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Cognitive Interference Channels with Confidential
Messages under Randomness Constraint
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Abstract—The cognitive interference channel with confidential are not as fast as communication rates of wireless networks
messages (CICC) proposed by Liangt. al. is investigated. When [12]. Although the random number generator equipped in the
the security is considered in coding systems, it is well know forthcoming Intel's CPU can generate the random number as

that the sender needs to use a stochastic encoding to avoideth L
information about the transmitted confidential message to kb fast as3Gbps [13], the communication rate of the new IEEE

leaked to an eavesdropper. For the CICC, the trade-off betwen ~ Wireless communication standard is said to be over Gbgs [14]
the rate of the random number to realize the stochastic encadg Thus, the random number should be regarded as at least as

and the communication rates is investigated, and the optima precious as communication resources. For this purpose, we
trade-off is completely characterized. formulate the problem of the CICC by randomness constrained
Index Terms—Cognitive Interference Channel, Confidential stochastic encoder, and completely characterize the itgpac
Messages, Randomness Constraint, Stochastic Encoder, & region of this new problem. We assume that the non-cognitive
position Coding transmitter, Charlie, only uses a deterministic encodiffgs
assumption seems natural because Charlie only observes the
I. INTRODUCTION common message, and the common message need not to be

kept secret.
Cognitive radio has attracted considerable attentionntége 'ﬁ)‘he present problem to consider the CICC by the ran-

for it can improve the spectrum efficiency of wireless neksor 4o nness constrained stochastic encoder is an extension of
ﬂlﬂ. In information theore_tlcal study of the cognitive radit _the authors’ series of works. I [15], the authors investida

is usually modeled by a interference channel called cognitiyne capacity region of the relay channel with confidential
interference channel (CIC), in which the cognitive trart$eni essages for the completely deterministic encoder, and the
can non-causally know the other transmitter's message [ghnacity region of the broadcast channel with confidential
[3]. [4], [E]. We consider the (CIC) model investigated bynessages (BCC) for the completely deterministic encoder wa
Jianget. al. [6], Zhonget. al. [7], and Lianget. al. [8], in  characterized as a corollary. 10 ]16], the authors comfylete
which one receiver needs to decode both messages. Especig{hacterized the capacity region of the BCC by the random-
as in [8], we also consider the security, i.e., the messaggss constrained stochastic encoder. The problem foriowlat

sent by the cognitive transmitter must be kept secret frop ihis paper is the extension of that i [16] to the CIC, and
one of the receivers. We call this problem the cognitivgqre involved coding techniques are needed.

interference channel with confidential messages (CICCg Th gjnce the security criterion employed in this paper is $ligh

coding system investigated in this paper is described inlFig ifferent from that in [[8], it should be remarked. Il [8], the
When the security is considered, it is well known thaiognitive transmitter, Alice, sends two kinds of messages,
the sender needs to use a stochastic encoder to avoid dhgmon message and the confidential message, and the level
information about the transmitted confidential messageeto Qf. secrecy of the confidential message was evaluated by the
leaked to the eavesdropper Eve. The stochastic encodepdgivocation rate. In this paper, Alice sends three kinds of
usually realized by preparing a dummy random number jfessages, the common message, the private message, and the
addition to the intended messages and by encoding themcfidential message. The role of the common message is the
a transmitted signal by a deterministic encoder. Furthe@nogsme as that i [8]. The private message is supposed to be
random numbers are also needed to realize the coding teghzgded by one of the receiver, Bob, and we do not care
nique called channel prefixing. _ _ whether Eve can decode the private message or not. On the
In literatures of information theoretic security (ed. [BI0],  other hand, the confidential message is supposed to be dkcode
[11]), the random number has been regarded as free resougieBob, and it must be kept completely secret from Eve. The
and the amount of the random number used in the stochag@érecy of the confidential message is evaluated by the so-
encoding has been paid no attention. However in practicgyjled strong security criterion [L7], [18]. As a byprodusr
the random number is quite precious resource. For examigect coding theorem is stronger than that [in [8], i.e., our
generation rates of any existing true random number gemsratneorem states the strong secrecy.
. L . , _ The reason we do not use the equivocation rate formulation
The first author is with the Department of Information Scermad Intelli- . . . .
gent Systems, University of Tokushima, 2-1, Minami-josanj Tokushima, 1S @S follows. In the conventional equivocation rate foraaul
770-8506, Japan, e-mail:shun-wata@is.tokushima-p.ac.j tion, if the rate of dummy randomness is not sufficient, a part
The second author is with the Department of Communicatiogirierering  of the confidential message is sacrificed to make the other par
and Informatics, University of Electro-Communicationsykyo, 182-8585, completely secret and the rate of the completely secret part
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Eve wherel[-] is the indicator function. Eve’s decoder is defined
z" A o by function ¢, : 2" — K, and the error probability
Charlie K G K ) no . Lo
4 E\&n A Porr(fn, f1, én) is defined in a similar manner as Ef] (1).
Let
Alice L ) L Kn,Ln, $) 1
ice Lp = n:Lbn, n
X Pous,("lsa) = > 30 D0
Sn = Bob kn€Kn bn€Ly an€A, Kl L]
An Pg\Xng(Zn|f’n(knvénaSnvan)afzz(kn))a
1
Fig. 1. The coding system investigated in this paper. Alieeds common PZn (Zn) = Z —PZTL‘SH (Zn|8n)
messageK,,, private messagd.,,, and confidential messag®,, by using 5nES |Sn|

a deterministic functionf,, and a limited amount of dummy randomness

An. Charlie also sends a signal} which is a deterministic function of the S ]
common messagé,,. The common message is supposed to be decoded bg the output distributions of the channt‘X] Xy In this
both Bob and Eve. The private message is supposed to be debgdgob, paper, we consider the security criterion given by

and we do not care whether Eve can decode the private messagé dhe

confidential message is supposed to be decoded by Bob, angsitha kept

completely secret from Eve. D(f f’) = D(PS on || Ps, X Pzy)
nyJJn «— nZn, n n
1
y = 2 5P Ens, Clsn)IPz0)
of sacrificed part and completely secret part become clearer r |Sn

by employing our formulation. — IS .7
The rest of this paper is organized as follows. In Section " ’
[ the problem formulation is explained and main results ar _ ] )
presented. In Sectiof]ll, the proof of the main theorem Where D(--) is the divergence, and(-;-) is the mutual
presented. Some technical arguments are presented in Appafprmation [19]. The coding system investigate in this @ap
dices. is depicted in Fig[1.
In this paper, we are interested in the trade-off among the
Il. PROBLEM FORMULATION AND MAIN RESULTS rate the dummy randomness, and the rates of the common,

Let Py |x,x, and Pz|x, x, be two channels with common prlvat(_a,.a_md confidential messages. _ _
input alphabetsX; x X, and output alphabety and Z Definition 1: The rate quadruplRy, Ro, R1, R;) is said to
respectively. Throughout the paper, the alphabets arevassu beachievablef there exists a sequence of Alice’s deterministic
to be finite though we do not use finiteness of the alphaicoderfy : Knx L, xS, x A, — AT, Charlie’s deterministic
except cardinality bonds on auxiliary random variables. ~ encoderf;, : K, — X3!, Bob’s decodey,, : Y™ — K, x Ly, %

Let K,, be the set of the common messagg, be the set Sn. and Eve’s decodep, : Z" — K, such that
of the private message, aift), be the set of the confidential

message. The common message is supposed to be decoded im Popr(fo, flhign) = 0, )

by both Bob and Eve. The private message is supposed to oo ,

be decoded by Bob, and we do not care whether Eve can HILHQO Perr(fas frsdn) =0, @)

decode the private message or not. The confidential message lim D(fn, f) = 0, (4)

is supposed to be decoded by Bob, and it must be kept "_“’01

completely secret from Eve. limsup — log |A,|] < Ry, (5)
Typically, Alice use a stochastic encoder to make the confi- n—oo Tt

dential message secret from Eve, and it is practically zedli lim inf 1 log|Kn| > R, (6)

by using a uniform dummy randomness on the alphabet oo q

When the size|4,,| of dummy randomness is infinite, any lim —log|L,| = Ry, (7

stochastic encoder froid,, x £,, x S,, to X7 can be simulated nee le

by a deterministic encodef,, : IC, X £,, X S,, x A, — X" 1inngi£f - log|S,| > Rs. (8)

But we are interested in the case with bounded &i4g| in
this paper. In this paper, we assume that Charlie only us
deterministic encodef, : K,, — XJ'.

Bob’s decoder is defined by functign : V" — K,, x £,, x
S, and the error probability is defined as

flen the achievable regioR is defined as the set of all
achievable rate quadruples.

The following is our main result in this paper.
Theorem 2:Let R* be a closed convex set consisting

Perr(frs £ 9n) of those quadruple$R,, Ry, R, R,) for which there exist
_ Z Z Z Z 1 auxiliary random variablesU, V') such that
kn€EKpn bn €Ly SnESy an€An K[| |Snl[An]
PQ|X1X2 (yn|fn(km€m Sn, an)a fyll(kn)) (U, Xg) < Ve X,

Lgn(y") # (kn, ln, sn)], 1) (U, V) & (X1, X2) > (Y, 2)
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and We first show the following.
Lemma 6:Let R(") be a closed convex set consisting of

Ro < min[I(U, X5;Y), I(U, X2;Z)], (9)  tpose quadruple&Ry, Ro, R, R,) for which there exist; >
Ri+R, < I(UV;Y[X2), (10) 0 and auxiliary random variablegd/, V) such that
RO+R1 +Rs S I(V7Y|U7 XQ) (U XQ) o V o Xl
+min[I(U, X5;Y), I(U, X2; Z)] (11) (U.V) & (X1, X0) & (V. 2)
B, < I(ViYIUXo) —I(ViZIU. X2)(12)
Ri+Ry > I(X1:Z|U,Xo), @3 2"
Ry > I(X1;Z|U,V,X,). (14) Ro+r < I(U X2 Z),
. Ry — Ry < I(V:Y|U, Xs),
Then we haveR = R*. Moreover, it may be assumed that 1Nt < A | 2)
the ranges ot/ and V' may be assumed to satisfy Ri+ R, < I(U,V;Y[X2),
Ro+ Ri+ Ry < (UVXQ, ),
| < |||+ 3, Ri—r > I(V:Z|U,Xs)
VI < PP + 42| X + 3. Ry ; (X1 Z|U, V., Xa).
ReF;:;?IE ’SSrefs iveecmlﬁ?r:a in the achievability proof of ;1e ThenP%ifhzveiz(;zcﬁo& -

main theorem, the private message can be used as dumrr%
randomness to protect the confidential message from Eye
Thus, if we define the achievability rate regi@nby replacing

note the following observation. From the definition of
Yhe problem, if

Eq U) Wlth (Rd_rdaROaRl _Ts+rd7RS+TS) ER
i inf log |£n| > Ry, for somerg, s > 0, then we also haveRq, Ro, R1, R) € R.
n—oo 1 Thus, Lemmal implies the following corollary.

region R is broader than regiorR. Indeed,R is a closed ~ Corollary 7: Let RU") be a closed convex set consisting
convex set consisting of those quadrupliy, Ry, R, R,) for  Of those quadruple$Rq, Ro, Ry, R;) for which there exist
which there exist auxiliary random variablgs, V) satisfying 71,74, 7s = 0 and (U, V) such that
th%samekci)rllzditi%rg)as Theotrr;Eh: E except Eﬂ.t (_13). o (U, Xs) & V & X1,

emark 4:Eq. means that here is a certain amount o
dummy randomness that cannot be substituted by the private U, V) & (X1, X2) € (V. Z)
message. Note that the difference between the private gessand
and the dummy randomness is whether Bob needs to decode

it or not. Ro+r < I(U X2 Z),
When there is no randomness constraint, region Ri—ri+rqa+Rs < I(V;Y|U, X3),
Roo = {(Ro, R1, Ry) : 3Ra > 0 s.t. (Ra, Ro, R1, R.) € R} Bitrat Ry < (U V;Y|X),
o ] ] . Ro+Ri+rq+Rs < I(U,V,Xo; ),
coincide with the result .obtalne(.:i by Liargg. al. [8]. Rimri—rotra > I(ViZ|U,Xa),
Corollary 5: ([8]) RegionR . is a closed convex set con-
sisting of those triplet(Ry, R1, Rs) for which there exist Ri—ra = I(Xy;Z|U,V, Xs).
auxiliary random variable§U, V') such that Then we haveR(™ c R.
(U, X2) & V & X1, By using the Fourier-Motzkin elimination, we can also show
the following.
(O, V) & (X1, X2) & (Y, 2) Lemma 8:We have
and R* C 7%(111)
Ry < min[I(U, Xo; Y)7 I(Ua Xo; Z)]a Proof: See Appendi@_ [
Ri+Rs, < I(UV,;Y|X2),
Ro+Ri+Rs < I(V;YU, X5) B. Proof of Lemm&l6
+min[I(U, X2;Y), I(U, X2; Z)], For a while, we consider the case with= 1 and omit the
R, < I(V;Y|U, X5)—I(V;Z|U,Xo). superscript and subscript to simplify the notation. We 8ydit

the private message @s= 7 x 7. For each common message

k € K, we randomly generate codeword, according to

. distribution Px,. We denote such a codg. For eachk and

A. Proof of Direct Part of Theoreif] 2 eachi € Z, we randomly generate codeworg; according
The direct part of Theoref 2 follows from the followingto distributionPU‘Xz(-|a:2k). We denote such a codg. For

Corollary[d and LemmA]8. each(k, ) and for each(j, s) € J x S, we randomly generate

IIl. PROOF OFMAIN RESULTS
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codeworduy;s according to distributionPy ¢ x, (+[uri, T2x)-
We denote such a cod&. For each(k,i,j) and for each
a € A, we randomly generate codewordy;;,, according to
distribution Py, |y (-|vgijs ). We denote such a cod®.

Let
P )
To = {(u,xz,z) : %ﬂ;m > eo‘“},
Pyiovx, (ylu,v,22)
7—1 - {(ua'l}aany) : Py‘UX2(y|’U,,£C2) = € B
P y u) /U’I «
T2 = {(U,v,zmy): Yl[jD‘;T;((nyg) 2 = 2}’
2
P
T3 = {(u,v,xz,y)5 YIUV?Y(?(Jy'?,v,IQ) - eas}’

and let7 = 7; N 72 N T3. Eve decodes only by using the
indirect decoding proposed i [20]. Eve’s decoding regi®n
defined by

Dy, =
{z 23 (g, T24,2) € %,V/Aﬂ £k Vi (wp;, Top, 2) & 76} ,

ie., ¢(z) k if z € Dy. Bob decodegk,i,j,s). Bob's
decoding region is defined by

Drijs = {y : (Wkis Vhijs, T2k, y) €T,
V(]%,i,i,g) 7& (kaiaju S) (ufcaavfgajgangwy) ¢ T}7

i.e., g(y) = (k,i,4,s) if y € Dryjs.
Then we have the following.
Lemma 9:We have

]EC()C1C263 [PE’I‘T‘ (f? g)]
< Pyvx,v(T) + Puvx,v(T5) + Puvx,v (T5)
+|T[Sle™ ™ + |Z||T|Sle”** + K| Z]|T||S]e™*,

(15)
EC0C1C2C3 [PET"“ (fv (b)]
< Pux,z(Ty) + K[| Z]e, (16)
and
Ecoclczcs [D(f)]
< 9|J14|9 eV 01Pz x, x5 Pxy v Puvixy)

Sl s ), (17)

where

V(0| Pz\x, x,, Px, v Puvx,)
10g Z PUVXg(Uy'Uy:CQ)Z

UV, T2 z

(Z PX1|V(I1|U)PZ|X1X2 (Z|I1’x2)1+0>

Z1

Priuvx, (2|u,v,22) ¢

and
Y(0'|Pziuvx,, Priux, Puxs,)

10g Z ft)UX2 (u, xg) Z

U, T2 z

(Z Pyiux, (vlu, 22) Pz v x, (2|u, v, I2)1+9>

PZ|UX2 (2|u, (Eg)_e.

Proof: See AppendiXB. [

We apply Lemma [19 for asymptotic case. For
(R4, Ro,R1Rs) € RU™ and arbitrary small§ > 0,
we set [, = [erFo=d)| T, = |ennT9)],
|jn| — Len(lenJrQé)J’ | n| — Le"(R3746)J,
A, = [enBatR) oy = (U, X2;2) — 4,
a1 = I(V,YlU,XQ) — 5, oy = I(U,V,Y|X2) — 6,

s = I(U,V,X2;Y) — 6. Then,
|jn||8n|e—o¢1n e—n(I(V;Y\U,Xg)—Rl-l—rl—R3+5)7
| Zn || Tnl|Snle™ "
IKnl|Zn || Tnl|Snle™ "
||| Z]e™ "

converge td) asymptotically. Furthermore, by the law of large

numbers, Py x,y (T5), Plvx,y (Tin): Povx,y (T5n),
and Py, ,(75,) also converge t0 asymptotically.
Since

V' (0|Pg|x, x5, Px, v, Puvx,) = 1(X1: Z|U,V, X3)
there existd), > 0 such that

V(00| Pz x, x5, Px, v Povix,)
0o
< I(X1;ZIU,V, X5)+ 6 < Rg+ 0,

e~ n(I(U,V;Y | X2)—Ri—Rs+20)
3
e~ n(I(U,V.X2;Y)—Ro—R1—Rs+30)
3

VAN VAR VAN VAN

e—n(I(U,XQ;Z)—R()—Tl-l-(;)

which implies

0
—EO log |An| + (00| Pz x, x,, Px,|v, Puvx,) < 0.

Thus,
1
Bo[Ap|% ‘
exponentially converges to. Similarly, since
V' (0lPziuv x,, Pviuxs, Pux,) = I(V; Z|U, X3)
there existg;, > 0 such that

nY(00| Pz x, x4, Pxy v Puvxy)

V(05| Pziovx,, Pvivx,, Pux,)
)
< I(V,Z|U,X2)+5SR1 —7’1+5,

which implies
9/
—EO log | Tn| + ¥(04|Pziuv xs Priux, Pux,) < —0.
Thus,
1

041 T %
exponentially converges to asymptotically. This completes a
proof of the lemma. [ |

enw(%\PZ\UVX27PV\UX27PUX2)
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C. Proof of Converse Part of Theordrh 2 By using Fano’s inequality and by noting th@,,, X7') and
(L, S,) are independent, we have
Suppose thatR4, Ro, R1, Rs) € R. Then, for arbitraryy >
0, there exists: such that log [La]|Sn] = H(Ln,Sh)
= I(Ln7 Shni Yn) + H(Lna Sn|Yn)
n(Ro—7) < log|K,l, < I(Ln, Sp; Ky X5, Y™) + nen
n(Ry+ Rs —v) < log|Lyl|Sul, = I(Ln,Sn; Y™Ky, X3) + ne,.
n(Ro+ R+ Rs —v) < log|Knl|[Ln]|Snl, By using Fano’s inequality, we also have
(B =) < loglSal log [l |£0[|Sal - = H(Kn, Ln, Sn)
n(Bi+Rat+y) 2 log|LlallAnl, < I(Kp, L, Spy X525 Y™) + nen
n(Ri—7) > log|Anl-

and

By combining these inequalities with the following Lemma 10 1og [Kn[Ln|[Sn|
and Lemm&7l1, we have the converse part of the theorem. The = H(L,,, S, |K,) + H(K,)
ts;atement about thr[aé?gﬁ ste(gfa:)nthc%ntr?et gveﬂdg)in(lz) < I(Lny Sp; Y| K) + I(Kn, X35 Z7) + 2ne,,

e same manner as| [8]. It should be noted that Eds.[(9)— " n S
are derived in the same manner @s [8] and the construction of — (L, Sps Y [ Ko, X3') + 1 (K, X35 27) + 2nen,
the auxiliary random variable are also the same. Eqg$. (18) amhere the last equality follows from the fact that} is a
(I4) are additionally proved in this paper by using the fhett determined fromkK,,. By using the security condition and
Alice’s encoder is deterministic given the dummy randorsneg-ano’s inequality, we have

Lemma 10:There exists,, — 0 such that 1(Sp: 2" Ky)
= I(S,,K,; Z")—I(K,; Z")
log [ICy| n n n
< (K, XEY") 4 e, I(Sn; Z™) + I(Kp; Z"|Sp) — I(Kp; ZM)
< I(Sn; Z2") + H(Kn|Z")
log [ K| < 2ney. (18)
< I(Kp, X3, Z™) + nep,
10g | L0 [|Sn] By using Fano’s inequality and by using EB.18), we have
< I(Lp, Sn; Y™K, X3) + nep, log S|
log [ || L[Sl = H(Sn|Kn)
< I(Kp,Lp,Sp, X3, Y™) 4 nep, < I(Sn;Y'[KR) + ney
10g [KCo || L0 || = I(Ln, Sp; Y"|Kp) = I(Lp; Y"[Sn, Kn) 4 nen
< I(Lyp, Sp; Y™Ky, X3') + I(K,, X35 Z7) + 2ney, < (L, Sn; Y[ Ky) = H(Ln|Sn, Kn) + 2ney
log |S,| < I(Ln, Sn; Y |Kn) = 1(Sn; 2" Kn)
< I(L,,S,;Y"|K,,X%) —H(L,|Sn, Kp,) + 4ne,
—I(Ly, Sp; Z"| Ky, X3) + 4ney, < I(Ln, Spy Y| Kn) = I(Ly, Sn; 2" Kp) + 4ney,
log |£,|]Ay| = I(Lp,Sn; Y™K, X3)
> (X 27K, XI) — 2ne,, —I(Ln, Sn; Z"|Kn, X3') + 4nen.
log | A, | By noting that f,, is a deterministic function and by using
> (X} Z"|Kn, L, Sn, X3). Eqg. (18), we have
log [Ln[Ax]
Proof: By using Fano’s inequality, we have > H(X7|Kn,Sn)
> (X7 2" Kn, Sy)
log|Kn| = H(Kny) = I(X],Sn: Z"K,) —1(Sn: 2" K,)
= I(KpY")+ H(Kn[Y™) > (XD 27| K,) — 2ne,

IN

(K, X35 Y™) 4 ney,

I(X{5 27 Ky, X5) — 2nep,.
Finally, by noting thatf,, is a deterministic function, we have
and 10g|-’4n| > H(XmKnaLmSn)
> I(X{5Z"[Kn, Ly, Sp)
(X1 ZM Ky, L, Sny X3,

log |K,| < I(Kp, X5 Z™) + nep,.
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[
Lemma 11:For fixedn, let T be the random variable that
is uniformly distributed on{1,...,n} and is independent

of the other random variables. Define the following random
variables:

U = (KnanYlt ' Zt+1)
Vi = (Ln SmUt)

U = (Ur,T),

Vo= (Vr,7),

X1 = Xir,

X = Xor,

Y = Yp,

Z = Zp.

Then, we have

I(K,, X53;Y™)

< nl(U,X2;Y), (29)
I(K,,X3,Z™)

< nl(U, X; Z), (20)
I(Ly, Sp; YKy, X3)

< nl(U,V;Y|X3), (22)
I(Ky, Lp, Sp, X5;Y™)

< nl(U,V,X2;Y), (22)
I(Ly, Sp; YKy, X3 + I(Kp, X35 2™)

< n[I(V;Y|U, X2) 4+ I(U, Xo; Z)], (23)
I(Ly, Sp; Y™Ky, X3') — I(Ly, Sp; Z" | Ky, X3)

< n[I(V;Y|U, X3) — I(V; Z|U, X5)], (24)
I(XT{ 2" | Ky, XT)

> nl(X1;Z|U, X5), (25)
(X1 Z"| Ky, Ly, Sy, X3)

> nl(X1;Z|U,V, Xz). (26)

Proof:
a) Proof of Eq.[(IP):

I(K, X35Y™)

= ) I(Kn, X35 YY)
t=1

ZI(Kan;lv }/1t717 Zﬁ%l; }/t)

t=1
n

= D IU;YY)

=1
= TLI(UT,YTlT)
= nI(UT,T YT)
= nl(U;Y).

IN

b)

c)

Proof of Eq. [ZD):
I(K,, X3, 72")

= Y I(Kn, X332\ Z7,)
t=1

S (K, X3, Y 2T Z)

t=1

IN

= nl(Ur; Z7|T)
= nI(Ur,T; Zr)
= nl(U;2).

Proof of Eq. [ZIL):

I(Ln, Sp; Y[ Ky, X3)

d)

= Z[H(Y;?lKangv Yltil)

t=1

—H(Yy|Kp, L, S, X3, Y1)

D [H(Yi|Xa2)

t=1
~H(Y4|Kp, L, S, X3, Y171 200

IN

I(Knu Ly, Snu X;» letilv Z?Jrl; Y;leQt)

I
M=

~
Il
-

[
NE

I(Utvvt;}/t|X2t)

|
20
===

Ur,Vr; Yr| Xop, T)
U,V:Y|Xs).

Proof of Eq. [(2R):

nl

e)

IN

= Y I(Kn, Ln, S, X35 V[V )

t=1

< Y I(Kn, Lo, So, X3, Y7 2013 V)
t=1

= > (U, Vi, Xoi3 Y1)
t=1

= nl(Ur, Vr, Xor; Yr|T)

= nl(U,V,X5Y).

Proof of Eq.[(ZB):

I(Ly, Sp; YKy, X5) + I(Kp, X35 2™)

S (L, Sus Vil K, X5, YY)

t=1

FI(Ky X35 20| Z00)]

S U (L S 280 Vil K, X3, Y7
t=1

—I(Y{™ Y Zy| K, X3, 2] 1)



JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

IN

+I(K,, X5, Y7 24|27 )]

Z[I(Ln7 Sna }/t|Kn7 ng }/1t715 Z?Jrl)
t=1

+I(ZZZ+1; YVt|Kna Xga letil)
_I(Y1t_l; Zt|Kn7 X2 ’ Zz?—i—l)
(K, X3, Y5 24 2] )]

D (L, Ss Vil Ko, X3, Y171, 20 )
t=1

+I(Ky, X5, Y7 24|27 )]

Z[I(Ln7 Sna }/t|Kn7X£lv }/1t715 Z?Jrl)

t=1

+I(Kn7 X;a Ylt_la ZZL+1§ Zt)]

n[I(Vp; Yr|Ur, Xor, T) + I(Ur, Xor; Z7|T))
n[I(V;Y|U, Xo) + I(U, Xo; Z)],

where we used Csiszar's sum identity][21] in (a).
f) Proof of Eq. [Z4):

—
Q
=

NE

where (a) and (b) follow from Csiszar’s sum identity [21].

- I(Lna Sn> anKna X;)

S U (Lns S Vil K, X3, Y171)
t=1
—I(Ly, Sp; Zt| Ky, X5 Z?—f—l)]

[I(Ln, Sn; Yi| K, X3, Y77
t=1

FI(Zf Vil Ky Ly Sy X5, YEY)
—I(Ylt_l; Zi|Kp, L, S, X3', Z{ 1)
—I(Ly, Sp; Ze| K, X3, 20 1)

\E

[I(Ln; Sn7 t-l,-la }/:‘.|KH7X2 7Yt 1)

~~
Il
-

_I(Ln; Snv }/1t71; Zt|Kna X;Ia Z?Jrl)]

M=

[I(Lp, Sn; Y| Ky X2, YT, Z00)

~
Il
-

I(ZZL+1’}/75|K"7X27Y75 1)
—I(Y}™Y 24| Ky, X5, Z0)
(L, Sn; Ze| K, X5, Y171 Z000)]

M:

[I(Lp, Sn; Ya| Ky, X2 Y, Z0)

~~
Il
-

(L, S Zo| K, X5, YT 20
n[I(Vp; Yr|Ur, Xor, T)

n[I(V;Y|U, X5) — I(V; Z|U, X)],

g) Proof of Eq.[(Zb):

I(XT; 2" | K, X3)

M:

[ (Zthm Xg’ Zzl-‘rl)

~+

ol

(Zt|Kna Xl aX2 ’ ZZ:Ll)]

— I(Vp; Zp|Urp, Xor, T)]

NE

(H(Z| K, X5, Y Z0)

~~
Il
-

—H(Z| Ky, X1, X3, Y71, 200

= ZI X1t§Zt|Kn7X2aYt ! ZZ:-I)
t=1

= ZI X5 Z4| Uy, Xot)
=1
= nl(Xyp; Zp|Up, Xor,T)

= TLI(X17Z|U,X2),

where (a) follows from the fact thatk,, Xi;*, X7

1(t+1)
Xt X3 i1y Y Zi), (X1, X2:), andZ, form Markov
chain.

h) Proof of Eq. [2b):
I(X?7Zn|KnaLna‘S’nan’)

|
M:

[ (Zthn7 Ly, Sna XS, Zg:q)

LI

(Zt|Kn; an Sna Xl 7X2 7Z1;n+1)]

[ (Zthna Lna Sna Xga Yltila ZZ:Ll)

M:

~
Il

1
—~H(Zy| Ky Ly Sny X1, X5, YV Z000)]

= ZI(XM;ZAKH,LMSn,XS,Yf*,Zz;n

t=1
n

= ZI(Xlt;Zt|Ut7V;57X2t)
=1

= nl(Xi7; Zr|Ur, Vr, Xor, T)
= nI(X17Z|UaVaX2);

where (a) follows from the fact thatK,, L, S,, Xi;',

Xiirny Xo1 X341) Vil Zia), (X10.Xa), and Z;
form Markov chain. [ |
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APPENDIX
A. Channel Resolvability

Since we use a result of the channel resolvability problem
[22] in the proof of our main result, we review the channel
resolvability problem in this appendix. For simplicity obn
tation, we consider the so-called one-shot case, i.e.,ltekb
length isn = 1. In the channel resolvability problem, for
the input distributionPx of the channelPy x, we want to
simulate the responsi; of the channel, where

ST

x) Py x (z]x).
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The simulation is conducted by a deterministic mapB — 1
X, and uniform random numbes on 5. Let = Eeie Z IK||Z]|7]IS]
k,i,j,s
1
Py(z) = Z EPZ\X('Z'@U)))
bes Py v x,(DiijsalVkijs: T2k) | - (27)

be the output distribution with map. The purpose of the re-
solvability problem is to construct a map such thHtP; || Pz )
is small.
In [1§], the following random coding construction of a maﬂret Tuvez = {y = (
was proposed. We split the alphabet/as= M; x M. Let
Py x be a distribution such that the marginal /& . We first
randomly generatéMs,| codewordsuy, ..., v, according 1 .
to the distribution%.|We denote the ge‘ne2r‘ated code by “°¢i¢ Z |IC||I||j||S|PYIVXZ(D’””“'UWS’I%)
Cy. Then, for eachl < i < |M;|, we randomly generate Fids
| M| codewordsr;y, . .., z; 04, @ccording to the distribution 1
Pxv(-|vi). We denote the generated code Gy. For this < Eepic, Z IKIZNTNS]
construction we have the following lemma. kt.dss
Lemma 12:([16]) For0 < 6,6’ < 1, we have {Py v (T vnsyewan | Vkids s T2k)

u,v,x2,y) € T }. Then, we have

Ee,c, [D(Pz[|Pz)]
< e¥(01Pz 1 x,Px v, Pv) " Z PYWXz(%’%U’%%iéw%'vkijs’xzk)}
TOM) B!

1 ,
4= WPy, Py) 1
0| M2|” 7 < Eegere e e Tl
- kz IKIIZI| TS
where 11,58
{PY VX (7;6 iVkijs® |vki s IQk)
V(0| Pz x, Px|v, Pv) N IZZ ; s 2:7_ ! | )
Y|VX. Upiv, s Tok | Vkijss L2k
= loe) P G e
+ Z Z Py v x, (T 0,55 w0k [ Vkijs » T2k)
(Z PX|V(CC|U)PZX(Z|$)1+0> Py (zlv)~° i#i (5.,8) J
and >0 Py v, (Tug;vs;50,5 [ Vkijs: T26) }
Y(0'|Pzv, Py) k#k (i’j’g)l
’ ’ S 7{PUVX Y(Tc)
— Y (Z Px(2) Py x (2]2) ) o) 2 RS
+ TS| Z Puvx, (u, v, 22) Py v x, (Tuves 4, 72)
B. Proof of Lemm&l9 otz
a) Proof of Eq. [(Ib): We first not the following obser- HINT S| Z Pyvx, (u, v, 22) Py |x, (Tuves [22)
vation. By taking the average over randomly generated codes o
we have HKNZNTNS] D Povx, (u,v,22) Py (Tavs, )
U,v,To
EC0C1C2C3 [Perr(fa g)] < PUVXgY(Tc) + |j||8|e—0t1
= E 3 1 +IZI|TNISle™** + K[| Z]|T||Sle™*,
wass | & KIS

where we used
Py x, x, (DhijsalTikijsas Tak)

) Pyiux, (ylu,z2) < Pyjyvx, (ylu,v,z2)e” ",
= Ec,cic, Z W PY\X2 (y|$2) < PY\U\/Xz (y|ua v, $2)e_a2a
k,i.5,8,0 Py(y) < Pyovx,(ylu,v,z2)e”

Eca [PY|X1X2 (chﬂ'jsa|'r1kij5&7 ka)} . . .
for y € Tuva, in the last inequality.
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b) Proof of Eq.[dB):Let 7o uw, = {7 : (u,22,2) € To}.

In a similar manner as Eq._(R7), we have

EC0C1C2C3 [PeT_"“ (fv (b)]

1 C
= Eeye, Z WPZWX2 (Dluki, T2k)
i
1 C
< Eeoey Z W{leUX2 (To iy, gy | Uk s T2k:)
ki
+ Z Z Pz1vx, (To,ug ., | Wkis T2k) }
E#£k i
<

1
> W{PUXM(%C)

HIKIZI Y P, (1, 22) Pz (To s )}

U, T2

< Pux,z(Ty) + [K||Z]e™°,
where we used
Pz(2) < Pyux, (z|lu, z2)e™

for z € To ue, in the last inequality.

c¢) Proof of Eq. [(IFV): By using the monotonicity of the

divergence, we have

D(f) = D(Psz||Ps x Pg)
< D(PKISZHPS X Prrz)

N Z |fc||z|
N Z |;c||z||5|

For each(k z‘), we use the relation

Z |S| Z\KIS( |k7275)”PZ|KI( k7))
+D( Z|KI('|k7i)||PZ\UX2('|'UJkiaIQk))

Z 51

By using LemmaT2 for input distribution3, |y x, (-|uxi, T2
and Px, |y and channelPy x, x,, we have

IEC2C3 [D(f)]

1
2 TR

Z\KIS( L2

(Pz ks (ks 8) | Pz, (+uki, 226)).

L ¥ (01Pz x, x5 ([@21): Pxy v, Py v x, (| uksear)
0].A1°
+ 1 (0| Pziuvxy (| ukis®ar), Py jux, (|ukiar))
9/|j|9’

By taking the average ovél, andC;, and by noting

]F‘Cocl Z |IC||I| uk’i =U,T2k = IQ] - PUX2 (U,ZCQ),

(Psz15c1 (5 1k, )| Ps X Py e (+[k, 7))

P11 ).

we have

EC0C1C2C3 [D(f)]
< Z Pyx,(u,x2)

U, T2

|:9|17|‘9€w(0|PZX1X2("x12k)7PX1V7PVUX2('uki7CE2k))
1
+ —9,|j|9,e
1
01A]°
1
+9/|j|9’

P(0'|Pziuvxy (| sukis®ar), Py iuxy (|uki,@ak))

eV (01Pz x, x5 Px v Puvxy)

IN

w(e/\PZ\vaz7PV\UX27PUX2)_

C. Proof of Lemm&l8

By using the Fourier-Motzkin elimination, we can show that
(R4, Ro, R1, Rs) € RU™ if and only if

Ry < I(U, X2; Z),
Ro+R, < I(V;Y|U,Xs)— I(V;Z|U,Xa)
+I(U, X5;Y), (28)
Ri+Rs < I(UV;Y[Xa),
Roy+Ri+Rs < I(V;Y]|U,Xo)
+ min[I(U, Xo;Y), [(U, X2; Z)],
R, < I(V;Y|U,X2) — I(V; Z|U, X2),(29)
Ri+ Ry > I(Xy1;Z|U, X2),
Rq > I(X1;Z|U,V, Xs)

are satisfied. By adding the inequality
RO S I(Uu X27 Y)u

this inequality and Eq[(29) imply that E. (28) is redundant
Thus, we haveR* ¢ R(™), ]
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