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On the List-Decodability of Random
Self-Orthogonal Codes
Lingfei Jin, Chaoping Xing and Xiande Zhang

Abstract—In 2011, Guruswami-Håstad-Kopparty [8] showed
that the list-decodability of random linear codes is as goodas
that of general random codes. In the present paper, we further
strengthen the result by showing that the list-decodability of
random Euclidean self-orthogonalcodes is as good as that of
general random codes as well, i.e., achieves the classical Gilbert-
Varshamov bound. Specifically, we show that, for any fixed finite
field Fq, error fraction δ ∈ (0, 1− 1/q) satisfying 1−Hq(δ) ≤

1

2

and small ǫ > 0, with high probability a random Euclidean self-
orthogonal code overFq of rate 1−Hq(δ)− ǫ is (δ,O(1/ǫ))-list-
decodable. This generalizes the result of linear codes to Euclidean
self-orthogonal codes. In addition, we extend the result tolist
decodingsymplectic dual-containingcodes by showing that the list-
decodability of random symplectic dual-containing codes achieves
the quantum Gilbert-Varshamov bound as well. This implies
that list-decodability of quantum stabilizer codes can achieve
the quantum Gilbert-Varshamov bound. The counting argument
on self-orthogonal codes is an important ingredient to prove our
result.

Index Terms—List decoding, probability method, self-
orthogonal codes, random codes.

I. I NTRODUCTION

The notion of list decoding was introduced independently
by Elias and Wozencraft [4], [5], [18]. Instead of insistingon
a unique output of codeword, in the list decoding model the
decoder allows to output a list of possible codewords which
includes the actual transmitted codeword. Compared with the
classical unique decoding model, the model of list decoding
allows larger number of corrupted errors. A fundamental prob-
lem in coding theory is the trade-off between the information
rate and the fraction of errors that can be corrected. For
list decoding, we have another important parameter, i.e., the
largest list size of the decoder’s output. We hope the list size
to be small.

From the algorithm point of view, a good list decoding
algorithm should have polynomial time, which means that the
list size should be at most polynomial in the block length of
the code. Researchers have been devoted to finding good list
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decodable codes with efficient list-decoding algorithms due to
the wide applications to complexity theory and more general
for computer science [6], [14], [15], and communications [5].
The fraction of errorsδ close to1 − 1/q is more interesting
for complexity theory, while it is more attractive forδ close to
0 for communication side. Thus, it is meaningful to consider
the full range of possibilities forδ.

A. The Gilbert-Varshamov bound

Before starting our paper, we first introduce the Gilbert-
Varshamov bound in coding theory that plays a central role in
this paper.

For an integerq ≥ 2, we define theq-ary entropy function
byHq(x) = x logq(q−1)−x logq x−(1−x) logq(1−x). Then
it is easy to verify the identityHq2(x) =

1
2Hq(x)+

1
2x logq(q+

1). It has been proved that, with high probability, a random
q-ary classical block code (and a randomq-ary classical linear
block code, respectively) of sufficiently large length withrate
R and relative Hamming minimum distanceδ satisfies the
following q-ary classical Gilbert-Varshamov bound [16]

R ≥ 1−Hq(δ). (I.1)

Similarly, with high probability, a randomq-ary quantum code
of sufficiently large length with rateR and relative symplectic
minimum distanceδ satisfies the followingq-ary quantum
Gilbert-Varshamov bound [1]

R ≥ 1−Hq(δ)− δ logq(q + 1). (I.2)

B. Status of list decoding random codes

It is well known that the list-decodability of classical block
codes is upper bounded by the classical Gilbert-Varshamov
bound (see [6]), i.e., the tolerance error rateδ ≤ H−1

q (1−R).
On the other hand, it was shown in [5] that for a random code
with rateR ≤ 1−Hq(δ)−1/L, it is (δ, L)-list-decodable with
probability at least1− q−Ω(n). However, it is not obvious to
generalize this result to linear codes.

Zyablov-Pinsker [19] established an optimal tradeoff be-
tween the rateR and the fraction of errorsδ for binary linear
codes. The results in [19] can be easily generalized toq-ary
codes which shows that the minimum list size of a linear code
with rate 1 − Hq(δ) − ǫ is bounded byexp(Oq(1/ǫ)). But
this bound is exponentially worse than the boundO(1/ǫ) for
arbitrary codes.

In [7], Guruswami-Håstad-Sudan-Zuckerman showed exis-
tence of (δ, 1/ε)-list-decodable linear codes of rate at least
1 − H2(δ) − ε for binary codes. Although the extension of
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the results in [7] to larger alphabets is not easy, Guruswami-
Håstad-Kopparty [8] finally managed to show that a list size
of Oq(1/ǫ) suffices to have rate withinε of the information-
theoretically optimal rate of1 − Hq(δ). This means that the
list-decodability of random linear codes is as good as that of
general codes. In the latest development, M. Wootters [17]
improved the constant in the list sizeOq(1/ǫ) for random
linear codes when the decoding radiusδ is close to1− 1/q.

C. Motivation

It is well known that (symplectic) self-orthogonal codes
form a useful and important class of linear codes which
have found wide applications in communications [9], [12],
multiplicative secret sharing [3] and quantum codes [2], etc..
It is natural to ask the question about how well one can
list decode a random (symplectic) self-orthogonal code or
dual-containing code (a symplectic dual-containing code is a
subspace ofF2n

q that contains its dual under the symplectic
inner product).

Euclidean self-orthogonal codes are extensively used for
construction of linear multiplicative secret sharing [3].In the
event that some dishonest players provide fault shares, we
have to carry on error correction to recover the secret. In
this scenario, one has to consider decoding of Euclidean self-
orthogonal codes.

In quantum coding theory, decoding of a quantum stabilizer
codeQ obtained from a classical self-orthogonal codeC can
be reduced to decoding of the symplectic dual codeC⊥S

(see Section III.C for details). Therefore, list decoding of
dual-containing codes with symplectic inner product playsan
important role on quantum decoding.

D. Our work and techniques

In this work, we focus on list decoding of Euclidean self-
orthogonal and symplectic dual-containing codes. Surprisingly,
our results show that the list-decodability of random Euclidean
self-orthogonal codes and symplectic dual-containing codes
are as good as that of general random codes and random
linear codes, namely, the list-decodability of random Euclidean
self-orthogonal codes and symplectic dual-containing codes
achieves the classical and quantum Gilbert-Varshamov bounds,
respectively. Furthermore, we show that the list decodability of
symplectic dual-containing is upper bounded by the quantum
Gilbert-Varshamov bound, namely, every symplectic dual-
containing code with decoding radiusδ and rate bigger than
1−Hq(δ)− δ logq(q + 1) must have exponential list size.

A main technique is the powerful probabilistic fact which
says that there is a limited correlation between the linear
spaces and Hamming balls. More precisely, it is unlikely that
the intersection of a linear subspace spanned byt random
vectors from a Hamming ball has size more thanΩ(t). This
fact was used in [8] and is also an important ingredient in our
proof.

Apart from the above fact, the counting idea on Euclidean
(symplectic) self-orthogonal linearly independent vectors and
spaces by using solutions of quadratic forms is of great
important in computation of probability.

E. Organization

The organization of this paper is as follows. We first review
some basic results on self-orthogonal codes and quadratic
forms in Subsections II.A and II.B. In Subsection II.3,
we briefly discuss construction of random Euclidean self-
orthogonal codes based on quadratic forms. Subsection II.D
presents list decoding and the Main Theorem I. Subsection
II.E is fully devoted to a proof of our Main Theorem I, i.e.,
Theorem 2.3. In Subsection II.F, we prove a lemma on the
number of certain self-orthogonal spaces that is used in the
proof of Theorem 2.3. Section III studies list decoding of
symplectic dual-containing codes. We present a connectionbe-
tween decoding quantum stabilizer codes and symplectic dual-
containing codes in Subsection III.C. Then we show that list
decodability of symplectic dual-containing is upper bounded
by the quantum Gilbert-Varshamov bound in Subsection III.D.
Finally in Subsection III.E we prove our Main Theorem
II which says that the list decodability of symplectic dual-
containing codes achieves the quantum Gilbert-Varshamov
bound.

II. L IST DECODING OFEUCLIDEAN SELF-ORTHOGONAL

CODES

A. Euclidean self-orthogonal codes

Let us quickly recall some basic concepts and results in
coding theory. As we focus on self-orthogonal codes which
are always linear, we assume from now on thatq is a prime
power and denote byFq the finite field ofq elements. Aq-
ary [n, k]-linear codeC is a subspace ofFn

q with dimension
k, wheren andk are called the length and dimension of the
codeC, respectively. The information rate of the codeC is
R = k/n in this case.

Two vectorsu and v are said Euclidean orthogonal if
〈u,v〉 =

∑n
i=1 uivi = 0. A vectoru is said Euclidean self-

orthogonal if〈u,u〉 = 0. The Euclidean dual codeC⊥E of a
linear codeC consists of all vectors inFn

q that are orthogonal
to every codeword inC. A subset{v1, . . . ,vt} of Fn

q is called
Euclidean self-orthogonal if〈vi,vj〉 = 0 for all 1 ≤ i, j ≤ t.

A linear codeC is said Euclidean self-orthogonal ifC ⊆
C⊥E . It is easy to see that any Euclidean self-orthogonal
code has dimensionk ≤ n

2 . Hence a self-orthogonal code
has information rate0 ≤ R ≤ 1/2.

B. Quadratic forms

An n-variate quadratic form overFq is a zero polynomial
or homogeneous polynomial of degree2 in n variables with
coefficients inFq, i.e.,

f(x) = f(x1, . . . , xn) =

n
∑

i,j=1

aijxixj , aij ∈ Fq.

A fundamental problem in the theory of quadratic form is
how much one can simplifyf(x) by means of nonsingular
linear transformation of indeterminates. Two quadratic forms
f(x) andg(x) are saidequivalentif there exists a nonsingular
n× n matrix A such that the quadratic formf(xA) is equal
to g(x). It is easy to verify that this is indeed an equivalence
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relation. Furthermore, two equivalent quadratic forms have the
same number of zeros. For a nonzero quadratic formf(x),
the smallest numberm for which f(x) is not equivalent to a
quadratic form in fewer thanm indeterminates is called the
rank of f(x). The rank of the zero quadratic is defined to be
0. If the rank of a nonzero quadratic formf(x) is n, then
f(x) is callednon-degenerate. If Fq has an odd characteristic,
then a quadratic formf(x) can be written asf(x) = xBx

T

for a symmetric matrixB of sizen over Fq. The rank ofB
is in fact equal to the rank off(x). The reader may refer to
[11, pages 278-289] for the details about quadratic forms.

For the purpose of this paper, we are mainly interested in
the number of solutions off(x) = 0 for a quadratic form
f(x). We combine several results in [11, Section 6.2] in the
following lemma.

Lemma 2.1:Let f(x) := f(x1, . . . , xn) be a quadratic
form defined overFq with rankm. Denote byN(f(x) = 0)
the number of solutions off(x) = 0 in Fn

q . If m = 0, then
N(f(x) = 0) = qn. If 1 ≤ m ≤ n, then

N(f(x) = 0) =

{

qn−1 m is odd;

qn−1 ± (q − 1)qn−
m
2
−1 m is even.

(II.1)

C. Construction of random Euclidean self-orthogonal codes

Unlike construction of a random linear code where one
can choose a random set of linearly independent vectors,
construction of a random Euclidean self-orthogonal code isnot
straightforward. In this part, we briefly discuss construction
of random Euclidean self-orthogonal codes through quadratic
forms.

Note that construction of a random Euclidean self-
orthogonal code is equivalent to finding a linearly independent
set{v1, . . . ,vk} of random Euclidean self-orthogonal vectors.

We first choose a nonzero random solutionv1 =
(v11, . . . , v1n) of the quadratic equationx21 + · · · + x2n = 0
(note that this equation has at leastqn−2 solutions by Lemma
2.1). Thenv1 is self-orthogonal. Assume that we have already
found a linearly independent set{v1, . . . ,vk−1} of random
Euclidean self-orthogonal vectors. If we want to find akth
vectorvk = (vk1, . . . , vkn), then(vk1, . . . , vkn) is a solution
of the following equation system



















v11x1 + · · ·+ v1nxn = 0,
...
vk−1,1x1 + · · ·+ vk−1,nxn = 0,
x21 + · · ·+ x2n = 0.

(II.2)

Substituting the firstk − 1 equations of (II.2) into the
last equation of (II.2), we obtain a quadratic equation
g(xi1 , . . . , xin−k+1

) = 0 of n − k + 1 variables. Thus, as
long asN(g(xi1 , . . . , xin−k+1

) = 0) is bigger than the cardi-
nality of span{v1, . . . ,vk−1}, i.e, N(g(xi1 , . . . , xin−k+1

) =
0) > qk−1, we can randomly choose a solutionvk

of (II.2) which is not contained inspan{v1, . . . ,vk−1}
(note that the number of solution of (II.2) is equal to
N(g(xi1 , . . . , xin−k+1

) = 0)). Hence, we obtain a linearly
independent set{v1, . . . ,vk−1,vk} of random self-orthogonal
vectors.

On the other hand, by Lemma 2.1, the number
N(g(xi1 , . . . , xin−k+1

) = 0) of solutions of
g(xi1 , . . . , xin−k+1

) = 0 is at least qn−k−1. Thus, as
long asqn−k−1 > qk−1, i.e, k ≤ (n− 1)/2, we can proceed
to the next step to get a basis{v1, . . . ,vk−1,vk}.

D. List decoding random Euclidean self-orthogonal codes

First of all, we assume that our channel has adversarial
noise. In other words, the channel can arbitrarily corrupt any
subset of up to a certain number of symbols of a codeword.
Our goal is to correct such errors and recover the original
message/codeword efficiently. An error-correcting codeC of
block lengthn over a finite alphabetΣ of size q maps a set
of messages into codewords inΣn. The rate of the codeC is
defined to beR := R(C) =

logq |C|

n .
The formal definition of list decoding can be stated combi-

natorially in the following way.
Definition 2.2: For integersq ≥ 2, L ≥ 1 and a realδ ∈

(0, 1− 1/q), a q-ary codeC of lengthn over a code alphabet
Σ of size q is called (δ, L)-list-decodable if, for every point
x ∈ Σn, there are at mostL codewords whose Hamming
distance fromx is at mostδn.

Note that while considering(δ, L)-list-decodability, we al-
ways restrict the fractionδ < 1 − 1/q since decoding from
a fraction of1 − 1/q or more errors is impossible except for
the trivial codes. If we want a polynomial size list, the largest
rateR of the code that one can hope is1 − Hq(δ) [7], [4],
[5], [19].

The proof of our main theorem (Theorem 2.3) combines an
idea used for random linear codes [8] and the counting result
on self-orthogonal linearly independent vectors and spaces by
using solutions of quadratic forms.

Theorem 2.3:(Main Theorem I) For every prime powerq
and a realδ ∈ (0, 1− 1/q) satisfying1 −H(δ) ≤ 1/2, there
exists a constantMδ, such that for smallε > 0 and all large
enoughn, a random self-orthogonal codeC ⊆ Fn

q of rate

R = 1 −H(δ)− ε is (δ,
Mδ

ε
)-list-decodable with probability

1− q−n.
The first step in the proof of Theorem 2.3 is to reduce

the problem of the list-decodability of a random Euclidean
self-orthogonal code to the problem of studying the weight
distribution of certain random linear code containing a given
Euclidean self-orthogonal code.

We quote a result from [8] below whereBn(x, δ) denotes
the Hamming ball with centerx ∈ Fn

q and radiusδn.
Lemma 2.4:For everyδ ∈ (0, 1− 1/q), there is a constant

M > 1 such that for alln and allt = o(
√
n), if X1, . . . , Xt are

picked independently and uniformly at random fromBn(0, δ),
then

Pr[|span(X1, . . . , Xt) ∩Bn(0, δ)| ≥M · t] ≤ q−(6−o(1))n.

This lemma shows that if we randomly pickt vectors from
the Hamming ballBn(0, δ), wheret is a constant depending
on the list sizeL, the probability that more thanΩ(t) vectors
in the span of theset vectors lies in the ballBn(0, δ) is quite
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small. The detail of the proof for this lemma is given in [8].
The key technique for proving this lemma involves a Ramsey-
theoretical lemma. Similar result for symplectic distancecan
be easily reduced to the case of Hamming distance by consid-
ering codes with alphabet sizeq2 (see Section III).

The second step in our proof uses the following result on the
probability that a random linear code of dimensionk contains
a self-orthogonal subcode of dimensionk− 1 and a given set
{v1, . . . ,vt} ⊆ Fn

q of linearly independent vectors. LetC∗
k

denote the set ofq-ary [n, k]-linear codes in which every code
contains a self-orthogonal subcode of dimensionk − 1.

Lemma 2.5:For any linearly independent vectors
v1, . . . ,vt in Fn

q with t ≤ k < n/2, the probability
that a random codeC∗ from C∗

k contains{v1, . . . ,vt} is

PrC∗∈C∗

k
[{v1, . . . ,vt} ⊆ C∗]

≤
{

q(k+t−n−1)t+2k−1 if q is even;

q(k+t−n−2)t+4k−2 if q is odd.

Hence, we always have

PrC∗∈C∗

k
[{v1, . . . ,vt} ⊆ C∗] ≤ q(k+t−n−2)t+4k−1. (II.3)

We leave the proof of Lemma 2.5 to the coming Subsection
F.

E. Proof of Theorem 2.3

Proof: Pick Mδ = 5M , whereM is the constant in
Lemma 2.4. PutL = ⌈Mδ/ǫ⌉. Finally assume thatn is large
enough to satisfy (i)n ≥ L; (ii) the termo(1) in Lemma 2.4
is at most1; (iii) n ≥ 1

3(1−R) (logq(2L) + L2 − L+ 3), i.e.,

q−3(1−R)n × 2LqL
2−L+3 ≤ 1. (II.4)

Let C be a random self-orthogonal code with dimension

Rn in Fn
q . To show thatC is (δ,

Mδ

ε
)-list-decodable with high

probability, it is sufficient to show that with low probability

thatC is not (δ,
Mδ

ε
)-list-decodable, i.e.,

PrC∈CRn
[∃x ∈ Fn

q such that|Bn(x, δ) ∩ C| ≥ L] < q−n,
(II.5)

whereCk denotes the set ofq-ary [n, k]-self-orthogonal codes.
Thus, from now on we only need to prove that

PrC∈CRn,x∈Fn
q
[|Bn(x, δ)∩C| ≥ L] < q−n · q−(1−R)n. (II.6)

Note that the inequality (II.6) is derived from (II.5) since,
for every linearC for which there is a “bad”x such that
|Bn(x, δ) ∩C| ≥ L, there areqRn such “bad”x.

Furthermore, the probability at the left side of (II.6) can be
transformed into the following.

PrC∈CRn,x∈Fn
q
[|Bn(x, δ) ∩ C| ≥ L]

= PrC∈CRn,x∈Fn
q
[|Bn(0, δ) ∩ (C + x)| ≥ L]

≤ PrC∈CRn,x∈Fn
q
[|Bn(0, δ) ∩ span{C,x}| ≥ L]

≤ PrC∗∈C∗

Rn+1
[|Bn(0, δ) ∩C∗| ≥ L],

whereC∗ is a randomRn+1 dimensional subspace containing
span{C,x}.

For any integert with logq L ≤ t ≤ L (and hence
L ≤ qt), denote byFt the set of all tuples(v1, . . . ,vt) ∈
Bn(0, δ)

t such thatv1, . . . ,vt are linearly independent and
|span{v1, . . . ,vt} ∩ Bn(0, δ)| ≥ L. Put F = ∪L

t=⌈logq L⌉Ft

and denote by(v) and{v} the tuple(v1, . . . ,vt) and the set
{v1, . . . ,vt}, respectively.

We claim that if |Bn(0, δ) ∩ C∗| ≥ L, there must exist
(v) ∈ F such thatC∗ ⊇ {v}. Indeed, let{u} be a maximal
linearly independent subset ofBn(0, δ) ∩ C∗. If |{u}| < L,
then we can simply take{v} = {u}. Otherwise, we can take
{v} to be any subset of{u} of sizeL. Therefore, we have

PrC∗∈C∗

Rn+1
[|Bn(0, δ) ∩C∗| ≥ L] (II.7)

≤
∑

(v)∈F

PrC∗∈C∗

Rn+1
[C∗ ⊇ {v}] (II.8)

=
L
∑

t=⌈logq L⌉

∑

(v)∈Ft

PrC∗∈C∗

Rn+1
[C∗ ⊇ {v}] (II.9)

≤
L
∑

t=⌈logq L⌉

|Ft|q((Rn+1)+t−n−2)t+4(Rn+1)−1 by (II.3).(II.10)

Thus, to have a good bound on our probability, we need to
have a reasonably good upper bound for|Ft|. As in [8], we
divide the range oft into two intervals.

(1) If t < 5/ǫ, then

|Ft|
|Bn(0, δ)|t

≤ Pr[|span(X1, . . . , Xt) ∩Bn(0, δ)| ≥ L].

SinceL ≥M · t, by Lemma 2.4 we have

|Ft| ≤ |Bn(0, δ)|t · q−5n ≤ qntH(δ)−5n.

(2) If t ≥ 5/ǫ, then we have|Ft| ≤ |Bn(0, δ)|t ≤ qntH(δ)

which is just a trivial bound.

Finally, by substituting the value ofR = 1−H(δ)− ǫ into
the inequality (II.10), we have

PrC∗∈C∗

Rn+1
[|Bn(0, δ) ∩ C∗| ≥ L]

≤
∑⌈5/ǫ⌉−1

t=⌈logq L⌉ q
ntH(δ)−5n · q(−n+t+Rn−1)t+4Rn+3

+
∑L

t=⌈5/ǫ⌉ q
ntH(δ) · q(−n+t+Rn−1)t+4Rn+3

= q−5n+4Rn
∑⌈5/ǫ⌉−1

t=⌈logq L⌉ q
−ǫtn+t2−t+3

+q4Rn
∑L

t=⌈5/ǫ⌉ q
−ǫtn+t2−t+3

≤ q−5n+4Rn · L · qL2−L+3 + q4Rn · L · q−5n+L2−L+3

= q−n · q−(1−R)n × q−3(1−R)n × 2LqL
2−L+3

≤ q−n · q−(1−R)n by (II.4).

This completes the proof.

F. Proof of Lemma 2.5

Let us start with a lemma that will be used in this subsection.
Recall thatCk denotes the set ofq-ary [n, k] Euclidean self-
orthogonal codes, whileC∗

k denotes the set ofq-ary [n, k]-
linear codes in which every code contains an Euclidean self-
orthogonal subcode of dimensionk − 1.
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Lemma 2.6:For any given linearly independent, self-
orthogonal set{v1, . . . ,vt} with t < k < n/2 in a code
C∗ ∈ C∗

k , one can find a self-orthogonal subcodeC′ of
C∗ with dim(C′) = k − 1 such thatC′ contains the set
{v1, . . . ,vt}.

Proof: Let V be the space spanned by{v1, . . . ,vt}. Let
C be a self-orthogonal subcode ofC∗ of dimensionk − 1.
If V is a subspace ofC, then we can simply takeC′ = C.
If t = k − 1, we can simply takeC′ = V . Now we assume
thatV is not contained inC andt < k. In this case, we must
havedim(C ∩ V ) = t − 1 ≤ k − 2. Choose a vectorv from
V \ C. Let U ⊆ Fn

q be the dual code of〈v〉. ThenU has
dimensionn− 1 and the intersectionU ∩C has dimension at
leastk− 2. It is clear thatV ∩C is contained inU ∩C since
V ⊆ U . Thus,v is not contained inU ∩ C. Furthermore, we
can choose a subspaceW of U ∩C such thatV ∩C ⊆W and
dim(W ) = k− 2. Let C′ be the space spanned byW andv.
It is clear thatW is self-orthogonal sinceW ⊆ C. Moreover,
v is orthogonal to itself and every word inW sinceW ⊆ U .
As v is not contained inW , C′ must have dimensionk − 1.
This completes the proof.

Case 1:Fq has even characteristic

If Fq has even characteristic, then we have the following
results from counting arguments.

Lemma 2.7:For k < n/2, the cardinality ofC∗
k is at least

(qn−k+1 − 1)(qn−2k+3 − 1)(qn−2k+5 − 1) · · · (qn−1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Proof: Denote byB(1)
k andB(2)

k the cardinalities ofCk
andC∗

k \ Ck, respectively. Then|C∗
k | = B

(1)
k +B

(2)
k .

Let us considerB(1)
k first. First of all, a vectorx =

(x1, . . . , xn) is self-orthogonal if and only ifx21+· · ·+x2n = 0.
This quadratic form is equivalent tox21 = 0 and hence by
Lemma 2.1 it hasqn−1 solutions.

For a codeCi−1 in Ci−1, we can spanCi−1 into a self-
orthogonal codeCi in Ci by adding one self-orthogonal vector
in C⊥E

i−1�Ci−1. Hence, we haveqn−i − qi−1 choices of such
a vector. On the other hand, there are(qk − qk−1)(qk −
qk−2) · · · (qk − 1) choices ofk-dimensional basis generating
the same code of dimensionk. Therefore,

B
(1)
k ≥ (qn−2k+1 − 1)(qn−2k+3 − 1) · · · (qn−1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

The computation ofB(2)
k is a bit different from that ofB(1)

k

as codes inC∗
k \ Ck are not self-orthogonal. We first choose

a linearly independent, self-orthogonal set of sizek − 1. One
can then span this set into a code inC∗

k \Ck by adding a vector
in Fn

q�C
⊥E

k−1. Thus, we obtain a recursive formula and get the
following inequality

B
(2)
k ≥ (qn−k+1 − qn−2k+1)

∏k−1
i=1 (q

n−2i+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

The desired result follows from addingB(1)
k with B

(2)
k .

Lemma 2.8:For given t (t < k < n/2) linearly indepen-
dent vectorsv1, . . . ,vt in Fn

q , the number of linear codes
C∗ ∈ C∗

k such thatC∗ ⊇ {v1, . . . ,vt} is at most

(qn−2k+3 − 1)(qn−2k+5 − 1) · · · (qn−2t−1 − 1)(qn − qk−1)

(qk−t−1 − 1)(qk−t−2 − 1) · · · (q − 1)
.

Proof: Denote byAk the number of linear codesC∗ ∈ C∗
k

such thatC∗ ⊇ {v1, . . . ,vt}. Denote byD a maximal
self-orthogonal code inspan{v1, . . . ,vt}. Let A(1)

k denote
the number of self-orthogonal codesC∗ in C∗

k such that
{v1, . . . ,vt} ⊆ C∗; and letA(2)

k denote the number ofC∗ ∈
C∗
k such thatC∗ is not self-orthogonal and{v1, . . . ,vt} ⊆ C∗.
Case 1: If dim(D) = t, then {v1, . . . ,vt} is a self-

orthogonal set. By Lemma 2.6, we can span{v1, . . . ,vt} into
a code inC∗

k .
The counting idea is similar to that in the proof of Lemma

2.7 except for that we first fixt linearly independent vectors
{v1, . . . ,vt} and then span them into a larger code. Thus, we
have

A
(1)
k ≤

∏k−1
i=t−1(q

n−2i+1 − 1)(qn−k − qk−1)

(qk−t − 1)(qk−t−1 − 1) · · · (q2 − 1)(qk − qk−1)
.

Similarly, we have

A
(2)
k ≤

∏k−1
i=t−1(q

n−2i+1 − 1)(qn − qn−k)

(qk−t−1 − 1)(qk−t−2 − 1) · · · (q − 1)
.

The desired result follows from addingA(1)
k with A

(2)
k .

Case 2: If dim(D) = t−1, then we choose a suitable basis
u1, . . . ,ut for span{v1, . . . ,vt} such thatu1, . . . ,ut−1 ∈ D.
In this case, by Lemma 2.6 we can get a codeC′ of dimension
k − 1 that containsD, and then a codeC∗ := span{C′,ut}.
Hence,

Ak ≤ (qn−2k+3 − 1)(qn−2k+5 − 1) · · · (qn−2t+1 − 1)

(qk−t − 1)(qk−t−1 − 1) · · · (q − 1)
.

Case 3: If dim(D) ≤ t−2, then in this case it is impossible
to find a code inC∗

k containing{v1, . . . ,vt}. In other words,
Ak = 0.

This completes the proof.

Case 2:Fq has odd characteristic

The counting technique for oddq is analogous with that
of even q. The only difference here is the number of self-
orthogonal vectors.

Note that a vectorx = (x1, . . . , xn) ∈ Fn
q is self-orthogonal

if and only if
x21 + · · ·+ x2n = 0. (II.11)

In the case whereq is even, the quadratic form (II.11) has
rank1. Hence, by Lemma 2.1 it hasqn−1 solutions. However,
in the case whereq is odd, the quadratic form (II.11) has
rank n and hence by Lemma 2.1 the number of its solutions
is betweenqn−1 − (q − 1)q

n
2
−1 and qn−1 + (q − 1)q

n
2
−1.

Therefore, the corresponding results of Lemmas 2.7 and 2.8
are slightly different in the case of odd characteristic. Westate
the results below without proofs.



6

Lemma 2.9:For k < n/2, the cardinality ofC∗
k is at least

(qn−k+1 − 1)(qn−2k+2 − 1)(qn−2k+4 − 1) · · · (qn−2 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Lemma 2.10:For givent (t < k < n/2) linearly indepen-
dent vectorsv1, . . . ,vt over Fn

q , the number of linear codes
C∗ ∈ C∗

k such thatC∗ ⊇ {v1, . . . ,vt} is at most
∏k−1

i=t−1(2q
n−2i+1 − 1)(qn + qn−2k+1)

(qk−t−1 − 1)(qk−t−2 − 1) · · · (q − 1)
.

Proof of Lemma 2.5: For evenq, by Lemmas 2.7 and 2.8,
we have

PrC∗∈C∗

k
[{v1, . . . ,vt} ⊆ C∗]

=
|{C∗ ∈ Ck : C∗ ⊇ {v1, . . . ,vt}}|

|C∗
k |

≤ q2k−t−1

(

qk−t+1

qn−2t+1

)t

≤ q(k−n+t−1)t+2k−1.

For oddq, by Lemmas 2.9 and 2.10, we have

PrC∗∈C∗

k
[{v1, . . . ,vt} ⊆ C∗]

=
|{C∗ ∈ Ck : C∗ ⊇ {v1, . . . ,vt}}|

|C∗
k |

≤
(

2qn−2k+3 − 1

qn−2k+2 − 1

)k−t−1

·
(

qk−t − 1

qn−2t − 1

)t

· (q
k − 1)(qn + qn−2k+1)

qn−k+1 − 1

≤ (3q)k−t−1

(

qk−t

qn−2t

)t

q2k

≤ q(−n+t+k−2)t+4k−2.

This completes the proof. ✷

III. L IST-DECODING OF SYMPLECTIC SELF-ORTHOGONAL

CODES

A. Symplectic self-orthogonal codes

To define symplectic inner product, we have to consider
a q-ary [2n, k]-linear codeC in F2n

q . Two vectors(u1|v1)
and (u2|v2) are said symplectic orthogonal if〈u1,v2〉 −
〈u2,v1〉 = 0. Note that every vector(u|v) is symplectic self-
orthogonal. The dual codeC⊥S of a linear codeC consists of
all vectors inF2n

q that are orthogonal to every codeword inC.
A subset{(u1|v1), . . . , (ut|vt)} of F2n

q is called symplectic
self-orthogonal if the symplectic inner product of(ui|vi) and
(uj |vj) are0 for all 1 ≤ i, j ≤ t.

A linear codeC is said symplectic self-orthogonal ifC ⊆
C⊥S . It is well known that aq-ary [2n, k]-symplectic self-
orthogonal code gives aq-ary [[n, n − k]]-quantum code [2].
Thus, we define the rate ofC in terms of the associate quantum
code, i.e.,R := (n− k)/n.

Finally, let us define symplectic weight and distance. For a
vector(u|v) = (u1, . . . , un|v1, . . . , vn) ∈ F2n

q , the symplectic
weight is defined to bewtS(u|v) = |{1 ≤ i ≤ n : (ui, vi) 6=
(0, 0)}|. The symplectic distance of two vectors(u1|v2) and
(u2|v2) is defined to bewtS(u1 − u2|v1 − v2).

B. Construction of symplectic self-orthogonal codes

Compared with construction of random Euclidean self-
orthogonal codes, construction of random symplectic self-
orthogonal codes is much easier. This is because every vector
in F2n

q is self-orthogonal under the symplectic inner product.
Again construction of a random symplectic self-orthogonal
code is equivalent to finding a linearly independent set
{(u1|v1), . . . , (ut|vt)} of random symplectic self-orthogonal
vectors. We first choose a nonzero random vector(u1|v1) =
(u11, . . . , u1n|v11, . . . , v1n). Assume that we have already
found a linearly independent set{(u1|v1), . . . , (uk−1|vk−1)}
of random symplectic self-orthogonal vectors. If we want to
find akth vector(uk|vk) = (uk1, . . . , ukn|vk1, . . . , vkn), then
(uk1, . . . , ukn, vk1, . . . , vkn) is a solution of the following
equation system



















v11x1 + · · ·+ v1nxn − (u11y1 + · · ·+ u1nyn) = 0,
...
vk−1,1x1 + · · ·+ vk−1,nxn−
(uk−1,1y1 + · · ·+ uk−1,nyn) = 0.

(III.1)

C. Connection between decoding of quantum stabilizer codes
and decoding of symplectic self-orthogonal codes

To simplify our presentation in this subsection, we consider
only binary quantum stabilizer codes. Let us briefly describe
the background on quantum stabilizer codes and their decod-
ing. The reader may refer to [2], [10], [13] for the details on
decoding of quantum stabilizer codes.

The state space of one qubit is actually a2-dimensional
complex space with a basis{|0〉, |1〉}. We can simply de-
note this state space of one qubit byC2. Let G1 =
{±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} be the Pauli group
acting onC2, wherei is the imaginary unit,I is the 2 × 2
identity matrix and

X =

(

0 1
1 0

)

, Z =

(

1 0
0 −1

)

, Y = iXZ.

The tensor product(C2)⊗n is called the state space ofn
qubits. LetGn denote the Pauli group acting on(C2)⊗n , i.e.,

Gn = {imσ1⊗σ2⊗· · ·⊗σn : m ∈ {0, 1, 2, 3}, σj ∈ {I,X, Y, Z}},
where the action of an element ofGn on a state ofn qubits
is through the componentwise action ofσi on C2.

Quantum stabilizer codes are defined in the following man-
ner. LetS be a subgroup ofGn such that−I⊗I⊗· · ·⊗I 6∈ S.
ThenS is a 2-elementary abelian group. Assume that the2-
rank of S is k for somek ∈ [0, n] and S is generated by
{g1, g2, . . . , gk}. The subgroupS has a fixed subspaceQS of
(C2)⊗n defined by

QS = {v ∈ (C2)⊗n : g(v) = v for all g ∈ S}.
The subspaceQS is called an[[n, n− k]]-quantum stabilizer
code and it has dimension2n−k.

To connect the quantum stabilizer codeQS with a classical
linear code, we define a group epimorphismψ : Gn → F2n

2

given by

ψ(imσ1⊗σ2⊗· · ·⊗σn) = (x1, x2 . . . , xn|z1, z2 . . . , zn) = (x|z),
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wherexj , zj are elements ofF2 that are determined as below

σj I X Y Z
xj 0 1 1 0
zj 0 0 1 1

Furthermore, we define a2n× 2n matrix overF2

Λ =

(

O I
I O

)

,

whereO is then× n zero matrix andI is then× n identity
matrix. Then it is easy to see that, for two elementsg, h ∈ Gn,
gh = hg if and only if ψ(g)Λψ(h)T = 0, i.e., ψ(g) and
ψ(h) are symplectic self-orthogonal. Through thek generators
{g1, g2, . . . , gk}, we define ank × 2n matrix overF2

H =













ψ(g1)
·
·
·

ψ(gk)













.

It is easy to see thatH has rankk. SinceS is abelian, we have
HΛHT = 0. Thus, the binary codeC with H as a generator
matrix is symplectic self-orthogonal.

Now we briefly review decoding of quantum stabilizer
codes. Consider an[[n, n−k]]-quantum stabilizer codeQS as
defined above. Assume that a state ofn−k quibits is encoded
into a coded state|α〉 of n qubits. Let ρ = |α〉〈α| be the
channel input and letEρE† be the channel output with error
E ∈ Gn, whereE† denotes the Hermitian conjugation ofE
. By computing the syndrome measurements of the received
state, one can determine the binary syndromes which is equal
to ψ(E)ΛHT (see [10]). To decode, i.e., recover the channel
input ρ, it is sufficient to determine the errorE. On the other
hand, findingE can be reduced to findingψ(E) (note that the
scalarim does not affect error). Thus, we turn the problem of
decoding quantum stabilizer codes into decoding ofC⊥S (to
see this, we notice thatH is a parity-check matrix ofC⊥S ).
Assume thatE has at mostt errors, i.e., in the representation
E = imσ1 ⊗ σ2 ⊗ · · · ⊗ σn, there are at mostt indicesj such
thatσj 6= I. Thus, the corresponding binary vectorψ(E) has
symplectic weight at mostt. This implies that we have to
find an errore = ψ(E) ∈ F2n

2 such thatwtS(e) ≤ t and
eΛHT = s. This is exactly the decoding problem of classical
codes. To list decodeQS , we can find the list of all vectors
e ∈ F2n

2 such thatwtS(e) ≤ t and eΛHT = s. In other
words, ifx0 is a solution ofxΛHT = s, then we have to find
all codewordsc ∈ C⊥S such thatwtS(c− x0) ≤ t.

D. Upper bound on list decodability of symplectic self-
orthogonal codes

Recall that the list decodability of classical block codes is
upper bounded by the classical Gilbert-Varshamov bound ([6]).
In this subsection, we show a similar result for symplectic
self-orthogonal codes, namely, the list decodability of sym-
plectic self-orthogonal codes is upper bounded by the quantum
Gilbert-Varshamov bound.

First, we have to give a formal definition of list decoding
for a symplectic dual-containing code.

Definition 3.1: For a primeq ≥ 2, an integerL ≥ 1 and
a realδ ∈ (0, 1/2), a q-ary symplectic self-orthogonal code
C of length 2n over a code alphabetFq is called(δ, L)-list-
decodable if, for every pointx ∈ F2n

q , there are at mostL
codewords inC⊥S whose symplectic distance fromx is at
mostδn.

Note that list decoding ofC is in fact list decoding of its
symplectic dualC⊥S .

Theorem 3.2:For every prime powerq and a realδ ∈
(0, 1/2), a q-ary symplectic self-orthogonal codeC of length
2n, decoding radiusδ and rateR > 1 −Hq(δ) − δ logq(q +
1) + o(1) must have an exponential list size inn.

Proof: Let k be the dimension ofC. Then the rate of
C is R = (n − k)/n. Pick up a random wordx ∈ F2n

q and
consider the random variableX := |BS

2n(x, δ)∩C⊥S |, where
BS

2n(x, δ) is the symplectic ball of radiusδn, i.e.,BS
2n(x, δ)

consists of all vectors ofF2n
q that have symplectic distance at

mostδn from x. The expected value ofX is clearly |C⊥S | ·
|BS

2n(0, δ)|/q2n which is at least

q2n−k × qnt(Hq(δ)+δ logq(q+1)) × q−2n

= qn(R−(1−Hq(δ)−δ logq(q+1))) = Ω(exp(n)).

This completes the proof.

E. List decoding random symplectic self-orthogonal codes

Now we state the list decodability of random symplectic
self-orthogonal codes below.

Theorem 3.3:(Main Theorem II) For every prime power
q and a realδ ∈ (0, 1/2), there exists a constantMδ, such
that for every smallε > 0 and all large enoughn, a q-ary
random symplectic self-orthogonal codeC of length 2n and

rateR = 1−Hq(δ)−δ logq(q+1)−ε is (δ,
Mδ

ε
)-list-decodable

with probability 1− q−n.
The proof of Theorem 3.3 is exactly similar to the one of

Theorem 2.3 except for the different counting of symplectic
self-orthogonal codes. For preparation, we give two lemmas
that are needed for the proof of Theorem 3.3.

By considering Hamming ball over alphabet sizeq2, we get
a similar result as in Lemma 2.4.

Lemma 3.4:For everyδ ∈ (0, 1− 1/q), there is a constant
M > 1 such that for alln and all t = o(

√
n), if X1, . . . , Xt

are picked independently and uniformly at random from
BS

2n(0, δ), then

Pr[|span(X1, . . . , Xt) ∩BS
2n(0, δ)| ≥M · t] ≤ q−2(6−o(1))n.

Next we prove a result on probability for a symplectic dual-
containing code containing a given set{v1, . . . ,vt} of linearly
independent vectors inF2n

q .
Let Sk denote the set ofk-dimensional symplectic self-

orthogonal codes inF2n
q .

Lemma 3.5:For any linearly independent vectors
v1, . . . ,vt in F2n

q , the probability that a random code
C from Sk with C⊥S containing{v1, . . . ,vt} satisfies

PrC∈Sk
[{v1, . . . ,vt} ⊆ C⊥S ] ≤ q−kt. (III.2)
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Proof: Let us first compute the size ofSk. Note that every
element ofF2n

q is symplectic self-orthogonal. Thus, everyk-
dimensional self-orthogonal codeCk ∈ Sk is spanned from
a k − 1-dimensional self-orthogonal codeCk−1 ∈ Sk−1 by
adding a vector inC⊥S

k−1\Ck−1. Given the fact that, for two
vectorsu,v 6∈ Ck−1, 〈u, Ck−1〉 = 〈v, Ck−1〉 if and only if
u− λv ∈ Ck−1 for some nonzeroλ ∈ Fq, we know that the
number of symplectic self-orthogonal codesCk containing a
fixed symplectic self-orthogonalCk−1 is (q2n−2k+2−1)/(q−
1). On the other hand, everyk-dimensional symplectic self-
orthogonal code contains exactly(qk − 1)/(q− 1) symplectic
self-orthogonal spaces of dimensionk − 1. This gives the
recursive formula|Sk|(qk − 1)/(q− 1) = |Sk−1|(q2n−2k+2 −
1)/(q − 1). From this recursive formula, we obtain

|Sk| =
(q2n−2k+2 − 1)(q2n−2k+4 − 1) · · · (q2n − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
. (III.3)

Let V be the linear span ofv1, . . . ,vt. ThenC⊥S contains
v1, . . . ,vt in F2n

q if and only ifC is a subspace ofV ⊥S . Thus,
the number of symplectic self-orthogonal codesC with C⊥S

containing{v1, . . . ,vt} is in fact the number of symplectic
self-orthogonal codes inV ⊥S . SincedimV ⊥S = 2n − t, by
(III.3) this number is at most

(q2n−t−2k+2 − 1)(q2n−t−2k+4 − 1) · · · (q2n−t − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
. (III.4)

Dividing (III.4) by (III.3) gives the desired result.
Proof of Theorem 3.3: Pick Mδ = 4M , whereM is the

constant in Lemma 3.4. PutL = ⌈Mδ/ǫ⌉. Assume thatn is
sufficiently large.

Let C be a random symplectic self-orthogonal code with
rate R, i.e., dimensionk of C satisfiesk = (1 − R)n in

F2n
q . To show thatC⊥S is (δ,

Mδ

ε
)-list-decodable with high

probability, it is sufficient to show that with low probability

thatC⊥S is not (δ,
Mδ

ε
)-list-decodable, i.e.,

PrC∈Sk
[∃x ∈ F2n

q such that|BS
2n(x, δ) ∩ C⊥S | ≥ L] < q−n.

(III.5)
Thus, from now on we only need to prove that

PrC∈Sk,x∈F2n
q
[|BS

2n(x, δ)∩C⊥S | ≥ L] < q−n ·qk−2n. (III.6)

Furthermore, the probability at the left side of (III.6) can
be transformed into the following.

PrC∈Sk,x∈Fn
q
[|BS

2n(x, δ) ∩ C⊥S | ≥ L] (III.7)

≤ PrD∈Sk−1
[|BS

2n(0, δ) ∩D⊥S | ≥ L] (III.8)

=

L
∑

t=⌈logq L⌉

∑

(v)∈Ft

PrD∈Sk−1
[D⊥S ⊇ {v}] (III.9)

≤
L
∑

t=⌈logq L⌉

|Ft| · q−kt, by (III.2) (III.10)

whereD⊥S is a random2n − k + 1 dimensional subspace
containingspan{C⊥S ,x} andFt is defined in the proof of
Theorem 2.3. Note that we use the fact thatspan{C⊥S ,x} is
symplectic dual-containing wheneverC⊥S is.

(1) If t < 4/ǫ, then

|Ft|
|BS

2n(0, δ)|t
≤ Pr[|span(X1, . . . , Xt) ∩BS

2n(0, δ)| ≥ L].

SinceL ≥M · t, by Lemma 3.4 we have

|Ft| ≤ |BS
2n(0, δ)|t · q−10n ≤ q2ntHq2

(δ)−10n

= qnt(Hq(δ)+δ logq(q+1))−10n.

(2) If t ≥ 4/ǫ, then we have|Ft| ≤ |BS
2n(0, δ)|t =

qnt(Hq(δ)+δ logq(q+1)) which is just a trivial bound.

Finally, substituting the value ofk = (1 − R)n andR =
1−Hq(δ)− δ logq(q + 1)− ǫ into the inequality (III.10), we
get

PrC∈Sk,x∈Fn
q
[|BS

2n(x, δ) ∩ C⊥S | ≥ L]

≤ ∑⌈4/ǫ⌉−1
t=⌈logq L⌉ q

nt(Hq(δ)+δ logq(q+1))−10n · q−kt

+
∑L

t=⌈4/ǫ⌉ q
nt(Hq(δ)+δ logq(q+1)) · q−kt

≤
∑⌈4/ǫ⌉−1

t=⌈logq L⌉ q
−ǫnt−10n +

∑L
t=⌈4/ǫ⌉ q

−ǫnt

≤ q−n · qk−2n.

This completes the proof.
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