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Abstract

Improved bounds on the blocklength required to communicateover binary-input channels using polar codes,

below some given error probability, are derived. For that purpose, an improved bound on the number of non-

polarizing channels is obtained. The main result is that theblocklength required to communicate reliably scales at

most asO((I(W )−R)−5.77) whereR is the code rate andI(W ) the symmetric capacity of the channel,W . The

results are then extended to polar lossy source coding at rate R of a source with symmetric distortion-rate function

D(·). The blocklength required scales at most asO((DN −D(R))−5.77) whereDN is the actual distortion.

Index Terms

Channel polarization, polar codes, gap to capacity, rate distortion, finite length scaling.

I. INTRODUCTION

Polar codes, introduced by Arikan [1], is an exciting recentdevelopment in coding theory. Arikan showed that,

for a sufficiently large blocklength, polar codes can be usedfor reliable communications at rates arbitrarily close to

the symmetric capacity (i.e., the mutual information between a uniform input distribution and the channel output)

of an arbitrary binary-input channel. Arikan also proposedencoding and decoding schemes, whose complexities

scale asO(N logN) whereN is the blocklength of the code. ForN sufficiently large, if the code rate is below

the symmetric capacity, then the error probability is upperbounded by2−Nβ

for any β < 1/2 [1], [2]. In [3] it

was shown that the results can be generalized for reliable communications below channel capacity over arbitrary

discrete memoryless channels (DMCs). A very attractive property of polar codes is that although they are powerful,

they are much simpler to analyze compared to low-density parity-check (LDPC) codes. The main drawback of polar

codes compared to LDPC-like codes is their inferior performance for codes with short to moderate blocklength

size. However, recently it was shown [4] that the performance can be considerably improved by using a successive

cancelation (SC) list decoder instead of the standard SC decoder, and by incorporating CRC bits.

Although originally proposed for channel coding, polar codes were extended to lossless and to lossy source

coding [5], [6]. In particular, Korada and Urbanke [5] showed that for any design distortion, there exists a sequence

of polar codes with arbitrarily small redundancy, defined asthe gap between the actual code rate and the rate-

distortion function (evaluated at the design distortion).The encoding and decoding complexities areO(N logN).
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Polar codes were also proposed to various other problems in multiuser information theory, including the Wyner-Ziv

and Gelfand-Pinsker problems [5], write once memories (WOMs) [7] and various other problems.

The rate of channel polarization was first studied in [1], [2]. Improved asymptotic upper bounds on the error rate

that are code rate dependent, were presented in [8], [9], [10] and [11]. These results were obtained by analyzing

the rate of convergence of the polarizing sub-channels.

All the results in the papers mentioned above assume that theblocklength,N , is sufficiently large, and do not

specify how large it should be. The gap between the symmetricchannel capacity and the polar code rate required

for reliable communication, as a function of the blocklength, was discussed in [12], [13] and [14]. A related result

concerns the number of non-polarizing sub-channels for thebinary erasure channel (BEC) [15]. In [13], [14],

a binary memoryless symmetric (BMS) channel,W , with capacityI(W ) was considered (for BMS channels the

symmetric capacity is also the capacity). Suppose that we use a polar code with blocklengthN and rateR using the

SC decoder, and that the error probability is bounded above by Pe > 0. Also suppose that the sum of Bhattacharyya

parameters is used as an approximation to the block error probability. Under this approximation, it was shown that

we must haveN ≥ α/ (I(W )−R)µ̃. Here,α is a constant that depends only onPe and R, and the scaling

parameter satisfies̃µ ≥ 3.553. It was further conjectured that the largest possibleµ̃ is µ̃ = 3.627, the parameter

corresponding to the case whereW is a BEC. In [16], [14] it was further shown, under similar conditions but

without the need to approximate the error probability by thesum of Bhattacharyya parameters, that it is sufficient

to haveN = β/ (I(W )−R)µ (or larger). Hereβ is a constant that depends only onPe andR. The best scaling

law was obtained in [14], were it was shown thatµ = 7 is sufficient. In this paper we improve this result to

µ = 5.77. We also extend the results to binary polar lossy source coding at rateR of a source with symmetric

distortion-rate functionD(·). Denote the blocklength byN , the average distortion byDN , and the redundancy by

DN (R)
∆

=DN −D(R). Then in order to obtain a redundancy at mostD0, it is sufficient to haveN = β/
(

D0
)5.77

(or larger), whereβ is a constant that depends only onR and the properties of the source and the distortion measure

used.

The rest of this paper is organized as follows. In Section II we provide a brief background on polar codes.

In Section III we present our main results in this paper. First we derive an upper bound on the fraction of non-

polarizing sub-channels. Then we obtain an upper bound on the blocklength required to communicate over a given

binary-input channel, with error probability at mostPe, as a function of the gap between the symmetric capacity and

the polar code rate. In Section IV we extend our results to polar lossy source coding. Finally, Section V concludes

the paper.

II. BACKGROUND ON POLAR CODES

We will follow the notation in [1]. Consider a binary-input discrete memoryless channel (B-DMC)W : X → Y
with input alphabetX = {0, 1} and output alphabet1 Y. The symmetric capacityof the channel,I(W ), is the

1The assumption that the channel is discrete is made for notational convenience only. For continuous output channels, sums should be

replaced by integrals.
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mutual information between a uniform input distribution and the channel output, i.e.,2

I(W ) =
∑

x∈X

∑

y∈Y

1

2
W (y | x) log W (y | x)

∑

x′∈X
1
2W (y | x′)

.

The Bhattacharyya parameter of the channel is defined by

Z(W ) =
∑

y∈Y

√

W (y | 0)W (y | 1) .

Let G2 =





1 0

1 1



 and let itsnth Kronecker product beG⊗n
2 . Also denoteN = 2n. Let u = uN1 be

an N -dimensional binary{0, 1} message vector, and letPN be the bit-reversal permutation matrix, such that if

vN1 = uN1 PN thenvb1...bn = ubn...b1 for all b1, . . . , bn ∈ {0, 1}. We can now define a generator matrixGN = PNG⊗n
2

andx = xN1 = uGN where the matrix multiplication is overGF(2). Suppose that we transmitx over a B-DMC

with transition probabilityW (y | x) and channel output vectory = yN1 . If u is chosen at random with uniform

probability, 1/2N , then the resulting probability distributionP (u,x,u) is given by

P (u,x,y) =
1

2N
1{x=uGN}

N
∏

i=1

W (yi | xi)

Define the followingN sub-channels,

W
(i)
N (y, ui−1

1 | ui) = P (y, ui−1
1 | ui) =

1

2N−1

∑

uN
i+1

P (y | u)

Denote byZ(W
(i)
N ) the Bhattacharyya parameters of the sub-channelsW

(i)
N . In [1], [2] it was shown that

asymptotically inN , a fractionI(W ) of the sub-channels satisfyZ(W
(i)
N ) < 2−Nβ

for any 0 < β < 1/2. Based

on this result the following communication scheme was proposed. LetR be the code rate. Denote byF the set

of N(1 − R) sub-channels with the highest values ofZ(W
(i)
N ) (the frozen set), and byF c the remainingN · R

sub-channels. Fix the input to the sub-channels inF to some arbitrary frozen vectoruF (known both to the encoder

and to the decoder) and use the channels inF c to transmit information. The encoder then transmitsx = uGN

over the channel. Recalling thatuF is common knowledge, the decoder applies the following SC scheme. For

i = 1, 2, . . . , N : If i ∈ F then ûi = ui. Otherwise

ûi =







0 if L
(i)
N > 1

1 if L
(i)
N ≤ 1

where

L
(i)
N = L

(i)
N

(

y, ûi−1
1

)

=
W

(i)
N (y, ûi−1

1 | ui = 0)

W
(i)
N

(

y, ûi−1
1 | ui = 1

)

2The base of all logarithms in this paper is2.
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is the likelihood ratio of the channelW (i)
N (y, ûi−1

1 |ui) corresponding to the channel outputy, ûi−1
1 . Asymptotically,

reliable communication under SC decoding is possible for any R < I(W ). The error probability is upper bounded by

2−Nβ

for anyβ < 1/2, 3 and both the encoder and the SC decoder can be implemented in complexityO(N logN).

The analysis of polar codes is based on analyzing the evolution of the sub-channelsW (i)
N . The following recursion

was obtained in [1], forN = 2n, n ≥ 0, andi = 1, . . . , N ,

W
(2i−1)
2N

(

y2N1 , u2i−2
1 | u2i−1

)

=
1

2

∑

u2i

W
(i)
N

(

yN1 , u2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i

)

W
(i)
N

(

y2NN+1, u
2i−2
1,e | u2i

)

(1)

W
(2i)
2N

(

y2N1 , u2i−1
1 | u2i

)

=
1

2
W

(i)
N

(

yN1 , u2i−2
1,o ⊕ u2i−2

1,e | u2i−1 ⊕ u2i

)

W
(i)
N

(

y2NN+1, u
2i−2
1,e | u2i

)

(2)

whereu2i−2
1,o (u2i−2

1,e , respectively) denote the odd (even) elements in the vectoru2i−2
1 . The recursion is initialized

by W
(1)
1 = W .

Following the notation in [17] we now make the following additional definitions. Given two B-DMCs,Q1 :

X → Y1 andQ2 : X → Y2, we define the following two channels,Q1 � Q2 : X → Y1 × Y2 andQ1 ⊛ Q2 :

X → Y1 × Y2 × X , by

(Q1 � Q2) (y1, y2 | u) ∆

=
1

2

∑

x

Q1 (y1 | u⊕ x)Q2 (y2 | x)

(Q1 ⊛Q2) (y1, y2, x | u) ∆

=
1

2
Q1 (y1 | x⊕ u)Q2 (y2 | u)

Using these definitions we can express (1)-(2) as,

W̃
(2i−1)
2N

(

y2N1 , u2i−2
1,o ⊕ u2i−2

1,e , u2i−2
1,e | u2i−1

)

= (W
(i)
N � W

(i)
N )

(

y2N1 , u2i−2
1,o ⊕ u2i−2

1,e , u2i−2
1,e | u2i−1

)

W̃
(2i)
2N

(

y2N1 , u2i−2
1,o ⊕ u2i−2

1,e , u2i−2
1,e , u2i−1 | u2i

)

= (W
(i)
N ⊛W

(i)
N )

(

y2N1 , u2i−2
1,o ⊕ u2i−2

1,e , u2i−2
1,e , u2i−1 | u2i

)

WhereW̃ (2i−1)
2N and W̃

(2i)
2N are the same channels asW (2i−1)

2N andW
(2i)
2N (respectively) defined in (1)-(2) up to a

relabeling of the outputs. Hence, from an operational pointof view, the channels̃W (2i−1)
2N andW̃ (2i)

2N are identical

to W
(2i−1)
2N andW (2i)

2N .

By these observations we can now define a random process representing the evolution of the sub-channels as

follows [1], [17]. LetB1, B2, . . . be a sequence of independent identically distributed binary {0, 1} random variables

that are uniformly distributedPr {Bn = 0} = Pr {Bn = 1} = 1/2. Let W0 = W and letWn be defined recursively

as follows,

Wn+1 =







W−
n , if Bn+1 = 0

W+
n if Bn+1 = 1.

(3)

3If the channel is BMS then this statement holds for any value of uF . Otherwise, this statement is valid ifuF is chosen uniformly at

random.
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u

1
2 · 1{u⊕x1⊕x2=0}

x1 x2

W (y1 | x1) W (y2 | x2)

u

1
2 · 1{x1⊕u=x}

x1

W (y1 | x1) W (y2 | u)

Fig. 1. The description of theW− (left) andW+ (right) channels using factor graphs

for n = 0, 1, 2, . . . where

W− (y1, y2 | u) ∆

= (W � W )(y1, y2 | u) =
1

2

∑

x

W (y1 | u⊕ x)W (y2 | x)

and

W+(y1, y2, x | u) ∆

= (W ⊛W )(y1, y2, x | u) = 1

2
W (y1 | x⊕ u)W (y2 | u)

The channels,W− andW+, are depicted in Figure 1 using standard factor graph representations [18].

The random variableWn is uniformly distributed over theN = 2n sub-channels
{

W
(i)
N

}N−1

i=0
. Hence, denoting

by In = I(Wn) andZn = Z(Wn), we have,

Pr [In ∈ (a, b)] =
∣

∣

∣

{

i : I
(

W
(i)
N

)

∈ (a, b)
}∣

∣

∣ / N

and

Pr [Zn ∈ (a, b)] =
∣

∣

∣

{

i : Z
(

W
(i)
N

)

∈ (a, b)
}∣

∣

∣ / N

Using these relations one can analyze the process (3) and then obtain upper bounds on the error probability of

polar codes under SC decoding [1], [2].

It can be shown [19], [1], [17], [5], [16], [14] that

Z(W+) = Z2(W ) (4)

and

Z(W )
√

2− Z2(W ) ≤ Z(W−) ≤ 2Z(W )− Z2(W ) (5)

The lower bound is obtained for a binary symmetric channel (BSC) and the upper bound for a BEC.
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III. I MPROVED SCALING RESULTS FOR POLAR CHANNEL CODES

Consider a binary-input channelW with symmetric capacityI(W ). We wish to communicate over the channel

using a polar code with blocklengthN and rateR. The error probability, when using the SC decoder, is required to

be belowPe. In [16], [14], upper bounds on the required blocklength,N , were obtained under various conditions.

In particular, in [14] it was shown that it is sufficient to have

N = β/ (I(W )−R)7 (6)

(or larger) whereβ is a constant that depends only onPe and I(W ). The main tool in the proof was an upper

bound on the number of non-polarizing sub-channels. In thissection we first obtain an improved upper bound on

the number of non-polarizing sub-channels. This bound willbe used to obtain an improvement to (6).

Given some functionf0(z), defined over[0, 1] such thatf0(z) > 0 for z ∈ (0, 1) and f0(0) = f0(1) = 0, we

definefk(z) for k = 1, 2, . . . recursively as follows,

fk(z) , sup
y∈[z

√
2−z2,z(2−z)]

fk−1

(

z2
)

+ fk−1(y)

2
. (7)

It follows from this definition that fork = 0, 1, 2, . . .

fk(0) = fk(1) = 0 (8)

We also define

Lk(z) =
fk(z)

f0(z)
, Lk = sup

z∈(0,1)
Lk(z) (9)

By these definitions we have, forz ∈ (0, 1)

fk(z) = sup
y∈[z

√
2−z2,z(2−z)]

1

2

[

fk−1(z
2)

f0(z2)
f0(z

2) +
fk−1(y)

f0(y)
f0(y)

]

≤ Lk−1 · sup
y∈[z

√
2−z2,z(2−z)]

1

2

[

f0(z
2) + f0(y)

]

≤ Lk−1 · f1(z)

Hence,
fk(z)

f0(z)
≤ Lk−1 ·

f1(z)

f0(z)
≤ Lk−1 · L1

By taking the supremum of the left-hand side overz ∈ (0, 1) we obtain

Lk ≤ Lk−1 · L1

Applying the last relation recursivelyk times we thus conclude that

k
√

Lk ≤ L1 (10)

Lemma 1. For every functionf0(z) defined over[0, 1] such thatf0(z) > 0 for z ∈ (0, 1) and f0(0) = f0(1) = 0,

E [f0 (Zn)] ≤ Ln · f0 [Z(W )] . (11)
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Furthermore, for any integer0 < k < n,

E [f0 (Zn)] ≤
(

L1
k
√
Lk

)k−1

·
(

k
√

Lk

)n

· f0 [Z(W )] (12)

For k = 1, (12) degenerates to the result obtained in [14]. Note that,due to (10), the right-hand side of (12)

cannot have a slower rate of decay compared to the decay obtained in [14].

Proof: First, we note that:

E [fk (Zn+1)] = E

[

fk (Z
+
n ) + fk (Z

−
n )

2

]

≤ E



 sup
Zn

√
2−Z2

n≤y≤2Zn−Z2
n

fk
(

Z2
n

)

+ fk (y)

2





= E [fk+1 (Zn)]

where the inequality follows from (4)–(5), and the last equality follows from (7). Repeating this stepk times, we

obtain

E [f0 (Zn)] ≤ E [fk (Zn−k)]

= E

[

fk (Zn−k)

f0 (Zn−k)
f0 (Zn−k)

]

≤ Lk · E [f0 (Zn−k)] . (13)

where the last inequality follows from (9). Settingk = n yields (11). Now suppose thatn ≡ r mod k. We can

reapply (13),n−r
k

times, thus obtaining

E [f0 (Zn)] ≤ L
n−r

k

k E [f0 (Zr)]

≤ L
n−r

k

k · Lr
1 · f0 [Z(W )]

=

(

L1
k
√
Lk

)r

·
(

k
√

Lk

)n

· f0 [Z(W )]

where the second inequality follows from (10) and (11). Now,using (10) andr ≤ k − 1 we have,
(

L1
k
√
Lk

)r

≤
(

L1
k
√
Lk

)k−1

This yields (12).

The computation ofLk(z) for z close to0 or 1 can present numerical problems due to the division of zero

by zero (see (8)). Consider the functionf0(z) = zα(1 − z)β , whereα ∈ (0, 1) andβ ∈ (0, 1). As the following

lemma shows, for this function we can calculateLk(z) analytically for z close to zero or close to one. The main

conclusion of the lemma is the last part.

Lemma 2. Suppose thatf0(z) = zα(1− z)β whereα ∈ (0, 1) and β ∈ (0, 1). Then,

1) For eachk ≥ 0 there exists0 < ǫk < 1 s.t. fk(z) is increasing in(0, ǫk). Furthermore,

fk+1(z) =
fk

(

z2
)

+ fk
(

2z − z2
)

2
z ∈ (0, ǫk+1) (14)
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2) For eachk ≥ 0 there exists0 < ǫ̃k < 1 s.t. fk(z) is decreasing in(ǫ̃k, 1). Furthermore,

fk+1(z) =
fk

(

z2
)

+ fk

(

z
√
2− z2

)

2
z ∈ (ǫ̃k+1, 1) (15)

3) For eachk ≥ 0 and finitea and b

lim
z→0+

fk
[

az +O
(

z2
)]

fk [bz +O (z2)]
=

(a

b

)α

4) For eachk ≥ 0 and finitea and b

lim
z→1−

fk
[

1− a(1− z) +O
[

(1− z)2
]]

fk [1− b(1− z) +O [(1− z)2]]
=

(a

b

)β

5) For eachk ≥ 0 and integerm ≥ 0

lim
z→0+

fk (2
mz)

2mf0(z)
= lim

z→0+

f0
(

2k+mz
)

2k+mf0(z)

lim
z→1−

fk [1− 2m(1− z)]

2mf0(z)
= lim

z→1−

f0
[

1− 2k+m(1− z)
]

2k+mf0(z)

6) For eachk ≥ 0

lim
z→0+

1

k
log

fk(z)

f0(z)
= α− 1 (16)

lim
z→1−

1

k
log

fk(z)

f0(z)
= β − 1 (17)

Proof: The proof of part 1) follows by induction. The functionf0(z) is indeed increasing forz ∈ (0, ǫ0) for

some0 < ǫ0 < 1. We assume our claim is true fork, and prove it fork + 1. Let ǫk+1
∆

= 1 − √
1− ǫk. Consider

z ∈ (0, ǫk+1) (note that1 − √
1− ǫk ≤ ǫk). Thenz2 ≤ 2z − z2 ≤ ǫk. Sincefk(z) is increasing forz ∈ (0, ǫk),

we obtain (14) by the definition (7). Furthermore, (14) showsthat fk+1(z) is increasing forz ∈ (0, ǫk+1) (for

z ∈ (0, ǫk+1), bothz2 and2z−z2 are increasing and bounded above byǫk, andfk(z) is increasing forz ∈ (0, ǫk)).

The proof of part 2) is very similar and also follows by induction. The functionf0(z) is indeed decreasing for

z ∈ (ǫ̃0, 1) for some0 < ǫ̃0 < 1. We assume our claim is true fork, and prove it fork + 1. Let ǫ̃k+1
∆
=

√
ǫ̃k.

Considerz ∈
(√

ǫ̃k, 1
)

(note that
√
ǫ̃k ≥ ǫ̃k). Thenz

√
2− z2 > z2 > ǫ̃k. Sincefk(z) is decreasing forz ∈ (ǫ̃k, 1),

we obtain (15) by the definition (7). Furthermore, (15) showsthat fk+1(z) is decreasing forz ∈ (ǫ̃k+1, 1) (for

z ∈ (ǫ̃k+1, 1), bothz2 andz
√
2− z2 are increasing and bounded below byǫ̃k, andfk(z) is decreasing forz ∈ (ǫ̃k,1)).

The proof of part 3) follows by induction. Trivially, it is true for k = 0. We assume our claim is true fork and

prove it for k + 1.

lim
z→0+

fk+1

[

az +O
(

z2
)]

fk+1 [bz +O (z2)]
= lim

z→0+

fk
[

O
(

z2
)]

+ fk
[

2az +O
(

z2
)]

fk [O (z2)] + fk [2bz +O (z2)]

= lim
z→0+

fk[O(z2)]
fk[2bz+O(z2)] +

fk[2az+O(z2)]
fk[2bz+O(z2)]

fk[O(z2)]
fk[2bz+O(z2)] + 1

=
0 +

(

2a
2b

)α

0 + 1
=

(a

b

)α
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where the first equality follows from (14), and the third equality follows from the induction assumption.

The proof of part 4) is very similar and also follows by induction. Trivially, it is true for k = 0. We assume our

claim is true fork, and prove it fork + 1.

lim
z→1−

fk+1

{

1− a(1− z) +O
[

(1− z)2
]}

fk+1 {1− b(1− z) +O [(1− z)2]} = lim
z→1−

fk
{

1− 2a(1 − z) +O
[

(1− z)2
]}

+ fk
{

1 +O
[

(1− z)2
]}

fk {1− 2b(1 − z) +O [(1− z)2]}+ fk {1 +O [(1− z)2]}

= lim
z→1−

fk{1−2a(1−z)+O[(1−z)2]}
fk{1−2b(1−z)+O[(1−z)2]} + fk{1+O[(1−z)2]}

fk{1−2b(1−z)+O[(1−z)2]}

1 + fk{1+O[(1−z)2]}
fk{1−2b(1−z)+O[(1−z)2]}

=

(

2a
2b

)β
+ 0

1 + 0
=

(a

b

)β

where the third equality follows from the induction assumption, and the first equality follows from (15) and the

following relation forz arbitrarily close to one,

{

1− a(1− z) +O
[

(1− z)2
]}

√

2− {1− a(1− z) +O [(1− z)2]}2

=
{

1− a(1− z) +O
[

(1− z)2
]}

√

1 + 2a(1− z) +O [(1− z)2]

=
{

1− a(1− z) +O
[

(1− z)2
]}{

1 + a(1− z) +O
[

(1− z)2
]}

= 1 +O
[

(1− z)2
]

. (18)

The proof of part 5) also follows by induction. Fork = 0 the claim is trivial. Now we assume the statement is

correct fork and prove it fork + 1. We have,

lim
z→0+

fk+1 (2
mz)

2mf0(z)
= lim

z→0+

fk(2
m+1z − 4mz2) + fk(4

mz2)

2m+1f0(z)

= lim
z→0+

fk(2
m+1z)

2m+1f0(z)

= lim
z→0+

f0(2
k+m+1z)

2k+m+1f0(z)

where the first equality follows from (14), the second follows from part 3), and the third follows from the induction

assumption.

Similarly, for z → 1−, the proof follows by induction. Fork = 0 the claim is trivial. Now we assume the

statement is correct fork and prove it fork + 1. We have,

lim
z→1−

fk+1 [1− 2m(1− z)]

2mf0(z)
= lim

z→1−

fk

{

[1− 2m(1− z)]2
}

+ fk

{

[1− 2m(1− z)]
√

2− [1− 2m(1− z)]2
}

2m+1f0(z)

= lim
z→1−

fk
[

1− 2m+1(1− z)
]

2m+1f0(z)

= lim
z→1−

f0
[

1− 2k+m+1(1− z)
]

2k+m+1f0(z)

where the first equality follows from (15), the third followsfrom the induction assumption, and the second follows

from part 4), using (18) witha = 2m.
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Fig. 2. A plot of 1

k
logLk(z) for k = 1 andk = 50 whenf0(z) = zα(1− z)β .

Finally, the proof of part 6) follows from part 5) withm = 0 as follows

lim
z→0+

1

k
log

fk(z)

f0(z)
= lim

z→0+

1

k
log

f0
(

2kz
)

2kf0 (z)

= lim
z→0+

1

k
log

(

2kz
)α

2kzα
= α− 1

and

lim
z→1−

1

k
log

fk(z)

f0(z)
= lim

z→1−

1

k
log

f0
[

1− 2k(1− z)
]

2kf0 (z)

= lim
z→1−

1

k
log

[

2k(1− z)
]β

2k(1− z)β
= β − 1

Now suppose thatf0(z) = z0.7(1 − z)0.6. As can be seen in Figure 2, we obtainL1 = 2−0.1498 and 50
√
L50 =

2−0.2097. Using (16)–(17), we see that for all values ofk

lim
z→0+

1

k
logLk(z) = −0.3

lim
z→1−

1

k
logLk(z) = −0.4

Note the sharp derivative offk(z) for z close to zero or one whenk is large.

In Figure 3 we see thatk
√
Lk converges to a constant value fork → ∞, and that it has almost converged for

k = 50.
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Let Yn be defined by,

Yn
∆

= min (Zn, 1− Zn) (19)

Lemma 3. The following holds,

Pr (Yn > δ) ≤ α1

2δ
· 2−0.2097n

whereα1 is some constant.

Proof: We use

f0(z) = z0.7(1− z)0.6

It can be verified thatf0(z) is concave. Combining this withf0(0) = f0(1) = 0, we obtainYn ≤ f0(Zn)
2f0(0.5)

(this

inequality is verified for the two possible cases,Zn ≤ 1/2 andZn ≥ 1/2). Therefore, by Markov’s inequality,

Pr (Yn > δ) ≤ Pr

(

f0(Zn)

2f0(0.5)
> δ

)

≤ E [f0 (Zn)] · (2f0(0.5)δ)−1

Applying (12) yields,

Pr (Yn > δ) ≤
(

f0 [Z(W )]

2f0(0.5)δ

)

·
(

L1
k
√
Lk

)k−1
(

k
√

Lk

)n

WhereLk is defined in (9). As was noted above (Figure 2), numerical calculations show thatL1 = 2−0.1498, and

for k = 50, k
√
Lk = 2−0.2097. This proves our claim.
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We now need to translate this result on the rate of non-polarizing channels to a bound on the error rate. We

could use the analysis of [14]. However, we present an alternative simple approach. This approach easily extends

to the analysis of polar lossy source coding in the next section. We first state and prove the following.

Lemma 4. Suppose that

Pr (∀n ≥ m0 : Zn 6∈ (δ, 1 − δ)) ≥ 1− ǫ (20)

for some integerm0, 0 < ǫ < 1 and 0 < δ < 1/3. Then

Pr (∀n ≥ m0 : Zn ≤ δ) ≥ I(W )− ǫ

Pr (∀n ≥ m0 : Zn ≥ 1− δ) ≥ 1− I(W )− ǫ

Proof: In [1] it was shown thatlimn→∞Pr (Zn ≤ δ) = I(W ) and limn→∞Pr (Zn ≥ 1− δ) = 1 − I(W ).

Assume

Pr (∀n ≥ m0 : Zn ≤ δ) = a1

Pr (∀n ≥ m0 : Zn ≥ 1− δ) = a2 .

(a1 anda2 depend onm0). Combining this with (20) yields

1− ǫ ≤ Pr (∀n ≥ m0 : Zn /∈ (δ, 1 − δ))

= Pr (∀n ≥ m0 : Zn ≤ δ) + Pr (∀n ≥ m0 : Zn ≥ 1− δ)

= a1 + a2 (21)

The first equality follows due to the assumptionδ < 1/3 and (4)–(5), by which it follows that it is impossible

to haveZn ≤ δ and Zn+1 ≥ 1 − δ simultaneously, and it is also impossible thatZn ≥ 1 − δ and Zn+1 ≤ δ

simultaneously. That is,

{∀n ≥ m0 : Zn /∈ (δ, 1 − δ)} = {∀n ≥ m0 : Zn ≤ δ} ∪ {∀n ≥ m0 : Zn ≥ 1− δ}

This explains the first equality in (21). Now, clearly,

a1 ≤ I(W ) , a2 ≤ 1− I(W ) (22)

We claim thata1 ≥ I(W ) − ǫ anda2 ≥ 1 − I(W ) − ǫ. By contradiction, assume thata1 < I(W ) − ǫ. Then, by

(22), a1 + a2 < 1− ǫ, which contradicts (21). Therefore,a1 ≥ I(W )− ǫ. Similarly, assume by contradiction that

a2 < 1− I(W )− ǫ. By (22), a1 + a2 < 1− ǫ, which contradicts (21). Thereforea2 ≥ 1− I(W )− ǫ.

We can now state and prove our main result.

Theorem 1. Suppose that we wish to use a polar code with rateR and blocklengthN to transmit over a binary-input

channel,W , with error probability at mostPe > 0. Then it is sufficient to set

N =
β

(I(W )−R)5.77
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(or larger) whereβ is a constant that depends only onPe.

Note: Our analysis can also be used to derive specific bounds on N for a given value ofPe.

Proof: By Lemma 3 and Markov’s inequality we have

Pr (∃n ≥ m0 : Zn ∈ (δ, 1 − δ)) ≤
∞
∑

n=m0

Pr (Yn > δ) ≤ α1

2δ
· 2−ρm0

1− 2−ρ

whereρ = 0.2097. That is,

Pr (∀n ≥ m0 : Zn /∈ (δ, 1 − δ)) ≥ 1−
(α1

2δ

)

· 2−ρm0

1− 2−ρ

and together with Lemma 4 we obtain

Pr (∀n ≥ m0 : Zn ≤ δ) ≥ I(W )−
(α1

2δ

)

· 2−ρm0

1− 2−ρ
(23)

Pr (∀n ≥ m0 : Zn ≥ 1− δ) ≥ 1− I(W )−
(α1

2δ

)

· 2−ρm0

1− 2−ρ
. (24)

In [1, Section IV.B], Arikan defined the event

Tm0
(δ) , {Zn ≤ δ ∀n ≥ m0}

Equation (23) can be rewritten as

Pr [Tm0
(δ)] ≥ I(W )−

(α1

2δ

)

· 2−ρm0

1− 2−ρ

In [1, Section IV.B], Arikan also defined

Um0,n(η) ,

{

n
∑

i=m0+1

Bi > (0.5 − η)(n −m0)

}

for n > m0 ≥ 0 and0 < η < 0.5. In [1, Equation (47)] it was shown that

Pr [Um0,n(η)] ≥ 1− 2−[1−h2(0.5−η)](n−m0) .

whereh2(x) = −x log x− (1− x) log(1− x) is the binary entropy function. Applying the union bound yields

Pr [Tm0
(δ) ∩ Um0,n(η)] ≥ I(W )− 2−[1−h2(0.5−η)](n−m0) −

(α1

2δ

)

· 2−ρm0

1− 2−ρ
.

If we pick

m0 =
[1− h2(0.5 − η)]n

1− h2(0.5 − η) + ρ
(25)

we obtain

Pr [Tm0
(δ) ∩ Um0,n(η)] ≥ I(W )−

(

1 +
α1

2δ (1− 2−ρ)

)

· 2−αn .

where

α =

(

1

1− h2(0.5− η)
+

1

ρ

)−1
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Clearly, limη→0.5 α =
(

1 + 1
ρ

)−1
. Arikan proved that if the eventTm0

(δ) ∩ Um0,n(η) holds, thenZn ≤
δ
[

20.5+ηδ0.5−η
]n−m0 . If we pick m0 as in (25) and

log δ = −
1.5 + η + 1−h2(0.5−η)

ρ

0.5− η
− κ (26)

whereκ > 0 is a constant, we obtain that if the eventTm0
(δ) ∩ Um0,n(η) holds, then

Zn ≤ δ · 2−n
[

1+ κρ(0.5−η)

1−h2(0.5−η)+ρ

]

Hence,

Pr

(

Zn ≤ δ · 2−n
[

1+ κρ(0.5−η)

1−h2(0.5−η)+ρ

]
)

≥ I(W )−
(

1 +
α1

2δ (1− 2−ρ)

)

· 2−αn

Now, for every rate

R ≤ I(W )−
(

1 +
α1

2δ (1− 2−ρ)

)

· 2−αn (27)

let AN be defined as the set ofN · R smallest values of
{

Z
(

W
(i)
N

)}N

i=1
(AN are the active channels, those that

are not frozen). From the two inequalities above, we know that

max
i∈AN

Z
(

W
(i)
N

)

≤ δ ·N−1− κρ(0.5−η)

1−h2(0.5−η)+ρ .

From [1, Proposition 2] we know thatPr(E) ≤
∑

i∈AN
Z
(

W
(i)
N

)

. Putting this together, we obtain

Pr(E) < NRmax
i∈AN

Z
(

W
(i)
N

)

≤ Rδ ·N− κρ(0.5−η)

1−h2(0.5−η)+ρ (28)

If we define∆ = I(W )−R, then (27) becomes

logN ≥
[

log

(

1 +
α1

2δ (1− 2−ρ)

)

− log ∆

](

1

1− h2(0.5− η)
+

1

ρ

)

(29)

where0 < η < 0.5 and0 < κ are constants, andlog δ is defined in (26). In addition,

logN ≥ [log δ − log Pe]

(

1− h2(0.5 − η) + ρ

κρ(0.5 − η)

)

is equivalent to

δ ·N− κρ(0.5−η)

1−h2(0.5−η)+ρ ≤ Pe .

Since (27) (i.e., (29)) yields (28), it follows that if

logN ≥ max

{[

log

(

1 +
α1

2δ (1− 2−ρ)

)

− log ∆

](

1

1− h2(0.5 − η)
+

1

ρ

)

,

[log δ − log Pe]

(

1− h2(0.5− η) + ρ

κρ(0.5 − η)

)}

then

Pr (E) ≤ Rδ ·N− κρ(0.5−η)

1−h2(0.5−η)+ρ ≤ Pe .

We have thus obtained an upper bound on the blocklength required for communications with error probability at

mostPe as a function of the gap to the symmetric capacity.
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Settingη → 0.5−, (i.e., δ → 0+) and using the fact that, by Lemma 3,ρ = 0.2097 (so that(1 + 1/ρ) < 5.77)

yields the required result.

In appendix A we briefly indicate how, instead of the Bhattacharyya parameter, we can use the symmetric capacity

to derive bounds using a very similar approach.

IV. SCALING RESULTS FOR POLAR LOSSY SOURCE CODING

A. Background

We start by providing a brief background on polar source coding [5] (see also [20], [7]). Consider some random

variableY ∈ Y, and assume for simplicity thatY is finite. Also denoteX = {0, 1}. The source vector random

variable,Y = Y N
1 , is created by independent sampling of the sourceY . Let d(x,y) be some finite distance measure

between twoN dimensional vectors,x = xN1 andy = yN1 , such thatd(x,y) =
∑N

i=1 d(xi, yi) whered(x, y) is

the distance between the symbolsx ∈ X and y ∈ Y. Suppose thatd(x, y) ≤ dmax for all x ∈ X and y ∈ Y (in

[5, Lemma 5]dmax = 1). Given some distortion level,D > 0, let W (y | x) be the test channel that achieves the

symmetric rate-distortion,R(D), of the source, defined as rate-distortion under the constraint that the input to the

test channel,X, is uniformly distributed overX . A polar source code is then constructed using this test channel.

The code has a frozen setF that consists of the(1−R) ·N sub-channels with the largest values ofZ
(

W
(i)
N

)

. This

code uses some arbitrary frozen vectoruF which is known both to the encoder and to the decoder (e.g.,uF = 0)

and has rateR = |F c|/N . Given Y = y the SC encoder applies the following scheme. Fori = 1, 2, . . . , N , if

i ∈ F then ûi = ui, otherwise

ûi =







0 w.p. L(i)
N /

(

L
(i)
N + 1

)

1 w.p. 1/
(

L
(i)
N + 1

)

The complexity of this scheme isO(N logN). SinceûF = uF is common knowledge, the decoder only needs

to obtain ûF c from the encoder (|F c| bits). It can then reconstruct the approximating source codewordx using

x = ûG⊗n
2 . Let Ed(X(Y),Y)/N be the average distortion of this polar code (the averaging is over both the source

vector,Y, and over the approximating source codeword,X(Y), which is determined at random fromY). Denote by

D the design distortion (using which we construct the test channel and design the code), byDN = Ed(X(Y),Y)/N

the actual distortion, and byR the rate of the code. In [5] it was shown, forN sufficiently large, that the rate,R,

can approach the symmetric rate-distortion function,R(D), arbitrarily close and at the same time

DN −D ≤ O
(

2−Nβ
)

(30)

Note that ifW (y | x) is a symmetric channel, the value ofuF can be set arbitrarily. IfW (y | x) is not symmetric,

we must average over all2|F | choices ofuF while calculatingDN in order to obtain (30).

B. Upper Bound on the blocklength

We now apply our results in Section III to obtain upper boundson the blocklength of polar lossy source codes.
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Theorem 2. Suppose that we wish to use a polar code with rateR for lossy source coding of some source with

a symmetric distortion-rate function,D(·), with average distortionDN > D(R), redundancyDN (R)
∆
= DN −

D(R) [21], and blocklengthN . Then, in order to obtain a redundancy at mostD0 (i.e., D0
N (R) ≤ D0) it is

sufficient to set

N =
β

(D0)5.77

(or larger) whereβ is a constant that depends only onR, dmax andD(·).

Proof: Denote byD the design distortion, and byI(W ) the symmetric capacity of the test channel such that

I(W ) = R(D) [5]. We will follow the proof of Theorem 1, replacingZn with 1 − Z2
n, as in the proof of [5,

Theorem 19]. IfZn ≥ 1− δ, then1− Z2
n ≤ 2δ − δ2 ≤ 2δ. Hence, by (24),

Pr
(

∀n ≥ m0 : 1− Z2
n ≤ δ

)

≥ 1− I(W )−
(α1

δ

)

· 2−ρm0

1− 2−ρ
(31)

Define

Sm0
(δ) ,

{

1− Z2
n ≤ δ ∀n ≥ m0

}

for δ ≥ 0 andm0 ≥ 0. Rewriting (31) we have,

Pr [Sm0
(δ)] ≥ 1− I(W )−

(α1

δ

)

· 2−ρm0

1− 2−ρ
.

In the proof of [5, Theorem 19] it is shown that

1− Z2
n+1 ≤







(

1− Z2
n

)2
, if Bn+1 = 0;

2
(

1− Z2
n

)

, if Bn+1 = 1.

where theBn sequence was defined in Section II. Hence, if the eventSm0
(δ) holds andn ≥ m0, then

1− Z2
n+1

1− Z2
n

≤







δ if Bn+1 = 0;

2 if Bn+1 = 1.

(using (4)–(5)). Similarly to the proof of [1, Theorem 2], ifthe eventSm0
(δ) holds andn > m0, then

1− Z2
n ≤ δ · 2n−m0 ·

n
∏

i=m0+1

(δ/2)B̃i

whereB̃i = 1−Bi. Hence, if the eventSm0
(δ) ∩ Ũm0,n(η) holds, then

1− Z2
n ≤ δ ·

[

2
1

2
+ηδ

1

2
−η

]n−m0

where the set̃Um0,n(η) is defined as

Ũm0,n(η) ,

{

n
∑

i=m0+1

B̃i > (0.5 − η)(n −m0)

}

.

Settingm0 as in (25) andδ as in (26), we obtain

1− Z2
n ≤ δ · 2−n

[

1+ κρ(0.5−η)

1−h2(0.5−η)+ρ

]
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if the eventSm0
(δ) ∩ Ũm0,n(η) holds. Hence,

Pr

(

1− Z2
n ≤ δ · 2−n

[

1+ κρ(0.5−η)

1−h2(0.5−η)+ρ

]
)

≥ 1− I(W )−
(

1 +
α1

δ (1− 2−ρ)

)

· 2−αn

For every rate

R ≥ I(W ) +

(

1 +
α1

δ (1− 2−ρ)

)

· 2−αn (32)

we pickF as the set ofN(1−R) largest values ofZ
(

W
(i)
N

)

. Since1− Zn ≤ 1− Z2
n, from the two inequalities

above, we know that

max
i∈F

(

1− Z
(

W
(i)
N

))

≤ δ ·N−1− κρ(0.5−η)

1−h2(0.5−η)+ρ .

From [5, Lemma 5] and [5, Lemma 7] we know thatDN − D ≤ dmax
∑

i∈F

√

2
(

1− Z
(

W
(i)
N

))

. Putting this

together, we obtain

DN −D ≤ dmaxN(1−R)max
i∈F

√

2
(

1− Z
(

W
(i)
N

))

≤ dmax

√
2δ(1−R)N

1

2
− κρ(0.5−η)

2[1−h2(0.5−η)+ρ]

Defining∆
∆

=R− I(W ), we obtain

DN (R) = DN −D +D −D(R) = DN −D +∆

∣

∣

∣

∣

D(R)−D

R− I(W )

∣

∣

∣

∣

≤ DN −D +∆ ·
∣

∣D′(I(W ))
∣

∣

whereD′(x) = dD(x)
dx

. The last inequality follows from the convexity ofD(R). Note that in this bound we have

one degree of freedom, the design distortionD, which defines the symmetric capacityI(W ) (I(W ) = R(D)) of

the test channel. SettingI(W ) equal to the right-hand side in (32) yields,

DN (R) ≤ dmax

√
2δ(1−R)N

1

2
− κρ(0.5−η)

2[1−h2(0.5−η)+ρ] +

(

1 +
α1

δ (1− 2−ρ)

)

·N−
(

1

1−h2(0.5−η)
+ 1

ρ

)

−1

·
∣

∣D′(I(W ))
∣

∣ . (33)

We now setη → 0.5− andκ large so thatδ → 0+. Furthermore, ifκ is sufficiently large then the second term

in (33) is asymptotically dominant. In addition, forN = β/(D0)5.77 where the constantβ is sufficiently large, we

obtain

I(W ) = R−
(

1 +
α1

δ (1− 2−ρ)

)

·N−α >
R

2

Hence, due to convexity ofD(R), |D′(I(W ))| < |D′(R/2)|. It follows from (33) (usingρ = 0.2097 by Lemma 3)

that if β is sufficiently large thenDN (R) < D0.

Zhang et al. proved in [21], that the best achievable distortion redundancy isD(R) = Θ
(

lnN
N

)

. Asymptotically,

it is better than our results.

V. D ISCUSSION

In this paper we have considered a polar code with blocklength N and rateR transmitted over a binary-input

channel,W , with symmetric capacityI(W ). Decoding is performed using the SC decoder. If the error probability

needs to be below somePe > 0, then it is sufficient to haveN = β/ (I(W )−R)µ. Hereβ is a constant that

depends only onPe, andµ = 5.77. The results were also extended to polar source coding. The natural question to
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ask is what is the lowest possible value of the scaling parameter µ. From the simulations presented in [14, Figure

3] it seems likely that we must haveµ > 5. Hence, the value ofµ that we obtained seems close to the optimum.

Nevertheless, further improvements in the bound onµ may perhaps be obtained. Our best results were obtained

when using the Bhattacharyya parameter in the analysis. These results were better compared to the results obtained

when using the symmetric capacity (i.e., mutual information) parameter. We have also made some efforts to work

with the error rate and the channel parameter considered in [22]. These parameters were also inferior compared to

the Bhattacharyya parameter. However, other channel parameters may possibly yield further improvements to our

results.

The optimal scaling law ofN with respect to the gap to the symmetric capacity,I(W )−R, isO((I(W )−R)−2).

Using polar codes we now know that the scaling law isO
(

(I(W )−R)−µ
)

where3.55 ≤ µ ≤ 5.77 (The lower

bound,3.55, was obtained after approximating the block error probability by the sum of Bhattacharyya parameters,

but it is also the scaling factor of the BEC). As noted in [14] the scaling can be improved by using more general

polarization kernels. This topic is left for future research. Another possibility for future research concerns the

blocklength scaling of nonbinary polar codes.

APPENDIX A

SCALING RESULTS USING MUTUAL INFORMATION

Assume for simplicity that the channel is BMS (in [17] it is noted how to generalize to non-symmetric channels).

It can be shown [18, Chapter 4] that the following inequalities hold,

I(W−) ≤ 1− h2
(

2h−1
2 (1− I(W ))(1 − h−1

2 (1− I(W )))
)

I(W−) ≥ I2(W )

In addition,

I(W+) + I(W−) = 2I(W )

Motivated by these inequalities, we modify the definition offk(z) as follows. Given some functionf0(x), defined

over [0, 1] such thatf0(x) > 0 for x ∈ (0, 1), andf0(0) = f0(1) = 0, we definefk(x) for k = 1, 2, . . . recursively

as follows,

fk(x) , sup
ǫl(x)≤ǫ≤ǫh(x)

fk−1(x+ ǫ) + fk−1(x− ǫ)

2

whereǫl(x) andǫh(x) are defined by

ǫl (x) = x+ h2
{

2h−1
2 [1− x] ·

[

1− h−1
2 [1− x]

]}

− 1

ǫh (x) = x− x2 .
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The definitions ofLk(x) andLk are the same as in (9). With the new definition offk(x), Equation (10) still

holds. Similarly to (12) we have, for an integer0 < k < n,

E [f0 (In)] ≤
(

L1
k
√
Lk

)k−1

·
(

k
√

Lk

)n

· f0 [I(W )]

Similarly to (19) we defineJn
∆

= min(In, 1− In). Using the concave function

f0(x) =
(

1−
√

1− x2
)0.402

(

1− x1.11
)0.604

we obtain, similarly to Lemma 3,

Pr (Jn > δ) ≤ α1

2δ
· 2−0.1786n

Numerical calculations yieldL1 = 2−0.1708 and, for sufficiently largek, k
√
Lk ≤ 2−0.1786.

Similarly to Lemma 4 we have the following. If

Pr [∀n ≥ m0 : In 6∈ (δ, 1 − δ)] ≥ 1− ǫ

for some integerm0, 0 < ǫ < 1 andδ < 1/3. Then

Pr (∀n ≥ m0 : In ≥ 1− δ) ≥ I(W )− ǫ

Pr (∀n ≥ m0 : In ≤ δ) ≥ 1− I(W )− ǫ

The proof is essentially the same as the proof of Lemma 4, withIn replacing1 − Zn. Finally, we can obtain a

result similar to Theorem 1. We use essentially the same proof but with the following modification. First we obtain

a result similar to (23) using the same approach:

Pr (∀n ≥ m0 : In ≥ 1− δ) ≥ I(W )−
(α1

2δ

)

· 2−ρm0

1− 2−ρ

Then we combine it with [1, Equation (2)] to obtain,

Pr (∀n ≥ m0 : Zn ≤ ζ) ≥ I(W )−
(

α1

ζ2

)

· 2−ρm0

1− 2−ρ

and proceed with the derivation in Theorem 1.

However, this time we can only claim that it is sufficient to set

N =
β

(I(W )−R)6.6

(or larger), whereβ is a constant that depends only onPe, since nowρ = 0.1786.
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