resolve these challenges.
Finally, we consider the practicalities of q? with non-prefix-
free codes and offer prefix-free coded quantization as an
alternative.

A. “Fast” Encoding and Decoding without Codebook Storage

A naive implementation of the quantizer
q? = {yn,Fn, b?n}N, at least the way it is mathematically
defined, requires both the transmitter and the receiver to store
an infinite codebook. Moreover, even under the assumption
that we can store such a codebook, the encoding process
itself may require an arbitrarily large number of arithmetic
operations. For example, suppose that the channel state h
satisfies ‖h‖2 > α. In this case, we know that there is
at least one beamforming vector in {yn}N that can avoid
outage (This is because the codebook {yn}N is dense in
x .). Then, in order to implement the quantizer q? as it
is, we shall determine the outage-avoiding beamforming
vector with the smallest index. One way to determine this
“first” outage-avoiding beamforming vector is to sequentially
calculate all the SNR values |〈y0,h〉|2, |〈y1,h〉|2, . . . until
we reach the beamforming vector that provides an SNR of
at least α. This strategy however requires an arbitrarily large
number of SNR calculations as, depending on h, the first
outage-avoiding beamforming vector may have an arbitrarily
large index.

The discussion above suggests that even for a specific subset
{h : ‖h‖2 > α} of channel states, implementing q? in
a computationally efficient manner is a difficult, non-trivial
problem. Instead of working with the theoretically-optimal
(in the sense of Proposition 2) quantizer q? itself, our idea
is to modify q? to come up with a new (albeit suboptimal)
quantizer that similarly achieves OUT(Full) with rate ∼ 1

P .
The new quantizer will use the same codebook {yn}N as
q?, but it will have different encoding regions and feedback
binary codewords that allow “fast” encoding and decoding.
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Here, “fast” refers to the fact that for both the encoder and the
decoder of the quantizer, the number of arithmetic operations
(on real numbers) per channel state is bounded from above by
a constant that is independent of the channel state. Moreover,
with the new quantizer, neither the receiver nor the transmitter
will have to store the infinite codebook {yn}N, even though
in principle, the system will still be operating with {yn}N.

Note that we shall still retain the assumption that we can
perform arbitrary precision arithmetic and store a finite number
of real numbers. A finite-precision model brings in many
issues (For example, the transmitter will not be able to use a
Gaussian codebook for data transmission, and thus the mutual
information and the outage probability expressions will be
different. The receiver will not be able to store the channel
state h perfectly; we shall therefore also take into account
channel estimation errors, and design an alternate decoding
method for the data symbols, etc.) that are irrelevant to the
channel quantization process, and is therefore well-beyond the
scope of this paper. Still, the methods that will be presented
in this section can be applied to the finite precision case.

1) Construction of Fast VLQs for Beamforming: For the
reader’s convenience, we recall the auxiliary product-like
quantizer Q`(h) discussed in Section IV-B. For a given
channel direction h, it is the normalization Q`(h) =
Q`(h)/‖Q`(h)‖, where the ith component of Q`(h) is
q`(<hi) + jq`(=hi), and q`(x) = sign(x)2−(`+1)

⌊
|x|2`+1

⌋
.

We now need the following result.

Proposition 4. For any ‖h‖2 > α, let

`?,max

{
dlog2(4t)e,

⌈
− log2

(
1

4t

(‖h‖2
α
− 1

))⌉}
. (42)

Then, |〈Q`?(h),h〉|2 ≥ α.
Proof. See Appendix F.

In other words, for any channel state h with ‖h‖2 > α, the
beamforming vector Q`?(h) ∈ Y`? does not result in outage.

The proposition has a very simple interpretation: If the
channel magnitude ‖h‖ is large enough, we can avoid outage
by considering only the beamforming vectors in the low
resolution layer `? = dlog2(4t)e. On the other hand, if ‖h‖2 is
“close” to α, we need to consider higher resolution layers. The
proposition gives us an estimate of the layer (via `?) where
we can surely find a beamforming vector that avoids outage.

The simple product-like structure of Q`?(·) makes the tasks
of finding this no-outage beamforming vector (that resides at
layer `?) and communicating it to the transmitter very easy.
Indeed, for a given x ∈ [−1, 1], and any ` ∈ N, we can
easily calculate q`(x) by taking the most significant `+ 2 bits
(b1.b2b3 · · · b`+1)2 of the binary representation (b1.b2b3 · · · )2

of |x|, while preserving the sign of x. For example, we have
q1(±(0.101)2) = ±(0.10)2.

It follows that Q`?(h) (and Q`?(h)) can be uniquely rep-
resented by 2t(`? + 3) bits since h has a total of 2t real and
complex dimensions. Assuming that Q`?(h) is stored digitally,
we communicate it to the transmitter uncoded. In other words,
we represent Q`?(h) by “itself;” a complicated bit assignment

Algorithm 1 A fast encoder for the layered codebook

1: if |h1|2 ≥ α or ‖h‖2 ≤ α then
2: Feed back the empty codeword ε.
3: else if |h2|2 ≥ α then
4: Feed back 0.
5: else
6: Calculate `? as shown in (42).
7: Feed back Q`?(h).
8: end if

Algorithm 2 A fast decoder for the layered codebook

1: b← Received feedback binary codeword.
2: if b = ε then
3: Use e1.
4: else if b = 0 then
5: Use e2.
6: else
7: `? ← L(b)

2t − 3, where L(b) is the length of b.
8: Reconstruct Q`?(h).
9: Use Q`?(h).

10: end if

mapping is not necessary. The transmitter then normalizes
Q`?(h) to recover the no-outage beamforming vector Q`?(h).

These ideas lead to the quantizer encoding and decoding
algorithms as shown in Algorithms 1 and 2, respectively.
We call the corresponding quantizer q?F . We analyze the
performance of q?F in the following theorem.

Theorem 3. For any P > 0, we have

OUT(q?F) = OUT(Full), (43)

and

R(q?F) ≤ exp

(
−2ρ − 1

P

)[
2ρ − 1

P
+

C2

(
2ρ − 1

P

)2

+ C2

(
2ρ − 1

P

)t]
, (44)

where C2 is a constant that is independent of ρ and P .

Proof. See Appendix G.

Similarly to the quantizer q? in Section IV, the quan-
tizer q?F can achieve the full-CSIT performance with the
asymptotically-optimal rate ∼ 2ρ−1

P . In addition, q?F has the
advantage of fast encoders and decoders that do not have to
store the quantizer codebook.

2) Structural Comparison of the Fast and the Optimal: It
is instructive to draw analogies between the design principles
and structures of q? and q?F . In the optimal quantizer q?, we
use the beamforming vector yn if and only if it yields zero
distortion and all of the previous options y0, . . . ,yn−1 yield
non-zero distortion. Instead of this finest possible vector-level
approach of q?, we consider the coarser layer-level approach
for q?F : We calculate the lowest possible layer `? where we
can make sure we can find a no-outage beamforming vector
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for any channel direction. Once this layer is determined, we
use a simple product quantizer to determine the no-outage
beamforming vector. Therefore, despite the fact that q?F is
“highly non-uniform” across different layers, it looks like a
uniform nearest neighbor quantizer within each layer. The
associated encoding rule can thus be considered as a hybrid of
the standard and the new encoding rules discussed in Section
III.

B. On Non-Prefix-Free Codes

Throughout the paper, we have allowed our quantizers to use
non-prefix-free codes that include the empty codeword. Since
the feedback binary codewords corresponding to different
channel states are seperated in time, one can -at least in theory-
“safely” use a non-prefix-free code, e.g. {ε, 0, 01}. Such codes
may however bring along some certain practical issues that we
discuss below.

First, it is not immediately clear, at least in practice,
whether or not we may employ the empty codeword “with
0 cost” as implied by the rate definition in (9). Perhaps, “the
non-existence of information” may be regarded as an empty
codeword of length 0. Such an argument makes perfect sense
in interrupt-driven systems, such as computers, in which the
non-existence of an external input (e.g. not pressing any of
the keys on the keyboard) will not require any information
transmission. Hence, if one treats the feedback information as
a certain bit sequence that triggers an interrupt at the recipient
of the feedback information (the transmitter), then having
no feedback information, or equivalently an empty codeword
makes sense.

Regardless of whether one allows the empty codeword or
not, with a non-prefix-free code, the quantizer decoder may
have difficulty in determining the length of the feedback
codeword that it receives, and this may cause synchronization
problems. For example, suppose that the quantizer decoder at
the transmitter has received the feedback bits 001. It is not
clear whether the decoder should wait for more bits, or the
feedback message is complete and the intended feedback bits
are in fact just 001. One way to resolve this issue might be
to force the quantizer decoder to wait for a certain amount of
time before declaring that the feedback message is complete.

An alternate way to resolve the above practical issues is
to impose a prefix-free code for the quantizer binary code-
words. Note that a prefix-free code cannot contain the empty
codeword and it also resolves the synchronization problem
discussed above. Our results can easily be extended to the
case where the code is constrained to be prefix-free. In such
a scenario, the conclusion that the full-CSIT performance is
achievable with a finite rate still remains as it is. For a fixed
ρ, the necessary and sufficient feedback rate that guarantees
the full-CSIT performance becomes 1 bit per channel state for
P →∞ and P → 0.

Finally, another practical issue is that it may be hard to
do resource allocation in the feedback link as the length of
the feedback codewords can be any natural number: In most
of the current wireless systems, the number of feedback bits
available for each channel state is fixed. After we introduced

the use and benefits of VLQs for beamforming, a solution to
this practical resource allocation problem has been proposed in
[35] in the context of the 802.11 framework. The idea of [35]
is that since most wireless communication standards such as
802.11 support variable-length data packets, one may, at least
in principle, consider a variable-length packet-based feedback
scheme without leaving the confines of the existing standards.
The details on how such a feedback scheme can actually be
implemented is however well beyond the scope of this paper
and can be found in [35].

VI. EXTENSIONS TO FINITE SYMBOL ALPHABETS

In the previous sections, we have designed outage-
minimizing VLQs for a MISO system that employs Gaussian
symbols for data transmission. In this section, we study the
practically more relevant case of a discrete input distribution
with finite support, such as a QAM or PSK constellation.

Consider the same MISO channel in (2). The difference is
that we let s ∈ S, where S is an arbitrary subset of C with
finite cardinality (For example, S = {−1,+1} corresponds
to a BPSK constellation.). As in [36], we assume that the
probability density function of s is fixed and does not depend
on the channel state h. Also, without loss of generality, we
assume that s is uniformly distributed on S (Our results can
be extended to arbitrary probability distributions on S.) with
E[|s|2] ≤ 1.

In this scenario, for a fixed channel state h and a fixed beam-
forming vector x, the mutual information of the MISO channel
in (2) is given by C(|〈x,h〉|2P ), where, for any snr > 0, we
let C(snr) , I(s; s

√
snr + n) denote the mutual information

between s and s
√
snr+η. For a given target data transmission

rate ρ, an outage event occurs if C(|〈x,h〉|2P ) < ρ. For a
given mapping m, we let OUTS(m) , P(C(|〈m(h),h〉|2P ) < ρ)
denote the outage probability with m.

In order to determine the minimum (full-CSIT) outage prob-
ability, or in general, in order to evaluate OUTS(m) for a given
m, we should be able to evaluate C(snr) for any given snr > 0.
Unfortunately, an explicit closed form formula for C(snr) is
not available for an arbitrary alphabet S. On the other hand,
at least it is known (see e.g. [37]) that C(snr) is a monoton-
ically increasing continuous function of snr with C(0) = 0,
C(snr) < log2 |S|, ∀snr, and limsnr→∞ C(snr) = log2 |S|.
In particular, the inequality implies that if ρ ≥ log2 |S|, we
have OUTS(m) = 1 for any m. From now on, we thus assume
that ρ < log2 |S|.

Since C(snr) is a monotonically increasing continuous
function, its inverse function C−1(·) exists and we have, for
any ρ ∈ [0, log2 |S|),

OUTS(m) = P(|〈m(h),h〉|2P < C−1(ρ)) (45)

= P
(
|〈m(h),h〉|2 < β

)
, (46)

where β = C−1(ρ)
P . The outage probability expression in

(46) is in the exact same form as (3). Hence, all of the
previous results that we have derived for Gaussian inputs can
easily be extended to arbitrary inputs if the constant α (or
1
P ) that appears in the previous sections is replaced by β.
In particular, the full-CSIT outage probability P(‖h‖2 < β)
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is achievable with a variable-length quantizer q0 with rate
R(q0) ≤ e−β

[
β + C0

(
β2 + βt

)]
(c.f. Theorem 1). In partic-

ular, R(q0) ∼ C−1(ρ)
P → 0 as P → ∞, and such a feedback

rate is asymptotically the best possible (c.f. Corollary 1).

VII. NUMERICAL RESULTS

In this section, we present numerical evidence that verify
our analytical results. For this purpose, we have simulated the
quantizer q?F as it is defined via Algorithms 1 and 2 for ρ = 1
and different values of P . We have used the standard double
precision arithmetic.
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Fig. 3: The performance of the quantizer q?F for t = 2 antennas.

The performance of q?F for t = 2 antennas is as shown in
Fig. 3. The horizontal axis represents P in decibels, and the
vertical axis represents the outage probability or the feedback
rate depending on the specific type of curve that we consider.
For example, for R(q?F), it represents the feedback rate, while
for the rest of the data, it represents the outage probability.

We first discuss the outage performance of q?F as shown
by the curve OUT(q?F) in the figure. For comparison, we
have also plotted the curve OUT(Full) = exp(− 1

P )(1 + 1
P ).

We observe that the performance of both quantizers matches
OUT(Full) “perfectly,” with almost unnoticable differences
being a result of the (necessarily) finite number of channel
samples we had to consider. Indeed, not shown in the figure,
we have also calculated the average distortion for each of the
quantizers via the formula given in (11), and as we expect,
the distortion turned out to be equal to 0 for any given value
of P . We have also plotted the open-loop outage probability
with beamforming, given by OUT(open).

Regarding the rate of q?F , we can observe that it decays to
0 exponentially fast as P → 0. Moreover, we observe that
R(q?F) ∼ 1

P . These results verify Theorem 3.
Note that the quantizer q?F sacrifices rate (for the finite-P

regime) in exchange for fast encoding/decoding (e.g. even the
feedback binary codewords of these quantizers are assigned
suboptimally). Correspondingly, we observe that the feedback

rate that guarantees the full-CSIT performance can be as high
as 10 bits in the low SNR regime. We expect this low-SNR
“rate bump” to be much lower in the case of an optimal
quantizer (the behavior of the quantization rates for very
high or very-low SNR values will still remain the same in
the case of an optimal quantizer). We leave such finite-SNR
optimizations as future work.

VIII. VLQS FOR MINIMUM ERROR PROBABILITY

The previous sections have focused on the design of VLQs
that minimize the outage probability of the MISO system.
Outage probability is a meaningful performance measure for
channel codes with infinitely large block lengths. For channel
codes with finite block lengths, studying the error probability
of the system is more meaningful. In this section, we discuss
how to design VLQs to minimize the error probability with a
generic channel code (whose codewords are to be mapped onto
the transmitter antennas via quantized beamforming vectors)
and maximum-likelihood decoding at the receiver.

Consider the same system model as in Section II-A with the
input-output relationship as given by (2). We shall first assume
that the information-bearing symbol s is a discrete random
variable with a uniform distribution on the set {+1,−1} (Note
that this is a very extreme case of a channel code with a block
length of 1 and a rate of 1 bit per transmission. We will later
extend our results to a general class of length-` rate-ρ channel
codes.). For a given channel state h, the conditional symbol
error rate with a maximum-likelihood decoder is then

CSER(x,h) , Q(
√

2|〈x,h〉|2P ). (47)

The (average) symbol error rate (SER) with an arbitrary
mapping m : Ct → x is

SER(m) , E
[
Q
(√

2|〈m(h),h〉|2P
)]
. (48)

In order to determine the behavior of SER(m) for large P , we
let

d(m) = − lim
P→∞

log SER(m)

logP
(49)

denote the diversity gain with m, and

g(m) =
[

lim
P→∞

(
SER(m)P d(m)

)]−1

(50)

denote the array gain with m, provided that both limits exist.
The asymptotic P →∞ performance of m is then

SER(m) ∼
[
g(m)P d(m)

]−1

. (51)

Similarly to the case of outage probability, in a full-
CSIT system, the minimum SER is achieved by the mapping
Full(h) = h?

‖h‖ . This gives us

SER(Full) = E[Q(
√

2‖h‖2P )] (52)

with d(Full) = t.
For the outage probability performance measure, we have

designed finite-rate quantizers that can achieve the outage
probability with full-CSIT. In the case of SER, a first anal-
ogous natural question to ask is whether or not the SER
with full-CSIT, SER(Full), is achievable with a finite-rate
quantizer. We first answer this question in the negative.
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A. The Impossibility of Achieving SER(Full) with Finite-Rate
Quantizers

Consider a quantizer q = {xn, En, bn}I as described in
Section II-C. The SER with q can be expressed as

SER(q) = SER(Full) + E[d̂(h, q(h))], (53)

where

d̂(h,x) , Q
(√

2|〈x,h〉|2P
)
−Q

(√
2‖h‖2P

)
(54)

is the distortion function associated with the SER performance
measure.

We recall from (11) the distortion function d(h,x) =
1(|〈x,h〉|2 < α, ‖h‖2 ≥ α) ∈ {0, 1} for the outage proba-
bility performance measure. Given x, the distortion d(h,x) is
equal to 0 on a set of channel states with positive probability.
This key property of the distortion function d(h,x) has al-
lowed us to construct finite-rate quantizers that can achieve the
unquantized (full-CSIT) performance. On the other hand, for
the SER performance measure, for any given x, the distortion
d̂(h,x) ∈ [0, 1] is equal to 0 only on a set with probability
zero. As a result, any quantization cell with positive probability
necessarily incurs a positive distortion, and therefore the SER
with full-CSIT is not achievable with any finite-rate quantizer.
Formal calculations lead to the following theorem.

Theorem 4. For any quantizer q with a sufficiently large
feedback rate R(q), we have, ∀P ≥ 0,

SER(q) ≥ SER(Full) + C3P exp[−C4PR(q)], (55)

where C3, C4 > 0 are constants that are independent of P and
R(q).

Proof. See Appendix H.

According to Theorem 4, we have no hope in achieving
SER(Full) with a finite-rate quantizer. One design goal might
then be to at least design quantizers that can minimize the
SER for a given finite feedback rate and a given finite power
constraint. However, the complicated nature of the distortion
function d̂(h,x) makes the design and performance analysis
of these quantizers very difficult, if not impossible. We thus
focus on minimizing the SER in the P → ∞ regime where
the diversity and array gains of the system are the relevant
performance measures. In this context, it is well-known that
finite-rate FLQs cannot achieve these full-CSIT diversity and
array gains [6]. In the following, we design VLQs that can
achieve these gains with asymptotically zero feedback rate as
P → ∞. This is a significant improvement over FLQs that
require infinite rate to achieve the same performance.

Before we discuss our VLQ designs in the following section,
we note that one may achieve d(Full) and g(Full) while
not achieving SER(Full) at any P so that our results will not
contradict Theorem 4. For example, suppose that a hypothet-
ical quantizer q′ achieves SER(q′) = SER(Full) + 1/P t+1.
Obviously we have SER(q′) > SER(Full), ∀P , while d(q′) =
d(Full) and g(q′) = g(Full).

B. The New Encoding Rule for SER-Minimizing VLQs

To achieve the goal of designing high-performance VLQs,
we start with the design of the quantizer encoding regions for
a given beamforming codebook B. Our main intuition is that
we do not have to pick the best beamforming vector in B if
our goal is to achieve the diversity and array gains provided
by B. For example, we do not need to distinguish between
two beamforming vectors given that both provide an SER of
at most o(1/P t); preferring one vector over the other will not
affect the diversity and array gains of the system as the best
possible decay of the SER is O(1/P t).

With this observation, for a given beamforming codebook
B, we consider a variable-length quantizer qv

B that operates as
follows. Let β = (t−1) logP+g(P ) for some g(P ) ∈ ω(1)∩
O(logP ) (For example, one may choose g(P ) = 2 logP since
the conditions 2 logP ∈ O(logP ) and 2 logP ∈ ω(1) are
satisfied. We may also choose g(P ) = log logP .). Also, let
ei , [ei1 · · · eit] with eii = 1 and eij = 0, j 6= i denote the
beamforming vector that selects the ith transmitter antenna.
• If |〈e1,h〉|2P = |h1|2P ≥ β, then qv

B feeds back the
empty codeword ε, and we set qv

B(h) = e1.
• If |h1|2P < β and |〈e2,h〉|2P = |h2|2P ≥ β, then qv

B
feeds back the binary codeword 0, and we set qv

B(h) =
e2.

• Otherwise, if |h1|2P < β and |h2|2P < β, then qv
B feeds

back the concatenation of the binary codeword 1 and the
binary codeword of length dlog2 |B|e bits that represents
the index, say j ∈ I, of the beamforming vector in B that
results in the maximum SNR. We set qv

B(h) = qB(h).
Therefore, the variable-length quantizer qv

B uses the beam-
forming codebook B ∪ {e1, e2}. We note that instead of
the auxiliary vectors e1 and e2, one can use two linearly
independent vectors in B. We incorporate the auxiliary vectors
e1 and e2 as they result in a much simpler analysis without
changing the final results.

Note that the quantizer cell corresponding to the beamform-
ing vector e1 does not contribute to the average feedback rate
as it employs the empty codeword ε of length 0. On the other
hand, the contribution of the vector e2 to the feedback rate is
P(|h1|2P < β, |h2|2P ≥ β) ' P(|h1|2P < β) ' β

P . The rate
contribution for each of the remaining beamforming vectors
will then be in the order of P(|h1|2P < β, |h2|2P < β) '
β2

P 2 = o( βP ) (provided that β ∈ o(P )), which results in a total
average feedback rate of β

P +o( βP ). Hence, carefully choosing
the feedback binary codewords for the first two beamforming
vectors e1 and e2 allows us to find the correct P → ∞
asymptotic behavior of the feedback rate. We provide the
formal derivations in the following.

C. Performance with the New Encoding Rule for Arbitrary
Codebooks

We now analyze, in the following proposition, the rate and
the SER performance of qv

B for a general B and g(P ) ∈ ω(1)∩
O(logP ).

Proposition 5. For any finite-cardinality beamforming code-
book B with |B| ≥ 2 and any g(P ) ∈ ω(1) ∩ O(logP ), we
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have

SER(qv
B) ≤ SER(qB) +

2

P t
e−g(P ), (56)

and

R(qv
B) ≤ (t− 1) logP

P
+
g(P )

P
+

C5 log |B| log2 P

P 2
(57)

for every sufficiently large P , where C5 is a constant that is
independent of B and P .

Proof. See Appendix I.

Note that the maximum diversity gain with any quantizer is
t. Hence, SER(qB) ' g(qB)P−d for some d ≤ t. Since g(P ) ∈
ω(1), the second term in the upper bound in (56) decays faster
than 1

P t , and thus the diversity and array gains with qvB is the
same with those of qB. Moreover, according to (57), we have
R(qvB)→ 0 as P →∞. This is a significant improvement over
a rate-dlog2 |B|e FLQ for codebook B, especially when |B| is
large.

We now claim that for any f(P ) ∈ ω(1), there is a VLQ that
can achieve d(Full) and g(Full) with rate (t−1) logP

P + f(P )
P .

We provide here an outline of the strategy to prove this result.
First, we note that it is sufficient to prove the case where
f(P ) ∈ ω(1) ∩ O(logP ) (as if f(P ) ∈ ω(1) − O(logP ),
we may consider quantizers with higher rates, and a higher
quantization rate means a better SER performance). Then,
motivated by (57), we consider P -dependent codebooks BP
that satisfy

|BP | = max

{
n : n ∈ N,

C5 log(n) log2 P

P
≤ f(P )

2

}
. (58)

and let

g(P ) =
f(P )

2
. (59)

Note that according to (59), we have g(P ) ∈ ω(1)∩O(logP ),
and therefore, Proposition 5 is applicable. Moreover, our
choice in (58) implies that |BP | ∈ ω(1), or equivalently, we
use codebooks with larger and larger cardinality as P → ∞.
If we can design the codebooks BP , P > 0 well enough, an
application of Proposition 5 will then reveal that the quantizer
qvBP

achieves d(Full) and g(Full) with rate (t − 1) logP
P +

f(P )
P as claimed. Obviously, for this strategy to work, we need

“good” codebook designs. The existence of good codebooks
have previously been established in Section IV-B via (26)
and Proposition 3. For a simpler exposition, we shall use the
following restatement of these results.

Proposition 6. For every 0 < δ < 1, there is a codebook Bδ
with

|Bδ| ≤ C6δ
−2t, (60)

and

∀k ∈ x , ∃x ∈ Bδ, |〈x,k〉|2 ≥ 1− δ, (61)

where C6 is a δ-independent constant.

Let us now calculate the SER with Bδ .

Proposition 7. For every 0 < δ ≤ 1
2t , we have

SER(qBδ) ≤ SER(Full)(1 + 2tδ). (62)

Proof. See Appendix J.

Hence, for every δ that satisfies 0 < δ ≤ 1
2t , the codebook

Bδ can provide the full-diversity gain. Also, with a small-
enough δ, the codebook Bδ can provide an array gain that is
arbitrarily close to g(Full).

D. The Main Achievability Result

We can now proceed with the strategy outlined in Section
VIII-C. The following is the main result of this section.

Theorem 5. For every f(P ) ∈ ω(1), there is a quantizer q

with

d(q) = d(Full), (63)
g(q) = g(Full), (64)

and

R(q) ≤ (t− 1)
logP

P
+
f(P )

P
(65)

for all sufficiently large P .

Proof. See Appendix K.

Therefore, the full-CSIT diversity and array gains can
be achieved with asymptotically zero feedback rate. More
specifically, with the choice of e.g. f(P ) = log logP , we can
achieve the full-CSIT gains with rate (t− 1 + o(1)) logP

P . The
question is now to determine the minimum rate that guarantees
the full-CSIT gains. We discuss this problem next.

E. Necessary Conditions for Achieving d(Full) and g(Full)

It is difficult to determine the exact asymptotic rate that
guarantees the full-CSIT gains. Instead, we provide bounds.
Note that by Theorem 5, a quantization rate of (t − 1 +
o(1)) logP

P is sufficient for the full-CSIT gains. In the following
theorem, we prove that a quantization rate of (t−1−o(1)) logP

P
is the best possible rate that we can hope for.

Theorem 6. For any quantizer q, if d(q) = d(Full), g(q) =
g(Full), then

∀ε > 0, R(q) ≥ (t− 1− ε) logP

P
(66)

for every sufficiently large P .

Proof. See Appendix L.

Combining the statements of Theorems 5 and 6, the nec-
essary and sufficient feedback rate that guarantees the full-
CSIT gains1 is a member of the class of functions (t −
1 + o(1)) logP

P ∪ (t − 1 − o(1)) logP
P . Therefore, the gap

between our achievability and converse results is in the order
of o( logP

P ). A tighter characterization of the necessary and
sufficient feedback rate expression will remain as an open
problem.

1For brevity of discussions, we assume that such a necessary and sufficient
feedback rate exists.
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F. Extensions to General Channel Codes

We have determined the necessary and sufficient feed-
back rates that guarantee the full-CSIT gains for the special
case where binary modulation (a channel code with a block
length of 1) is employed for data transmission. We now
provide extensions of our results to general channel codes
with possibly-P -dependent rates. We will assume maximum-
likelihood decoding.

We fix some ` ≥ 1, and consider a (2ρ`, `) code2 that can
be uniquely described via its codeword alphabet S = {sk ∈
C`×1 : k = 1, . . . , 2ρ`} with

∑
s∈S ‖s‖2 ≤ `|S|. Although ` is

fixed, we allow the coding rate ρ to vary with P . For a simpler
discussion, we assume that ρ ≥ 1 for every sufficiently large
P . We also assume that the multiplexing gain of the system
φ , limP→∞

ρ
logP exists and satisfies 0 ≤ φ < 1. Recall that

the maximum achievable diversity gain of the MISO system
for a given multiplexing gain φ is t(1− φ).

With this setting, the transmitter transmits a channel code-
word s (uniformly drawn from the alphabet S) via a beam-
forming vector x ∈ Ct×1 over ` time slots. In other words,
at time slot i ∈ {1, . . . , `}, the transmitter sends the signal
six
†
j

√
P over its jth antenna, where si is the ith component

of the channel codeword s, and xj is the jth component of the
beamforming vector x. The channel input-output relationship
with such a data transmission strategy is y = s〈h,x〉

√
P +n,

where y ∈ C`×1 is the received signal vector, and n ∈ CN(I`)
is the noise.

For a given channel state h and alphabet S, let

CBLER(x,h;S) , P

(
s 6= arg min

t∈S

∥∥∥y − t〈h,x〉
√
P
∥∥∥) (67)

denote the conditional block error rate (CBLER) with a
beamforming vector x and a maximum-likelihood decoder
at the receiver. Note that the probability expression in (67)
involves averaging out all possible s and all possible n.

A simple exact expression for the CBLER is not available
for a general S. However, it can at least be shown that
regardless of what S is, the CBLER decays monotonically
as the SNR |〈x,h〉|2P increases. Hence, letting BLER(q;S) =
Eh[CBLER(q(h),h;S)] denote the average CBLER, we have
BLER(Full;S) ≤ BLER(q;S) for any quantizer q, where
Full(·) is the full-CSIT mapping. The goal is then to design
a quantizer with d(q) = d(Full;S) and g(q) = g(Full;S),
where for any given mapping m : Ct → X , we let d(m;S)
and g(m;S) respectively denote the diversity and array gains
corresponding to BLER(m;S).

Regarding the CBLER with S, we show in Appendix M
that for any S, the lower bound

CBLER(x,h;S) ≥ 0.3Q
(√

72`|〈x,h〉|22−ρP
)

(68)

holds. In Appendix M, we also show that conversely, there
is an alphabet S0 (roughly speaking, we set S0 to be the
`th Cartesian power of a 2ρ-QAM alphabet) whose CBLER
satisfies

CBLER(x,h;S0) ≤ 4`Q
(√

8|〈x,h〉|22−ρP
)
. (69)

2For a simpler presentation, we assume 2ρ` is a positive integer.

From now on, we thus focus only on such non-degenerate
alphabets whose CBLERs admit an upper bound of the form
(69). In other words, we assume that our alphabet S satisfies

CBLER(x,h;S) ≤ C7Q
(√

C8|〈x,h〉|22−ρP
)

(70)

for constants C7, C8 > 0 that are independent of ρ and P .
Using (68), (70), and the same ideas as in Section IV, we

can now determine the necessary and sufficient feedback rates
that guarantee the full-CSIT gains with S . Our main result in
this context is the following theorem.

Theorem 7. There exists a quantizer q with

d(q) = d(Full;S) = t(1− φ), (71)
g(q) = g(Full;S), (72)

and

R(q) ≤ C9
2ρ logP

P
(73)

for every sufficiently large P , where C9 > 0 is independent of
ρ and P .

Conversely, for any quantizer q that satisfies (71) and (72),
we have

R(q) ≥ C10
2ρ logP

P
. (74)

for every sufficiently large P , where C10 > 0 is a constant
that is independent of ρ and P .

Proof. See Appendix N.

Combining the main results (73) and (74) of Theorem 7, we
can conclude that the necessary and sufficient feedback rate
that guarantees the full-CSIT gains is

Θ(1)
2ρ logP

P
(75)

with the understanding that the Θ(1) term does not depend on
P . In particular, setting ρ = 1 in (75), we obtain the slightly
weakened version Θ(1) logP

P of the necessary and sufficient
feedback rate (t − 1 ± o(1)) logP

P that we have derived in
Section IV for the special case of a BPSK alphabet. As a more
“sophisticated” application, if we are interested in codes with a
multiplexing gain of 0 ≤ r < 1, we may e.g. set ρ = r log2 P .
Then, (75) tells us that the necessary and sufficient feedback
rate that guarantees the full-CSIT gains with beamforming is
Θ(1) logP

P 1−r . Hence, for a large class of codes and a wide range
of data transmission rates, the full-CSIT gains can be achieved
with asymptotically zero feedback rate by using a variable-
length quantized beamforming strategy.

We note that the results of this section were derived under
the assumption that one considers a fixed and finite block
length `. As ` → ∞, the BLER performance of the best
length-` rate-ρ block code should coincide with the outage
probability at rate ρ. Correspondingly, as ` → ∞, we expect
the performance and the structure of the BLER-optimal VLQs
to “converge” to those of the outage-optimal VLQs discussed
in the previous sections. Rigorously establishing such a con-
nection will remain as an interesting open problem.
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G. Numerical Results

In this section, we provide numerical evidence that supports
our analytical results. In particular, we shall numerically
verify our assertion that any well-designed finite-rate VLQ
can achieve the full-CSIT diversity and array gains. We will
also show that even at moderate-to-large transmission power
levels, the SERs/BLERs with low-rate VLQs is still very
close to the SERs/BLERs with full CSIT. We also compare
the performance of VLQs with FLQs and show that VLQs
outperform FLQs by a significant margin.

The performance of VLQs and FLQs with different feed-
back rates and t = 3 antennas is as shown in Fig. 4. The
horizontal axis represents P in decibels, and the vertical axis
represents the SER with a BPSK constellation. In the figure,
the curve “SER(open)” represents the SER of an open-loop
system with no feedback (0 feedback bits), and “SER(Full)”
represents the SER with full CSIT (∞ feedback bits). The
curves “FLQ, 1 bit” and “FLQ, 2 bits” represent the perfor-
mance of the best FLQs we have found with 1 bit and 2 bits
of feedback, respectively. Similarly, the curves “VLQ, b bits”
for b = 0.1, 0.5, 1, 2 represent the best VLQs we were able to
find with feedback rates 0.1, 0.5, 1 and 2 bits per channel state,
respectively. We have designed the FLQs using the generalized
Lloyd algorithm [38]. In order to design the VLQs, we have
used the entropy-constrained vector quantizer design algorithm
in [39]. We have also utilized our structured quantizer designs
whenever they provided a better performance.
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Fig. 4: SER performance of VLQs for t = 3 antennas and
BPSK modulation.

We can observe that both the 1-bit FLQ and the 2-bit FLQ
fail to achieve the full-CSIT diversity and array gains. For
example, the 1-bit FLQ can only provide a diversity gain of
2. Also, while the 2-bit FLQ can achieve full diversity, it incurs
an array gain loss of around 2dB compared to the full-CSIT
performance. On the other hand, we can observe that the three
VLQs with rates 0.5, 1 and 2 achieve the full-CSIT diversity
and array gains. The 0.1-bit VLQ will also achieve the full-
CSIT gains although the convergence will be after 20dB. Still,

even a 0.1-bit VLQ outperforms the 1-bit and the 2-bit FLQs
when P is larger than 14dB and 20dB, respectively.

We have obtained similar results for the case of a coded
modulation scheme. In Fig. 5, we show the numerical sim-
ulation results for the classical (16, 7) Hamming code with
a block length of 7 transmissions and a rate of 4

7 bits per
transmission. We have used BPSK modulation with maximum
likelihood decoding over all 16 possible 7-dimensional channel
codewords. The transmitter has 2 antennas. The vertical axis
represents the BLER, and the horizontal axis represents P
in decibels. We can observe that the open loop system can
only provide a diversity gain of 1, while a full-CSIT system
can achieve a diversity gain of 2. The 1-bit FLQ can achieve
full diversity, it incurs an array gain loss of around 1.5dB
compared to the full-CSIT performance. The two VLQs with
rates 0.1 bits and 1 bit both achieve the full-CSIT gains.
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Fig. 5: BLER performance of VLQs with the (16, 7) Hamming
code and BPSK modulation. The transmitter has 2 antennas.

IX. CONCLUSIONS

We have considered a t× 1 multiple-antenna channel with
the goal of minimizing the channel outage probability or the
SER by employing beamforming via quantized channel state
information at the transmitter. The fact that finite-rate FLQs
cannot achieve the full-CSIT outage probability performance
has been previously established. We have constructed VLQs
that can achieve the full-CSIT outage probability with finite
rate. With P denoting the ratio of the short-term power
constraint of the transmitter to the noise power at the receiver,
and for a target data transmission rate of ρ bit/sec/Hz, we
have shown that the necessary and sufficient VLQ rate that
guarantees the full-CSIT performance is ∼ 2ρ−1

P . We have also
shown that while the SER with full-CSIT is not achievable at
any finite quantization rate, the diversity and array gains of
a full-CSIT system can be achieved with asymptotically zero
feedback rate using variable-length quantizers. For the special
case of an uncoded BPSK modulation, the necessary and
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sufficient feedback rate that guarantees the full-CSIT diversity
and array gains is (t− 1± o(1)) logP

P .
Our results have shown that VLQs can achieve a signifi-

cantly better rate-distortion performance compared to FLQs.
We believe that similar performance gains can be realized in
several other quantization problems involving multiple antenna
systems and similar distortion measures. For example, design-
ing VLQs for a long-term power-constrained system is an
interesting problem as future work. Analyzing the performance
of VLQs under different fading models such as Nakagami
fading remains as another future topic of interest. Also, the
design and performance analysis of VLQs for a general MIMO
system with multiple transmitter and receiver antennas remains
as an open problem.

APPENDIX A
PROOF OF PROPOSITION 2

We prove the case I = N. The case for a finite-level
quantizer is very similar and thus has been skipped for brevity.
First, note that for any n ∈ N, we have (En ∩Oxn) ⊂ O and
(En ∩ Ocxn) ⊂ Ocxn . Therefore,

En = (En ∩ Oxn) ∪ (En ∩ Ocxn) (76)
⊂ O ∪Ocxn . (77)

Hence, for an arbitrary index set J ∈ {N, {0}, {0, 1}, . . .},
we have ⋃

n∈J
En ⊂ O ∪

⋃
n∈J
Ocxn . (78)

On the other hand, it can be shown by induction that the
sequence {E ′n}N satisfies

E ′n = Ocxn −
n−1⋃
k=0

E ′k, n ≥ 1. (79)

with E ′0 = Ocx0
∪O. According to (21) and (22), we can then

obtain ⋃
n∈J
E ′n = O ∪

⋃
n∈J
Ocxn . (80)

Combining (78) and (80), we arrive at⋃
n∈J
En ⊂

⋃
n∈J
E ′n. (81)

In particular, since {En}N are {E ′n}N both disjoint collections
of sets, we obtain the infinite (one for each possible choice of
J ) set of inequalities∑

n∈J
pn ≤

∑
n∈J

p′n, (82)

where pn = P(h ∈ En), and p′n = P(h ∈ E ′n). Also, when
J = N, we have

∑
n∈N pn =

∑
n∈N p

′
n = 1. Without loss

of generality (see Section III-C), we also have the assumption
that `n ≤ `n+1, ∀n ∈ N. The rate of q and q′ are given by
R(q) =

∑
n∈N pn`n and R(q′) =

∑
n∈N p

′
n`n, respectively.

We now rewrite the inequalities in (82) as

1−
∑
n∈J

pn ≥ 1−
∑
n∈J

p′n, (83)

or equivalently,
∞∑
n=N

pn ≥
∞∑
n=N

p′n, N ∈ N. (84)

We multiply both sides of the inequality for N = 0 by `0,
and in general, for any k ≥ 1, we multiply both sides of
the inequality for N = k by (`k − `k−1). This gives us the
following infinite set of equalities and inequalities:

`0

( ∞∑
n=0

pn

)
= `0

( ∞∑
n=0

p′n

)
(85)

(`1 − `0)

( ∞∑
n=1

pn

)
≥ (`1 − `0)

( ∞∑
n=1

p′n

)
(86)

(`2 − `1)

( ∞∑
n=2

pn

)
≥ (`2 − `1)

( ∞∑
n=2

p′n

)
(87)

... (88)

By a simple telescoping series argument, the summation of
the terms in the left side of these inequalities gives us R(q),
while the summation of the terms in the right side is R(q′).
This yields R(q) ≥ R(q′), and thus concludes the proof.

APPENDIX B
PROOF OF (29) AND (30)

Let ε = 1
2`+1 , and q(x) = sign(x)ε b|x|/εc (We omit the

subscript of q`(·) and write q(·) for brevity.). We can observe
that for any x ∈ [−1, 1],

|q(x)| ≤ |x|, (89)

and

|q(x)− x| ≤ ε. (90)

The last two properties (89) and (90) imply in particular that

|x| ≤ |q(x)|+ ε, (91)

by the reverse triangle inequality.
For a given h = [h1 · · · ht]T ∈ x , let z = Q`(h). We have

<zi = q(<hi), =zi = q(=hi), i = 1, . . . , t. (92)

Let us now verify (29) by showing that 0 < ‖z‖ ≤ 1. Suppose
that ‖z‖ = 0. Then, z is the all-zero vector, or equivalently
q(<hi) = q(=hi) = 0, i = 1, . . . , t by the definition of z.
According to (91), we then have

‖h‖2 =

t∑
i=1

(
|<hi|2 + |=hi|2

)
(93)

≤
t∑
i=1

(
||q(<hi)|+ ε|2 + ||q(=hi)|+ ε|2

)
(94)

= 2tε2 (95)

=
2t

22(`+1)
(96)

< 1, (97)
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where the last inequality holds for ` ≥ dlog2(2t)e as desired.
This contradicts the fact that ‖h‖ = 1. On the other hand, if
‖z‖ > 1, according to (90) and (92), the inequalities

1 < ‖z‖2 (98)

=

t∑
i=1

(
|<zi|2 + |=zi|2

)
(99)

=

t∑
i=1

(
|q(<hi)|2 + |q(=hi)|2

)
(100)

≤
t∑
i=1

(
|<hi|2 + |=hi|2

)
(101)

= ‖h‖2 (102)
= 1 (103)

lead to a contradiction. We have thus established 0 < ‖z‖ ≤
1 and proved (29). We now verify (30) by showing that
|〈z,h〉|2 > 1 − 2t

2`
. For this purpose, we first obtain a

lower estimate for ‖z‖2. By (91) and (92), we have |<zi| ≥
|<hi| − ε, |=zi| ≥ |=hi| − ε, i = 1, . . . , t. Now, for any
i ∈ {1, . . . , t}, if |<hi| ≥ ε, we have

|<zi|2 ≥ (|<hi| − ε)2 > |<hi|2 − 2|<hi|ε. (104)

Otherwise, if |<hi| < ε, |<zi|2 = 0 by the definition of q(·),
and therefore,

|<zi|2 = 0 ≥ |<hi|2 − 2|<hi|ε, (105)

as the function x2 − 2xε is non-positive for all x ∈ [0, 2ε].
Combining the two cases, the inequality

|<zi|2 ≥ |<hi|2 − 2|<hi|ε (106)

holds for any i ∈ {1, . . . , t}. Noting that a similar set of
inequalities holds for |=zi|2, i = 1, . . . , t, we obtain

‖z‖2 =

t∑
i=1

(
|<zi|2 + |=zi|2

)
(107)

>

t∑
i=1

(
|<hi|2 − 2|<hi|ε+ |=hi|2 − 2|=hi|ε

)
(108)

= 1− 2ε

t∑
i=1

(
|<hi|+ |=hi|

)
. (109)

Subject to ‖h‖2 = 1, we have
∑t
i=1(|<hi| + |=hi|) ≤

√
2t

with equality if and only if |<hi| = |=hi| = 1√
2t
, ∀i ∈

{1, . . . , t}. Therefore,

‖z‖2 > 1− 2
√

2tε. (110)

Moreover, according to (90) and (92), we have

‖h− z‖2 ≤ 2tε2. (111)

We can now use the decomposition

‖h− z‖2 = (h− z)†(h− z) (112)

= 1 + ‖z‖2 − 2<〈h, z〉. (113)

Isolating <〈h, z〉 and then using (110) and (111), we obtain

<〈h, z〉 =
1

2

(
1 + ‖z‖2 − ‖h− z‖2

)
(114)

>
1

2

(
1 + (1− 2

√
2tε)− 2tε2

)
(115)

= 1−
√

2t︸︷︷︸
≤t

ε− t ε2︸︷︷︸
<ε

(116)

> 1− 2tε. (117)

Therefore,

|〈h, z〉|2 ≥ (<〈h, z〉)2 (118)

> (1− 2tε)2 (119)
> 1− 4tε. (120)

Substituting the value of ε, we obtain the desired result.

APPENDIX C
PROOF OF THEOREM 1

The case P = 0 is trivial. Thus, suppose that P > 0.
According to Proposition 1, for any ` ∈ N, we have

OUT(q?) = P

(
h ∈

⋂
n∈N
Oyn

)
≤ P

h ∈
⋂

y∈Y`

Oy

 , (121)

The inequality follows since Y` ⊂ {yn}N by construction.
Now,

P

h ∈
⋂

y∈Y`

Oy

 = P(∀y ∈ Y`, |〈y,h〉|2‖h‖2 < α) (122)

≤ P

(
‖h‖2 < α

1− 2t/2`

)
, (123)

where h = h/‖h‖ and the last inequality follows from
Proposition 3 for sufficiently large `. Since ` can be chosen
arbitrarily large, we obtain

OUT(q?) ≤ P(‖h‖2 < α) = OUT(Full). (124)

Since, OUT(q?) ≥ OUT(Full) is obvious, we have OUT(q?) =
OUT(Full).

We need to estimate the probabilities P(h ∈ Fn) in order
to evaluate R(q?). We use the following three lemmas for this
purpose.

Lemma 1. We have P(h ∈ F1) ≤ e−αα.

Proof. By the definition of F1, we obtain

P(h ∈ F1) = P
(
h ∈ Ocy1

∩ Oy0

)
(125)

= P
(
h ∈ Oce2

∩ Oe1

)
(126)

= P(|h2|2 ≥ α, |h1|2 < α) (127)
= e−α(1− e−α) (128)
≤ e−αα, (129)

which concludes the proof.

Lemma 2. For any n ≥ 2, we have

P(h ∈ Fn) ≤ C11e
−α(α2 + αt), (130)
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for some constant C11 that is independent of α.

Proof. For any n ≥ 2, we have

P(h ∈ Fn) = P

(
h ∈ Ocyn ∩

n−1⋂
k=0

Oyk

)
(131)

≤ P
(
h ∈ Ocyn ∩ Oy0

∩ Oy1

)
. (132)

Since {h : ‖h‖2 < α} ⊂ Oyn , we have Ocyn ⊂ {h : ‖h‖2 ≥
α}, and thus letting x = |h1|2, y = |h2|2, and z = |h3|2 +
· · ·+ |ht|2, we can obtain

P(h ∈ Fn) (133)
≤ P (x+ y + z ≥ α, x < α, y < α) (134)
≤ P (x+ y + z ≥ α, x < α, y < α, x+ y < α) +

P (x+ y + z ≥ α, x < α, y < α, x+ y ≥ α) (135)
= P (x+ y + z ≥ α, x+ y < α) +

P (x < α, y < α, x+ y ≥ α) . (136)

The second term in (136) can be evaluated as∫ α

0

∫ α

α−x
e−x−ydydx = e−α

∫ α

0

(1− e−x)dx (137)

≤ α2e−α

2
. (138)

If t = 2, we have z = 0, and the first term in (136) vanishes.
If t ≥ 3, the first term is the integral∫ α

0

∫ x−α

0

∫ ∞
α−x−y

zt−3e−z

Γ(t− 3)
e−x−ydzdydx (139)

=

∫ α

0

∫ x−α

0

e−α
t−3∑
i=0

(α− x− y)i

Γ(i+ 1)
dydx (140)

≤ e−α
t−3∑
i=0

αi

Γ(i+ 1)

∫ α

0

∫ x−α

0

dydx (141)

= e−α
t−3∑
i=0

αi+2

2Γ(i+ 1)
. (142)

Combining the cases for t = 2 and t ≥ 3, we obtain the
statement of the lemma.

Lemma 3. There is a constant `0 ≥ 1 such that for all ` ≥ `0,
we have

∞∑
n=|Y`|

P(h ∈ Fn) ≤ C12α
te−α

2`
, (143)

where C12 is a constant that is independent of ` and α.

Proof. Consider an arbitrary vector h0 ∈ Ct with ‖h0‖2 >
α(1 + 3t

2`
). According to Proposition 3, for sufficiently large

`, there is a vector y ∈ Y` with

|〈y,h0〉|2 > ‖h0‖2
(

1− 2t

2`

)
. (144)

Using the fact that ‖h0‖2 > α(1+ 3t
2`

), we have, for sufficiently
large `,

|〈y,h0〉|2 > α

(
1 +

3t

2`

)(
1− 2t

2`

)
(145)

= α

(
1 +

t

2`
− 6t2

22`

)
(146)

> α, (147)

which implies h0 ∈ Ocy. In other words, for any h with
‖h0‖2 > α(1 + 3t

2`
), there exists y ∈ Y` such that h ∈ Ocy.

Therefore,{
h ∈ Ct : ‖h‖2 > α

(
1 +

3t

2`

)}
⊂
⋃

y∈Y`

Ocy. (148)

On the other hand,

{h ∈ Ct : ‖h‖2 < α} ⊂ Oy, ∀y ∈ x , (149)

and therefore,

{h ∈ Ct : ‖h‖2 < α} ⊂
⋂
i∈N
Oyi . (150)

Now,

|Y`|−1⋃
i=0

Fi =
⋂
i∈N
Oyi ∪

|Y`|−1⋃
i=0

Ocyi (151)

⊃
{
h ∈ Ct : ‖h‖2 < α or ‖h‖2 > α

(
1 +

3t

2`

)}
, (152)

where the equality is by the definition of {Fn}N in (14) and
(15), and the last inclusion follows from (148) and (150). This
implies

∞⋃
i=|Y`|

Fi =

|Y`|−1⋃
i=0

Fi

c

(153)

⊂
{
h ∈ Ct : α ≤ ‖h‖2 ≤ α

(
1 +

3t

2`

)}
. (154)

Therefore,

P

h ∈
∞⋃

i=|Y`|

Fi

 ≤ ∫ α(1+ 3t

2`
)

α

xt−1e−x

Γ(t)
dx (155)

< e−α
∫ α(1+ 3t

2`
)

α

xt−1dx (156)

=
αte−α

t

[(
1 +

3t

2`

)t
− 1

]
︸ ︷︷ ︸

≤1 for sufficiently large `

(157)

< C12
αte−α

2`
, (158)

where the last inequality holds for sufficiently large `, and C12

is a constant that is independent of `.
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We can now find an upper bound on the rate of q?. We have

R(q?) =
∑
n∈N

P(h ∈ Fn)L(b?n) (159)

= P(h ∈ F1) +

∞∑
n=2

P(h ∈ Fn)blog2(n+ 1)c (160)

= P(h ∈ F1) +

|Y`0 |−1∑
n=2

P(h ∈ Fn)blog2(n+ 1)c+

∞∑
`=`0

|Y`+1|−1∑
n=|Y`|

P(h ∈ Fn)blog2(n+ 1)c (161)

≤ P(h ∈ F1) + blog2 |Y`0 |c
|Y`0 |−1∑
n=2

P(h ∈ Fn)

+

∞∑
`=`0

blog2 |Y`+1|c
|Y`+1|−1∑
n=|Y`|

P(h ∈ Fn) (162)

≤ αe−α + C11e
−α(α2 + αt)blog2 |Y`0 |c(|Y`0 | − 2)+

C12α
te−α

∞∑
`=`0

blog2 |Y`+1|c/2`, (163)

where for the first inequality, we have used the monotonicity
of log2(n+ 1), and for the second inequality we have applied
Lemmas 1, 2 and 3. The upper bound |Y`| ≤ 22t(`+3) in
Section IV-B implies that the sum in the last inequality is
finite. This concludes the proof.

APPENDIX D
PROOF OF THEOREM 2

We first prove the lower bound on OUT(q). It trivially holds
if R(q) ≥ 1. Therefore, suppose that R(q) < 1. Let q =
{xn, En, bn}I . It is straightforward to show by contradiction
that there is an index i ∈ I such that P(h ∈ Ei) ≥ 1 − R(q).
Without loss of generality, suppose that P(h ∈ E1) ≥ 1−R(q)
and 1 ∈ I. Then, with f(h) representing the probability
density function of h, we have

OUT(q) =
∑
i∈I

∫
Ei
1(|〈xi,h〉|2 < α)f(h)dh (164)

≥
∫
E1

1(|〈x1,h〉|2 < α)f(h)dh (165)

=

∫
CT

1(|〈x1,h〉|2 < α)f(h)dh︸ ︷︷ ︸
=OUT(open)

−

∫
Ec1

1(|〈x1,h〉|2 < α)f(h)dh (166)

≥ OUT(open)−
∫
Ec1
f(h)dh (167)

≥ OUT(open)− R(q), (168)

and this concludes the proof.

APPENDIX E
PROOF OF COROLLARY 1

For notational convenience, let r? = r?(OUT(Full)). Ac-
cording to Theorem 1, for the quantizer q? that achieves the
full-CSIT performance, we have R(q?) ≤ 2ρ−1

P + O( 1
P 2 ),

which means r? ≤ 2ρ−1
P +O( 1

P 2 ). The last inequality implies
lim supP→∞(r?/ 2ρ−1

P ) ≤ 1. To complete the proof, it is now
sufficient to show that lim infP→∞(r?/ 2ρ−1

P ) ≥ 1. Assume
the contrary. Then, ∃r < 2ρ − 1, ∀P0 ∈ R, ∃P > P0 such
that r?(OUT(Full)) ≤ r

P , or equivalently,

∃r < 2ρ − 1, ∀P0 ∈ R, ∃P > P0, ∃q such that

OUT(q) = OUT(Full), R(q) ≤ r

P
. (169)

Now, for any quantizer q in (169), we have

OUT(Full) = OUT(q) (170)
≥ OUT(open)− R(q) (171)

≥ 2ρ − 1− r
P

− 1

2

(
2ρ − 1

P

)2

(172)

where the first inequality follows from Theorem 2, and the sec-
ond inequality follows from the lower bound OUT(open) = 1−
e−

2ρ−1
P ≥ 2ρ−1

P − 1
2 ( 2ρ−1

P )2, and the fact that R(q) ≤ r
P . Since

1 − r > 0, the lower bound in (172) is Θ( 1
P ) and is strictly

greater than OUT(Full) ∈ Θ( 1
P t ) when P is sufficiently large.

This leads to the contradiction OUT(Full) > OUT(Full).

APPENDIX F
PROOF OF PROPOSITION 4

First, note that our choice of `? satisfies

‖h‖2 ≥ α
(

1 +
4t

2`?

)
, (173)

and

`? ≥ dlog2(4t)e. (174)

Obviously, the latter implies `? ≥ dlog2(2t)e. Then, according
to (30), we have

|〈Q`?(h),h〉|2 > 1− 2t

2`?
. (175)

Combining with (173), we obtain

|〈Q`?(h),h〉|2 ≥ α
(

1 +
4t

2`?

)(
1− 2t

2`?

)
(176)

= α

(
1 +

2t

2`?
− 2t

2`?
× (4t/2`

?

)︸ ︷︷ ︸
≤1 by (174)

)
(177)

≥ α, (178)

This implies |〈Q`?(h),h〉|2 ≥ α and thus concludes the proof.
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APPENDIX G
PROOF OF THEOREM 3

We first show that OUT(q?F) = OUT(Full). According to our
discussion Section V-A1, an outage event can only happen if
the feedback codeword is ε. Note that the encoder feeds back
ε if |h1|2 ≥ α or ‖h‖2 ≤ α, in which case the transmitter uses
the beamforming vector e1. The case |h1|2 ≥ α then does not
result in any outage. Therefore, OUT(q?F) ≤ P(‖h‖2 ≤ α) =
OUT(Full), which implies OUT(q?F) = OUT(Full).

For the rate of q?F , note that the quantizer encoder feeds
back 0 with probability no more than

P(|h1|2 < α, |h2|2 ≥ α) = e−α(1− e−α) ≤ αe−α (179)

We now consider the feedback binary codewords that will be
fed back at Line 7 of the encoding algorithm. Each of them
has length 2t(`? + 3) bits, where `? ≥ dlog2(4t)e according
to (42). We have `? = dlog2(4t)e with probability at most

P(|h1|2<α, |h2|2<α, ‖h‖2 ≥ α) ≤ C11e
−α(α2+αt),

(180)

due to Lines 1 and 3 of Algorithm 1. The last inequality
follows from Lemma (2).

On the other hand, for any n ≥ 1, if `? = dlog2(4t)e + n,
then ‖h‖2 > α and

dlog2(4t)e+ n ≤
⌈
− log2

(
1

4t

(‖h‖2
α
− 1

))⌉
(181)

=⇒ dlog2(4t)e+n ≤ − log2

(
1

4t

(‖h‖2
α
− 1

))
+1 (182)

=⇒ ‖h‖2 ≤ α
(

1 +
C13

2n

)
, (183)

where C13 is a constant that is independent of α and n. This
implies

P(`? = dlog2(4t)e+ n)

≤ P

[
α < ‖h‖2 ≤ α

(
1 +

C13

2n

)]
(184)

≤ C14α
te−α

2nt
, n ≥ 1, (185)

where C14 is another constant that is independent of α and n.
Combining (179), (180) and (185) we obtain

R(q?F) ≤ αe−α + 2t(dlog2(4t)e+ 3)C11e
−α(α2 + αt)+

∞∑
n=1

2t(log2(4t) + n+ 3)
C14α

te−α

2nt
, (186)

which gives us the same upper bound in the statement of the
theorem.

APPENDIX H
PROOF OF THEOREM 4

We need the following lemma.

Lemma 4. For any quantizer q = {pn, En, bn}I with a
sufficiently large rate R(q), there is an index n ∈ I such that
P(X ∈ En) ≥ 2−5R(q).

Proof. Consider the sequence of binary codewords b̄0 = ε,
b̄1 = 0, b̄1 = 1, b̄2 = 00, . . . that form the non-prefix-free
code alphabet {0, 1}? , {ε, 0, 1, 00, 01, . . .}, where ε is the
empty codeword of length 0. We have l(b̄n) = blog2(n+1)c,
and

R(q) ≥ inf
{`n}I⊂{0,1}?∑
n∈I 2−`n≤1

∑
n∈I

P(X ∈ En)`n (187)

≥ inf
{`n}I⊂{0,1}?

∑
n∈I

P(X ∈ En)`n (188)

=
∑
n∈I

P(X ∈ En)blog2(n+ 1)c, (189)

where for (189), we have assumed (without loss of generality)
that P(X ∈ En−1) ≤ P(X ∈ En), ∀n ∈ I − {0}. We now
prove the lemma by contradiction. Suppose that P(X ∈ En) ≤
δ, ∀n ∈ I, where δ , 2−5R(q). Optimizing (189) over all
possible probabilities P(X ∈ En), n ∈ I, we obtain

R(q) ≥ inf
0≤pn≤δ, ∀n∈I∑

i≥1 pi=1−ε

∑
n∈I

pnblog2(1 + n)c. (190)

To evaluate this lower bound, we first observe that blog2(1 +
n)c, n = 0, 1, . . . , is a monotonically non-decreasing se-
quence of integers that are independent of pn. We thus start
from n = 0, and assign p0 the highest possible feasible
probability, i.e. p0 = δ, and continue sequentially in the same
manner for indices 1, . . . , N , until

∑N
n=0 pn = 1. Therefore,

the infimum can be achieved, and the minimizing solution is

p?n ,

 δ, 0 ≤ n < b 1−ε
δ c

1− ε− δb 1−ε
δ c, n = b 1−ε

δ c
0, n > b 1−ε

δ c
. (191)

This gives us

R(q) ≥ δ
b 1−εδ c−1∑
n=0

blog2(1 + n)c (192)

≥ δ
b 1−εδ c−1∑
n=0

(log2(1 + n)− 1) (193)

= δ log2

(⌊
1−ε
δ

⌋
!
)
− δb 1−ε

δ c (194)

≥ δ log2

(⌊
1−ε
δ

⌋
!
)
− 1. (195)

Noting that at least
⌊

1
2

⌊
1
δ

⌋⌋
=
⌊

1
2δ

⌋
terms of the product

1 · 2 · · ·
⌊

1
δ

⌋
=
⌊

1
δ

⌋
! are greater than or equal to 1

2

⌊
1
δ

⌋
, we

obtain

R(q) ≥ δ
⌊

1− ε
2δ

⌋
log2

(
1

2

⌊
1− ε
δ

⌋)
− 1 (196)

≥ 1

4
log2

1

64δ
, (197)

where the last inequality follows since
⌊

1
2δ

⌋
≤ 1

4δ and 1
2

⌊
1
δ

⌋
≤

1
4δ when δ

1−ε ≤ 1
4 . The last inequality leads to a contradiction

once we substitute δ = 2−5R(q), and this concludes the proof.

We now prove the theorem. Given q = {xn, En, bn}I , we
have

SER(q) = SER(Full) +
∑
i∈I

∫
Ei
d̃(xi,h)f(h)dh. (198)
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Let r = 2−5R(q). According to Lemma 4, there is an index
i ∈ I such that P(h ∈ Ei) ≥ r. Without loss of generality,
suppose that 0 ∈ I and P(h ∈ E0) ≥ r. We have

SER(q) ≥ SER(Full) +

∫
E0
d̃(x0,h)f(h)dh (199)

≥ SER(Full) + inf
E⊂E

inf
x∈x

g(E ,x) (200)

where g(E ,x) =
∫
E d̃(x,h)f(h)dh and E = {E ⊂ Ct : P(h ∈

E) ≥ r. Note that for any t × t unitary matrix U, we have
g(E ,x) = g(UE ,Ux), ∀E ∈ E, ∀x ∈ x , where UE = {Uh :
h ∈ E} denotes the translate of the set E by U. With this
property in mind, we consider a fixed vector y ∈ x . For a
given x ∈ x , let the unitary matrix Ux satisfy x = Uxy. We
have g(E ,x) = g(U†xE ,U†xx) = g(U†xE ,y). Since U†xE ∈
E, we have g(E ,x) ≥ infE′∈E g(E ′,y). Since this inequality
holds for arbitrary x and E , we obtain infE∈E infx∈x g(E ,x) ≥
infE∈E g(E ,y). In particular, choosing y = [1 0 · · · 0]T then
gives us

SER(q) ≥ SER(Full)+

inf
E⊂E

∫
E

[
Q
(√

2|h1|2P
)
−Q

(√
2‖h‖2P

)]
f(h)dh (201)

We now find a lower bound for the integrand in (201). Note
that

∂

∂x
Q(
√

2x) = − e−x

2
√
π
√
x
, (202)

and

∂2

∂x2
Q(
√

2x) =
e−x(2x+ 1)

4
√
πx3/2

. (203)

Since ∂2

∂x2 Q(
√

2x) ≥ 0, ∀x ≥ 0, Q(
√

2x) is convex, and
therefore, for any x, y ≥ 0,

Q(
√

2x)−Q(
√

2(x+ y)) ≥ −y ∂Q(
√

2u)

∂u

∣∣∣∣
u=x+y

(204)

=
ye−(x+y)

2
√
π
√
x+ y

(205)

≥ 1

4
ye−2(x+y), (206)

where the last inequality follows since e−x/
√
x ≥ e−2x and

1
2
√
π
≥ 1

4 .
Applying (206) to (201), we have

SER(q) ≥ SER(Full)+

P

4
inf
E⊂E

∫
E

t∑
k=2

|hk|2e−2‖h‖2P f(h)dh (207)

To further simplify the integrand and the calculation of
the infimum, we define a real number y0 that satisfies∫ y0

0
yt−2e−y

Γ(t−1) dy = r
2 . We have

SER(q) ≥ SER(Full)+

y0P

4
inf
E⊂E

∫
E
1

(
t∑

k=2

|hk|2 ≥ y0

)
e−2‖h‖2P f(h)dh (208)

The expression in the lower bound is an optimization
problem of the form “Minimize

∫
E g(x)f(x)dx, subject to∫

E f(x)dx ≥ r,” where f(x) is a continuous probability
density function, g(x) is an arbitrary measurable function.
According to [40], a solution set E? exists, and one forms
E? by starting with the points where the integrand g(x) takes
its minimal values and then progressively adds more points
until the measure of E? is equal to r. In order to solve
(208), we thus need to evaluate the level sets of the function
g(h) = 1

(∑t
k=2 |hk|2 ≥ y0

)
e−2‖h‖2P . Note that the level

sets of g(h) depend only on X , |h1|2 and Y =
∑t
k=2 |hk|2.

Moreover, the PDF f(h) can also be expressed in terms of X
and Y only. Hence, we may equivalently consider

SER(q) ≥ SER(Full)+

y0P

4
inf
F

∫
F
g(x, y)fX(x)fY (y)dxdy (209)

such that ∫
F
fX(x)fY (y)dxdy ≥ r (210)

with

g(x, y) = 1 (y ≥ y0) e−2(x+y)P , (211)

fX(x) = e−x, (212)

and

fY (y) =
yt−2e−y

Γ(t− 1)
. (213)

Now, let F? denote a minimizer of (209). We observe that the
function g(x, y) takes its minimum value 0 whenever y < y0.
The set of channel states with y < y0 has probability r

2 by our
choice of the constant y0. Since r

2 < r, we may set {[x, y] ∈
R2
≥0 : y < y0} ⊂ F?. This leaves us with a set of probability

r − r
2 = r

2 that we need to assign to F?. When y ≥ y0, we
have g(x, y) = e−2(x+y)P , and thus (i) g(x, y) is a constant
whenever x+ y is, and (ii) g(x, y) decreases whenever x+ y
increases. Hence, the solution set F? can be expressed as

F? = {[x, y] ∈ R2
≥0 : y < y0 or x+ y ≥ b}, (214)

where b should be chosen to satisfy P([x, y] ∈ F?) = r.
To proceed further, we now find estimates on b. First, note

that b > y0, as otherwise if b ≤ y0, we have F? = R2
≥0 and

this leads to the contradiction 1 = P(h ∈ F?) = r < 1. Since
b > y0, {[x, y] ∈ R2

≥0 : y ≥ b} ⊂ F?. Also, when y ≥ b > y0,
we have g(x, y) = e−2(x+y)P . Therefore,

SER(q)

≥ SER(Full) +
y0P

4

∫ ∞
0

∫ ∞
b

e−2(x+y)P e−x
yt−2e−y

Γ(t− 1)
dxdy

(215)

= SER(Full) +
y0P

Γ(t− 1)(1 + 2P )

∫ ∞
b

yt−2e−y(1+2P )dy

(216)

Now, since P(X+Y ≥ b) ≤ P(Y < y0 or X+Y ≥ b) = r =
2−5R(q), we have (say) b ≥ 1 for a sufficiently large feedback
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rate R(q). This implies yt−2 ≥ bt−2 ≥ 1 for the integrand in
(216), and therefore,

SER(q) ≥ SER(Full) +
y0P exp[−b(1 + 2P )]

Γ(t− 1)(1 + 2P )2
. (217)

To conclude the proof, we need to find a lower bound for y0

and an upper bound for b. We obtain the lower bound on y0

as

r

2
=

∫ y0

0

yt−2︸︷︷︸
≤yt−2

0

e−y︸︷︷︸
≤1

(Γ(t− 1))−1︸ ︷︷ ︸
≤1

dy ≤ yt−1
0 =⇒

y0 ≥ 2−
1
t−1 r

1
t−1 ≥ 1

2
r

1
t−1 . (218)

In order to obtain an upper bound for b, we first note that

r = P(Y < y0 or X + Y ≥ b) (219)
≤ P(Y < y0) + P(X + Y ≥ b) (220)

=
r

2
+ P(X + Y ≥ b), (221)

and therefore
r

2
≤ P(X + Y ≥ b) (222)

=

∫ ∞
b

xt−1

≤e−
x
2 e−

b
2︷︸︸︷

e−x

Γ(t)
dx (223)

≤ e− b2
∫ ∞
b

xt−1e−
x
2

Γ(t)
dx (224)

≤ e− b2
∫ ∞

0

xt−1e−
x
2

Γ(t)
dx (225)

= 2te−
b
2 , (226)

which implies b ≤ −2 log r
2t+1 . Substituting the bounds for

y0 and b, and r = 2−5R(q) to (217), we obtain the same
lower bound as in the statement of the theorem after some
straightforward manipulations. This concludes the proof.

APPENDIX I
PROOF OF PROPOSITION 5

We first prove the upper bound on SER(qv
B). Let

∆(h) = Q

(√
2|〈qv

B(h),h〉|2P
)
−

Q
(√

2|〈qB(h),h〉|2P
)
. (227)

We consider the partition of the channel state space Ct via the
sets

F1 = {h : |h1|2P ≥ β}, (228)

F2 = {h : |h1|2P < β, |h2|2P ≥ β}, (229)
F3 = Ct − (F1 ∪ F2). (230)

Note that

E[∆(h)] =

3∑
i=1

E[∆(h)|h ∈ Fi]P(h ∈ Fi). (231)

By the definition of qv
B(h), we have E[∆(h)|h ∈ F3] = 0. On

the other hand,

E[∆(h)|h ∈ F1]P(h ∈ F1)

≤ E

[
Q

(√
2|〈qv

B(h),h〉|2P
)
|h ∈ F1

]
P(h ∈ F1) (232)

= E
[
Q
(√

2|h1|2P
)
|h ∈ F1

]
P(h ∈ F1) (233)

= E
[
Q
(√

2|h1|2P
)
| |h1|2P ≥ β

]
P(|h1|2P ≥ β) (234)

=

∫ ∞
β
P

Q(
√

2xP )e−xdx (235)

≤ 1

2

∫ ∞
β
P

exp(−x(1 + P ))dx (236)

=
1

2(1 + P )︸ ︷︷ ︸
≤ 1
P

exp

(
−β 1 + P

P︸ ︷︷ ︸
≥1

)
(237)

≤ 1

P
e−β , (238)

where the second inequality is a consequence of the fact that
Q(x) ≤ 1

2e
− x22 . Similarly, we obtain

E[∆(h)|h ∈ F2]P(h ∈ F2)

≤ E
[
Q
(√

2|h2|2P
)
|h ∈ F2

]
P(h ∈ F2) (239)

≤ E
[
Q
(√

2|h2|2P
)
| |h2|2P ≥ β

]
P(|h2|2P ≥ β) (240)

≤ 1

P
e−β , (241)

where the second inequality follows since {h : |h2|2P ≥ β} ⊂
F2, and the last inequality follows in the same manner as (238)
follows from (234).

Combining the conditional expectations of ∆(h), we have

E[∆(h)] ≤ 2

P
e−β =

2

P t
e−g(P ), (242)

where we have substituted β = (t − 1) logP + g(P ) for the
equality. Applying this upper bound on E[∆(h)] to the obvious
identity SER(qv

B) = SER(qB) + E[∆(h)], we obtain (56).
We now prove (57). We have the estimates

P(h ∈ F2) = P(|h1|2P < β, |h2|2P ≥ β) (243)

= P(|h1|2P < β)P(|h2|2P ≥ β) (244)

= (1− e− β
P )e−

β
P (245)

≤ (1− e− β
P ) (246)

≤ β

P
, (247)

and

P(h ∈ F3) = P(|h1|2P < β, |h2|2P < β) (248)

= (1− e− β
P )2 (249)

≤ β2

P 2
. (250)

Since g(P ) ∈ ω(1) ∩O(logP ), we have g(P ) ∈ O(logP ) in
particular, and therefore, there is a constant k > 0 such that
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g(P ) ≤ k logP for all sufficiently large P . For |B| ≥ 2, we
can then obtain

R(qv
B)

= P(h ∈ F2)︸ ︷︷ ︸
≤ β
P by (247)

+ (1 + dlog2 |B|e)︸ ︷︷ ︸
≤ 2 + log2 |B|
≤ 3 log2 |B|

P(h ∈ F3)︸ ︷︷ ︸
≤ β2

P2 by (250)

(251)

≤ β

P
+

3 log |B|
log 2

β2

P 2
(252)

=
(t− 1) logP

P
+
g(P )

P
+

3 log |B|
log 2

((t− 1) logP + g(P ))2

P 2

(253)

≤ (t− 1) logP

P
+
g(P )

P
+

3(t− 1 + k)2

log 2

log |B| log2 P

P 2
.

(254)

This proves (57) with C5 = 3(t−1+k)2

log 2 .

APPENDIX J
PROOF OF PROPOSITION 7

According to Proposition 3, the SNR provided by Bδ is at
least ‖h‖2(1− δ)P for any given channel state h. As a result,

SER(qBδ) ≤
∫ ∞

0

Q
(√

2x(1− δ)P
) xt−1e−x

Γ(t)
dx, (255)

where the integration variable x corresponds to a realization
of the random variable ‖h‖2. With a change of variables u =
x(1− δ), we obtain

SER(qBδ) ≤ (1− δ)−t
∫ ∞

0

Q
(√

2uP
) ut−1 exp(− u

1−δ )

Γ(t)
du.

(256)

It is straightforward to show that (1− δ)−t ≤ 1 + 2tδ for any
δ ≤ 1

2t . For the integral itself, we use the bound e−
u

1−δ ≤ e−u,
which makes the integral equal to SER(Full). This concludes
the proof.

APPENDIX K
PROOF OF THEOREM 5

Consider a positive real-valued function δ(P ) that is to be
specified later on. Provided that δ(P ) is sufficiently small for
all sufficiently large P , we may apply Propositions 3 and 7.
This gives us

SER(qBδ(P )
) ≤ SER(Full)(1 + 2tδ(P )), (257)

with

|Bδ(P )| ≤ C6[δ(P )]−2t. (258)

Consider now the variable-length quantizer qv
Bδ(P )

. As dis-
cussed before, we may assume that f(P ) ∈ ω(1)∩O(logP ).
Applying Proposition 5 with the choice g(P ) = f(P )

2 and
using the bounds in (257), (258), we obtain

R(qv
Bδ(P )

) ≤ (t− 1) logP

P
+
f(P )

2P
+

C5 log(C6[δ(P )]−2t) log2 P

P 2
, (259)

with

SER(qv
Bδ(P )

) ≤ SER(Full) (1 + 2tδ(P )) +

2

P t
exp

(
−f(P )

2

)
. (260)

Now, let

C5 log(C6[δ(P )]−2t) log2 P

P
=
f(P )

2
. (261)

We have δ(P ) ∈ o(1) and therefore, δ(P ) is positive and
sufficienty small for sufficiently large P as desired. The
upper bound in (260) then implies d(qv

Bδ(P )
) = d(Full),

g(qv
Bδ(P )

) = g(Full) as δ(P ) ∈ o(1). Combining (259) and

(261), we have R(qv
Bδ(P )

) ≤ (t−1) logP
P + f(P )

P . This concludes
the proof.

APPENDIX L
PROOF OF THEOREM 6

Let q = {xn, En, bn}I , and suppose that

∃ε ∈ (0, 1
2 ), ∀P0 ∈ R, ∃P ≥ P0, R(q) ≤ (t− 1− ε) logP

P
.

(262)

To prove the theorem, it is sufficient to show that the strict
inequality d(q) < d(Full) then holds.

Let R = (t − 1 − ε) logP
P . It is straightforward to show

by contradiction that ∃i ∈ I such that P(h ∈ Ei) ≥ 1 − R.
Without loss of generality, suppose that P(h ∈ E0) ≥ 1 − R.
Then, with f(h) representing the probability density function
of h, we have

SER(q) =
∑
n∈I

∫
En

Q
(√

2|〈xn,h〉|2P
)
f(h)dh (263)

≥
∫
E0

Q
(√

2|〈x0,h〉|2P
)
f(h)dh (264)

According to [41, Theorem 2.1], for any κ > 1, there is a
constant C15 > 0 (that may depend on κ) such that Q(x) ≥
C15 exp(−κ2x2), ∀x ∈ R. Substituting this lower bound, and
minimizing over all possible E0 and x0, we obtain

SER(q) ≥ C15 inf
E⊂Ct

P(h∈E)≥1−R

inf
x∈x

∫
E

exp(−κ|〈x,h〉|2P )f(h)dh

(265)

≥ C15 inf
E⊂Ct

P(h∈E)≥1−R

∫
E

exp(−κ|h1|2P )f(h)dh, (266)

where the second inequality follows from the unitary invari-
ance of the integral and the PDF of h (see (200) and the
discussion that follows (200) in the proof of Theorem 4.).
According to [40], the choice of E that minimizes (266) is
of the form E ′ = {h : |h1|2 ≥ r}, where r is a positive
real number with µ(E ′) = 1 − R. In other words, one
forms the solution set E ′ by starting with the points where
the integrand exp(−κ|h1|2P ) takes its minimal values and
then progressively adds more points until the measure of E ′
is equal to r. We have

∫
{h:|h1|2≥r} f(h)dh = 1 − R, or,



24

equivalently
∫∞
r
e−xdx = 1 − R. Solving for r, we obtain

r = − log(1−R), and thus

SER(q) ≥ C15

∫ ∞
− log(1−R)

exp(−κxP )e−xdx (267)

=
C15 exp[(1 + κP ) log(1−R)]

1 + κP
. (268)

We now have − log(1 − R) =
∑∞
n=1R

n/n ≥ R + R2 for
sufficiently small R. Applying this lower bound, we obtain

SER(q) ≥ C15 exp[−(1 + κP )(R+R2)]

1 + κP
. (269)

Let us now choose

κ =
1

2

(
1 +

t− 1

t− 1− ε

)
, (270)

and note that we have

κ ≤ 1

2

(
1 +

t− 1

t− 1− 1
2

)
≤ 3

2
(271)

as ε ∈ (0, 1
2 ) by our assumption and t ≥ 2. For the

denominator of (269), we then have 1 +κP ≤ P +κP ≤ 5
2P

for P ≥ 1. This gives us

SER(q) ≥ 2C15

5P
exp(−(R+R2 + κPR2)− κPR) (272)

Since R = (t − 1 − ε) logP
P and κ ≤ 3

2 , the inequality R +
R2 + κPR2 ≤ 1 holds for all sufficiently large P . Therefore,

SER(q) ≥ 2C15

5eP
exp(−κPR) (273)

=
2C15

5eP
exp

[
−1

2

(
1 +

t− 1

t− 1− ε

)
(t− 1− ε) logP

]
(274)

=
2C15

5eP
exp

[
−
(
t− 1− ε

2

)
logP

]
(275)

=
2C15

5e
P−(t−ε/2). (276)

This means d(q) ≤ t − ε
2 < t, ∀t ≥ 2, if d(q) ever exists.

This concludes the proof.

APPENDIX M
PROOF OF (68) AND (69)

We first prove (68). Suppose that |S| = 2. We have ρ = 1
`

and CBLER(x,h;S) = Q(
√

1
2‖s1 − s2‖2P ). Subject to the

power constraint ‖s1‖ + ‖s‖2 ≤ 2`, the conditional BLER is
minimized via binary antipodal signaling. This yields

CBLER(x,h;S) ≥ Q(
√

2`|〈x,h〉|2P ) (277)

= Q(

√
2`2

1
` |〈x,h〉|22−ρP ) (278)

≥ Q(
√

4`|〈x,h〉|22−ρP ). (279)

Now, suppose that |S| ≥ 3. It is shown in [24, Section A] that
for any 2

3 ≤ α < 1, we have

CBLER(x,h;S) ≥ α

2
Q

√√√√ |〈x,h〉|2P
2|Sα|

∑
s∈Sα

‖s− NN(s)‖2
 ,

(280)

where Sα , {s ∈ S : ‖s‖2 ≤ `
1−α} with |Sα| ≥ α

2 |S|, and
NN(s) ∈ Sα represents one of the nearest neighbors of s in
Sα. Now, let B(s) = {t ∈ C` : ‖t − s‖ ≤ 1

2‖s − NN(s)‖}
denote the open ball with radius 1

2‖s− NN(s)‖ centered at s.
Again, using the same ideas as in [24, Section A], it can be
shown that {B(s) : s ∈ Sα} is a disjoint collection of open
balls with

⋃
s∈Sα B(s) ⊂ B0(2

√
`

1−α ), where we denote by
B0(r) the open ball with radius r and center at the origin.

Now, let λ(·) be the Lebesgue measure on C`. Note that
λ(B0(r)) = ar2` where a = π`/`!. Since

⋃
s∈Sα B(s) ⊂

B0(2
√

`
1−α ), we have

λ

( ⋃
s∈Sα

B(s)

)
≤ λ

(
B0

(
2

√
`

1− α

))
(281)

=
(4`)`a

(1− α)`
. (282)

On the other hand, as {B(s) : s ∈ Sα} is a disjoint collection,

λ

( ⋃
s∈Sα

B(s)

)
=
∑
s∈Sα

λ (B(s)) (283)

= a2−2`
∑
s∈Sα

‖s− NN(s)‖2` (284)

≥ a2−2`|Sα|−(`−1)

(∑
s∈Sα

‖s− NN(s)‖2
)`

,

(285)

where the last inequality follows from reverse Hölder inequal-
ity. Combining this last inequality with (282), we obtain∑

s∈Sα

‖s− NN(s)‖2 ≤ 16`

1− α |Sα|
`−1
` . (286)

Substituting this bound to (280), we have

CBLER(x,h;S) ≥ α

2
Q

(√
8`|〈x,h〉|2P

(1− α)|Sα|1/`

)
(287)

≥ α

2
Q

(√
8`|〈x,h〉|2P

(1− α)|S|1/`(α/2)1/`

)
(288)

≥ 1

3
Q
(√

72`|〈x,h〉|22−ρP
)
, (289)

where the second inequality follows since |Sα| ≥ α
2 |S|, and

the last inequality follows from the substitutions α = 2
3 , |S| =

2ρ` and the fact that ( 1
3 )1/` ≥ 1

3 , ` ≥ 1. Combining (289) and
(279) proves (68).

We now prove (69). In order to handle the cases where ρ ≤
2 or ρ /∈ 2Z, we consider codes with a (possibly) slightly larger
rate by letting ρ̄ = 2bρ/2 + 1c. Now, for ` = 1, we let S0 =
{−1 + i21−ρ̄/2 : i = 0, . . . , 2ρ̄/2 − 1}2 be a QAM-alphabet
with rate ρ̄ ≥ ρ. For each signal point s ∈ S0, there are at
most 4 nearest neighbors. Moreover, each nearest neighbor of
s is 21−ρ̄/2-far from s. Since ρ̄ ≤ ρ+2, each nearest neighbor
of s is at least 22−ρ/2-far from s. Hence, CBLER(x,h;S0) ≤
4Q
(√

8|〈x,h〉|22−ρP
)

. For a general ` ≥ 2, we set S0 to be
the `th Cartesian power of the same QAM alphabet. A simple
union bound then leads to (69).
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APPENDIX N
PROOF OF THEOREM 7

For achievability, we proceed in the same manner as we
have done in Section VIII-B for the binary modulation case.
Consider a fixed beamforming codebook B. We synthesize
the variable-length quantizer qvB according to the same rules
discussed in Section VIII-B. The only difference is that for a
given g(P ) ∈ ω(1) ∩O(logP ), we choose

β =
2

C8
[(t− 1)(1− r) logP + g(P )] 2ρ (290)

instead of β = (t − 1) logP + g(P ). Then, using (70) and
the same arguments as in the proof of Proposition 5, we can
obtain

BLER(qv
B;S) ≤ BLER(qB;S) +

2

P t(1−r)
e−g(P ), (291)

and

R(qv
B) ≤ 1+C16

(
2ρ logP

P
+

2ρg(P )

P
+

22ρ log |B| log2 P

P 2

)
,

(292)

where C16 > 0 is independent of ρ and P . Now, following the
same steps as in Sections VIII-C and VIII-D, we can obtain
the achievability result in (73). On the other hand, using the
lower bound in (68) and same ideas as in the proof of Theorem
6 in Appendix L, we obtain the converse result in (74). We
omit the details as they are straightforward.
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[36] F. Pérez-Cruz, M. R. D. Rodrigues, and S. Verdú, “MIMO Gaussian
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