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Cognitive Interference Channels with Confidential
Messages under Randomness Constraint

Shun WatanabeMember, IEEE and Yasutada OohamaMember, IEEE

Abstract—The cognitive interference channel with confidential
messages (CICC) proposed by Lianget. al. is investigated. When
the security is considered in coding systems, it is well known
that the sender needs to use a stochastic encoding to avoid the
information about the transmitted confidential message to be
leaked to an eavesdropper. For the CICC, the trade-off between
the rate of the random number to realize the stochastic encoding
and the communication rates is investigated, and the optimal
trade-off is completely characterized.

Index Terms—Cognitive Interference Channel, Confidential
Messages, Randomness Constraint, Stochastic Encoder, Super-
position Coding

I. I NTRODUCTION

Cognitive radio has attracted considerable attention recently,
for it can improve the spectrum efficiency of wireless networks
[1]. In information theoretical study of the cognitive radio, it
is usually modeled by a interference channel called cognitive
interference channel (CIC), in which the cognitive transmitter
can non-causally know the other transmitter’s message [2],
[3], [4], [5]. We consider the (CIC) model investigated by
Jiang et. al. [6], Zhong et. al. [7], and Lianget. al. [8], in
which one receiver needs to decode both messages. Especially
as in [8], we also consider the security, i.e., the message
sent by the cognitive transmitter must be kept secret from
one of the receivers. We call this problem the cognitive
interference channel with confidential messages (CICC). The
coding system investigated in this paper is described in Fig. 1.

When the security is considered, it is well known that
the sender needs to use a stochastic encoder to avoid the
information about the transmitted confidential message to be
leaked to the eavesdropper Eve. The stochastic encoder is
usually realized by preparing a dummy random number in
addition to the intended messages and by encoding them to
a transmitted signal by a deterministic encoder. Furthermore,
random numbers are also needed to realize the coding tech-
nique called channel prefixing.

In literatures of information theoretic security (eg. [9],[10],
[11]), the random number has been regarded as free resource,
and the amount of the random number used in the stochastic
encoding has been paid no attention. However in practice,
the random number is quite precious resource. For example,
generation rates of any existing true random number generators
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are not as fast as communication rates of wireless networks
[12]. Although the random number generator equipped in the
forthcoming Intel’s CPU can generate the random number as
fast as3Gbps [13], the communication rate of the new IEEE
wireless communication standard is said to be over Gbps [14].
Thus, the random number should be regarded as at least as
precious as communication resources. For this purpose, we
formulate the problem of the CICC by randomness constrained
stochastic encoder, and completely characterize the capacity
region of this new problem. We assume that the non-cognitive
transmitter, Charlie, only uses a deterministic encoding.This
assumption seems natural because Charlie only observes the
common message, and the common message need not to be
kept secret.

The present problem to consider the CICC by the ran-
domness constrained stochastic encoder is an extension of
the authors’ series of works. In [15], the authors investigated
the capacity region of the relay channel with confidential
messages for the completely deterministic encoder, and the
capacity region of the broadcast channel with confidential
messages (BCC) for the completely deterministic encoder was
characterized as a corollary. In [16], the authors completely
characterized the capacity region of the BCC by the random-
ness constrained stochastic encoder. The problem formulation
in this paper is the extension of that in [16] to the CIC, and
more involved coding techniques are needed.

Since the security criterion employed in this paper is slightly
different from that in [8], it should be remarked. In [8], the
cognitive transmitter, Alice, sends two kinds of messages,the
common message and the confidential message, and the level
of secrecy of the confidential message was evaluated by the
equivocation rate. In this paper, Alice sends three kinds of
messages, the common message, the private message, and the
confidential message. The role of the common message is the
same as that in [8]. The private message is supposed to be
decoded by one of the receiver, Bob, and we do not care
whether Eve can decode the private message or not. On the
other hand, the confidential message is supposed to be decoded
by Bob, and it must be kept completely secret from Eve. The
secrecy of the confidential message is evaluated by the so-
called strong security criterion [17], [18]. As a byproduct, our
direct coding theorem is stronger than that in [8], i.e., our
theorem states the strong secrecy.

The reason we do not use the equivocation rate formulation
is as follows. In the conventional equivocation rate formula-
tion, if the rate of dummy randomness is not sufficient, a part
of the confidential message is sacrificed to make the other part
completely secret and the rate of the completely secret part
corresponds to the equivocation rate. We think that the rates
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Fig. 1. The coding system investigated in this paper. Alice sends common
messageKn, private messageLn, and confidential messageSn by using
a deterministic functionfn and a limited amount of dummy randomness
An. Charlie also sends a signalXn

2
which is a deterministic function of the

common messageKn. The common message is supposed to be decoded by
both Bob and Eve. The private message is supposed to be decoded by Bob,
and we do not care whether Eve can decode the private message or not. The
confidential message is supposed to be decoded by Bob, and it must be kept
completely secret from Eve.

of sacrificed part and completely secret part become clearer
by employing our formulation.

The rest of this paper is organized as follows. In Section
II, the problem formulation is explained and main results are
presented. In Section III, the proof of the main theorem is
presented. Some technical arguments are presented in Appen-
dices.

II. PROBLEM FORMULATION AND MAIN RESULTS

Let PY |X1X2
andPZ|X1X2

be two channels with common
input alphabetsX1 × X2 and output alphabetsY and Z
respectively. Throughout the paper, the alphabets are assumed
to be finite though we do not use finiteness of the alphabet
except cardinality bonds on auxiliary random variables.

Let Kn be the set of the common message,Ln be the set
of the private message, andSn be the set of the confidential
message. The common message is supposed to be decoded
by both Bob and Eve. The private message is supposed to
be decoded by Bob, and we do not care whether Eve can
decode the private message or not. The confidential message
is supposed to be decoded by Bob, and it must be kept
completely secret from Eve.

Typically, Alice use a stochastic encoder to make the confi-
dential message secret from Eve, and it is practically realized
by using a uniform dummy randomness on the alphabetAn.
When the size|An| of dummy randomness is infinite, any
stochastic encoder fromKn×Ln×Sn to Xn

1 can be simulated
by a deterministic encoderfn : Kn × Ln × Sn ×An → Xn.
But we are interested in the case with bounded size|An| in
this paper. In this paper, we assume that Charlie only use a
deterministic encoderf ′

n : Kn → Xn
2 .

Bob’s decoder is defined by functiongn : Yn → Kn×Ln×
Sn and the error probability is defined as

Perr(fn, f
′
n, gn)

=
∑

kn∈Kn

∑

ℓn∈Ln

∑

sn∈Sn

∑

an∈An

1

|Kn||Ln||Sn||An|

PnY |X1X2
(yn|fn(kn, ℓn, sn, an), f

′
n(kn))

1[gn(y
n) 6= (kn, ℓn, sn)], (1)

where1[·] is the indicator function. Eve’s decoder is defined
by function φn : Zn → Kn and the error probability
Perr(fn, f

′
n, φn) is defined in a similar manner as Eq. (1).

Let

PZ̃n|Sn
(zn|sn) =

∑

kn∈Kn

∑

ℓn∈Ln

∑

an∈An

1

|Kn||Ln||An|

PnZ|X1X2
(zn|fn(kn, ℓn, sn, an), f

′
n(kn)),

PZ̃n(z
n) =

∑

sn∈Sn

1

|Sn|
PZ̃n|Sn

(zn|sn)

be the output distributions of the channelPn
Z|X1X2

. In this
paper, we consider the security criterion given by

D(fn, f
′
n) := D(PSnZ̃n‖PSn

× PZ̃n)

=
∑

sn∈Sn

1

|Sn|
D(PZ̃n|Sn

(·|sn)‖PZ̃n)

= I(Sn; Z̃
n),

where D(·‖·) is the divergence, andI(·; ·) is the mutual
information [19]. The coding system investigate in this paper
is depicted in Fig. 1.

In this paper, we are interested in the trade-off among the
rate the dummy randomness, and the rates of the common,
private, and confidential messages.

Definition 1: The rate quadruple(Rd, R0, R1, Rs) is said to
beachievableif there exists a sequence of Alice’s deterministic
encoderfn : Kn×Ln×Sn×An → Xn

1 , Charlie’s deterministic
encoderf ′

n : Kn → Xn
2 , Bob’s decodergn : Yn → Kn×Ln×

Sn, and Eve’s decoderφn : Zn → Kn such that

lim
n→∞

Perr(fn, f
′
n, gn) = 0, (2)

lim
n→∞

Perr(fn, f
′
n, φn) = 0, (3)

lim
n→∞

D(fn, f
′
n) = 0, (4)

lim sup
n→∞

1

n
log |An| ≤ Rd, (5)

lim inf
n→∞

1

n
log |Kn| ≥ R0, (6)

lim
n→∞

1

n
log |Ln| = R1, (7)

lim inf
n→∞

1

n
log |Sn| ≥ Rs. (8)

Then the achievable regionR is defined as the set of all
achievable rate quadruples.

The following is our main result in this paper.

Theorem 2:Let R∗ be a closed convex set consisting
of those quadruples(Rd, R0, R1, Rs) for which there exist
auxiliary random variables(U, V ) such that

(U,X2) ↔ V ↔ X1,

(U, V ) ↔ (X1, X2) ↔ (Y, Z)
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and

R0 ≤ min[I(U,X2;Y ), I(U,X2;Z)], (9)

R1 +Rs ≤ I(U, V ;Y |X2), (10)

R0 +R1 +Rs ≤ I(V ;Y |U,X2)

+min[I(U,X2;Y ), I(U,X2;Z)],(11)

Rs ≤ I(V ;Y |U,X2)− I(V ;Z|U,X2),(12)

R1 +Rd ≥ I(X1;Z|U,X2), (13)

Rd ≥ I(X1;Z|U, V,X2). (14)

Then we haveR = R∗. Moreover, it may be assumed that
the ranges ofU andV may be assumed to satisfy

|U| ≤ |X1||X2|+ 3,

|V| ≤ |X1|
2|X2|

2 + 4|X1||X2|+ 3.

Proof: See Section III.
Remark 3:As we will find in the achievability proof of the

main theorem, the private message can be used as dummy
randomness to protect the confidential message from Eve.
Thus, if we define the achievability rate region̂R by replacing
Eq. (7) with

lim inf
n→∞

1

n
log |Ln| ≥ R1,

region R̂ is broader than regionR. Indeed,R̂ is a closed
convex set consisting of those quadruple(Rd, R0, R1, Rs) for
which there exist auxiliary random variables(U, V ) satisfying
the same conditions as Theorem 2 except Eq. (13).

Remark 4:Eq. (14) means that here is a certain amount of
dummy randomness that cannot be substituted by the private
message. Note that the difference between the private message
and the dummy randomness is whether Bob needs to decode
it or not.

When there is no randomness constraint, region

R∞ = {(R0, R1, Rs) : ∃Rd ≥ 0 s.t. (Rd, R0, R1, Rs) ∈ R}

coincide with the result obtained by Lianget. al. [8].
Corollary 5: ([8]) RegionR∞ is a closed convex set con-

sisting of those triplet(R0, R1, Rs) for which there exist
auxiliary random variables(U, V ) such that

(U,X2) ↔ V ↔ X1,

(U, V ) ↔ (X1, X2) ↔ (Y, Z)

and

R0 ≤ min[I(U,X2;Y ), I(U,X2;Z)],

R1 +Rs ≤ I(U, V ;Y |X2),

R0 +R1 +Rs ≤ I(V ;Y |U,X2)

+min[I(U,X2;Y ), I(U,X2;Z)],

Rs ≤ I(V ;Y |U,X2)− I(V ;Z|U,X2).

III. PROOF OFMAIN RESULTS

A. Proof of Direct Part of Theorem 2

The direct part of Theorem 2 follows from the following
Corollary 7 and Lemma 8.

We first show the following.
Lemma 6:Let R(in) be a closed convex set consisting of

those quadruples(Rd, R0, R1, Rs) for which there existr1 ≥
0 and auxiliary random variables(U, V ) such that

(U,X2) ↔ V ↔ X1,

(U, V ) ↔ (X1, X2) ↔ (Y, Z)

and

R0 + r1 ≤ I(U,X2;Z),

R1 − r1 +Rs ≤ I(V ;Y |U,X2),

R1 +Rs ≤ I(U, V ;Y |X2),

R0 +R1 +Rs ≤ I(U, V,X2;Y ),

R1 − r1 ≥ I(V ;Z|U,X2),

Rd ≥ I(X1;Z|U, V,X2).

Then we haveR(in) ⊂ R.
Proof: See Section III-B.

We note the following observation. From the definition of
the problem, if

(Rd − rd, R0, R1 − rs + rd, Rs + rs) ∈ R

for somerd, rs ≥ 0, then we also have(Rd, R0, R1, Rs) ∈ R.
Thus, Lemma 6 implies the following corollary.

Corollary 7: Let R̃(in) be a closed convex set consisting
of those quadruples(Rd, R0, R1, Rs) for which there exist
r1, rd, rs ≥ 0 and (U, V ) such that

(U,X2) ↔ V ↔ X1,

(U, V ) ↔ (X1, X2) ↔ (Y, Z)

and

R0 + r1 ≤ I(U,X2;Z),

R1 − r1 + rd +Rs ≤ I(V ;Y |U,X2),

R1 + rd +Rs ≤ I(U, V ;Y |X2),

R0 +R1 + rd +Rs ≤ I(U, V,X2;Y ),

R1 − r1 − rs + rd ≥ I(V ;Z|U,X2),

Rd − rd ≥ I(X1;Z|U, V,X2).

Then we haveR̃(in) ⊂ R.
By using the Fourier-Motzkin elimination, we can also show

the following.
Lemma 8:We have

R∗ ⊂ R̃(in).

Proof: See Appendix C.

B. Proof of Lemma 6

For a while, we consider the case withn = 1 and omit the
superscript and subscript to simplify the notation. We firstsplit
the private message asL = I×J . For each common message
k ∈ K, we randomly generate codewordx2k according to
distributionPX2 . We denote such a codeC0. For eachk and
eachi ∈ I, we randomly generate codeworduki according
to distributionPU|X2

(·|x2k). We denote such a codeC1. For
each(k, i) and for each(j, s) ∈ J ×S, we randomly generate
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codewordvkijs according to distributionPV |UX2
(·|uki, x2k).

We denote such a codeC2. For each(k, i, j) and for each
a ∈ A, we randomly generate codewordx1kijsa according to
distributionPX1|V (·|vkijs). We denote such a codeC3.

Let

T0 =

{

(u, x2, z) :
PZ|UX2

(z|u, x2)

PZ(z)
≥ eα0

}

,

T1 =

{

(u, v, x2, y) :
PY |UVX2

(y|u, v, x2)

PY |UX2
(y|u, x2)

≥ eα1

}

,

T2 =

{

(u, v, x2, y) :
PY |UVX2

(y|u, v, x2)

PY |X2
(y|x2)

≥ eα2

}

,

T3 =

{

(u, v, x2, y) :
PY |UVX2

(y|u, v, x2)

PY (y)
≥ eα3

}

,

and letT = T1 ∩ T2 ∩ T3. Eve decodes onlyk by using the
indirect decoding proposed in [20]. Eve’s decoding region is
defined by

Dk =
{

z : ∃i (uik, x2i, z) ∈ T0, ∀k̂ 6= k ∀î (u
k̂î
, x2k̂, z) /∈ T0

}

,

i.e., φ(z) = k if z ∈ Dk. Bob decodes(k, i, j, s). Bob’s
decoding region is defined by

Dkijs =
{

y : (uki, vkijs, x2k, y) ∈ T ,

∀(k̂, î, ĵ, ŝ) 6= (k, i, j, s) (u
k̂î
, v
k̂îĵŝ

, x2k̂, y) /∈ T
}

,

i.e., g(y) = (k, i, j, s) if y ∈ Dkijs.
Then we have the following.
Lemma 9:We have

EC0C1C2C3 [Perr(f, g)]

≤ PUV X2Y (T
c
1 ) + PUV X2Y (T

c
2 ) + PUV X2Y (T

c
3 )

+|J ||S|e−α1 + |I||J ||S|e−α2 + |K||I||J ||S|e−α3 ,

(15)

EC0C1C2C3 [Perr(f, φ)]

≤ PUX2Z(T
c
0 ) + |K||I|e−α0 , (16)

and

EC0C1C2C3 [D(f)]

≤
1

θ|A|θ
eψ(θ|PZ|X1X2

,PX1|V ,PUV X2 )

+
1

θ′|J |θ′
eψ(θ

′|PZ|UV X2
,PV |UX2

,PUX2), (17)

where

ψ(θ|PZ|X1X2
, PX1|V , PUV X2)

= log
∑

u,v,x2

PUV X2(u, v, x2)
∑

z
(

∑

x1

PX1|V (x1|v)PZ|X1X2
(z|x1, x2)

1+θ

)

PZ|UV X2
(z|u, v, x2)

−θ

and

ψ(θ′|PZ|UV X2
, PV |UX2

, PUX2 )

= log
∑

u,x2

PUX2(u, x2)
∑

z
(

∑

v

PV |UX2
(v|u, x2)PZ|UV X2

(z|u, v, x2)
1+θ

)

PZ|UX2
(z|u, x2)

−θ.

Proof: See Appendix B.
We apply Lemma 9 for asymptotic case. For

(Rd, R0, R1Rs) ∈ R(in) and arbitrary smallδ > 0,
we set |Kn| = ⌊en(R0−δ)⌋, |In| = ⌊en(r1−δ)⌋,
|Jn| = ⌊en(R1−r1+2δ)⌋, |Sn| = ⌊en(Rs−4δ)⌋,
|An| = ⌊en(Rd+2δ)⌋, α0 = I(U,X2;Z) − δ,
α1 = I(V ;Y |U,X2) − δ, α2 = I(U, V ;Y |X2) − δ,
α3 = I(U, V,X2;Y )− δ. Then,

|Jn||Sn|e
−α1n ≤ e−n(I(V ;Y |U,X2)−R1+r1−Rs+δ),

|In||Jn||Sn|e
−α2n ≤ e−n(I(U,V ;Y |X2)−R1−Rs+2δ),

|Kn||In||Jn||Sn|e
−α3n ≤ e−n(I(U,V,X2;Y )−R0−R1−Rs+3δ),

|Kn||In|e
−α0n ≤ e−n(I(U,X2;Z)−R0−r1+δ)

converge to0 asymptotically. Furthermore, by the law of large
numbers, PnUV X2Y

(T c
1,n), PnUV X2Y

(T c
2,n), PnUV X2Y

(T c
3,n),

andPnUX2Z
(T c

0,n) also converge to0 asymptotically.
Since

ψ′(0|PZ|X1X2
, PX1|V , PUV X2) = I(X1;Z|U, V,X2)

there existsθ0 > 0 such that

ψ(θ0|PZ|X1X2
, PX1|V , PUV X2)

θ0
≤ I(X1;Z|U, V,X2) + δ ≤ Rd + δ,

which implies

−
θ0
n

log |An|+ ψ(θ0|PZ|X1X2
, PX1|V , PUV X2) ≤ δ.

Thus,
1

θ0|An|θ0
enψ(θ0|PZ|X1X2

,PX1|V ,PUV X2 )

exponentially converges to0. Similarly, since

ψ′(0|PZ|UV X2
, PV |UX2

, PUX2 ) = I(V ;Z|U,X2)

there existsθ′0 > 0 such that

ψ(θ′0|PZ|UV X2
, PV |UX2

, PUX2)

θ′0
≤ I(V ;Z|U,X2) + δ ≤ R1 − r1 + δ,

which implies

−
θ′0
n

log |Jn|+ ψ(θ′0|PZ|UV X2
, PV |UX2

, PUX2 ) ≤ −δ.

Thus,
1

θ′0|Jn|
θ′0
enψ(θ

′
0|PZ|UV X2

,PV |UX2
,PUX2)

exponentially converges to0 asymptotically. This completes a
proof of the lemma.
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C. Proof of Converse Part of Theorem 2

Suppose that(Rd, R0, R1, Rs) ∈ R. Then, for arbitraryγ >
0, there existsn such that

n(R0 − γ) ≤ log |Kn|,

n(R1 +Rs − γ) ≤ log |Ln||Sn|,

n(R0 +R1 +Rs − γ) ≤ log |Kn||Ln||Sn|,

n(Rs − γ) ≤ log |Sn|,

n(R1 +Rd + γ) ≥ log |Ln||An|,

n(Rd − γ) ≥ log |An|.

By combining these inequalities with the following Lemma 10
and Lemma 11, we have the converse part of the theorem. The
statement about the range size ofU andV can be proved in
the same manner as [8]. It should be noted that Eqs. (9)–(12)
are derived in the same manner as [8] and the construction of
the auxiliary random variable are also the same. Eqs. (13) and
(14) are additionally proved in this paper by using the fact that
Alice’s encoder is deterministic given the dummy randomness.

Lemma 10:There existsεn → 0 such that

log |Kn|

≤ I(Kn, X
n
2 ;Y

n) + nεn,

log |Kn|

≤ I(Kn, X
n
2 ;Z

n) + nεn,

log |Ln||Sn|

≤ I(Ln, Sn;Y
n|Kn, X

n
2 ) + nεn,

log |Kn||Ln||Sn|

≤ I(Kn, Ln, Sn, X
n
2 ;Y

n) + nεn,

log |Kn||Ln||Sn|

≤ I(Ln, Sn;Y
n|Kn, X

n
2 ) + I(Kn, X

n
2 ;Z

n) + 2nεn,

log |Sn|

≤ I(Ln, Sn;Y
n|Kn, X

n
2 )

−I(Ln, Sn;Z
n|Kn, X

n
2 ) + 4nεn,

log |Ln||An|

≥ I(Xn
1 ;Z

n|Kn, X
n
2 )− 2nεn,

log |An|

≥ I(Xn
1 ;Z

n|Kn, Ln, Sn, X
n
2 ).

Proof: By using Fano’s inequality, we have

log |Kn| = H(Kn)

= I(Kn;Y
n) +H(Kn|Y

n)

≤ I(Kn, X
n
2 ;Y

n) + nεn,

and

log |Kn| ≤ I(Kn, X
n
2 ;Z

n) + nεn.

By using Fano’s inequality and by noting that(Kn, X
n
2 ) and

(Ln, Sn) are independent, we have

log |Ln||Sn| = H(Ln, Sn)

= I(Ln, Sn;Y
n) +H(Ln, Sn|Y

n)

≤ I(Ln, Sn;Kn, X
n
2 , Y

n) + nεn

= I(Ln, Sn;Y
n|Kn, X

n
2 ) + nεn.

By using Fano’s inequality, we also have

log |Kn||Ln||Sn| = H(Kn, Ln, Sn)

≤ I(Kn, Ln, Sn, X
n
2 ;Y

n) + nεn

and

log |Kn||Ln||Sn|

= H(Ln, Sn|Kn) +H(Kn)

≤ I(Ln, Sn;Y
n|Kn) + I(Kn, X

n
2 ;Z

n) + 2nεn

= I(Ln, Sn;Y
n|Kn, X

n
2 ) + I(Kn, X

n
2 ;Z

n) + 2nεn,

where the last equality follows from the fact thatXn
2 is a

determined fromKn. By using the security condition and
Fano’s inequality, we have

I(Sn;Z
n|Kn)

= I(Sn,Kn;Z
n)− I(Kn;Z

n)

= I(Sn;Z
n) + I(Kn;Z

n|Sn)− I(Kn;Z
n)

≤ I(Sn;Z
n) +H(Kn|Z

n)

≤ 2nεn. (18)

By using Fano’s inequality and by using Eq. (18), we have

log |Sn|

= H(Sn|Kn)

≤ I(Sn;Y
n|Kn) + nεn

= I(Ln, Sn;Y
n|Kn)− I(Ln;Y

n|Sn,Kn) + nεn

≤ I(Ln, Sn;Y
n|Kn)−H(Ln|Sn,Kn) + 2nεn

≤ I(Ln, Sn;Y
n|Kn)− I(Sn;Z

n|Kn)

−H(Ln|Sn,Kn) + 4nεn

≤ I(Ln, Sn;Y
n|Kn)− I(Ln, Sn;Z

n|Kn) + 4nεn

= I(Ln, Sn;Y
n|Kn, X

n
2 )

−I(Ln, Sn;Z
n|Kn, X

n
2 ) + 4nεn.

By noting thatfn is a deterministic function and by using
Eq. (18), we have

log |Ln||An|

≥ H(Xn
1 |Kn, Sn)

≥ I(Xn
1 ;Z

n|Kn, Sn)

= I(Xn
1 , Sn;Z

n|Kn)− I(Sn;Z
n|Kn)

≥ I(Xn
1 ;Z

n|Kn)− 2nεn

= I(Xn
1 ;Z

n|Kn, X
n
2 )− 2nεn.

Finally, by noting thatfn is a deterministic function, we have

log |An| ≥ H(Xn
1 |Kn, Ln, Sn)

≥ I(Xn
1 ;Z

n|Kn, Ln, Sn)

= I(Xn
1 ;Z

n|Kn, Ln, Sn, X
n
2 ).



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Lemma 11:For fixedn, let T be the random variable that
is uniformly distributed on{1, . . . , n} and is independent
of the other random variables. Define the following random
variables:

Ut = (Kn, X
n
2 , Y

t−1
1 , Znt+1),

Vt = (Ln, Sn, Ut),

U = (UT , T ),

V = (VT , T ),

X1 = X1T ,

X2 = X2T ,

Y = YT ,

Z = ZT .

Then, we have

I(Kn, X
n
2 ;Y

n)

≤ nI(U,X2;Y ), (19)

I(Kn, X
n
2 ;Z

n)

≤ nI(U,X2;Z), (20)

I(Ln, Sn;Y
n|Kn, X

n
2 )

≤ nI(U, V ;Y |X2), (21)

I(Kn, Ln, Sn, X
n
2 ;Y

n)

≤ nI(U, V,X2;Y ), (22)

I(Ln, Sn;Y
n|Kn, X

n
2 ) + I(Kn, X

n
2 ;Z

n)

≤ n[I(V ;Y |U,X2) + I(U,X2;Z)], (23)

I(Ln, Sn;Y
n|Kn, X

n
2 )− I(Ln, Sn;Z

n|Kn, X
n
2 )

≤ n[I(V ;Y |U,X2)− I(V ;Z|U,X2)], (24)

I(Xn
1 ;Z

n|Kn, X
n
2 )

≥ nI(X1;Z|U,X2), (25)

I(Xn
1 ;Z

n|Kn, Ln, Sn, X
n
2 )

≥ nI(X1;Z|U, V,X2). (26)

Proof:

a) Proof of Eq. (19):

I(Kn, X
n
2 ;Y

n)

=
n
∑

t=1

I(Kn, X
n
2 ;Yt|Y

t−1
1 )

≤

n
∑

t=1

I(Kn, X
n
2 , Y

t−1
1 , Znt+1;Yt)

=

n
∑

t=1

I(Ut;Yt)

= nI(UT ;YT |T )

= nI(UT , T ;YT )

= nI(U ;Y ).

b) Proof of Eq. (20):

I(Kn, X
n
2 ;Z

n)

=
n
∑

t=1

I(Kn, X
n
2 ;Zt|Z

n
t+1)

≤

n
∑

t=1

I(Kn, X
n
2 , Y

t−1
1 , Znt+1;Zt)

=

n
∑

t=1

I(Ut;Zt)

= nI(UT ;ZT |T )

= nI(UT , T ;ZT )

= nI(U ;Z).

c) Proof of Eq. (21):

I(Ln, Sn;Y
n|Kn, X

n
2 )

=

n
∑

t=1

[H(Yt|Kn, X
n
2 , Y

t−1
1 )

−H(Yt|Kn, Ln, Sn, X
n
2 , Y

t−1
1 )]

≤
n
∑

t=1

[H(Yt|X2t)

−H(Yt|Kn, Ln, Sn, X
n
2 , Y

t−1
1 , Znt+1)]

=

n
∑

t=1

I(Kn, Ln, Sn, X
n
2 ;Y

t−1
1 , Znt+1;Yt|X2t)

=
n
∑

t=1

I(Ut, Vt;Yt|X2t)

= nI(UT , VT ;YT |X2T , T )

= nI(U, V ;Y |X2).

d) Proof of Eq. (22):

I(Kn, Ln, Sn, X
n
2 ;Y

n)

=

n
∑

t=1

I(Kn, Ln, Sn, X
n
2 ;Yt|Y

t−1
1 )

≤

n
∑

t=1

I(Kn, Ln, Sn, X
n
2 , Y

t−1
1 , Znt+1;Yt)

=
n
∑

t=1

I(Ut, Vt, X2t;Yt)

= nI(UT , VT , X2T ;YT |T )

= nI(U, V,X2;Y ).

e) Proof of Eq. (23):

I(Ln, Sn;Y
n|Kn, X

n
2 ) + I(Kn, X

n
2 ;Z

n)

=

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 )

+I(Kn, X
n
2 ;Zt|Z

n
t+1)]

≤

n
∑

t=1

[I(Ln, Sn, Z
n
t+1;Yt|Kn, X

n
2 , Y

t−1
1 )

−I(Y t−1
1 ;Zt|Kn, X

n
2 , Z

n
t+1)
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+I(Kn, X
n
2 , Y

t−1
1 ;Zt|Z

n
t+1)]

=

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 , Znt+1)

+I(Znt+1;Yt|Kn, X
n
2 , Y

t−1
1 )

−I(Y t−1
1 ;Zt|Kn, X

n
2 , Z

n
t+1)

+I(Kn, X
n
2 , Y

t−1
1 ;Zt|Z

n
t+1)]

(a)
=

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 , Znt+1)

+I(Kn, X
n
2 , Y

t−1
1 ;Zt|Z

n
t+1)]

≤

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 , Znt+1)

+I(Kn, X
n
2 , Y

t−1
1 , Znt+1;Zt)]

= n[I(VT ;YT |UT , X2T , T ) + I(UT , X2T ;ZT |T )]

= n[I(V ;Y |U,X2) + I(U,X2;Z)],

where we used Csiszár’s sum identity [21] in (a).
f) Proof of Eq. (24):

I(Ln, Sn;Y
n|Kn, X

n
2 )− I(Ln, Sn;Z

n|Kn, X
n
2 )

=

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 )

−I(Ln, Sn;Zt|Kn, X
n
2 , Z

n
t+1)]

(a)
=

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 )

+I(Znt+1;Yt|Kn, Ln, Sn, X
n
2 , Y

t−1
1 )

−I(Y t−1
1 ;Zt|Kn, Ln, Sn, X

n
2 , Z

n
t+1)

−I(Ln, Sn;Zt|Kn, X
n
2 , Z

n
t+1)

=
n
∑

t=1

[I(Ln, Sn, Z
n
t+1;Yt|Kn, X

n
2 , Y

t−1
1 )

−I(Ln, Sn, Y
t−1
1 ;Zt|Kn, X

n
2 , Z

n
t+1)]

=

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 , Znt+1)

+I(Znt+1;Yt|Kn, X
n
2 , Y

t−1
1 )

−I(Y t−1
1 ;Zt|Kn, X

n
2 , Z

n
t+1)

−I(Ln, Sn;Zt|Kn, X
n
2 , Y

t−1
1 , Znt+1)]

(b)
=

n
∑

t=1

[I(Ln, Sn;Yt|Kn, X
n
2 , Y

t−1
1 , Znt+1)

−I(Ln, Sn;Zt|Kn, X
n
2 , Y

t−1
1 , Znt+1)]

= n[I(VT ;YT |UT , X2T , T )− I(VT ;ZT |UT , X2T , T )]

= n[I(V ;Y |U,X2)− I(V ;Z|U,X2)],

where (a) and (b) follow from Csiszár’s sum identity [21].
g) Proof of Eq. (25):

I(Xn
1 ;Z

n|Kn, X
n
2 )

=

n
∑

t=1

[H(Zt|Kn, X
n
2 , Z

n
t+1)

−H(Zt|Kn, X
n
1 , X

n
2 , Z

n
t+1)]

(a)

≥

n
∑

t=1

[H(Zt|Kn, X
n
2 , Y

t−1
1 , Znt+1)

−H(Zt|Kn, X1t, X
n
2 , Y

t−1
1 , Znt+1)]

=
n
∑

t=1

I(X1t;Zt|Kn, X
n
2 , Y

t−1
1 , Znt+1)

=

n
∑

t=1

I(X1t;Zt|Ut, X2t)

= nI(X1T ;ZT |UT , X2T , T )

= nI(X1;Z|U,X2),

where (a) follows from the fact that(Kn, Xt−1
11 , Xn

1(t+1),
Xt−1

21 , Xn
2(t+1), Y

t−1
1 , Zt+1), (X1t,X2t), andZt form Markov

chain.
h) Proof of Eq. (26):

I(Xn
1 ;Z

n|Kn, Ln, Sn, X
n
2 )

=
n
∑

t=1

[H(Zt|Kn, Ln, Sn, X
n
2 , Z

n
t+1)

−H(Zt|Kn, Ln, Sn, X
n
1 , X

n
2 , Z

n
t+1)]

(a)

≥

n
∑

t=1

[H(Zt|Kn, Ln, Sn, X
n
2 , Y

t−1
1 , Znt+1)

−H(Zt|Kn, Ln, Sn, X1t, X
n
2 , Y

t−1
1 , Znt+1)]

=

n
∑

t=1

I(X1t;Zt|Kn, Ln, Sn, X
n
2 , Y

t−1
1 , Znt+1)

=

n
∑

t=1

I(X1t;Zt|Ut, Vt, X2t)

= nI(X1T ;ZT |UT , VT , X2T , T )

= nI(X1;Z|U, V,X2),

where (a) follows from the fact that(Kn, Ln, Sn, Xt−1
11 ,

Xn
1(t+1), X

t−1
21 , Xn

2(t+1), Y
t−1
1 , Zt+1), (X1t,X2t), and Zt

form Markov chain.
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APPENDIX

A. Channel Resolvability

Since we use a result of the channel resolvability problem
[22] in the proof of our main result, we review the channel
resolvability problem in this appendix. For simplicity of no-
tation, we consider the so-called one-shot case, i.e., the block
length is n = 1. In the channel resolvability problem, for
the input distributionPX of the channelPZ|X , we want to
simulate the responsePZ of the channel, where

PZ(z) =
∑

x

PX(x)PZ|X (z|x).
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The simulation is conducted by a deterministic mapϕ : B →
X , and uniform random numberB on B. Let

PZ̃(z) =
∑

b∈B

1

|B|
PZ|X(z|ϕ(b))

be the output distribution with mapϕ. The purpose of the re-
solvability problem is to construct a map such thatD(PZ̃‖PZ)
is small.

In [16], the following random coding construction of a map
was proposed. We split the alphabet asB = M1 ×M2. Let
PV X be a distribution such that the marginal isPX . We first
randomly generate|M2| codewordsv1, . . . , v|M2| according
to the distributionPV . We denote the generated code by
C2. Then, for each1 ≤ i ≤ |M2|, we randomly generate
|M1| codewordsxi1, . . . , xi|M1| according to the distribution
PX|V (·|vi). We denote the generated code byC1. For this
construction we have the following lemma.

Lemma 12:([16]) For 0 < θ, θ′ ≤ 1, we have

EC1C2 [D(PZ̃‖PZ)]

≤
1

θ|M1|θ
eψ(θ|PZ|X,PX|V ,PV )

+
1

θ′|M2|θ
′ e
ψ(θ′|PZ|V ,PV ),

where

ψ(θ|PZ|X , PX|V , PV )

= log
∑

v

PV (v)
∑

z
(

∑

x

PX|V (x|v)PZ|X(z|x)1+θ

)

PZ|V (z|v)
−θ

and

ψ(θ′|PZ|V , PV )

= log
∑

z

(

∑

x

PX(x)PZ|X(z|x)1+θ
′

)

PZ(x)
−θ′ .

B. Proof of Lemma 9

a) Proof of Eq. (15):We first not the following obser-
vation. By taking the average over randomly generated codes,
we have

EC0C1C2C3 [Perr(f, g)]

= EC0C1C2C3





∑

k,i,j,s,a

1

|K||I||J ||S||A|

PY |X1X2
(Dc

kijsa|x1kijsa , x2k)





= EC0C1C2





∑

k,i,j,s,a

1

|K||I||J ||S||A|

EC3

[

PY |X1X2
(Dc

kijsa |x1kijsa , x2k)
]





= EC0C1C2





∑

k,i,j,s

1

|K||I||J ||S|

PY |VX2
(Dc

kijsa |vkijs, x2k)



 . (27)

Let Tuvx2 = {y : (u, v, x2, y) ∈ T }. Then, we have

EC0C1C2





∑

k,i,j,s

1

|K||I||J ||S|
PY |VX2

(Dc
kijsa |vkijs, x2k)



 .

≤ EC0C1C2





∑

k,i,j,s

1

|K||I||J ||S|

{PY |VX2
(T c
ukivkijsx2k

|vkijs, x2k)

+
∑

(k̂,̂i,ĵ,ŝ)
6=(k,i,j,s)

PY |VX2
(Tu

k̂î
v
k̂îĵŝ

x2k̂
|vkijs, x2k)}







≤ EC0C1C3





∑

k,i,j,s

1

|K||I||J ||S|

{PY |VX2
(T c
ukivkijsx2k

|vkijs, x2k)

+
∑

(ĵ,ŝ) 6=(j,s)

PY |V X2
(Tukivkiĵŝ

x2k
|vkijs, x2k)

+
∑

î6=i

∑

(ĵ,ŝ)

PY |VX2
(Tu

kî
v
kîĵŝ

x2k
|vkijs, x2k)

+
∑

k̂ 6=k

∑

(̂i,ĵ,ŝ)

PY |VX2
(Tu

k̂î
v
k̂îĵŝ

x2k̂
|vkijs, x2k)}





≤
∑

k,i,j,s

1

|K||I||J ||S|
{PUVX2Y (T

c)

+|J ||S|
∑

u,v,x2

PUV X2(u, v, x2)PY |UX2
(Tuvx2 |u, x2)

+|I||J ||S|
∑

u,v,x2

PUV X2(u, v, x2)PY |X2
(Tuvx2 |x2)

+|K||I||J ||S|
∑

u,v,x2

PUV X2(u, v, x2)PY (Tuvx2)

≤ PUV X2Y (T
c) + |J ||S|e−α1

+|I||J ||S|e−α2 + |K||I||J ||S|e−α3 ,

where we used

PY |UX2
(y|u, x2) ≤ PY |UV X2

(y|u, v, x2)e
−α1 ,

PY |X2
(y|x2) ≤ PY |UV X2

(y|u, v, x2)e
−α2 ,

PY (y) ≤ PY |UV X2
(y|u, v, x2)e

−α3

for y ∈ Tuvx2 in the last inequality.
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b) Proof of Eq. (16):Let T0,ux2 = {z : (u, x2, z) ∈ T0}.
In a similar manner as Eq. (27), we have

EC0C1C2C3 [Perr(f, φ)]

= EC0C1





∑

k,i

1

|K||I|
PZ|UX2

(Dc
k|uki, x2k)





≤ EC0C1





∑

k,i

1

|K||I|
{PZ|UX2

(T c
0,ukix2k

|uki, x2k)

+
∑

k̂ 6=k

∑

î

PZ|UX2
(T0,u

k̂î
x2k̂

|uki, x2k)}





≤
∑

k,i

1

|K||I|
{PUX2Z(T

c
0 )

+|K||I|
∑

u,x2

PUX2 (u, x2)PZ(T0,ux2)}

≤ PUX2Z(T
c
0 ) + |K||I|e−α0 ,

where we used

PZ(z) ≤ PZ|UX2
(z|u, x2)e

−α0

for z ∈ T0,ux2 in the last inequality.
c) Proof of Eq. (17):By using the monotonicity of the

divergence, we have

D(f) = D(PSZ̃‖PS × PZ̃)

≤ D(PKISZ̃‖PS × PKIZ̃)

=
∑

k,i

1

|K||I|
D(PSZ̃|KI(·, ·|k, i)‖PS × PZ̃|KI(·|k, i))

=
∑

k,i,s

1

|K||I||S|
D(PZ̃|KIS(·|k, i, s)‖PZ̃|KI(·|k, i)).

For each(k, i), we use the relation
∑

s

1

|S|
D(PZ̃|KIS(·|k, i, s)‖PZ̃|KI(·|k, i))

+D(PZ̃|KI(·|k, i)‖PZ|UX2
(·|uki, x2k))

=
∑

s

1

|S|
D(PZ̃|KIS(·|k, i, s)‖PZ|UX2

(·|uki, x2k)).

By using Lemma 12 for input distributionsPV |UX2
(·|uki, x2k)

andPX1|V and channelPZ|X1X2
, we have

EC2C3 [D(f)]

≤
∑

k,i

1

|K||I|
[

1

θ|A|θ
eψ(θ|PZ|X1X2

(·|·,x2k),PX1|V ,PV |UX2
(·|uki,x2k))

+
1

θ′|J |θ′
eψ(θ

′|PZ|UV X2
(·|·,uki,x2k),PV |UX2

(·|uki,x2k))

]

.

By taking the average overC0 andC1, and by noting

EC0C1





∑

k,i

1

|K||I|
1[uki = u, x2k = x2]



 = PUX2 (u, x2),

we have

EC0C1C2C3 [D(f)]

≤
∑

u,x2

PUX2(u, x2)

[

1

θ|A|θ
eψ(θ|PZ|X1X2

(·|·,x2k),PX1|V ,PV |UX2
(·|uki,x2k))

+
1

θ′|J |θ′
eψ(θ

′|PZ|UV X2
(·|·,uki,x2k),PV |UX2

(·|uki,x2k))

]

≤
1

θ|A|θ
eψ(θ|PZ|X1X2

,PX1|V ,PUV X2)

+
1

θ′|J |θ′
eψ(θ

′|PZ|UV X2
,PV |UX2

,PUX2).

C. Proof of Lemma 8

By using the Fourier-Motzkin elimination, we can show that
(Rd, R0, R1, Rs) ∈ R̃(in) if and only if

R0 ≤ I(U,X2;Z),

R0 +Rs ≤ I(V ;Y |U,X2)− I(V ;Z|U,X2)

+I(U,X2;Y ), (28)

R1 +Rs ≤ I(U, V ;Y |X2),

R0 +R1 +Rs ≤ I(V ;Y |U,X2)

+min[I(U,X2;Y ), I(U,X2;Z)],

Rs ≤ I(V ;Y |U,X2)− I(V ;Z|U,X2),(29)

Rd +R1 ≥ I(X1;Z|U,X2),

Rd ≥ I(X1;Z|U, V,X2)

are satisfied. By adding the inequality

R0 ≤ I(U,X2;Y ),

this inequality and Eq. (29) imply that Eq. (28) is redundant.
Thus, we haveR∗ ⊂ R̃(in).
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