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Abstract

Improved bounds on the blocklength required to communioaer binary-input channels using polar codes,
below some given error probability, are derived. For thatppse, an improved bound on the number of non-
polarizing channels is obtained. The main result is thatiloeklength required to communicate reliably scales at
most asO((I(W) — R)~>7") whereR is the code rate and(1W) the symmetric capacity of the chann#¥,. The
results are then extended to polar lossy source codingafralf a source with symmetric distortion-rate function

D(-). The blocklength required scales at most#$Dy — D(R))~5"") where Dy is the actual distortion.

Index Terms

Channel polarization, polar codes, gap to capacity, ratdion, finite length scaling.

. INTRODUCTION

Polar codes, introduced by Arikahn| [1], is an exciting receéedelopment in coding theory. Arikan showed that,
for a sufficiently large blocklength, polar codes can be Usedeliable communications at rates arbitrarily close to
the symmetric capacity (i.e., the mutual information betwe uniform input distribution and the channel output)
of an arbitrary binary-input channel. Arikan also proposedtoding and decoding schemes, whose complexities
scale axO(N log N) where N is the blocklength of the code. Fady sufficiently large, if the code rate is below
the symmetric capacity, then the error probability is uppeunded by2="" for any 8 < 1/2 [A], 2]. In [B] it
was shown that the results can be generalized for reliabteramications below channel capacity over arbitrary
discrete memoryless channels (DMCs). A very attractivgperty of polar codes is that although they are powerful,
they are much simpler to analyze compared to low-densitgypeineck (LDPC) codes. The main drawback of polar
codes compared to LDPC-like codes is their inferior peromoe for codes with short to moderate blocklength
size. However, recently it was shown [4] that the perforneac@n be considerably improved by using a successive
cancelation (SC) list decoder instead of the standard SG@ddecand by incorporating CRC bits.

Although originally proposed for channel coding, polar esdvere extended to lossless and to lossy source
coding [5], [6]. In particular, Korada and Urbanke [5] shalxtbat for any design distortion, there exists a sequence
of polar codes with arbitrarily small redundancy, definedttzes gap between the actual code rate and the rate-
distortion function (evaluated at the design distortiol)e encoding and decoding complexities &re\V log N).
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Polar codes were also proposed to various other problemsilitiuser information theory, including the Wyner-Ziv
and Gelfand-Pinsker problenid [5], write once memories (V8DM] and various other problems.

The rate of channel polarization was first studied in [1], [Bjproved asymptotic upper bounds on the error rate
that are code rate dependent, were presented in[[8],[19],dd0 [11]. These results were obtained by analyzing
the rate of convergence of the polarizing sub-channels.

All the results in the papers mentioned above assume thdtltoi&length, NV, is sufficiently large, and do not
specify how large it should be. The gap between the symmetidnnel capacity and the polar code rate required
for reliable communication, as a function of the blockldngtas discussed in [12], [13] and [14]. A related result
concerns the number of non-polarizing sub-channels forbihary erasure channel (BECQ) [15]. Ih [13], [14],
a binary memoryless symmetric (BMS) chanriél, with capacityl(1¥') was considered (for BMS channels the
symmetric capacity is also the capacity). Suppose that weymlar code with blocklengtN and rateR using the
SC decoder, and that the error probability is bounded abgwve. b> 0. Also suppose that the sum of Bhattacharyya
parameters is used as an approximation to the block errdwapility. Under this approximation, it was shown that
we must haveN > o/ (I(W) — R)". Here, o is a constant that depends only ¢h and R, and the scaling
parameter satisfieg > 3.553. It was further conjectured that the largest possjbles i = 3.627, the parameter
corresponding to the case whel€é is a BEC. In [16], [14] it was further shown, under similar ditions but
without the need to approximate the error probability by $hen of Bhattacharyya parameters, that it is sufficient
to haveN = 3/ (I(W) — R)" (or larger). Here3 is a constant that depends only &h and R. The best scaling
law was obtained in[[14], were it was shown that= 7 is sufficient. In this paper we improve this result to
uw = 5.77. We also extend the results to binary polar lossy sourcengodt rateR of a source with symmetric
distortion-rate functionD(-). Denote the blocklength by, the average distortion bi, and the redundancy by
Dn(R) = Dy — D(R). Then in order to obtain a redundancy at mbst it is sufficient to haveV = 3/ (2)0)5‘77
(or larger), where3 is a constant that depends only 8rand the properties of the source and the distortion measure
used.

The rest of this paper is organized as follows. In Secfidn & pvovide a brief background on polar codes.
In Section[Ill we present our main results in this paper.tRive derive an upper bound on the fraction of non-
polarizing sub-channels. Then we obtain an upper bound @mltitklength required to communicate over a given
binary-input channel, with error probability at madgt, as a function of the gap between the symmetric capacity and
the polar code rate. In Sectién]lV we extend our results tamlolssy source coding. Finally, Sectioh V concludes

the paper.

Il. BACKGROUND ONPOLAR CODES

We will follow the notation in[[1]. Consider a binary-inputsdrete memoryless channel (B-DM®@) : X — )

with input alphabett = {0,1} and output alphalﬂty. The symmetric capacityf the channel (W), is the

1The assumption that the channel is discrete is made forion#tconvenience only. For continuous output channelsssshould be

replaced by integrals.
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mutual information between a uniform input distributiondaihe channel output, |E

W)= 33 1w ) log 1D

1 .
zeX yey Ywex W (Y| a')

The Bhattacharyya parameter of the channel is defined by

ZW)=> VW o)W (y[1).

yey
1 0 .
Let G2 = and let itsnth Kronecker product be&ry". Also denoteN = 2". Let u = u! be
1 1
an N-dimensional binary{0,1} message vector, and léty be the bit-reversal permutation matrix, such that if
iV = ull Py thenw,, 4, = uyp, 5, forall by, ..., b, € {0,1}. We can now define a generator maifix; = PyG5"

andx =z = uGy where the matrix multiplication is ove&F(2). Suppose that we transmit over a B-DMC
with transition probabilityl¥ (y | ) and channel output vectgr = y{'. If u is chosen at random with uniform

probability, 1/2V, then the resulting probability distributioR(u, x, u) is given by

N
1
P(U-7Xa}’) - 2_N]1{X=uGN} HW(yZ ‘ wl)
i=1

Define the followingN sub-channels,

Wty i) = Ply,u™ ) = gy S Ply | w)
ul,

Denote byZ(Wﬁ)) the Bhattacharyya parameters of the sub—chanméﬁé). In [I], [2] it was shown that
asymptotically inN, a fraction (1) of the sub-channels satisW(W](\f)) < 27N" for any 0 < 3 < 1/2. Based
on this result the following communication scheme was psego LetR be the code rate. Denote Wy the set
of N(1 — R) sub-channels with the highest vaIuesZ;(W}\f)) (the frozen sét and by F© the remainingVN - R
sub-channels. Fix the input to the sub-channelB' ito some arbitrary frozen vectarr (known both to the encoder
and to the decoder) and use the channelg'into transmit information. The encoder then transmits= uGy
over the channel. Recalling thatr is common knowledge, the decoder applies the following Skese. For

i1=1,2,...,N: If i € F thend; = u;. Otherwise

0 if LV >1
1 if LV <1
where

W u=0)
Wy (v i = 1)

The base of all logarithms in this paperds
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is the likelihood ratio of the channw(i) (y, @' |u;) corresponding to the channel outputi} . Asymptotically,
reliable communication under SC decoding is possible fgriarc I(W). The error probability is upper bounded by
2N for any 8 < 1/2, Hand both the encoder and the SC decoder can be implementethplexity O(N log N).

The analysis of polar codes is based on analyzing the ewalofithe sub—channeW](V). The following recursion
was obtained in[]1], fotV = 2", n >0, andi =1,..., N,

2i—1
Won (i, u1 2| uzi1)

) ZW(Z <y1 Uiy 0 ‘@ul e Jugi @ U2z> W() (yN+1>u1Ze 2 U2z> 1)

U2;
Win (W3, = [ugs)

1. i
= §W() (yfvﬂho @“16 2 | ugi—1 @U2z> W() (yN+1,u1 e 2 ’ u21> )

whereu?’;? (ui',?, respectively) denote the odd (even) elements in the vector . The recursion is initialized
by W = w.

Following the notation in[[17] we now make the following atioinal definitions. Given two B-DMCs(); :
X = YV andQy : X — )y, we define the following two channel®; ® Q2 : X — V1 x Yo and @ ® Qo :
X = V1 x Yo x X, by

(@1 QZ)(ylayZ‘u)é%ZQl (y1 |udz) Q2 (y2 | 2)

A 1
(Q1®Q2) (Y1,y2,7 | u) = 5@1 (y1 |2 ®u)Q2(y2 | u)
Using these definitions we can express [1)-(2) as,

WZ(?\;_I) (yl ullo 69ule 27”1 e - | U2i— 1) (W(l) E W( )) ( N U%Zo @ul e 27ule 2 | U2i— 1)

Wi (yl uil? @ ul % ul' % ugi \Wz’) =Wy e wy) (yl uil? @l ul % ugi !Wi)

o

WhereWz(f\;_l) and Wz(f\f) are the same channels Héz(f\;_l) and WQ(%) (respectively) defined il {1)42) up to a
relabeling of the outputs. Hence, from an operational pofntiew, the channele(]Z\ﬁ_l) and VVQ(?\?) are identical
to W2(]2\f_1) and Wz(%).

By these observations we can now define a random processeapirey the evolution of the sub-channels as
follows [1]], [17]. Let By, Bo, . .. be a sequence of independent identically distributed ifigrl } random variables
that are uniformly distributedr {B,, = 0} = Pr{B,, = 1} = 1/2. Let W, = W and letWV,, be defined recursively
as follows,

W, if Bpya1 =0

Wi = " . 3)
W;L’_ |f Bn+1 =1.

3If the channel is BMS then this statement holds for any valiee. Otherwise, this statement is valid if» is chosen uniformly at

random.
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Fig. 1. The description of th&/ ~ (left) and W™ (right) channels using factor graphs

forn=0,1,2,... where

W g ) 2 (W@ W) 9 0) = 2 Wl [ue2)W(ys | )

and

R 1
Wy, yo, 2 | u) = (W @ W)(y1,y2, 2 | u) = Wy lz©uw)W(yz|u)

The channelsiV ~ and W™, are depicted in Figurel 1 using standard factor graph reptasons([1B].
Y N-1
The random variabléV,, is uniformly distributed over theév = 2" sub—channel{W](\})}‘_O . Hence, denoting
by I, = I(W,,) and Z,, = Z(W,,), we have,

Pr(l, € (a,b)] = Hz : I(W}j)) c (a,b)}(/N
and
Pr[Z, € (a,b)] = Hz . Z (W}\P) c (a,b)}(/N

Using these relations one can analyze the proddss (3) andothtain upper bounds on the error probability of
polar codes under SC decoding [1]] [2].

It can be shown[19],[]1],[117],15],.[16],14] that
Z(WH) = Z2(W) (4)

and

ZW)N2—Z2(W) < Z(W™) <2Z(W) — Z*(W) (5)

The lower bound is obtained for a binary symmetric chann&{pBand the upper bound for a BEC.
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[11. | MPROVED SCALING RESULTS FOR POLAR CHANNEL CODES

Consider a binary-input chann8l with symmetric capacity (17). We wish to communicate over the channel
using a polar code with blocklengthi and rateR. The error probability, when using the SC decoder, is reglio
be belowP.. In [16], [14], upper bounds on the required blocklength, were obtained under various conditions.

In particular, in [14] it was shown that it is sufficient to leav
N =p/(I(W)~R) (6)

(or larger) wheregs is a constant that depends only éh and I(W). The main tool in the proof was an upper
bound on the number of non-polarizing sub-channels. Inghigion we first obtain an improved upper bound on
the number of non-polarizing sub-channels. This bound béllused to obtain an improvement fd (6).

Given some functionfy(z), defined over0, 1] such thatfy(z) > 0 for z € (0,1) and f,(0) = fo(1) = 0, we

define f.(z) for k = 1,2,... recursively as follows,

fe—1 (%) + fe—1(y) '

flz) 2 sup : )
yE[z\/2—z2,z(2—z)]
It follows from this definition that fork = 0,1,2, ...
fe(0) = fu(1) =0 (8)
We also define
fi(2)
L = , L= sup Lg(z 9
k(2) o) k= s k(2) )
By these definitions we have, fare (0,1)
1 _1(22 _
= swp L[ EtCD gy Sl
ye[sva—22 2(2-2)] fo(2?) fo(y)
1
< Lp_q - sup 3 [fo(z%) + fo(v)]
yE[Z\/2—22,z(2—z)]
< Lp-1- fi(2)
Hence,
Ji(2) f1(z)
< Lp_q- <Lp_1-L
By taking the supremum of the left-hand side ovef (0,1) we obtain
Ly < Lp_1-Ly
Applying the last relation recursively times we thus conclude that
YLy < Iy (10)

Lemma 1. For every functionfy(z) defined ovef0, 1] such thatfy(z) > 0 for z € (0,1) and f,(0) = fo(1) =0,

E[fo(Zn)] < Ly fo[Z(W)] . (11)
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Furthermore, for any integed < k < n,

v%)k_l (VZE)" s lzow) (12)

For k = 1, (I2) degenerates to the result obtained[in [14]. Note ttha¢, to [ID), the right-hand side df {12)

cannot have a slower rate of decay compared to the decayebta [14].

E [fo (Za)] < (

Proof: First, we note that:

E[fi (Zni1)] =E [fk (ZF) + fx (Zg)}

2
Z%) +
<E sup fe (Z2) + fr (v)
G /2= T2 <y<270—72 2

=E [fk—i—l (Zn)]

where the inequality follows fronf{4)H(5), and the last digydollows from (7). Repeating this step times, we

obtain

E(fo (Z)] < E[fi (Zo_)]
—g | IEn) g o] < LBl (Zusy) (13)
fO (Zn—k) 0 n—=k > Lk 0 n—=k .

where the last inequality follows froni](9). Settikg= n yields [I1). Now suppose that = » mod k. We can

reapply [(I8),%" times, thus obtaining

E[fo (Zu)] < L Elfo(Z,)

<L Ly folZ2(W)]

j— Ll ' ke "

() - (VE)" falzow)
where the second inequality follows frofn {10) abdl(11). Nasing [10) and- < k — 1 we have,

() <)

k Lk — k Lk

This yields [12). [ |

The computation ofLx(z) for =z close to0 or 1 can present numerical problems due to the division of zero

by zero (see[{8)). Consider the functigy(z) = 2*(1 — 2)?, wherea € (0,1) and3 € (0,1). As the following
lemma shows, for this function we can calculdig(z) analytically for z close to zero or close to one. The main

conclusion of the lemma is the last part.
Lemma 2. Suppose thafy(z) = 2*(1 — z)® wherea € (0,1) and 3 € (0,1). Then,

1) For eachk > 0 there existd) < ¢, < 1 S.t. f(z) is increasing in(0, ¢ ). Furthermore,

_ fk (22) + fk (22 — Z2)
2

Jr1(2) z € (0, €p41) (14)
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2) For eachk > 0 there exist®) < é; < 1 s.t. fx(z) is decreasing in(é, 1). Furthermore,

i (z2) + fx (z\/2 - z2>

Jrr1(2) = 5 z € (€pr1,1) (15)

3) For eachk > 0 and finitea and b

 feloz+0 ()] raye
££+ﬁwz+0@%]_<)

4) For eachk > 0 and finitea and b

~—

[\
[E—
[

i fell=a(l=2)+0[(0 -2 _<9)ﬁ
=1 fi[1=b(1—2)+O[(1 - 2)?]

5) For eachk > 0 and integerm > 0

i L@ Jo (252

zig)ler meo(z) N zig)ler 2k+mf0(z)
i =22 o[- 25— 2]

z—1- me(](z) z—1- 2k+mf0(z)
6) For eachk >0
. fe(z)
Zlirgh Z log fol2) ~ a—1 (16)
. fe(z)
B O 4

Proof: The proof of parf1L) follows by induction. The functiofa(z) is indeed increasing foz € (0, ¢y) for
somel < ¢y < 1. We assume our claim is true far, and prove it fork + 1. Let ;41 =1 — /1 — ¢,. Consider
z € (0,ex41) (note thatl — /T — ¢, < ;). Thenz? < 2z — 2% < ¢,. Since fi(z) is increasing forz € (0, ¢z),
we obtain [(I#) by the definitior{7). Furthermorg,](14) shdhat ;. 1(2) is increasing forz € (0,¢ex4 1) (for
z € (0,ex41), bothz? and2z — 22 are increasing and bounded abovecpyand f.(z) is increasing forz € (0, €;)).

The proof of parfR) is very similar and also follows by indoct The functionfy(z) is indeed decreasing for
z € (€,1) for some0 < ¢, < 1. We assume our claim is true fdr, and prove it fork + 1. Let ;4 NG
Considerz € (y/é,1) (note thaty/é, > &). Thenzv2 — 22 > 22 > &. Since fy(z) is decreasing for € (&, 1),
we obtain [(I5) by the definitioriX7). Furthermorg,](15) shdhat ;. 1(z) is decreasing for € (é,.1,1) (for
z € (é,41,1), bothz? andzv/2 — 22 are increasing and bounded belowdyyand (=) is decreasing fot € (¢;,1)).

The proof of par{B) follows by induction. Trivially, it is we for k¥ = 0. We assume our claim is true férand
prove it fork + 1.

i D110z 2O i[O ()] + fi [202 4 0 (7))
250t for1 bz +0(22)] 2500 fi, [0 (22)] + fr [2b2 + O (22)]

fk[O(zz)]2 +fk[2a2+0(25)]
— i J[202HOG2)] - fi[20240(27)]

=0 Fr [é@gg()z]z)—] +1
_0+%ﬁ”_<ga

0+1 b
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where the first equality follows froni_(14), and the third elifyefollows from the induction assumption.
The proof of parf¥) is very similar and also follows by indoat Trivially, it is true for k = 0. We assume our
claim is true fork, and prove it fork + 1.

i fivr{l—a(l—2)+0[(1—2)%]} . fe{l=2a1-2)+0[1-2?2}+fi{1+0[(1-2)?%}
o1 i {1—=0b(1—-2)+0[(1-2)?]} o1 fr{1 =201 —2)+O0[1 =22} + f {1+ O[(1 —2)?]}

[{1=2a(1=2)+0[(1=2)*]} |/ {1+0[(1=2)]}
FAI=2(1=2)¥0[1=2)"} " F{I-26(1=2)TO[1-2)"T}

= | + — L (1ro[a—=p)
F{T-251-2)+O[(1-= T}
_ ()0 (2
140 b

where the third equality follows from the induction assuimpt and the first equality follows froni (15) and the

following relation for z arbitrarily close to one,

{1—a(l—2)+0[(1— 22} /2 - {1 —a(l — 2) + O[(1 — 2)2]}°
={1-a(1-2)+0[1-2)?*}V1+2a(l—2)+O[(1 - 2)?
={1-al-2)+0[1-2?]}{1+a(l-2)+0[1-2)%}=1+0[(1-2)?] . (18)

The proof of parfb) also follows by induction. Fér= 0 the claim is trivial. Now we assume the statement is

correct fork and prove it fork + 1. We have,

fier (2"2) _ (@ = 472 4 fi(4m2?)

zli{g&r 2™ fo(z) 20t 2m+1f0(2)
fk(2m+12)
20t 2m+1f0(2)
f0(2k+m+1z)

— lm 0% %)
et 2RI fo ()

where the first equality follows froni (14), the second folfofkom par{3B), and the third follows from the induction
assumption.
Similarly, for z — 17, the proof follows by induction. Fok = 0 the claim is trivial. Now we assume the

statement is correct fot and prove it fork + 1. We have,

f{i-2ra =P} e a0 -2ra -2 - o)

i 9m fo(2) =t oM+ fo(2)
. S [1=2mT1(1 = 2)]
2—1- 2m+1 fo(2)
. fo [1 — oktmA1(] z)]
e 2k+m+l fy(%)

where the first equality follows froni_(15), the third folloimm the induction assumption, and the second follows
from part[3), using[(18) withu = 2.
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z
Fig. 2. A plot of + log Ly (z) for k = 1 andk = 50 when fo(2) = z*(1 — z)".
Finally, the proof of partl6) follows from paii 5) with. = 0 as follows
1o fe(2) 1. fo(2F2)
lim —1 = lim -1
zi{g&r k o8 fO(Z) ziIOHJr k o8 Qkfo (Z)
1. (2F2)°
= lim -1 = 1
zl>IOHJr k 8 QkZa @
and
: fez) o1 fo[1-28(1 - 2)]
lim —1 = lim —1
zifln* k o8 fo(z) zigl* k ©8 2kf(] (Z)
B
1. [2¢1-2)]
= lim —log—F—F——-—=03-1
Jim Zlog Sra =y =P

10

Now suppose thafy(z) = z%7(1 — 2)%6. As can be seen in Figufé 2, we obtdin = 279149 and ¥/L5y =

2702097 "Using [16)-(1l7), we see that for all values/of

lim
20t k
z—1-

Note the sharp derivative ofi.(z) for z close to zero or one wheh

1
—log Li(z) = —0.3

1
lim z log L(z) = —0.4

is large.

In Figure[3 we see tha{/L, converges to a constant value for— oo, and that it has almost converged for

k = 50.
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Fig. 3. A plot of £ log Ly, for fo(z) = 2%7(1 — 2)*° as a function ofk

Let Y,, be defined by,
Y, = min (Z,,1 — Z,)

Lemma 3. The following holds,

Pr (Y, > 8) < (2)‘_; . 9—0.2097n

whereq; is some constant.

Proof: We use

folz) = 2%7(1 = 2)08

It can be verified thatfy(z) is concave. Combining this witlfy(0) = fo(1) = 0, we obtainY,, <

11

(19)

(this

inequality is verified for the two possible casés, < 1/2 and Z,, > 1/2). Therefore, by Markov’s inequality,

fO(Zn)
2f0(0.5)

Pr (Y, > 0) < Pr ( > 5> <E[fo(Za)] - (2f0(0.5)8) "

Applying (12) yields,

= (). ()" (v

Where L;, is defined in[(P). As was noted above (Figlife 2), numericalutations show thaf.,; = 279149 and

for k =50, &/L;, = 2792097, This proves our claim.
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We now need to translate this result on the rate of non-piteyichannels to a bound on the error rate. We
could use the analysis df [14]. However, we present an @t simple approach. This approach easily extends

to the analysis of polar lossy source coding in the next sectiVe first state and prove the following.

Lemma 4. Suppose that
Pr(VMn>mg : Z, & (0,1 —0)) >1—¢ (20)

for some integerny, 0 < e <1 and0 < § < 1/3. Then
Pr(Vvn>mgy : Z, <0)>I(W)—e¢
Pr(Vvn>mg : Z,>1-0)>1—I(W)—¢
Proof: In [1] it was shown thatim,, ., Pr(Z, <90) = I(W) andlim,, . Pr(Z, >1—-46) = 1 — I(W).
Assume
Pr(¥n>mg : Z, <) =a

Pr(vn>mgy : Z, >1-9)=as.
(a1 anday depend onng). Combining this with [(2D) yields

1—e<Pr(Vvn>mgy : Z, ¢ (5,1 —-10))
=Pr(Yn>mg : Zn <) +Pr(¥n>mg : Z, >1—0)
=ay + as (21)
The first equality follows due to the assumption< 1/3 and [4)-(b), by which it follows that it is impossible

to haveZ, < § and Z,,; > 1 — ¢ simultaneously, and it is also impossible tiat > 1 — ) and Z,,,.1 < 0

simultaneously. That is,
{("n>mo : Z, ¢ (6,1 =0} ={Vn>mg : Z, <5} U{vVn>my : Z, > 14}
This explains the first equality ifi_(R1). Now, clearly,
ag <IW) , ax<1-1I(W) (22)

We claim thata; > I(W) — e andag > 1 — I(W) — e. By contradiction, assume thay < I(WW) — e. Then, by
22), a1 + a2 < 1 — ¢, which contradicts[(21). Therefore; > I(W) — e. Similarly, assume by contradiction that
ag < 1—I(W)—e. By (22), a1 + a2 < 1 — ¢, which contradicts[(21). Therefore > 1 — I(W) — e. [ |

We can now state and prove our main result.

Theorem 1. Suppose that we wish to use a polar code with faind blocklengthV to transmit over a binary-input
channel,IW, with error probability at mostP, > 0. Then it is sufficient to set

g

N = (I(W) — R)5'77
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(or larger) whereg is a constant that depends only é#.

Note: Our analysis can also be used to derive specific boumd$ @r a given value ofP..

Proof: By Lemmal3 and Markov's inequality we have

[e.e]

—pme
Pr(3n>mg : Z, € (0,1 —90)) < Z Pr (Y, >9) < (;—;- 12_2_p
wherep = 0.2097. That is,
(e 71 2~ PmMo
Pr(Vn>mo : Zn ¢ (6,1 —68)) >1— (%) e
and together with Lemmia 4 we obtain
(%1 27 PMo
> : < > — == -
Pr(Yn > mo : Zn <0) > I(W) (25) — (23)
—pme
Pr(Vn>mo : Zy>1-08)>1—I(W)— (%)-12_ R (24)

In [1, Section IV.B], Arikan defined the event
Tono (8) 2 1{Z, <6 Vn >mg}

Equation [[ZB) can be rewritten as

In [1, Section IV.B], Arikan also defined

Mmdmé{ 2:1%>®5—mm—wm}

1=mo+1
for n > my > 0 and0 < n < 0.5. In [I, Equation (47)] it was shown that
Pr U, n(17)] > 1 — 2~ Lh2(05=n)](n=ma)

wherehy(z) = —zlogx — (1 — z)log(1 — x) is the binary entropy function. Applying the union boundlgg

g [l—ha(05-m)(n-mg) _ (1Y) 277
Pr [T (6) (1 U (m)] = I(W) —2 (55) 75 -
If we pick
[1— he(0.5 — )] n
_ 25

0T T T (05— ) + p (23)

we obtain
a1 _
= o et S an
P T () (] 2 T0V) = (14 52

where

NE——
1—he(0.5—=1n) p
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Clearly, lim, o5 = <1+%> . Arikan proved that if the event,, (6) N Um, n(n) holds, thenZz, <

5 [20,5-4-1750.5—77]"_””, If we pick mq as in [25) and
L.5+n+ %{?ﬁ—n)
logé = — -k (6)
0.5—n

wherex > 0 is a constant, we obtain that if the eveRt, (0) N U, »(n) holds, then

p(0.5—1n) }

Zn S (5 . 2_n[1+1*h2(0-577))+p

Hence,
_ rp(0.5—m) a
P Zn <6-2 TL{1+ 17h2(0-5*n)+p] > 71 — (1 1 .g—an
r< =0 =1V +25u—2w)
Now, for every rate
aq _
<IW)— (14—~ ). .27 27
rern - (14 552 e

NN
let Ay be defined as the set &f - R smallest values o{Z (Wf@)} . (An are the active channels, those that

are not frozen). From the two inequalities above, we know tha

kp(0.5—n)

max (W](\;)) < 5. NV Thosnis
1€EAN

From [1, Proposition 2] we know thdtr(€) <>, 4 7 <W](\f)>. Putting this together, we obtain

mw)<NmeZ(Wﬁ)gR&Aft%%%q (28)

1EAN

If we defineA = I(W) — R, then [2Y) becomes

(651 1 1

where0 < n < 0.5 and0 < « are constants, anidg ¢ is defined in[(Zb). In addition,

1—@@5—m+p>
kp(0.5 — 1)

log N > [log § — log P.] <

is equivalent to

rxp(0.5=n)

5 . N_ 1—hg(0.5—n)+p é Pe .

Since [27) (i.e.,[(29)) yield$ (28), it follows that if

a1 1 1
> - - i e —— —

e =)

then

£p(0.5—n)

Pr(£) < R§- N Thwsmis < P, .

We have thus obtained an upper bound on the blocklengthreshfor communications with error probability at

most P, as a function of the gap to the symmetric capacity.
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Settingn — 0.57, (i.e., § — 07) and using the fact that, by Lemria @~= 0.2097 (so that(1 + 1/p) < 5.77)
yields the required result. |
In appendiX’A we briefly indicate how, instead of the Bhattaglya parameter, we can use the symmetric capacity

to derive bounds using a very similar approach.

V. SCALING RESULTS FOR POLAR LOSSY SOURCE CODING
A. Background

We start by providing a brief background on polar source mgdg] (see also[20]/[]7]). Consider some random
variableY € ), and assume for simplicity that is finite. Also denoteX = {0,1}. The source vector random
variable,Y = Y;", is created by independent sampling of the soltfcéet d(x, y) be some finite distance measure
between twoN dimensional vectorsy = zV andy = yY, such thatd(x,y) = S-~, d(z;, y;) whered(z,y) is
the distance between the symbalss X andy € ). Suppose thatl(x,y) < dpnax for all x € X andy € Y (in
[, Lemma 5]dmax = 1). Given some distortion level) > 0, let W (y | z) be the test channel that achieves the
symmetric rate-distortion(D), of the source, defined as rate-distortion under the canstiaat the input to the
test channel X, is uniformly distributed overX. A polar source code is then constructed using this testradian
The code has a frozen sgtthat consists of thél — R) - N sub-channels with the largest vaIues@(Wﬁ)). This
code uses some arbitrary frozen veatgr which is known both to the encoder and to the decoder (ag+ 0)
and has rateR = |F°|/N. GivenY = y the SC encoder applies the following scheme. Fer 1,2,..., N, if
1 € F thenu; = u;, otherwise
0 wp. LY/ (29 +1)

1 owp. 1/ (28 +1)

i =

The complexity of this scheme i©(Vlog N). Sincear = up is common knowledge, the decoder only needs
to obtainur- from the encoder|§*| bits). It can then reconstruct the approximating sourceewmid x using

x = uGY". LetEd(X(Y),Y)/N be the average distortion of this polar code (the averagimyér both the source
vector,Y, and over the approximating source codew®dY ), which is determined at random froli). Denote by

D the design distortion (using which we construct the teshokband design the code), By = Ed(X(Y),Y)/N

the actual distortion, and bi the rate of the code. In[5] it was shown, foF sufficiently large, that the rate?,

can approach the symmetric rate-distortion functi@D), arbitrarily close and at the same time
Dy —-D<O (2—N’3) (30)

Note that if W (y | x) is a symmetric channel, the value wf- can be set arbitrarily. I#/ (y | =) is not symmetric,

we must average over all*’l choices ofur while calculatingDy in order to obtain[(30).

B. Upper Bound on the blocklength

We now apply our results in Sectignllll to obtain upper bouadshe blocklength of polar lossy source codes.
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Theorem 2. Suppose that we wish to use a polar code with rAtéor lossy source coding of some source with
a symmetric distortion-rate functiorf)(-), with average distortionDy > D(R), redundancyDy(R) = Dy —
D(R) [21], and blocklengthN. Then, in order to obtain a redundancy at mast (i.e., D% (R) < DY) it is

sufficient to set

B
(D0)5.77

(or larger) where( is a constant that depends only @) dy,.x and D(-).

Proof: Denote byD the design distortion, and bi(WW') the symmetric capacity of the test channel such that
I(W) = R(D) [B]. We will follow the proof of Theorenill, replacing,, with 1 — Z2, as in the proof of[[5,
Theorem 19]. IfZ,, > 1 — 6, then1 — Z2 < 26 — §2 < 26. Hence, by[(24),

ﬂ) e (31)

Pr(Vano:1—Z,%§5)21—I(W)—<5 T 5=

Define
Smo (6) 2 {1-2Z2<65 Vn>myp}

for 6 > 0 andmg > 0. Rewriting [31) we have,

PriSn, ()] > 1 - 1) — (%) . 220

In the proof of [5, Theorem 19] it is shown that
(1-22)°%, if Byy1 = 0;
+1 S .
2(1-22), if Bpy1 =1
where theB,, sequence was defined in Sectioh Il. Hence, if the ed&ntd) holds andn > my, then
1-27%, - 0 if Bpt1=0;
-2 2 if Bpyy = 1.
(using [4)-(%)). Similarly to the proof of [1, Theorem 2],tlfe eventS,,,(4) holds andn > my, then

1-z2<s-27m. I 6/2)7

Z:m0+1

where B; = 1 — B;. Hence, if the evens,,, (§) N U, (1) holds, then
1-22<56- [Q%Jﬂv(gé—n] e

where the sett,,, (1) is defined as

dmo,nm)é{ 3 Bi><o.5—n><n—mo>}.

Z:mo-‘rl
Settingmg as in [25) and as in [26), we obtain

kp(0.5—n) }

1-27<6- o[+
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if the eventS,,,, (§) N Um, »(n) holds. Hence,
< 72 < "[1+1,2E2§+}> > 11— I(W) - <1 5o ilz—p)> _g—an
For every rate
R>I(W)+ <1 + ﬁ) .g=on (32)

we pick F' as the set ofV(1 — R) largest values off (W](\f)). Sincel — Z, < 1 — Z2, from the two inequalities

above, we know that

(%) —1——re08-m)
max (1 —7Z (WN )) <§-N T (05—mTr

el

From [S, Lemma 5] and [5, Lemma 7] we know thBty — D < dmax Y icp /2 (1 -7 (WJ(V”)) Putting this

together, we obtain

Dy — D < dpax N(1 — R) max \/2 (1 -7 (W]{;?)) < A V/20(1 — RYN® 00650571

1€EF

Defining A = R — I(W), we obtain

D(R)— D

D =Dny—-—D+D-—-D =Dny—-—D+A|—"——
N{R) = Dy~ D+ D~ DR) = Dy~ D+ A| P

' <Dy—D+A-|D'I(W))

where D'(z) = dD(:”) . The last inequality follows from the convexity d?(R). Note that in this bound we have
one degree of freedom, the design distortionwhich defines the symmetric capaciky’) (I(W) = R(D)) of
the test channel. Setting(W) equal to the right-hand side i (32) yields,

DN(R) < dunaV23(1 — RN~ T 4 <1 iAo

1_2_p)>-N ( ) Doy . (39)

We now setp — 0.5~ andx large so that — 0*. Furthermore, ifx is sufficiently large then the second term

in (33) is asymptotically dominant. In addition, fo¥ = 3/(D")>"" where the constant is sufficiently large, we

obtain
_p (11 Y. yal
I(W)=R <1+5(1_2_p)> N7 > S
Hence, due to convexity aD(R), |D'(I(W))| < |D'(R/2)|. It follows from (33) (usingp = 0.2097 by Lemmé[B)
that if 3 is sufficiently large therDy (R) < DV. [ |

Zhang et al. proved i [21], that the best achievable distontedundancy iD(R) = © (%) Asymptotically,

it is better than our results.

V. DISCUSSION

In this paper we have considered a polar code with blocklengtand rateR transmitted over a binary-input
channel,W, with symmetric capacity (1¥'). Decoding is performed using the SC decoder. If the errobgidity
needs to be below somE. > 0, then it is sufficient to havev = 3/ (I(W) — R)". Here 8 is a constant that

depends only or,, andu = 5.77. The results were also extended to polar source coding. aheai question to
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ask is what is the lowest possible value of the scaling pai&me From the simulations presented in[[14, Figure
3] it seems likely that we must haye > 5. Hence, the value of, that we obtained seems close to the optimum.
Nevertheless, further improvements in the bounduomay perhaps be obtained. Our best results were obtained
when using the Bhattacharyya parameter in the analysiseTtesults were better compared to the results obtained
when using the symmetric capacity (i.e., mutual informatiparameter. We have also made some efforts to work

with the error rate and the channel parameter consideré2lin These parameters were also inferior compared to

the Bhattacharyya parameter. However, other channel mdeasnmay possibly yield further improvements to our
results.

The optimal scaling law ofV' with respect to the gap to the symmetric capadityy’) — R, is O((I(W) — R)~?).
Using polar codes we now know that the scaling lawDig(I(W) — R)™*) where3.55 < i < 5.77 (The lower
bound,3.55, was obtained after approximating the block error proligiiily the sum of Bhattacharyya parameters,
but it is also the scaling factor of the BEC). As noted!inl [14¢ tscaling can be improved by using more general
polarization kernels. This topic is left for future resdar@nother possibility for future research concerns the

blocklength scaling of nonbinary polar codes.

APPENDIXA

SCALING RESULTS USING MUTUAL INFORMATION

Assume for simplicity that the channel is BMS (in[17] it istad how to generalize to non-symmetric channels).

It can be shown[18, Chapter 4] that the following inequedithold,

I(W™) <1—hy (2hy (1= I(W))(1 — hy' (1 = I(W))))

I(W™) > I*(W)

In addition,

(W) + I(W™) = 21(W)

Motivated by these inequalities, we modify the definitionfpfz) as follows. Given some functiofy(z), defined
over [0, 1] such thatfy(z) > 0 for 2 € (0,1), and fy(0) = fo(1) = 0, we definefy(z) for k = 1,2,... recursively
as follows,

fe(@) 2 sup foiler o ; oo
€1(z)<e<en(x)

where¢; (z) ande,(x) are defined by

el(x):x+h2{2h2_1[l—x]-[1—h2_1[1—x]]}—1

e () =z —x? .
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The definitions ofL;(x) and L, are the same as i](9). With the new definition fafz), Equation [(ID) still
holds. Similarly to [(IR) we have, for an integex k < n,

Ly
k/Lk

Similarly to (Z9) we define/,, 2 min(I,,,1 — I,,). Using the concave function
0.402
fo(z) = (1 — m> (1 _ 331'11)0'604

we obtain, similarly to Lemma]3,

Blfo (I)] < ( )k (VIR)" folrw))

Numerical calculations yield,; = 2791798 and, for sufficiently larget, /L, < 270-1786,

Similarly to Lemmd# we have the following. If

PriVvn>mg : I, € (6,1 =9)] >1—¢

for some integerng, 0 < e < 1 andé < 1/3. Then

Pr(vn>mg : I, >1—-0)>1(W)—e¢

Pr(Vvn>mg : I, <6) >1—-1(W) —e¢

The proof is essentially the same as the proof of Leriina 4, Wjtheplacingl — Z,,. Finally, we can obtain a
result similar to Theorery 1. We use essentially the samef pmatowith the following modification. First we obtain

a result similar to[(23) using the same approach:

041> 27 PMo

Pr(Vn > mg : In21—5)21(W)_<% 1—92-,

Then we combine it with[[1, Equation (2)] to obtain,

Pr(VYn >mg : ZnﬁC)ZI(W)_<%>'12:7p;n_OP

and proceed with the derivation in Theoréin 1.

However, this time we can only claim that it is sufficient ta se

3
(I(W) = R)™®

(or larger), wheres is a constant that depends only &y, since nowp = 0.1786.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constting capacity-achieving codes for symmetric binary-inpiemoryless channels,”
IEEE Transactions on Information Theoryol. 55, no. 7, pp. 3051-3073, 2009.

[2] E. Arikan and E. Telatar, “On the rate of channel polatima” in Proc. IEEE International Symposium on Information ThedSiT),
2009, pp. 1493-1495.



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 20

[3] E. Sasoglu, E. Telatar, and E. Arikan, “Polarization &obitrary discrete memoryless channels,”Rroc. IEEE Information Theory
Workshop (ITW)2009, pp. 144-148.
[4] 1. Tal and A. Vardy, “List decoding of polar codes,” iRroc. IEEE International Symposium on Information Theol$IT), Saint
Petersburg, Russia, August 2011, pp. 1-5.
[5] S.B. Korada and R. L. Urbanke, “Polar codes are optimaldesy source codingJEEE Transactions on Information Theowpol. 56,
no. 4, pp. 1751-1768, 2010.
[6] E. Arikan, “Source polarization,” ifProc. IEEE International Symposium on Information ThedSiT), Austin, Texas, June 2010, pp.
899-903.
[7] D. Burshtein and A. Strugatski, “Polar write once memagdes,”|[EEE Transactions on Information Theoryol. 59, no. 8, pp.
5088-5101, August 2013.
[8] T. Tanaka and R. Mori, “Refined rate of channel polari@afi in Proc. IEEE International Symposium on Information ThedS&IT),
Austin, Texas, June 2010, pp. 889-893.
[9] T. Tanaka, “On speed of channel polarization,”"Rmoc. IEEE Information Theory Workshop (ITW)ublin, Ireland, September 2010.
[10] S. H. Hassani and R. Urbanke, “On the scaling of polaresod. The behavior of polarized channels,”Rmoc. IEEE International
Symposium on Information Theory (ISIBustin, Texas, June 2010, pp. 874-878.
[11] S. H. Hasani, R. Mori, T. Tanaka, and U. R. L., “Rate-degent analysis of the asymptotic behaviour of channel maton,” IEEE
Transactions on Information Theqryol. 59, no. 4, pp. 2267-2276, April 2013.
[12] S. B. Korada, A. Montanari, E. Telatar, and R. UrbankAn “empirical scaling law for polar codes,” iRroc. IEEE International
Symposium on Information Theory (ISIBustin, Texas, June 2010, pp. 884-888.
[13] A. Goli, S. H. Hassani, and R. Urbanke, “Universal bosirmh the scaling behavior of polar codes,” Pmoc. IEEE International
Symposium on Information Theory (ISI'Boston, MA, July 2012, pp. 1957-1961.
[14] S. H. Hassani, K. Alishahi, and R. Urbanke, “Finite-lgém Scaling of polar codes&rXiv preprint arXiv:1304.47782013.
[15] ——, “On the scaling of polar codes: Il. The behavior ofpolarized channels,” iProc. IEEE International Symposium on Information
Theory (ISIT) Austin, Texas, June 2010, pp. 879-883.
[16] V. Guruswami and P. Xia, “Polar Codes: Speed of polgidraand polynomial gap to capacitygrXiv preprint arXiv:1304.43212013.
[17] S. B. Korada, “Polar codes for channel and source cqtiPlg.D. dissertation, EPFL, Lausanne, Switzerland, 2009.
[18] T. Richardson and R. Urbank&odern Coding Theory Cambridge, UK: Cambridge University Press, 2008.
[19] A. Khandekar, “Graph-based codes and iterative dexgdiPh.D. dissertation, Citeseer, 2002.
[20] M. Karzand and E. Telatar, “Polar codes for g-ary souwcoding,” in Proc. IEEE International Symposium on Information Theory
(ISIT), Austin, Texas, June 2010, pp. 909-912.
[21] z. Zhang, E. Yang, and V. K. Wei, “The redundancy of seuding with a fidelity criterion — part 1: known statistic$EEE
Transactions on Information Theqryol. 43, no. 1, pp. 71-91, January 1997.
[22] D. Burshtein and G. Miller, “Bounds on the performandebelief propagation decoding/EEE Transactions on Information Theory
vol. 48, no. 1, pp. 112-122, Jan. 2002.



	I Introduction
	II Background on Polar Codes
	III Improved scaling results for polar channel codes
	IV Scaling results for polar lossy source coding
	IV-A Background
	IV-B Upper Bound on the blocklength

	V Discussion
	Appendix A: Scaling results using mutual information
	References

