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On the List-Decodability of Random
Self-Orthogonal Codes

Lingfei Jin, Chaoping Xing and Xiande Zhang

Abstract—In 2011, Guruswami-Hastad-Kopparty [8] showed
that the list-decodability of random linear codes is as goodas
that of general random codes. In the present paper, we furthe
strengthen the result by showing that the list-decodabiliy of
random Euclidean self-orthogonatodes is as good as that of
general random codes as well, i.e., achieves the classicalli@rt-
Varshamov bound. Specifically, we show that, for any fixed firie
field F,, error fraction 6 € (0,1 —1/q) satisfying 1 — H,(5) < 1
and small e > 0, with high probability a random Euclidean self-
orthogonal code overF, of rate 1 — H,(5) — € is (5, O(1/¢))-list-
decodable. This generalizes the result of linear codes to Elidean
self-orthogonal codes. In addition, we extend the result tdist
decodingsymplectic dual-containingodes by showing that the list-
decodability of random symplectic dual-containing codes ehieves
the quantum Gilbert-Varshamov bound as well. This implies
that list-decodability of quantum stabilizer codes can ackeve
the quantum Gilbert-Varshamov bound. The counting argumern
on self-orthogonal codes is an important ingredient to proe our
result.

Index Terms—List decoding, self-

orthogonal codes, random codes.

probability method,

I. INTRODUCTION

The notion of list decoding was introduced independently

by Elias and Wozencraft [4],_[5]._[18]. Instead of insisting

decodable codes with efficient list-decoding algorithms tu
the wide applications to complexity theory and more general
for computer science [6], [14]. [15], and communicatidnf [5
The fraction of errors) close tol — 1/q is more interesting
for complexity theory, while it is more attractive férclose to

0 for communication side. Thus, it is meaningful to consider
the full range of possibilities fof.

A. The Gilbert-Varshamov bound

Before starting our paper, we first introduce the Gilbert-
Varshamov bound in coding theory that plays a central role in
this paper.

For an integery > 2, we define thej-ary entropy function
by H,(r) = zlog,(q—1)—=log, —(1—x)log,(1—z). Then
itis easy to verify the identityf = (z) = $ H,(x)+ 3z log, (¢+
1). It has been proved that, with high probability, a random
g-ary classical block code (and a randgrary classical linear
block code, respectively) of sufficiently large length witte
R and relative Hamming minimum distance satisfies the
following g-ary classical Gilbert-Varshamov bourid [16]

R>1— Hy(5). (1.1)

a unique output of codeword, in the list decoding model th@imilarly, with high probability, a randonp-ary quantum code
decoder allows to output a list of possible codewords whiaf sufficiently large length with rat& and relative symplectic
includes the actual transmitted codeword. Compared with thinimum distances satisfies the followingg-ary quantum
classical unique decoding model, the model of list decodimgjibert-Varshamov bound[1]

allows larger number of corrupted errors. A fundamentabpro
lem in coding theory is the trade-off between the informratio
rate and the fraction of errors that can be corrected. For
list decoding, we have another important parameter, he., t8. Status of list decoding random codes
largest list size of the decoder’s output. We hope the ligt si
to be small.

R>1—Hy(6) —dlog,(q+1). (1.2)

It is well known that the list-decodability of classical blo
codes is upper bounded by the classical Gilbert-Varshamov

From the algorithm point of view, a good list decoding,, ng (see[6]), i.e., the tolerance error rate H,'(1— R).

algorithm should have polynomial time, which means that t

n the other hand, it was shown [n [5] that for a random code

list size should be at most polynomial in the block length %ith rateR < 1—H,(5)—1/L, itis (6, L)-list-decodable with
the code. Researchers have been devoted to finding QOOd[ﬂ%}bability at leastl — ¢~ However, it is not obvious to
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generalize this result to linear codes.

Zyablov-Pinsker[[19] established an optimal tradeoff be-
tween the rate? and the fraction of erroré for binary linear
codes. The results in_[19] can be easily generalizeg-aoy
codes which shows that the minimum list size of a linear code
with rate 1 — H,(§) — e is bounded byexp(O,4(1/¢)). But
this bound is exponentially worse than the boupd /¢) for
arbitrary codes.

In [7], Guruswami-Hastad-Sudan-Zuckerman showed exis-
tence of (4, 1/¢)-list-decodable linear codes of rate at least
1 — H»(6) — ¢ for binary codes. Although the extension of
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the results in[[[7] to larger alphabets is not easy, Guruswani. Organization

Hastad-Kopparty [8] finally managed to show that a list size The organization of this paper is as follows. We first review
of Oy(1/€) suffices to have rate withia of the information- gome pasic results on self-orthogonal codes and quadratic
theoretically optimal rate of — H,(5). This means that the forms in Subsections ILA and I1.B. In Subsection 1.3,
list-decodability of random linear codes is as good as that @e priefly discuss construction of random Euclidean self-
general codes. In the latest development, M. Wootters [1djthogonal codes based on quadratic forms. Subsection 11.D
improved the constant in the list siz@,(1/¢) for random presents list decoding and the Main Theorem I. Subsection

linear codes when the decoding radiliss close tol —1/¢. || E is fully devoted to a proof of our Main Theorem |, i.e.,
Theorem[Z.B. In Subsection II.F, we prove a lemma on the
C. Motivation number of certain self-orthogonal spaces that is used in the

It is well known that (symplectic) self-orthogonal code®roof of Theorem{_2]3. Section Ill studies list decoding of
form a useful and important class of linear codes whicymplectic dual-containing codes. We present a connebtien
have found wide applications in communications [9], [12]tyveen decoding quantum stabilizer codes and symplectie dua
multiplicative secret sharing[3] and quantum codés [2,.et containing codes in Subsection Ill.C. Then we show that list
It is natural to ask the question about how well one caffcodability of symplectic dual-containing is upper boed
list decode a random (symplectic) self-orthogonal code By the quantum Gilbert-Varshamov bound in Subsection I11.D
dual-containing code (a symplectic dual-containing caxa i Finally in Subsection IILE we prove our Main Theorem
subspace off2" that contains its dual under the symplectid! Wh|_cr_1 says that the_ list decodability of symplectlc dual-
inner product). containing codes achieves the quantum Gilbert-Varshamov

Euclidean self-orthogonal codes are extensively used fgpund.
construction of linear multiplicative secret sharing [B].the
event that some dishonest players provide fault shares, wd. LIST DECODING OFEUCLIDEAN SELF-ORTHOGONAL
have to carry on error correction to recover the secret. In CODES
this scenario, one has to consider decoding of Euclidedn s@l. Euclidean self-orthogonal codes
orthogonal codes.

In quantum coding theory, decoding of a quantum stabiliz%

Ezd?e%uoct:glr;gd dféggn di{; glisfslﬁzl zig}g{étﬁgogjgf%dean are always linear, we assume from now on thas a prime
g . ) ) ower and denote b¥, the finite field ofg elements. Ag-
(see Section IIl.C for details). Therefore, list decoding (P ¥q 7 A

dual taini d ith lectic | duct ol ary [n, k]-linear codeC' is a subspace dfy with dimension
dual-containing codes with symplectic inner product plaps k, wheren andk are called the length and dimension of the
important role on quantum decoding.

code C, respectively. The information rate of the codeis

R = k/n in this case.

D. Our work and techniques Two vectorsu and v are said Euclidean orthogonal if
In this work, we focus on list decoding of Euclidean self{u,v) = > | u;,v; = 0. A vectoru is said Euclidean self-

orthogonal and symplectic dual-containing codes. Sumglg, ~ orthogonal if (u,u) = 0. The Euclidean dual codé-= of a

our results show that the list-decodability of random Edesdin  linear codeC' consists of all vectors iif;; that are orthogonal

self-orthogonal codes and symplectic dual-containingesodto every codeword if'. A subset{vy, ..., v;} of [y is called

are as good as that of general random codes and randoutlidean self-orthogonal ifv;,v;) =0 for all 1 <4,j <t.

linear codes, namely, the list-decodability of random Elesn A linear codeC' is said Euclidean self-orthogonal df C

self-orthogonal codes and symplectic dual-containingesodC=. It is easy to see that any Euclidean self-orthogonal

achieves the classical and quantum Gilbert-Varshamovdmuncode has dimensio# < 7. Hence a self-orthogonal code

respectively. Furthermore, we show that the list decoitalof has information rat® < R < 1/2.

symplectic dual-containing is upper bounded by the quantum

Gilbert-Varshamov bound, namely, every symplectic dugs, Quadratic forms

containing code with decoding radidsand rate bigger than An n-variate quadratic form oveF, is a zero polynomial

1= Hq(§) N 5logq(q + 1) must have exponep_’ua} list S12€ - o homogeneous polynomial of degr2en n variables with
A main technique is the powerful probabilistic fact Wh'Chcoefficients iF e

says that there is a limited correlation between the linear a

spaces and Hamming balls. More precisely, it is unlikelyt tha n

the intersection of a linear subspace spanned mgndom X) = f(z1,.. 20) = Z a;jaity, aij € Fy.

vectors from a Hamming ball has size more thaft). This b=l

fact was used in [8] and is also an important ingredient in our A fundamental problem in the theory of quadratic form is

proof. how much one can simplifyf(x) by means of nonsingular
Apart from the above fact, the counting idea on Euclidedimear transformation of indeterminates. Two quadraticrf®

(symplectic) self-orthogonal linearly independent vestand f(x) andg(x) are saidequivalentf there exists a nonsingular

spaces by using solutions of quadratic forms is of greatx n matrix A such that the quadratic forffi(xA) is equal

important in computation of probability. to g(x). It is easy to verify that this is indeed an equivalence

Let us quickly recall some basic concepts and results in
ding theory. As we focus on self-orthogonal codes which



relation. Furthermore, two equivalent quadratic formsehtine On the other hand, by Lemm& P.1, the number
same number of zeros. For a nonzero quadratic f@m), N(g(wi,,..., %, _,.,) = 0) of solutions of
the smallest number: for which f(x) is not equivalent to a g(z;,,...,z;, ,.,) = 0 is at least¢" *~!. Thus, as
quadratic form in fewer tham: indeterminates is called thelong asq”*~! > ¢!, i.e, k < (n —1)/2, we can proceed
rank of f(x). The rank of the zero quadratic is defined to bt the next step to get a badisy,...,vi_1,Vg}.
0. If the rank of a nonzero quadratic forrf(x) is n, then
f(x) is callednon-degeneratdf F, has an odd characteristic
then a quadratic fornf(x) can be written ag(x) = xBx’ ] )
for a symmetric matrixB of sizen overF,. The rank ofB First of all, we assume that our channel has adversarial
is in fact equal to the rank of (x). The reader may refer to Noise. In other words, the channel can arbitrarily corrupt a
[11, pages 278-289] for the details about quadratic forms. Subset of up to a certain number of symbols of a codeword.
For the purpose of this paper, we are mainly interested §Hr goal is to correct such errors and recover the original
the number of solutions of (x) = 0 for a quadratic form Message/codeword efficiently. An error-correcting cédef
f(x). We combine several results in [11, Section 6.2] in thlock lengthn over a finite alphabel of size ¢ maps a set
following lemma. of messages into codewordsiit. The rate of the cod€’ is
Lemma 2.1:Let f(x) := f(x1,...,2,) be a quadratic defined to bel? := R(C) = mqum.
form defined oveff, with rank m. Denote by N (f(x) = 0) The formal definition of list decoding can be stated combi-
the number of solutions of (x) = 0 in F7. If m = 0, then natorially in the following way.

'D. List decoding random Euclidean self-orthogonal codes

N(f(x)=0)=q" If 1 <m <n, then Definition 2.2: For integersg > 2, L > 1 and a reab €
L _ (0,1—1/q), ag-ary codeC of lengthn over a code alphabet

N(f(x) = 0) = {q N m is odd iy = of size ¢ is called (¢, L)-list-decodable if, for every point
@ 1E(g—1)¢g" 271 miseven x € X", there are at mosL. codewords whose Hamming

distance fromx is at mostin.

C. Construction of random Euclidean self-orthogonal codes Note that while considerings, L)-list-decodability, we al-

Uniik ructi ¢ d i d h ways restrict the fractiod < 1 — 1/¢ since decoding from
niike construction of a random linéar code WNere ong g, qtion of1 — 1/q or more errors is impossible except for

can choose a random set of linearly independent vectogs

fructi f dom Euclid if-orth | codmt e trivial codes. If we want a polynomial size list, the lasg
construction of a random Euclidean self-orthogonal coats .. » ¢ the code that one can hope lis- H,(5) [7], [,

straightforward. In this part, we briefly discuss constirct [[51, [19].

of random Euclidean self-orthogonal codes through quadral The proof of our main theorem (Theor&m2.3) combines an

forms. . _ }dea used for random linear codés [8] and the counting result
Note that construction of a random Euclidean seli-

) ) - . : on self-orthogonal linearly independent vectors and spage
orthogonal code is equivalent to finding a linearly indepesrtd using solutions of quadratic forms.

set{vy,..., vy} of random Euclidean self-orthogonal vectors. Theorem 2.3:(Main Theorem 1) For every prime power
We first choose a nonzero random solution = o L
; . and a rea 1-1 satisfyingl — H(6) < 1/2, there
(v11,...,v1,) Of the quadratic equation? + --- + 22 = 0 b € (0, /a) fying (0) <1/

exists a constan¥/s, such that for smalk > 0 and all large

/ . 5 .
(note that this equation has at leg8t “ solutions by Lemma oughn, a random self-orthogonal code C F” of rate

[2.1). Thenv, is self-orthogonal. Assume that we have alread?/n

found a linearly independent s¢vy,...,vy_1} of random R=1—H(J)—¢is (J, %)-Iist-decodable with probability
Euclidean self-orthogonal vectors. If we want to findkth 1 — ¢, ©

vectorvy = (Ugi, .- Ukn), then (v, ..., vk,) is @ solution  The first step in the proof of Theorem 2.3 is to reduce
of the following equation system the problem of the list-decodability of a random Euclidean

self-orthogonal code to the problem of studying the weight
distribution of certain random linear code containing aegiv

: (1.2) Euclidean self-orthogonal code.

V1,121 + -+ + Vk—1,nTpn = 0, We quote a result froni[8] below whe8,, (x, ) denotes

af + -+ ap, = 0. the Hamming ball with centex € F;' and radiusin.

Substituting the first — 1 equations of [ILR) into the Lemma 2.4:For everys € (0,1—1/q), there is a constant
last equation of [(ILR), we obtain a quadratic equatiofi! > 1suchthatforalh andallt = o(/n),if Xi,..., X; are
9(xir, - @i, o,,) = 0 0f n — k + 1 variables. Thus, as picked independently and uniformly at random frdn(0, 9),
long asN(g(z,, . ..., ,,,) = 0) is bigger than the cardi- then
nality of span{vi,...,vi_1}, i.e, N(g(zs,,. .. Ti,_,\\) =
0) > ¢* ', we can randomly choose a solution, . ) —(6—0(1))n
of (2) which is not contained inspan{vi,...,vig_1} Prljspan(Xi,.... X4) 0 Ba(0,0)] = M- 1] < q '
(note that the number of solution of _(I.2) is equal to This lemma shows that if we randomly pi¢kvectors from
N(g(xi .- 25, ,,.,) = 0)). Hence, we obtain a linearly the Hamming ball3,,(0, §), wheret is a constant depending
independent s€tvy, ..., vi_1, vk } of random self-orthogonal on the list sizeL, the probability that more thafi(¢) vectors
vectors. in the span of thesevectors lies in the balB,, (0, ¢) is quite

V1121 + -+ V1T, = 0,



small. The detail of the proof for this lemma is given in [8]. For any integert with log, L < t < L (and hence
The key technique for proving this lemma involves a Ramsey- < ¢*), denote byF; the set of all tuplegvy,...,v;) €
theoretical lemma. Similar result for symplectic distama® B, (0, )t such thatvy,...,v; are linearly independent and
be easily reduced to the case of Hamming distance by congiban{vy,...,v:} N B,(0,d)| > L. Put.F = utL:“Og 7t
ering codes with alphabet sizé (see Section III). and denote byv) and{v} the tuple(vi,...,v,) and the set
The second step in our proof uses the following result on tt{el ,v¢}, respectively.

probability that a random linear code of dimensiooontains  We clalm that if |B,,(0,6) N C*| > L, there must exist
a self-orthogonal subcode of dimensibr- 1 and a given set (v) € F such thatC* D {V} Indeed, let{u} be a maximal
{vi,..., vt} C Fy of linearly independent vectors. L€} linearly independent subset @, (0,5) N C*. If |[{u}| < L,
denote the set of-ary [n, kJ-linear codes in which every codethen we can simply takév} = {u}. Otherwise, we can take

contains a self-orthogonal subcode of dimengion 1. {v} to be any subset ofu} of size L. Therefore, we have
Lemma 2.5:For any linearly independent vectors

Vi,..., v in Fpowith ¢ < &k < n/2, the probability

that a random cod€* from C; contains{vi,...,v,} is Preeccy, ,[1Bn(0,6) NC*[ > L] (I.7)
Prosce; [{vi, ..., vi} € C¥] < ) Proeecy,,, [C7 2 {v}] (1.8)
B {q(k+t—n—l)t+2k—l if ¢ is even (V>€zr
q(k+t—n—2)t+4k—2 if ¢ is odd _ Z Z PfC*eC}‘% +1 [C* D {v}] (11.9)
Hence, we always have t=[log, L] (V)€
L
Prowec:[{vi,...,vi} C CF] < glbHimn=2)iH4k=1 = () 3) < 3 |FfgBr Dtk AR D1 by(TR))
We leave the proof of Lemnfa 2.5 to the coming Subsection t=llog, L]
F. Thus, to have a good bound on our probability, we need to
have a reasonably good upper bound [(&f|. As in [8], we
E. Proof of Theorerh 213 divide the range of into two intervals.
Proof: Pick M; = 5M, where M is the constant in (1) If £ <5/¢, then
LemmalZ.#. Pull = [M;/¢]. Finally assume that is large | |

enough to satisfy (iy > L (i) the termo(1) in Lemmal2.4 1B.(0,0)]f < Pr[jspan(Xy, ..., X¢) N By(0,6)| > LJ.

is at mostl; (iii) n > (1 y(logg(2L) + L? — L +3), i.e

g 30-RIn oL’ =143 < 1, (11.4)

SinceL > M -t, by Lemmd 2.} we have
|]:t| < |Bn(0,6)|t .q—5n < qntH((S)—Em.
Let C' be a random self- or}\r)[ogonal code with dimension
Rn in Fy. To show that' is (4, —) -list-decodable with high
probab|l|ty, it is sufficient to show that with low probalbyli

that C is not (4, %)-Ilst-decodable, ie., Finally, by substituting the value @8 = 1 — H(J) — ¢ into
€ the inequality [IL.I0), we have

(2) If t > 5/¢, then we havdF;| < |B,(0,6)|" < ¢*tH(©®)
which is just a trivial bound.

Proeey, [3x € F) such that| B, (x,6) N C| > L] < Proeecs,, +1[IB (0,0)nC*| > L]
(|| 5) 225 (611 4 m:H(é) 5n | q(—n+t+Rn—l)t+4Rn+3
whereC;, denotes the set afary [n, k]-self-orthogonal codes. n Z Ba MHO) | g(—n+ttRa—1)+4Rn+3
Thus, from now on we only need to prove that t=[5/c] )
_ q75n+4Rn ZI[O/FIL ILT g—etn+t’—t+3
PrCGCRn,XG]F;‘[an(Xa 5) mCvl > L] < qin' —(1=Rn (“ 6) Z qfegt:wrt —t+3
. . . . . t=[5/€]
Note that f[he mequahty[_(EIG) is dgnved fror (1.5) since < q—5n+4Rn L-qE* =43 L g4Rn [ q—5n+L —L+3
for every linearC for which there is a “bad”x such that — g g R 3(=Rn o 2LqL —L+3
|B,.(x,6) N C| > L, there areg”™ such “bad”x. < g R0 by ([T
Furthermore, the probability at the left side bf (11.6) cam b - '
transformed into the following. This completes the proof. [}

PrCGCRn,xengHBn(Xv 5) N O| > L] Ep fof L &715
. Proof of Lemm
- PrCGCRn,XE]FgHBn(Ov 5) N (C + X)| Z L] L ith al h ilb din thi b .
<P s (1B (0.6) N C. > et us start with a lemma that will be used in this subsection.
ICeCrn xeFy (| Bn(0,0) fpan{ X} ] Recall thatC, denotes the set af-ary [n, k] Euclidean self-
HB (0,0)nC*| = L], orthogonal codes, whil€; denotes the set of-ary [n, k|-

whereC* is a randomRn+1 dimensional subspace containindinear codes in which every code contains an Euclidean self-
span{C, x}. orthogonal subcode of dimensidn— 1.

< Preecy,, .,



Lemma 2.6:For any given linearly independent, self- Lemma 2.8:For givent (t < k < n/2) linearly indepen-
orthogonal sef{vy,...,v:} with ¢ < k < n/2 in a code dent vectorsvy,...,v; in Fy, the number of linear codes
C* € Cf, one can find a self-orthogonal subcodg of C* € C} such thatC* D {vi,...,v} is at most

« . . / ! H
C* with dim(C’) = k — 1 such thatC’ contains the set (245 — 1) (@ 2R45 — 1) (g2 — 1)(g" — 1)
{V17 N ,Vt}.

Proof: Let V be the space spanned By;,...,v;}. Let (=D 2 = 1) (g - 1)
C be a self-orthogonal subcode 6f of dimensionk — 1. Proof: Denote byA; the number of linear codes* € C;;
If V' is a subspace of’, then we can simply tak€” = C. such thatC* O {vi,...,v,}. Denote by D a maximal

If t = k—1, we can simply take&>” = V. Now we assume self.orthogonal code inpan{vi,...,v:}. Let A" denote
that V" is not contained irC' and¢ < k. In this case, we must the number of self-orthogonal codes* in C; such that

havedim(C NV) =t —1 < k — 2. Choose a vectoy from {vi,...,v¢} CC*; and IetA,(f) denote the number af”*
V\C. LetU C Fy be the dual code ofv). ThenU has C; such thatC* is not self-orthogonal anfiv, ..., v;} C C*.
dimensionn — 1 and the intersectiot’ N C' has dimension at "~ ca 1 |t dim(D) = t, then {vi,...,v,} is a self-
leastk — 2. It is clear thatV/ N C is contained inU N C' since orthogonal set. By Lemnia2.6, we can sgan, ..., v¢} into

V C U. Thus,v is not contained i/ N C. Furthermore, we a code inC;.

can choose a subspaizi(lé of UNC suchtha’nC C Wand e counting idea is similar to that in the proof of Lemma
dim(W) =k — 2. Let C" be the space spanned B andv. [2.7 except for that we first fix linearly independent vectors

It is clear thatiV is self-orthogonal sincél’ C C. Moreover, {v1 v,} and then span them into a larger code. Thus, we
v is orthogonal to itself and every word i sinceW C U. havje. o ;

As v is not contained iV, C’ must have dimensioh — 1.
This completes the proof. ]

k— n—21 n— —
A(l) < Hi:tlfl(q SR 1)(q i qk 1)
EE DT D (@ - D@ )
Case 1:IF, has even characteristic Similarly, we have

isti i k—1 n—21 n n—
If F, has even pharactensuc, then we have the following @ 1) (gn2t — 1)(q" — g"F)
results from counting arguments. A < D 2—1)(g=1)
Lemma 2.7:For k < n/2, the cardinality ofC} is at least 1 1 1

(qn—k+1 _ 1)(qn—2k+3 _ 1)(qn—2k+5 _ 1) . (qn—l _ 1)
(@ =D =1)-(¢—1) '

The desired result follows from addin@,(:) with Af).
Case 2If dim(D) =t— 1, then we choose a suitable basis

uy,...,u for span{vy,...,v¢} such thatu,...,u;—q € D.
Proof: Denote byB,(gl) and B,(f) the cardinalities of’; In this case, by gemn@ﬁ we can get 3 cotief dim(/ansion
andC; \ Cy, respectively. TheiiC;| — Bl(cl) N Bz(f)- |I:e—n(l:ethat containsD, and then a cod€™ := span{C’, u;}.
Let us considerB,(j) first. First of all, a vectorx = ’ _
(z1,...,z,) is self-orthogonal if and only if3 4 - -+2 = 0. Ay < (¢" 23 —1)(¢" PP 1) - (¢" P 1)
This quadratic form is equivalent to? = 0 and hence by - (gF=t —=1)(gF—t-1—=1)---(¢g—1)

. o1 .
Lemmal2.1 it hag solutions. Case 3If dim(D) < t—2, then in this case it is impossible

For a COdeCi*l. In C;i—y, we can sparC;_, into a sel- 4 find a code inC; containing{vi,...,v;}. In other words,
orthogonal cod€’; in C; by adding one self-orthogonal vector

. e ) A = 0.
in Ci{’i\ci_l. Hence, we havg™—* — ¢°~' choices of such K

Thi letes th f. [ |
a vector. On the other hand, there a@ — ¢*')(¢* — 'S compietes the proo
q*=2)---(¢* — 1) choices ofk-dimensional basis generating
the same code of dimensidn Therefore, Case 2:IF, has odd characteristic
) (g 2K+ — 1)(g"2F+3 — 1) (g1 — 1) The counting technique for odg is.analogous with that
B, > A =] . of evengq. The only difference here is the number of self-
(" =1 =1)--(¢g—1)
orthogonal vectors.
The computation oB” is a bit different from that o)~ Note that a vectok = (z1,...,z,) € Fy is self-orthogonal
as codes irC; \ C; are not self-orthogonal. We first choosdf and only if
a linearly independent, self-orthogonal set of size 1. One 4+ a2 =0. (11.12)

can then span this set into a codeCin\ C;, by adding a vector
in F;\C,jfl. Thus, we obtain a recursive formula and get th
following inequality

Ig the case wherg is even, the quadratic forni_(IL1L1) has
rank 1. Hence, by Lemma 2.1 it hag ! solutions. However,

in the case wherg is odd, the quadratic forn{_(I.L11) has
rank n and hence by Lemn{a 2.1 the number of its solutions

B(Q) - (qn—k+l _ qn—2k+1)Hf;11(qn—2i+l _ 1) is betweenqnfl —(q— 1)(]-%71 and qnfl + (g — 1)(]%71-
ko= (" =) ("1 =1)---(¢—1) : Therefore, the corresponding results of Lemihas 2.7[and 2.8

are slightly different in the case of odd characteristic. 3\ge
The desired result follows from addiri@,gl) with B,(f). m the results below without proofs.



Lemma 2.9:For k < n/2, the cardinality ofC; is at least

(qnkarl _ 1)(qn72k+2 _ 1)(qn72k+4 _ 1) . (qn72 _ 1)
(¢" =1D(¢" 1 =1)---(g—1) '

Lemma 2.10:For givent (¢t < k < n/2) linearly indepen-

B. Construction of symplectic self-orthogonal codes

Compared with construction of random Euclidean self-
orthogonal codes, construction of random symplectic self-
orthogonal codes is much easier. This is because everyrvecto
in Fﬁ" is self-orthogonal under the symplectic inner product.

dent vectorsvy, ..., v, overFg, the number of linear codes ogain construction of a random symplectic self-orthogonal

C* € Cf such thatC* D {vy,..., v} is at most

k— n—21 n n—
[15 1 (2¢" 24 — 1)(q" + ¢ 2+1)
(gF=t=1 —1)(gF-t=2—1)---(¢—1) °

code is equivalent to finding a linearly independent set
{(ui|v1),..., (us|v¢)} of random symplectic self-orthogonal
vectors. We first choose a nonzero random ve¢tgiv,) =
(u11, ..., urplv11, ..., v1,). Assume that we have already

Proof of Lemma[2.5 For eveng, by Lemmas 2]7 and 2.8, found a linearly independent sétu;|v1), .. ., (ws_1|vi_1)}

we have

Pre-ec; [{vi,...,vi} CC7]

_ [{C* €Cy: C* D{v1,...,vi}}|
ICxl
o1 (4 ' (k—n-+t—1)t+2k—1
<4 <qn—2t+1) s4q :
For oddg, by Lemmag 219 and 2.1L0, we have
PrC*EC,’; [{Vl, e ,Vt} g C*]
_ {C* €Cy: C* D{v1,...,v¢}}|
ICxl

2qn72k+3 -1 k—t—1 qkft -1 ¢
= qn2ht2 — 1 ' g2t —1
(¢" = 1)(g" +q" )
qn7k+1 -1

w1 (47 ' 2%k
<(3¢)" " (qn%) q

< q(fn+t+k72)t+4k72.

This completes the proof.

IIl. LIST-DECODING OF SYMPLECTIC SELFORTHOGONAL

CODES
A. Symplectic self-orthogonal codes

of random symplectic self-orthogonal vectors. If we want to
find akth vector(uk|vi) = (ug1,- -, Ukn|Vk1, - - -, Vkn), then
(Uk1y - -« Ukns Vk1,- - -, Vkn) IS @ solution of the following
equation system

vz + -+ vy, — (unyr + -+ uinyn) =0,

Vg—1,121 + - + Vk—1,nTn—

(Uk—1,1Y1 + -+ + Uk—1,nYn) = 0.
(11.1)

C. Connection between decoding of quantum stabilizer codes
and decoding of symplectic self-orthogonal codes

To simplify our presentation in this subsection, we conside
only binary quantum stabilizer codes. Let us briefly degcrib
the background on quantum stabilizer codes and their decod-
ing. The reader may refer tol[2], [10], [13] for the details on
decoding of quantum stabilizer codes.

The state space of one qubit is actually2-@imensional
complex space with a basi§0),|1)}. We can simply de-
note this state space of one qubit Iy?. Let G;
{+I,+il, £ X, +iX,£Y, +iY, +Z, +iZ} be the Pauli group
acting onC?, wheres is the imaginary unit/ is the 2 x 2
identity matrix and

0 1 1 0
(V) 2

1 0

The tensor productC?)®" is called the state space of

), Y =iXZ.

To define symplectic inner product, we have to considétbits. Letg,, denote the Pauli group acting ¢6*)®" , i.e.,

a g-ary [2n, k]-linear codeC' in F2". Two vectors(u;|vi)
and (uz|vs) are said symplectic orthogonal ifuy,vo) —
(uz,vq) = 0. Note that every vectofu|v) is symplectic self-
orthogonal. The dual codé~s of a linear code”' consists of
all vectors in]Fﬁ" that are orthogonal to every codeword(h
A subset{(u;|v1),..., (w|v;)} of F2" is called symplectic
self-orthogonal if the symplectic inner product @f;|v;) and
(ujlv;) are0 forall 1 <i,j <t.

A linear codeC is said symplectic self-orthogonal @ C
C*s. 1t is well known that ag-ary [2n, k]-symplectic self-
orthogonal code gives @ary [[n,n — k]]-quantum codel[2].
Thus, we define the rate 6f in terms of the associate quantu
code, i.e.,R:= (n —k)/n.

Finally, let us define symplectic weight and distance. For

vector(u|v) = (uy, ..., unplv1,...,v,) € F2", the symplectic
weight is defined to bevts(u|v) = [{1 <i<n: (u;,v;) #

(0,0)}|. The symplectic distance of two vectofa; |v2) and
(LIQ|V2) is defined to beNts(ul — LI2|V1 — Vg).

Gn ={i"01®02®- - -®0, : m€{0,1,2,3}, 0; € {I,X,Y, Z}},

where the action of an element 6f, on a state ofr qubits
is through the componentwise action @f on C2.

Quantum stabilizer codes are defined in the following man-
ner. LetS be a subgroup of,, suchthat-/®I®---®1 ¢ S.
Then S is a 2-elementary abelian group. Assume that the
rank of S is k for somek € [0,n] and S is generated by
{91,92,--.,9r}. The subgrous has a fixed subspa@s of
(C%)®n defined by

Qs ={ve(C*®": g(v)=vforall g e S}.

rhe subspacé€)s is called an[[n,n — k]]-quantum stabilizer

cpde and it has dimensia—*.

To connect the quantum stabilizer co@g with a classical
linear code, we define a group epimorphism G, — F3"
given by

YEAMo1R02®- - R0y,) = (X1, T2 ..., Tn|21,22. .., 2n) = (X]|2),



wherex;, z; are elements df, that are determined as below Definition 3.1: For a primeg > 2, an integerL > 1 and
0|1 X Y 7 a realé € (0,1/2), a g-ary symplectic self-orthogonal code
/ C of length 2n over a code alphabét, is called (¢, L)-list-

IJ 8 (1) 1 (1) decodable if, for every poink € an there are at mosL
“ codewords inC+s whose symplectic distance from is at
Furthermore, we define 2n x 2n matrix overlFs mostdn.
o I Note that list decoding o’ is in fact list decoding of its
A= ( I O > ; symplectic dualCts.

Theorem 3.2:For every prime powel; and a reald €
(0,1/2), a g-ary symplectic self-orthogonal code of length
2n, decoding radiug and rateR > 1 — H,(d) — dlog,(q +
1) + o(1) must have an exponential list sizein

Proof: Let k£ be the dimension of. Then the rate of

whereO is then x n zero matrix andl is then x n identity
matrix. Then it is easy to see that, for two elements € G,,,
gh = hg if and only if ¥ (g)Ay(R)T = 0, i.e., ¥ (g) and
1 (h) are symplectic self-orthogonal. Through thegenerators

{91,92,- -, 9}, we define ark > 2n matrix overfF Cis R = (n — k)/n. Pick up a random wora& € F2" and
¥(g1) consider the random variablé := | B3, (x,6) N C+s|, where
: Bs.(x,0) is the symplectic ball of radiuén, i.e., B3, (x, )
H= . . consists of all vectors dl‘g" that have symplectic distance at
. mostdn from x. The expected value ok is clearly|C+5| -
Y(gk) |B5,(0,68)|/¢*™ which is at least
It is easy to see thall has rankk. SinceS is abelian, we have G2 x gt (Ha(9)+810g,(a+1) o =20

HAHT = 0. Thus, the binary cod€ with H as a generator
matrix is symplectic self-orthogonal.

Now we briefly review decoding of quantum stabilizerig completes the proof. -
codes. Consider ajfin, n — k]]-quantum stabilizer cod@s as
defined above. Assume that a statexef k& quibits is encoded
into a coded statéa) of n qubits. Letp = |a)(a| be the E. List decoding random symplectic self-orthogonal codes
channel input and leEpE' be the channel output with error  Now we state the list decodability of random symplectic
E € G,, whereE' denotes the Hermitian conjugation &f self-orthogonal codes below.
. By computing the syndrome measurements of the receivedr,agrem 3.3:(Main Theorem II) For every prime power
state, one can determine the binary syndremich is equal g and a reab € (0,1/2), there exists a constants, such
to ¢ (E)AHT (see[10]). To decode, i.e., recover the channgl ¢ for every smalk > 0 and all large enough, a g-ary
input p, it is sufficient to determine the errds. On the other o4 symplectic self-orthogonal code of length 21 and

hand, findingE can be reduced to finding(E) (note that the i Ms . .
scalari™ does not affect error). Thus, we turn the problem dRte2 = 1—1(8) ~dlog,(q¢+1)—c is (3, —)-list-decodable

decoding quantum stabilizer codes into decoding’df (to Wwith probability 1 — ¢~".

see this, we notice thalf is a parity-check matrix of>-s). The proof of Theorerh 3|3 is exactly similar to the one of
Assume that? has at most errors, i.e., in the representationTheoren 2.8 except for the different counting of symplectic
E=i"0®0,®- - Qoy,, there are at mostindices; such self-orthogonal codes. For preparation, we give two lemmas
thato; # I. Thus, the corresponding binary vectofE) has that are needed for the proof of Theoreml 3.3.

symplectic weight at most. This implies that we have to By considering Hamming ball over alphabet siZe we get
find an errore = ¢(E) € F3" such thatwts(e) < ¢ and a similar result as in Lemnia 2.4.

eAH” = s. This is exactly the decoding problem of classical Lemma 3.4:For everys € (0,1 —1/q), there is a constant
codes. To list decod€)s, we can find the list of all vectors M > 1 such that for alln and allt = o(y/n), if X1,...,X;

e € F%" such thatwts(e) < t andeAH” = s. In other are picked independently and uniformly at random from
words, ifxg is a solution ofxAH” = s, then we have to find B$,(0,4), then

all codewordsc € C*s such thatwts(c — xg) < t.

= @i (1=Hq(9)=dlog,(a+1)) — O (exp(n)).

Pr[|span(X1,..., X)) N BQSR(O, N >M- -t < q72(670(1))".

D. Upper bound on list decodability of symplectic self- Next we prove a result on probability for a symplectic dual-

orthogonal codes containing code containing a given gat,, .. ., v} of linearly
Recall that the list decodability of classical block codes independent vectors i]ﬁﬁ".

upper bounded by the classical Gilbert-Varshamov bourj§l (6 Let S, denote the set ok-dimensional symplectic self-

In this subsection, we show a similar result for symplectiorthogonal codes ilﬁr’g".

self-orthogonal codes, namely, the list decodability ofnisy Lemma 3.5:For any linearly independent vectors

plectic self-orthogonal codes is upper bounded by the quantv,, ... v, in ]an the probability that a random code

Gilbert-Varshamov bound. C from S; with C+s containing{vi,...,v,} satisfies
First, we have to give a formal definition of list decoding

for a symplectic dual-containing code. Proes, [{v1,...,vi} CC5] < g™ (1.2)



Proof: Let us first compute the size 6. Note that every
element oﬂan is symplectic self-orthogonal. Thus, every
dimensional self-orthogonal codg, € Sj is spanned from
a k — 1-dimensional self-orthogonal codg, | € Sy_1 by
adding a vector ier{Sl\Ck_l. Given the fact that, for two
vectorsu,v & Cy_1, (u,Cx_1) = (v,Ci_1) if and only if
u — Av € Cy_; for some nonzera € [F,, we know that the
number of symplectic self-orthogonal codés containing a =4q
fixed symplectic self-orthogondl,_; is (¢>" 22 —1)/(q— ) If ¢ > 4/, then we havelFi| < |BS,(0,6)|"
1). On the other hand, every~dimensional symplectic self- ni(#,(5)+6108,(a+1) \which is just a ivial bour?d, ;
orthogonal code contains exactly* — 1)/(q — 1) symplectic
self-orthogonal spaces of dimensi@gn— 1. This gives the
recursive formuldSy|(¢¥ —1)/(g — 1) = [Sp—1|(¢*" 22 —
1)/(¢ — 1). From this recursive formula, we obtain

(1) If t < 4/e, then

| 2
B3 (0,0)f < Prfjspan(Xy,. .., X;) N B3, (0,6)] > L].
SinceL > M - t, by Lemma 3.4 we have

|Fi| < |BS5,(0,8)]F - g~ 10" < g?ntHg2(0)=10m
nt(Hq(8)+6log,(q¢+1))—10n

Finally, substituting the value of = (1 — R)n and R
1 — Hy(0) — dlog,(q+ 1) — € into the inequality [(TT.1ID),
get

we

2n—2k+2 _ 1 2n—2k+4 _ 1)--- 2n _ 1
N Proes, xew [|BS, (x,6) 0 CF<| > 1]
@ D T=1)(g—1) < Zz[i/ﬁl;:m UL 8) 5 Tog, (g+1)~10n .kt

Let V be the linear span of,...,v:. ThenC+s contains

L nt(Hq(6)+dlog,(q+1)) . ,—kt
. . H 1 + ” q '
Vi,...,v¢in an if and only if C is a subspace df +s. Thus, Zt_we] ! q !

[4/€]-1 —ent—10n L —ent
the number of symplectic self-orthogonal codgswith C-+s < Zt:rlogq R + Zt:We] q
containing{vy, ..., v} is in fact the number of symplectic <q gk

self-orthogonal codes iV . Sincedim Vs = 2n — ¢, by  This completes the proof.
(IT.3) this number is at most

(@Pn—t=2k+2 _q)(g?n—t72kH 1) .. (g2t - 1) (11.2) ACKNOWLEDGMENTS
(¢" =D(g"1=1)---(¢—1) The authors are grateful to the anonymous referees and
Dividing (IIL4) by gives the desired result. m Professor Dr. Alexei Ashikhmin for their invaluable and

constructive comments and suggestions which have greatly
improved the structure and presentation of this paper arké ma

Proof of Theorem[3.3 Pick Ms = 4M, where M is the
constant in Lemm&34. Put = [Ms/e]. Assume that is

sufficiently large.
Let C be a random symplectic self-orthogonal code with
rate R, i.e., dimensionk of C satisfiesk = (1 — R)n in
F2". To show thatC+s is (J, %)—Iist-decodable with high
probability, it is sufficient to show that with low probalbyli

that C1s is not (4, %)-Iist-decodable, i.e.,
e

(1]
(2]

[3]
Prees,[3x € F2" such that| By, (x,6) N C*H5| > L] < ¢~ ™.
(I11.5)
[4]

(5]

Thus, from now on we only need to prove that
Procs, xeren || Bs, (%, 6)NCH [ > L] < ¢7"-¢* 72" (111.6)

Furthermore, the probability at the left side & (I11.6) can!®!
be transformed into the following. 7]

Proes, xerp[| Ba, (x,0) N C+5| > L]
< Prpes,_, HBéSn(O’ 6) n DLSl > L]

(I11.7)
(111.8)

L
Yo Y Proes,  [D 2 {v} (n9) D

(8]

t=Tlog, L1 (V)€ 0]
L

< > |Al-¢*, by (LD an.10) 21

t=[log, L] [12]

where D15 is a random2n — k + 1 dimensional subspace[13]
containingspan{C~*5,x} and F; is defined in the proof of
Theoren{2.8. Note that we use the fact thain{C+s, x} is 4]
symplectic dual-containing whenever-s is.

this paper more readable.
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