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Sequential Testing for Sparse Recovery
Matthew L. Malloy,Member, IEEE, Robert D. Nowak,Fellow, IEEE

Abstract—This paper studies sequential methods for recovery
of sparse signals in high dimensions. When compared to fixed
sample size procedures, in the sparse setting, sequential methods
can result in a large reduction in the number of samples needed
for reliable signal support recovery. Starting with a lower bound,
we show anycoordinate-wise sequential sampling procedure fails
in the high dimensional limit provided the average number
of measurements per dimension is less thenlog(s)/D(P0||P1),
where s is the level of sparsity andD(P0||P1) the Kullback-
Leibler divergence between the underlying distributions.A series
of Sequential Probability Ratio Tests (SPRT) which require
complete knowledge of the underlying distributions is shown to
achieve this bound. Motivated by real world experiments and
recent work in adaptive sensing, we introduce a simple procedure
termed Sequential Thresholding which can be implemented when
the underlying testing problem satisfies a monotone likelihood
ratio assumption. Sequential Thresholding guarantees exact sup-
port recovery provided the average number of measurements
per dimension grows faster than log(s)/D(P0||P1), achieving
the lower bound. For comparison, we show anynon-sequential
procedure fails provided the number of measurements grows at
a rate less thanlog(n)/D(P1||P0), wheren is the total dimension
of the problem.

I. I NTRODUCTION

Signal support recovery in high dimensions is a fundamental
problem arising in many aspects of science and engineering.
The goal of the basic problem is to determine, based on noisy
observations, a sparse set of elements that somehow differ
from the others.

In this paper we study the following problem. Consider a
support setS ⊂ {1, . . . , n} and a random variableYi ∈ Y
distributed according to

Yi ∼

{

P0 i 6∈ S

P1 i ∈ S
i = 1, . . . , n (1)

where P0 and P1 are probability densities or mass func-
tions with respect to a common dominating measure. The
dimension of the problem,n, is large – perhaps thousands
or millions or more – but the support setS is sparse in the
sense that the number of elements following distributionP1
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is much less than the dimension, i.e.,|S| = s ≪ n. The
goal of the sparse recovery problem is to identify the setS
from multiple independent realizations of the random variables
Y1, Y2, . . . , Yn.

The conventional theoretical treatment of this problem as-
sumes that the samples are collected prior to data analysis
in what is refereed to as anon-sequential(or fixed sample
size) setting. In this case,m samples of each component
are made (m samples ofYi are gathered for each indexi)
and any test for inclusion inS is performed after the data
is collected. The fundamental limits of reliable recovery are
readily characterized in terms of Kullback-Leibler divergence
and dimension (see Sec. III-B).

On the other hand, information gathering systems encoun-
tered in practice are often tasked with measuring some tem-
poral signal or process, leaving the potential for the system
to adapt the sampling approach based on prior observations.
In this sequentialsetting, the decision to take an additional
sample of any componenti is based on prior realizations
of that component. Herein lies the advantage of sequential
methods: if prior samples indicate a particular component
belongs (or doesn’t belong) toS with sufficient certainty,
measurement of that component can cease, and resources
can be diverted to a more uncertain element. The focus of
this paper is on the fundamental limits of recovery of such
sequential systems.

A. Main Contributions

The results presented in this paper are in terms of asymptotic
rate at which the average number of samples per dimension,
denotedm, must increase withn to ensure exact recovery ofS
for any fixed distributionsP0 andP1. For a given procedure,
the probability of correctly recovering the setS depends on
the triple (n, s,m). As the dimension of the problem grows
(as n → ∞), correctly recoveringS becomes increasingly
difficult, and the number of measurements must also increase
if we hope to recoverS. One manner in which we can quantify
the performance of a procedure is the rate at whichm must
grow as a function ofn ands to ensure recovery ofS.

As such, the main contributions are1) to derive a lower
bound on the number of measurements required for success of
any coordinate-wise sequential procedure in the sparse setting,
2) introduce a simple sequential procedure termedSequential
Thresholdingwhich can often be implemented whenP1 is not
fully specified (more specifically, when the underlying testing
problem satisfies a monotone likelihood ratio assumption –
see Sec. V-B and Def. 5 for details) and show this simple
procedure is asymptotically optimal,3) compare this procedure
to the known optimal SPRT, and lastly4) compare these results
to the performance of any non-sequential procedure. Table I
summarizes these results.

http://arxiv.org/abs/1212.1801v2
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TABLE I
AVERAGE NUMBER OF MEASUREMENTS PER DIMENSION FOR EXACT

SUPPORT RECOVERY IN HIGH DIMENSIONAL LIMIT

non-sequential m ≥
log n

D(P1||P0)
necessary

sequential m ≥
log s

D(P0||P1)
necessary

SPRT based
procedure

m >
log s

D(P0||P1)
sufficient requires exact kno-

wledge ofP0, P1

Sequential
Thresholding

m >
log s

D(P0||P1)
sufficient does not require ex-

act knowledge ofP1

These developments are intriguing primarily for two rea-
sons. First, the results show thatsequentialprocedures succeed
when the number of measurements per dimension increases at
a rate logarithmic in the level ofsparsity, i.e. log s. In contrast,
well known results from statistical testing shownon-sequential
procedures require the average number of measurements per
dimension to increase at a rate logarithmic in thedimension,
i.e. log n. Secondly,Sequential Thresholding, a simple, practi-
cal procedure introduced here, achieves optimal performance
as the dimension grows large. The procedure operates by
repeatedly discarding from consideration components thatex-
hibit strong evidence of followingP0. Sequential Thresholding
can be implemented when the sparse components follow cer-
tain one-sided composite hypotheses – specifically, Sequential
Thresholding requires full knowledge ofP0 and knowledge
of a test statistic that satisfies a monotonic likelihood ratio
assumption (see Def. 5).

B. Motivation

The problem of sparse signal recovery using sequential
measurements arises in a number of commonly encountered
problems in science and engineering. In communications,
spectrum sensing for cognitive radio aims to identify unoc-
cupied communication bands in the electromagnetic spectrum.
Most bands will be occupied by primary users, but these users
may come and go, leaving a sparse set of bands momentarily
open and available for use by secondary transmitters. As noisy
samples of these occupied and unoccupied bands are collected
in a temporal manner, sequential methods are a natural fit
to map the occupation of the spectrum; in fact, recent work
in spectrum sensing has given considerable attention to such
approaches (see, for example [3], [4]).

Another captivating example a of sparse recovery problem
where sequential methods are currently employed is that of
the Search for Extraterrestrial Intelligence(SETI) project.
Researchers at the SETI institute sense for narrowband electro-
magnetic energy from distant star systems using large antenna
arrays, with the hopes of finding extraterrestrial transmission.
The dimension of the problem consists of over 100 billion
stars in the Milky Way alone, each with 9 million potential
‘frequencies’ in which to sense for narrow band energy. The
subset of planetary systems with extraterrestrial transmission
is sparse (since, to the best of our knowledge, SETI is yet
to make a contact). Moreover, while researchers may have a
good idea of the distribution of the background noise,P0,

complete knowledge ofP1 is of course not available, mak-
ing procedures based on sequential probability ratio testing
impractical. Roughly speaking, researchers at SETI use a
sequential procedure that repeatedly tests energy levels against
a threshold up to five times [5], [6]. If any of the up to five
measurements are below the threshold, the procedure passes
to the next frequency/star. Should the measurements exceed
the threshold on all five occasions, measurements of that star
and frequency are passed to an operator for further inspection.
This procedure is closely related to Sequential Thresholding.
Sequential Thresholding results in substantial gains overfixed
sample size procedures and can be computed without full
knowledge ofP1.

Sparse recovery also underlies a number of recent assay
studies in biology. Here, biologists estimate a sparse set of
genes or proteins that are critically involved in a certain
process or function. As an example, the study in [7] aims to
identify a small number of genes (approximatelys = 100 out
of n = 13, 071 total) that are important to virus replication in
fruit files cells. The involvement of each gene is measured as
follows. First the functionality of the gene is suppressed (using
a single geneknockout) and the fruit fly cells are exposed to the
virus under study. Associated with the virus is a fluorescent
marker, and the virus’s ability to replicate is quantified by
measuring the florescence produced by the infected cells. In
our model, the level of florescence observed when genei is
suppressed corresponds to a realization of the random variable
Yi. The biologists may have good estimates of the null dis-
tribution,P0, but not of the alternative distribution,P1, again
making procedures based on the SPRT difficult to implement.
A number of recent publications have implemented various
multi-stage (thus sequential) procedures [7]–[10] that operate
without full knowledge ofP1. The proposed procedures in
general aim to reduce the total dimension of the problem and
then employ traditional recovery techniques. While a number
of authors suspect such sequential methods result in increased
sensitivity, the gains are not fully theoretically quantified.

C. Related Work

Many of the fundamental results in sequential analysis were
developed by Wald, and formalized in his book, Sequential
Analysis [11]. The sequential probability ratio test (SPRT)
was shown to be optimal in terms of minimizing the error
probabilities and expected number of measurements for a
simple binary hypothesis test. A handful of issues arise when
exact knowledge of the distributions is unavailable, including
loss of optimality, which can make the SPRT impractical in
many scenarios. More specifically, in a parametric setting with
a monotone likelihood ratio, if the SPRT is implemented with
thresholds based on an incorrect parameter, the test can result
in arbitrarily large sample size (see [12], [13], and Sec. IV-B).

Aimed at addressing the deficiencies of the SPRT, a vast
body of literature is devoted to sequential tests of composite
hypothesis (including work by Wald [14]), and the more re-
strictive case of a monotone likelihood ratio setting. Before ad-
dressing sequential testing in the sparse and high dimensional
setting, we give a brief overview of this literature and refer the
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reader to [15], [13], and [12] for a more complete summary
of sequential testing for composite hypothesis testing. One
of the most prevalent sequential procedures applicable to the
monotone likelihood ratio setting is that of Lorden [16], who
proposed a procedure termed a 2-SPRT, which was shown to
be optimal for single parameter exponential families in a sense
proposed by Kiefer and Weiss [17] (in which the error rates
are minimized at a particular worst case parameter point, but
not universally). Schwarz [18] addressed the insufficiencies
of the SPRT by examining the shape of the decision regions
corresponding to asymptotically optimal tests (in a Bayesian
sense) as the sample size grows large. The resulting procedure
in brief operates as a sequential generalized likelihood ratio
test with anindifference zone. Many further approaches have
been suggested in the monotone likelihood setting: including
linear stopping boundaries [19], curved stopping boundaries
[20], and various forms of truncated SPRTs. Of these, the
work of [21] gave nearly optimal results over a wide class
of problems, but was limited practically in that the curved
stopping boundary is defined asymptotically. Ultimately, un-
like the case of simple hypothesis, practical procedures with
universally optimaltheoretical guarantees are not available.

Sequential testing for sparse signals was perhaps first stud-
ied by Posner in [22]. Motivated by the the problem of finding
a lost satellite in the sky, Posner aimed to minimize the
expected search time using a multistage procedure. Posner’s
procedure is closely related to the high dimensional extension
of the sequential probability ratio test (see Sec. IV for details).
Sequential approaches to the high dimensional sparse recovery
problem have recently been given increased attention, perhaps
motivated by the success of exploiting sparsity in other areas.
Related work includes [23], [24], in which the authors extend
the work of [22] to include multiple targets, encompassing a
more general model, and the work of [25], which aims to find
a rare element amongst infinitely many.

In some of the first work to quantify the gains of sequential
methods for sparse recovery [26], [27], the authors proposed
a sequential procedure for recovery in additive Gaussian
noise, termedDistilled Sensing. Our Sequential Thresholding
approach is similar to the Distilled Sensing method, however,
there are a number of distinctions. In this work we are
concerned with the probability of error in exact recovery ofthe
sparse supportS; Distilled Sensing controls the false discovery
and non-discovery rates which is less demanding than control
of the family-wise error rate. Controlling a distinct metric
gives rise to significant algorithmic differences. From an al-
gorithmic perspective both procedures involve of a number of
passes each of which discards components followingP0. For
theoretical guarantees, Distilled Sensing requires∼ log logn
passes (see Theorem III.1 of [27]), followed by an estimation
step, while Sequential Thresholding uses∼ logn passes,
without a final estimation step. From an analysis perspective,
the results in this paper are applicable to a larger class of
problems characterized by finite Kullback-Leibler divergence;
the Distilled Sensing approach is specific to the Gaussian
setting. Lastly, the results in [27] are presented in terms of
a parametric scaling of the sparsity with dimension, while no
such scaling is assumed here.

Also closely related to the work here are the lower bounds
of [28]. The lower bounds presented in [28] are stronger in
that they are not restricted to thecoordinate-wiseassumption,
but weaker in that they are terms of the expected set difference
and restricted to the Gaussian setting. The results of [28] were
published after the initial work in [1], [2].

Another related set of problems is that of finding the
best arm in a multi-armed bandit game [29]–[31]. Some
approaches to this problem are similar in nature to Sequential
Thresholding, namely themedian eliminationprocedure of
[31], but the problem setting is fundamentally different inthat
the procedure aims to return a single element that isapprox-
imately best. Other work in thebest arm literature focuses
on finding a single sparse element withtests of uniformly
small probability of error [29], [30], which is distinct from
the setting studied here.

D. Organization

The remainder of the paper is organized as follows. In
Sec. II we formalize the problem. Sec. III-A derives the
necessary condition on the number of samples required for
exact recovery using any procedure. For comparison, Sec.
III-B derives a necessary condition on the average number
of measurements for non-sequential procedures. Next, Sec.
IV analyzes the SPRT in the sparse setting and discusses
some of the shortcomings of the test when exact knowledge
of the distributions is not available. Lastly, Sec. V introduces
Sequential Thresholdingand analyzes its performance.

II. PROBLEM FORMULATION

Let S be a subset of{1, . . . , n} with cardinality s = |S|.
For any indexi ∈ {1, . . . , n}, the random variablesYi ∈ Y are
independent and distributed according to (1), whereP0 andP1

are probability distributions or mass functions with common
support1 on Y defined with respect to a common dominating
measure. In words, the random variableYi follows distribution
P1(·) if i belongs toS, and followsP0(·) otherwise. We write
Yi,j , for j = 1, 2, . . . , to index multiple i.i.d. samples of
Yi, and we refer toP0 as the null distribution, andP1 the
alternative. Our analysis is concerned with exact recovery
of the setS. The family wise error rate is defined as the
probability that the estimated support set differs from thetrue
support set:

Pe = P(Ŝ 6= S). (2)

The log-likelihood ratio statistic comprised of multiple i.i.d.
samples of a particular index is defined as:

L
(ℓ)
i (Yi,1, . . . , Yi,ℓ) :=

ℓ∑

j=1

log
P1(Yi,j)

P0(Yi,j)
. (3)

Here, the superscriptℓ explicitly indicates the number of
samples used to form the likelihood ratio and is suppressed

1The assumption of common support can be relaxed in practice and likely
leads to substantial gains, although this is not investigated.
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when unambiguous. The Kullback-Leibler divergence from
distributionP1 to P0 is defined as:

D(P1||P0) = E1

[

log
P1(Y )

P0(Y )

]

where E1 [·] is expectation with respect to distributionP1,
which gives the usual convergence of the normalized likeli-
hood ratio asℓ grows large:

1

ℓ
L
(ℓ)
i

a.s.
−→

{

−D(P0||P1) i 6∈ S

D(P1||P0) i ∈ S.
(4)

It is sometimes convenient to state results in terms of the
maximum of D(P0||P1) and D(P1||P0). In this case, we
define

DKL = max {D(P0||P1), D(P1||P0)} .

In order to bound rates of convergence of particular testing
procedures, we make use of the variance of the log-likelihood
ratio, denoted

σ2(P1||P0) = var
(

L
(1)
i |i ∈ S

)

= E1

[(

log
P1(Y )

P0(Y )
−D(P1||P0)

)2
]

.

A sampling procedureΓ is a method used to determine the
number of samples taken of each index. To be precise in char-
acterizing a sampling procedure, we present four definitions.

Definition 1. Sampling procedure.A collection of functions
Γi,j : {Yi,1, . . . , Yi,j−1} 7→ {0, 1}, for i ∈ {1, . . . , n} and j ∈
N that defines the number of samples ofYi that are observed.
Specifically, ifΓi,j = 1, thenYi,j is observed, and can be used
in estimation ofS. Conversely, ifΓi,j = 0, thenYi,j is not
observed, and is not used in estimation ofS.

Definition 2. Non-sequential (fixed sample size) sampling
procedure.Any sampling procedure such thatΓi,j is not a
function ofYi′,j′ for any i′, j′.

Definition 3. Sequential sampling procedure.A sampling
procedure in whichΓi,j is allowed to depend on previous
samples, specifically,Γi,j : {Yi,1, . . . , Yi,j−1} 7→ {0, 1}.

Definition 4. Uniform coordinate-wise sampling procedure.A
sampling procedure in whichΓi,j is not a function ofi.

Sequential procedures can make use of information as
it becomes available to adjust the sample size, while non-
sequential procedures, orfixed sample sizeprocedures, fix
the number of samples takena priori. Note that under this
definition, the set of non-sequential procedures are a subset of
sequential procedures.

In the lower bounds developed in this paper our consid-
eration is limited to procedures that test each index in an
identical manner (see definition 4). The uniform coordinate-
wise assumption also implies the procedure only uses samples
of componenti to make inference about that particular compo-
nent. More specifically, the decision to re-measure a particular
component or include it in the estimate ofS depends only on

samples of that component. As the dimension of the problem
grows large (which is our regime of interest), there is no loss
of optimality associated with this restriction2.

In order to make a fair comparison between different pro-
cedures, we limit the total number of samples in expectation.
For any procedure we require

E




∑

i,j

Γi,j



 ≤ nm (5)

for some m ≥ 0. This simply implies, on average, the
procedure usesm or fewer samples per dimension.

The family wise error rate of any procedure used to estimate
S depends on the underlying distributionsP0 and P1, the
dimension,n, the level of sparsitys, and the average number
of samples per component,m. Throughout,s andm are non-
decreasing functions inn (and thus, the setS is also a function
of n). We suppress this dependence onn for ease of exposition.
Our focus will be on finding the relationship between the triple
(n, s,m) such that for any fixed distributionsP0 andP1, either
limn→∞ Pe = 0 (the procedure is reliable) orlimn→∞ Pe > 0
(the procedure is unreliable). We assumes ≤ n/2 (without
loss of generality providedP0 and P1 are known, since if
s > n/2, one can re-label the problem, swappingP0 andP1).
As we are interested in sparse problems, some of the results
require the assumption thatlimn→∞

s
n = 0, which is termed

sub-linearsparsity, but this scaling is stated explicitly when
needed.

III. L IMITS OF RELIABLE RECOVERY

This section presents lower bounds on the number of
measurements required for reliable recovery by any procedure
in both the sequential and non-sequential setting. The bounds
are in terms of the expected number of samples per dimension.

A. Limitation of Sequential Procedures

The following theorem quantifies the limitations ofany
procedure, which includes both sequential and non-sequential
procedures, as non-sequential procedures are a subset of
sequential procedures (from Def. 2 and Def. 3). The bound
applies to finite problems, but also implies a necessary rateat
which m must grow withn for reliable recovery, captured in
the ensuing corollary.

Theorem 1. Finite sample limitations of sequential proce-
dures. Any uniform coordinate-wise (sequential) procedure
with

m ≤
log s+ log

(
1
4δ

)

DKL

also has

Pe ≥ 1− e−δ ≈ δ

where the approximation holds for smallδ.

2The lower bounds in [28], which are restricted to the Gaussian setting but
do not make a coordinate-wise assumption, match the scalingof the lower
bounds presented here.
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Proof: See Appendix A.
Thm. 1 establishes a lower bound on the expected number

of samples needed to achieve a particular family wise error
rate. As the dimension of the problem grows, it provides us
with a necessary condition for reliable recovery.

Corollary 1. Limitations of sequential procedures.Assume
limn→∞ s/n = 0. Any uniform coordinate-wise (sequential)
procedure with

lim sup
n→∞

m

log s
≤

1

D(P0||P1)

also haslim infn→∞Pe > 1/5.

Proof: Thm. 1 implies that ifm ≤ log s
DKL

then Pe ≥

1 − e−1/4 > 1/5. Dividing by log s and taking the limit as
n → ∞ would give the lemma ifDKL = D(P0||P1). Instead,
inspecting the proof of Thm. 1, it is easily verified that if
limn→∞ s/n = 0, the analysis follows withDKL replaced by
D(P0||P1).

In words, if the number of samples per dimension grows
at a rate slower than logarithmically in the level of sparsity,
no procedure can reliably recoverS. In shorthand notation, if
m ≤ log s

D(P0||P1)
thenPe can not be driven to zero, and recovery

of S is unreliable in the largen limit.

B. Limitation of Non-Sequential Procedures

Non-sequential methods, which sample each index a fixed
number of times, can require significantly more measurements
than sequential procedures. In the following theorem we state
a necessary condition onm for any reliable non-sequential
procedure. The proof is based on analysis of theChernoff
Information [32]. Our consideration is restricted to non-
sequential coordinate-wise procedures (which by definition
sample each componenti = 1, . . . , n exactlym times).

Theorem 2. Limitation of non-sequential procedures.Assume
limn→∞ s/n = 0. Any non-sequential uniform coordinate-
wise procedure with

lim sup
n→∞

m

log n
<

1

D(P1||P0)
(6)

also has

lim inf
n→∞

Pe ≥ 1/2.

Proof: See Appendix B.

IV. SEQUENTIAL PROBABILITY RATIO TESTING

A. The SPRT

ProvidedP0 andP1 are known, sequential probability ratio
tests are optimal for binary hypothesis tests in terms of
minimizing the expected number of measurements for any
error probabilities (shown originally in [33]); this optimality
translates to the high dimensional case by simply considering
n parallel SPRTs.

Each individual SPRT operates by continuing to measure
a component if the corresponding likelihood ratio is within
an upper and lower threshold, and terminating measurement

otherwise. For scalar thresholdsγL andγU, the procedure is
defined as

Γi,j′+1 =

{

1 if γL ≤
∏j′

j=1
P1(Yi,j)
P0(Yi,j)

≤ γU

0 else
(7)

where
∏j′

j=1
P1(Yi,j)
P0(Yi,j)

is the likelihood ratio comprised of all
prior samples. If the likelihood ratio falls belowγL, the SPRT
labels indexi as not belonging toŜ; if the likelihood ratio
exceedsγU, index i is assigned toŜ. Equivalently, the test
can be implemented in thelog-likelihood domain, andL(j′)

i

can be compared againstlog(γL) andlog(γU). The procedure
requires a random number of samples of each component,
denotedJi, and defined as

Ji := min{j : Γi,j+1 = 0}.

As we proceed we make a minor assumption on the distri-
bution of the log-likelihood statistic. Specifically, the ensuing
theorem and proof require existence of positive constantsC1

andC2 such that

E[L
(Ji)
i |L

(Ji)
i < log γL] ≥ log γL − C1

E[L
(Ji)
i |L

(Ji)
i > log γU] ≤ log γU + C2 (8)

for all thresholdsγU and γL. In some cases, bounds forC1

andC2 are known (see [14], p.145, where explicit expressions
for the Bernoulli and Gaussian case are given). In words,
the requirement is the existence of a constant that bounds
the expected value of thelog-likelihood ratio when the pro-
cedure terminates, regardless of the value of the threshold.
This condition is satisfied whenL(1)

i follows any bounded
distribution, Gaussian distributions, exponential distributions,
among others. It is not satisfied by distributions with infinite
variance or polynomial tails. A more thorough discussion of
this restriction is studied in [34].

Theorem 3. Ability of the SPRT.The SPRT procedure with
thresholdsγL = 1

s1+ǫ and γU = (n− s)
1+ǫ, any ǫ > 0, has

lim
n→∞

Pe = 0

and

lim
n→∞

m

log s
≤

1 + ǫ

D(P0||P1)
.

provideds < n/ logn, and the condition in (8) is satisfied.

Proof: See Appendix C.

B. Implementation Issues

Implementing an SPRT on each component can be chal-
lenging for many problems encountered in practice. While the
SPRT is optimal when bothP0 andP1 are known and testing a
single component amounts to a simple binary hypothesis test,
scenarios often arise where some parameter of distribution
P1 is unknown. When some parameter ofP1 is unknown,
the likelihood ratio cannot be formed, and sufficient statistics
for the likelihood ratio result in adjustments to the thresholds
based on the unknown parameters of distributionP1. With
incorrect thresholds, the SPRT is no longer optimal. To see
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this more concretely, consider a problem whereP1 is a
normal distribution with an unknown positive meanµ and unit
variance, andP0 is a zero mean standard normal distribution.
Here, the SPRT procedure continues to sample a particular
index if

log γL
µ

+
j′µ

2
≤

j′
∑

j=1

Yi,j ≤
log γU

µ
+

j′µ

2
, (9)

equivalent to (7). While the statistic
∑j′

j=1 Yi,j does not
depend on the unknown parameterµ, the thresholds do. If the
test is implemented with an incorrect value ofµ, it may result
in large sample sizes. This occurs whenµ is overestimated;
for illustration, consider a scenario in which the threshold is
set erroneously using̃µ = 2µ, whereµ is the true mean of
P1. If P1 is the true distribution, this test is then equivalent
to waiting for an unbiased random walk to cross a constant
threshold, resulting in arbitrarily large sample size. Conversely,
if µ is underestimated, the false negative rate of the test
becomes arbitrarily large. This issue lead researchers to study
the optimality of the SPRT with anindifferenceregion [18].

To address these and other deficiencies of the SPRT, a
number of tests have been proposed for composite tests in the
monotone likelihood setting (see Sec. I-C and [16], [18], [21]);
we note that these procedures may achieve the lower bound
as stated in Theorem 1 (although we do not investigate this
further here). Motivated by real world experiments in biology,
we present a procedure specific to the sparse setting, termed
Sequential Thresholding. Sequential Thresholding can be in-
terpreted as a truncated SPRT without memory. Sequential
Thresholding is simple to implement and analyze, and provides
optimal theoretical guarantees for sparse signals.

V. SEQUENTIAL THRESHOLDING

Sequential Thresholding is based on simple idea: repeat-
edly reduce the dimension of the problem by sequentially
eliminating elements that exhibit strong evidence they don’t
belong to S. Sequential Thresholding consists of a series
of K measurement steps, where each step eliminates from
consideration a proportion of the components measured on
the prior step. After the last step, the procedure terminates,
and the remaining components are taken as the estimate ofS.

To illustrate the main idea behind the procedure, we first
introduce a simplified version of Sequential Thresholding
and analyze the simplified procedure for a specific problem.
This simple Sequential Thresholding, while not achieving
asymptotic optimality, does admit a simple error analysis.The
more general version of Sequential Thresholding, which does
achieve optimality and the lower bound of Cor. 1, is presented
in the second half of this section.

A. Example of Simple Sequential Thresholding

To highlight the main idea behind Sequential Thresholding,
and the potential performance gains, consider a problem where
P0 ∼ N (0, 1) and P1 ∼ N (θ, 1) for some θ > 0. The
simpleSequential Thresholding procedure requires two inputs:
1) δ > 0, which represents the desired error probability, and

2) an even integerm ≥ 2 that defines the average number
of samples per index, and hence the total budget. On the
first step the procedure samples all indicesm/2 times each,
for all i, requiringmn/2 samples. Thesem/2 samples are
summed for each index; letTi denote this sum. IfTi is less
than zero, that particular index is not sampled on subsequent
passes. This eliminates a proportion (approximately half)of
components following the null distribution (since the median
of Ti for i 6∈ S is zero). Indices that exceed the threshold,
i.e. {i : Ti > 0}, are sampled on the subsequent step. This
process continues forK ≈ log2 n steps. At each step,Ti is
defined as the sum of them/2 measurements of indexi on
that step (we suppress dependence on the step for ease of
notation). After theKth step, the procedure terminates, and
estimatesS as the set of indices that have not been eliminated
from consideration. Roughly speaking, provideds ≪ n, the
procedure reduces the number of samples taken on each step
by half as most components follow the null, which is zero
mean. The total number of samples required by the procedure
on all steps is approximatelym2

(
n+ n

2 + n
4 + . . .

)
≈ mn on

average, implying approximatelym samples per dimension.

Algorithm 1 Simple Sequential Thresholding
input: desired error probabilityδ, budgetm ≥ 2
initialize: S1 = {1, . . . , n}, K =

⌈
log2

(
2n
δ

)⌉
steps

for k = 1, . . . ,K do
for i ∈ Sk do

measure: samplem/2 timesYi, denoteTi the sum of
these samples

threshold: Sk+1 := {i ∈ Sk : Ti > 0}
end for

end for
output:SK+1

Theorem 4. Reliability of Simple Sequential Thresholding.
Consider the setting above whereP0 ∼ N (0, 1) and P1 ∼
N (θ, 1). The simple Sequential Thresholding algorithm with
input δ > 0 satisfiesPe < δ provided

m >
log s+ log log2

(
2n
δ

)
+ log

(
1
δ

)

θ2/4
.

Proof: From a union bound,

Pe ≤ (n− s)P
(

i ∈ Ŝ|i 6∈ S
)

+ s P
(

i 6∈ Ŝ|i ∈ S
)

. (10)

The false positive event occurs when, fori 6∈ S, the index
survives all K thresholding steps. RecallTi denotes the
sum of them/2 samples from any particular step. By the
independence across steps, and since the median ofTi for
i ∈ S is zero,

P

(

i ∈ Ŝ|i 6∈ S
)

=

(
1

2

)K

≤
δ

2n
. (11)

The false negative event occurs when for somei ∈ S, Ti falls
below zero on any of theK steps. Applying a union bound
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and Gaussian tail bound, sinceTi ∼ N (mθ/2,m/2), we have

P

(

i 6∈ Ŝ|i ∈ S
)

≤
K

2
exp

(
−mθ2/4

)

≤
1

2
log2

(
2n

δ

)

exp

(

−
mθ2

4

)

≤ δ/2 (12)

where the last line follows by asserting

m ≥
log s+ log log2

2n
δ + log 1

δ

θ2/4
. (13)

Combining (10), (11) and (12) givesPe ≤ δ.
The simple Sequential Thresholding procedure requires

orderlog s+ log logn samples per dimension. While the sub-
optimal simple version of Sequential Thresholding does not
achieve the lower bound of Theorem 1, it does out-perform
non-sequential procedures. Ifm is orderlog s+ log logn, the
procedure is reliable. On the other hand, Sec. III-B shows
reliable recovery with non-sequential methods requirem to be
orderlogn. For largen and smalls, logn can be significantly
larger than log s + log logn, implying that the simplified
version of Sequential Thresholding, for sufficiently sparse
problems, will succeed with fewer samples than any non-
sequential procedure. Note that the simple version of Sequen-
tial Thresholding is a uniform coordinate-wise procedure and
the lower bound of Theorem 1 can be reasonably compared.

B. Implementation

One of the main attributes of Sequential Thresholding is that
it can be implemented in certain scenarios with limited knowl-
edge of distributionP1; namely, when the underlying testing
problem satisfies a monotone likelihood ratio assumption [35].
If there exists a test statistic that is a monotonic transform of
the likelihood ratio, regardless of any unknown parameters
of P1, then the test can be implemented. This scenario can
arise when testing a one-sided composite hypothesis against
a simple alternative. While apparent in the example of simple
Sequential Thresholding above, in which two normal distribu-
tions are compared, more generally the monotone likelihood
ratio assumption arises when the sparse alternative corresponds
to a parametric family of densities. To be precise, considerthe
following definition.

Definition 5. Monotone Likelihood Ratio Assumption.P0(Yi)
is known andP1(Yi; θ) is defined by a parametric fam-
ily of distributions with an unknown parameterθ ∈ Θ.
The family {P1(Yi; θ)}θ∈Θ is said to be a monotone like-
lihood ratio family with respect toP0 in the scalar statis-
tic T

(ℓ)
i = T

(ℓ)
i (Yi,1, . . . , Yi,ℓ) if the log likelihood ratio

∑ℓ
j=1 log

(
P1(Yi,j ;θ)
P0(Yi,j)

)

is strictly monotonic increasing inT (ℓ)
i

for all θ ∈ Θ.

In addition to being satisfied in the trivial case whereP0 and
P1 are fully specified, the monotone likelihood ratio assump-
tion holds in the conventional setting whereP0 andP1 belong
to a common one-parameter family of distributions with a
monotone likelihood function. For example, in exponential
families the test statisticT (ℓ)

i is the sufficient statistic forθ.

This property is well illustrated by the example of testing
two Gaussian distributions discussed above. If we assume
the null distribution is known, but the larger mean ofP1 is
unknown, the procedure can still be implemented. The sum
of the measurements,

∑

j Yi,j , is a sufficient statistic (whose
distribution underP0 of course does not depend onP1). For
additional examples in which the underlying test satisfies the
monotone likelihood ratio assumption, see [35] and references
therein.

C. Details of Sequential Thresholding

While the previous discussion highlighted the main princi-
ple behind Sequential Thresholding, the procedure becomes
slightly more complicated in its full generality. To show the
procedure achieves the lower bound of Cor. 1 asn grows
large, both the allocation of measurements across steps andthe
proportion of null components discarded on each step must be
adjusted.

In general, Sequential Thresholding requires three inputs: 1)
δ, the desired family wise error rate,2) a constantρ ∈ [1/2, 1)
representing the proportion of null components discarded on
each step, and3) a total measurement budgetmn (meaning
an average ofm samples per dimension). AssumeP0, P1,
and a test statisticT (ℓ)

i satisfy the monotone likelihood ratio
assumption (Def. 5), and assume the procedure has exact
knowledge ofs to facilitate analysis3. The minimum expected
proportion of null components discarded on each step,ρ, is
fixed throughout the procedure and is used to define the series
of thresholds as

min
{

γk : P(T
(mk)
i ≤ γk|i 6∈ S) ≥ ρ

}

. (14)

In words, the thresholds are set so that at least a proportion
ρ of the null components are discarded, in expectation, on
each step. Here,mk is the number of samples of any index
measured on stepk. As mk is a function of the step index, so
is the thresholdγk.

With ρ and δ as inputs, and a total expected measurement
budgetmn, Sequential Thresholding operates as follows. Let
Sk denote the subset of{1, . . . , n} comprised of components
still under consideration at stepk. The procedure first initial-
izes by settingS1 = {1, . . . , n} and defining

K =

⌈

log 1
1−ρ

(
2(n− s)

δ

)⌉

(15)

where⌈x⌉ denotes smallest integer greater than or equal tox.
For stepsk = 1, . . . ,K, the procedure proceeds as follows.
On stepk, each component inSk is sampledmk times. The
number of samples taken on stepk is defined as

mk =

⌊

m k ρ2
(

n

n+ sK2

)⌋

(16)

3In practice, the procedure is fairly insensitive to knowledge of s. Specif-
ically, when s is underestimated, it is straightforward to see that while the
procedure may exceed the measurement budget, it will also have a decreased
family wise error rate. Likewise, underestimatings will result in a small
increase in the family wise error rate, but also a decrease inthe total expected
number of samples.
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where⌊x⌋ indicates the largest integer smaller than or equal
to x. The procedure then compares the test statistic comprised
of the mk samples to the threshold defined in (14) and
includes only the indices that exceed the threshold in the set
of components to be sampled on the following step:

Sk+1 =
{

i ∈ Sk : T
(mk)
i > γk

}

where γk is defined in (14). In words, ifT (mk)
i is below

γk, no further measurements of componenti are taken for
the remainder of the procedure. Otherwise, componenti is
measured on the subsequent step. By definition ofγk, ap-
proximately ρ times the number of remaining components
following P0 will be eliminated on each step; ifs ≪ n,
each thresholding step eliminates approximatelyρ times the
total number of components remaining. After stepK, the
procedure terminates and estimatesS as the indices still under
consideration:Ŝ = SK+1. The procedure is detailed in Alg.
2.

Algorithm 2 Sequential Thresholding

input: desired error probabilityδ, budgetm, ρ ∈ [1/2, 1)

initialize: S1 = {1, . . . , n}, K =
⌈

log 1
1−ρ

(
2(n−s)

δ

)⌉

for k = 1, . . . ,K do
for i ∈ Sk do

measure: samplemk =
⌊

m k ρ2
(

n
n+sK2

)⌋

timesYi,

compute scalar statisticT (mk)
i

threshold: Sk+1 := {i ∈ Sk : T
(mk)
i > γk}

end for
end for
output:SK+1

D. Ability of Sequential Thresholding

For fixedP0 andP1 belonging to a class of distributions
satisfying Definition 5, the following theorem and corollary
relate(n, s,m) to the family wise error rate of the procedure.

Theorem 5. Finite sample performance of Sequential Thresh-
olding. Consider Sequential Thresholding defined in Alg. 2.
Provided

m ≥
log s+ log δ−1 + log 4

cn

then

Pe ≤ δ

where

cn = ρ2
(

n

n+ sK2

)

× (17)



D(P0||P1)−

√
√
√
√

σ2(P0||P1)
(

ρ2n log s
D(P0||P1)(n+sK2) − 1

)

(1− ρ)






and is assumed to be positive.

Proof: See Appendix D.

Theorem 5 quantifies the expected number of samples per
dimension in the finite setting. The theorem is in terms of a
sequence,cn, which, under certain conditions, approaches the
Kullback-Leibler divergence betweenP0 andP1. Proof of the
theorem relies on techniques closely related to the Chernoff-
Stein Lemma, and is found in the Appendix.

Corollary 2. Reliability of Sequential Thresholding.If

lim
n→∞

m

log s
>

1

D(P0||P1)

then sequential threshold satisfies

lim
n→∞

Pe = 0

with input parametersδ = 1
log s and ρ = 1− 1√

log s
, provided

s < n/(logn)2, limn→∞ s = ∞, andσ2(P0||P1) < ∞.

Proof: The proof follows from Thm. 5 by set-
ting the input parameters as specified (which implies
limn→∞ δ = 0). The total number of steps is thenK =
⌈ log (2(n− s))/ (2 log log s)− 1/2⌉. With this K, and with
ρ as defined in the statement of the theorem,limn→∞ cn =
D(P0||P1), wherecn is defined in (17). Together with the
forward part of the theorem, this implies the corollary.

As Sequential Thresholding is uniform coordinate wise
procedure, comparison of Cor. 2 to Cor. 1 shows the procedure
is asymptotically optimal in terms of the required number of
samples needed for reliable recovery.

Thm. 5 and Cor. 2 imply that as the size of the prob-
lem increases (asn goes to infinity), if m is greater than
D(P0||P1)

−1 log s, the procedure will succeed in exact re-
covery of the sparse support set. This achieves the lower
bound in Cor. 1, which states that any reliable procedure
requires at leastD(P0||P1)

−1 log s samples per dimension.
This implies that Sequential Thresholding is in a sensefirst
order optimal. While not investigated here, one could also
analyze the rate at which the procedure approaches the lower
bound in Cor. 1, although the authors suspect the procedure
would not achievesecondorder optimality (as the rate at which
cn approachesD(P0||P1)

−1 in Corollary 2 is quite slow). We
suspect other procedures proposed for composite tests in the
monotone likelihood setting could be analyzed and/or modified
to achieve higher order optimality in the sparse setting, in
particular [21]; we leave this for future work.

This paper showed that sequential methods for support
recovery of high dimensional sparse signals in noise can
succeed using far fewer measurements than non-sequential
methods. Specifically, non-sequential methods require the
number of measurements to grow logarithmically with the
dimension, while sequential methods succeed if the number
of measurements grows logarithmically with the level of spar-
sity. A simple procedure termed Sequential Thresholding was
shown to achieve the lower bound asymptotically. Sequential
Thresholding can be implemented in the monotone likelihood
setting, making it a practical solution for sparse recovery
problems encountered in practice.
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APPENDIX A
PROOF OFTHEOREM 1

Proof: We first bound the family wise error rate in terms
of the false positive and false negative probabilities associated
with incorrectly assigning or excluding any element from̂S.
The coordinate-wise assumption implies that the individual
error rates at each index are the same. To be specific, define
the event

Ei = {i ∈ Ŝ∆S}. (18)

A coordinate wise procedure then hasP(Ei) = P(Ei′) for all
i, i′ ∈ S, and, likewiseP(Ei) = P(Ei′) for all i, i′ 6∈ S. Under
this assumption we can simplify notation and define the false
positive and false negative rates which are independent of the
particular index:

α = P(Ei|i 6∈ S) β = P(Ei|i ∈ S). (19)

From (2),

Pe = P




⋃

i6∈S
Ei ∪

⋃

i∈S
Ei





= 1− P




⋂

i6∈S
Ec
i ∩

⋂

i∈S
Ec
i





= 1− (1− β)s(1− α)n−s

≥ 1− e−βse−α(n−s) (20)

where the last inequality follows as(1 − β)n ≤ e−βn for
β ∈ [0, 1] andn ∈ {1, . . .}. To continue, we can bound the
expected number of samples associated with any particular
index. From [20], Thm. 2.39, the following holds for any
binary hypothesis test

m0 ≥
α log

(
α

1−β

)

+ (1− α) log
(

1−α
β

)

D(P0||P1)

http://www.jstor.org/stable/2235829
http://www.jstor.org/stable/2984106
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wherem0 is the expected number of samples of any compo-
nent i 6∈ S. We can further bound the expected number of
samples as

m0 ≥
α logα+ (1− α) log(1− α) + (1− α) log β−1

D(P0||P1)

≥
(1 − α) log β−1 − log 2

D(P0||P1)

where the first inequality follows asα log(1/(1−β)) ≥ 0, and
the last inequality follows asα logα + (1 − α) log(1 − α) ≥
log(1/2), all α ∈ [0, 1]. Likewise

m1 ≥
(1− β) log

(
1−β
α

)

+ β log
(

β
1−α

)

D(P1||P0)

≥
(1− β) logα−1 − log 2

D(P1||P0)

wherem1 is the average number of samples giveni ∈ S,
and the first inequality is again from Thm. 2.39 of [20]. Let
DKL = max {D(P0||P1), D(P1||P0)}. We have

m =
(n− s)m0 + s m1

n

≥
(n− s)(1 − α) log β−1 + s(1− β) logα−1 − n log 2

nDKL
.

If α ≤ β we have

m ≥
(n− s)(1 − β) log β−1 + s(1− β) log β−1 − n log 2

nDKL

=
(1 − β) log β−1 − log 2

DKL

≥
log
(

1
2β

)

− log 2

DKL

where the last inequality is easily verified forβ ∈ [0, 1].
Imposing the condition in the forward part of the theorem,

m ≤ (log s+ log(4δ)−1)/DKL gives

log s+ log
(

1
4δ

)

DKL
≥ m ≥

log
(

1
2β

)

− log 2

DKL

which implies

log s+ log

(
1

4δ

)

≥ log

(
1

2β

)

− log 2

and thus

β ≥ δ/s.

Hence,

Pe ≥ 1− e−δe−(n−s)α ≥ 1− e−δ.

Conversely ifβ > α

m ≥
log
(

1
2α

)
− log 2

DKL

and

Pe ≥ 1− e−sβe−
(n−s)δ

s
α

which, provideds < n/2, gives

Pe ≥ 1− e−δ.

completing the proof.

APPENDIX B
PROOF OFTHEOREM 2

Proof: We write the family wise error rate as in (20):

Pe ≥ 1− e−α(n−s)e−βs

≥ 1− e−α(n−s)

whereEi is defined in (18) andα andβ are defined in (19).
Note that ifα > 1

n−s , thenPe ≥ 1 − e−1 ≥ 1/2. We have
that

lim sup
m→∞

1

m
logα−1 < lim inf

m→∞
1

m
log(n− s)

thenlim infn→∞Pe ≥ 1/2 (since the above inequality implies
α > 1

n−s for sufficiently largem). Next assumeβ < 1/2 (the
result of the Theorem is trivial ifβ ≥ 1/2). From [32, p. 386]
(Chernoff Information),

lim sup
m→∞

1

m
logα−1 = D(Pλ||P0) ≤ D(P1||P0) (21)

where

Pλ =
Pλ
0 P

1−λ
1

∫

Ω
Pλ
0 P

1−λ
1 dy

for λ ∈ [0, 1]. Thus, if

lim inf
m→∞

1

m
log(n− s) ≥ D(P1||P0)

lim infn→∞ Pe ≥ 1/2. Since limn→∞ m = ∞, this implies
the result. If

lim sup
n→∞

m

logn
<

1

D(P1||P0)
(22)

then lim infn→∞ Pe ≥ 1/2.

APPENDIX C
PROOF OFTHEOREM 3

Proof: For an SPRT with thresholdsγL and γU, from
[20], the following well known inequalities hold:

α ≤ γ−1
U =

1

(n− s)1+ǫ
β ≤ γL =

1

s1+ǫ
(23)

whereα and β are defined in (19). From a union bound on
the family-wise error rate

lim
n→∞

Pe ≤ lim
n→∞

(n− s)α+ sβ = 0 (24)

implying the forward portion of the lemma.
We can write the expected number of measurements per

dimension as

m =
(n− s)E0 [Ji] + s E1 [Ji]

n

By Wald’s identity [20]

E1 [Ji] =
E1

[

L
(Ji)
i

]

E1

[

L
(1)
i

] =
E1

[

L
(Ji)
i

]

D(P1||P0)
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and similarly,E0 [Ji] =
−E0

[

L
(Ji)

i

]

D(P0||P1)
. Dividing by log s and

taking the limit, we have

lim
n→∞

m

log s
= lim

n→∞
(n− s)E0 [Ji] + s E1 [Ji]

n log s

= lim
n→∞

−(n− s)E0

[

L
(Ji)
i

]

n log(s)D(P0||P1)
+ lim

n→∞

s E1

[

L
(Ji)
i

]

n log(s)D(P1||P0)

≤ lim
n→∞

(n− s)(log γ−1
L + C1)

n log(s)D(P0||P1)
+ lim

n→∞
s(log γU + C2)

n log(s)D(P0||P1)

where the inequality follows by the assumptions in (8) and as

− E0

[

L
(Ji)
i

]

= −(1− α)E0

[

L
(Ji)
i

∣
∣
∣L

(Ji)
i < log γL

]

−αE0

[

L
(Ji)
i

∣
∣
∣L

(Ji)
i > γU

]

≤ (1 − α)(log γ−1
L + C1) + α(log γ−1

U − C2)

≤ (1 − α)(log γ−1
L + C1)

≤ log γ−1
L + C1

and likewise,

E1

[

L
(Ji)
i

]

≤ log γU + C2.

Using the prescribed values ofγU andγL gives

lim
n→∞

m

log s
=

1 + ǫ

D(P0||P1)
(25)

provideds < n/ logn, completing the proof.

APPENDIX D
PROOF OFTHEOREM 5

Proof: By design, Sequential Thresholding satisfies the
measurement budget in (5). Consider the expected number of
samples required by Sequential Thresholding:

E




∑

i,j

Γi,j



 = P

(
⋃

i∈S
Ei

)

E




∑

i,j

Γi,j

∣
∣
∣
∣
∣

⋃

i∈S
Ei



 (26)

+ P

(
⋂

i∈S
Ec
i

)

E




∑

i,j

Γi,j

∣
∣
∣
∣
∣

⋂

i∈S
Ec
i





where the equality follows from the law of total probability
and conditioning on one or more false negative events. From
Alg. 2, one or more false negatives can only reduce the total
number of samples, and we have

E




∑

i,j

Γi,j

∣
∣
∣
∣
∣

⋂

i∈S
Ec
i



 ≥ E




∑

i,j

Γi,j

∣
∣
∣
∣
∣

⋃

i∈S
Ei



 .

Combining this with (26) gives

E




∑

i,j

Γi,j



 ≤ E




∑

i,j

Γi,j

∣
∣
∣
∣
∣

⋂

i∈S
Ec
i





=
K∑

k=1

mk

(
(1− ρ)k−1(n− s) + s

)

≤
K∑

k=1

m

(
n

n+ sK2

)

kρ2
(
(1 − ρ)k−1(n− s) + s

)

≤ mn

(
n− s+ sK2

n+ sK2

)

≤ mn.

Here, the equality follows from independence of the samples
across theK steps. The third inequality follows as the sum
is an arithmetico-geometric series forρ ∈ [1/2, 1) and as
∑K

k=1 k ≤ K2. As the budget is satisfied, this implies the
procedure will use less thanm samples per dimension. We
continue by bounding the error rates.

Applying a union bound to the family wise error rate, we
have

Pe ≤ (n− s)α+ sβ (27)

whereα andβ are defined in (19). The false negative event
is given as

β = P1

(
K⋃

k=1

L
(mk)
i < γk

)

≤
K∑

k=1

P1

(

L
(mk)
i < γk

)

where we defineP1(·) = P(·|i ∈ S) to simplify notation. We
continue by bounding the above probability. The following
analysis is closely related to the Chernoff-Stein lemma [32],
but modified for one sided tests. Note by the mononicity of
T

(mk)
i with respect toL(mk)

i , we can analysis the test using
L
(mk)
i . Let yk = (y1, . . . , ymk

) and define the regionAk ⊂
R

mk as

Ak := {yk : L
(mk)
i (yk) < γk}.

For all yk in Ak, by definition,

L
(mk)
i (yk) =

mk∑

j=1

log
P1(yj)

P0(yj)
< γk

which implies

P
(mk)
1 (yk) < eγkP

(mk)
0 (yk)

whereP (mk)
1 (yk) =

∏mk

j=1 P1(yj). Again by definition

P1(L
(mk)
i < γk) =

∫

A
P

(mk)
1 (y)dy

≤

∫

A
eγkP

(mk)
0 (y)dy

= eγk

∫

A
P

(mk)
0 (y)dy

= eγkP0(L
(mk)
i < γk)

≤ eγk . (28)
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β ≤
K∑

k=1

P1

(

L
(mk)
i ≤ γk

)

≤
K∑

k=1

e−mk(D(P0||P1)−ǫk) (33)

≤
K∑

k=1

exp











−mk ρ2
(

n

n+ sK2

)




D(P0||P1)−

√
√
√
√

σ2(P0||P1)
(

mρ2n
n+sK2 − 1

)

(1− ρ)






︸ ︷︷ ︸

c′n











≤
e−mc′n

1− e−mc′n
(34)

cn = ρ2
(

n

n+ sK2

)




D(P0||P1)−

√
√
√
√

σ2(P0||P1)
(

ρ2n log s
D(P0||P1)(n+sK2) − 1

)

(1− ρ)




 (35)

The above relationship holds for anyγk, including that defined
in (14). Next defineǫk > 0 such that

γk = −mk(D(P0||P1)− ǫk) (29)

whereγk is given in (14). It remains to show what values ofǫk
simultaneously satisfy (14) for anyρ ∈ [1/2, 1). Specifically,
we need to find the range of values ofǫk that satisfy

P0

(

L
(mk)
i ≤ −mk(D(P0||P1)− ǫk)

)

≥ ρ. (30)

Proceeding,

P0

(

L
(mk)
i ≤ −mk(D(P0||P1)− ǫk)

)

= P0

(
1

mk
L
(mk)
i +D(P0||P1) ≤ ǫk

)

= P0



D(P0||P1)−
1

mk

mk∑

j=1

log
P0(Yj)

P1(Yj)
≤ ǫk





≥ 1−
σ2(P0||P1)

mkǫ2k
(31)

where the last line follows from Chebyshev’s inequality. To
insure that (30) can be satisfied, we have the following
condition

ǫk ≥

√

σ2(P0||P1)

mk(1 − ρ)
.

As mk is smallest fork = 1, from the definition ofmk in
(16),

mk ≥ m1 ≥
mρ2n

n+ sK2
− 1

and the condition can be satisfied for anyk provided

ǫk ≥

√
√
√
√

σ2(P0||P1)
(

mρ2n
n+sK2 − 1

)

(1− ρ)
. (32)

To summarize developments thus far, we’ve shown that if
γk = −mk(D(P0||P1)− ǫk) then both

P1

(

L
(mk)
i < γk

)

≤ e−mk(D(P0||P1)−ǫk)

and

P0

(

L
(mk)
i ≤ γk

)

≥ ρ

for any ǫk that satisfies (32).
Continuing withmk as specified in (16), gives (33) – (34),

where the last inequality follows as the sum is geometric. With
K =

⌈

log 1
1−ρ

(
2(n−s)

δ

)⌉

, the false positive rate is then

α ≤ (1 − ρ)K

≤ (1 − ρ)
log 1

1−ρ
( 2(n−s)

δ )

≤
δ

2(n− s)
. (36)

Combining (34) and (36) gives

Pe ≤
δ

2
+ s

e−mc′n

1− e−mc′n
.

Next, from the statement of the theorem, let

m ≥
log
(
4s
δ

)

cn

where cn is defined in (35). Noticecn ≤ D(P0||P1). Thus,
m ≥ log s

D(P0||P1)
, and

m ≥
log
(
4s
δ

)

cn
≥

log
(
4s
δ

)

c′n

wherec′n is given in (34). Asm ≥
log( 4s

δ )
c′n

,

Pe ≤
δ

2
+

δ/4

1− δ/(4s)
≤ δ

where the last inequality holds fors ≥ 1, δ ≤ 1 which proves
the theorem.
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