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Threshold Saturation for Spatially Coupled LDPC
and LDGM Codes on BMS Channels
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Abstract— Spatially-coupled low-density parity-check (LDPC)
codes, which were first introduced as LDPC convolutional
codes, have been shown to exhibit excellent performance under
low-complexity belief-propagation decoding. This phenomenon is
now termed threshold saturation via spatial coupling. Spatially-
coupled codes have been successfully applied in numerous
areas. In particular, it was proven that spatially-coupled regular
LDPC codes universally achieve capacity over the class of binary
memoryless symmetric (BMS) channels under belief-propagation
decoding. Recently, potential functions have been used to simplify
threshold saturation proofs for scalar and vector recursions.
In this paper, potential functions are used to prove threshold
saturation for irregular LDPC and low-density generator-matrix
codes on BMS channels, extending the simplified proof technique
to BMS channels. The corresponding potential functions are
closely related to the average Bethe free entropy of the ensembles
in the large-system limit. These functions also appear in statistical
physics when the replica method is used to analyze optimal
decoding.

Index Terms— Convolutional LDPC codes, density evolution,
entropy functional, potential functions, spatial coupling,
threshold saturation.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) convolutional codes
were introduced in [1] and shown to have outstand-

ing performance under belief-propagation (BP) decoding
in [2]–[4]. The fundamental principle behind this phenomenon
is described by Kudekar, Richardson, and Urbanke in [5]
and coined threshold saturation via spatial coupling. Roughly
speaking, multiple LDPC ensembles are placed next to each
other, locally coupled together, and then terminated at the
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boundaries. The number of LDPC ensembles is called the
chain length and the range of local coupling is determined by
the coupling width. This termination at the boundary can be
regarded as perfect side information for decoding. Under iter-
ative decoding, this “perfect” information propagates inward
and dramatically improves performance. See [6] for a tutorial
introduction, [5] for a rigorous construction of spatially-
coupled codes, and [7] for a comprehensive discussion of these
codes.

For the binary erasure channel (BEC), spatially coupling
a collection of (dv , dc)-regular LDPC ensembles produces
a new ensemble that is nearly regular. Moreover, the BP
threshold of the coupled ensemble approaches the maximum
a posteriori (MAP) threshold of the original ensemble [5].
Recently, a proof of saturation to the area threshold has been
given for (dv , dc)-regular LDPC ensembles on binary memo-
ryless symmetric (BMS) channels under mild conditions [7].
This result implies that spatially-coupled LDPC codes achieve
capacity universally over the class of BMS channels because
the area threshold of regular LDPC codes can approach the
Shannon limit uniformly over this class.

The idea of threshold saturation via spatial coupling has
started a small revolution in coding theory, and spatially-
coupled codes have now been observed to universally
approach the capacity regions of many systems [4], [8]–[14].
For spatially-coupled systems with suboptimal component
decoders, such as message-passing decoding of code-
division multiple access (CDMA) [15], [16] or itera-
tive hard-decision decoding of spatially-coupled generalized
LDPC codes [17], the threshold saturates instead to an
intrinsic threshold defined by the suboptimal component
decoders.

Spatial-coupling has also led to new results for K -SAT,
graph coloring, and the Curie-Weiss model in statistical
physics [18]–[20]. For compressive sensing, spatially-coupled
measurement matrices were introduced in [21], shown to give
large improvements with Gaussian approximated BP recon-
struction in [22], and finally proven to achieve the theoretical
limit in [23]. Recent results based on spatial-coupling are now
too numerous to cite thoroughly.

Recently, a simple approach, based on potential functions,
is used in [24] and [25] to prove that the BP threshold
of spatially-coupled irregular LDPC ensembles over a BEC
saturates to the conjectured MAP threshold (known as the
Maxwell threshold) of the underlying irregular ensembles.
This technique was motivated by [26] and is also related to
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the continuum approach to density evolution (DE) in which
potential functions are used to prove threshold saturation for
compressed sensing [23].

In this paper, the threshold saturation proof based on poten-
tial functions in [24] and [25] is extended to spatially-coupled
irregular LDPC and low-density generator-matrix (LDGM)
codes on BMS channels. The main results are summarized,
rather informally, in the following theorems whose proofs
comprise the majority of this paper. See the main text for
precise statements and conditions under which the results
hold. Moreover, for LDPC codes, we actually show threshold
saturation to a quantity called the potential threshold. For
many LDPC ensembles, it is known that the MAP threshold
hMAP is upper bounded by the potential threshold. In some
cases, they are actually equal (see Remark 33).

Theorem 1: Consider a spatially-coupled LDPC ensemble
and a family of BMS channels that is ordered by degradation,
and parameterized by entropy, h. If h < hMAP, then, for
any sufficiently large coupling width, the spatially-coupled
DE converges to the perfect decoding solution. Conversely,
if h > hMAP, then for a fixed coupling width and sufficiently
large chain length, the spatially-coupled DE does not converge
to the perfect decoding solution.

Thus, the spatially-coupled BP threshold saturates to hMAP

for LDPC codes.
For LDGM codes, message-passing decoding always results

in non-negligible error floors. Even when DE is initialized
with perfect information, it converges to a nontrivial minimal
fixed point. When a certain quantity, which we call the energy
gap, is positive, the spatially-coupled DE converges to a fixed
point which is elementwise better than the minimal fixed point.
Also, it is conjectured that the MAP decoding performance
is governed by the region where the energy gap is positive
(see Section V-A).

Theorem 2: Consider a spatially-coupled LDGM ensemble
and a BMS channel. If the energy gap for the channel is pos-
itive, then, for sufficiently large coupling width, the spatially-
coupled DE converges to a fixed point which is elementwise
better than the minimal fixed point of the underlying LDGM
ensemble.

A variety of observations, formal proofs, and applications
now bear evidence to the generality of threshold saturation.
The technique in [24] and [25] is based on defining a potential
function. The average Bethe free entropy in the large-system
limit [27], [28] serves as our potential function. The crucial
properties of the free entropy that we leverage are 1) stationary
points of the free entropy are related to the fixed points
of DE, 2) there exists a spatially-coupled potential, defined
by a spatial average of the free entropy, where the fixed
points of spatially-coupled DE are stationary points of the
spatially-coupled potential. It is tempting to conjecture that
this approach can be applied to more general graphical models
by computing their average Bethe free entropy.

II. PRELIMINARIES

A. Measures and Algebraic Structure

Any output Y of a binary-input communication chan-
nel, with input X , can be represented by the log-likelihood

ratio (LLR)

Q = log
PY |X (α|1)

PY |X (α|−1)
,

which is a sufficient statistic for X given Y . Therefore, a com-
munication channel can be associated with a LLR distribution.
If the channel is output symmetric, then it suffices to compute
the LLR distribution conditional on X = 1. For mathematical
convenience, we represent these distributions by measures on
the extended real numbers R. Thus, Q is represented by a
measure x where

Pr(Q ≤ t) = x([−∞, t]).
We call a finite signed Borel measure x on R symmetric if

x(−E) =
∫

−E
x(dα) =

∫
E

e−αx(dα),

for all Borel sets E ⊆ R, where R is a compact metric
space under tanh(·). This necessarily implies that for any
finite symmetric measure x, x({−∞}) = e−∞x({∞}) = 0.
Equivalently, a more operational definition, a finite signed
Borel measure x is symmetric if∫

−E
f (α)x(dα) =

∫
E

f (−α)e−αx(dα),

for all bounded measurable real-valued functions f and Borel
sets E ⊆ R. An immediate consequence is the following
Proposition.

Proposition 1: Let x be a symmetric measure and
f : R → R be an odd function that is bounded and measurable,
then ∫

f (α)x(dα) =
∫

f (α) tanh
(
α
2

)
x(dα).

Proof: See Appendix II-A.
In particular, for a symmetric measure x and any natural

number k,∫
tanh

(
α
2

)2k−1 x(dα) =
∫

tanh
(
α
2

)2k x(dα).

This last relation is a well-known result and its utility will
become apparent in the section on entropy.

Let M denote the set of finite signed symmetric Borel
measures on the extended real numbers R. In this work, the
primary focus is on convex combinations and differences of
symmetric probability measures, which inherit many of their
properties from M. Let X ⊂ M be the convex subset of
symmetric probability measures. Also, let Xd ⊂ M be the
subset of differences of symmetric probability measures:

Xd � {x1 − x2 | x1, x2 ∈ X } .
In the interest of notational consistency, x is reserved for
both finite signed symmetric Borel measures and symmetric
probability measures, and y, z denote differences of symmetric
probability measures. Also, all logarithms that appear in this
article are natural, unless the base is explicitly mentioned.

In this space, there are two important binary operators,
� and �, that denote the variable-node operation and the
check-node operation for LLR message distributions, respec-
tively. Below, we give an explicit integral characterization of
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the operators � and �. For x1, x2 ∈ M, and any Borel set
E ⊂ R, define

(x1 � x2)(E) �
∫

x1(E − α) x2(dα),

(x1 � x2)(E) �
∫

x1

(
2 tanh−1

(
tanh( E

2 )

tanh(α2 )

))
x2(dα).

Equivalently, for any bounded measurable real-valued func-
tion f ,∫

f d(x1 � x2) =
∫∫

f (α1 + α2) x1(dα1) x2(dα2),∫
f d(x1 � x2) =

∫∫
f (τ−1(τ (α1)τ (α2))) x1(dα1) x2(dα2),

where τ : R → [−1, 1], τ (α) = tanh
(
α
2

)
. Associativ-

ity, commutativity, and linearity of the operators �, �

are inherited from the underlying algebraic structure of
(R,+), ([−1, 1], · ), respectively. Moreover, the space of
symmetric probability measures is closed under these binary
operations [29, Th. 4.29].

In a more abstract sense, the measure space M along with
either multiplication operator (�, �) forms a commutative
monoid, and this algebraic structure is induced on the space of
symmetric probability measures X . There is also an intrinsic
connection between the algebras defined by each operator
and one consequence is the duality (or conservation) result
in Proposition 4. The identities in these algebras, e� = �0
and e� = �∞, also exhibit an annihilator property under the
dual operation

�0 � x = �0, �∞ � x = �∞.

The wildcard ∗ is used to represent either operator in
statements that apply to both operations. For example, the
shorthand x∗n is used to denote n fold operations

x∗n = x ∗ · · · ∗ x︸ ︷︷ ︸
n

,

and this notation is extended to polynomials. In particular, for
a polynomial p(t) = ∑deg(p)

n=0 pntn with real coefficients, we
define

p∗(x) �
deg(p)∑
n=0

pnx∗n,

where we define x∗0 � e∗. For the formal derivative
p′(t) = dp

dt , we have

p′∗(x) =
deg(p)∑
n=0

npnx∗n−1.

In general, the operators �, � do not associate

x1 � (x2 � x3) 
= (x1 � x2)� x3

x1 � (x2 � x3) 
= (x1 � x2)� x3,

nor distribute

x1 � (x2 � x3) 
= (x1 � x2)� (x1 � x3)

x1 � (x2 � x3) 
= (x1 � x2)� (x1 � x3).

B. Partial Ordering by Degradation

Degradation is an important concept that allows one to
compare some LLR message distributions. The order imposed
by degradation is indicative of relating probability measures
through a communication channel [29, Definition 4.69]. The
following is one of several equivalent definitions and is the
most suitable for our purposes.

Definition 2: For x ∈ X and f : [0, 1] → R, define

I f (x) �
∫

f
(∣∣tanh

(
α
2

)∣∣) x(dα).

For x1, x2 ∈ X , x1 is said to be degraded with respect to x2
(denoted x1 � x2), if I f (x1) ≥ I f (x2) for all concave non-
increasing f . Furthermore, x1 is said to be strictly degraded
with respect to x2 (denoted x1 
 x2) if x1 � x2 and x1 
= x2.
We also write x2 � x1 (respectively, x2 ≺ x1) to mean x1 � x2
(respectively, x1 
 x2).

Recall that two measures x1, x2 are equal if x1(E) = x2(E)
for all Borel sets E ⊆ R. The class of concave non-increasing
functions is rich enough to capture the notion of non-equality.
That is, if x1 
= x2, then there exists a concave non-increasing
f : [0, 1] → R such that I f (x1) 
= I f (x2).

Degradation defines a partial order on the space of symmet-
ric probability measures, with the greatest element �0 and the
least element �∞. Thus

x 
 �∞ if x 
= �∞, and x ≺ �0 if x 
= �0.

This partial ordering is also preserved under the binary
operations as follows.

Proposition 3: Suppose x1, x2, x3 ∈ X .

i) If x1 � x2, then

x1 ∗ x3 � x2 ∗ x3, for all x3 ∈ X .
ii) The operators � and � also preserve a strict ordering for

non-extremal measures. That is, if x1 
 x2, then

x1 � x3 
 x2 � x3 for x3 
= �∞,
x1 � x3 
 x2 � x3 for x3 
= �0.

Proof:

i) Direct application of [29, Lemma 4.80].
ii) It suffices to show that x1 ∗ x3 
= x2 ∗ x3 under the

stated conditions. For this, it is sufficient to construct a
functional which gives different values under x1 ∗ x3 and
x2 ∗ x3. The entropy functional (see Proposition 8(iv))
provides such a property.

Order by degradation is also preserved, much like the stan-
dard order of real numbers, under nonnegative multiplications
and additions, i.e. for 0 ≤ α ≤ 1 and x1 � x2, x3 � x4,

αx1 + (1 − α)x3 � αx2 + (1 − α)x4.

This ordering is our primary tool in describing relative channel
quality. For further information see [29, pp. 204–208].

C. Entropy Functional for Symmetric Measures

To explicitly quantify the difference between two symmetric
measures, one can employ the entropy functional. The entropy
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functional is the linear functional H : M → R defined by

H (x) �
∫

log2
(
1 + e−α) x(dα).

This is the primary functional used in our analysis. It preserves
the partial order under degradation and for x1, x2 ∈ X , we
have

H (x1) > H (x2) for x1 
 x2.

The restriction to symmetric probability measures also implies
the bound

0 ≤ H (x) ≤ 1, if x ∈ X .
The operators � and � admit a number of relationships

under the entropy functional. The following results will prove
invaluable in the ensuing analysis. Proposition 4 provides
an important conservation result (also known as the duality
rule for entropy) and Proposition 5 extends this relation to
encompass differences of symmetric probability measures.

Proposition 4 ([29, Lemma 4.41]): For x1, x2 ∈ X ,

H (x1 � x2)+ H (x1 � x2) = H (x1)+ H (x2) .
Proposition 5: For x1, x2, x3, x4 ∈ X ,

H (x1 � (x3 − x4))+ H (x1 � (x3 − x4)) = H (x3 − x4) ,

H ((x1 − x2)� (x3 − x4))+ H ((x1 − x2)� (x3 − x4)) = 0.
Proof: Consider the LHS of the first equality,

H (x1 � (x3 − x4))+ H (x1 � (x3 − x4))

= H (x1 � x3)+ H (x1 � x3)− H (x1 � x4)− H (x1 � x4)

= H (x1)+ H (x3)− H (x1)− H (x4) (Proposition 4)

= H (x3 − x4) .

The second equality follows by expanding the LHS and
applying the first equality twice.

For k ∈ N, let Mk : M → R denote the linear functional
that maps x ∈ M to its 2k-th moment under tanh,

Mk(x) �
∫

tanh2k (α
2

)
x(dα).

Proposition 6: The following results hold.

i) For x ∈ X , 0 ≤ Mk(x) ≤ 1.
ii) For x1, x2 ∈ X with x1 � x2, Mk(x1) ≤ Mk(x2).

iii) Mk satisfies the following product form identity for the
operator �,

Mk(x1 � x2) = Mk(x1)Mk(x2).

iv) If x = �∞ (respectively, x = �0), Mk(x) = 1
(respectively, Mk (x) = 0) for all k. Conversely, for some
x ∈ X , if Mk(x) = 1 (respectively, Mk(x) = 0) for some
k, then x = �∞ (respectively, x = �0).

Proof: See Appendix II-B.
Due to the symmetry of the measures, the entropy func-

tional has an equivalent series representation in terms of the
moments Mk .

Proposition 7 ([30, Lemma 3]): If x ∈ M, then

H (x) = x
(
R
)−

∞∑
k=1

γk Mk(x), where γk = (log 2)−1

2k(2k − 1)
.

Proof: The main idea is to observe that

log2(1 + e−α) = 1 − log2(1 + tanh(α2 )).

From there, use the series expansion of log2(1 + t)
and Proposition 1 to combine the odd and even tanh
moments. For a detailed proof, see [30, Lemma 3] and
[29, pp. 267–268].

Proposition 8: From the series expansion for symmet-
ric measures, the entropy functional satisfies the following
properties.

i) For y1, y2 ∈ Xd,

H (y1) = −
∞∑

k=1

γk Mk(y1),

H (y1 � y2) = −
∞∑

k=1

γk Mk(y1)Mk(y2).

ii) For y ∈ Xd,

H (y � y) = −
∞∑

k=1

γk Mk(y)2 ≤ 0,H (y � y) ≥ 0.

with equality iff y = 0. Additionally if x ∈ X ,

H (y � y � x) ≤ 0,

with equality iff y = 0 or x = �0.
iii) If y1 = x′

1 − x1, y2 = x′
2 − x2 with x′

1 � x1, x′
2 � x2,

H (y1 � y2) ≤ 0, H (y1 � y2) ≥ 0.

iv) If x1 
 x2, then

H (x1 � x3) > H (x2 � x3) if x3 
= �∞
H (x1 � x3) > H (x2 � x3) if x3 
= �0.

Proof: See Appendix II-C.
Proposition 8 also implies the following upper bound on

the entropy functional for differences of symmetric probability
measures under the operators � and �.

Proposition 9: For x1, x′
1, x2, x3, x4 ∈ X with x′

1 � x1,∣∣H ((x′
1 − x1

) ∗ (x2 − x3)
)∣∣ ≤ H

(
x′

1 − x1
)
,∣∣H ((x′

1 − x1
) ∗ (x2 − x3) ∗ x4

)∣∣ ≤ H
(
x′

1 − x1
)
.

Proof: Consider the first inequality with the operator �.
From Proposition 8(i),∣∣H ((x′

1 − x1
)
� (x2 − x3)

)∣∣
≤

∞∑
k=1

γk
∣∣Mk(x′

1 − x1)
∣∣ |Mk(x2 − x3)|

(a)= −
∞∑

k=1

γk Mk(x′
1 − x1) |Mk(x2 − x3)|

(b)≤ −
∞∑

k=1

γk Mk(x′
1 − x1)

= H
(
x′

1 − x1
)
,

where (a) follows from Mk(x′
1) ≤ Mk(x1) and (b) follows

since 0 ≤ Mk(x2),Mk (x3) ≤ 1. The result for the operator �

then follows from Proposition 5. The second inequality follows
from the first by replacing x2, x3 with x2 ∗ x4, x3 ∗ x4.
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The series expansion in Proposition 7 leads us to define the
following metric on the set of symmetric probability measures.

Definition 10: For x1, x2 ∈ X , the entropy distance is
defined as

dH(x1, x2) =
∞∑

k=1

γk |Mk(x1)− Mk(x2)| .
When x2 � x1, observe that dH(x1, x2) = H (x2 − x1);

hence the name entropy distance. Thus, dH(�∞, x) =
H (x) and dH(x,�0) = 1 − H (x). Moreover, for any
x1, x2 ∈ X , dH(x1, x2) ≥ |H (x1 − x2)|, and for x3 � x2 � x1,
dH(x1, x3) ≥ dH(x1, x2).

Proposition 11: We have the following topological results
related to the entropy distance.

i) The entropy distance dH is a metric on the set of sym-
metric probability measures, X .

ii) The metric topology (X , dH) is compact and hence com-
plete.

iii) The entropy functional H : X → [0, 1] is continuous.
iv) With the product topology on X × X , the operators

� : X × X → X and � : X × X → X are continuous.
v) If a sequence of measures {xn}∞n=1 in X satisfies

xn � xn−1 (respectively, xn � xn−1), then xn
dH−→ x,

for some x ∈ X , and x � xn (respectively, x � xn) for
all n.

vi) If x′
n � xn and x′

n
dH−→ x′, xn

dH−→ x, then x′ � x.
Proof: See Appendix I.

We use these topological results minimally. The compact-
ness of X and the continuity of H (·), � and � are used
to establish the existence of minimizing measures for some
functionals. These minima are used to show the threshold
saturation converse for LDPC ensembles. For the achievability
result (Theorems 44 and 61), we require properties (v) and (vi)
in the above proposition, which appear in [29, Section 4.1].
We note that our previous article, [31], shows the achievabil-
ity of threshold saturation for LDPC ensembles using only
existing convergence results from [29, Section 4.1].

D. Bhattacharyya Functional for Symmetric Measures

The quantity that characterizes the stability of LDPC ensem-
bles is the Bhattacharyya functional, B : M → R,

B(x) �
∫

e−α/2x(dα).

Since this is a Laplace transform of the measure evaluated
at 1/2, Bhattacharyya functional is multiplicative under the
convolution operator �,

B(x�n) = B(x)n.

Like the entropy functional, the Bhattacharyya functional also
preserves the degradation order,

B(x1) > B(x2), if x1 
 x2.

It also satisfies the bound

0 ≤ B(x) ≤ 1, if x ∈ X .

Importantly, the Bhattacharyya functional characterizes the
logarithmic decay rate of the entropy functional under the
operator �.

Proposition 12: For x ∈ X ,

lim
n→∞

1

n
log H

(
x�n) = log B(x).

Proof: See Appendix II-D.

E. Directional Derivatives

The main result in this paper is derived using potential
theory and differential relations. One can avoid some technical
challenges of differentiation in the abstract space of measures
by focusing on directional derivatives of functionals that map
measures to real numbers.

Definition 13: Let F : M → R be a functional on M. The
directional derivative of F at x in the direction y is

dx F(x)[y] � lim
δ→0

F(x + δy)− F(x)
δ

,

whenever the limit exists. For G : M → M, define

dx F(G(x))[y] � dx (F ◦ G)(x)[y]
= lim

δ→0

F(G(x + δy))− F(G(x))
δ

,

whenever the limit exists. For convenience, we sometimes
write

dx F(x)[y]
∣∣∣
x=x1

� dx1 F(x1)[y].
This definition is naturally extended to higher-order directional
derivatives using

dn
x F(x)[y1, . . . , yn] � dx (· · · dx (dx F (x) [y1]) [y2] · · · ) [yn],

and vectors of measures using, for x = [x1, . . . , xm ],

dx F(x)[y] � lim
δ→0

F(x + δy)− F(x)

δ
,

whenever the limit exists. Similarly, we can define higher-
order directional derivatives for the composition of functions
and functionals on vectors of measures.

The utility of directional derivatives for linear functionals
is evident from the following result.

Proposition 14: Let F : M → R be a linear functional, and
∗ be either � or �. Then, for x, y, z ∈ M, we have

dx F(x∗n)[y] = nF(x∗(n−1) ∗ y),

d2
x F(x∗n)[y, z] = n (n − 1) F

(
x∗(n−2) ∗ y ∗ z

)
.

Proof: Associativity, commutativity, and linearity of the
binary operator ∗ allow a binomial expansion of (x + δy)∗n :

(x + δy)∗n =
n∑

i=0

δi
(

n

i

)
x∗(n−i) ∗ y∗i .

Then, the linearity of F implies that

F
(
(x + δy)∗n)− F

(
x∗n)

= δnF(x∗(n−1) ∗ y)+
n∑

i=2

δi
(

n

i

)
F(x∗(n−i) ∗ y∗i).
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Dividing by δ and taking a limit gives

dx F(x∗n)[y] = nF(x∗(n−1) ∗ y).

An analogous argument shows that

d2
x F(x∗n)[y, z] = n(n − 1)F(x∗(n−2) ∗ y ∗ z).

In the following proposition, we evaluate the directional
derivative of a linear functional which contains both the
operators � and �.

Proposition 15: Suppose F : M → R is a linear functional
and p, q are polynomials. Then

dx F(p�(q�(x)))[y] = F
(

p′� (q�(x)
)
�
(
q ′�(x)� y

))
.

Proof: Since F is a linear functional, it suffices to show
the result when p(α) = αn . In view of the proof of previous
proposition, the coefficient of δ in

(q�(x + δy))�n − (q�(x))�n

determines the first-order directional derivative. Again, from
the binomial expansion,

(q�(x + δy))�n − (q�(x))�n

=
( deg(q)∑

k=0

qk(x + δy)�k
)�n − (q�(x))�n

=
(

q�(x)+
( deg(q)∑

k=1

kqkx�k−1
� y

)
δ + o(δ)

)�n −(q�(x))�n

= (
q�(x)+ (

q ′�(x)� y
)
δ + o(δ)

)�n − (q�(x))�n

A direct inspection from the multinomial expansion of the first
term gives the coefficient of δ,

n
((

q�(x)
)�n−1

)
� (q ′�(x)� y).

Thus, when p(α) = αn ,

dx F(p�(q�(x)))[y] = F
(

p′� (q�(x)
)
�
(
q ′�(x)� y

))
.

The general result follows.
One recurring theme in this article when relating two

quantities F(x1), F(x2) is to consider a parameterized path
from x1 to x2, of the form x1 + t (x2 − x1) = (1 − t)x1 + tx2,
in the set of symmetric probability measures, and analyze the
directional derivative of F(·) at x1+t (x2−x1), in the direction
x2 − x1. The following proposition formalizes this idea.

Proposition 16: Let F : X → R be a linear functional,
∗ either � or �, p a polynomial, and G : X → R,
G(x) = F(p∗(x)). For x1, x2 ∈ X , let φ : [0, 1] → R,

φ(t) = G(x1 + t (x2 − x1)).

Then, φ(t) is a polynomial in t ,

φ′(t) = dx G(x)[x2 − x1]
∣∣∣
x=x1+t (x2−x1)

, and

φ′′(t) = d2
x G(x)[x2 − x1, x2 − x1]

∣∣∣
x=x1+t (x2−x1)

.

Proof: Since x1 + t (x2 − x1) = (1 − t)x1 + tx2, from the
binomial expansion,

(x1 + t (x2 − x1))
∗n =

n∑
k=0

(
n

k

)(
x∗n−k

1 ∗ x∗k
2

)
(1 − t)n−k tk .

Since F is a linear functional,

φ(t) = G(x1 + t (x2 − x1))

= F(p∗(x1 + t (x2 − x1)))

=
deg(p)∑
n=0

pn F
(
(x1 + t (x2 − x1)

∗n)

=
deg(p)∑
n=0

pn

n∑
k=0

(
n

k

)
F
(
x∗n−k

1 ∗ x∗k
2

)
(1 − t)n−k tk ,

is a polynomial of degree at most deg(p). Moreover,

φ′(t) = lim
δ→0

G(x1 + (t + δ)(x2 − x1))− G(x1 + t (x2 − x1))

δ

= dx G(x)[x2 − x1]
∣∣∣
x=x1+t (x2−x1)

,

by Definition 13. The expression for second derivative φ′′(t)
follows similarly.

As such, if φ′(t) ≤ 0 in the above proposition for all
t ∈ (0, 1), we find that G(x1) ≤ G(x2) because φ(0) = G(x1),
φ(1) = G(x2).

Remark 17: In general, applying Taylor’s theorem to some
mapping F : X → X requires Fréchet derivatives. However,
the linearity of the entropy functional and its interplay with
the operators � and � impose a polynomial structure on the
functions of interest, obviating the need for advanced mathe-
matical machinery. Therefore, Taylor’s theorem becomes quite
simple for parameterized linear functionals φ : [0, 1] → R of
the form

φ(t) = F (x1 + t (x2 − x1)) .

III. LOW-DENSITY PARITY-CHECK ENSEMBLES

A. Single System

Let LDPC(λ, ρ) denote the LDPC ensemble with
variable-node degree distribution λ and check-node degree
distribution ρ. The edge perspective degree distributions λ, ρ
have an equivalent representation in terms of the node per-
spective degree distributions L, R given by

λ(t) = L ′(t)
L ′(1)

, ρ(t) = R′(t)
R′(1)

.

It is important to note that the distributions λ, ρ, L and R are
all polynomials. We assume that the LDPC(λ, ρ) ensemble
does not have any degree-one variable-nodes, as these ensem-
bles exhibit non-negligible error floors. We also refer to this
ensemble as a single system to differentiate from its coupled
variant introduced later.

Density Evolution (DE) characterizes the asymptotic perfor-
mance of the LDPC(λ, ρ) ensemble under message-passing
decoding by describing the evolution of message distributions
with iteration. Under locally optimal processing, the message-
passing decoder is equivalent to the belief-propagation (BP)
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decoder. For the LDPC(λ, ρ) ensemble, the DE under BP
decoding is described by

x̃(
+1) = c � λ�(ρ�(x̃(
))), (1)

where x̃(
) is the variable-node output distribution after 

iterations of message passing [29], [32]. If the iterative system
in (1) is initialized with x(0) = a, the variable-node output-
distribution after 
 iterations of message-passing is denoted by
T(
)s (a; c). The variable-node output after one iteration is also
denoted by

Ts(a; c) � T(1)s (a; c) = c � λ�(ρ�(a)).

If the sequence of measures {T(
)s (a; c)} converges in (X , dH),
then its limit is denoted by T(∞)

s (a; c).
The DE update operator Ts satisfies certain monotonicity

properties. These properties play a crucial role in the analysis
of LDPC ensembles.

Lemma 18 ([29, Section 4.6]): The operator T(
)s : X ×
X → X satisfies the following monotonicity properties for
all 1 ≤ 
 < ∞.

i) If a1 � a2, then T(
)s (a1; c) � T(
)s (a2; c) for all c ∈ X .

ii) If c1 � c2, T(
)s (a; c1) � T(
)s (a; c2) for all a ∈ X .
iii) If Ts(a; c) � a, then T(
+1)

s (a; c) � T(
)s (a; c). Moreover,
T(∞)

s (a; c) exists and satisfies T(∞)
s (a; c) � T(
)s (a; c),

Ts(T(∞)
s (a; c); c) = T(∞)

s (a; c).

iv) If Ts(a; c) � a, then T(
+1)
s (a; c) � T(
)s (a; c). Moreover,

T(∞)
s (a; c) exists and satisfies T(∞)

s (a; c) � T(
)s (a; c),

Ts(T(∞)
s (a; c); c) = T(∞)

s (a; c).
Proof: The monotonicity properties can be derived from

Proposition 3, while the existence of the limit in (X , dH)
and its properties follow from Proposition 11. That the limit
satisfies

Ts(T(∞)
s (a; c); c) = T(∞)

s (a; c)

follows from the continuity of �, �, and the fact that λ, ρ are
polynomials.

Thus, when (1) is initialized with �0, the sequence of mea-
sures {T(
)s (�0; c)}, satisfies Ts(�0; c) � �0, and converges
to a limit x, which satisfies

x = c � λ�(ρ�(x)).

Definition 19: A measure x ∈ X is a DE fixed point for the
LDPC(λ, ρ) ensemble if

x = c � λ�
(
ρ�(x)

)
.

We now state some necessary definitions for the single sys-
tem potential framework. Included are the potential functional,
stationary points, the directional derivative of the potential
functional, and thresholds.

Definition 20: The potential functional, Us : X × X → R,
of the LDPC(λ, ρ) ensemble and a channel c ∈ X is

Us(x; c) � L ′(1)
R′(1)H

(
R�(x)

)+ L ′(1)H
(
ρ�(x)

)
−L ′(1)H

(
x � ρ�(x)

)− H
(
c � L�

(
ρ�(x)

))
.

Fig. 1. Potential functional for the LDPC(λ, ρ) ensemble with
λ(t) = t2 and ρ(t) = t5 over a binary symmetric channel (BSC), with
entropy h. The values of h for these curves are, from the top to bottom,
0.40, 0.416, 0.44, 0.469, 0.48. The other input to the potential functional is the
LLR distribution for the binary AWGN channel (BAWGNC) with entropy h̃.
The choice of BAWGNC distribution for the first argument in Us(· ; ·) is
arbitrary.

Remark 21: The potential functional is essentially the neg-
ative of the trial entropy, formally known as the replica-
symmetric free entropy, calculated in [27], [30], and [33].1

In Appendix VII, we describe the Bethe formalism to obtain
the free entropy and detail the calculations involved to derive
the potential in Definition 20. When applied to the binary
erasure channel, Us is a constant multiple of the potential
function defined in [24]. An example of Us(x; c) is shown
in Fig. 1.

It is hard to define precisely what conditions are required
for a potential functional, that operates on measures, to prove
threshold saturation. But, the crucial properties of the single
system potential that we leverage are 1) the fixed points of
the single system DE are the stationary points of the single
system potential (Lemma 23), 2) there exists a spatially-
coupled potential, defined by a spatial average of the single
system potential (Definition 37), where the fixed points of
spatially-coupled DE are stationary points of the spatially-
coupled potential (Lemma 38).

The entropy functional and the operators (�, �) are con-
tinuous. Hence, the potential functional Us(· ; c) for a fixed
c is continuous. Since the metric topology (X , dH) is com-
pact, Us(· ; c) achieves its minimum and maximum on X .
Though we also have the joint continuity of Us(· ; · ), it is
not used in this work.

Definition 22: A measure x ∈ X is a stationary point of
the potential if, for all y ∈ Xd,

dx Us(x; c)[y] = 0.
Lemma 23: For x, c ∈ X and y ∈ Xd, the directional

derivative of the potential functional with respect to x in the

1While it is possible to use the term replica-symmetric free entropy instead
of ‘potential’, our terminology is consistent with [24]–[26]. Moreover, we later
define coupled potential; this brings both definitions together. In addition, for
general systems, potential function need not be defined from the free entropy
(see [17]).



7396 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 12, DECEMBER 2014

direction y is

dx Us(x; c)[y] = L ′(1)H
([

Ts(x; c)− x
]
�
[
ρ′�(x)� y

])
.

Proof: Since the distributions λ, ρ, L, R are polynomials,
the directional derivative for each of the four terms can be
calculated following the procedure outlined in the proof of
Proposition 14. The directional derivatives of the first three
terms are

dx H
(
R�(x)

) [y] = R′(1)H
(
ρ�(x)� y

)
,

dx H
(
ρ�(x)

) [y] = H
(
ρ′�(x)� y

)
,

dx H
(
x � ρ�(x)

) [y] = H
(
ρ�(x)� y

)+ H
(
x � ρ′�(x)� y

)
(a)= H

(
ρ�(x)� y

)+ H
(
ρ′�(x)� y

)
− H

(
x �

[
ρ′�(x)� y

])
,

where (a) follows from Proposition 5 with the observation that
ρ′�(x)� y is a difference of probability measures multiplied
by the scalar ρ′(1). Since the operators � and � do not
associate, one must exercise care in analyzing the last term.
From Proposition 15,

dx H
(
c � L�

(
ρ�(x)

)) [y]
= L ′(1)H

([
c � λ�(ρ�(x))

]
�
[
ρ′�(x)� y

])
.

Consolidating the four terms,

dx Us(x; c)[y] = L ′(1)H
([

x − Ts(x; c)
]
�
[
ρ′�(x)� y

])
.

Using Proposition 5, we have the desired result.
Lemma 24: If x ∈ X is a fixed point of single system DE,

then it is also a stationary point of the potential functional.
Moreover, for a fixed channel c, the minimum of the potential
functional,

min
x∈X

Us(x; c),

occurs only at a fixed point of single system DE.
Proof: See Appendix III-A.

Definition 25: For the LDPC(λ, ρ) ensemble and a channel
c ∈ X , define

i) The basin of attraction to �∞ as

V(c) �
{
a ∈ X | T(∞)

s (a; c) = �∞
}
.

ii) The energy gap as

�E(c) � inf
x∈X \V(c)

Us(x; c),

with the convention that the infimum over the empty set
is ∞.

The only fixed point contained in V(c) is the trivial �∞
fixed point. Therefore, all other fixed points are in the com-
plement, X \ V(c).

Lemma 26: Suppose c1 
 c2. Then
i) Us(x; c1) < Us(x; c2) if x 
= �∞

ii) V(c1) ⊆ V(c2) and X \ V(c1) ⊇ X \ V(c2)
iii) �E(c1) ≤ �E(c2).

Proof: See Appendix III-B.
Definition 27: A family of BMS channels is a function

c(·) : [0, 1] → X that is
i) ordered by degradation, c(h1) � c(h2) for h1 ≥ h2,

ii) parameterized by entropy H (c(h)) = h.
Definition 28: Consider a family of BMS channels and the

LDPC(λ, ρ) ensemble. Define

i) The BP threshold as

hBP � sup
{
h ∈ [0, 1] | T(∞)

s (�0; c(h)) = �∞
}
.

ii) The MAP threshold as hMAP �

inf
{
h ∈ [0, 1] | lim inf

n→∞
1
n E
[
H
(
Xn | Y n(c(h))

)]
> 0

}
,

where the expectation E[· ] is over the LDPC ensemble.
iii) The potential threshold as

h∗ � sup{h ∈ [0, 1] | �E(c(h)) > 0}.
iv) The stability threshold as

hstab � sup{h ∈ [0, 1] | B(c(h))λ′(0)ρ′(1) < 1}.
In the sequel, the potential threshold and its role in connect-

ing the BP and MAP thresholds are paramount. In particular,
the region where �E(c(h)) > 0 characterizes the BP perfor-
mance of the spatially-coupled ensemble, and, by definition
of the potential threshold and Lemma 26(iii), if h < h∗, then
�E(c(h)) > 0.

The stability threshold establishes an important technical
property of the potential functional. When hstab = 1, any con-
straints involving hstab are superfluous. For LDPC ensembles
with no degree-two variable-nodes, hstab = 1. For ensembles
with degree-two variable-nodes,2 0 < hstab ≤ 1.

Lemma 29: The following properties regarding the stability
threshold hold.

i) h∗ ≤ hstab

ii) If h < hstab, �∞ ∈ (V(c(h)))o, the interior of the set
V(c(h)) in (X , dH).

Proof: See Appendix III-C.
Lemma 30: If h∗ < hstab, then for h > h∗ there exists an

x ∈ X such that Us(x; c(h)) < 0.
Proof: See Appendix III-D.

Remark 31: Negativity of the potential functional beyond
the potential threshold is important. This allows us to relate
the potential and MAP threshold (Lemma 32). Negativity is
also used in the converse of the threshold saturation result
(Theorem 47). For a family of BEC or binary AWGN channels,
Lemma 30 can be extended to include the case h∗ = hstab.
We conjecture that this holds for any family of BMS channels.
See Appendix VI for a further discussion.

Lemma 32: For an LDPC ensemble without odd-degree
check-nodes over any BMS channel, or any LDPC ensemble
over the BEC or the binary AWGN channel,

i) lim inf
n→∞

1
n E
[
H
(
Xn |Y n(c(h))

)] ≥ − inf
x∈X

Us(x; c(h)),

ii) If h∗ < hstab, then hMAP ≤ h∗.
Proof:

i) Since the potential functional is the negative
of the replica-symmetric free entropy calculated
in [27], [30], and [33], the main result of these papers
translates directly into the desired result.

2We exclude ensembles with degree-one variable-nodes.
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ii) Let h > h∗. Since h∗ < hstab by assumption, from
Lemma 30 and part i,

lim inf
n→∞

1
n E
[
H
(
Xn |Y n(c(h))

)] ≥ − inf
x∈X

Us(x; c(h)) > 0.

Thus, by Definition 28(ii), h ≥ hMAP. Hence
h∗ ≥ hMAP.

The following remark discusses, rather informally, fur-
ther connections between single and spatially-coupled system
thresholds, based on results from [7], [34].

Remark 33: Let hBP
c and hMAP

c denote the BP and MAP
thresholds, respectively, of the spatially-coupled system by
first letting the chain length and then the coupling width go
to infinity. This article establishes (Theorems 44 and 47) that

hBP
c = h∗. (2)

In [34] it is shown that, under some restrictions on the
degree distributions,3 hMAP

c = hMAP. By Lemma 32, for any
ensemble with hstab = 1, e.g. an ensemble with no degree-
two variable nodes, hMAP ≤ h∗. Combining these results with
optimality of the MAP decoder and (2)

hMAP ≤ h∗ = hBP
c ≤ hMAP

c = hMAP.

This shows that h∗ = hMAP, for an ensemble satisfying the
aforementioned conditions.

The threshold saturation result shown in [7] can be summa-
rized as follows. For regular codes with left-degree dv , right-
degree dc, and a smooth family of channels, the BP threshold
is equal to the area threshold hBP

c = hA, where the area
threshold is

hA � sup
{
h ∈ [0, 1] | A(T(∞)

s (�0; c(h)), dv , dc) ≤ 0
}
,

and

A(x, dv, dc) � H (x)+
(

dv − 1 − dv
dc

)
H
(
x�dc

)

− (dv − 1)H
(
x�dc−1

)
.

At the DE fixed point T(∞)
s (�0; c(h)), using the duality rule

for entropy (Proposition 4), it is also easy to show that

A(T(∞)
s (�0; c(h)), dv , dc) = −Us(T(∞)

s (�0; c(h)); c(h)).

This immediately implies that h∗ ≤ hA. Therefore, by
[7, Theorem 41], hA = hBP

c , and the results of this article,
(2), h∗ = hA. Hence, the thresholds hMAP, h∗ and hA are all
equal under suitable conditions.

In particular, for regular codes with even-degree
checks, it has been shown rigorously that hMAP = hA.
However, it is instructive to note that the Maxwell
conjecture [35, Conjecture 1], which states that the MAP
GEXIT function is obtained by applying the Maxwell
construction to the EBP GEXIT curve, is yet to be established
for BMS channels.

3Requires regular check-nodes with even degree; this can be relaxed to R(t)
convex on [−1, 1].

B. Coupled System

The potential theory for single systems is now extended to
spatially-coupled systems. Vectors of measures are denoted by
underlines (e.g., x) with [x]i = xi . Functionals operating on
a single measure are distinguished from those operating on
vectors by their input (i.e., F(x) vs. F(x)). Also, for vectors
x′ and x, we write x′ � x if x′

i � xi for all i , and x′ 
 x if
x′

i � xi for all i and x′
i 
 xi for some i .

The ideas underlying spatial coupling now appear to be
quite general. The local coupling in the system allows the
effect of the perfect information, provided at the bound-
ary, to propagate throughout the system. In the large-system
limit, these coupled systems show a significant performance
improvement. The spatially-coupled system model is now
described.

The (λ, ρ, N, w) spatially-coupled LDPC ensemble is
defined as follows. As before, the node perspective degree
distributions are denoted by L, R, and

L(t) =
deg(L)∑

n=0

Lntn , R(t) =
deg(R)∑

n=0

Rntn .

A collection of 2N variable-node groups are placed at
all positions in Nv = {1, 2, . . . , 2N} and a collection of
2N + (w− 1) check-node groups are placed at all positions in
Nc = {1, 2, . . . , 2N + (w − 1)}. For notational convenience,
the rightmost check-node group index is denoted by Nw �
2N+(w−1). For the below construction of a spatially-coupled
LDPC ensemble, we assume all Ln , Rn are rational.

The integer M is chosen large enough so that i) M Li ,
M L ′(1)R j/R′(1) are natural numbers for 1 ≤ i ≤ deg(L),
1 ≤ j ≤ deg(R), and ii) M L ′(1) is divisible by w. At each
variable-node group, M Li nodes of degree i are placed for
1 ≤ i ≤ deg(L). Similarly, at each check-node group,
M L ′(1)R j/R′(1) nodes of degree j are placed for 1 ≤ j ≤
deg(R). At each variable-node and check-node group, the
M L ′(1) edge sockets are partitioned into w equal-sized groups
using a uniform random permutation. Denote these partitions,
respectively, by Pvi,k and Pc

j,k at variable-node and check-node
groups, where 1 ≤ i ≤ 2N , 1 ≤ j ≤ Nw and 1 ≤ k ≤ w.
The spatially-coupled system is constructed by connecting the
sockets in Pvi,k to sockets in Pc

i+k−1,k using uniform random
permutations. This construction leaves some sockets of the
check-node groups at the boundaries unconnected and these
sockets are assigned the binary value 0 (i.e., the socket and
edge are removed). These 0 values form the perfect informa-
tion that gets decoding started. A Tanner graph example of a
spatially-coupled LDPC ensemble depicting these connections
is provided in Fig. 2.

The analysis below is valid for any spatially-coupled sys-
tem whose density evolution is given by (4). For the ran-
dom ensemble described in [5, Section II-B] and for the
(λ, ρ, N, w) ensemble described above, the asymptotic density
evolution is indeed described by (4). Thus, our analysis holds
for both these ensembles. However, this is no longer true for
the protograph construction described in [5, Section II-A].

Let x̃(
)i be the variable-node output distribution at node i
after 
 iterations of message passing. Then, the input distrib-
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Fig. 2. An example of a (λ(t) = t4, ρ(t) = t5, N, w = 3) spatially-coupled LDPC ensemble. Sockets in each variable- and check-node group are permuted
(π and π ′ denote the permutations) and partitioned into w groups, and connected as shown above. This results in some sockets of the check-node groups at
the boundary unconnected.

ution to the i -th check-node group is the normalized sum of
averaged variable-node output distributions,

x(
)i = 1

w

w−1∑
k=0

x̃(
)i−k . (3)

The averaging in the reversed direction (i.e. from check-
node to the variable-node) follows naturally from this setup
and is essentially the transpose of the forward averaging for
the check-node output distributions. This model uses uniform
coupling over a fixed window, but in a more general setting
window size and coefficient weights could vary from node to
node. By virtue of the fixed boundary condition, x̃(
)i = �∞
for i /∈ Nv and all 
, and from the relation in (3), this implies
x(
)i = �∞ for i /∈ Nc and all 
.

Generalizing [7, eq. (12)] to irregular codes gives the
evolution of the variable-node output distributions,

x̃(
+1)
i = c � λ�

⎛
⎝ 1

w

w−1∑
j=0

ρ�

(
1

w

w−1∑
k=0

x̃(
)i+ j−k

)⎞
⎠. (4)

Making a change of variables, the variable-node output
distribution evolution in (4) can be rewritten in terms of check-
node input distributions

x(
+1)
i = 1

w

w−1∑
k=0

ci−k � λ�

⎛
⎝ 1

w

w−1∑
j=0

ρ�
(
x(
)i−k+ j

)⎞⎠, (5)

for i ∈ Nc, where ci = c when i ∈ Nv and ci = �∞
otherwise. While (4) is a more natural representation for
the underlying system, (5) is more mathematically tractable
and easily yields a coupled potential functional. As such, we
adopt the system characterized by (5) and refer to it as the
(λ, ρ, N, w) spatially-coupled LDPC system.

Borrowing notation from the single system, when the
spatially-coupled system with channel c is initialized with
a (i.e. x(0)i = ai ), the check-node input distribution after 

iterations of message-passing is denoted by T(
)c (a; c). One
iteration of this message-passing is also denoted by Tc(a; c).
With this new notation, (5) can be written compactly as

x(
+1)
i = Tc(x(
); c)i .

Fig. 3. This figure depicts the entropies of x1, . . . , xNw in a typical iteration.
The solid line corresponds to the spatially-coupled system and the dashed line
to the modified system. The distributions of the modified system are always
degraded with respect to the spatially-coupled system, hence a higher entropy.
The distributions outside the set {1, . . . , Nw } are fixed to �∞ for both the
systems.

If the sequence of measure vectors {T(
)c (a; c)}∞
=1 converges
pointwise, then its limit is denoted by T(∞)

c (a; c). The fol-
lowing proposition establishes certain monotonicity properties

of T(
)c .
Lemma 34: The operator T(
)c : X Nw ×X → X Nw satisfies

the following for all 1 ≤ 
 < ∞.

i) If a1 � a2, then T(
)c (a1; c) � T(
)c (a2; c) for all c ∈ X .

ii) If c1 � c2, then T(
)c (a; c1) � T(
)c (a; c2) for all
a ∈ X Nw .

iii) If Tc(a; c) � a, then T(
+1)
c (a; c) � T(
)c (a; c). Also,

the limit T(∞)
c (a; c) exists and satisfies T(∞)

c (a; c) �
T(
)c (a; c),

Tc(T(∞)
c (a; c); c) = T(∞)

c (a; c).

iv) If Tc(a; c) � a, then T(
+1)
c (a; c) � T(
)c (a; c). Also,

the limit T(∞)
c (a; c) exists and satisfies T(∞)

c (a; c) �
T(
)c (a; c),

Tc(T(∞)
c (a; c); c) = T(∞)

c (a; c).
Proof: The proof is almost identical to the proof of

Lemma 18. We skip the details for brevity.
When the spatially-coupled system is initialized with

x(0)i = �0, 1 ≤ i ≤ Nw,
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the uniform coupling coefficients and symmetric boundary
conditions induce left-right symmetry on x(
). In particular,
the spatially-coupled system is fully described by only half
the distributions because

x(
)i = x(
)2N+w−i ,

for all 
. As density evolution progresses, the perfect informa-
tion from the boundary propagates inward. This propagation
induces a non-decreasing degradation ordering on positions
1, . . . , �Nw/2� and a non-increasing degradation ordering on
positions �Nw/2� + 1, . . . , Nw . For example, see Fig. 3.

This ordering introduces a degraded maximum at i0 � N +
�w−1

2 �, and this maximum allows one to define a modified
recursion that upper bounds the spatially-coupled system.

Definition 35: The modified system is a modification of (5)
defined by fixing the values of positions outside N ′

c �
{1, 2, . . . , i0}, where i0 is defined as above. As before, the
boundary is fixed to �∞, that is x(
)i = �∞ for i 
∈ Nc and
all 
. More importantly, it fixes the values x(
)i = x(
)i0

for
i0 < i ≤ Nw and all 
.

The DE update of the modified system is identical to (5)
for the first i0 terms, 1, . . . , i0, but a secondary update is
required to impose the saturation constraint, xi = xi0 for
i0 < i ≤ Nw . Repeated iterations for this system require
that this saturation constraint is applied at every step. The
distributions of modified system are degraded with respect
to that of spatially-coupled system, thus the modified system
serves as a convenient upper bound for the spatially-coupled
system. Both the spatially-coupled system and the modified
system are collectively referred to as coupled systems.

In Fig. 3, the entropies of the two systems are illustrated
in a typical iteration. We emphasize that the operator Tc
refers to the spatially-coupled system, not the modified system.
However, the DE update for the modified system also satisfies
the same monotonicity properties of Tc in Lemma 34.

If either spatially-coupled system or modified system is
initialized with x(0) = �0 � {�0, . . . ,�0}, then the
sequence of measure vectors {x(
)}, by Lemma 34, satisfies
x(
+1) � x(
) and converges to a fixed point x. Thus, for the
spatially-coupled system,

x = Tc(x; c).

Such a fixed point for the modified system satisfies an addi-
tional property, stated in the following lemma.

Lemma 36: The fixed point x resulting from initializing the
modified system with �0 satisfies

xi � xi−1, 2 ≤ i ≤ Nw
Proof: See Appendix III-E.

Now, we define the coupled potential. The definitions below
pertain to both spatially-coupled and modified system.

Definition 37: The coupled potential functional Uc : X Nw ×
X → R is given in (6), as shown at the bottom of the page.

Lemma 38: The directional derivative of the potential func-
tional in (6) with respect to x ∈ X Nw , evaluated in the direction
y ∈ X Nw

d is given by

dx Uc(x; c)[y]

= L ′(1)
Nw∑
i=1

H
((

Tc(x; c)i − xi
)
� ρ′�(xi)� yi

)
. (8)

Proof: See Appendix III-F.
Lemma 39: The second-order directional derivative of the

potential functional in (6) with respect to x, evaluated in the
direction [y, z] ∈ X Nw

d × X Nw
d is given in (7), as shown at

the bottom of the page.
Proof: See Appendix III-G.

IV. THRESHOLD SATURATION FOR LDPC ENSEMBLES

A. Achievability of Threshold Saturation

We now prove threshold saturation for spatially-coupled
LDPC ensembles. For a family of BMS channels, we will
show that, if h < h∗, then the only fixed point of the modified
system is �∞. Since the modified system is an upper bound on
the spatially-coupled system, we then conclude that the only
fixed point of the spatially-coupled system is �∞.

Consider a modified system with potential functional Uc as
in Definition 37, and a non-trivial fixed point x. Also, consider
a parameterization φ : [0, 1] → R, where

φ(t) = Uc(x + t (x′ − x); c(h)).

The path endpoint x′ is chosen to be a small perturbation
of x. For all channels c(h) with h < h∗, at x, it can be shown
that the potential functional decreases, at least by a constant

Uc(x; c)� L ′(1)
Nw∑
i=1

[
1

R′(1)
H
(
R�(xi)

)+H
(
ρ�(xi )

)−H
(
xi � ρ�(xi )

)]−
2N∑
i=1

H

⎛
⎝c � L�

( 1

w

w−1∑
j=0

ρ�(xi+ j )
)⎞⎠ (6)

d2
x Uc(x; c)[y, z] = L ′(1)

Nw∑
i=1

[
ρ′′(1)H

(
Tc(x; c)i �

ρ′′�(xi )

ρ′′(1)
� yi � zi

)
− ρ′′(1)H

(
xi �

ρ′′�(xi )

ρ′′(1)
� yi � zi

)

− ρ′(1)H
(
ρ′�(xi )

ρ′(1)
� yi � zi

)]
− L ′(1)λ′(1)ρ′(1)2

w

Nw∑
i=1

min{i+(w−1),Nw }∑
m=max{i−(w−1),1}

×H

(
1

w

w−1∑
k=0

ci−k �

λ′�
(

1
w

w−1∑
j=0

ρ�(xi−k+ j )

)

λ′(1) �

[
ρ′�(xi )
ρ′(1) � zi

]
�

[
ρ′�(xm)
ρ′(1) � ym

])
(7)
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independent of the modified system, along the perturbation x′.
Moreover, a fixed point is also a stationary point of the
potential functional. Also, at the fixed point, the second-order
variations in the potential can be made arbitrarily small by
choosing a large coupling parameter w. Thus, all variations
in the potential functional up to second-order can be made
arbitrarily small.

By calculating the change in potential at a non-trivial fixed
point in two different ways: first by explicit calculation of
change in the potential and second by the first- and second-
order variations, one obtains a contradiction to the existence
of a non-trivial fixed point from the second-order Taylor
expansion of φ(t), for all c(h) with h < h∗.

These ideas are formalized below. A right shift is chosen
for the perturbation and the shift operator S(·) is defined in
Definition 40. In Lemma 41, we bound the change in potential
due to shift. Lemmas 42 and 43 characterize the first- and
second-order variations, respectively, along the shift direction
[S(x)−x], for a non-trivial fixed point x. Finally, Theorem 44
proves threshold saturation.

Definition 40: The shift operator S : X Nw → X Nw is
defined pointwise by

[S(x)]1 � �∞, [S(x)]i � xi−1, 2 ≤ i ≤ Nw.
Lemma 41: Let x ∈ X Nw be such that xi = xi0 , for

i0 ≤ i ≤ Nw . Then the change in the potential functional
for a modified system associated with the shift operator is
bounded by

Uc(S(x); c)− Uc(x; c) ≤ −Us(xi0 ; c).
Proof: See Appendix IV-A.

Lemma 42: If x 
 �∞ � [�∞, . . . ,�∞] is a fixed point
of the modified system resulting from �0 initialization, then

dx Uc(x; c)[S(x)− x] = 0,

and moreover xi0 is not in the basin of attraction to �∞
(i.e., xi0 /∈ V(c)).

Proof: See Appendix IV-B.
The above two lemmas together with Definition 25(ii) imply

that for a non-trivial fixed point x resulting from initializing
the modified system with �0,

Uc(S(x); c)− Uc(x; c) ≤ −Us(xi0 ; c) ≤ −�E(c).

Thus, when �E(c) > 0, the absolute change in potential
due to shift is lower bounded by a constant independent of
x, N , w, and hence of the coupled system.

Lemma 43: Suppose x is a fixed point of the modified
system resulting from �0 initialization. The second-order
directional derivative of Uc(x1; c) with respect to x1, evaluated
along [S(x)− x,S(x)− x], can be absolutely bounded with

∣∣∣d2
x1

Uc(x1; c)[S(x)− x,S(x)− x]
∣∣∣ ≤ Kλ,ρ

w
,

where the constant

Kλ,ρ � L ′(1)
(
2ρ′′(1)+ ρ′(1)+ 2λ′(1)ρ′(1)2

)
is independent of N and w.

Proof: See Appendix IV-C.

Theorem 44: Fix a family of BMS channels c(h), and the
LDPC(λ, ρ) ensemble. For h < h∗, all N , and any w >
Kλ,ρ/(2�E(c(h))), the only fixed point of density evolution
for the spatially-coupled LDPC (λ, ρ, N, w) ensemble with
channel c(h) is �∞.

Proof: First, since h < h∗, �E(c(h)) > 0. Consider
a modified system with a fixed w > Kλ,ρ/(2�E(c(h))) and
any N . Suppose x is a fixed point of modified system resulting
from �0 initialization. If x = �∞, by the monotonicity of
the DE update resulting from �0 initialization, there is no
other fixed point for the modified system. Suppose instead
that x 
 �∞. In this case, we will arrive at a contradiction in
the following.

Let y = S(x)− x and define φ : [0, 1] → R by

φ(t) = Uc(x + ty; c(h)).

This is well defined because, for all t ∈ [0, 1], x + ty =
(1 − t)x + tS(x) is a vector of probability measures. As in
Proposition 16, φ is a polynomial in t , and thus infinitely
differentiable over the entire unit interval. Hence, the second-
order Taylor series expansion about t = 0, evaluated at t = 1,
provides

φ(1) = φ(0)+ φ′(0)(1 − 0)+ 1
2φ

′′(t0)(1 − 0)2, (9)

for some t0 ∈ [0, 1]. The first and second derivatives of φ
are characterized by the first- and second-order directional
derivatives of Uc:

φ′(t) = lim
δ→0

Uc(x + (t + δ)y; c(h))− Uc(x + ty; c(h))

δ

= dx1
Uc(x1; c(h))[y]

∣∣∣
x1=x+ty

,

and similarly,

φ′′(t) = d2
x1

Uc(x1; c(h))[y, y]
∣∣∣
x1=x+ty

.

Substituting and rearranging terms in (9) provides

1
2 d2

x1
Uc(x1; c(h))[y, y]

∣∣∣
x1=x+t0y

= Uc(S(x); c(h))− Uc(x; c(h))− dx Uc(x; c(h))[S(x)− x]
= Uc(S(x); c(h))− Uc(x; c(h)) (Lemma 42)

≤ −Us(xi0 ; c) (Lemma 41)

≤ −�E(c(h)). (Lemma 42 and Definition 25(ii))

Taking the absolute value and applying the second order
directional derivative bound from Lemma 43 gives

�E(c(h)) ≤ Kλ,ρ
2w

�⇒ w ≤ Kλ,ρ
2�E(c(h))

,

a contradiction. Hence the only fixed point of the modified
system is �∞. The distributions of the modified system are
degraded with respect to the spatially-coupled system, and
therefore, the only fixed point of the spatially-coupled system
is also �∞.
As an immediate consequence, for the (λ, ρ, N, w) spatially-
coupled ensemble with 0 < Kλ,ρ/(2�E(c(h))) < w < ∞
and any N , its BP threshold is at least h. Therefore, the BP
threshold of the (λ, ρ, N, w) spatially-coupled ensemble, by
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first taking the limit N → ∞ and then w → ∞, is at least h∗.
Below, Theorem 47 establishes that, under h∗ < hstab, the
BP threshold of the spatially-coupled ensemble in the limits
given above is at most h∗, which establishes the equality of
the BP threshold to h∗ in the above limits.

B. Converse to Threshold Saturation

We begin by establishing two monotonicity results.
Lemma 45: Consider x1 ∈ X Nw and x2 = Tc

(
x1; c

)
.

i) If x2 � x1,

Tc
(
x1 + t (x2 − x1); c

) � x1 + t (x2 − x1).

ii) If x2 � x1,

Tc
(
x1 + t (x2 − x1); c

) � x1 + t (x2 − x1).
Proof:

i) If x2 � x1, then for all 0 ≤ t ≤ 1,

x2 � x1 + t (x2 − x1) � x1.

Since Tc is order-preserving by Lemma 34,

Tc
(
x1 + t (x2 − x1); c

) � Tc
(
x1; c

)
= x2 � x1 + t (x2 − x1).

ii) Follows by symmetry.

Lemma 46: Let x1 ∈ X Nw , x2 = Tc
(
x1; c

)
, and suppose

x2 � x1 or x2 � x1, then Uc(x2; c) ≤ Uc(x1; c).
Proof: Assume x2 � x1. Let φ : [0, 1] → R be defined by

φ(t) = Uc(x1 + t (x2 − x1); c).

Observe that φ is a polynomial in t as in Proposition 16, with
φ(0) = Uc(x1; c) and φ(1) = Uc(x2; c). Moreover,

φ′(t) = dx Uc(x; c)[x2 − x1]
∣∣∣
x=x1+t (x2−x1)

. (10)

By Lemma 45,

Tc
(
x1 + t (x2 − x1); c

) � x1 + t (x2 − x1),

and observing (8), the derivative in (10) is a sum of terms of
the form

L ′(1)H
([x′

3 − x3] � x4 � [x′
5 − x5]

)
,

where x′
3 � x3 and x′

5 � x5, which is negative by
Proposition 8(iii). For the case x2 � x1, we can write a similar
expression with x′

3 � x3 and x′
5 � x5. In either case, φ′(t) ≤ 0

for all t ∈ [0, 1]. Thus, Uc(x2; c) = φ(1) ≤ φ(0) = Uc(x1; c).

Theorem 47: Fix a family of BMS channels c(h) and the
LDPC(λ, ρ) ensemble with h∗ < hstab. Also, consider the
spatially-coupled LDPC (λ, ρ, N, w0) ensemble with a fixed
coupling window w0, and a channel c(h) with h > h∗. Then,
there exists an N0 such that, for any N > N0, the fixed point
of density evolution resulting from �0 initialization satisfies

T(∞)
c (�0; c(h)) 
 �∞.

Proof: First, choose h > h∗. Since Us(· ; c(h)) :
X → R is continuous and X is compact, Us(· ; c(h))
attains its minimum. Let a∗ be a minimizer of Us(· ; c(h)).

By Lemma 24, a∗ is a fixed point of the single system DE.
By assumption hstab > h∗, and h > h∗. Hence, by Lemma 30,
Us(a∗; c(h)) < 0. Initialize the spatially-coupled LDPC
(λ, ρ, N, w0) system with a∗ = [a∗, . . . ,a∗]. Since a∗ is a
fixed point of the single system,

Tc(a∗; c(h))i = 1

w

w−1∑
k=0

c(h)i−k � λ�
( 1

w

w−1∑
j=0

ρ� (a∗)
)

� 1

w

w−1∑
k=0

c(h)� λ�
( 1

w

w−1∑
j=0

ρ� (a∗)
)

= c(h)� λ�(ρ�(a∗)) = a∗.

That is, Tc(a∗; c(h)) � a∗. Therefore, from the monotonicity

of Tc by Lemma 34, T(∞)
c (a∗; c(h)) exists and

T(∞)
c (a∗; c(h)) � T(
+1)

c (a∗; c(h)) � T(
)c (a∗; c(h)) � a∗.

By Lemma 46 and the continuity of Uc(·; c(h)),

Uc(T(∞)
c (a∗; c(h)); c(h)) ≤ Uc(T(
+1)

c (a∗; c(h)); c(h))

≤ Uc(T(
)c (a∗; c(h)); c(h)) ≤ Uc(a∗; c(h)).

Also, since all entries of a∗ are equal,

Uc(a∗; c(h))

= (2N + (w0 − 1))Us(a∗; c(h))

+(w0 − 1)H
(
c(h)� L�(ρ�(a∗))

)
≤ (2N + (w0 − 1))Us(a∗; c(h))+w0 − 1.

Since Us(a∗; c(h)) < 0, we can choose large enough N0 such
that for all N > N0, Uc(a∗; c(h)) < 0. Therefore,

Uc(T(∞)
c (a∗; c(h)); c(h)) ≤ Uc(a∗; c(h)) < 0,

and, since Uc(�∞; c(h)) = 0, this implies that

T(∞)
c (a∗; c(h)) 
= �∞. Since �0 � a∗,

T(∞)
c (�0; c(h)) � T(∞)

c (a∗; c(h)).

Hence, T(∞)
c (�0; c(h)) 
 �∞.

V. LOW-DENSITY GENERATOR-MATRIX ENSEMBLES

A. Single System

Low-density generator-matrix (LDGM) ensembles are a
class of linear codes that have a sparse generator-matrix
representation. An example of a Tanner graph representation of
an LDGM code is provided in Fig. 4. The term LDGM(λ, ρ)
denotes the LDGM ensemble with information-node degree
distribution λ and generator-node degree distribution ρ from
the edge perspective. An equivalent representation in terms of
the node perspective degree distributions L, R is given by

λ(t) = L ′(t)
L ′(1)

, ρ(t) = R′(t)
R′(1)

.

LDGM codes are amenable to techniques similar to that
of their counterpart, LDPC codes. However, a key issue here
is that these codes have non-negligible error floors. One
mathematical difficulty that arises from this is that the desired
fixed point of DE is non-trivial and depends on the channel
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Fig. 4. The Tanner graph representation of an LDGM code with left-degree 3
and right-degree 2. The leftmost nodes ui ’s are the information-nodes and the
square nodes are generator-nodes. The rightmost nodes in gray represent the
code-bits.

parameter. This poses a great challenge when characterizing
thresholds, convergence, etc. Nevertheless, LDGM codes are
an attractive option for rateless codes [36], [37], and in lossy
source compression [38], [39]. See [29, Section 7.5] for an
introduction to LDGM codes.

The analysis of LDGM codes, and their coupled variant, is
very similar to that of the LDPC codes. Thus, we keep the
same notation for analogous quantities.

The evolution of message distributions is characterized by
the DE described by

x̃(
+1) = λ�(c � ρ�(x̃(
))), (11)

where x̃(
) denotes the message distribution at the output of
information-nodes after 
 iterations of message-passing, and
c represents the channel LLR distribution. When the iterative
system in (11) is initialized with a, the information-node out-
put after 
 iterations is denoted by T(
)s (a; c). The distribution

after one iteration is therefore T(1)s (a; c), or shortly, Ts(a; c).
If the sequence of measures {T(
)s (a; c)} converges in (X , dH),
then its limit is denoted by T(∞)

s (a; c).
The DE update operator Ts satisfies exactly the same

monotonicity properties as in Lemma 18. To avoid repetition,
we do not state them explicitly.

We note that �∞ is not a fixed point of (11), which is
in stark contrast to LDPC codes. If this system is initialized
with �∞, then Ts(�∞; c) � �∞. As such, the sequence
{T(
)s (�∞; c)} converges to the fixed point T(∞)

s (�∞; c). If x
is any fixed point of (11), since x � �∞, by the monotonicity
of Ts,

x = T(∞)
s (x; c) � T(∞)

s (�∞; c).

Thus, T(∞)
s (�∞; c) is the minimal fixed point.

Definition 48: The minimal fixed point for the LDGM(λ, ρ)
ensemble with channel c is defined to be

f0(c) � T(∞)
s (�∞; c).

We also denote this by f0 when the context is clear.
The following definition of the potential functional is

essentially the negative of the trial-entropy or the replica-
symmetric free entropy calculated in [30, eq. (6.2)]. Also, in

Appendix VII-C, we briefly show the calculations to derive
this potential from the Bethe formalism.

Definition 49: The potential functional Us : X × X → R

for the LDGM(λ, ρ) ensemble with a channel c is defined as

Us(x; c) = L ′(1)
R′(1)H

(
c � R�(x)

)− L ′(1)H
(
x � c � ρ�(x)

)
+L ′(1)H

(
c � ρ�(x)

)− H
(
L�(c � ρ�(x))

)
− L ′(1)

R′(1)H (c) .
The directional derivative of the potential functional gives

rise to the DE update in (11). Using Proposition 5, we have
the following result similar to Lemma 23.

Lemma 50: The directional derivative of the potential func-
tional with respect to x ∈ X , in the direction y ∈ Xd, is
given by

dx Us(x; c)[y]= L ′(1)H
([

Ts(x; c)−x
]
�
[
c � ρ′�(x)� y

])
.

Similar to Lemma 24, we can also show that the minimum
of the potential functional for a fixed c occurs at a fixed point
of the DE.

Definition 51: For the LDGM(λ, ρ) ensemble with a chan-
nel c ∈ X , define

i) The basin of attraction to f0(c) as the set

V(c) = {x ∈ X | T(∞)
s (x; c) = f0(c)}.

ii) The energy gap as

�E(c) � inf
x∈X \V(c)

Us(x; c)− Us(f0(c); c),

with the convention that the infimum over the empty set
is ∞.

Fig. 5 illustrates the potential functional of an LDGM
ensemble over a BSC channel with

λ(t) = t8, ρ(t) = 3

50
+ 6

50
t + 9

50
t2 + 12

50
t3 + 20

50
t4.

A few observations are in order. At small values of h, the
minimal fixed point f0(c(h)) determines the error floor of
these ensembles. As we increase h beyond 0.4529, another
fixed point appears in the right (from initializing DE with
�0), and this fixed point governs the DE performance. For
h < 0.5902, the energy gap �E(c(h)) > 0 stays positive.
The range of h for which the energy gap stays positive is
important, as this characterizes the performance of spatially-
coupled codes. For large values of h, the fixed point resulting
from �0 initialization and the minimal fixed point coincide.
We emphasize that these observations are only qualitative
as this two-dimensional illustration does not characterize the
behavior of Us(· ; c) over all X .

By Definition 51(ii), �E(c(h)) is a difference of two
functions varying in h. For general LDGM ensembles, whether
the energy gap is monotone as a function of h is not known.
This poses a difficulty when defining the potential threshold.
We circumvent this by stating the threshold saturation theorem
differently, and perhaps less elegantly, than LDPC ensembles.
More precisely, the result we have for LDGM ensembles
is the following (Theorem 61): If �E(c) > 0, then, for a
large enough coupling window w, any DE fixed point of
the spatially-coupled system is elementwise better (in the
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Fig. 5. Potential functional for an LDGM(λ, ρ) ensemble with λ(t) = t8

and ρ(t) = 3
50 + 6

50 t + 9
50 t2 + 12

50 t3 + 20
50 t4 over a binary symmetric

channel with entropy h. The values of h for these curves are, from the top to
bottom, 0.37, 0.4529, 0.56, 0.5902, 0.62, 0.66. The other input to the potential
functional is the binary AWGN channel (BAWGNC) with entropy h̃. The
choice of BAWGNC distribution for the first argument in Us(· ; ·) is arbitrary.
The marked points denote the minimal fixed points f0.

degradation order) than the minimal fixed point of the single
system, f0(c).

It is conjectured [30, Section X] that the region
where �E(c) > 0 characterizes the MAP decoding
performance. Accordingly, when �E(c) > 0, the potential
functional is minimized at f0(c) and therefore the value of
L�(c � ρ�(f0(c))) under the error probability functional
[29, Definition 4.53] characterizes the bit-error rate of the
MAP decoder. Moreover, when �E(c) < 0, the MAP decoder
performance is strictly worse than the one characterized by
L�(c � ρ�(f0(c))). Thus, if the conjecture in [30, Section
X] is true, then the BP performance of the spatially-coupled
ensemble and the MAP performance of the single system
coincide.

B. Coupled System

The construction of spatially-coupled LDGM ensemble is
similar to that of spatially-coupled LDPC ensembles and we
refer the reader to Section III-B for an elaborate treatment.
A performance analysis of spatially-coupled LDGM ensem-
bles first appeared in [40]. The information-node groups are
placed at positions in Nv = {1, 2, . . . , 2N}, and the generator-
node groups at Nc = {1, 2, . . . , Nw}, where Nw = 2N+w−1.
The DE update at generator-node inputs is given by

x(
+1)
i = 1

w

w−1∑
k=0

λ�

⎛
⎝ 1

w

w−1∑
j=0

c � ρ�(x(
)i−k+ j ); εi−k

⎞
⎠, (12)

for i ∈ Nc, where xi = �∞ when i 
∈ Nc and the shorthand
λ�(x; εi) denotes

λ�(x; εi) =
{
λ�(x) if i ∈ Nv ,
�∞ otherwise.

We refer to the system characterized by (12) as the
(λ, ρ, N, w) spatially-coupled LDGM ensemble.

A few of the terms that appear in the summation on the RHS
of (12) will be �∞ and these represent the boundary condition
that gets decoding started. When the spatially-coupled LDGM
system is initialized with x = �0, the information at the
boundary propagates inward and this induces a nondecreas-
ing degradation ordering on positions 1, . . . , �Nw/2� and a
nonincreasing degradation ordering on positions �Nw/2� +
1, . . . , Nw . This ordering results in a degraded maximum at
position i0 = N + �w−1

2 �.
As seen in Section V-A, the minimal fixed point f0 plays a

crucial role in the performance of the LDGM ensembles under
iterative decoding. Spatially-coupled LDGM ensembles are no
exception. The minimal fixed point f0 of the single system is
also crucial for the spatially-coupled system. Changing the
boundary in (12) from �∞ to f0 therefore facilitates the proof
of threshold saturation for these ensembles.

Definition 52: The modified system is defined by the fol-
lowing update,

x(
+1)
i = 1

w

w−1∑
k=0

λ�

⎛
⎝ 1

w

w−1∑
j=0

c � ρ�(x(
)i−k+ j ); δi−k

⎞
⎠,

for i ∈ {1, . . . , i0}, and x(
+1)
i = x(
+1)

i0
for i0 < i ≤ Nw ,

xi = f0 when i 
∈ Nc. The shorthand λ�(x; δi) represents

λ�(x; δi) =
{
λ�(x) if i ∈ Nv ,

f0 otherwise.
In comparison to (12), the modified system here differs both

in the boundary condition and the saturation constraint xi =
xi0 for i0 < i ≤ Nw . When the modified system and spatially-
coupled system have the same initialization, as DE progresses,
the distributions of the modified system will be degraded with
respect to that of spatially-coupled system in (12). Again, the
modified system serves as an upper bound to the spatially-
coupled system. The DE updates for both spatially-coupled
and modified system satisfy the monotonicity properties listed
in Lemma 34. For brevity, we do not state them explicitly.

If the modified system is initialized with x(0) = �0, then
x(
+1) � x(
) and x(
) � f0 for all 
. To see this, suppose x(
) �
f0 for some 
 (e.g., this is automatically true when 
 = 0).
Observing the modified system DE update for 1 ≤ i ≤ i0,

x(
+1)
i = 1

w

w−1∑
k=0

λ�
( 1

w

w−1∑
j=0

c � ρ�(x(
)i−k+ j ); δi−k

)

(a)� 1

w

w−1∑
k=0

λ�
( 1

w

w−1∑
j=0

c � ρ�(f0); δi−k

)

= 1

w

w−1∑
k=0

λ�
(
c � ρ�(f0); δi−k

)

(b)= λ�
(
c � ρ�(f0)

) (c)= f0,

where (a) follows since x(
) � f0, while (b) and (c) follow
since f0 is a fixed point of the single system DE. Thus, the
sequence of measure vectors {x(
)} satisfies x(
) � x(
+1),
x(
) � f0, and consequently {x(
)} converges to a fixed point
x with x � f0. We also have the following result analogous to
Lemma 36.
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Lemma 53: The fixed point x of the modified system result-
ing from �0 initialization satisfies

xi � xi−1 � f0, 2 ≤ i ≤ Nw.
Below, we define the coupled potential for LDGM ensem-

bles. Unlike LDPC codes, the coupled potential here and
the properties that follow pertain exclusively to the modified
system due to the difference in boundary conditions. The
key difference in our proof strategy for LDGM codes is to
tweak the coupled potential to reflect the modified boundary
and show that this modified potential still has the desired
properties.

Definition 54: The coupled potential functional Uc : X Nw ×
X → R for a modified system is defined in (13), as shown at
the bottom of the page.

The last two terms of (13) are not present in (6). These
additional terms are necessary to reflect the modified bound-
ary. Proofs of Lemmas 55, 56 are nearly identical to their
analogues, Lemmas 38, 39, respectively.

Lemma 55: The directional derivative of the potential func-
tional in (13) with respect to x ∈ X Nw , evaluated in the
direction y ∈ X Nw

d is given in (14), as shown at the bottom of
the page.

Lemma 56: The second-order directional derivative of the
potential functional in (13) with respect to x, evaluated in the
direction [y, z] ∈ X Nw

d × X Nw
d is given by (15), as shown at

the bottom of the page, where λ′�(x; δi) denotes

λ′�(x; δi) =
{
λ′�(x) if i ∈ Nv ,

0 otherwise.

VI. THRESHOLD SATURATION FOR LDGM ENSEMBLES

The proof strategy for threshold saturation of spatially-
coupled LDGM ensembles is similar to that of spatially-
coupled LDPC ensembles. It is clear that f0 plays a role similar
to that of �∞ for LDPC ensembles. The shift operator in
Definition 57 is adjusted accordingly. Explicit characterization
of the change in coupled potential due to shift is stated in
Lemma 58. The proof for this lemma is considerably different
from that of its counterpart in LDPC section, and it is detailed
in Appendix V-A.

Lemmas 59 and 60 characterize the first- and second-order
variations in the coupled potential at a non-trivial fixed point.
Theorem 61 states the threshold saturation result. Proofs of
Lemma 59, Lemma 60 and Theorem 61 are nearly identical
to that of their counterparts in LDPC section, requiring only
straightforward changes from �∞ to f0. We skip these proofs
for brevity.

Definition 57: The shift operator S : X Nw → X Nw is
defined pointwise by

[S(x)]1 � f0, [S(x)]i � xi−1, 2 ≤ i ≤ Nw.
Lemma 58: Let x ∈ X Nw be such that x � f0 � [f0, . . . , f0]

and xi = xi0 , for i0 ≤ i ≤ Nw . Also suppose i0 ≤ 2N . Then
the change in the potential functional for a modified system
associated with the shift operator is bounded by

Uc(S(x); c)− Uc(x; c) ≤ Us(f0; c)− Us(xi0 ; c) (16)
Proof: See Appendix V-A.

Lemma 59: If x 
 f0 is a fixed point of the modified system
resulting from �0 initialization, then

dx Uc(x; c)[S(x)− x] = 0,

Uc(x; c) � L ′(1)
Nw∑
i=1

[
1

R′(1)
H
(
c � R�(xi )

)− 1

R′(1)
H (c)−H

(
xi � c � ρ�(xi )

)+H
(
c � ρ�(xi )

)]

−
2N∑
i=1

H

⎛
⎝L�

(1

w

w−1∑
j=0

c � ρ�(xi+ j )
)⎞⎠−L ′(1)

w−1∑
i=1

[
w − i

w
H
(
f0 �

[
c � ρ�(xi)

])+ i

w
H
(
f0 �

[
c � ρ�(x2N+i )

])]
(13)

dx Uc(x; c)[y]

= L ′(1)
Nw∑
i=1

H

⎛
⎝
⎡
⎣ 1

w

w−1∑
k=0

λ�

⎛
⎝ 1

w

w−1∑
j=0

c � ρ�(xi−k+ j ); δi−k

⎞
⎠− xi

⎤
⎦�

[
c � ρ′�(xi)� yi

]
⎞
⎠ (14)

d2
x Uc(x; c)[y, z]

= L ′(1)ρ′′(1)
Nw∑
i=1

H

⎛
⎝
[

1

w

w−1∑
k=0

λ�

(
1

w

w−1∑
j=0

c � ρ�(xi−k+ j ); δi−k

)
� c �

ρ′′�(xi )

ρ′′(1)

]
� yi � zi

⎞
⎠

−L ′(1)ρ′′(1)
Nw∑
i=1

H

([
xi � c �

ρ′′�(xi )

ρ′′(1)

]
� yi � zi

)
− L ′(1)ρ′(1)

Nw∑
i=1

H

(
c �

ρ′�(xi )

ρ′(1)
� yi � zi

)

− L ′(1)λ′(1)ρ′(1)2

w

Nw∑
i=1

min{i+(w−1),Nw }∑
m=max{i−(w−1),1}

H

(
1

w

w−1∑
k=0

λ′�
(

1
w

w−1∑
j=0

c�ρ�(xi−k+ j );δi−k

)

λ′(1) �

[
c�

ρ′�(xi )
ρ′(1) �yi

]
�

[
c�

ρ′�(xm)
ρ′(1) �zm

])

(15)
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and moreover, xi0 is not in the basin of attraction to f0
(i.e., xi0 /∈ V(c)).

Lemma 58, Lemma 59, and Definition 51(ii) therefore imply
that, for a non-trivial fixed point x resulting from initializing
the modified system with �0,

Uc(S(x); c)− Uc(x; c) ≤ Us(f0; c)− Us(xi0 ; c) ≤ −�E(c).

We note that while the shift bound in Lemma 58 requires
i0 ≤ 2N , which is satisfied by choosing N > �w−1

2 �, this
restriction has no bearing on Theorem 61. This is because
for a fixed w, distributions of spatially-coupled systems with
larger N are degraded with respect to that of systems with
smaller N .

Lemma 60: Suppose x is a fixed point of the modified
system resulting from �0 initialization. Then

∣∣∣d2
x1

Uc(x1; c)[S(x)− x,S(x)− x]
∣∣∣ ≤ Kλ,ρ

w
,

where the constant

Kλ,ρ � L ′(1)
(
2ρ′′(1)+ ρ′(1)+ 2λ′(1)ρ′(1)2

)
is independent of N and w.

Theorem 61: Fix the LDGM(λ, ρ) ensemble and a BMS
channel c with �E(c) > 0. For the (λ, ρ, N, w) spatially-
coupled LDGM ensemble with w > Kλ,ρ/(2�E(c)), any
fixed point x of density evolution satisfies

xi � f0(c), 1 ≤ i ≤ Nw.

VII. CONCLUSIONS

In this paper, a proof of threshold saturation, based on
potential functions, is provided for spatially-coupled codes
over BMS channels. In particular, we show that for spatially-
coupled irregular LDPC codes over a BMS channel, the belief-
propagation decoding threshold saturates to the conjectured
MAP threshold. For LDGM codes, although the notion of
thresholds is not systematically defined, a similar result holds.
A converse to the threshold saturation result is also provided
for LDPC codes. This result reiterates the generality of the
threshold saturation phenomenon, which is now evident from
many observations and proofs that span a wide variety of
systems.

The approach taken in this paper can be seen as analyzing
the average Bethe free entropy in the large-system limit.
We also believe that this approach can be extended to more
general graphical models by computing their average Bethe
free entropy.

APPENDIX I
A METRIC TOPOLOGY ON X

This section establishes a metric topology on X that is
homeomorphic to the weak topology on the set of probability
measures on [0, 1]. The given metric is closely related to the
entropy functional. The reader is assumed to be familiar with
the notation in Section II.

For x ∈ X , recall from Proposition 7,

H (x) = 1 −
∞∑

k=1

γk Mk(x), where γk = (log 2)−1

2k(2k − 1)
.

The entropy distance dH : X × X → R is defined as

dH(x1, x2) �
∞∑

k=1

γk |Mk(x1)− Mk (x2)| .

Endow the space of extended real numbers R = [−∞,∞]
with the metric given by

d
R
(α1, α2) = |tanh(α1)− tanh(α2)| .

Under this metric, R is compact. We begin by establishing a
bijection between the set of symmetric probability measures
on R, X , and the set of probability measures on [0, 1], denoted
by P([0, 1]). This bijection is useful when characterizing the
properties of the entropy distance dH.

Remark 62: The role of the entropy distance dH is similar to
that of the Wasserstein metric in [7, Section II-H]. In fact, one
could easily define a weighted Wasserstein metric where, like
dH, the distance between x1 and x2 is equal to H (x1 − x2)
if x1 � x2. The relationship between such a weighted
Wasserstein metric and dH warrants further attention.

The function defined by ψ : [−∞,∞] → [0, 1], ψ(α) =
tanh2(α2 ) is continuous. Consider the pushforward measure
from X to P([0, 1]) induced by ψ ,

� : X → P([0, 1])
x �→ x̂,

where x̂(A) = x(ψ−1(A)) for all Borel sets A ∈ B([0, 1]).
Below, for any x ∈ X , we denote x̂ for �(x). For any
measurable f : [0, 1] → R,∫

f d x̂ =
∫
( f ◦ ψ)dx.

This immediately implies that∫
αk x̂(dα) =

∫
tanh2k (α

2

)
x(dα).

Thus, k-th moments of x̂ are given by Mk (x).
Lemma 63: The function � : X → P([0, 1]) defined above

is a bijection.
Proof: For injectivity of � , consider x1, x2 ∈ X such that

x̂1 = x̂2. Clearly, x1({0}) = x2({0}). Suppose E is a Borel
set in B((0,∞]) and AE = ψ(E). We have x1(ψ

−1(AE )) =
x2(ψ

−1(AE )), which implies∫
−E

x1(dα)+
∫

E
x1(dα) =

∫
−E

x2(dα)+
∫

E
x2(dα),∫

E
(1 + e−α)x1(dα) =

∫
E
(1 + e−α)x2(dα),

due to symmetry. Since 1 + e−α is non-zero, x1(E) = x2(E)
for all E ∈ B((0,∞]). Again by symmetry,

x1(−E) =
∫

E
e−αx1(dα) =

∫
E

e−αx2(dα) = x2(−E).

This implies that x1(E) = x2(E) for all E ∈ B(R), and
consequently, x1 = x2. Hence, � is injective.

For surjectivity, suppose μ ∈ P([0, 1]). Define measures
x1, x2 on [0,∞] such that for E ∈ B([0,∞]),

x1(E) = μ(ψ(E)), x2(E) =
∫

E

1

1 + e−α x1(dα).
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Extend x2 to [−∞,∞] by defining x as

x(E) = x2(E), for E ∈ B((0,∞]),
x({0}) = 2x2({0}),
x(E) =

∫
−E

e−αx2(dα), for E ∈ B([−∞, 0)).

Then, x is a symmetric probability measure on [−∞,∞], and
x̂ = μ. Hence � is surjective.

Proposition 64: The set of symmetric probability measures
with the entropy distance (X , dH) is a metric space.

Proof: It is easy to see that dH(·, ·) is non-negative,
symmetric, and satisfies the triangle inequality. For dH to be
a metric, it suffices to show that dH(x1, x2) = 0 implies
x1 = x2. Let dH(x1, x2) = 0. Note that dH(x1, x2) = 0 iff
Mk(x1) = Mk(x2) for all k ∈ N. Thus∫

αk x̂1(dα) =
∫
αk x̂2(dα), for all k ∈ N.

By the Hausdorff moment problem [41, Theorem VII.3.1],
x̂1 = x̂2. By injectivity of � , x1 = x2. Thus dH is a metric on
X .

Proposition 65: The metric topology (X , dH) is homeomor-
phic to the weak topology on P([0, 1]).

Proof: It suffices to show that � and �−1 are continuous.
Suppose μn → μ weakly in P([0, 1]). Since xk : [0, 1] →
[0, 1] is a bounded continuous function for k ∈ N,∫

αkμn(dα) →
∫
αkμ(dα).

But this implies Mk(�
−1(μn)) → Mk(�

−1(μ)). Hence �−1

is continuous.
For the continuity of � , let xn

dH−→ x in X . That is∫
αk x̂n(dα) →

∫
αk x̂(dα),

and consequently,∫
p(α)x̂n(dα) →

∫
p(α)x̂(dα),

for any polynomial p : [0, 1] → R. By an application of the
Stone-Weirstrass theorem [42, Theorem 4.45], polynomials are
dense in the set of continuous functions on [0, 1] under the
supremum norm, C[0, 1]. This implies∫

f (α)x̂n(dα) →
∫

f (α)x̂(dα),

for any f ∈ C([0, 1]). Thus x̂n → x̂ weakly, and this
establishes the continuity of � .

Corollary 66: The metric topology (X , dH) is compact and
separable. Since compact metric spaces are complete, it is also
a Polish space.

Proposition 67: The functionals H : X → R and
Mk : X → R are continuous.

Proof: The continuity of H follows since

|H (x1)− H (x2)| ≤ dH(x1, x2),

while the continuity of Mk(·) follows from

|Mk(x1)− Mk(x2)| ≤ 1

γk
dH(x1, x2).

Proposition 68: If we endow X×X with the product topol-
ogy, then the operators � : X ×X → X and � : X × X → X
are continuous.

Proof: Suppose xn,1
dH−→ x1 and xn,2

dH−→ x2. Below, we

will show that xn,1 � xn,2
dH−→ x1 � x2 and xn,1 � xn,2

dH−→
x1 � x2. First, consider the operator �.

dH(xn,1 � xn,2, x1 � x2)

=
∞∑

k=1

γk
∣∣Mk(xn,1)Mk(xn,2)− Mk(x1)Mk(x2)

∣∣

≤
∞∑

k=1

γk
∣∣Mk(xn,1)− Mk(x1)

∣∣Mk(xn,2)

+
∞∑

k=1

γk
∣∣Mk(xn,2)− Mk(x2)

∣∣Mk(x1)

≤ dH(xn,1, x1)+ dH(xn,2, x2) → 0.

Thus � is continuous. For the operator �, note that x̂n,1 → x̂1
weakly and x̂n,2 → x̂2 weakly. Let μn = �(xn,1 � xn,2).
We have

Mk(xn,1 � xn,2) =
∫

tanh2k (α
2

)
(xn,1 � xn,2)(dα)

=
∫
αkμn(dα)

=
∫∫

f�,k(α1, α2)x̂n,1(dα1)x̂n,2(dα2),

where the kernel f�,k : [0, 1] × [0, 1] → R is the continuous
function given by

f�,k(α1, α2)

= 1+√
α1α2

2 tanh2k
(

tanh−1(
√
α1)+ tanh−1(

√
α2)
)

+ 1−√
α1α2

2 tanh2k
(

tanh−1(
√
α1)− tanh−1(

√
α2)
)
.

Since f�,k is continuous and {x̂n,1}, {x̂n,2} converge weakly,∫∫
f�,k(α1, α2)x̂n,1(dα1)x̂n,2(dα2)

→
∫∫

f�,k(α1, α2)x̂1(dα1)x̂2(dα2) =
∫
αkμ(dα)

=
∫

tanh2k (α
2

)
(x1 � x2)(dα) = Mk(x1 � x2),

where μ = �(x1 �x2). Thus Mk(xn,1 �xn,2) → Mk(x1 �x2),
and consequently,

xn,1 � xn,2
dH−→ x1 � x2.

This establishes the continuity of �.
Proposition 69: If a sequence of measures {xn}∞n=1 satisfies

xn+1 � xn (respectively, xn+1 � xn), then xn
dH−→ x, for some

x ∈ X which satisfies x � xn (respectively, x � xn) for all n.
Proof: We suppose xn+1 � xn for n ∈ N; the case where

xn+1 � xn follows similarly. Since the entropy functional
preserves the order by degradation, H (xn+1) ≥ H (xn). Since
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0 ≤ H (x) ≤ 1 for x ∈ X , {H (xn)} is a Cauchy sequence. For
any m > n, since xm � xn ,

dH(xm, xn) = H (xm)− H (xn) → 0 as m, n → ∞.

Thus, the sequence {xn} is Cauchy and as (X , dH) is complete,

xn
dH−→ x for some x ∈ X .

To show x � xn , in view of Definition 2, let f be a
concave non-increasing function on [0, 1]. Then, necessarily,
f is continuous on [0, 1). First suppose f is continuous on
[0, 1]. We discuss the case where

f (1) < lim
α→1

f (α)

separately. Since xn+1 � xn , for any m > n, xm � xn . This
implies∫

f
(∣∣tanh

(
α
2

)∣∣) xm(dα) ≥
∫

f
(∣∣tanh

(
α
2

)∣∣) xn(dα),∫
( f ◦ √·)d x̂m ≥

∫
( f ◦ √·)d x̂n,

lim
m→∞

∫
( f ◦ √·)d x̂m ≥

∫
( f ◦ √·)d x̂n,

and, since x̂m → x̂ weakly and f ◦√· is continuous on [0, 1],
lim

m→∞

∫
( f ◦ √·)d x̂m =

∫
( f ◦ √·)d x̂.

Thus, ∫
( f ◦ √·)d x̂ ≥

∫
( f ◦ √·)d x̂n,∫

f
(∣∣tanh

(
α
2

)∣∣) x(dα) ≥
∫

f
(∣∣tanh

(
α
2

)∣∣) xn(dα).

Now suppose f is a concave, non-increasing function on
[0, 1], but discontinuous at 1. Since f is bounded, to show∫

( f ◦ √·)d x̂ ≥
∫
( f ◦ √·)d x̂n,

we can assume f is non-negative by adding a suitable constant.
Also, there exists a sequence of functions { fm}∞m=1 that are
non-negative, non-increasing, continuous, concave and

fm ≤ fm+1, fm → f pointwise.

By the monotone convergence theorem [42, Theorem 2.14],∫
( f ◦ √·)d x̂ = lim

m→∞

∫
( fm ◦ √·)d x̂,∫

( f ◦ √·)d x̂n = lim
m→∞

∫
( fm ◦ √·)d x̂n.

Since fm is continuous, from the arguments above,∫
( fm ◦ √·)d x̂ ≥

∫
( fm ◦ √·)d x̂n.

Consequently,∫
( f ◦ √·)d x̂ ≥

∫
( f ◦ √·)d x̂n.

Hence x � xn for any n.
We state the following result without proof as it is similar

to the previous proposition.
Proposition 70: If {x′

n}∞n=1, {xn}∞n=1 satisfy x′
n � xn and

x′
n

dH−→ x′, xn
dH−→ x, then x′ � x.

APPENDIX II
PROOFS FROM SECTION II

A. Proof of Proposition 1

By symmetry and since f (0) = 0 for an odd function,∫
f (α)x(dα) = f (0)x({0})+

∫

(0,∞]

[
f (α)+ f (−α)e−α] x(dα)

=
∫
(0,∞]

f (α)(1 − e−α) x(dα)

=
∫
(0,∞]

f (α) tanh
(
α
2

)
(1 + e−α) x(dα)

=
∫

f (α) tanh
(
α
2

)
x(dα).

B. Proof of Proposition 6

i) Follows from 0 ≤ tanh2k(α) ≤ 1.
ii) Note that f (α) = −α2k is a concave decreasing function

over [0, 1]. Since x1 � x2, Definition 2 implies that

−Mk(x1) = I f (x1) ≥ I f (x2) = −Mk(x2).

Thus, Mk (x1) ≤ Mk (x2).
iii) By the equivalent characterization of the operator �,

Mk(x1 � x2)

=
∫

tanh2k(α2 )(x1 � x2)(dα)

(a)=
∫∫

tanh2k
(
τ−1(τ (α1)τ (α2))

2

)
x1(dα1)x2(dα2)

=
∫∫

tanh2k(α1
2

)
tanh2k(α2

2

)
x1(dα1)x2(dα2)

= Mk(x1)Mk(x2),

where τ (α) = tanh(α2 ) in the RHS of (a).
iv) If x = �∞ (respectively, x = �0), then it is easy to see

that Mk(x) = 1 (respectively, Mk(x) = 0) for all k. The
other direction follows from

0 < tanh2k(α) if α 
= 0,
1 > tanh2k(α) if α 
= ±∞,

and since the symmetry of the measure implies

x({−∞}) = e−∞x({∞}) = 0.

C. Proof of Proposition 8

i) Using Proposition 7 and (y1 � y2)(R) = 0 when y1,
y2 ∈ Xd, we have the result.

ii) With the observation

H (y1 � y2) = −H (y1 � y2)

from Proposition 5, the inequalities are trivial. It remains
to show that y = 0 when H (y � y) = 0. For this, let
y = x1 − x2 with x1, x2 ∈ X , and observe that

H (y � y) = 0 ⇐⇒ Mk(x1) = Mk(x2) for all k.

The fact that Mk(x1) = Mk(x2) for all k iff x1 = x2
follows as a consequence of the metric properties of the
entropy functional; see Definition 10 and Proposition 11.
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iii) Using the first part of this proposition and the inequalities
Mk(x′

1) ≤ Mk(x1) and Mk(x′
2) ≤ Mk(x2), we have the

result.
iv) Assume x1 
 x2 and consider x3 
= �∞. To show

H (x1 � x3) > H (x2 � x3), observe that

H (x1 � x3)− H (x2 � x3)

= H ([x1 − x2] � [x3 −�∞])
= −H ([x1 − x2] � [x3 −�∞]) (Proposition 5)

=
∞∑

k=0

γk[Mk(x2)−Mk(x1)][1−Mk(x3)]
> 0.

The last inequality follows since Mk(x3) < 1 for all k ∈ N

(from Proposition 6(iv)) and Mk(x2) > Mk(x1) for some
k ∈ N (see the proof of part ii of this proposition).
Now, consider x3 
= �0. Again, we observe that

H (x1 � x3)− H (x2 � x3)

= H ([x1 − x2] � x3)

=
∞∑

k=0

γk[Mk(x2)−Mk(x1)]Mk(x3)

> 0,

where the last inequality follows since Mk(x3) > 0 for
all k and Mk(x2) > Mk(x1) for some k.

D. Proof of Proposition 12

From [29, Problems 4.60–61],

2E(x) ≤ H (x) ≤ B(x),

where E(·) is the error functional

E(x) � 1

2

∫
e−(α+|α|)/2x(dα).

From [29, Lemma 4.66], for n ≥ 2,

αB(x)3/2√
n

B(x)n ≤ 2E(x�n) ≤ B(x)n,

for a constant α > 0. The above relations, together with
B(x�n) = B(x)n , imply that

lim
n→∞

1

n
log H

(
x�n) = log B(x).

APPENDIX III
PROOFS FROM SECTION III

A. Proof of Lemma 24

The first statement follows from Lemma 23.
For the second part, suppose x is not a fixed point of

single system DE. We discuss the cases x 
= �0 and x = �0
separately. First, consider x 
= �0. The derivative in
Lemma 23 in the direction Ts(x; c)− x is

dx Us(x; c)[Ts(x; c)−x]= L ′(1)H
(
(Ts(x; c)−x)�2

�ρ′�(x)
)
.

From Proposition 8(ii), the above equation is strictly negative
if x 
= Ts(x; c) and x 
= �0. Thus, if x 
= Ts(x; c) and
x 
= �0,

dx Us(x; c)[Ts(x; c)− x] < 0.

By definition,

lim
δ→0

Us(x + δ[Ts(x; c)− x]; c)− Us(x; c)
δ

< 0.

Thus, there exists a t ∈ (0, 1] such that

Us
(
x + t

[
Ts(x; c)− x

] ; c
)
< Us(x; c).

Therefore, Us(x; c) cannot be a minimum if x is not a fixed
point and x 
= �0.

Now, we consider the case x = �0. Since x is not a fixed
point, Ts(�0; c) ≺ �0. For notational convenience, let

xt = Ts(�0; c)+ t[�0 − Ts(�0; c)] for t ∈ [0, 1].
This implies for t ∈ (0, 1), x0 ≺ xt ≺ �0, and by the
monotonicity of the operator Ts,

Ts(xt ; c) � Ts(�0; c) = x0 ≺ xt .

Define φ : [0, 1] → R, φ(t) = Us(xt ; c). As in Proposition 16,
for t ∈ (0, 1),

φ′(t) = dxt Us(xt ; c)[�0 − x0]
= −L ′(1)H

([xt − Ts(xt ; c)] � [�0 − x0] � ρ′�(xt )
)

= L ′(1)H
([xt − Ts(xt ; c)] � x0 � ρ′�(xt )

)
> 0,

by Proposition 3(ii), since xt 
 Ts(xt ; c), x0 
= �0 and
ρ′�(xt ) 
= �0. Thus, Us(�0; c) = φ(1) > φ(0) = Us(x0; c).
As such, Us(�0; c) cannot be a minimum of Us(· ; c).

Hence, the minimum of Us(· ; c) can only occur at a density
evolution fixed point.

B. Proof of Lemma 26

i) By Proposition 8(iv),

H (c1 � x) > H (c2 � x) if x 
= �∞.

Thus, Us(x; c1) < Us(x; c2) if x 
= �∞.
ii) Using monotonicity of the DE operator,

T(
)s (a; c1) � T(
)s (a; c2).

Thus, if a ∈ V(c1), then T(∞)
s (a; c1) = �∞. Then, it is

easy to show that

T(
)s (a; c2)
dH−→ �∞.

Thus T(∞)
s (a; c2) = �∞, and a ∈ V(c2).

iii) Follows from parts i and ii.

C. Proof of Lemma 29

i) If hstab = 1, then the result is trivial; therefore we
assume hstab < 1. Consider any h > hstab. From
[29, Section 4.9.2], V(c(h)) = {�∞}, and by the conti-
nuity of Us(· ; c(h)) at �∞, �E(c(h)) ≤ 0. This implies
h ≥ h∗ by Definition 28(iii). Thus h∗ ≤ hstab.

ii) If h < hstab, there exists an ε > 0 such that for all x
with H (x) < ε, x ∈ V(c(h)) [29, Section 4.9.2]. Thus, if
dH(x,�∞) < ε, then dH(�∞, x) = H (x) < ε, and hence
x ∈ V(c(h)). Thus, there is an ε-ball around �∞ which
is in V(c(h)).
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D. Proof of Lemma 30

If h∗ = 1, then the statement of the lemma is vacuous;
suppose h∗ < 1. Let h > h∗. By assumption, h∗ < hstab, and
thus there exists h′ < h such that h∗ < h′ < hstab. Since
h′ < hstab, by Lemma 29,

�∞ ∈ (V(c(h′)))o �⇒ �∞ 
∈ X\V(c(h′)).
Moreover, X\V(c(h′)) is compact and Us(· ; c(h′)) is contin-
uous. Therefore, the infimum

inf
x∈X \V(c(h′))

Us(x; c(h′))

is achieved at some a 
= �∞. By Lemma 26(i), Us(a; c(h))
is strictly decreasing in h. Therefore,

min
x∈X

Us(x; c(h)) ≤ Us(a; c(h))

< Us(a; c(h′)) (Since h′ < h)

= inf
x∈X \V(c(h′))

Us(x; c(h′))

≤ inf
x∈X \V(c(h′))

Us(x; c(h′))

= �E(c(h′)) ≤ 0 (Since h′ > h∗).

Hence,

min
x∈X

Us(x; c(h)) < 0,

and there exists an x ∈ X such that Us(x; c(h)) < 0.

E. Proof of Lemma 36

Since the modified system is initialized with x(0) = �0,

x(0)i � x(0)i−1. Suppose at some iteration 
, x(
)i � x(
)i−1.
If i > i0, then due to the saturation constraint in the modified
system, x(
+1)

i = x(
+1)
i0

, x(
+1)
i � x(
+1)

i−1 . For 1 ≤ i ≤ i0, by
observing (5),

x(
+1)
i − x(
+1)

i−1 = 1

w
ci � λ�

( 1

w

w−1∑
j=0

ρ�(x(
)i+ j )
)

− 1

w
ci−w � λ�

( 1

w

w−1∑
j=0

ρ�(x(
)i−w+ j )
)
.

Note that ci = c if i ∈ Nv and ci = �∞ otherwise.
At this point, we need to consider two cases: 1) 2N ≥ i0 and
2) 2N < i0.

When 2N ≥ i0, for any 1 ≤ i ≤ i0, i ∈ Nv , which
implies ci = c and ci � ci−w . Since x(
)i � x(
)i−1, we see that

x(
+1)
i � x(
+1)

i−1 .
When 2N < i0, for 2N < i ≤ i0, we note that ci = �∞.

However, 2N < i0 = N + �w2 � implies N < �w2 �. Thus, if
2N < i ≤ i0, then we have

2N −w < i −w ≤ i0 −w

= N + �w2 � −w

≤ N − �w2 � (Using 2�w2 � ≤ w)

< 0.

As such, ci−w = �∞. Here again, ci � ci−w and
x(
+1)

i � x(
+1)
i−1 .

By letting 
 → ∞, we have xi � xi−1 by Proposition 11,
where x is the limit of {x(
)}.

F. Proof of Lemma 38

The linearity of the entropy functional and the properties of
the operators � and � (see Proposition 14) allow one to write

dx Uc(x; c)[y] =
Nw∑
i=1

dxi Uc(x; c)[yi].

As in the proof of Lemma 23, using the duality rule for entropy
for differences of symmetric measures, the derivatives of the
first three terms of Uc in (6) are

dxi H
(
R�(xi )

) [yi ] = R′(1)H
(
ρ�(xi)� yi

)
,

dxi H
(
ρ�(xi )

) [yi ] = H
(
ρ′�(xi )� yi

)
,

dxi H
(
xi � ρ�(xi )

) [yi ] = H
(
ρ�(xi )� yi

)+H
(
ρ′�(xi )� yi

)
−H

(
xi �

[
ρ′�(xi )� yi

])
.

For the final term in (6), observe that if w ≤ i ≤ 2N , since
there are exactly w components containing xi , its derivative
with respect to xi is

L ′(1)
w

w−1∑
k=0

H
(
c�λ�

( 1

w

w−1∑
j=0

ρ�(xi−k+ j )
)
�(ρ′�(xi )�yi)

)
.

If 1 ≤ i < w, derivative of the final term in (6) with respect
to xi is

L ′(1)
w

i−1∑
k=0

H
(
c�λ�

( 1

w

w−1∑
j=0

ρ�(xi−k+ j )
)
�(ρ′�(xi )�yi)

)
.

This can be written as

L ′(1)
w

w−1∑
k=0

H
(
ci−k �λ�

( 1

w

w−1∑
j=0

ρ�(xi−k+ j )
)
�(ρ′�(xi )�yi)

)
,

where ci = c when 1 ≤ i ≤ 2N and ci = �∞ otherwise. This
is because H (�∞ � x) = 0 for any x, and hence the additional
terms that are added evaluate to zero. A similar expression
holds when 2N < i ≤ Nw . Combining these observations,
the derivative of the final term in (6) with respect to xi for
1 ≤ i ≤ Nw is

L ′(1)
w

w−1∑
k=0

H
(
ci−k �λ�

( 1

w

w−1∑
j=0

ρ�(xi−k+ j )
)
�(ρ′�(xi )�yi)

)
,

which is

L ′(1)H
(
Tc(x; c)i � (ρ′�(xi )� yi )

)
.

Consolidating these four terms and using Proposition 5 results
in (8).

G. Proof of Lemma 39

We have

d2
x Uc(x; c)[y, z] =

Nw∑
m=1

Nw∑
i=1

dxm

(
dxi Uc(x; c)[yi]

) [zm].

Using the calculations for dxi Uc(x; c)[yi] in Appendix III-F,
it is tedious but straightforward to obtain the desired result.
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APPENDIX IV
PROOFS FROM SECTION IV

A. Proof of Lemma 41

Due to the boundary condition xi = xi0 , for i0 ≤ i ≤ Nw ,
the only terms that contribute to Uc(S(x); c) − Uc(x; c) are
given by

Uc(S(x); c)− Uc(x; c)

= − L ′(1)
R′(1)H

(
R�(xNw )

)− L ′(1)H
(
ρ�(xNw )

)

+L ′(1)H
(
xNw�ρ�(xNw )

)+H
(
c�L�

( 1

w

w−1∑
j=0

ρ�(x2N+ j )
))

− H
(
c � L�

( 1

w

w−1∑
j=0

ρ�(x j )
))
, where x0 = �∞.

Since x2N+ j � xNw = xi0 for 0 ≤ j ≤ w − 1 and the
contribution from the last term is negative,

Uc(S(x); c)− Uc(x; c)

≤ − L ′(1)
R′(1)H

(
R�(xNw )

)− L ′(1)H
(
ρ�(xNw )

)
+L ′(1)H

(
xNw�ρ�(xNw )

)+H
(
c�L�

(
ρ�(xNw )

))
= − Us(xNw ; c) = −Us(xi0 ; c).

B. Proof of Lemma 42

Since x is a fixed point of the modified system,

xi = Tc(x; c)i ,

for 1 ≤ i ≤ i0. Since xi = xi−1 for i0 < i ≤ Nw , we have
[S(x)− x]i = 0. The first result follows from applying these
relations to the directional derivative given in Lemma 38.

Below, we show that xi0 
∈ V(c). By assumption, we know
that x 
 �∞, and by Lemma 36, xi � xi−1. Thus, xi0 
 �∞.

Also,

xi0 = Tc(x; c)i0 = 1

w

w−1∑
k=0

ci0−k � λ�
( 1

w

w−1∑
j=0

ρ�(xi0−k+ j )
)

� 1

w

w−1∑
k=0

ci0−k � λ�
( 1

w

w−1∑
j=0

ρ�(xi0)
)

� c � λ�
(
ρ�

(
xi0

))
= Ts(xi0 ; c).

Hence, by Lemma 18, T(∞)
s (xi0 ; c) � Ts(xi0 ; c) � xi0 
 �∞.

Thus xi0 /∈ V(c).

C. Proof of Lemma 43

Let y = S(x)− x, with componentwise decomposition

yi = [S(x)− x]i = xi−1 − xi ,

where xi = �∞ for i < 1. Since x is a fixed point of the
modified system, if i > i0, due to the saturation constraint,

xi = xi−1. If 1 ≤ i ≤ i0, then using the update in (5) gives

xi−1 − xi = 1

w
ci−w � λ�

( 1

w

w−1∑
j=0

ρ�(xi−w+ j )
)

− 1

w
ci � λ�

( 1

w

w−1∑
j=0

ρ�(xi+ j )
)
.

Thus, yi = xi−1 − xi is of the form 1
wai − 1

wbi , ai ,bi ∈ X
for all i (if i > i0, ai = bi ). From Lemma 39 and (7), the
first three terms of the second-order directional derivative are
of the form, for some d ∈ X ,

H (d � yi � yi ) = 1

w
H (d � (bi − ai )� (xi − xi−1)) ,

by linearity of the entropy functional. From Lemma 36, xi �
xi−1, and by Proposition 9, this term is absolutely bounded by

|H (d � yi � yi)| ≤ 1

w
H (xi − xi−1) .

The final term is of the form, for some d1,d2,d3,d4,d5 ∈ X ,∣∣H (d1 �
[
d2 � ym

]
�
[
d3 � yi

])∣∣
= ∣∣H ([d1 � (d2 � ym)

]
�
[
d3 � yi

])∣∣ (Proposition 5)

= ∣∣H (d3 �
[
d1 � (d2 � ym)

]
� yi

)∣∣
= 1

w

∣∣H (d3 �
[
d5−d4

]
� [xi −xi−1]

)∣∣ (ym = 1
wam − 1

wbm)

≤ 1

w
H (xi − xi−1) . (Proposition 9)

By telescoping, one observes
Nw∑
i=1

H (xi − xi−1) = H
(
xNw −�∞

) ≤ 1.

Combining these observations, the triangle inequality provides∣∣∣d2
x1

Uc(x1; c)[y, y]
∣∣∣

≤ L ′(1)
(

2ρ′′(1) 1

w
+ ρ′(1) 1

w
+ 2w

λ′(1)ρ′(1)2

w

1

w

)

= L ′(1)
(
2ρ′′(1)+ ρ′(1)+ 2λ′(1)ρ′(1)2

)
w

.

APPENDIX V
PROOFS FROM SECTION VI

A. Proof of Lemma 58

Due to the boundary condition xi = xi0 for i0 < i ≤ Nw
and by assumption i0 ≤ 2N , the terms that contribute to
Uc(S(x); c)− Uc(x; c) are given by

Uc(S(x); c)− Uc(x; c)
= Us(f0; c)− Us(xi0 ; c)

+ L ′(1)H
(
f0 �

[ 1

w

w−1∑
j=0

c � ρ�(x j )
])

− L ′(1)H
(
f0 �

[
c � ρ�(f0)

])

− H
(

L�
( 1

w

w−1∑
j=0

c � ρ�(x j )
))

+ H
(
L�(c � ρ�(f0))

)
,
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where x0 = f0. It suffices to show that the contribution from
the last four terms is negative. Define F : Xw → R by

F(x) = L ′(1)H
(
f0�

[ 1

w

w−1∑
j=0

c � ρ�(x j )
])

−L ′(1)H
(
f0�

[
c � ρ�(f0)

])

− H
(
L�
( 1

w

w−1∑
j=0

c�ρ�(x j )
))

+H
(
L�(c�ρ�(f0))

)
.

It is easy to see that F(f0) = 0, where f0 = [f0, . . . , f0]. For
fixed x 
 f0, define φ : [0, 1] → R as

φ(t) = F(f0 + t (x − f0)).

Then, φ(0) = F(f0), φ(1) = F(x) and for t ∈ [0, 1],

φ′(t) = dx1
F(x1)[x − f0]

∣∣∣
x1=f0+t (x−f0)

= L ′(1)
w

w−1∑
i=0

H

([
f0−λ�

(1

w

w−1∑
j=0

c�ρ�(tx j +(1−t)f0)
)]

�

[
c�ρ′�(txi + (1 − t)f0)� (xi −f0)

])

= L ′(1)
w

w−1∑
i=0

H

([
λ�
( 1

w

w−1∑
j=0

c�ρ�(tx j +(1−t)f0)
)
−f0
]

�

[
c�ρ′�(txi +(1−t)f0)� (xi −f0)

])
.

Also, since x 
 f0, xi � f0 and tx j + (1 − t)f0 � f0. Thus,

λ�
( 1

w

w−1∑
j=0

c�ρ�(tx j +(1 − t)f0)
)

� λ�
( 1

w

w−1∑
j=0

c�ρ�(f0)
)

= λ�(c � ρ�(f0)) = f0,

since f0 is a fixed point. By Proposition 8(iii), φ′(t) ≤ 0. Thus,
φ(1) ≤ φ(0), which implies F(x) ≤ F(f0) = 0 for any x 
 f0.
Consequently,

Uc(S(x); c)− Uc(x; c) ≤ Us(f0; c)− Us(xi0 ; c).

APPENDIX VI
NEGATIVITY OF POTENTIAL FUNCTIONAL

BEYOND POTENTIAL THRESHOLD

In this section, we discuss negativity of the potential
functional (Lemma 30) beyond the potential threshold when
h∗ = hstab.

Suppose h∗ = hstab. Consider any h > hstab and observe
that

λ′(0)ρ′(1)B(c(h)) > 1.

For some x ∈ X , define φ : [0, 1] → R,

φ(t) = Us(�∞ + t (x −�∞); c(h)).

According to Proposition 16, note that φ is a polynomial in t ,
and φ(0) = 0. By Lemma 23, since �∞ is a fixed point of
single system DE, φ′(0) = 0. Moreover,

φ′′(0)= L ′(1)H
([

y−c(h)� λ′�(ρ�(�∞)
)
� [ρ′�(�∞)� y]]

�
[
ρ′�(�∞)� y

] )
, where y = x −�∞.

= L ′(1)ρ′(1)H
([

y − λ′(0)ρ′(1)c(h)� y
]
� y

)
= L ′(1)ρ′(1)H

(
x � x − λ′(0)ρ′(1)c(h)� x � x

)
.

For a family of BEC or binary input AWGN channels, we can
choose x ∈ X such that

x�2 = c(h)�n for any n ∈ N.

For such a choice of x,

φ′′(0) = L ′(1)ρ′(1)H
(
c(h)�n − λ′(0)ρ′(1)c(h)�n+1

)

= L ′(1)ρ′(1)
(λ′(0)ρ′(1))n

( f (n)− f (n + 1)),

where

f (n) = (
λ′(0)ρ′(1)

)n H
(
c(h)�n) .

Since λ′(0)ρ′(1)B(c(h)) > 1, by Proposition 12,

lim
n→∞

1

n
log f (n) = λ′(0)ρ′(1)B(c(h)) > 1.

As such,

lim
n→∞ f (n) = ∞,

and thus there exists m ∈ N such that f (m) < f (m + 1).
Thus, for a suitable choice of x such that x�2 = c(h)�m ,
we have φ′′(0) < 0. Since φ is a polynomial with φ(0) =
φ′(0) = 0, there exists a t ∈ (0, 1] such that φ(t) = Us(�∞+
t (x − �∞); c(h)) < 0. Thus, we have produced a suitable x
for which Us(x; c(h)) < 0. This completes the discussion for
BEC and binary input AWGN channels.

For general BMS channels, we can show the same result
under the condition

lim
n→∞

H
(
x�n+1

)
H
(
x�n

) = B(x).

For this to hold, by Proposition 12, it suffices to show that
the limit limn→∞ H

(
x�n+1

)
/H
(
x�n

)
exists. One way to

guarantee the existence of such a limit is to show that the
sequence of numbers {H (x�n

)} is log-convex,

H
(
x�n+1

)
H
(
x�n−1

)
≥ H

(
x�n)2 ,

which itself follows by showing that the sequence {H (x�n
)}

is completely monotonic [43, Proposition 4.7, Appendix A].
That is, the k-th differences of the sequence {H (x�n

)},
H
(
x�n

� (x −�0)
�k
)

= (−1)kH
(
x�n

� (�0 − x)�k
)
,

have the sign (−1)k . That first and second differences of this
sequence have the sign −1 and +1, respectively, follows from
Proposition 8. However, it remains to show

H
(
x�n

� (�0 − x)�k
)
> 0, for k > 2.
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APPENDIX VII
CONNECTING THE POTENTIAL FUNCTIONAL AND

THE REPLICA-SYMMETRIC FREE ENTROPY

The purpose of this section is to provide pedagogical
insight into the potential functional. As such, the following
discussion is independent from the results of this article and
the uninterested reader may skip this section of the appendix.

The potential functional in Definition 20 can be viewed as
a Lyapunov function. For the problem at hand, the negative
of the replica-symmetric (RS) free entropy associated with the
code ensemble is both a “natural” and an “optimal” Lyapunov
function. It is optimal in the sense that it allows one to prove
threshold saturation up to the MAP threshold (as w → ∞),
and it is natural because of its connection to RS formulas of
statistical physics. Below, we first describe the RS free entropy
for a general statistical mechanical system and then show how
the corresponding expression for an LDPC ensemble reduces
to the negative of the potential functional in Definition 20.
We then briefly describe how the calculations change for
LDGM ensembles. The choice of the negative sign for the
potential is a convention for consistency with [24]–[26].4

A. RS Free Entropy of General Graphical Models

Consider a graphical model on a bipartite graph G =
(V ,C, E) with variable-node set V , a factor-node set C , and
a set E of edges connecting variable- and factor-nodes. Let
A be a discrete alphabet (for example A = {0, 1}). Then,
A|V | is the set of all possible assignments to the variable-
nodes. For i ∈ V , we denote the neighborhood of i ∂i as the
set of all factor-nodes a such that (i, a) ∈ E ; for a ∈ C ,
a similar definition is given for ∂a. For x ∈ A|V | and a
subset U ⊂ V , we write (xi )i∈U for the collection of elements
in {xi |i ∈ U}.

Each variable-node i ∈ V has an associated weight function
gi : A → [0,∞), and each factor-node a ∈ C has an
associated function fa : A|∂a| → [0,∞), which is a mapping
from assignments of variable-nodes in ∂a, i.e. a function acting
on unordered sets. One is generally interested in the marginals
of the probability measure

P(x) = 1

Z

∏
a∈C

fa((xi)i∈∂a)
∏
i∈V

gi (xi ),

where the normalizing factor

Z =
∑

x∈A|V |

∏
a∈C

fa((xi )i∈∂a)
∏
i∈V

gi (xi)

is called the partition function. The free entropy is defined as

1

|V | log Z .

The quantity log Z is closely related to the conditional entropy
of the input in a communication channel given the output,

4This convention is also consistent with physics concepts: because parity-
checks of LDPC codes are hard constraints, the RS free entropy is the negative
of the RS free energy, thus the potential functional is the RS free energy.
Moreover, in physics, entropies are maximized and energies, potentials are
minimized.

and thus it naturally appears in a MAP decoding problem.
See [44, Section 15.4] for more details.

It is well known that when G is a tree, a recursive evaluation
of the sums allows one to solve for the marginals and the
partition function exactly using the message passing formulas:

μi→a(xi ) = gi(xi )
∏

b∈∂i\a μ̂b→i (xi )∑
xi∈A gi (xi )

∏
b∈∂i\a μ̂b→i (xi)

μ̂a→i (xi ) =
∑
(x j ) j∈∂a\i

fa((x j ) j∈∂a)
∏

j∈∂a\i μ j→a(x j )∑
(x j ) j∈∂a

fa((x j ) j∈∂a)
∏

j∈∂a\i μ j→a(x j )
.

On a tree, these formulas are solved by initializing the
messages emanating from leaf nodes and then recursively
computing all the other messages. When a leaf node is the
factor-node a, the outgoing message is μ̂a→i (xi ) ∝ fa(xi ).
Note that the factor-node degree is one here. When it is a
variable-node i , the outgoing message is μi→a(xi ) ∝ gi(xi ).
The marginal distribution μi at variable-node i ∈ V is then
given by

μi (xi ) = gi (xi )
∏

a∈∂i μ̂a→i (xi )∑
xi∈A gi(xi )

∏
a∈∂i μ̂a→i (xi )

.

The free entropy on a tree is given by the Bethe formula

1

|V | log Z = 1

|V |
(∑

i∈V

ϕi +
∑
a∈C

φa −
∑

(i,a)∈E

ψi,a

)
, (17)

where

ϕi � log
( ∑

xi∈A
gi (xi )

∏
b∈∂i

μ̂b→i (xi)
)
,

φa � log
( ∑
(xi )i∈∂a

fa((xi )i∈∂a)
∏
j∈∂a

μ̂ j→a(x j )
)
,

ψi,a � log
( ∑

xi∈A
μi→a(xi )μ̂a→i (xi )

)
.

When G is not a tree, it is usually difficult to calculate the free
entropy exactly. In this case, (17) can be seen as the pseudo-
dual of the Bethe free entropy [45]. It also provides a first, a
priori uncontrolled, approximation for the free entropy.

We now concentrate on random graphical models where G
is an instance of a random bipartite graph. We assume that
the functions fa and gi are realizations of possibly random
functions f and g. For example, the weight function gi (xi ; Yi )
could be an implicit function of random observation Yi .
An application to LDPC ensembles below will make this
framework clear. Also, we denote by E[·], the expectation with
respect to all random objects.

The RS free entropy functional is an average of the Bethe
formula (17) applied to the graph ensemble. Fix a trial
probability measure m over the simplex{

(α1, . . . , α|A|) ∈ [0, 1]|A| |
∑

i

αi = 1

}
.

Let μ = (μ(x))x∈A be a random variable distributed according
to m, where the random variables μ(x), for x ∈ A, are its
components. Draw an integer re from the edge-perspective
factor-node degree distribution. Let μi , for i = 1, . . . , re − 1,
be iid random variables distributed according to m. In the
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following, we define a new random variable μ̂, over the
simplex given above, by its components:

μ̂(x)�

∑
(x1,...,xre−1)∈Are−1

fa(x, x1, . . . , xre−1)
re−1∏
i=1

μi (xi )

∑
(x0,x1,...,xre−1)∈Are

fa(x0, x1, . . . , xre−1)
re−1∏
i=1

μi (xi)

.

Draw integers r , 
 from the node-perspective factor- and
variable-node degree distributions, respectively. Let μi for
i = 1, . . . , r and μ̂i for i = 1, . . . , 
 be independent copies
of μ and μ̂, respectively.

Define the RS free entropy functional, a function of the trial
distribution m, as

�RS(m)

� E

[
log
(∑

x∈A
g(x)


∏
j=1

μ̂ j (x)
)]

+ L ′(1)
R′(1)

E

[
log
( ∑
(x1,...,xr )∈Ar

f (x1, · · · , xr )

r∏
i=1

μi (xi )
)]

−L ′(1)E
[

log
(∑

x∈A
μ(x)μ̂(x)

)]
. (18)

Each successive term is an average of the variable, factor and
edge sums in the Bethe formula (17). We note that E[
] =
L ′(1) and E[r ] = R′(1). The coefficient L ′(1)/R′(1) accounts
for the average number of factor-nodes per variable-node in
the second term, and L ′(1) accounts for the average number
of edges per variable-node in the third term.

The RS approximation for the free entropy of a random
graphical model is given by the minimum of this func-
tional over an appropriate class of trial measures m. This
approximation, or it’s more sophisticated versions, may or
may not be exact. Exactness of the RS formulas, if true,
is usually difficult to prove and is the subject of various
conjectures.

Finally, we point out that such formulas for sparse graph
models were first derived in the framework of the replica
method [46]. Apart from the conceptual problems related to
the replica method, the derivations are also quite algebraically
involved for the case of sparse graphs. The approach presented
here via the Bethe formalism is better suited to sparse graphs
and is of a more probabilistic nature.

B. Application to LDPC Ensembles

We now specialize the RS free entropy functional to
the LDPC(λ, ρ) ensemble. Here, the alphabet is binary,
A ∈ {0, 1}. The quantity P(x) is the posterior probability
of the input vector given the output vector. The parity check
constraint functions are fa((xi )i∈∂a) = 1(⊕i∈∂a xi = 0), and
the weight function at a variable-node is the prior from channel
observations, gi (xi ) = Pr(Yi |xi)/ Pr(Yi |0) = e−li xi , where li is
the LLR of the memoryless channel output assuming that 0
was transmitted.5

Remark 71: It is instructive to note that it is possible
to choose different functions gi without changing P(x),

5The random variable li is distributed according to the BMS channel c.

e.g. gi(xi ) = eli (1−2xi )/2 is chosen in [27] and [33]. Depending
on the choice of gi , the Bethe free entropy may be different.
However, the estimate of the conditional entropy can be
adjusted accordingly and remains independent of the choice
of the functions gi .

Since the alphabet is binary, we can parameterize the vectors
(μ(0), μ(1)) and (μ̂(0), μ̂(1)) by real valued random variables
ν and ν̂ as follows:

ν = log
μ(0)

μ(1)
, ν̂ = log

μ̂(0)

μ̂(1)
.

Equivalently,

μ(x) = 1 + (−1)x tanh ν
2

2
, μ̂(x) = 1 + (−1)x tanh ν̂

2

2
.

The random variable ν is distributed according to a
trial measure n. By taking re − 1 independent copies
ν1, . . . , νre−1 of ν, it is easy to show that ν̂ has the same
distribution as

ν̂ ∼ 2 tanh−1

(re−1∏
i=1

tanh νi
2

)
. (19)

Also, take r independent copies ν1, · · · , νr of ν, and 

independent copies ν̂1, · · · , ν̂
 of ν̂. Straightforward alge-
bra shows that the RS free entropy functional in (18) is
given by

�RS,LDPC(n)

= E

[
log
( 
∏

j=1

1

2

[
1 + tanh ν̂ j

2

]
+ e−l


∏
j=1

1

2

[
1 − tanh ν̂ j

2

])]

+ L ′(1)
R′(1)

E

[
log
(1

2

[
1 +

r∏
i=1

tanh νi
2

])]

−L ′(1)E
[

log
(1

2

[
1 + tanh ν

2 tanh ν̂
2

])]
, (20)

where the random variable l is distributed according to the
BMS channel c. We note that the above expectation E[·]
includes the average over the LDPC(λ, ρ) ensemble via the
integers 
 and r drawn according to the variable- and check-
node degree distributions, respectively.

We will now relate (20) to the potential functional in
Definition 20. First note that the definitions of the operators
� and � in Section II imply for any k ≥ 1 and symmetric
measures xi , i = 1, . . . , k,

H
(
�

k
i=1xi

)
=
∫

log2(1 + e−∑k
i=1 αi )

k∏
i=1

xi (dαi ), (21)

H
(
�

k
i=1xi

)
= −

∫
log2

(1

2

[
1+

k∏
i=1

tanh αi
2

]) k∏
i=1

xi(dαi ). (22)

First consider the second term in (20). Using (22), since νi is
distributed according to n,

L ′(1)
R′(1)

E

[
log
(1

2

[
1+

r∏
i=1

tanh νi
2

])]
=−(log 2)

L ′(1)
R′(1)

H
(
R�(n)

)
.

(23)
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For the third term in (20), since ν̂ is distributed according
to (19), using (22),

L ′(1)E
[

log
(1

2

[
1 + tanh ν

2 tanh ν̂
2

])]

= L ′(1)E
[

log
(1

2

[
1 + tanh ν

2

re−1∏
i=1

tanh νi
2

])]

= −(log 2)L ′(1)H
(
n � ρ�(n)

)
. (24)

For the first term in (20), we have

E

[
log
( 
∏

j=1

1

2

[
1 + tanh

ν̂ j
2

]
+ e−l


∏
j=1

1

2

[
1 − tanh

ν̂ j
2

])]

= E

[ 
∑
j=1

log
(

1
2

[
1+tanh

ν̂ j
2

])]
+E

[
log(1+e−l−∑


j=1 ν̂ j )
]

= L ′(1)E
[

log
(

1
2

[
1+tanh ν̂

2

])]
+E

[
log(1+e−l−∑


j=1 ν̂i )
]

= −(log 2)L ′(1)H
(
ρ�(n)

)+ (log 2)H
(
c � L�(ρ�(n))

)
,

(25)

where we used (19), (22) and (21) to get the last equality.
Collecting (25), (23), (24), we find that

�RS,LDPC(n) = −(log 2)Us(n; c),

which shows that the potential functional is the negative of
the RS free entropy functional.

For completeness, we point out that the conditional entropy
H (Xn |Y n) of the input Xn conditional on the output Y n is
equal to the free entropy averaged over the noise realizations
E[H (Xn |Y n)] = E[log2 Z ]. For a detailed discussion of
this relation, see [27], [30], [33]. Again, we note that due
to different normalizations of the free entropy, additional
nuisance terms may appear in these references. As stated in
Lemma 32, it is shown in these references that

E[H (Xn |Y n)] ≥ − inf
x∈X

Us(x; c(h)).

It is conjectured that this is in fact an equality, and recently
the equality has been proven for a class of regular codes and
smooth channel families [34]. This is a case where the replica
formula allows an exact calculation of the average free entropy.

C. Application to LDGM Ensembles

We now briefly describe the calculations involved in
obtaining the potential functional for LDGM ensembles in
Definition 49. Observing the Tanner graph representation of
an LDGM code in Fig. 4, each generator-node a is connected
to a code-bit xa , and to each code-bit xa there is an associated
observation la , which is the LLR of the channel output. The
parity-check constraint function at the generator-node a is
given by

fa((ui )i∈∂a) = e−la xa 1(⊕i∈∂aui ⊕ xa = 0).

In the set ∂a above, we do not include the neighbor xa . The
weight function at an information-node is given by gi (ui ) = 1.

With the above functions, the RS free entropy in (18) for
LDGM ensembles is given by

�RS,LDGM(n)

= E

[
log
( 
∏

j=1

1

2

[
1 + tanh ν̂ j

2

]
+


∏
j=1

1

2

[
1 − tanh ν̂ j

2

])]

+ L ′(1)
R′(1)

E

[
log

(1 +
r∏

i=1
tanh νi

2 + e−l
[
1 −

r∏
i=1

tanh νi
2

]

2

)]

−L ′(1)E
[

log
(1

2

[
1 + tanh ν

2 tanh ν̂
2

])]
, (26)

where the random variable l is distributed according to c, and
ν̂ has the same distribution as

ν̂ ∼ 2 tanh−1

(
tanh l

2

re−1∏
i=1

tanh νi
2

)
.

Proceeding as in the LDPC case, the three terms in (26) are,
respectively,

−(log 2)L ′(1)H
(
c � ρ�(n)

)+ (log 2)H
(
L�(c � ρ�(n))

)
,

(log 2)
L ′(1)
R′(1)

H (c)− (log 2)
L ′(1)
R′(1)

H
(
c � R�(n)

)
,

(log 2)L ′(1)H
(
n � c � ρ�(n)

)
,

which gives the relation

�RS,LDGM(n) = −(log 2)Us(n; c).
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