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Abstract

The security level of the achievability scheme for Wyner’s wiretap channel model is examined from
the perspective of the probability of correct decoding, Pc, at the wiretap channel decoder. In
particular, for finite–alphabet memoryless channels, the exact random coding exponent of Pc is
derived as a function of the total coding rate R1 and the rate of each sub–code R2. Two different
representations are given for this function and its basic properties are provided. We also characterize
the region of pairs of rates (R1, R2) of full security in the sense of the random coding exponent of
Pc, in other words, the region where the exponent of this achievability scheme is the same as that
of blind guessing at the eavesdropper side. Finally, an analogous derivation of the correct–decoding
exponent is outlined for the case of the Gaussian channel.
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1 Introduction

In his seminal paper on the wiretap channel, Wyner [24], studied a model of secure communication

across a physically degraded broadcast channel, without any secret key, where the legitimate user

receives the output of the better channel and the eavesdropper receives the output of the noisier

channel. In that paper, Wyner characterized the optimum trade–off between reliable coding rates

for the legitimate user and the equivocation at the wiretapper, which was defined in terms of the

conditional entropy of the source given the output of the bad channel, observed by the wiretapper.

As a byproduct, he also established the notion of the secrecy capacity, which is the maximum

coding rate that still enables perfect secrecy, where the equivocation is (asymptotically) equal to the

unconditional entropy of the source, thus rendering the information accessible to the eavesdropper

virtually useless. By using good codes with rates that approach the secrecy capacity, the channel

is fully utilized in the sense that the additional noise at the bad channel output (beyond that

of the good channel), is harnessed for securing the message in the best possible way. The idea

of the construction of a good code for the wiretapped channel is essentially the same as in the

concept of binning. One creates a relatively large randomized code, that is reliably decodable

at the legitimate receiver. This code consists of an hierarchy of sub–codes, where each sub-code

is reliably decodable individually by the wiretapper. The information that is decodable by the

wiretapper is, however, only the one that pertains to the randomization, and thus irrelevant to the

source, which is statistically independent.

During the four decades that have passed since [24] was published, the wiretap channel model has

been extended in many ways. We mention here only a few. Csiszár and Körner [6] have extended

Wyner’s setting to a broadcast channel which is not necessarily of a degraded structure. At the same

year, Leung–Yan–Cheong and Hellman [8], studied the Gaussian wiretap channel, and have shown

that its secrecy capacity is simply the difference between the capacities of the main (legitimate)

channel and the wiretap channel. In [19], Ozarow and Wyner studied the so called type II wiretap

channel, where the main channel (to the legitimate user) is noiseless, but the wiretapper knows

some of the coded bits, and optimal trade-offs were characterized. In [25], the wiretap channel

model was generalized to have two parallel broadcast channels, connecting one encoder and one

legitimate decoder. According to this model, both channels are wiretapped by non–collaborating

2



wiretappers, and again, optimum trade-offs were given in terms of single–letter expressions. In

[26], the model was extended again, in two ways: First, by allowing also a secret key to be shared

between the encoder and the legitimate receiver, and secondly, by allowing some distortion in the

reproduction of the source at the legitimate receiver. The main coding theorem of [26] gives rise to a

separation theorem, asserting that no asymptotic optimality is lost if the encoder first, applies rate–

distortion source coding, then it encrypts the compressed bits, and finally, employs a channel code.

Approximately a decade ago, the Gaussian wiretap channel model of [8] was further extended in two

directions: one is the Gaussian multiple access wiretap channel of [23], and the other is Gaussian

interference wiretap channel of [17], [18], where the encoder observes the interference signal as side

information.

A comprehensive overview on modern information–theoretic security, in general, and on the

wiretap channel, in particular, can be found in [9]. Finally, it should be pointed out that in the last

few years, there has also been a research activity in developing constructive coding schemes, which

are computationally practical, and at the same time, comply with more stringent security criteria,

see, e.g., [2], [3], [10] and references therein.

In this paper, we adopt the large deviations notion of secrecy, that was proposed in [11], and

apply it in the context of the wiretap channel.1 According to this notion, secrecy is measured in

terms of the exponential decay rate of the probability of correct decoding, Pc, by the wiretapper.

The larger is the exponential decay rate of Pc, the better is the secrecy. In particular, full secrecy,

in this sense, amounts to a situation where the exponent of Pc is not improved by the availability

of the data accessed by the wiretapper (e.g., the cipher-text, or in the case, the wiretap channel

output), compared to the exponent in the absence of this information, which is the exponent of

the probability that a blind guess of the transmitted message would be successful. Accordingly, for

the achievability scheme of [24], we analyze the random coding exponent of Pc at the wiretapper.

It should be pointed out that our analysis, which is based on the type class enumeration method

presented in [12, Section 6.3], yields the exact random coding exponent (not just a bound), and

in particular, we derive two different, but equivalent, single–letter expressions for this exponent,

denoted by E(R1, R2), which is a function of the rate R1 of the large code, and the rate R2 of each

1 For the sake of simplicity, we adopt Wyner’s original model, but our results can be extended to some of the more
general models discussed above.
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sub–code, where R2 = R1 − R, R being the information rate conveyed to the legitimate user. Each

one of these expressions reveals different properties of the function E(R1, R2), which we will explore

here. Among these properties, we characterize the region of rates where E(R1, R2) = R1 − R2,

which in turn, is the exponent of blind guessing of the transmitted message. This means that in

this region, the achievability scheme in [24] is perfectly secure in the large deviations sense of [11].

The remaining part of the paper is organized as follows. In Section 2, we establish notation

conventions, provide some background, and formalize the problem. In Section 3, the main theorem

of this paper is asserted, discussed and demonstrated. In Section 4, we prove this theorem. Finally,

in Section 5, we give a brief outline for an analogous derivation of E(R1, R2) for the Gaussian

channel.

2 Notation Conventions, Preliminaries and Problem Formulation

2.1 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they

may take will be denoted by the corresponding lower case letters, and their alphabets, similarly as

other sets, will be denoted by calligraphic letters. Random vectors and their realizations will be

denoted, respectively, by capital letters and the corresponding lower case letters, both in the bold

face font. Their alphabets will be superscripted by their dimensions. For example, the random

vector X = (X1, . . . , Xn), (n – positive integer) may take a specific vector value x = (x1, . . . , xn) in

X n, the n–th order Cartesian power of X , which is the alphabet of each component of this vector.

Probability distributions associated with sources and channels, will be denoted by the letters P

and Q, with subscripts that denote the names of the random variables involved along with their con-

ditioning, if applicable, following the customary notation rules in probability theory. For example,

QXZ stands for a generic joint distribution {QXZ(x, z), x ∈ X , z ∈ Z}, PZ|X denotes the matrix

of transition probabilities of the underlying channel from X to Z, {PZ|X(z|x), x ∈ X , z ∈ Z}, and

so on. Whenever there is no room for confusion, these subscripts may be omitted. Information

measures induced by the generic joint distribution QXZ , or Q for short, will be subscripted by

Q, for example, HQ(X) will denote the entropy of a random variable X drawn by Q, IQ(X; Z)

will denote the corresponding mutual information, etc. When the underlying joint distribution is
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PXZ = PX × PZ|X , this subscript may be omitted. The weighted divergence between two channels,

QZ|X and PZ|X , with weight PX , is defined as

D(QZ|X‖PZ|X |PX)
∆
=
∑

x∈X

PX(x)
∑

z∈Z

QZ|X(z|x) ln
QZ|X(z|x)

PZ|X(z|x)
. (1)

The type class, T (PX), associated with a given empirical probability distribution PX of X, is the

set of all x = (x1, . . . , xn), whose empirical distribution is PX . Similarly, the joint type class of

pairs of sequences {(x, z)} in X n × Zn, which is associated with an empirical joint distribution

QXZ , will be denoted by T (QXZ), and so on.

The expectation operator will be denoted by E{·}. Again, whenever there is room for ambiguity,

the underlying probability distribution will appear as a subscript, e.g., EQ{·}. Logarithms and

exponents will be understood to be taken to the natural base unless specified otherwise. The

indicator function will be denoted by I(·). Sets will normally be denoted by calligraphic letters.

The notation [t]+ will stand for max{t, 0}. For two positive sequences, {an} and {bn}, the notation

an
·

= bn will mean asymptotic equivalence in the exponential scale, that is, limn→∞
1
n log(an

bn
) = 0.

Similarly, an

·
≤ bn will mean lim supn→∞

1
n log(an

bn
) ≤ 0, and so on.

2.2 Preliminaries and Problem Formulation

We begin from a description of Wyner’s model of the wiretap channel [24], with some simplification

that makes it a pure channel coding model (as opposed to the model in [24], which includes also a

source coding component).

Consider two discrete memoryless channels (DMC’s), the main channel, PY |X = {PY |X(y|x), x ∈
X , y ∈ Y} and the wiretap channel, PZ|X = {PZ|X(z|x), x ∈ X , z ∈ Z}, where X , Y, and Z are

finite alphabets. The main channel serves the legitimate receiver, whereas the wiretap channel, as its

name suggests, is at the service of the wiretapper. The wiretap channel is assumed to be a degraded

version of the main channel, namely, there exists a channel PZ|Y = {PZ|Y (z|y), x ∈ X , y ∈ Y},

such that

PZ|X(z|x) =
∑

y∈Y

PY |X(y|x)PZ|Y (z|y). (2)

A randomized code of rate R, for this system, is an artificial channel Q(x|w) (subjected to design),

that stochastically maps a positive integer w ∈ M = {0, 1, 2, . . . , M − 1}, M = enR (which desig-

nates the message), into a channel input vector x ∈ X n. The message w is a realization of a random
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variable W , uniformly distributed over M. Conceptually, one may think of the randomized map-

ping from w to x ∈ X n as a deterministic mapping x = f(w, b), where b is a realization of random

variable B (drawn using resources of randomness available to the transmitter), independent of W ,

which is available to the transmitter, but not to the legitimate receiver or the wiretapper. Upon

transmitting X, the main channel outputs the vector Y ∈ Yn and the wiretap channel produces

the vector Z ∈ Zn.

One of the goals in [24] was to prove the existence of a stochastic encoder that, on the one hand,

would guarantee reliable communication to the legitimate receiver (that is, an arbitrarily small

probability of error in estimating W based on Y , for large enough n), and on the other hand,

provide the largest possible equivocation rate, lim supn→∞ H(W |Z)/n, at the wiretapper side. In

that paper, Wyner characterized the optimum trade-off between the achievable information rate

R for reliable communication to the legitimate user and the equivocation rate. In particular, he

has also established the notion of the secrecy capacity as the largest reliable information rate R for

which the best achievable asymptotic equivocation rate is still as large as limn→∞ H(W )/n = R,

namely, full secrecy in terms of equivocation.

The achievability scheme in [24] is based on random coding: select independently at random

M1 = enR1 codewords in X n using a product distribution
∏n

i=1 PX(xi), where R1 is chosen slightly

smaller than I(X; Y ), the mutual information associated with PXY = PX × PY |X . Partition the

resulting codebook C = {x0, x1, . . . , xM1−1} into M = M1/M2 = enR sub-codes {Cw}M−1
w=0 , each

of size M2 = enR2 = en(R1−R), where R2 is less than I(X; Z), the mutual information induced by

PXZ = PX × PZ|X . The partition of the large codebook into sub-codes is arbitrary. As in [24], we

take it to be defined by Cw = {xwM2
, xwM2+1, . . . , x(w+1)M2−1}, w = 0, 1, 2, . . . , M − 1. Given C,

the stochastic encoder is defined by the channel

Q(x|w) =

{

1
M2

x ∈ Cw

0 elsewhere
(3)

In other words, f(w, b) = xwM2+b, where b is a realization of a random variable B, which is

uniformly distributed over {0, 1, 2, . . . , M2 − 1}. It is shown in [24] that this construction satisfies

the direct part of the coding theorem, for the appropriate choice of PX .

In this paper, we analyze the security of this achievability scheme (with a minor modification

described below) from the viewpoint of the probability of correct decoding, Pc, at the wiretapper
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side, which is defined as

Pc
∆
=

1

M

M−1
∑

w=0

Pr{ŵ(Z) = w|W = w}, (4)

where ŵ(z) is the decoded message based on the wiretap channel output z. The ensemble average

of Pc will be denoted by Pc. In the interesting range of the operation of this communication

system, Pc tends to zero exponentially rapidly, and our goal is to characterize the corresponding

correct–decoding exponent, that is, the exponential decay rate,

E(R1, R2)
∆
= lim

n→∞

[

− ln Pc

n

]

, (5)

as a function of R1 and R2, where we assume that the wiretapper employs the optimum decoder

in this setting, which is given by

ŵ(z) = arg max
w

P (z|Cw), (6)

where

P (z|Cw) =
1

M2

∑

x∈Cw

P (z|x) =
1

M2

(w+1)M2−1
∑

i=wM2

P (z|xi). (7)

For a random coding distribution, we take the uniform distribution within a given type class

T (PX), rather than the above mentioned corresponding product distribution. It should be pointed

out that our analysis can fairly easily be generalized to more complicated ensembles, which include

hierarchical structures, similarly as those in the construction of ensembles of codes for the broadcast

channel (see, e.g., [5, p. 565, proof of Theorem 15.6.2]). However, for the sake of simplicity of the

exposition, we prefer to confine ourselves to the structure defined in the achievability part of [24],

as described above.

Of course, similarly as in (6), the optimal decoder of the legitimate user seeks the message w that

maximizes P (y|Cw), which is defined similarly to (7), but with z replaced by y. In the interesting

range of rates, the average probability of error, associated with this decoder, decays exponentially,

and the exact random coding exponent can be analyzed using the same methods as in [13] and [22].

However, our focus in this paper is primarily on security aspects, not quite on the random coding

error exponent at the legitimate user, and so, we will not delve into this analysis here.

3 The Correct–Decoding Exponent of the Wiretapper

Our main result is the following (see Section 4 for the proof).
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Theorem 1 Consider the achievability scheme of [24] and the ensemble of codes defined in Sub-

section 2.2. Then,

E(R1, R2) = min{E1(R1, R2), E2(R1, R2), E3(R1)}, (8)

where

E1(R1, R2) = R1 − R2 + min
QZ|X

{D(QZ|X‖PZ|X |PX) : IQ(X; Z) ≤ R2} (9)

E2(R1, R2) = R1 + min
QZ|X

{D(QZ|X‖PZ|X |PX) − IQ(X; Z) : R2 ≤ IQ(X; Z) ≤ R1} (10)

E3(R1) = min
QZ|X

{D(QZ|X‖PZ|X |PX) : IQ(X; Z) ≥ R1}, (11)

where Q = QXZ must satisfy the constraint QX = PX . An alternative representation of E(R1, R2)

is given by

E(R1, R2) = min
λ2∈[0,1]

max
λ1∈[0,1]

min
QZ|X

{

D(QZ|X‖PZ|X |QX)+

(λ1 + λ2 − 1)IQ(X; Z) + (1 − λ1)R1 − λ2R2} . (12)

We now discuss the conclusions that can be drawn from Theorem 1 concerning the qualitative

behavior of E(R1, R2) and we demonstrate an example. It turns out that the two representations

of E(R1, R2), given in Theorem 1, reveal different properties of this function.

The first important feature is the partition of the plane R1 vs. R2 according to the region(s) where

E(R1, R2) > 0, and the region(s) where E(R1, R2) = 0. The latter corresponds to a situation where

the communication system is completely insecure, since E(R1, R2) = 0 may even correspond to a

situation where Pc tends to unity as n grows without bound. The conditions for E(R1, R2) = 0 can

easily be deduced from the first representation, given in eq. (8). Assume first that R1 − R2 = R

is strictly positive. In this case, E1(R1, R2) is always positive, as it is lower bounded by R1 − R2.

E2(R1, R2) can vanish only if I(X; Z) = R1, in which case, the minimizing QZ|X is PZ|X . Finally,

E3(R1) vanishes iff I(X; Z) ≥ R1. Thus, for R > 0, the overall correct–decoding E(R1, R2) vanishes

iff I(X; Z) ≥ R1, which makes sense, because in this case, the eavesdropper can even decode reliably

the particular codeword that was sent, not only the sub–code Cm to which it belongs. For R = 0

(R1 = R2), either E1(R1, R2) or E3(R1) always vanishes, and so, E(R1, R1) = 0 in any case. This

is also reasonable, because R = 0 means that there is only one sub–code C0, which is the entire

code, so there is actually nothing to decode.
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From the second representation of E(R1, R2), given in eq. (12), it is easy to see that E(R1, R2) is

monotonically increasing in R1 for fixed R2 and monotonically decreasing in R2 for fixed R1. This

is expected because as R1 grows, the eavesdropper has more uncertainty (there are more sub–codes

{Cm} that may be confusable for a given M2 = enR2), whereas if R2 increases for fixed R1, the

uncertainty decreases. In [24], R2 is chosen less than I(X; Z) and R1 is chosen slightly less than

I(X; Y ), to achieve the maximum possible equivocation. For fixed R1, the function E(R1, R2)

is concave in R2, as in view of eq. (12), it can be seen as the minimum over a family of affine

functions of R2, parameterized by λ2. It is not clear, however, if in general, for fixed R2, the

function E(R1, R2) has a convexity or a concavity property (if any) in R1. All the above mentioned

properties of E(R1, R2) are summarized in Fig. 1.

For R2 = 0, we have the correct–decoding exponent of ordinary maximum likelihood decoding

for a code at rate R1 = R. In this case, the minimizing λ2 always vanishes and the expression boils

down to

E(R, 0) = max
λ1∈[0,1]

min
QZ|X

{

D(QZ|X‖PZ|X |QX) + λ1[R − IQ(X; Z)]
}

. (13)

R1

R2

E(R1, R2) > 0

increasing

E(R1, R2) = 0

I(X; Z)

co
n
ca

ve
d
ec

re
as

in
g

E(R1, R2) = 0

R2 = R1

Figure 1: Behavior of E(R1, R2) in the plane (R1, R2).

Eq. (12) lends itself more conveniently to explicit calculations of E(R1, R2). According to this

expression, the evaluation of E(R1, R2) involves three steps of optimization, where the inner most
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minimization (over QZ|X) is a convex problem, and the two outer ones involve one parameter each.

This form is fairly convenient at least in certain examples with a high enough degree of symmetry.

We next demonstrate this on the simple example of the binary symmetric channel (BSC).

Example 1. Consider the example of the BSC, that is, X = Z = {0, 1} and

P (z|x) =

{

1 − p z = x
p z 6= x

(14)

Let PX(0) = PX(1) = 1/2. Since the minimization over QZ|X is a convex program, the minimizing

channel QZ|X is a BSC as any non-symmetric channel can be improved by mixing it with its “mirror

image” Q′
Z|X(z|x) = QZ|X(1−z|1−x), which is equivalent in terms of both D(QZ|X‖PZ|X |PX) and

IQ(X; Z). Thus, the minimization over QZ|X boils down to minimization over a single parameter

of this BSC, which is its crossover probability ǫ. In this case,

D(QZ|X‖PZ|X |PX) + (λ1 + λ2 − 1)IQ(X; Z)

= D(ǫ‖p) + (λ1 + λ2 − 1)[ln 2 − h(ǫ)]

= ǫ ln
1

p
+ (1 − ǫ) ln

1

1 − p
− h(ǫ) + (λ1 + λ2 − 1)[ln 2 − h(ǫ)]

= ǫ ln
1

p
+ (1 − ǫ) ln

1

1 − p
− (λ1 + λ2)h(ǫ) + (λ1 + λ2 − 1) ln 2 (15)

This minimizing ǫ is easily found to be

ǫ∗ =
p1/(λ1+λ2)

p1/(λ1+λ2) + (1 − p)1/(λ1+λ2)
, (16)

which gives

E(R1, R2) = min
λ2∈[0,1]

max
λ1∈[0,1]

{(λ1 + λ2 − 1) ln 2−

(λ1 + λ2) ln
[

p1/(λ1+λ2) + (1 − p)1/(λ1+λ2)
]

+ (1 − λ1)R1 − λ2R2

}

. (17)

This concludes Example 1. �

In [11], a security criterion was defined in terms of the correct–decoding exponent. According to

this criterion, a communication system is said to be secure in the correct–decoding exponent sense

if the information available to the wiretapper, in our case Z, does not help to improve (decrease)

the exponent of Pc compared to the best achievable exponent in the absence of any information,

that is, blind guessing. The exponent of Pc in blind guessing is clearly R = R1 −R2. In the presence
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of Z, of course, E(R1, R2) ≤ R1 − R2 for all R1 and R2 (R2 ≤ R1). Let us examine if the equality

E(R1, R2) = R1 − R2 is achievable in our system: To this end, we find it convenient to return to

the first representation of E(R1, R2), that is, eq. (8). The requirement E(R1, R2) = R1 − R2 is

equivalent to the requirement that E1(R1, R2), E2(R1, R2) and E3(R1) are all at least as large as

R1 − R2. For E1(R1, R2), this requirement is trivially always met. For E3(R1), this is simply the

condition R2 ≥ R1 − E3(R1) (note that E3(R1) vanishes for R1 ≤ I(X; Z) and it is monotonically

increasing for R1 ≥ I(X; Z)). Concerning E2(R1, R2), this condition is equivalent to

min
QZ|X

{D(QZ|X‖PZ|X |PX) − IQ(X; Z) : R2 ≤ IQ(X; Z) ≤ R1} ≥ −R2. (18)

To see that the set of pairs (R1, R2) that satisfy both requirements at the same time (as well as

R2 ≤ R1) is non–empty, consider the following: Let Q∗
Z|X be the unconstrained minimizer of the

function D(QZ|X‖PZ|X |PX) − IQ(X; Z). Obviously,

D(Q∗
Z|X‖PZ|X |PX) − IQ∗(X; Z) ≤ D(PZ|X‖PZ|X |PX) − IP (X; Z) = −I(X; Z), (19)

and so,

IQ∗(X; Z) ≥ I(X; Z) + D(Q∗
Z|X‖PZ|X |PX) ≥ I(X; Z), (20)

where the second inequality is strict unless Q∗
Z|X = PZ|X . Now, select R1 and R2 such that

R1 > IQ∗(X; Z) ≥ R2 ≥ IQ∗(X; Z) − D(Q∗
Z|X‖PZ|X |PX). (21)

These choices clearly guarantee that both R1 > I(X; Z) and R1 > R2, which mean that E(R1, R2) >

0. Next, observe that

min
QZ|X

{D(QZ|X‖PZ|X |PX) − IQ(X; Z) : R2 ≤ IQ(X; Z) ≤ R1}

= D(Q∗
Z|X‖PZ|X |PX) − IQ∗(X; Z)

≥ −R2, (22)

where the first inequality is due to the choices R1 > IQ∗(X; Z) ≥ R2 (which make the constraints

inactive), and the last inequality is from R2 ≥ IQ∗(X; Z) − D(Q∗
Z|X‖PZ|X |PX). Thus, the require-

ment (18) is satisfied. It remains to show that eq. (21) is not in conflict with the requirement

R2 ≥ R1 − E3(R1), which is the case if we can show that IQ∗(X; Z) ≥ R1 − E3(R1). To see this,

first recall that for every QZ|X

D(QZ|X‖PZ|X |PX) − IQ(X; Z) ≥ D(Q∗
Z|X‖PZ|X |PX) − IQ∗(X; Z) ≥ −IQ∗(X; Z), (23)
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namely,

IQ(X; Z) ≤ IQ∗(X; Z) + D(QZ|X‖PZ|X |PX). (24)

Therefore, IQ(X; Z) ≥ R1 implies IQ∗(X; Z) + D(QZ|X‖PZ|X |PX) ≥ R1, or equivalently,

∀ Q with IQ(X; Z) ≥ R1, we have D(QZ|X‖PZ|X |PX) ≥ R1 − IQ∗(X; Z). (25)

Since the right–hand side is independent of Q, then minimizing the left–hand side over all {Q : IQ(X; Z) ≥
R1} yields

min{D(QZ|X‖PZ|X |PX) : IQ(X; Z) ≥ R1} ≥ R1 − IQ∗(X; Z). (26)

But the left–hand side is exactly E3(R1), Thus, we have shown that IQ∗(X; Z) is never smaller

than R1 − E3(R1). To summarize, the following procedure guarantees the choice of a non–trivial

pair of rates that meets the requirements. First, calculate Q∗ (which depends only on PZ|X), then

find IQ∗(X; Z) and I(X; Z), and finally, select

R1 > IQ∗(X; Z), (27)

and

max{IQ∗(X; Z) − D(Q∗
Z|X‖PZ|X |PX), R1 − E3(R1)} ≤ R2 ≤ IQ∗(X; Z). (28)

These choices comply with all requirements.

4 Proof of Theorem 1

Let z ∈ Zn be given, and let QXZ designate the empirical joint distribution pertaining to a

(randomly chosen) codeword x together with z, where it should be kept in mind that QX = PX

by construction. For a given QXZ , let Nw(QXZ) denote the number of codewords in Cw whose

empirical joint distribution with z is QXZ , that is

Nw(QXZ) =

(w+1)M2−1
∑

i=wM2

I{(xi, z) ∈ T (QXZ)}, w = 0, 1, . . . , M − 1. (29)

We also denote

f(QXZ) =
1

n
ln

[

n
∏

i=1

PZ|X(zi|xi)

]

=
∑

x,z

QXZ(x, z) ln PZ|X(z|x). (30)

12



The probability of correct decoding, associated with the optimal decoder (6), is then given by

Pc =
1

M

∑

z∈Zn

max
0≤w≤M−1

P (z|Cw) (31)

= lim
β→∞

1

M

∑

z∈Zn

[

M−1
∑

w=0

P β(z|Cw)

]1/β

(32)

= lim
β→∞

1

M

∑

z∈Zn







M−1
∑

w=0





1

M2

(w+1)M2−1
∑

i=wM2

P (z|xi)





β






1/β

(33)

= lim
β→∞

1

M1

∑

z∈Zn







M−1
∑

w=0





(w+1)M2−1
∑

i=wM2

P (z|xi)





β






1/β

(34)

= lim
β→∞

1

M1

∑

z∈Zn







M−1
∑

w=0





∑

{QX|Z : QX=PX}

Nw(QXZ)enf(QXZ )





β






1/β

(35)

·
= lim

β→∞

1

M1

∑

z∈Zn





M−1
∑

w=0

∑

{QX|Z : QX=PX}

[Nw(QXZ)]βenβf(QXZ)





1/β

(36)

= lim
β→∞

1

M1

∑

z∈Zn





∑

{QX|Z : QX=PX}

(

M−1
∑

w=0

[Nw(QXZ)]β
)

enβf(QXZ )





1/β

(37)

·
= lim

β→∞

1

M1

∑

z∈Zn

∑

{QX|Z : QX=PX }

(

M−1
∑

w=0

[Nw(QXZ)]β
)1/β

enf(QXZ) (38)

=
1

M1

∑

z∈Zn

∑

{QX|Z : QX=PX}

{

max
0≤w≤M−1

Nw(QXZ)

}

· enf(QXZ). (39)

Taking the expectation with respect to (w.r.t.) the ensemble of codes, we have

Pc
·
=

1

M1

∑

z∈Zn

∑

{QX|Z : QX=PX

E

{

max
0≤w≤M−1

Nw(QXZ)

}

· enf(QXZ). (40)

But

E

{

max
0≤w≤M−1

Nw(QXZ)

}

=
M2
∑

t=1

Pr

{

max
0≤w≤M−1

Nw(QXZ) ≥ t

}

(41)

=
M2
∑

t=1

Pr
M−1
⋃

w=0

{Nw(QXZ) ≥ t} (42)

·
=

M2
∑

t=1

min {1, M · Pr{N0(QXZ) ≥ t}} , (43)
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where in the last passage we have used the exponential tightness of the union bound (limited by

unity) for pairwise independent events [20, Lemma A.2], [21, Lemma 1]. Our next objective then

is to assess the behavior of Pr{N0(QXZ) ≥ t} for a given 1 ≤ t ≤ M2. Now, for a given QXZ ,

N0(QXZ) is a binomial random variable of M2 independent trials and a probability of success

p
·
= e−n[IQ(X;Z)−δn], where δn = O((log n)/n). If p < t/M2, the event {N0(QXZ) ≥ t} is a large

deviations event, otherwise it occurs with high probability. Accordingly, the Chernoff bound on

Pr{N0(QXZ) ≥ t} is as follows.

Pr{N0(QXZ) ≥ t} ≤
{

exp{−M2D( t
M2

‖p)} p < t/M2

1 p ≥ t/M2

≤
{

exp{−enR2D(te−nR2‖e−n[IQ(X;Z)−δn])} IQ(X; Z) > R2 − ln t
n + δn

1 IQ(X; Z)) ≤ R2 − ln t
n + δn

(44)

where D(a‖b), for a, b ∈ [0, 1], is the binary divergence function, that is

D(a‖b) = a ln
a

b
+ (1 − a) ln

1 − a

1 − b
. (45)

Now, for a ≥ b, the following inequality was proved in [12, pp. 167–168]:

D(a‖b) ≥ a

[

ln
a

b
− 1

]

+
. (46)

Thus, the first line of (44) is further upper bounded by

exp

{

−enR2te−nR2

[

ln

(

te−nR2

exp{−n[IQ(X; Z) − δn]}

)

− 1

]

+

}

= exp

{

−nt

[

IQ(X; Z) +
ln t

n
− R2 − δn − 1

n

]

+

}

. (47)

At this point, we have to distinguish between three cases: (i) IQ(X; Z) ≤ R2, (ii) R2 < IQ(X; Z) ≤
R1, and (iii) IQ(X; Z) > R1.

For IQ(X; Z) ≤ R2, we have the following consideration: As long as t ≤ en[R2−IQ(X;Z)], the

probability Pr{N0(QXZ) ≥ t} is nearly 1, and hence so is min{1, M · Pr{N0(QXZ) ≥ t}}. For

t > en[R2−IQ(X;Z)+ǫ], the probability Pr{N0(QXZ) ≥ t} decays double exponentially in n, and

hence so does min{1, M · Pr{N0(QXZ) ≥ t}}. Thus, in this case,

E

{

max
0≤w≤M−1

Nw(QXZ)

}

·
=

M2
∑

t=1

min {1, M · Pr{N0(QXZ) ≥ t}} ·
= en[R2−IQ(X;Z)]. (48)

14



In both cases (ii) and (iii), N0(QXZ) = 0 with very high probability. Consider a fixed value of

t (not growing with n). In this case, according to our general bound (47), Pr{N0(QXZ) ≥ t}
·

≤
e−nt[IQ(X;Z)−R2].

For R > IQ(X; Z) − R2, which is case (ii), and t < ⌊R/[IQ(X; Z) − R2]⌋ ∆
= t0, we have M ·

Pr{N0(QXZ) ≥ t} > 1, and so, min {1, M · Pr{N0(QXZ) ≥ t}} = 1. For t > t0, the expression

min {1, M · Pr{N0(QXZ) ≥ t}} decays exponentially with n, and so, E {max0≤w≤M−1 Nw(QXZ)},

which is the sum over t, is dominated by t0, which is a constant.

Finally, in case (iii), M · Pr{N0(QXZ) ≥ t} ·
= en{R−t[IQ(X;Z)−R2]} < 1 for all t ≥ 1, and so,

E

{

max
0≤m≤M−1

Nm(QXZ)

}

·
=

M2
∑

t=1

en{R−t[IQ(X;Z)−R2]} ·
= en{R−[IQ(X;Z)−R2]} = en[R1−IQ(X;Z)]. (49)

In summary, we have shown that

E

{

max
0≤w≤M−1

Nw(QXZ)

}

·
= enΓ(QXZ ,R1,R2) (50)

where

Γ(QXZ , R1, R2) =











R2 − IQ(X; Z) IQ(X; Z) ≤ R2

0 R2 < IQ(X; Z) ≤ R1

R1 − IQ(X; Z) IQ(X; Z) > R1

(51)

with Q = QXZ such that QX = PX . Finally, we have

Pc
·

= e−nR1

∑

z∈Zn

exp

{

n max
{QX|Z : QX=PX}

[Γ(QXZ , R1, R2) + f(QXZ)]

}

(52)

·
= e−nR1

∑

T (QZ )

|T (QZ)| · exp

{

n max
{QX|Z : QX=PX }

[Γ(QXZ , R1, R2) + f(QXZ)]

}

(53)

·
= e−nR1 max

QZ

enHQ(Z) · exp

{

n max
{QX|Z :: QX=PX}

[Γ(QXZ , R1, R2) + f(QXZ)]

}

(54)

= e−nE(R1,R2) (55)

where

E(R1, R2) = R1 + min
{QXZ : QX=PX }

[

∑

x,z

QXZ(x, z) ln
1

P (z|x)
− Γ(QXZ , R1, R2) − HQ(Z)

]

(56)

= R1 + min
{QXZ : QX=PX }

[

∑

x,z

QXZ(x, z) ln
QZ(z)

P (z|x)
− Γ(QXZ , R1, R2)

]

(57)

= R1 + min
QZ|X

[

D(QZ|X‖PZ|X |PX) − IQ(X; Z) − Γ(QXZ , R1, R2)
]

(58)
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= min{E1(R1, R2), E2(R1, R2), E3(R1)} (59)

with E1(R1, R2), E2(R1, R2) and E3(R1) being defined as in Theorem 1. This completes the proof

of eq. (8).

Moving on to the proof of eq. (12), observe that

Γ(QXZ , R1, R2) = [R2 − IQ(X; Z)]+ − [IQ(X; Z) − R1]+. (60)

E(R1, R2) = R1 + min
QZ|X

{

D(QZ|X‖PZ|X |PX) − IQ(X; Z)+

[IQ(X; Z) − R1]+ − [R2 − IQ(X; Z)]+}

= R1 + min
QZ|X

min
λ2∈[0,1]

max
λ1∈[0,1]

{

D(QZ|X‖PZ|X |PX) − IQ(X; Z)+

λ1[IQ(X; Z) − R1] − λ2[R2 − IQ(X; Z)]}

= R1 + min
QZ|X

min
λ2∈[0,1]

max
λ1∈[0,1]

{

D(QZ|X‖PZ|X |PX)+

(λ1 + λ2 − 1)IQ(X; Z) − λ1R1 − λ2R2}

= R1 + min
λ2∈[0,1]

min
QZ|X

max
λ1∈[0,1]

{

D(QZ|X‖PZ|X |PX)+

(λ1 + λ2 − 1)IQ(X; Z) − λ1R1 − λ2R2} (61)

Now,

D(QZ|X‖PZ|X |PX) + (λ1 + λ2 − 1)IQ(X; Z)

= −
∑

x,z

QXZ(x, z) ln P (z|x) − (λ1 + λ2)HQ(Z|X) + (λ1 + λ2 − 1)HQ(Z)

= −
∑

x,z

QXZ(x, z) ln P (z|x) + (λ1 + λ2)IQ(X; Z) − HQ(Z). (62)

The first term is affine in Q, the second and the third are convex. Thus, overall, the objective is con-

vex in QZ|X and concave (affine) in λ2, a fact that allows us to interchange the inner minimization

and maximization, and get

E(R1, R2) = min
λ2∈[0,1]

max
λ1∈[0,1]

min
QZ|X

{

D(QZ|X‖PZ|X |PX)+

(λ1 + λ2 − 1)IQ(X; Z) + (1 − λ1)R1 − λ2R2} . (63)

This completes the proof of Theorem 1. �
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5 The Correct–Decoding Exponent for the Gaussian Channel

The proof of Theorem 1 relies heavily on the method of types [7] and therefore, strictly speaking,

it is applicable to finite alphabets only. Nonetheless, the method of types has analogues for certain

families of continuous alphabet sources and channels, most notably, exponential families [14], [16,

Section VI] and in particular, the Gaussian channel (see, e.g., [1, Subsection VI.A], [15]). Accord-

ingly, in this section, we provide a brief outline how an analogous derivation of E(R1, R2) can be

carried out for the additive white Gaussian noise channel. The rigorous derivation can be carried

out following the techniques of [15].

Consider the additive white Gaussian noise channel,

Z = X + W , (64)

where W ∼ N (0, σ2I) and the random coding distribution is uniform across the surface of a

hypersphere of radius
√

nS (S > 0 being a given power constraint), centered at the origin. Here,

P (z|x) = (2πσ2)−n/2 exp

{

− 1

2σ2

n
∑

t=1

(zt − xt)
2

}

(65)

= (2πσ2)−n/2 exp

{

− n

2σ2
(σ̂2

z − 2ρ̂
√

Sσ̂z + S)

}

(66)

= exp

{

−n

[

1

2
ln(2πσ2) +

1

2σ2
(σ̂2

z − 2ρ̂
√

Sσ̂z + S)

]}

, (67)

where σ̂2
z = 1

n

∑n
i=1 z2

i and ρ̂ =
∑n

t=1 xtzt/(n
√

Sσ̂z). A natural definition of conditional type class

of x given z is given by a prescribed value (within some infinitesimally small tolerance) of the

empirical correlation ρ̂. In modifying the proof of Theorem 1 to apply to this case, IQ(X; Z)

should be replaced by −1
2 ln(1 − ρ̂2), whereas HQ(Z) should be replaced by 1

2 ln(2πeσ̂2
z ). Thus,

referring to eq. (8), we now have

E(R1, R2) = R1 + min
σ̂2

z ,ρ̂

{

1

2
ln(2πσ2) +

1

2σ2
(σ̂2

z − 2ρ̂
√

Sσ̂z + S)−

Γ(ρ̂, R1, R2) − 1

2
ln(2πeσ̂2

z )

}

(68)

= R1 + min
σ̂2

z ,ρ̂

{

1

2
ln

σ2

σ̂2
z

+
1

2σ2
(σ̂2

z − 2ρ̂
√

Sσ̂z + S) − Γ(ρ̂, R1, R2) − 1

2

}

(69)

= R1 + min
σ̂2

z ,ρ̂

{

1

2

[

(ρ̂σ̂z −
√

S)2

σ2
+

σ̂2
z(1 − ρ̂2)

σ2
− ln

σ̂2
z(1 − ρ̂2)

σ2
− 1

]

−
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1

2
ln

1

1 − ρ̂2
− Γ(ρ̂, R1, R2)

}

(70)

where

Γ(ρ̂, R1, R2) =

[

R2 +
1

2
ln(1 − ρ̂2)

]

+
−
[

1

2
ln

1

1 − ρ̂2
− R1

]

+

, (71)

the term in the square brackets (including the factor 1/2) is the analogue of the divergence term

in (8) and the term 1
2 ln 1

1−ρ̂2 stands for the mutual information term therein. Here we have

E1(R1, R2) = R1 −R2 +min
σ̂2

z

min
|ρ|≤

√
1−e−2R2

1

2

[

(ρ̂σ̂z −
√

S)2

σ2
+

σ̂2
z(1 − ρ̂2)

σ2
− ln

σ̂2
z(1 − ρ̂2)

σ2
− 1

]

(72)

E2(R1, R2) = R1 + min
σ̂2

z

min√
1−e−2R2 ≤|ρ|≤

√
1−e−2R1

{

1

2

[

(ρ̂σ̂z −
√

S)2

σ2
+

σ̂2
z(1 − ρ̂2)

σ2
−

ln
σ̂2

z(1 − ρ̂2)

σ2
− 1

]

− 1

2
ln

1

1 − ρ̂2

}

(73)

and

E3(R1) = min
σ̂2

z

min
|ρ|≥

√
1−e−2R1

1

2

[

(ρ̂σ̂z −
√

S)2

σ2
+

σ̂2
z(1 − ρ̂2)

σ2
− ln

σ̂2
z(1 − ρ̂2)

σ2
− 1

]

. (74)

The minimization over σ̂z, in all three expressions, can be done in closed form (equating the

derivative to zero results in a quadratic equation) and the minimizer is

σ̂∗
z =

1

2
(ρ̂

√
S +

√

ρ̂2S + 4σ2). (75)

Upon substituting this back into the expressions if E1(R1, R2) E2(R1, R2), and E3(R1), it remains

to minimize only over ρ̂. This minimization in turn is rather complicated to be carried in closed

form, but it can always be carried out numerically by a line search, as the range of ρ̂ is limited to

a finite interval.
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