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Abstract—The information that can be transmitted through the coherence length of the fading. The input distribution,
a wireless channel, with multiple-antenna equipped transritter  plays a crucial role in the cited derivations. More spedifjca
and receiver, is crucially influenced by the channel behavio in [3] the authors assume the input to be i.i.d. Gaussian

as well as by the structure of the input signal. We charac- : . . S
terize in closed form the probability density function (pdf) of and investigate the behavior of the output distribution s t

the output of MIMO block-fading channels, for an arbitrary ~ fading coherence length varies from being quite short ty ver
SNR value. Our results provide compact expressions for such long, compared to the overall number of transmit and receive

output statistics, paving the way to a more detailed analytial antennas. In both [4] and][5], instead, the input is assumed t
information-theoretic exploration of communications in presence be given by the product of a diagonal matrix (representing

of block fading. The analysis is carried out assuming two dierent th locati the t it ant fi
structures for the input signal: the i.i.d. Gaussian distribution e power allocation over the transmit antennas) times an

and a product form that has been proved to be optimal for non- isotropically distributed matrix with unitary columns. &h
coherent communication, i.e., in absence of any channel s&a main difference between the two papers is in the assumption
information. When the channel is fed by an i.i.d. Gaussian iput,  on the fading duration. Indeed, the first one focuses on tee ca
we assume the Gramian of the channel matrix to be unitarily \,here the coherence length of the Rayleigh fading is greater
invariant and derive the output statistics in both the noiselimited than th b fi ived ant “in thi the hiah
and the interference-limited scenario, considering diffeent fading .an e num ero . involved an .ennas, In this cas.e, e ,'g
distributions. When the product-form input is adopted, we Signal to Noise Ratio (SNR)-optimal power allocation matri
provide the expressions of the output pdf as the relationspi turns out to be a scaled version of the identity mafrix [6]eTh
between the overall number of antennas and the fading cohenee  study in [5§], instead, solves the problem of characterizing
length varies. We also highlight the relation between our nely — 4045in in the high-SNR regime, the optimal power allocation
derived expressions and the results already available in th ) . ;

profile, assuming the fading coherence length to be shorter,

literature, and, for some cases, we numerically compute the ;
mutual information, based on the proposed expression of the Compared to the number Of |nV0|Ved antennas. In the Iatter

output statistics. case, indeed, the diagonal matrix of the power allocation is
Index terms: Output statistics, MIMO, block fading, imperf ect  characterized by the eigenvalues of a matrix-variate Retd j
channel state information. distribution of the entrie [5].

In this paper, we consider both the input models described
above, and derive closed form expressions of the output pdf

o o o ) in presence of a multiple-antenna channel affected by iaddit

The availability of an explicit statistical characterioat of |,5ise and block-fading. In particular, in the case of i.Gaws-
the output of a wireless channel, impaired by additive antt Mjan input, our procedure allows the derivation of a closed-
tiplicative random disturbance, is of paramount impor&t® form expression for the output statistics of channels with
communication- and information-theoretic purposes. e ,pjtarily invariant fading law. Apart from the canonicaild.
a closed-form expression for the output probability densiRay|eigh fading, already treated ifi [3], this encompashes t
function (pdf) is relevant for the evaluation of the ergodiRjcian channel with scalar Line-of-Sight (LOS) matrix, veeo
mutual information between the input and the output signalgalysis was previously limited to the evaluation of theirigd
of a randomly faded channéll[1]. It also turns out to be clucig,mber [7], and the LOS MIMOL[8] with a certain amount
in the finite block-length regime, in order to characterize t of resiqual scattering. Also, we provide results for the d.an
information density of the communication at hadd [2].  Mobile Satellite (LMS) with scalar average power LOS matrix
. In splte of its importance, feyv exphcn_results are avaitab Property ] and for the above cases of MIMO Rayleigh and
in the _I|terature for the_output signal pdf in the case of MIMQRjcian fading communications impaired by Rayleigh-faded ¢
block-independent fading channels. The works(in [3], [8], [ channel interferencé [10]. We remark that the expressiéns o
all focus on the case of block-Rayleigh fading. In these papeihe output pdf that we derive hold for any arbitrary value of
the output statistics are derived under different assumpton gNR.
the relative values of the number of involved antennas and oftpe paper is organized as follows. Secfidn Il introduces the
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form in Rayleigh block-fading channels. Finally, Sectioh Mvith fi(k)(~) denoting thek-th derivative of f;(-). Forn = 0,
concludes the paper. we have
|F| ~ Tm

o N DAY T T

F| @)
II. PRELIMINARIES AND COMMUNICATION MODEL _
where(F);; = £ (a), i,j =1,...,m.

) 4) Generalized hypergeometric functioithe generalized
1) Vectors and matricesThroughout the paper, uppercasgypergeometric function is defined ad, (a;b; X), where

and lowercase boldface letters denote matrices and vectgfs_ [a1,...,a,)T, b = [b1,...,b,T, and X is a set of

respectively. The identity matrix is denoted ByThe pdf of 5rqyments that can be either scalars or square matficedril4]
a random matrixA, pa(A), is simply indicated withp(A), e case of a single scalar argumetit= {x}, the generalized

except when referring tA is needed for clarityE[-] represents hypergeometric function is defined as in[12, eq. (2.24)]:
statistical expectation-)" indicates the conjugate transpose

A. Notations

operator,Tr{-} denotes the trace of a square matrix, dnd| O mﬁ
stands for the Euclidean ndimAlso, we indicate with{a;;} pFa(aibiz) = kz_o (b k! ®)
the matrix whose elements atg; and with |[A], or [{a;;}|, B
the determinant of matriA. We often employ the following where [a]y = [[}_,[ailr, [blx = [[j_,[bj]x, and [2]x =
property of the determinant: I'(z 4+ k)/T(z) denotes the Pochhammer symbol. Note that
Property 1: Let F = {f;;} be anm x m matrix where ofo(;;z) = e, and1Fy(a;;z) = (1 —2)~?. The function
fij = aa;bijci. Then, oF1(;b;z) is closely related to the Bessel's function, and in
' the literature functions Fy(a; b; x) and o Fy (a1, az; b; x) are
_omyfp - ‘ . . also calledconfluent hypergeometric function of the first kind
[F| = a™[{bij}| 1_[1 i 1_[1 A (1) and Gauss’s hypergeometric functiorespectively.
1= Jj=

The generalized hypergeometric function of two matrix
2) Complex multivariate Gamma functior’,,(a) is the argumentsX = {®, ¥}, both of sizem x m, can be written

complex multivariate Gamma function defined &as| [11]: through hypergeometric functions of scalar arguments @s [1
m eq. (2.34)]
T(a)=mm | [ T(a—£0+1) 5 b
g qu(a;b;i’,‘I’) :CH:PFq(a?bv(bhwk)H (6)
V(®)V(P)

with m being a non-negative integer and h,k =1,...,m, where the constantis given by [12]

T = 7T_77*L(m71)/2 )
_ L' (m) § L' (b)) - (a;i —m)™
3) Vandermonde determinant:et A be anm x m Her- €= A H (bj —m)Im H Ty (a;) ’
mitian matrix with eigenvaluess, ..., a,,. Then the Vander- F=1 =t
monde determinant oA is defined as[[12, eq. (2.10)]: Gi=ai—m+1,i=1,....p, [,j —bj—m+1,j=1,...,q,
_ } } and the eigenvalues @b and ¥ are denoted by, ..., ¢,
va)= [ (a-a, @ and U1, . .., 0m, respectively.

tsisism The ¢-th derivative of the generalized hypergeometric func-

where we assume the eigenvalues to be ordered in decreasimg , F;, (a; b; sx) is given by [14]:

order so thaV(A) is non negative. Moreover, for any constant d&

¢, we haveV(cA) = Cm(m_l)mV(A).- Let alsoF :,{fi(aj)}y Wqu(a; b; sz) = sé—(z)g oF,(a;b; sz) (7)
i,j =1,...,m, be anm x m matrix, wheref;(-)'s are any z (b)e

diferentable functions. Clearly, f the eigenvalues Afare \er;, — g, 4 1,5, = b, +£,i=1...p.j = 1.0
not distinct, V(A) = 0 and |F| = 0. In such a case, €ands is a parameter.

ratio|F|/V(A), which appears in the density of many matrices 5) Matrix spaces:We will denote byZ{(m) the unitary

that we study in the following, can be evaluated by applyin . . .
I'Hopital’s rule. More precisely, let: be an integer such thatgqrouD of sizem and by S(m,n) the Stiefel manifold of

\ m x n matrices [[6, Sec. I.C]. The region defined by the
0 <n <m, then [13, Lemma 5] Stiefel manifoldS(m,n), with m > n, is compact and has

~ I volume |S(m,n)| = 2"x™"/T',,(m). When m = n, the
|A — al] (3)  stiefel manifold is a unitary group and its volume is given
by [t/(m)| = 2"a™ /T (m) .

|F| _ Wan(m) |f‘l
Apt1yeey@m—>Q V(A) WnFm(m) V(A)

whereA is of sizen x n and has eigenvalues, ..., a, and
_ filay) i1 m; §=1 n B. Matrix-variate distributions
- (3 ¥l — Ly ) I )
(F)ij = { Fm @) i=1,...,m j=n+1,...,m Definition 1: An m x n (m > n) random Stiefel matrix

S € S(m,n) is such thaB"S = I and is uniformly distributed
1As applied to a matrix, we meahA |2 = Tr{AHA}. on S(m,n). Then, it has pdp(S) = |S(m,n)|~".



Definition 2: A squarem x m random unitary matrixXJ €
U(m) is such thatUU" = U"U = 1. When it is uniformly
distributed on/(m), it has pdfp(U) = |/ (m)| L.

Definition 3: [15, Definition 2.6 and Lemma 2.6] Am x
m Hermitian random matrixA is unitarily invariant if the
joint distribution of its entries equals that 8fAVH where
V is any unitary matrix independent &. If A is unitarily .
invariant, then its eigenvalue decomposition can be writte
A = UAU" whereU is a Haar matrix independent of the

diagonal matrixA. SinceU is Haar (isotropic), itis uniformly | emma 1:Let H; andH, be, respectively, am x n and
distributed ortA(m). anm x p (m < p) Gaussian complex random matrix whose

Definition 4: Let H be anm x n matrix whose columns columns are independent, have zero mean, and covar@nce
are zero-mean independent complex Gaussian vectors VEiy @,, respectively.

covariance matri®.
e Form < n, the m x m random matrixW = HH"
is a central complex Wishart matrix, with degrees of
freedom and covariance matri® (W ~ W,,(n, ®)).
The joint distribution of the eigenvalues 8 coincides
with the law of the squared non-zero singular valueEof
Let W = UAU" be the singular value decomposition

where (F)” = )\j_iQFl( in—1+1; /L)\J)

Note that, since the Vandermonde determinaniln (2) and
pdf are positive by definition, here and in the following
|F| represents the absolute value of the determinant of
matrix F'. This avoids us to include in the provided results
coefficients that account for the sign of determinants.
For m > n, the same expressions as [n](10d)1(11),
and [12) hold but replacingyl, m andn with, respec-
tively, MY, n andm.

¢« For m < n, the m x m random matrix W
(HyH,™M)~1/2H, H,"(H,H,M)~1/2 is a central F-
matrix [11]. When®; and ®, are both scalar matri-
ces, W is unitarily invariant and has a Beta type Il
distribution [16]. Specifically, whe®,0,' = wI, the
distribution of its ordered eigenvalues is given by

(SVD) of W. If ® = I, then W is unitarily invariant p(A) = T Lo (P + 1) V2(A)A[PT
[15]. In such a case, the joint distribution of the ordered WL (M) (P) Do (n) [T+ AJw|Ptn
eigenvalues\ can be written as[3][T11] (13)

o For m > n, the matrix W = H;"(H,H,")"'H;
is unitarily invariant and the distribution of its ordered
eigenvalues can be expressed as

7.{.2 |A|n7mefTr{A}
A) =12 8
o Form > n, if the rows of H are independent and their 72T (p+n) [F|| Q] V(A) [T A P71

covariance matrix idl, the distribution of the ordered p(A) = - -
eigenvalues oFI"H is given by [3] (p+n—m)! Pn(p-m)rm(p)pn(n)p(l_n(ld)r)
whereQ) = @}/2651@)}/2, (F)ij = 1Folp+n—m+
155 (1—wy YA /(1A ) fori = 1,...om, j =1,....m,
and (F)U = (1 —wzil)m—7 for : = 1,...,m, ] =n+
., M.

V3(A).

2 m—n —Tr{A
1)(A):7T"|1fXI c T
Definition 5: Let H be anm x n random matrix whose
entries are independent, complex, Gaussian random vesiabl L.

with unit variance and averadd = E[H]. Then, matrixW = Proof: The proof is given in AppendikJA. u

HH" is non-central Wisharf11]. Lemma 2:Let H; andH, be, respectively, am x n and
« Form < n, the distribution ofW is given by [I1, eq. & m X p Gaussian complex raqdom matrix whose columns

(99)] are independent and have covaria@elet alsoE[H;| = M

andE[H,] = 0.

e Form < n, MM" = uI and® = 41, the non-central
F-matrix W = (HoHoH)~V2H, H,H(HHH) 712 is
unitarily invariant and the distribution of its eigenvatue
is given by

T V(A)’ L (p+n) 1 Fi (pnsn; GAIHA) )
Ly (m) Ly () Dy (p)erm /| A m=r [T+ Alptn

(15)
For m > n, andMH®'M = wI, the matrix W =
H,"(H,H,")~'H, is unitarily invariant and the distri-
bution of its eigenvalues is given by

VA(A). 9)

B [W|P=m Fy(;n; MMPW)
B Lyn(n) eTH{W+MMH}
If MM" has full rank and distinct eigenvalues,
i1, ..., m, then the joint pdf of the ordered, strictly
positive eigenvalueg)i,...,\,,) = diagA) of W is
given by [11, eq. (102)]
ATV R G m L)

(n — m)meT{A+MM Y (VIMH) .
Note that[[T]l) has been obtained fram![11, eq. (102)] by
exploiting the result in[{6).

p(W) (10)

p(A) =
p(A)

As can be observed froni {{10), MM" is a scalar 720, (phn)e—en IF[|A|™ "V(A)
matrix (i.e., MM" = uI), »(W) only depends on the p(A) = T ()T (m) T (pn—m) [T+ AP
eigenvalues oW. ThusW is unitarily invariant. In such (16)

a case, the distribution ok can be obtained from[(11)
by applying the limit in [B) and the property ifl(7), and
it is given by

T [ A" [F[V(A)
[y (M) (n)erm+Tr{A}

p(A) = (12)

Where(F)ij = (/\j/(l + /\j))n_ilFl (p+ n—i+1;m—
i+ Liw)i/ (14 X))).

The proof is provided in Appendix]B.

Definition 6: Then xn random matriXB is Beta-distributed

with positive integer parametefsandq (B ~ B,,(p, q)) if



« givenT an upper triangular matrix with positive diagonalC. Communication model
elements, we can writ8 = (T")~'CT whereC ~
Wh(p, ®), and

. given A ~ W, (m,®), we can writteA + C = THT.
Notice that, if eitherp < n or ¢ < n, or bothp <
n and g < n, the distribution is referred to gsseude
Beta since it involvegpseudeWishart matrices[[5, and
references therein].

We consider a single-user multiple-antenna communication
system, withm and n denoting the number of receive and
transmit antennas, respectively. Assuming block-menassyl
fading with coherence length equal to the output can be
described by the following linear relationship:

Y = ,AHX + N (23)

Whenn < p, B admits an eigendecomposition where thgherey is them x b output matrix, andH is them x n com-
matrix of the eigenvectors is independent of the matrix ef thyjex random channel matrix whose entries represent thadadi
eigenvalues [5, Lemma 8]. coefficients between each transmit and receive antéNnia.

o For ¢ < n, the distribution of theg ordered non-zero the m x b matrix of white Gaussian noise which is assumed

eigenvalues oB is given by [5, eq. (13)]: to have i.i.d. complex Gaussian entries with zero mean and
unitary variance. The normalized per-transmit antenna &\R
T y(p+ @I = A" APV (A) 17) denoted byy = SNR/n, andX is the random complex x b
input matrix whose structure will be specified in the follogi

p(A) =
(4) Ty T 4= (@) | be's _

) sections. Moreover, for any positive integerwe define
« Forgq > n, B hasn nonzero eigenvalues, whose ordered (n1))2

joint distribution is given byl[[b, eq. (12)]: Yn =7

2T, (p 4 q)|T — AJ9"|A[P~"V2(A) Note that the above communication model is adopted in
p(A) = T ()0 (0) T (q) (18) all the following sections, except for Sectipn 1lI-B where w
U nip)Enid resort to a slightly different model explicitly accountitigr

Due to the lack of the corresponding expression in theterference.
literature, herein we derive the expression of the marginal
distribution of a single unordered eigenvalue of3a(p, q)-
distributed matrix, which will be needed in our subsequent
derivations.

Proposition 1: Given ann x n matrix B ~ B, (p, q),

IIl. OUTPUT STATISTICS WITH IID GAUSSIAN INPUT

In this section, we analyse the case where the distribution
of X is Gaussian i.i.d. and consider both the noise-limited
and interference-limited scenarios. Note that, in the casker

« Forg < n, the pdf of a single unordered eigenvalue oftudy, the average energy of the input signal is given by

B is given by E[Tr{XX"}] = nb.
5 As for the communication channel, we focus our analysis
p(\) = Ty Talp+gl(n—g+1) on some classes of channel matrices whose GraiNan=

ql'q(q) Tq(m)Ty(p+q—mn)

S AT (10D, (19)

i,7=1

HH" is unitarily invariant. As shown in the following, this
allows us to write the expression of the output pdf in terms
of the distribution of the eigenvalues of the channel matrix
In particular, in both the noise-limited and the interfezen

with D;; being the(i, j)-cofactor of the # x n) matrix limited case, we draw on the following results:

A such that o for m < n, and for unitarily invarianfdH", the distri-
bution of Y is given by [3, eq. (40) and (41)]
(A) 'p—n+L+k—-1) (20) -
= - Lo (m)K(Y) [ |E|JT+~A|™"
Tp+k—q+0) DY) = ;w ) [ V”(Al p(A)dA
o For ¢ > n, the pdf of a single unordered eigenvalue of (24)
B is given by where A is anm x m diagonal matrix containing the
eigenvalues of channel matrllH", (E);; = e¥:%, and
p(N) = m Talp+@T(g—n+1) ¢; =N /(1+9X,), 5 = 1,...,m. Moreovery,, ..., ym
nl'y(n) Ln(@)Tn(q) are the eigenvalues & Y™ and
: Z AP=ntiti=2) (1 \)a=n D, (21) e~ IIYI?
g KY)=————r. 25
ij=1 (¥) TP (YYH) (25)

with D;; being the(i, j)-cofactor of the £ x n) matrix
A such that
I'p—n+L+k—1)
A = .
(Aex T(p+k+q—2n+7)

(22)

Proof: The proof is given in Appendik]C. [ |

for m > n, and for unitarily invarianfI"H, the pdf of
Y can be obtained by following the steps describedin [3]
and is given by

Lo(m)K(Y) [ [E[T+~Am !
V(yA)|A[mn

p(Y) = p(A)dA

(26)

7-‘-n,yn(m—n)



WheLeE is anm x m matrix whose elements are given Specifically, form < n, we consider the special case
by (E);; = e¥ for 1 < j <n,and(E);; =¢/ "' for HH" = &I (for m > n we assumeA"H = hI), where
n+ 1 < j < m. Note that in this case the matrB(LlH" 1 is a positive parameter. This assumption reflects two main
is of reduced rank since it has — n zero eigenvalues. settings: the scalar LOS channel, introducedn [7] andetiner
Thus, herep(A) indicates the distribution of the non- already analysed in the high-SNR regime, and the LOS MIMO
zero eigenvalues cHH" and A is ann x n diagonal with residual scattering [8]. Both models assume the LOS
matrix. matrix to have high (full) rank. The one inl[8] is suitable
Proof: The proof is given in AppendikD. m for MIMO backhaul links where antenna spacing is carefully
designed and transmit-receive distance is fixed. Our matel c
be thought of as a Gaussian perturbation, with small vagianc
) of the one in[[8]. The model in[7], although being a sub-case
The output pdf of the uncorrelated Rayleigh-faded channgf ine one in 8] from the pure mathematical viewpoint, has
has been evaluated in|[3]. For sake of completeness, wd reﬁ?éyed a major role in the early characterization of MIMO
this result and present the corrected express@on of theubutpician channels, due to the amenability of diagonal [20H(an
pdf whenm > n. Then, we extend the analysis to two othefy particular, scalar) non-centrality matrices for theidion
practically relevant fading models, namely, the Riciancklo ¢ the capacity-achieving input law.
fading channel[[17],[[18] and Land Mobile Satellite (LMS) ynger the aforementioned assumption, the Gramian of the
channel[[9], [18]. matrix H is unitarily invariant (see Definition] 5), thus the pdf
1) Rayleigh fading channelin the case of uncorrelatedyf the output can be expressed as in the following propasitio
Rayleigh channel, the entries BF follow an i.i.d. zero-mean, Proposition 2: Given a channel as if.(23) and{29), with
unit-variance, complex Gaussian distribution. i.i.d. Gaussian input and Rician block-fading,
« Form < n, the distribution of the eigenvalues HFH" is « for m < n, andEIH" = 11, the pdf of its output can be
given by [8). It follows that, by using_(24) and the result  \itten as
in AppendiXX, the distribution oY can be written as [3,

A. Noise-limited

Proposition 2]. p(Y) = MK(Y)W : (30)
- erm(n)enhm
p(Y) = — 1" K(Y)|Z 27)
(Y) Lo (1) (Y)|Z| where s | A
where thei, j-th entry of them x m matrix Z is given (Z),; = / eviY ¥ -OFl(;n—]-i-l;:E)dx
by J o e(1+n)zxjfn(1+,yx)b7m+1
oo i pn—mti—1 o for m > n, andH"H = 11, the following result holds
(Z)is = / P (1 —Zl-'ya: B ) (1 + ~yx)btl-—m dz. T (1 4+ k)"
S | p(Y) = — s e K(Y)|Z) (31)
« Form > n, the distribution of the eigenvalues of channel YnY n(n)e

matrix HYH is given by [9). By applying[{26) and the where
result in AppendiXK, the output pdf is given by 2 o112/ (1499 By (s m—j+1; &) dar
7r (Z)s :/ o —
Y) = .m0 e(l+Kr)zpj—n 14~z b—m+1
p(Y) T ()= (1+7z)

Note that the expression above differs from the one
presented in[[3, Proposition 2] in the ternf(m—")
which appears at the denominator. The-th entry of with
the m x m matrix Z can be written as

K(Y)[Z]. (28) ’
for 1 <i<m,1<j<mnand(Z); =y ™" for
1<i<mn+1<j5<m,
z = k(1+k)ha.
Proof: The proof is given in Appendik]E. |
- i1 3) Land mobile satellite communicatioithe Land Mobile

(Z):; = / exp ( yinx _x) (/) dz, Satellite (LMS) MIMO channel can be viewed as a non-central

"o 147z (1 4 yz)btt=m channel with random mean. Thus, the channel matrix model

for1<i<ml<j<nand(Z)y, — yf_"_l, for can be described as

1<i<mn+1<j<m. H=H+H (32)
2) Rician channelThe Rician channelis traditionally mod—W ere the entries offl are independent, zero-mean unit-

_eled as a superposition of a scattered plus a LOS coOmpPONgAkiance complex Gaussian ai is a random matrix. As
ie.,

p. . shown in [9], in a LMS channel the matrildH" follows a
H=,/ " 1ﬁ + " 1H. (29) matrix-variatel’(a, £2) distribution [21] wherey plays the role
K K

of a shape parameter, whife is a scale parameter. Indeed,

In (29), x is the Rician factor representing the ratio of thean be viewed as a generalized number of degrees of freedom
average power of the unfaded channel component to the fadédthe non-centrality parameter, whil@ is related to the
channel component, the entries Hf are independent, zero-average power of the random LOS component, as discussed in
mean unit-variance complex Gaussian, dfids a determin- detail in [S]. Assuming® = wI, HH" is unitarily invariant,

istic matrix representing the LOS component. as shown in[[B, Property 1].



Under this assumption, the expression of the output pdf canwWe apply to the received signgr the whitening filterB =

be expressed as in the following proposition.

Proposition 3: Given an LMS MIMO channel as il (82)
with Q = wI,

o for m < n, the pdf of its output can be written as
Tm

PY) = T KON (@9)
where
oo €¥iTive | Fy (a J+Lin—j+1; 1+w)
(Z)s5 :/0 e?xd—n(14~yx)b—m+l dz;
o for m > n, the output pdf is given by:
) = e T NI 39
where
o YT Fy (a—j—i—l;m—j—i—l; 14%)
(Z);j = /0 exd " (1 + yx)b—mtl o
for 1 <i<m,1<j<nand(Z) =y " for

1<i<mn+1<j3<m.

Proof: The proof is given in Appendik]F. [ |

B. Interference limited

We now consider the case where the main impairment to

VBR~Y/2 and
Y

obtain
BY
= VRTVY
PN —-1/2
- (HHH) (VTH.X + W)
VYHX + N

(36)

12 N —1/2
where H = (HHH) "H, andN - (HHH) "w.
Clearly, E[INN"|H] = b1I. In the following, we provide the
pdf of Y.

1) Rayleigh fading channel:

Proposition 4: We consider the interference-limited chan-
nel described by (35), witli. active interferers, i.i.d. Gaussian
iDpAut and Rayleigh fading. TH.,H,H ~ W,,(n,®,) and
HH" ~ W,,(Ln, ®), then we have the following results.

o For m < n, due to mathematical constraints, we only
analyse the case of spatially uncorrelated receiving an-
tennas, i.e.®, = 0,1 and® = AL Then, the pdf ofY
can be written as

~ mmD(Ln+n)
p(Y) = Y™y (L) T (1)

K(Y)Z| @37

wherew = 6,/6 and

o= .
eYiTire pn—J
dzx .

communication is represented by the co-channel interéeren

In particular, each interferer is seen from the direct link
receiver under its own random channel, which we assume to
be affected by Rayleigh fading, again with block-lengttwe
assume that there afeactive interferers in the network, each
equipped, for homogeneity, with the same number of antennas

(Z)ij :/0 (1 +’yl’)b_m+1(1 +x/w)Ln+n
This result is obtained by substituting {13) [n(24) and

by exploiting the result in AppendixIK.
o Form > n, the pdf of Y is given by:

T (Ln+n—m)!" T, (m) Ty (Ln+n) K (Y)

p(Y)

n, as the transmitter of the useful signal. We evaluate the [ (Ln4n)Ty (n)Tp (Ln)y,ym(m—m)
output pdf when a whitening filter is applied to the received |Qm—n-1 |E||I+7A|mfb71|F| dA
signal and we consider two channel models. In the former, : V() A7 [T AT

the desired signal undergoes Rayleigh fading; in the |atier
direct link is affected by Rician fading, i.e., we assume the
existence of an LOS path between the useful transmitter and

(38)
where = ©7/°©,'©7/? and the matrice and F

its intended receiver.

The received signal can be modeled as
Y = HX+W (35)

where
L o~ o~
SYEX,
(=1

represents the interference. Specifically, thex n matrix H,
models the channel connecting tlieth interferer with the

have been defined belom26) ahdl(14), respectively. This
result is obtained by substituting_(14) in_{26). However,
we cannot solve the integral by applying the result in
Appendix[K directly. Indeed, although matric&s and

F are both of sizen x m, a portion of their columns
and rows is composed of constant terms. Thus, we need
to resort to the property of the determinant of block
matrices, in order to obtain x n blocks to which the
result in AppendiXK can be applied. We skip the details
of this procedure due to the cumbersome expressions that

receiver, while the: x b matrix X, represents the signal trans- are involved.

mitted by the(-th interferer,d = 1,..., L. The interference  2) Rician fading channel:

can be rewritten adV = HX where H = [Hy,... H] Proposition 5: We consider the interference-limited chan-
is anm x Ln matrix andX = [X;" . ,X "M is of size nel described by(35), witlh, active interferers, i.i.d. Gaussian
Ln x b. By assuming that the entries ﬁ are i.i.d. complex input, Rician faded useful signal and Rayleigh fading affeg
Gaussian with zero mean and unit variance, the covariartbe interfering links. For a Rician channel, matiik, can be

of the interference, conditioned on the knowledge of theritten as in [2D)
1 ~
/_HS
K41

composite channel matrii, is given by -
H, =,/ ——H,
K41 +

R = ElWW" H] = HEXX"|H" = yHH" .



wherex is the Rician factorH, is deterministic, an(ﬁS is 8
complex Gaussian with independent colums whose covariance Perfect CSI -~ 4
is ®. According to our assumptions on LOS links made in NoCSLb=10 —e— ’
Sectior1l-A, we have: | [NoCSLb=6 —=—

« for m < n, setting®, = © = ¢I andH,H," = 11,
Tl (Ln + n)efh"m/a
YD)y, (Ln)R—mn

K(Y)|Zz|  (39)

o0

Mutual Information [b/s/Hz]

Z),; = ¥ T 1 Fy (L+j; n—m+7; heii /0) da
@)y = J (L4ryz)b=m+1(14fx)L+igm-—ngl-j
B (40)
with s =1+ k, L= Ln+n—m, andz = z/(1 + kx)
e for m >n, andH,"©® 'H, = Al, -10 5 0

Tl (LnAdn)&mehen

5 10 15 20
SNR[dB]

P(Y) = n(m—n)[ (n)F (Ln+n—m) K(Y)|Z| Fig. 1. Mutual information vs. SNR in Rayleigh channel: caripon
Y n n (41) between the case where no CSl is available (solid line) amddlse of perfect
h CSI at the receiver (dashed line), with= 6,10, m = 2 andn = 1.
where

(Z)s; :/ LBy (Indn—j+1;m—j+1; hikd) do and n = 1, when no channel state information (CSI) is
! etthe (14 ,%I)LnJrljjjfn(l_'_,YI)bfm#»l’ available and in the case of perfect CSI at the receiver. The
0 latter is obtained by computind|[3, eq. (10)]. The results

for 1 <i<m,1<j<n,and(Z);; =y "', for confirm the intuition, as well as previous analysis [4], [Ble
1<i<mmn+1<j<m;with&k =1+ and higherthe SNR and the value bfthe better the performance,
z=uz/(1+ Rx). while the lack of CSI causes a noticeable degradation.
Proof: The proof is given in AppendikIG. ] For the Rician channel, the expression of the channel matrix
Note that also in this case mathematical issues made thegiven by [29). By adopting again the method fin [3], the
analysis only possible for uncorrelated receivers. differential entropy of the output conditioned on the input

signal can be computed. Let us denote pyan arbitrary
row of Y; then, using [[B, eq. (31)] and considering the
translation-invariant property of differential entropye can

The mutual information between the channel inXit,and yrite the mutual information when the receiver does not have
the channel outputyY, normalized to the fading coherencesny knowledge of the non-LOS component:
length, can be expressed as:

C. Exploitation of the analytical results

H b 7XHX
1 hy|X) = h(y"|X) = E |log,  (me)” |1+ (43)
T =3 [MY) = h(Y[X)] (42) 1tk
with the expectation being over the distribution Xf. The
where h(Y) = E[-logp(Y) and A(Y|X) =

above expression can be conveniently computed resorting

E[-logp(Y|X)]. Once the pdf of the channel outputy, [3 eq. (4)]. The unconditional differential entropy dfet
p(Y), is obtained, it can be used to evaluate its d|ﬁerentlghtput is derived through(B0) and{31).

entropy, h(Y). For Rayleigh and Gaussian channels with rig @ shows the mutual information as a function of the
identity covariance matrix, considering that is given, the gNR witht = 6, m = 2 andn = 2. Rician factors are set to
outputY is complex Gaussian and its rows are i.i.d. Hencg, _ 1 andx = 10. The plot depicts the mutual information in

in order to derive the conditional differential entrop§Y|X),  the two cases where the receiver has knowledge of the non-
we can compute its value for an arbitrary row¥fand then | og componen{[3, eq. (10)] and where it does (43). The

scale it by the number of rows af [3]. _deterministic channel matrix ifi (R9) is set as follows:
In [3], the mutual information has been computed in

presence of Rayleigh channel and i.i.d. Gaussian input, for H= { V2 0 ] .

m < n. In the following, we provide three examples of mutual 0 V2

information computation. First, we address the case oferoidn Fig. [4, the relative gap between the achievable mutual

limited Rayleigh channel withn > n and, then, the noise- information in the two scenarios with = 1 is more evident

limited Rician channel, both witln < n andm > n. than fork = 10, since the higher the Rician factor, the higher
In the case of Rayleigh channel, the conditional differ@ntithe amount of information on the LOS component, which

entropy is obtained usin@l[3, eq. (4)], while the uncondigib is known at the receiver. This is also compliant with the

differential entropy is evaluated using {27) brl(28) depegd monotonicity results in[[20].

on the relationship between andn. Fig.[d shows the mutual Finally, Fig.[3 shows the mutual information for the two

information as a function of theNR, with b = 6,10, m = 2 scenarios above, in the casemf> n, namely,m =2, n =
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Fig. 2. Mutual information vs. SNR in Rician channel: comgan between
the case where the receiver does not have any knowledge omotheOS
component (solid line) and when such knowledge is availétiteshed line),
forb=6,n=2, m=2andk =1, 10.
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Fig. 3. Mutual information vs. SNR in Rician channel: conipan between
the cases where knowledge of the non-LOS component is nidalaieaat the
receiver (solid line) and when it is (dashed ling}= 6, m = 2, n = 1 and
k=1,5.

1, andb = 6. The Rician factor is set t&z = 1 and x =

5. In this scenario, the deterministic channel matrix is set t

input matrix X is proven to have a product structurie[22,
theorem 2] and can be written as

X = /cD'?® (44)

wherec is a normalizing constant afid is a real random x n
diagonal matrix, which is positive definite with probalbilit
1. The entries ofD represent the amount of transmit power
allocated to each of the transmit antennas, whi@ € S(n, b)
represents the beamforming x b matrix. In order to be
consistent with the definition of SNR, we impose the constrai
on the average input enerdy{Tr{XX"}] = nb. It follows
that, for our specific input structure, the normalizing dans
is given by:

_ 45)

“~ EMT(D) ‘

In [5, Lemma 10], it is proven that without CSI, in Rayleigh
block-fading channels, the optimal power allocation at the
transmitter depends on the relationship between the cobere
length, b, and the total number of antennas at both the
transmitter and receiver. Specifically,

o If b > m+mn, all diagonal entries oD are almost surely
equal tol. This case corresponds to the conventional uni-
tary space-time modulation (USTM) [22], whef2 = I
andc = b;

o If b < m+n, the optimal input isD ~ B,,(b —n,m +
n — b), which is referred to as Beta-variate space-time
modulation (BSTM)[[5]. This scenario allows the analysis
of an uplink massive-MIMO system, witm > n and
evenm > n, which is relevant in the next-generation
cellular setting.

A. Caseb>m+n

As mentioned above, whein> m + n, the optimal power
allocation over the transmitter antennas is given by a diago
matrix, D, with entries almost surely equal o Under these
assumptions, the following results hold.

Proposition 6: Consider a channel as i {23), affected by
i.i.d. block-Rayleigh fading and with input given by {44)etL
A = vcD(I + D)~ = diag(éy,. ..,d,), with §;’s being
distinct values. Then,

o for m < n, the pdf of its matrix-variate output, condi-

tioned onD and forn < b, can be expressed as

L (D) K(Y)YYH™ |G

i H p(Y|D) = — — (46)

H = L\/3/2, 1/\/5} . Similar observations to those above T (b=1)"V(A) L+ ~cD|

hold. However, comparing Fidl 2 to Fifl 3, we notice that, Where forj=1,...,n

as expected, the reduction in the number of antennas at the VFL(1b—n+1y6;) i=1,...,m

transmitter leads to severe performance degradation. Gij = { 5;,171' i=m+1,...,n
IV. OUTPUT STATISTICAL CHARACTERIZATION WITH « form > n, the conditioned output pdf becomes

PRODUCT INPUT FORM (Y|D) = La(0)K(Y)|A"™|G| (47)

As in [3], [6], [22], [23], we assume total lack of CSI at b Tn (b=m)!"V(A)[I+vcD|™

both the ends of the wireless link. This case is of particular wherei=1, ..., m, are given by

interest for the energy efficiency of the communication hes t (LD Lous) =1

availability of CSI would imply a high energy and time con- (G)ij = { 1m1fj’ —m+1;yi0;) J= e

sumption at both the transmitter and the receiver. Undar thi Yi j=n+l....m.

assumption, in the high-SNR regime, the capacity-achgevin  Proof: The proof is given in AppendixH. [ |



1) CaseD = I: The expressions op(Y|D) in (48) whereZ is ann x n matrix, whose generic entry is given by:
and [4T) hold provided that the diagonal elementdofire

1 m—b,.i—1-n
distinct. Thus, in general, the unconditional pdf ¥f can (Z);; = / (1-2) j_bﬂ
be derived by integrating(Y|D) over the distribution of o (I+eyz)
D. In this section, however, we focus on a particular power P i (FZI)M ey
allocation matrix,D = I, and, by [[45), we consider = b. - et TR — Z aEop e e | de
Note that, in this case the elementsIafare not distinct, and th=1 Y
expressiond (46) anf (#7) cannot be directly evaluateéddd (51)
|G| =0 andV(A) = 0, and again a limit procedure must be{/vith (Fa)y =o' 9 ij=1,....b—n
applied. = Yt 0d = :

We first observe that, fob =1 andc = b, we haveA = Proof: The proof is g|ven in AppendM : "

YD (I 4 vbD) ! = 5T wheres = m

. Form < n, we apply the limit in [%) to the ratio C. Exploitation of the analytical results

|G|/V(A) in (@8) and, after some algebra, obtain We now use the above results to compute the achievable
m mutual information in a massive MIMO case. In order to derive
lim G| - Ml () (b — n)! |YYH|n—m|§| the output differential entropy conditioned on the inpufnsil,
A1 V(A) Lo (n)ln (b) h(Y|X), we exploit the analytic expression of the conditional
whereG is anmxm matrix whose elements are g|ven pypdf of the outputp(Y|X), obtained above.
(G)” =y Py (n—j+ 10—+ 1 y0), i = 1,. Proposition 8: Given a channel as ifi_(23), the differential
j=1,...,m. By recalling [@8), the dlstnbutlon oY |s entropy of the outputY, conditioned on the channel input,

then given by X, can be written as:

~ m—>b
ml'm(n) K(Y)|G| AMY|X) = bml K D)
Y) = . 48 = bmlogy(mwe) + Km aij
p( ) ﬂ_ml—\n(n) (1 +’7b)nm ( ) ,szl J Z 81,77[ 1
« Form > n, we apply the limit in [#) to[{47) and obtain N 1og (1_‘_07)_0721’1(1, 8,05 Si,j,é'f‘lv - )} (52)
2
Si_’jyg 1112

Gl m(b—m)"|G .
Ahigl V(A) =T &—m+n) where K is a constant terms; j , = b—2n+i+j+¢, anda;;
" is the (i, j)-cofactor of ann x n matrix A such that

'b—2n+l+k—1T'(m—-—n+1)

where in this case

(G)ij = 4" 71 Fy(n—j+1; b—m—+n—j+1; y:d) Adk = T(b—3n+m+L+k)
fori=1,...,m,j =1,...,n, and ((A;)ij = y;”—j for Proof: The proof is given in Appendii J. [ |
i=1,....,m,j=n+1,...,m. The mutual information obtained in a massive-MIMO-like
By recalling [4Y), it follows that case is shown in the following figures. Figl 4 depicts the

S | & mutual information fom = 1, as the SNR varies and grows
T (D) K (Y)d G| . (49) up to very large values. The plot also compares our results
Ly (b —m+n)(14b)"m (denoted by markers) are compared to the approximatiomgive

We remark that, under the above assumptions, the output pif] for the high SNR regime (dashed lines). The two sets of
also appears in [4]. The corresponding derivations praidéurves match very closely for any value of the parameters, as

therein involve Fourier integrals and Hankel matrices thi@xpected due to the tightness 0f [5, eq. (8)]./Asvaries, all
resulting in a slightly less compact form than ours. three curves have the same slope, as this has been proven to be

insensitive to the number of receiving antennas in ourregtti

[5, eq. (8)]. As expected, better performance is obtainedh as

increases. However, interestingly, FId. 5 shows that a much
Now, we consider the case 6f< m + n; an instance of higher improvement can be achieved as the fading coherence

this scenario, by lettingn > n, can adequately model thejength and the number of antennas at the transmitter sightly

reverse link of the celebrated massive-MIMO channel [24facrease whilen is fixed to 10. In particular, by comparing the

In presence of uncorrelated block-Rayleigh fading, thenhigtwo plots, a limited gain in performance is obtained when

SNR capacity-achieving input structure, as already meetio increases, while, as expected, the mutual information tirow
departs from the equal power allocation and is Beta diggithu js significant when: is increased by 1.

We provide herein the output pdf for a block-fading channel

fed by BSTM [3]. V. CONCLUSION
Proposition 7: Given a channel as in(P3), witX =

VeDY2®, n < b, andD ~ B,,(b —n,n +m —b), the pdf of
its output can be written as

T L' (0)['n (M) (’Vc)n(n_b)K(Y) |F4||Z]
Ync™m=D/20, (n)T,, (b—n)Ty, (n+m—b)

p(Y) =

B. A massive MIMOregime:b <m +n

We obtained new, closed-form expressions for the prob-
ability density function of the output signal of a block-
fading MIMO channel. By relying on recent results from the
field of finite-dimensional random matrix theory, we prowde
results for the case of an i.i.d. Gaussian input under the

p(Y) = (50)
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assumption that the Gramian of the channel matrix is uhjtari
invariant. We addressed both the cases of Rayleigh andrRicia
fading. Furthermore, we derived the output probability sign
function in the case of product-form input. We particuladz
our newly derived expressions to those already available in
the literature for the canonical case of uncorrelated Rglyle
fading, and we characterized the output signal behavioeund
different assumptions on the amplitude fading distributio
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APPENDIXA
PROOF OFLEMMA [1]

Let H; and H, be, respectively, am x n and anm x p

(m < p) Gaussian complex random matrix whose columns
are independent, have zero mean, and covariéhcand ©-,

spectively.

o For m < n, the distribution of the ordered eigenvalues
of (HyH,M)~Y/2H,H,"(H,H,")~1/2 is given by [11,
eq. (98)]

72 V(A) A" o (p-n—m-+1; 5~ 20}

(p+n—m)! ="y ()T, (n)lﬂl”V(—ﬂ‘lg5 3
whereQ) = @1@);1, andws, .. .,w,, are the eigenvalues
of Q. When®; and ®, are scalar matrices, arfd =

(Ch @2‘1 = wI, the distribution ofA can be obtained first

by applying the limit [(%) to[(53):
72 (p+n—m)™V(A)AP™
P(&) L (p)Tim (1)
i |{1Fo(p+n—m+1_;l;—)\j/wi)}|
Q—wl V(—Q )

72 D (p+n)V(A)|A|P~™
Lm (m)F_m (P)Lm ()™

AT T 1o (pn—j+1; 5 —Aj/w)} (54)

and then by observing that
KA Fo(p+n—i+1; 5=\ /w)}|
A (14 Ay fw) =Dy
{IA /(14 2 /)] ™ (1 4 Ay fw) =P d DY

p(A) =

wmn

= VAI+A/w)I+ Ajw|~Ptr=m+D)
= VA)I+ A/ ™I+ A jw|PFn=mtD)
= V(A)I+ A/w|—<p+n> ) (55)

e« Form > n, the distribution of the: x n random matrix
W = H;"(H,H,")"1H, is given by [25, eq. (61)]

Lo (n+p)iFo(p+n;; 1-Q7L, W(I+W) ™)
T (p)T0 (m)| QW n=m T + W |ptn

(P)Tn (m) |2 (W[ = I + W] (56)
whereQ = ©1/20;'©1/% is of sizem x m. Note that,
for any unitary matrixV independent ofW, we have
[VWVH| = |[W|, I+ VWVH| =|I+ W]|. Moreover,
the eigenvalues oV WV (I+ VWVH)~! are the same
as those oW (I + W)~L. Thus,p(VWV) = p(W). It
follows that W is unitarily invariant.
Let ¥ = W(I + W)~! and the eigenvalues oW be
A1y .-+, An. Then, ¥ has eigenvalues; = \;/(1+ );),
forj =1,...,n.In order to compute the hypergeometric
function of two matrix arguments of different size appear-
ing in (58), we extendP to them x m matrix ¥ given

’ Ha

whereE is an(m—n) x (m—n) matrix whose eigenvalues
aree = [e1,...,em_n]". Then the eigenvalues aF are

p(W) =

v 0
0 E

v =



IZJ: [wla"'aujnaelv"

1Fo(p4+n;;I1-Q71L W)
= lim Fo(p+n;;I—Q7 1, \il)
e—0

yem_n]T. It follows that

To(m)(p+n—m)™  [{fi()}]
Ln(p+n) VI - Q HY()
Co(p+n)V(I— Q1) e=0 V()

—~

a .
=  lim

e—0

=

where in(a) we applied [B) andf;(v;) = 1Fo(p +n —
m+1;; (1 —w; ),), 4,5 =1,...,m. By applying the
limit in (B) and the properties in{1) an@l(7), the limit
in (54) can be computed as

lim Hfl(%])” _ T (p+n)Ty(m) (p+n—m)!"~™|F|

e=0 V(W) Ln(ptn)T(m)  |®|m—nV(P)
(58)
where fori =1,...,m
Ji(y), ji=1,...,n

(F)ij= {

We now write the eigenvalue decomposition W as
W = UAU"M, where(\, ..., \,) = diag/A). We then
observe thafW| = |A|, [I+W| = [I+A|, |¥| = [A|]I+

A|7Y, and thaty(P) = V(A)I + A|'=". Therefore, by
using [56), [(5FF), and(38), the pdf & can be rewritten
as

(1—w; HY™=7 j=n+l,...,m

p(W) = T T " o1 .
n(ptn)Tm(p)  |Q"V(I-Q )V(j%%g)

The pdf of the ordered eigenvalues of a complex random
n X n matrix W is given by [11, eq. (93)]:

o) = XA [ uautau.

In our case, sincp(UAU") does not depend oby, we

obtain [14).

APPENDIXB
PROOF OFLEMMA [Z

Form < n, let us definéW, = HoH,". Then the matrix
W = W, *H,H,"W,/? can be rewritten a3V =
HHY whereH = W;l/2H1. For any given matrixd s,
for ® = 01 and MMi: »I, H is a Gaussian complex
matrix with averageM = W;”QM and independent
columns whose covariance & = W, '. It follows
that, givenW,, W is a non central Wishart matrix and

p(W|W,) is given by [11, eq. (99)]
pwiw, (W[W3) = oFl(;n;Zfll\N/Ifl\EHZ)*W)
efTr{E’IW}|W|n7m
.eT'{E’lﬁM”}Fm(nMEM
= oFi(;n;0 2 uWaW)
e—Tr{9*1W2W}|W2|n

' eym/G@anm(n)|W|mfn :

11

On the other handW, is a central Wishart with covari-
ancefl. Thus, the density oW can be written as

pw(W) = /Pw\wz (WIW2)pw, (W2) AW
92
o~ TH{W2(I+W)/6} [W[PFn=m AW,
“enm/0g(tm)mT, (n)T, (p)[W]m—
|W|n—m

enm/09(p+n)mT  (n)T,, (p)

' oF1(5n; 2 WoW) dW,
e T {W2(I+W)/0} W, |m—p—n

= /OFl(;TL; ﬂVVQVV)

In order to solve the above integral, we employ the
following result

»Fy(a;b; CB) B — pi1Fy(a,c;b; CATL)

o, [BlceTTAR) T 1Al
=BH>

which holds form x m matricesA, B, and C, and for
R(c) > m — 1 [26, eq. (115)]. Then,

L (p4n)1 Fy (p+n; n; SW(I+W) 1)
Ly (n)0p (p)erm/ 0| W [m=n I+ W [p+7 ”

pw(W) =

It can be observed thagt(W) depends only on the
eigenvalues oW, thus it is unitarily invariant. It follows
that the pdf of the ordered eigenvalues W is given

by [11, eq. (93)]

T V(A)?

P =T )

/ pw(UAUM) AU,

which provides the results i {IL5).

e For m > n, the distribution of then x n matrix W =

H,"(H,H,")~'H, is given by [11, eq. (105)]

(W) o Pn(p+n)1F1 (p—i—n; m; Q(I+W—1)—1)
S T T T W W
and the distribution of its eigenvalues is given by
" e TV (A) A

__
p(A) = (m—n)!" T, (p+n—m)V(Q)|I+A|1+P

(61)

whereQ = M"O@'M, (F);; = 1Fi(p+ 1;m —n +
1;\jw; /(14 X)), andws, ..., w, are the eigenvalues of
Q. This result has been obtained by applyinl (6)fo [11,
eg. (106)].

In the particular case whef@ is a scalar matrix (i.eQ2 =
wI), matrix W is unitarily invariant since its pdf il (60)
only depends on its eigenvaluds Indeed,|W| = |A],
I+ W| = |I+ A|, and the generalized hypergeometric
function 1 Fy (p +n; m;w(I+W~1)~1) only depends on
the eigenvalues of its matrix argument, i.e.,Anln such

a case, the distribution ok can be obtained fron_(61)
by applying the limit in [%) to the ratigF|/V(€2) and
the property in[{I7). The result is reported [n}(16).



APPENDIXC
PrROOF oFPrRoOPOSITION]]

The proof of [I9) and[(21) follows from the application

of [27, Theorem 1] to[(1l7) and(18), respectively.

The density given in[(18) is an ordered eigenvalue distribu-

tion and the unordered eigenvalue distribution is obtaimgd

12

|E| = 0 and V(C) = 0; thus the limit in [[8) must be applied
to the term|E|/V(C). We have
|E| _ il (m) |E|

L (m) V(C)|C[m—m

(64)

.....

whereE is anm x m matrix whose elements are given by

dividing (I8) byn!. Then, applying the Laplace determinan{E);; = e¥% for 1 < j < n, and(E);; = y/ """ for n+1 <
expansion, the unordered eigenvalues distribution besome j < m. Also, C is ann xn diagonal matrix whose elements are

2L (p + g)(1 = M)A
Il (n)Tn (p)Th(q)

(—A1)"H
1

p(A)

i=1 j=
JIA =) ATV )IVAY)
k=

2 (62)

whereV(A) andV(A) are(n—1) x (n—1) matrices obtained

by deleting the first row and column from the Vandermonde
matrix V(A) and its conjugate transpose, separately. The

(i,7)-th entry of V(A) and its conjugate transpose axg '

and\:™!, respectively. Thanks t¢_[28, Corollary 1], the result

in ) can be obtained through integration over— 1

(C)jj =¢j = Ny/(L+7X)), j =1,...,n. Therefore, [(EB)
can be rewritten as

Lo (m)K(Y)

Tn

p(M)E| [C"
[T+~A[" V(C)

where K(Y) = e~ IYIP /(0 (Y'Y")7™?) was defined in[{25).
Since ¢; = A;v/(1 + vA;), by applying the definition
of the Vandermonde determinant, we gg{C) = |I +

yA|'="V(yA). Moreover,|C| = |yA||T + yA|~!. By sub-
stituting these results il (B5), we obtalnl(26).

p(Y) = dA  (65)

APPENDIXE
PROOF OFPROPOSITIONZ
We first observe that the matridd in (29) can be written
asH =H,/+/1 + , whereH, = \/xH + H.

eigenvalues from\, to \,. The final expressions are in both * Form <n andHH" = I, the joint distribution of the

cases due to the definition of the scalar Beta funcfion [14].

should be noticed that the choiceXf in (€2) has no effect on

the final result, since we started from an unordered eigaaval

distribution. Using the same approach, the proof[of (19)
straightforward.

APPENDIXD
PrRoOF OF(24) AND (28)

We first observe that fom > n the matrix HH" does not
have full rank and has: — n zero eigenvalues. The non-
zero eigenvalues oHH", denoted by)\,..., \,, are also
the eigenvalues oH"H and are the elements of thex n
diagonal matrixA. We start by rewriting[[3, eq. (38)] in the

casem > n and obtain
—Y|? S Hooh
(63)

70| I+ AP
whereU is a unitarym x m matrix, (~3~is anm x m diagonal
matrix whose elements are given b§),; = ¢; = \;jv/(1+
YA), j = 1,...,m, with¢; =0, forj =n+1,...,m.
Since we assume thaV = HMH is unitarily invariant, its
eigenvalues do not depend ©h Moreover,U is a Haar matrix
(see Definitio B). Therp(U|A) = p(U). The inner integral

p(Y

over U can be solved using the Harish-Chandra-ltzykso

Zuber integral[[20]

& T E
/( )eTr{CUHYYHU}p(U) dU = (m)|E|
U(m

T V(C)V(YYH)

The elements of matrif are given by(E);; = e¥i%, i,j =
1,...,mandy;, i = 1,...,m, are the eigenvalues & Y".
Due to the fact that; = 0 for j = n+1,...,m, we have

| ordered eigenvalues dloH," is given by [IR) where
= kh, i.e.,

7T72n|A0|nV(A0)|{)\a;0F1( ;n—i+1; Iih/\oj)H
Fm(m)rm (n)emhm-ﬁ-Tr{Ao}

where (Ao1, - .., Aom) = diag(Ag). Then, the pdf of the
ordered eigenvalues #H" is given by

p(A) (14 £)"po((1 4 K)A)
o (L+ 6)"" A" [F[V(A)
| . (m)l"m (n)eﬁher(lJrK)Tr{A}

where(F);; = A0 Fi(;n—i+ Ls(1+k)hN;), 4,5 =
1,...,m. By substituting this equation ifi_(R4) and by
applying the result in AppendixIK, we obtaih {30).

For m > n, and forH"H = hI, we adopt a procedure
similar to the one above. In this case, the pdf of the
non-zero eigenvalues dIH" is given by [66) where

n andm should be replaced by andn, respectively.
By substitutingp(A) in (28) and by applying the result
in Appendix[K, we obtain[(31).

is  Po(Ao) =

(66)

APPENDIXF
PROOF OFPROPOSITIONT

For m < n, the distribution of the ordered eigenvalues of
PIH" is expressed as][9, eq. (9)]

T(a—m+1)" m,e” A PA)A[P|F
o) = I i N VAAMTEL oo
I'(n—m4+1)" V(I+Q)~1) T, ()| T4+Q 7

with (F);; =1Fi(a—m+1n—m+1;\;/(14+w;)). When
Q = wl, the expression ofy(A) can be derived from (67)
by applying the limit in [#) and by using the property [d (1).




For simplicity, we define® = (I + 2)~! = 61 wheref =
(1+w)~ L. Then,
Tl (a—m~+1)"V(A)|A|—™
() (a=m+1)"V(A)[A

()T (n—m+1)meT{A} (141 /w)me
i B
©—01V(0)
72 V(A)[A["[F]
Ly (m)Tp(n)eT AN (1 + 1 /w)me

(68)
where(F);; = A\ Fi(a—i+Lin—i+130/(1+w)), i, j =

1,...,m. The proposition statement follows by replacihgl(68)

in (24). Similarly, whenm > n andQ = wI, the distribution
of the eigenvalues cH"H is given by

n2e THAIW(A)A|™ |F|
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where 2 = wI = MHO® M. In our case we have
M = /rH,, thuswI = kH,"® 'H,. It follows that
the matrix HH" is unitarily invariant ifH,"©'H, =
w/kI. The distribution of the eigenvalues 8TH" can
then be obtained as

p(A)

£"po(RA)
720y (Ln + n)|A|™~"V(A)
L.(n)Lp(m)Ty(Ln +n —m)
A~ Py (Inn—i+ 1 m—i+ 1 wid;) |
f-mmen T+ RA|En

wherei = 14« and\; = \;/(1+&);). By substituting
this expression in{26), we obtain_{41).

APPENDIXH
PROOF OFPROPOSITIONG

Given the above assumptions and considering fat=

PA) = T T+ w)re Toln)
where (F);; = A/ QR —i41m =i+ 1;0/(1+w)),  as: :
i.j =1,....n. Again, the proposition statement is obtained/eD'/2®, p(Y|D) is given in asl[5, eq. (53)]:

by replacmg the above equation [0 {26).

APPENDIX G
PROOF OFPROPOSITIONE

We first observe that the matrild in (35) can be written
asH = H,/+/1 + k, where

H, = & (BAY)

o for m < n, and H,H," = hI, the distribution of the
ordered eigenvalues @&yH," is given by [I5)

72 e " /0T (Ln+n)V(Ag)?| Ao ™
T (m)Th (n)T (L) [T + Ag|Entn

h
1 (Ln—i—n;n; %AO(I + Ao)l)

—1/2 _

H, + (ﬁﬁ”) H,

po(Ao)

where we set: = hx. The distribution of the eigenvalues

of HH" can then be obtained as

p(A) R po(RA)
72, E™ Ty, (Ln4n)| A ~™V2(A)
[y (M) (0) D, (L )ehsm/ O T+ F A | Lt

B (Ln—i—n n; h@ A(I+REA)™ )

(69)

wherek = 1 4 k. By substituting the above expressio
in 24), and by exploiting the property 12, eq. (2.36)]

[Py (amtgs bometjs vy H
V(¥)
which holds for anym x m Hermitian matrix ¥ with

eigenvalues)y, . .., v,,, we obtain[(3P).
« Form > n, the distribution of the eigenvalues Hf, H"

is given by [16):
720, (Ln + n)e” " |F||Ao|™ "V (Ay)
po(AO) = _ Ln+1
L,(n)Cy(m)Ty(Ln+n—m)|T+ Ayl

1F1(CL b ‘I’)

e—IIYI1% 4
YD = —— 70
(YD) = S (70)
where
A = eTr{A@Y“Y@“}p(q))dq)
S(b,n)
_ |S(b1 ; /eTr{Aqw“Y@“}dq)
,n

S(b,n)

andA = ycD(I+~eD)~ L. In [5, Appendix Al, it is observed
that the integral above is not an instance of the Harish-
Chandra-Itzykson-Zuber (HCIZ) integral [29] since the< b
matrix ® is not a square matrix. In order to circumvent this
problem, one has to extend matri" to the unitaryb x b
Haar matrix®" = [®H &, 1], where® " is the orthogonal
complement of®" with respect to the unitary groufd(b).
Thus, following [5, Appendix A], we can write

1 H
A= / Tr{A®Y"Y® }d@
|S(b,n)[|U(b—n)]
Next, the n x n diagonal matrix A = diag(dy,...,dn)
can be extended to theb x b matrix A =
dlag(dl,... On,q1,---,q—n) Where the elements of
[q1,.-.,qp—n] are distinct and different fromy, ..., d,.
nl'he above integral can then be written as
A= ! lim [ e™ASY'YE g5 (71)
|S(b, n)|[U(b—n)| a—0 '
U(b)

We observe that the matriX"Y hasb —m zero-eigenvalues,
and its non-zero eigenvalues are the eigenvalue¥ &,
Since the HCIZ integral is a function of the eigenvalues of
the matricesA and' Y'Y, we replace the matriy ™Y with
the b x b block diagonal matrixt = diag YY", P) whereP

is diagonal and has diagonal entrigs= [p1, . .., pp—m]. Such



elements are positive, distinct, and they are differeninftbe
eigenvalues oY Y". In conclusion, we can write:

1 ABTHEH o
A = li li Tr{A®PTP }d‘I>
SO, )b —n)| avopso | ©
U(bv)
Ly (0)|UA (b)) : F|
= im lim —————
m|S(b,n)|[U(b — n)| a=0p—=0 Y(T)V(A)
S 1 T L (72)
mp q—0p—0 V(\I/)V(A)

where (F);;

integral [29] and then the equalig/ (b)| = |S(b, n)|[U/(b—n)].
Then, we apply twice the limit i {3) and obtain:

T |F| 7L (b)Y YH |0
1m 11m —
q—0p—0 V(\I})V(A) erb(b)V(YYH)
T, (b)[F||A"—?
T Lp(0)V(A)
where form < n,
eyi‘sj_ i=1,...m;5=1,....n
R yfﬁ i=1,....m;j=n+1,...,b
(F)ij =4 o i=m+1,....bj=1,....n (74)
b—i)! i=j;j=n+1,....,b
0 elsewhere
while for m > n,
e¥i% i=1,....m;j=1,...,n
- v, i=1,.. myj=n+1,....b
(F)y=4 67"  i=m+1,...bj=1..n (75
(b—i)! i=jj=m+1,...,b
0 elsewhere.
In summary,
L (D)0 (D) K (Y)[YYH ™| F[| A"
Sy |D) = PO OE DY FA Y oo

T Tn Ly (D) V(A) [ I4ycD|™

where K (Y) was defined in[(25).
We now focus on the casex > n and compute the
determinantF|. Note thatF can be written as

F,
Fy

whereF; is of sizem x m, Fy mx (b—m), Fs (b—m) xm,

F,

F;

:/F\:

i e?i%  and 1; and Sj are the eigenvalues
of ¥ and A, respectively. In[(72) we first used the HCIZ
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Note that, fori =1,....mandj =1,...,n,

(T);;

—m (yid;)"h!
wid)) ™" > C —ym + Rl

h=0

i)' ™ = (D (yid))"
ol 2 Tt T,

(yid;)" ™
(b—m) '

sinceh! = (1), and (b —m + h)! = (b —m + 1)p(b — m).

Also, fori =1,...,mandj = n+1,...,m, (T);; =y’
b—m_ m—j

Y Y R R
As a consequence, the matfiX can be rewritten ag' =

LGR, whereL and R are diagonaln x m matrices given

by, respectivelyL, = diagiy?~™, ..., y% ™), and

h=0

Fy(1;0—m+1;:6;)

R = diag8t " /(b—m)!,..., 6L ™ /(b—m),1,...,1).

Furthermore,G is an m x m matrix whose elements, for
i=1,...,m, are given by

(G = {

Thus, we have:

m—j

Y j=n+1,....m.

[F| = [Faf[T]
b—m—1
= uGlr| ] @
=0
YYH[P-m |G| AP—™ b—m—l.
TGN R
’ i=0

In conclusion, by substituting[{¥7) ia_(I76), we gEfl(47).
Form < n, a similar procedure can be used to compute the

and F, (b —m) x (b— m). By using the property of the determinan{F|. In this case,

determinant of block matrice5 [B0], we have:

|F| = [F4||T|,
where T = fl — f‘glaiglf‘3. In our case,f‘4 is diagonal
(see the definition off in (78)) and [Fy| = [T'—;" "il.
Moreover, we have{FQFgng)ijA:A Z;glfl(yizij)k/k! for
i=1,...,m,j=1,...,n, and(F.F;'F3),; = 0 otherwise.
It follows that fori =1,...,m

~ i0j b—m—1 (y:5;)" .
(T)i; = ezj._zkzo Al j=1,...,n
yii] j=n+1,....m.

b—n—1

H il
1=0

Again, by substituting the above expression [n](76), we
get [46). Here, however, the expression(€f);; changes as
follows:

YY" Gllafn

7| = (b —n)lm

(G)”_{éyi i=m-+1,...,n
and forj =1,...,n.
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APPENDIX | matrix, X = /cD'/2® and conditioning on it, the differential

PROOF OFPROPOSITIONT] entropy is given by:
Th_e_ law of the o_utput of a channel3 as _the onelj_ﬁl_(23), h(y|X) = blogy(me) + nE [log, (1 + ¢y6)] , (82)
conditioned on the input power allocatidn, is reported in . o ) )
5, eq. (58)], i.e., with ¢ being distributed as a single unordered eigenvalue of

b . the matrixD. By using [I8) and considering = v — n and
TnYn|YC C ) Fgrn(m)u _ Dlm—lelb—2nV2(D)

Lo(n)ly(b—n)Tp(m+mn—10)

p(D) = (83)

where K(Y) = e I¥YI*/(zmbp(YYH)) and (F);

exp (flijﬁ;] ,i=1,...,n5 =1,....b, andF;; = 4’7/, By exploiting the result given in Propositiéh 1 and by dengti
i=n+1,....b,j=1,...,0b. the constant terms in the above expressioniywe obtain:
In order to take average of (78), we first wrifB| as the K&
product of two determinants. Indeed, we partitBras p(8) == > st (1 - 5)(m=blg,, (84)
n “
F—| 1 Fo 79 o
T | F; Fy (79)  with a;; being defined as in the above proposition. The integral
, . in (82) can be solved by resorting to partial integrationlged,
where (Fy);; = y, .7 74,5 = 1,...,b—n, andF; is the taking log, (1 + ¢yd) as the primitive factor and recalling
principle n x n submatrix ofF. Applying the property of the that (1 — §)»~™ = >>7— " ("7,™)(—1)"¢*, by virtue of [31,
determinant of block matrice5[30] tb(79), we obtain 3.194.1], we obtain
[ = ||, (80) K m- by (1)
Bllog, (100 = & 3y 3 (7, 1)
whereT = Fl—FgFgng. We notice thatF,| is independent ij=1  0=0 it
of D, and the matriXI' has the same size 3. Form > n, | ) oF1 (1,8 5.6, 8i 5,0+ 1;—7)
p(D) is given by [IB). We then get B OYE FYS
wheres; ;= b—2n+1i+ j + £. Then, using this expression
Y) = Y|D)p(D)dD 2
pY) = [p(YID)p(D) e
oK (Y)|Fy| [ [L+eyDP~[T[p(D)
TnYn |yeD[P="V(cD) APPENDIXK
B Wnrn(b)Fn(m)(’yc)n("fb)K(Y)|F4| LEMMA 2 IN [B;ZI]
" uln(n)e?=D72T, (b—n)Ty, (n+m—b) Consider a functiorgf(x), an arbitraryn x n matrix ®(x)
b—m—1 such that(®),;; = ¢;(z;), and an arbitraryn x m matrix ¥,
I+ cyD| |T| J J :
. T—D— D" V(D)dD, m > n, whose elements are given by
_ AL O o KY)FallZ] g (®);; = { Yile;) lsisml<js<n
=121, (n)T, (b—n)Ty, (n+m—b) Cij l<i<m,n+1<j<m
where wherec;; are constant. Then, the following identity holds:
1 b—m—1,i—1-n n
@, = [Cre [ eewe [ e ax=nt= (@)
' 0 (1 —x)b—m [a,b]" =1
' [exp <1c1y;;cx) _ (FzFlng)ig} where, forl <i <m,
b )
has been obtained by using th It i g @y ={ L Vil@)e@E@)de 1<j<n
as been obtained by using the result in Appendix K, an ij cis ntl1<j<m.

b—n - . .
_ _ CYTYpin . For the specific casen = n, this result appears in_[28,
(FoF'Fy)ij = > (Fi ) exp (7) v " Corollary Iil.

Py 1+ cyx
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