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Abstract. We investigate group coding for arbitrary finite groups act-
ing linearly on vector spaces. These yield robust codes based on real or
complex matrix groups. We give necessary and sufficient conditions for
correct subgroup decoding using geometric notions of minimal length
coset representatives. The infinite family of complex reflection groups
G(r, 1, n) produces effective codes of arbitrarily large size that can be
decoded in relatively few steps.

1. Introduction

Permutation group codes originated in the 1950’s in unpublished memos
of David Slepian, who used the orbit of a point on a sphere under a group
action as signals for communication. Slepian chose a group of permutations
of coordinates and reversals of their signs acting on a finite-dimensional real
vector space. He published this work in 1965 and extended the idea to arbi-
trary groups of isometries (see [1] and [2]). Ingemarsson [3] and Ericson [4]
provide surveys of early work on group codes. Forney [5] considered codes
in Euclidean space invariant under isometries. Recent applications of per-
mutation codes to flash memory can be found in Jiang et al. [6, 7] and Barg
and Mazumdar [8].

Slepian’s original permutation group codes have been generalized to other
real reflection groups (Coxeter groups); see Mittelholzer and Lahtonen [9]
for a comprehensive account. Fossorier, Nation, and Peterson [10] devel-
oped a decoding method for group codes using a sequence of subgroups and
coset representatives which yields efficient decoding of real reflection group
codes. Properties of the length function (defined by simple reflections) and
parabolic subgroup structure give effective codes based on Coxeter groups.
Peterson asked what other groups might have an action that lends itself well
to coding using these ideas.
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In this article, we consider an arbitrary finite group G acting linearly
on a real or complex finite-dimensional vector space. We identify a set of
messages with a finite set of vectors, codewords, closed under the action of
the group. The codewords are simply the orbit under the group of some
fixed initial vector x0: each group element g in G defines a codeword g−1x0.

One sends a message by transmitting a codeword, but noise disturbs com-
munication and the received vector may not be a codeword, nor even close
to a codeword. We explore a technique called subgroup decoding that takes
advantage of the abstract structure of the group, in addition to its explicit
action on the vector space, to decode. Subgroup decoding uses a chain of
nested subgroups,

{I} ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gm = G,

to interpret the received vector as a codeword. Each element in the group
has a unique factorization as a product cmcm−1 · · · c1 where each ci lies in a
fixed set of representatives for the left cosets of Gi−1 in Gi. We argue that
this factorization itself serves as an encoding of a message, and we explore
how different choices of coset representatives and subgroup sequences affect
decoding accuracy, efficiency, and error control.

To summarize two sample results, let us distinguish two levels of “correct
decoding” and explain how coset representatives may distinguish themselves
geometrically with respect to a given subgroup sequence. We say that an
algorithm decodes correctly with some noise if there exists δ > 0 such that a
received vector r decodes to a transmitted codeword w whenever ‖r−w‖ <
δ. We say that an algorithm decodes robustly if a received vector r always
decodes to the nearest codeword w (when a unique closest one exists). As
the group is finite,

robust decoding⇒ correct decoding with some noise.

A coset representative is called minimal (Definition 7) if the codeword it
defines is closer to the initial vector x0 than any other codeword defined
by its coset. A collection of representatives for the cosets of Gi−1 in Gi is
called greed compatible (Definition 11) if their inverses translate the Voronoi
region of x0 for codewords defined by Gi to a collection of sets covering the
Voronoi region defined by Gi−1. Note that the products cmcm−1 · · · ck+1,
with each ci in a fixed set of representatives for the left cosets of Gi−1 in
Gi, give a set of induced coset representatives for the cosets of Gk in G
(see Lemma 18). The following two results (Theorem 15 and Corollary 22)
summarize some of our findings.

Theorem A. Let G be any finite matrix group and choose any initial
vector with full orbit and any sequence of nested subgroups. The subgroup
decoding algorithm decodes correctly with some noise if and only if induced
coset representatives are minimal.
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Theorem B. Let G be any finite matrix group and choose any initial
vector and sequence of nested subgroups. If coset representatives are greed
compatible, then the group decoding algorithm decodes robustly.

This article analyzes properties that a finite group of matrices should ex-
hibit for a successful group coding scheme. After outlining group coding in
Section 2 and subgroup decoding in Section 3, we discuss the characteristics
of an effective code in Section 4. Section 5 gives a quick background on re-
flection groups helpful for later examples. We use analogs of Weyl chambers
and Voronoi cells for arbitrary isometry groups in Section 6 to define the
fundamental region and decoding region. Section 7 establishes various geo-
metric notions of minimal coset representatives analogous to minimal length
representatives in the theory of Coxeter groups. We compare these various
geometric notions of minimal coset representatives in Section 8. We prove
that these geometric notions yield robust codes in Section 9 and give neces-
sary and sufficient conditions for correct subgroup decoding in Section 10.
Section 11 gives a result on controlling errors using group theory. Ties are
discussed in Section 12 and techniques to improve the efficiency of decoding
appear in Section 13.

These ideas are implemented for general wreath products (of an isometry
group with a symmetric group) in Section 14. The wreath product con-
struction allows one to build successful group codes of arbitrary size from a
successful group code of small size. We apply our ideas by constructing and
analyzing effective group codes built on the infinite family of complex re-
flection groups G(r, 1, n) in Section 15. These codes include previous codes
based on the Coxeter groups Symn (the symmetric groups) and WBn (the
hyperoctahedral groups). The family G(r, 1, n) offers group codes of arbi-
trarily large size with low decoding complexity that carry special geometric
significance: For each n, r > 1, the group G(r, 1, n) is the symmetry group
of a Platonic solid in n-dimensional complex space, the generalized r-cube
or “cross polytope”. Note that with few exceptions (thirty-four, actually),
every irreducible complex reflection group is some G(r, 1, n) or one of its
subgroups.

Section 16 gives a few remarks on how the choice of initial vector influ-
ences subgroup decoding. We give data comparing several group codes and
their complexity in Section 17. Subgroup decoding does not work as well
for exceptional complex reflection groups as for wreath products, and we
report on these findings in Section 17 before concluding with a few gen-
eral remarks in Section 18. Note that the first author [11] has developed
alternate decoding algorithms which have been refined by Walker [12] for
exceptional complex reflection groups (also see [13]). Appendix I describes
a general version of this alternate decoding scheme and gives a sufficient
condition for correct decoding. Appendix II outlines a method to improve
the performance of codes based on G(r, 1, n) using a proper subset of the
orbit of the initial vector as the set of codewords.
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Of course, there are other encoding/decoding schemes for group codes
which could likely extend well to complex reflection groups. Besides the
more traditional sorts of group decoding schemes using sorting algorithms,
Hagiwara, Kong, and Wadayama (see [14, 15]) have introduced permutation
codes with linear programming decoding. This seems to be a particularly
interesting approach.

Note that any finite group of complex linear transformations acts by
isometries with respect to some inner product. (One may just average an
arbitrary inner product on the vector space over the finite group to produce
one that is invariant under the group action.) We thus always work with
an inner product that is preserved by the action of the given group G. For
example, ‖v−gx0‖ = ‖g−1v−x0‖ for any vector v and any g in G. After a
possible change of basis, we may also assume this inner product is standard
and that the finite group G consists of unitary matrices.

We have attempted to make arguments amenable to both pure mathe-
maticians and coding theorists.

2. Group Coding

We begin with the basic method of group coding before proceeding to
more detailed algorithms. Mathematical readers should recall that the goal
of coding is not encryption, but rather the efficient transmission or storage of
information while resisting channel noise (corruption) and controlling errors.
There is no explicit error correction involved in group coding; rather, one
may superimpose a correction scheme after the received vector is decoded.

We fix a finite group G of linear transformations of a finite dimensional
vector space V. To simplify notation, we assume V is a complex vector
space, and so we may assume G consists of isometries (and thus unitary
matrices with respect to a given basis). Our arguments extend to isometry
groups over other spaces as well: We could just as well take V to be a
real vector space and G a group of orthogonal matrices, or take V to be a
vector space over the division ring H of real quaternions so that G consists
of unitary matrices over H.

2.1. The code and codewords. Fix an initial vector x0 on the unit sphere
in V. We standardize the initial vector to length one by convention. The
code is the orbit of the initial vector under the group G,

Gx0 = {gx0 : g ∈ G},
and the points gx0 are called codewords. (More generally, coding theory
often uses a subset of the orbit of x0 as the code; e.g., see Appendix II.)

2.2. Minimum distance. The initial vector x0 determines the minimum
distance of the code defined with respect to the given G-invariant inner
product on V:

dmin = min
b/∈Sa
‖a−1x0 − b−1x0‖ = min

a/∈S
‖ax0 − x0‖
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where S = StabG(x0) denotes the stabilizer subgroup of x0. A large mini-
mum distance is desirable for any coding scheme. However, an initial vector
which yields the largest possible minimum distance for a particular group
action may not give a code with the properties required for subgroup de-
coding (see Section 16). Thus there may be a trade-off between minimum
distance and decoding efficiency.

2.3. Group coding scheme. A group coding scheme uses the following
general method for encoding and decoding, without specifying the details of
implementation.

Identify a set of messages M with group elements using some correspon-
dence, γ : M → G. We send a message m in M to some receiver by
transmitting the corresponding codeword,

x = g−1x0 (transmitted vector or coded message),

where

g = γ(m) (sent message) .

Interference may disrupt communication, and the received vector (which
may no longer lie on the unit sphere) generally has the form

r = x + n (received vector),

where n ∈ V represents channel noise. Ideally, r will be close to x, i.e.,
the distance ‖r − x‖ will be small. The decoded vector x′ is the codeword
closest to r:

x′ ∈ Gx0 chosen so that ‖r− x′‖ = min
g∈G
‖r− gx0‖ (decoded vector) .

The decoded message is then a group element corresponding to the decoded
vector:

g′ ∈ G chosen with g′(x0) = x′ (decoded message) .

The received message is just the message corresponding to g′, i.e., m′ =
γ−1(g′). We suppress this dependence on some choice of γ.

In other words, the receiver decodes the sent message by finding a group
element g′ mapping the received vector r as close as possible to the initial
vector x0:

‖g′r− x0‖ minimizes ‖ar− x0‖ over all a in G .

The goal is to test relatively few group elements in the decoding process.

2.4. Ambiguity. Two natural ambiguities may arise with a group coding
scheme. The scheme may not output a unique decoded message for each
sent message because

• two different codewords may both be closest to r, or
• a single codeword may be defined by two different group elements.
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The first type of ambiguity occurs when the received vector r lies exactly
on some boundary (specifically, the boundary between two decoding regions;
see Section 6). In practice, this occurs with zero probability and may be
ignored. (This is not to be confused with the existence of ties arising when
two codewords are the same distance from the initial vector; see Section 12.)

The second type of ambiguity must be addressed. We now explain how
to work with respect to an isotropy group so that codewords and group
elements can both stand for a fixed coded message without confusion.

2.5. Orbit of the initial vector. We say that the initial vector x0 has full
orbit if the size of its orbit is the order of the group G. If x0 does not have
full orbit, then the isotropy (point-wise fixer) subgroup

S = StabG(x0)

of x0 in G is nontrivial, and several group elements a will minimize the
distance between ar and x0. Indeed, if a and a′ lie in the same right coset
of S (i.e., Sa = Sa′), then ax0 = a′x0 and

||ar− x0|| = ||a′r− x0|| .

Thus, we say two group elements define equivalent messages if they lie in the
same right coset of S. We seek a decoding method that outputs messages
equivalent to those sent.

Subgroup decoding works better and the theory is more transparent when
x0 has full orbit. Since we have fixed a group of isometries (rather than
fixing an abstract group and then choosing a representation, i.e., an action
by isometries), we may always choose an initial vector with full orbit. (If
G is a reflection group, for example, we fix a vector x0 off a reflecting
hyperplane.) So why have we chosen to keep track of S (see Theorem 15)
before emphasizing the case of initial vectors with full orbit? Some readers
may wish to apply the theory of group coding presented here to arbitrary
representations of a finite group (which may not be faithful). In fact, it is
not customary in coding theory to always use an initial vector with full orbit,
and indeed, some interesting codes arise from other choices (see [9, 10, 14]).
In any case, a nontrivial isotropy subgroup S is not an obstacle, as we may
replace γ by a map from messages to representatives of right cosets of S and
define a left inverse map γ−1 that is constant on right cosets of S.

3. Subgroup decoding

The group coding scheme decodes a received vector by finding the closest
codeword. When the group G is finite but large, it is not efficient to loop
through all of its elements to determine the closest codeword. There are
various methods to organize the search, among which is the basic subgroup
decoding algorithm, which we explain in this section.
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3.1. Coset Leaders. For any nested subgroups H < K of G, we may
fix a set CL(K/H) of coset representatives for the left cosets of H in K
(i.e., the sets aH for a in K) that includes the identity I of G. These
representatives are called coset leaders of K over H following traditional
coding theory terminology. We fix a choice of coset leaders for consecutive
pairs of subgroups in our sequence of nested subgroups.

3.2. Parameters. The parameters at our disposal for basic subgroup de-
coding are

• a finite group G of isometries acting on the vector space V,
• an initial vector x0 with ‖x0‖ = 1,
• a sequence of nested subgroups

{I} = G0 < G1 < G2 . . . < Gm = G, and

• coset leaders CL(Gk/Gk−1) for Gk over Gk−1.

For the remainder of the paper, the term subgroup sequence will always refer
to a choice of nested sequence {I} = G0 < G1 < . . . < Gm = G.

3.3. Canonical Form. Recall that every element of g of G has a unique
expression as a product of coset leaders,

g = cm · · · c1
with each ck in CL(Gk/Gk−1), giving a “canonical form” for group elements.
The transmitted codeword corresponding to the coded message g thus can
be written as

x = g−1x0 = c−11 · · · c
−1
m x0.

The decoding algorithm seeks this factorization geometrically.

3.4. Subgroup decoding algorithm. Let r = x + n denote the received
vector and set r0 = r. Recursively, assume rk−1 = dk−1 · · · d1r is given at
the k-th step, for some sequence of coset leaders dj ∈ CL(Gj/Gj−1). Find
a coset leader dk ∈ CL(Gk/Gk−1) that minimizes the distance ‖ark−1−x0‖
over all a ∈ CL(Gk/Gk−1) and set rk = dkrk−1 = dk · · · d1r. (If more than
one coset leader yields the minimum distance, choose the first one in some
ordering.) After m steps, the algorithm outputs the decoded message

g′ = dm · · · d1
corresponding to the decoded vector (g′)−1(x0). If g′ minimizes the distance
‖ar − x0‖ over all a in G, then the decoding scheme decoded the received
vector correctly.

One could test all coset leaders at each step of the subgroup decoding
algorithm to find a minimizing coset leader, but we mention a more efficient
method in Section 13 that works well for many groups (including real reflec-
tion groups, see [10]). One navigates recursively through a spanning tree of
the coset leader graph, yielding a standard subgroup decoding algorithm.
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4. Effective Decoding

What does it mean for a decoding scheme to work effectively? It should
decode correctly despite channel noise and implement practically. One can
ask whether an algorithm

(1) decodes correctly with no noise,
(2) decodes correctly with some noise,
(3) decodes robustly, i.e., always decodes to the nearest codeword,
(4) controls error when noise is large, and
(5) decodes in a reasonably small number of steps.

Together, these criteria give us a way to determine how well a given cod-
ing scheme works. We address these questions in order for the subgroup
decoding algorithm.

4.1. Correct Decoding (with noise). Correct decoding occurs when the
greedy algorithm produces a global minimum (of distance back to the initial
vector x0) even though, at each stage of the algorithm, only coset leaders
are tested for finding a local minimum. It is not clear that the initial vector
and coset leaders always can be adjusted to ensure correct decoding after
a subgroup sequence has been fixed. For example, see the code based on
the exceptional complex reflection group G25 in [11]. This explains why
the conditions for decoding correctly with noise in Sections 9 and 10 are
somewhat involved. Note that except for artificial examples, however, a
decoding scheme that works with zero noise will decode correctly whenever
the received vector is in some neighborhood of a codeword. See the results in
Sections 9 and 10. For example, Corollary 22 gives necessary and sufficient
conditions for correct decoding with some noise.

4.2. Robust Decoding. Robust decoding is of course desirable and implies
correct decoding with some noise. But it is not always easy to verify robust
decoding, while it is often straightforward to check that an algorithm decodes
correctly with some noise. A sufficient condition for robust decoding is given
in Theorem 15 and applied in Section 15 to the codes based on the groups
G(r, 1, n).

4.3. Error Control. When noise is large, the received vector r may lie
closer to a codeword h−1x0 than to the transmitted codeword g−1x0. The
algorithm then will output decoded message h instead of g when decoding
correctly (up to equivalence by the isotropy subgroup of x0). We may con-
trol error even with large noise by choosing the correspondence γ between
messages and group elements so that γ−1(g) and γ−1(h) do not differ much
whenever h−1x0 and g−1x0 are close, at least with high probability. For the
purposes of this paper, we will consider the message γ(g) to be the actual
sequence of coset leaders c1, . . . , cm such that g = cm · · · c1. More gener-
ally, γ could be some function of this sequence, e.g., a bitstring determined
by the coset leaders. (Each coset leader could determine a piece of a long
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bitstring, for example.) Thus, when possible, we want to choose the coset
leaders so that if g = cm · · · c1 and h = dm · · · d1 with ‖g−1x0 − h−1x0‖ suf-
ficiently small, then ci = di for almost all i, thereby controlling error when
interference produces large noise. This is the effect of Theorem 30.

4.4. Number of steps. The complexity of encoding and decoding with a
particular method can be analyzed by counting the number of operations in
the algorithm (in some reasonable way). This is done explicitly for codes
based on the groups G(r, 1, n) in Table 15.8.1 and for other group codes in
Table 17.2.1. The use of subgroups and coset leaders allows us to break the
decoding process into parts of manageable size and there are often natural
candidates for the subgroup sequence, perhaps more than one. Efficiency
dictates that the subgroup sequence should be chosen so as to make the index
[Gi : Gi−1] of consecutive subgroups small. That statement may be vague,
but the principle is not: The efficiency of encoding and decoding is roughly
proportional to the sum of the indices of the consecutive subgroups. For at
each stage of decoding, one must choose a coset leader dk from a collection
of [Gk−1 : Gk] possibilities. Thus there are at most

∑n
k=1[Gk−1 : Gk] steps

to subgroup decoding, compared with |G| =
∏n
k=1[Gk−1 : Gk] steps needed

to search through the whole group. Other techniques to make subgroup
decoding more efficient are discussed in Section 13.

5. Unitary groups and reflection groups

Before we explore subgroup decoding for the general case of an arbitrary
complex matrix group G, we take a brief interlude to recall some basic
facts about reflection groups that may help the reader interpret examples
appearing throughout the rest of the article. (Many of our remarks and
examples will address real and complex reflection groups because of the
wealth of interesting geometry they convey.)

The set of all n × n complex unitary matrices forms a group U(n), and
the various groups we use for coding are contained in its infinite subgroup of
monomial matrices (i.e., those with a single nonzero entry in each row and in
each column) whose nonzero entries have norm 1. If r ≥ 1 is an integer, the
group G(r, 1, n) consists of monomial n× n matrices whose nonzero entries
are r-th roots of unity. For any integer p dividing r, the group G(r, p, n)
consists of those matrices in G(r, 1, n) whose nonzero entries multiply to
an (r/p)-th root of unity. For example, G(2, 2, n) is the real Coxeter group
WDn.

A reflection on a real or complex vector space is a nonidentity linear trans-
formation that fixes a hyperplane in that space pointwise. Every reflection
s satisfies

s(x) = x + lH(x)α for all x ∈ V

for some fixed vector α in V and some linear form lH in the dual space V∗

that defines the reflecting hyperplane H fixed by s (i.e., ker lH = H). If s
is an isometry, then s is the diagonal matrix diag(λ, 1, . . . , 1) with respect
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to some basis of V with λ = det(s) the nonidentity eigenvalue of absolute
value 1. In particular, s has finite order if and only if λ is a root of unity. In
this case, we may choose α to be a vector perpendicular to H (with respect
to an s-invariant inner product 〈 , 〉 on V) of length one and choose lH to
be the function

lH(x) = (λ− 1)〈α,x〉 for all x ∈ V .

If s is a reflection on a real vector space, then λ = −1, and s is an involution.
A complex reflection group is a group generated by a set of reflections on

V = Cn. We assume all reflection groups are finite and thus unitary with
respect to the standard inner product. Real reflection groups (generated by
reflections on Rn) are called Coxeter groups; note that every real reflection
group defines a complex reflection group after extending scalars. The finite
irreducible complex reflection groups were classified in a classic paper of
Shephard and Todd [17]: Every finite irreducible complex reflection group
is

(1) G(r, p, n) for some r, p, n ≥ 1 with p dividing r, or
(2) one of the exceptional groups denoted G4, . . . ,G37.

The irreducible real reflection groups (acting orthogonally) are commonly
designated as WAn, WBn, WDn, WE6, WE7, WE8, WF4, Ir(2), H3 and
H4 or some variant of this notation; see standard texts such as Grove and
Benson [18], Humphreys [19] or Kane [20]. We are mainly interested in
groups generalizing the infinite families Symn = G(1, 1, n) (the symmet-
ric group acting by n × n permutation matrices), WBn = G(2, 1, n), and
WDn = G(2, 2, n). These are often called permutation groups in the litera-
ture on group coding as they generalize the permutation group Symn.

6. Fundamental regions and decoding regions

Recall that G is an arbitrary finite group of complex matrices. We take an
open Voronoi region (in complex space) to define an analog of a fundamental
domain containing the trivial codeword x0 (see Forney [5]).

Definition 1. The fundamental region of a subgroup H ≤ G is the set of
vectors which are closer to x0 than to any other codeword in Hx0:

FR(H) = {x ∈ V : ‖x− x0‖ < ‖hx− x0‖ whenever h ∈ H− StabH(x0)} .

Thus, the vectors in the fundamental region FR(G) are precisely those
that decode to I (or to a message equivalent to I) under correct decoding.
Note that if ‖x − x0‖ < 1

2dmin, then x ∈ FR(G). We likewise define a
decoding region for each group element g to be the set of vectors that decode
to g (or any message equivalent to g) under correct decoding:

Definition 2. The decoding region of g ∈ G is the set of vectors that are
closer to codeword g−1x0 than to any other codeword:

DR(g) = {x ∈ V : ‖gx− x0‖ < ‖ax− x0‖ whenever a /∈ Sg}
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for S = StabG(x0).

Thus an algorithm decodes robustly exactly when it decodes every vector
in DR(g) to a group element equivalent to g. Note that the decoding region
for g is just a translate of the fundamental region for G:

gDR(g) = DR(I) = FR(G) .

Also note that the fundamental regions of subgroups of G are nested in the
reverse order: If H ≤ K ≤ G, then FR(H) ⊇ FR(K) ⊇ FR(G).

Remark 3. If x0 has full orbit, then no vector in V fixed by a nonidentity
group element lies in a decoding region. In particular, if G is a real or
complex reflection group, the decoding regions exclude vectors on reflecting
hyperplanes. In fact, they give us an analog of (Weyl) chambers: If G is a
Coxeter group, then the fundamental region is just a fundamental chamber
that contains x0 and the decoding region of g in G is just the chamber
containing g−1x0.

Remark 4. The fundamental region depends on the choice of initial vector
x0 in ways one might not expect. For example, replacing the initial vector
by a different vector in the fundamental region can change the fundamental
region. This is a difference between complex reflection groups and real
reflection groups. If G is a real reflection group, then the fundamental region
and decoding regions are determined solely by the reflecting hyperplanes: If
x0 is the given initial vector and y0 is in the fundamental region determined
by x0, then x0 and y0 determine the same fundamental and decoding regions,
i.e., for any x ∈ V and g, a ∈ G,

‖gx− x0‖ < ‖ax− x0‖ iff ‖gx− y0‖ < ‖ax− y0‖ .

This simply is not true for complex reflection groups. (For example, consider
the four element group acting on C by multiplication by ±1 or ±i.)

Let us now verify that closures of fundamental regions are indeed analogs
of Voronoi regions in Euclidean space.

Lemma 5. Let H ≤ G, and choose an initial vector x0. A vector r ∈ V
lies in the closure FR(H) if and only if ‖r−x0‖ ≤ ‖hr−x0‖ for all h ∈ H.

Proof. One direction is routine. Assume r ∈ FR(H). Let ri ∈ FR(H) be a
sequence of vectors converging to r. Then for any h ∈ H− StabH(x0),

‖r− x0‖ ≤ ‖r− ri‖+ ‖ri − x0‖
< ‖r− ri‖+ ‖hri − x0‖
≤ ‖r− ri‖+ ‖hri − hr‖+ ‖hr− x0‖
≤ ‖r− ri‖+ ‖ri − r‖+ ‖hr− x0‖ .

Since ‖r− ri‖ converges to zero, ‖r− x0‖ ≤ ‖hr− x0‖ for all h ∈ H.



12 HYE JUNG KIM, J. B. NATION, AND ANNE V. SHEPLER

For the converse, assume that ‖r − x0‖ ≤ ‖hr − x0‖ for all h ∈ H. For
any ε > 0, let r′ be a vector on the line between r and x0 with ‖r− r′‖ = ε,
i.e., r′ = r + εx0. Then with respect to the G-invariant inner product 〈 , 〉,

‖r′ − x0‖2 = ‖(r− x0) + εx0‖2

= ‖r− x0‖2 + ε2 + 2 Re〈εx0, r− x0〉
= ‖r− x0‖2 + ε2 + 2 Re〈εx0, r〉 − 2ε

while, for h ∈ H− StabH(x0),

‖hr′ − x0‖2 = ‖(hr− x0) + εhx0‖2

≥ ‖r− x0‖2 + ‖εhx0‖2 + 2 Re〈εhx0, hr− x0〉
= ‖r− x0‖2 + ε2 + 2 Re〈εx0, r〉 − 2 Re〈εhx0,x0〉
> ‖r− x0‖2 + ε2 + 2 Re〈εx0, r〉 − 2ε

by the Cauchy-Schwarz inequality, since hx0 6= x0 implies that Re〈hx0,x0〉 <
1. Hence ‖r′ − x0‖ < ‖hr′ − x0‖ and r′ lies in FR(H). We take the limit as

ε goes to 0 and conclude that r lies in FR(H). �

The last lemma implies the following little observation, which will be used
several times:

Lemma 6. Let K ≤ G. For all k in K− StabK(x0),

FR(K) ∩ k FR(K) = ∅ .

7. Minimal, Region Minimal, and Greed Compatible

We now identify conditions on coset representatives that will guarantee
correct subgroup decoding, with some channel noise or without. In stan-
dard subgroup decoding for Coxeter groups, coset leaders are determined
algebraically. If H ≤ K represents a consecutive pair in the subgroup se-
quence, then each coset leader c is chosen as an element in the coset of
minimal length when written as a product of generators of K. When we use
a sequence of parabolic subgroups and choose simple reflections as genera-
tors, a unique shortest length element exists in each coset. The algebraic
condition of minimal length (in terms of simple reflections) for real reflec-
tion groups then guarantees certain geometric properties advantageous for
coding (see [10]). We seek geometric analogs of minimal length coset rep-
resentatives for arbitrary (complex) isometry groups that preserve a nested
sequence of regions.

The following simple definition guarantees that a coset leader maps a fun-
damental region to a new region that at least contains the trivial codeword.

Definition 7. A coset leader c for groups H ≤ K is minimal if x0 ∈
c(FR(H)). A set of coset leaders is minimal if all its elements are.

We rephrase this definition:
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Lemma 8. A coset leader c for groups H ≤ K is minimal if x0 is closer to
the codeword c−1x0 than to any other codeword defined by the coset cH:

||c−1x0 − x0|| < ||(ch)−1x0 − x0||
for all h in H− StabH(x0).

Effective decoding will require stronger versions of minimality:

Definition 9. Let c be a coset leader for groups H ≤ K. Then

• c is open-region-minimal if FR(K) ⊆ cFR(H);

• c is region-minimal if FR(K) ⊆ cFR(H).

A set of coset leaders is open-region-minimal (respectively region-minimal)
if all its elements are open-region-minimal (respectively region-minimal).

The following observation can be verified with Lemma 5.

Lemma 10. A coset leader c for groups H ≤ K is open-region-minimal if
and only if every vector in FR(K) is closer to the codeword c−1x0 than to
any other code word determined by the coset cH: For any y in FR(K),

||c−1y − x0|| < ||(ch)−1y − x0||
for all h in H− StabH(x0).

Likewise, a coset leader c for H ≤ K is region-minimal if and only if

||c−1y − x0|| ≤ ||(ch)−1y − x0||

for any y in FR(K) and h in H.

Note that minimal or open-region-minimal coset leaders may not exist
because of ties, i.e., two different codewords may both yield the minimum
distance; see Section 12.

A set of coset leaders is compatible with the greedy algorithm if every
element in the closure of the larger fundamental region of H is sent into the
closure of the smaller fundamental region of K by some coset leader:
Definition 11. We call a set of coset leaders CL for groups H ≤ K greed
compatible if

FR(H) ⊆
⋃
c∈CL

c−1 FR(K) .

8. Comparing Minimal, Region Minimal, and Greed Compatible

In this section, we make a few observations comparing the different geo-
metric notions of minimal coset representatives that will be helpful for the
next sections on correct and robust decoding. For example, the definitions
immediately imply that

open-region-minimal ⇒ region-minimal ⇒ minimal.

If the initial vector has full orbit, we will see in addition that

region-minimal ⇔ greed compatible.
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We record the first fact formally before proceeding to prove the second.

Lemma 12. Let H ≤ G, and let CL = CL(K/H) be a set of coset leaders
for K over H. Then

(1) If CL is open-region-minimal, then it is region-minimal.
(2) If CL is region-minimal, then it is minimal.

We are especially interested in codes whose size equals that of the group.

Proposition 13. Assume the initial vector x0 has full orbit. A set of coset
leaders is greed compatible if and only if it is region-minimal.

Proof. Assume that CL = CL(K/H) is a greed compatible set of coset
representatives for K over H. Take some y ∈ FR(K) and c ∈ CL. Find

an element h ∈ H minimizing ‖hc−1y − x0‖, so that hc−1y ∈ FR(H) by
Lemma 5. As CL is greed compatible, there exists d ∈ CL with dhc−1y ∈
FR(K). Lemma 6 implies that dhc−1 ∈ StabK(x0) = {I} and thus d =
ch−1. Then c = d (as c and d are both coset leaders) and h = I. Thus

c−1y ∈ FR(H) and hence FR(K) ⊂ cFR(H). Then as c is an isometry,

FR(K) ⊂ c FR(H) = cFR(H) and CL is minimal.
For the converse, assume that CL is region-minimal and choose some z ∈

FR(H). Choose k minimizing ‖kz−x0‖ over all k in K so that kz ∈ FR(K).
Write k = ch with c ∈ CL and h ∈ H. Since CL is region-minimal, each
hz = c−1kz lies in FR(H). By Lemma 6, h = I, and thus cz = chz = kz

lies in FR(K). Hence z lies in c−1FR(K) and CL is greed compatible. �

Lemma 12 and Proposition 13 then imply

Corollary 14. Assume the initial vector x0 has full orbit under G. Any
greed compatible set of coset leaders is also minimal.

9. Robust decoding: Greed pays....

The subgroup decoding procedure uses a greedy algorithm, but greedy
algorithms do not always work. We argue in this section that greed com-
patible coset leaders not only ensure that the subgroup decoding algorithm
will decode correctly, but that the algorithm is also robust.

Theorem 15. Fix any finite group G ⊂ GL(V), initial vector x0 in V, sub-
group sequence, and coset leader sets CL(Gk/Gk−1). If each CL(Gk/Gk−1)
is greed compatible, then the subgroup decoding algorithm decodes robustly.

Proof. Assume the received vector r lies in the decoding region DR(g) for

some element g in G. Set r0 := r ∈ V = FR(G0). Fix k and induc-

tively assume that rk−1 := dk−1 · · · d1r lies in FR(Gk−1) with each di in

CL(Gi/Gi−1). Since CL(Gk/Gk−1) is robust, crk−1 lies in FR(Gk) for
some c in CL(Gk/Gk−1). The subgroup decoding algorithm at the k-th
step finds a coset leader dk minimizing ‖drk−1 − x0‖ over all coset leaders
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d ∈ CL(Gk/Gk−1). In particular, ‖dkrk−1 − x0‖ ≤ ‖crk−1 − x0‖. Then for
any h in Gk, by Lemma 5,

‖hdkrk−1 − x0‖ = ‖(hdkc−1)crk−1 − x0‖ ≥ ‖crk−1 − x0‖ ≥ ‖dkrk−1 − x0‖

as crk−1 ∈ FR(Gk) and hdkc
−1 ∈ Gk. Thus dkrk−1 lies in FR(Gk) as well.

At the last step, for G = Gm, we find that rm = dm · · · d1r lies in FR(G),
and r decodes as dm · · · d1 = g′.

Now r = g−1x for some x ∈ FR(G) since r ∈ DR(g). Then g′g−1x = g′r

lies in FR(G). By Lemma 6, g′g−1 ∈ StabG(x0) and g′ and g are equivalent,
i.e., they define the same codeword. Thus the subgroup decoding algorithm
decodes robustly. �

Corollary 16. Fix any finite group G ⊂ GL(V), initial vector x0 in V with
full orbit, subgroup sequence, and coset leader sets CL(Gk/Gk−1). If every
set CL(Gk/Gk−1) is greed compatible, then the subgroup decoding algorithm
decodes any received vector r satisfying ‖r−g−1x0‖ < 1

2dmin to g in G. The

corresponding statement is false if we replace 1
2dmin by any γ > 1

2dmin.

Proof. If ‖gr − x0‖ < 1
2dmin, then gr ∈ FR(G) and r ∈ DR(g). Hence

by Theorem 15, the vector r will decode to the message g. On the other
hand, there exists a ∈ G such that ‖a−1x0 − x0‖ = dmin. For any ε with
0 < ε < 1

2 , let r = x0 + (12 + ε)(a−1x0−x0). Then ‖r− Ix0‖ = (12 + ε)dmin,

but r decodes to a since ‖r− a−1x0‖ = (12 − ε)dmin. �

We will verify in Section 15 that greed compatible coset leaders exist
for the complex reflection groups G(r, 1, n) for an appropriate subgroup
sequence and initial vector. In the next section, we show how to salvage
correct decoding with small noise even when greed compatible group leaders
cannot be found.

Lemma 12, Proposition 13, and Theorem 15 imply that closures are not
necessary when the initial vector has full orbit:

Corollary 17. Fix any finite group G ⊂ GL(V), initial vector x0 in V, and
subgroup sequence. Assume that x0 has full orbit. If every coset leader set
CL(Gk/Gk−1) is open-region-minimal, then the subgroup decoding algorithm
decodes robustly.

10. Correct Decoding: ...but minimality suffices!

We now turn to the case when x0 has full orbit under G. For example,
we choose x0 off a reflecting hyperplane if G is a real or complex reflection
group. We show that minimality of induced coset leaders is both neces-
sary and sufficient for the subgroup decoding algorithm to decode correctly,
even with some noise. We begin by defining induced coset leaders with the
following elementary lemma:
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Lemma 18. Fix sets CL(Gk/Gk−1) of coset leaders for each consecutive
pair in a subgroup sequence. Then for any k < `, the set

CL(G`/Gk) = {c` · · · ck+1 : ci ∈ CL(Gi/Gi−1) for k + 1 ≤ i ≤ `}
is a complete set of coset representatives for G` over Gk. We call its ele-
ments the induced coset leaders for G` over Gk.

The next theorem explains that, just as coset leaders are chosen to be
the codewords of minimum Hamming weight in linear block coding, so too
should coset leaders be chosen minimum in a geometric sense in subgroup
decoding.

Theorem 19. Fix any finite group G ⊂ GL(V), initial vector x0 in V of
full orbit, subgroup sequence, and coset leader sets CL(Gk/Gk−1). Minimal
coset leaders are necessary for correct decoding: If the subgroup decoding
algorithm decodes correctly, then the induced coset leaders CL(G`/Gk) are
minimal for all ` > k.

Proof. Fix some index k and suppose ck in CL(Gk/Gk−1) is not minimal.
Then there exists some nonidentity element h in Gk−1 with

(20) ||c−1k x0 − x0|| ≥ ||(ckh)−1x0 − x0|| = ||(ckck−1 · · · c1)−1x0 − x0||,
where h = ck−1 · · · c1 for some ci in CL(Gi/Gi−1). Fix some j with 1 ≤
j ≤ k − 1 and suppose rj = (ckck−1 · · · cj)−1x0 is a received vector. As
rj correctly decodes to group element ckck−1 · · · cj , the algorithm chooses
coset leader cj among all coset leaders in CL(Gj/Gj−1), including the coset
leader I, at the j-th step. Thus

||(ckck−1 · · · cj+1)
−1x0 − x0|| = ||cj(ckck−1 · · · cj)−1x0 − x0||

≤ ||I(ckck−1 · · · cj)−1x0 − x0|| .
This gives a nested sequence of inequalities as j ranges from 1 to k − 1,

||c−1k x0 − x0|| ≤ ||(ckck−1)−1x0 − x0|| ≤ . . . ≤ ||(ckck−1 · · · c1)−1x0 − x0||
with at least one inequality strict as h 6= I, contradicting inequality (20)
above. We replace ck by any c`c`−1 · · · ck, where each ci lies in CL(Gi/Gi−1),
in the above argument to see that induced coset leaders are minimal as
well. �

In the last section, we saw that region-minimal coset leaders guarantee
robust decoding (Theorem 15). However, it is not always easy to determine
the fundamental region of a subgroup Gk in the subgroup sequence of a
complicated group. Even worse, region-minimal coset leaders may fail to
exist. The next theorem shows that the decoding algorithm corrects for
small noise when we weaken the hypothesis on coset leaders but shrink
the region of correct decoding to compensate. We may merely insist that
induced coset leaders be minimal, a condition which is straightforward to
test but fails for many choices of subgroup sequences (see Section 17).
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Theorem 21. Fix any finite group G ⊂ GL(V), initial vector x0 in V with
full orbit, subgroup sequence, and coset leader sets CL(Gk/Gk−1). If every
set of induced coset leaders CL(G,Gk) is minimal (for 1 ≤ k < m), then
the subgroup decoding algorithm decodes correctly with some noise.

Proof. Let δm = dmin, the minimum distance of the code, and for 1 ≤ k < m,
define

δk = min
{
‖cm · · · ck+1hx0 − x0‖ − ‖cm · · · ck+1x0 − x0‖

}
,

taking the minimum over all ci ∈ CL(Gi/Gi−1) for k < i ≤ m and over all
h ∈ Gk −Gk−1. Set δ = min1≤k≤m δk. Since each CL(G/Gk) is minimal,
each δk is strictly positive and thus δ is positive.

Suppose g in G is a message with transmitted vector g−1x0. Write g
uniquely as g = cm · · · c1 with each ci in CL(Gi/Gi−1). Assume the received
vector r is within δ/2 of the transmitted vector. Then, for r0 = r,

‖c1r0 − (cm · · · c2)−1x0‖ = ‖r0 − (cm · · · c1)−1x0‖ < δ/2.

By the triangle inequality,

‖c1r0 − x0‖ ≤ ‖c1r0 − (cm · · · c2)−1x0‖+ ‖(cm · · · c2)−1x0 − x0‖

<
δ

2
+ ‖(cm · · · c2)−1x0 − x0‖

while for d ∈ CL(G1/G0)− {c1},

‖dr0 − x0‖ ≥ −‖dr0 − d(cm · · · c1)−1x0‖+ ‖d(cm · · · c1)−1x0 − x0‖
= −‖r0 − (cm · · · c1)−1x0‖+ ‖(cm · · · c1d−1)−1x0 − x0‖
> −δ/2 + ‖(cm · · · c2)−1x0 − x0‖+ δ1

≥ δ/2 + ‖(cm · · · c2)−1x0 − x0‖

because δ ≤ δ1. Hence the subgroup decoding algorithm, which chooses a
coset leader c minimizing ‖cr0 − x0‖, will choose c = c1.

Now let r1 = c1r0 and note that

‖r1 − (cm · · · c2)−1x0‖ = ‖r0 − (cm · · · c1)−1x0‖ < δ/2.

An analogous argument shows that the subgroup decoding algorithm will
choose the coset leader c2 (since the product of c2 with the inverse of any
other coset leader in CL(G2/G1) lies in G2 −G1) at the second stage. Let
r2 = c2r1 and note that

‖r2 − (cm · · · c3)−1x0‖ = ‖c2r1 − c−13 · · · c
−1
m x0‖ = ‖r1 − c−12 c−13 · · · c

−1
m x0‖

= ‖r1 − (cm · · · c2)−1x0‖ < δ/2.

Recursively, the algorithm chooses c3, . . . , cm−1 as coset leaders minimizing
distance to x0. For the last step, we set rm−1 = cm−1 · · · c1r0 and note that

‖cmrm−1 − x0‖ < δ/2
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while for any other coset leader d ∈ CL(Gm/Gm−1),

‖drm−1−x0‖ ≥ −‖drm−1− dc−1m x0‖+ ‖dc−1m x0−x0‖ > −δ/2 + dmin ≥ δ/2.

Hence the algorithm chooses cm as well and outputs g′ = g as the decoded
message. �

The last theorem together with Theorem 19 now gives us necessary and
sufficient conditions for correct decoding:

Corollary 22. Fix any finite group G ⊂ GL(V), initial vector x0 in V with
full orbit, subgroup sequence, and coset leader sets CL(Gk/Gk−1). Correct
subgroup decoding occurs if and only if induced coset leaders CL(G/Gk) are
minimal for all k. In this case, subgroup decoding decodes correctly with
some noise.

One can prove directly or appeal to the last corollary to check that very
short subgroup sequences always decode correctly with minimal coset lead-
ers:

Corollary 23. Assume the initial vector has full orbit under G. Consider
a short subgroup sequence {I} < G1 < G. Then the subgroup decoding
algorithm decodes correctly with some noise if and only if the coset leaders
for G over G1 are minimal.

For example, this corollary applies to the octahedral reflection group G8 of
Section 17.4 with the natural subgroup sequence {I} < {I, A,A2, A3} < G8.
With an appropriate choice of the initial vector, it is straightforward to
find minimal coset leaders for G8. Compare with Section 12, though, for
difficulties inherent in finding minimal coset leaders in general.

Remark 24. Again, assume that the initial vector x0 has full orbit. An
easy induction using Lemma 12 together with Corollary 22 shows that

CL(Gk/Gk−1) region-minimal for all k

⇒ CL(G/Gj) region-minimal for all j

⇒ CL(G/Gj) minimal for all j

⇒ correct decoding.

Although this is directly implied by Proposition 13 and Theorem 15 (as
robust decoding implies correct decoding), one might ask if we could merely
take minimal coset leaders for consecutive pairs of nested subgroups in this
argument. The answer is no, since

CL(Gk/Gk−1) minimal for all k

6⇒ CL(G/Gj) minimal for all j .

Indeed, Kim [11] gives an example based on the complex reflection group
G25 with each set of coset leaders CL(Gk/Gk−1) minimal, but CL(G/Gj)
not minimal for some j.
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11. Error control

Decoding errors occur with substantial noise: A codeword g−1x0 may be
sent (for some message g in G) but the received vector r may land closer to
some other codeword. If r does not lie in the decoding region DR(g), then
it most likely lies in a geometrically neighboring decoding region DR(g′).
Can we fine-tune the subgroup decoding algorithm so the decoded message
g′ is “close” to the sent message g most of the time? In this section, we give
properties of a group code that ensure that the decoded message will differ
from the sent message in at most one factor when written as a product of
coset leaders, provided the received vector lands in a region neighboring the
intended one. We assume the initial vector x0 has full orbit throughout this
section.

Definition 25. The nearest neighbors of a codeword u are the codewords
v with ‖u− v‖ = dmin.

It is not difficult to see how nearest neighbors of the initial vector deter-
mine nearest neighbors of any codeword:

Lemma 26. For all g in G, the nearest neighbors of gx0 are the codewords
gw with w a nearest neighbor of x0.

It is useful to identify the group elements yielding nearest neighbors.

Definition 27. The neighborhood NG(x0) of x0 is the set of nearest neigh-
bors of x0, i.e., the points in the orbit of x0 closest to x0. We say the
corresponding set NG of group elements realizes the neighborhood:

NG(x0) = {v ∈ Gx0 − {x0} : ‖v − x0‖ = dmin},
NG = {a ∈ G : ax0 ∈ NG(x0)}.

Neighborhoods can be analogously defined for any subgroup Gk in the
subgroup sequence. In the case that G is a Coxeter group, a set of simple
reflections realizes the neighborhood of x0. More generally, the generators
for each subgroup may be taken to be a subset of simple reflections so that
the group elements realizing the neighborhood for Gk generate Gk (see [10]).
We seek a similar property for general group codes below.

By Lemma 26, if a codeword g−1x0 is decoded incorrectly, it will most
likely be decoded as a neighbor (bg)−1x0 with b in NG. To minimize the
message error, we would like the canonical form of bg as a product of coset
leaders to differ as little as possible from that of g. That is the effect of the
next two error control properties for consecutive subgroups in the subgroup
sequence, both from [10]. Note that the first property depends on the choice
of the initial vector x0. For any subset X of G, write X−1 for the set
{a−1 : a ∈ X}.

Property 28 (Nearest Neighbors). The Nearest Neighbors Property holds
for a fixed set XG generating G whenever NG ⊆ XG ∪X−1G .
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Property 29 (Error Control). Let H < K be subgroups of G with a fixed
set of coset leaders CL(K/H). The Error Control Property holds for sets of
generators XH of H and XK of K whenever

bc ∈ CL(K/H) or c−1bc ∈ XH ∪X−1H

for all b ∈ XK ∪X−1K and c ∈ CL(K/H).

Note that the property implies that either bc is the coset leader for the
coset bcH, or c is the coset leader for bcH because bc and c lie in the same
coset.

The Error Control Property minimizes small errors:

Theorem 30. Assume that Error Control Property 29 holds for consecutive
pairs of a subgroup sequence {I} = G0 < G1 < · · · < Gm = G, some choice
of generators XGk

of Gk, and some choice of coset leaders CL(Gk/Gk−1).
Suppose g in G has canonical form as a product of coset leaders given by

g = cm · · · c1, each ck ∈ CL(Gk/Gk−1).

Then for any b ∈ XG ∪X−1G , the canonical form of bg is

bg = c′m · · · c′1, each c′k ∈ CL(Gk/Gk−1),

where c′i = ci for all but one i. In addition, for that single index j with
c′j 6= cj, the coset leader c′j is adjacent to cj in the coset leader graph for Gj

over Gj−1 (see Section 13).

Proof. We induct on m. If m = 1, then every element is a coset leader,
and the conclusion is trivial. Let m > 1. Consider g = cm · · · c1 and take
b ∈ XGm = XG ∪X−1G . If bcm is a coset leader, then bg = (bcm)cm−1 · · · c1
is in canonical form. If not, Property 29 implies that

bg = cm(c−1m bcm)cm−1 · · · c1
= cm(b′cm−1 · · · c1)

with b′ ∈ XGm−1 ∪X−1Gm−1
. The result follows from applying the induction

hypothesis to b′cm−1 · · · c1. �

The Error Control Property and Nearest Neighbors Properties together
imply nice error control:

Corollary 31. Assume Error Control Property 29 and Nearest Neighbors
Property 28 hold for G with fixed subgroup sequence, initial vector, coset
leader sets, and generating sets XGk

of Gk. Assume coset leaders are greed
compatible. If a received vector lies in the decoding region containing a
nearest neighbor of g−1x0 due to noise, then the subgroup decoding algorithm
decodes it to a group element differing from g in only one factor when written
as a product of coset leaders.
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Proof. Lemma 26 implies that the received vector r lies in the decoding
region of g−1bx0 for some b in G with bx0 a nearest neighbor of x0. The-
orem 15 then implies that the subgroup decoding algorithm will correctly
decode r to b−1g. But Property 28 implies that b or b−1 lies in XG, and
hence b−1g differs from g in only one factor by Theorem 30. �

12. Ties

Correct decoding requires minimal induced coset leaders by Corollary 22,
but they may not exist because of ties. For any subgroup H of G, we say
that a tie occurs when two different codewords encoding elements from the
same coset of H yield the same minimum distance to the initial vector, i.e.,
when aH = bH for some a and b in G with ‖a−1x0 − x0‖ = ‖b−1x0 − x0‖
minimizing ‖c−1x0 − x0‖ over all c in the coset aH. There are a couple of
ways ties occur naturally.

The first is when a and a−1 lie in the same coset of H (i.e., a2 ∈ H−{I})
and ‖a−1x0 − x0‖ = ‖ax0 − x0‖ yields a minimum. One has little choice
but to change the subgroup sequence in this case, as shown below for the
concrete code based on the complex reflection group G4 (in the classification
of Shephard and Todd [17]).

A second way occurs when the initial vector x0 is real and a and b are both
symmetric unitary matrices, so that each has inverse equal to its conjugate,
with ab and a−1b−1 in the same coset. (Such matrices arise in the natural
reflection representations of some complex reflection groups where real initial
vectors are often a convenient choice.) Then ‖abx0−x0‖ = ‖a−1b−1x0−x0‖,
and this distance could be minimal over the coset. In this case, replacing the
initial vector by one that is properly complex will eliminate the tie. Again,
see the example of G4 below.

Another way to resolve the problem of ties is to allow multiple coset lead-
ers and multiple canonical forms. This worked for the real reflection groups
WDn in [10] but generally seems to become cumbersome rather quickly.

12.1. Tetrahedral group G4. We give an example of a complex reflection
group and choice of initial vector and subgroup sequence for which minimal
coset leaders do not exist, and thus the subgroup decoding algorithm does
not decode correctly. We then show how to make other choices to recover
correct decoding. The group G4 of order 24 (with 8 reflections) is generated
by the matrices

A =

[
1 0

0 −1
2 +

√
3
2 i

]
and B =

 1√
3
i 1√

2
− 1√

6
i

1√
2
− 1√

6
i 1

2 + 1
2
√
3
i


which satisfy A3 = B3 = I and ABA = BAB. As explained in Walker [12],
a natural choice for the initial vector is approximately x0 = (0.8881, 0.4597).

Suppose we take the subgroup sequence {I} < {I, A,A2} < G4. Set
C = BA2B and D = CA, so that C and D are inverse but in the same coset
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{C,D,CA2} of G1, with

||Cx0 − x0|| = ||Dx0 − x0|| < ||CA2x0 − x0||.
Thus no minimal coset leader exists for this coset because of a tie. Note
that C2 = A2 ∈ H.

We could use instead the subgroup sequence {I} < K < G4 where K =
{I, C,C2, C3, C4, C5}. Then K has index four and minimal coset leaders
for K are I, B, B2. A tie prevents choosing AB or A2B2 = A−1B−1 as
a minimal coset leader for the last coset. (Here, A and B are symmetric
unitary matrices.) We resolve the tie by choosing a different initial vector.
Again consulting Walker [12], we choose y0 = ( 1√

2
+ i

2 ,
1
2) and A2B2 becomes

the minimal coset leader.
Corollary 23 implies that the subgroup decoding algorithm decodes cor-

rectly with some noise for G4 with these revised choices.

13. Efficient decoding using coset leader graphs

We have thus far discussed mathematical properties that correct for noise
and control errors. Before considering explicit construction of group codes,
we turn our attention to matters of efficiency. Given a fixed choice of coset
leaders, the subgroup decoding algorithm decodes by determining a coset
leader at each step in the algorithm that minimizes some distance. If the
structure of the group permits, we may avoid looping through all the coset
leaders in some fixed set CL(Gk/Gk−1) at each step.

We may instead use a restriction of the standard Cayley graph to reduce
the number of coset leaders considered in subgroup decoding.

Definition 32. Given a group G with subgroups H ≤ K and a set X of
generators for K, the coset leader graph Γ = Γ(K/H) for K over H with
respect to a fixed set CL(K/H) of coset leaders is the graph

• whose vertices are the elements of CL(K/H)
• with a directed edge (labeled by a) from vertex c to d whenever c = ad

for some generator a in X.

For a unitary group with a given subgroup sequence and initial vector,
Theorem 19 tells us that the coset leaders should be chosen minimal. If we
also specify a generating set Xk for each subgroup Gk, then the coset leader
graphs are determined. See Figure 15.7 for an example.

In [10], navigation through spanning trees of coset leader graphs for Cox-
eter groups played an important role in efficient decoding of group codes
built on real reflection groups. On an ad hoc basis, we have applied similar
methods to decode group codes based on some specific complex reflection
groups, e.g., G4 and G8. However, as yet there is no general theory of
how this is best done. For most of the groups considered in this paper, the
coset leader graphs are trees and cycles, and the complications that occur
when navigating the more complex coset leader graphs associated with ex-
ceptional reflection groups do not arise. Indeed, for the complex reflection
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groups G(r, 1, n), the correct coset leader can be chosen in one step; see Re-
mark 39. (Kriloff and Lay [16] give a more detailed analysis of the Cayley
graphs for G(r, 1, n).)

For the purposes of this paper, let us suppress the particular methods
of navigating coset leader graphs used in constructing our examples, but
the reader should be aware that some such scheme is required for efficient
decoding. We hope to address navigation schemes in a future report.

14. Decoding with wreath products

In this section, we consider some wreath products that act as isometries on
finite dimensional complex space and show that a natural subgroup sequence
and choice of coset leaders produce codes that not only decode correctly, but
also robustly. These ideas allow one to expand a successful group code of
small size into a successful group code of arbitrarily large size. We will apply
the results to the infinite family G(r, 1, n) of complex reflection groups in
Section 15 and also to construct codes in Table 17.2.1).

Let H ⊂ GLm(C) be a finite unitary group acting on the vector space
Cm. Let G be the wreath product of H with the symmetric group Symn,

G = H o Symn = Symn n Hn.

Then G acts on V = Cmn as the unitary group of all mn × mn block
permutation matrices with each block a matrix in H. We adopt a standard
left notation for wreath products and write each element of G as the product
of a permutation in Symn and an n-tuple of matrices from H,

G = {σ(h1, . . . , hn) : hi ∈ H, σ ∈ Symn},

so that

g(x1, ...., xn) = (hσ(1)xσ(1), . . . , hσ(n)xσ(n))

for g = σ−1(h1, . . . , hn), where each xi lies in Cm. (This choice makes later
computations easier.)

Define a subgroup sequence

{I} = G0 < G1 < · · · < G2n−1 = G

by setting

G2`−1 = {σ(h1, . . . , h`, 1, . . . , 1) : σ ∈ Sym`} for ` = 1, . . . , n,

G2` = {σ(h1, . . . , h`+1, 1, . . . , 1) : σ ∈ Sym`} for ` = 1, . . . , n− 1

(viewing Sym` as a subset of Symn) so that the subgroups Gk give block
diagonal matrix groups:

G2`−1 = (H o Sym`)⊕ {Im(n−`)} for ` = 1, . . . , n,

G2` = (H o Sym`)⊕H⊕ {Im(n−`−1)} for ` = 1, . . . , n− 1,

with Ik the k×k identity matrix. An obvious choice of coset leaders for pairs
of consecutive subgroups arises. We select block diagonal matrices with one
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block from H and the rest the identity, or we choose cycles in the symmetric
group ending at a fixed index: Set

CL(G2`/G2`−1) = {(1, . . . , 1, h, 1, . . . , 1) : h ∈ H in the (`+ 1)-th slot},
CL(G2`+1/G2`) = {(j j + 1 . . . `+ 1) ∈ Sym`+1 : 1 ≤ j ≤ `+ 1} .

Fix a unit vector v0 in Cm suitable for H; this determines the stabilizer
group StabH(v0). Extend v0 to a initial vector x0 for G by setting

x0 = (u1v0, u2v0, . . . , unv0)

in V for some real numbers ui with 0 < u1 < . . . < un such that x0 has unit
length. Note that StabG(x0) = (StabH(v0))

n.

Theorem 33. Let H be a finite unitary group and let G = H o Symn with
the above subgroup sequence and initial vector. The above choice of coset
leaders is greed compatible.

Proof. We first note conditions that minimize a distance ||gx − x0|| over g
in G. Fix x = (x1, . . . , xn) in V = Cmn with each xi in Cm and write an
arbitrary g in G as a product σ−1(h1, . . . , hn) with each hi in H and σ in
Symn. Then using the (G-invariant) standard inner product,

||gx− x0||2 = ||x0||2 + ||x||2 − 2
∑

1≤j≤n
ujRe

(
vH0 hσ(j)xσ(j)

)
where the superscript H denotes conjugate transpose. The distance ||gx −
x0||2 is minimal when the summation over j in the last expression is max-
imal. But recall that for any two strictly increasing sequences of positive
real numbers 0 < α1 < . . . < αk and 0 < β1 < . . . < βk, the sum

∑
ajbτ(j)

is maximized over all τ in Symk by τ = I. Hence ||gx−x0|| is minimal over
all g in G when

(a) hi maximizes Re(vH0 hixi) over all elements in H for i = 1, . . . , n,
and

(b) σ in Symn is chosen so that

Re
(
vH0 hσ(1)xσ(1)

)
≤ . . . ≤ Re

(
vH0 hσ(n)xσ(n)

)
.

Note that if each hi in (a) above is unique and the inequalities in (b) are
strict, then a unique group element g minimizes ||gx − x0||. We apply this
observation to the subgroups Gk in the subgroup sequence and conclude
that

FR(G2`−1) = {(w1, . . . , wn) : wi ∈ Cm, Re
(
vH0 w1

)
< . . . < Re

(
vH0 w`

)
,

Re
(
vH0 wi

)
> Re

(
vH0 hwi

)
for all I 6= h ∈ H, 1 ≤ i ≤ `},

FR(G2`) = {(w1, . . . , wn) : wi ∈ Cm, Re
(
vH0 w1

)
< . . . < Re

(
vH0 w`

)
,

Re
(
vH0 wi

)
> Re

(
vH0 hwi

)
for all I 6= h ∈ H, 1 ≤ i ≤ `+ 1}.

The closures of the fundamental regions are obtained by changing all the
strict inequalities in the above descriptions to nonstrict inequalities.
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We show that if x ∈ FR(Gk), then there exists a coset leader d such that

dx ∈ FR(Gk+1) by treating the even and odd cases separately.

Suppose x lies in some FR(G2`). Choose a coset leader d from CL(G2`+1/G2`)
with dx = (xσ−1(1), . . . , xσ−1(n)) and

Re(vH0 xσ−1(1)) ≤ . . . ≤ Re(vH0 xσ−1(`+1)).

That is, d is the cyclic permutation σ = (j j + 1 . . . `+ 1) ∈ Sym`+1 such

that application of d results in the insertion of Re(vH0 x`+1) into its proper

place in the order. Then dx lies in FR(G2`+1).

Now suppose x instead lies in FR(G2`−1) and choose an element h in H
maximizing Re(vH0 hx`+1). Let d in CL(G2`/G2`−1) be the corresponding

coset leader (i.e., d = I` ⊕ h⊕ Inm−`−1). Then dx lies in FR(G2`).
Hence each CL(Gk/Gk−1) is a set of greed compatible coset leaders for k

even or odd. �

Theorem 15 implies that the subgroup decoding algorithm decodes wreath
product codes robustly:

Corollary 34. Let H be a finite unitary group and let G = HoSymn with the
above natural choice of subgroup sequence, coset leaders, and initial vector.
Then the subgroup decoding algorithm decodes robustly.

We now investigate error control for wreath products. We fix a set of
generators Xk for each subgroup Gk in the subgroup sequence: If k is odd,
we choose block diagonal matrices that are the identity except first block
from H together with a set of consecutive transpositions in Symn; if k is
even, we add on block diagonal matrices that are the identity except for a
single block from H. Set

X2`−1 = {(h, 1, . . . , 1), h ∈ XH} ∪ {(1 2), (2 3), . . . , (`− 1 `)},
X2` = X2`−1 ∪ {(1, . . . , 1, h, 1 . . . , 1) : h ∈ H in the (`+ 1)-th slot} .

With these choices, we have good error control:

Proposition 35. Let H be a finite unitary group and let G = H o Symn.
The above natural choice of subgroup sequence, coset leaders, initial vector,
and generators for each subgroup in the subgroup sequence satisfies Error
Control Property 29.

Proof. Fix a pair of nested subgroups with smaller group of odd index,
say G2`−1 < G2`. Take any b in X2` and any c = (1, . . . , 1, h, 1, . . . , 1) in
CL(G2`/G2`−1), with h ∈ H. If b lies in X2`−1, then b and c commute and
c−1bc = b ∈ X2`−1. If b /∈ X2`−1, then bc ∈ CL(G2`/G2`−1). Thus Error
Control Property 29 is satisfied.

Now fix a pair of nested subgroups with smaller group of even index, say
G2` < G2`+1. Take any b in X2`+1 and any c = (j j + 1 . . . l + 1) in
CL(G2`+1/G2`). First suppose b = (h, 1, . . . , 1) with h in H. If j > 1,
then c−1bc = b ∈ X2` (as c and b commute), while if j = 1, then c−1bc =
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(1, . . . , 1, h, 1, . . . , 1) ∈ X2`. Now suppose that b = (i − 1 i) for some
i ≤ `+ 1. If i < j, then c−1bc = b ∈ X2` as c and b commute; if i = j, then
bc is the coset leader (i− 1 . . . `+ 1) ∈ CL(G2`+1/G2`); if i = j + 1, then
bc is the coset leader (i . . . `+ 1) ∈ CL(G2`+1/G2`); and if j + 1 < i, then
c−1bc = (i− 2 i− 1) ∈ X2`. Thus Error Control Property 29 is satisfied in
this case as well. �

Theorem 30 then implies that errors can be controlled when they occur:

Corollary 36. Let H be a finite unitary group and let G = H o Symn with
the above natural choice of subgroup sequence, coset leaders, initial vector,
and generating sets Xk ⊂ G for each Gk. Assume the Nearest Neighbors
Property 28 holds. If a received vector lands in the decoding region contain-
ing a nearest neighbor of g−1x0 due to noise, then the subgroup decoding
algorithm decodes it to a group element differing from g in only one factor
when written as a product of coset leaders.

Remark 37. One may interpolate a sequence of subgroups of H to refine the
above process and improve the decoding efficiency. At the even stages, one
could splice a fixed subgroup sequence for H into the (l+1)-st coordinate and
replace G2` with a new sequence. One should take robust coset leaders for
the subgroup sequence of H and fix generators satisfying the Error Control
Property 29 for H so that the wreath product G = H o Symn with the
refined subgroup sequence would also inherit robust decoding with error
control. But one could also use other methods to decode H at the even
steps. That is the process envisioned in the decoding of wreath products in
Nation and Walker [13], where the Snowflake Algorithm is used to decode
H at the even steps.

15. Infinite family of complex reflection groups G(r, 1, n)

We apply the above decoding program to the complex reflection groups
G(r, 1, n) for arbitrary integers n, r ≥ 1 in this section. We obtain efficient
codes with good error control properties that resist channel noise. These
groups are wreath products acting by isometries on Cn, specifically, exten-
sions of (Z/rZ)n by the symmetric group Symn:

G(r, 1, n) ∼= Symn n (Z/rZ)n and |G(r, 1, n)| = n! rn .

Let ξ be the primitive complex r-th root-of-unity e
2πi
r , so that G(r, 1, n)

is the set all matrices with a single nonzero entry in each row and in each
column, that entry being a power of ξ.

Consider the diagonal transformations ai (1 ≤ i ≤ n) that multiply the
i-th entry of a vector by ξ and the transpositions bj for 1 ≤ j < n that
switch the j-th and (j + 1)-st coordinates. Then b1, . . . , bn−1 generate the
symmetric group G(1, 1, n) ≤ G(r, 1, n) and every element of G(r, 1, n) can
be written uniquely as a product of a permutation matrix (generated by
the bi) and a diagonal matrix (generated by the ai). Fix an initial vector
x0 = (u1, . . . , un) with 0 < u1 < . . . < un real.
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15.1. G(r, 1, n): Defining relations. We will use the Coxeter-like abstract
presentation for G(r, 1, n) in terms of generators and canonical braid rela-
tions:

G(r, 1, n) = 〈a1, b1, . . . , bn−1 : ar1 = 1 = b2i ,

bibj = bjbi for |i− j| > 1, a1bj = bja1 for 1 6= j 6= 2,

bibi+1bi = bi+1bibi+1, a1b1a1b1 = b1a1b1a1〉.
In other words, the following Coxeter-Dynkin diagram gives the abstract
group structure for G(r, 1, n):

r 2 2 2 . . . 2 2

15.2. G(r, 1, n): Subgroup sequence, coset leaders, and generators.
Consider the nested sequence of subgroups

{I} = G0 < G1 < . . . < G2n−1 = G

given as block diagonal matrix groups

G2`−1 = G(r, 1, `)⊕ {In−`} for ` = 1, . . . , n,

G2` = G(r, 1, `)⊕G(r, 1, 1)⊕ {In−`−1} for ` = 1, . . . , n− 1

where I` is the `× ` identity matrix. Fix coset leaders for Gk over Gk−1 by
setting

CL(G2`/G2`−1) = {I, a`+1, a
2
`+1, . . . , a

r−1
`+1},

CL(G2`+1/G2`) = {I, b`, b`−1b`, . . . , b2b3 · · · b`, b1b2 · · · b`}.
We choose generators Xk ⊂ G for the subgroups Gk to reflect the fact
that (at the even steps) G2k is obtained by adding adding a generator a`+1

that commutes with the elements of G2k−1 and (at the odd steps) G2`+1 is
obtained by adding adding the transposition b`: Set

X2`−1 = {a1, b1, b2, . . . , b`−1} ,
X2` = {a1, b1, b2, . . . , b`−1, a`+1}.

15.3. G(r, 1, n): Correct and Robust Decoding. The above choices co-
incide with the natural choice of subgroup sequence, coset leaders, and initial
vector for general wreath products given in Section 14. Thus Corollary 34
implies

Corollary 38. With the above choice of subgroup sequence, coset leaders,
and initial vector, the subgroup decoding algorithm for G(r, 1, n) (for any r
and any n) decodes robustly: For all g in G(r, 1, n), any received vector in
the decoding region of g decodes to g.
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Table 15.2.1. Subgroup sequence for G(r, 1, n)

k Generating set Xk for Gk Coset leaders for Gk over Gk−1

0 I

1 a1 a1, a
2
1, . . . , a

r
1 = I

2 a1, a2 a2, a
2
2, . . . , a

r
2 = I

3 a1, b1 I, b1

4 a1, b1, a3 a3, a
2
3, . . . , a

r
3 = I

5 a1, b1, b2 I, b2, b1b2
...

...
...

2n− 2 a1, b1, . . . , bn−2, an an, a
2
n, . . . , a

r
n = I

2n− 1 a1, b1, . . . , bn−1 I, (bj · · · bn−1) for 1 ≤ j ≤ n− 1

15.4. G(r, 1, n): Implementing the Decoding Algorithm Explicitly.
Although the last corollary shows that the algorithm decodes correctly, it is
helpful to point out explicitly how one implements the algorithm by hand
using the ideas in the proof of Theorem 33. Suppose r = (x1, . . . , xn) is a
received vector in Cn, and recall that x0 = (u1, . . . , un) with 0 < u1 < . . . <
un real. Consider the sequence

‖r− x0‖

‖ak1r− x0‖

‖a`2ak1r− x0‖

‖bδ1a`2ak1r− x0‖

‖am3 bδ1a`2ak1r− x0‖

‖cam3 bδ1a`2ak1r− x0‖
...

where c is a coset leader for G5 over G4, thus one of {I, b2, b1b2}. First k
is chosen to maximize Re(ξkx1), then ` to maximize Re(ξ`x2). Now since
u1 < u2, an easy calculation shows that if Re(ξkx1) > Re(ξ`x2), then we
should apply b1, switching the values, to minimize the distance; otherwise
not (so that δ is 0 or 1). Next m is chosen to maximize Re(ξmx3). Then,
since u1 < u2 < u3, we apply the correct coset leader c (a permutation) to
put Re(ξkx1), Re(ξ`x2), Re(ξmx3) into increasing order (an insertion sort).
Continue until pau.

Remark 39. An observation in the proof of Theorem 33 can be used to
speed up the algorithm considerably. Writing x = |x|eiθ, we maximize the
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real part of ξkx = |x|e(
2πk
r

+θ)i by making 2πk
r + θ as close to 2π as possible.

Thus k should be chosen as the nearest integer to r − rθ
2π .

15.5. G(r, 1, n): Initial vector. We refine our choice of initial vector so
that neighbors of x0 are just its images under the natural generating set
a1, b1, . . . , bn−1 in order to control errors. We mimic construction of an
optimal vector for the Coxeter group WBn. If we take a real vector x0 of
the form

x0 = (α, α+ β, α+ 2β, . . . , α+ (n− 1)β)

and require that

‖a1x0 − x0‖ = ‖b1x0 − x0‖ = . . . = ‖bn−1x0 − x0‖,
then a straightforward computation gives

β

α
=

√
1− cos

2π

r

which yields
√

2β as the minimum distance of the code. Initially we set
α = 1, and then normalize so that ‖x0‖ = 1. Note that ‖aix0 − x0‖ will be
greater than

√
2β for i > 1. This choice gives an initial vector with full orbit

under G, and the minimum distances of the code defined by this choice of
x0 (for various r and n) have a reasonable order of magnitude. Table 15.5.1
gives the values achieved for small values of r and n.

Table 15.5.1. Actual dmin obtained for some G(r, 1, n)

r n = 2 n = 3 n = 4

3 .71 .41 .27

4 .63 .38 .26

5 .56 .35 .24

6 .51 .32 .23

7 .46 .30 .21

8 .42 .28 .20

15.6. G(r, 1, n): Controlling Errors. The above choices of subgroup se-
quence, coset leaders, and initial vector for G(r, 1, n) are consistent with
those from Section 14 for general wreath products. Thus Proposition 35
implies Error Control Property 29 for G(r, 1, n).

We now check directly that Nearest Neighbors Property 28 holds as well,
i.e., we check that if gx0 is any nearest neighbor of x0, then g lies in XG ∪
X−1G . We argue that if g 6= I, a1, a

−1
1 or some bj , then ‖gx0 − x0‖2 > 2β2 =

dmin. This distance squared is the sum of terms of the form

|ξt(α+ jβ)− (α+ `β)|2
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for integers j and `. One may verify that if j = ` and t 6= 0, then this
expression is at least 2β2, while if j 6= `, then it is at least β2 and there are
at least two such terms.

Corollary 31 then implies error control for the groups G(r, 1, n):

Corollary 40. For G = G(r, 1, n), assume the above natural choice for
subgroup sequence, initial vector, coset leaders, and generating sets Xk ⊂ G
for each Gk. If a received vector lands in the decoding region containing a
nearest neighbor of g−1x0 due to noise, then the subgroup decoding algorithm
decodes it to a group element differing from g in only one factor when written
as a product of coset leaders.

15.7. G(r, 1, n): Efficient Decoding. We argue that the above choices for
G(r, 1, n) also yield efficient decoding using navigation through the coset
leader graphs as described in Section 13. One can check directly that each
coset leader graph is connected (see Definition ??) for G(r, 1, n). The graphs
for G(4, 1, 4) are given in Figure 15.7. (Note that Kriloff and Lay [16] show
existence of Hamiltonian cycles for the Cayley graphs of G(r, 1, n).) We use
Remark 39 and the explicit decoding process described after Corollary 38.
At stages 1, 2, 4, . . . , 2k where the coset leader graphs are cyclic, we can
choose in one step the coset leader that moves the received vector closest to
the initial vector. For the permutation stages 3, 5, . . . , 2k+1, the graph gives
an insertion sort. As in [10], a modified insertion sort could also be used to
shorten the decoding somewhat. Hence the coset leader graphs for G(r, 1, n)
are particularly easy to navigate, compared to most unitary groups.

a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

a4

a4

a4

a4

b1 b2 b3

b1 b2

b1

1

Figure 15.7.1. Coset leader graphs for G(4, 1, 4)

15.8. G(r, 1, n): Number of Steps in the Algorithm. Assuming that we
use the method indicated in the last subsection to navigate the cyclic coset
leader graphs, the analysis of the average number of steps to decode using
G(r, 1, n) is identical to that given for the Weyl group WBn = G(2, 1, n) in
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Fossorier, Nation and Peterson [10]. In other words, for any r ≥ 2, one can
decode G(r, 1, n) just as fast as G(2, 1, n). Moreover, exactly as in [10], one
can speed up the sorting by using a slightly different subgroup sequence,
which amounts to using an improved insertion sort. We omit the details
and give the results.

Asymptotically, the number of steps in decoding is n2

4 for the subgroup

sequence given here, and n2

8 for the modified sort. But for moderate values of
n, the number of steps is fewer than that would indicate, and in fact close to
the theoretical minimum. Some of these numbers are given in Table 15.8.1,
where

• γn is the average number of comparisons to decode using interme-
diate subgroups with a standard insertion sort,
• γ′n is the average number of comparisons to decode using interme-

diate subgroups with a modified insertion sort,
• n + log2 n! is the theoretical minimum average number of compar-

isons; see Knuth [21].

Table 15.8.1. Average number of comparisons to decode G(r, 1, n)

n γn γ′n n+ log2 n!

4 8.9 8.7 8.6

8 27.3 24.0 23.3

16 88.6 67.7 60.3

32 307.9 204.5 149.7

16. Remarks on initial vector and minimal distance of the code

How does choice of initial vector determine the effectiveness of an arbi-
trary group code? We discuss factors influencing the choice of initial vector
under subgroup decoding. In the next section, we give some experimental
data comparing minimal distance of group codes and their decoding com-
plexity.

16.1. Suboptimal minimal distance. The choice of initial vector deter-
mines the minimal distance dmin of the code; one usually regards the largest
possible minimal distance as optimal in coding theory, as decoding errors
are minimized when codewords are as far away from each other as possible.
Mittelholzer and Lahtonen [9] gave an elegant and simple solution to the
problem of choosing the initial vector in the case G is a Coxeter group: Any
unit vector in the fundamental region can be taken for the initial vector,
some work better than others, and there is a straightforward algorithm to
find the optimal choice.
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The geometry of arbitrary groups acting on complex space prevents a
clean generalization. In the last section, we gave some explicit minimal
distances for the codes built on G(r, 1, n). The choice of initial vector gives
robust decoding and good error control. But this choice does not yield the
optimal minimum distance of the code (although it approaches the optimum
value as r increases). In some examples, for small values of r and n, an initial
vector x0 for G(r, 1, n) which yields the optimal minimal distance of the code
can come at a price: greed-compatible coset leaders may not exist and thus
subgroup decoding does not work. Thus in practical applications, we often
settle for an initial vector giving less than the optimal minimal distance in
order to gain robust decoding.

16.2. Geometric uniformity. The following simple observations on “geo-
metric uniformity” (discussed by Forney [5] for Euclidean spaces) neverthe-
less can be useful in choosing an initial vector.

Observation 41. Fix an initial vector x0.

(1) If c is a complex number with |c| = 1, and y0 = cx0, then the code
Gy0 has the same minimum distance as Gx0. The nearest neighbors
of y0 are the vectors ay0 with a ∈ NG.

(2) If h ∈ G and z0 = hx0, then the code Gz0 also has the same mini-
mum distance as Gx0. In this case, the nearest neighbors of z0 are
the vectors by0 with b ∈ hNGh

−1.

The first part of the lemma suggests that the first entry of x0 may be
taken to be real (or imaginary), which can be useful. Although we often
choose the initial vector x0 to be a real unit vector, note that occasionally
it is crucial for the minimality of coset leaders that the initial vector not be
real. In either case, we usually adjust the entries to make neighbors realized
by a preferred set of generators (for example, reflections). The preceding
observation gives us some guidance in making these adjustments.

17. Experiments and Comparisons of Group Codes

What is the trade-off in group coding when choosing a large minimum
distance over a low decoding complexity? We give some experimental data
comparing group codes in this section. We also report on ideas for group
coding over the quaternions and experimental attempts for successful de-
coding using exceptional complex reflection groups.

17.1. Quaternions. There is an obvious generalization of the reflection
groups G(r, 1, n) that will have the same good decoding properties. These
are the groups P(K, n) of all n × n permutation matrices whose nonzero
entries are from a group K of complex numbers z with |z| = 1, or more
generally, quaternions w with |w| = 1. For example, we could take

K = {z ∈ C : z2
k

= 1 for some k ≥ 1} .
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This is an infinite group, but for any given application we would only use a
finite part of it, although without a predetermined bound. Likewise, there
are a few finite multiplicative subgroups of unit quaternions that could be
used as entries in the permutation matrices; see Kranek [22] or Lehrer and
Taylor [23]. As an exercise, we programmed a simulation of coding with
P(H, 3) with H the 8-element quaternion group.

17.2. Comparing group codes. We now give a table comparing some
group codes of similar sizes. We include two Coxeter groups, two complex
reflection groups in the family G(r, 1, n), the wreath product of an excep-
tional complex reflection group with a symmetric group, and the wreath
product of the quaternion group H with a symmetric group. We include the
exceptional complex reflection group and quaternion group individually in
the table for comparison.

We measure the decoding complexity by counting the average number
of comparisons required to decode a received vector, i.e., the number of
comparisons of lengths of vectors or distances between vectors. We used the
decoding methods described in this paper, except that for G4 and G4 oSym4

we used the Snowflake algorithm (discussed in the next section) to illustrate
how methods can be mixed with wreath products (see Remark 37).

The first column names the acting group G, the second column gives the
size of the group code, the third column gives the length of the code (the
dimension of V in terms of the base field R, C or H), the fourth column
gives the minimum distance dmin of the code, and the last column gives the
approximate average number of comparisons in decoding.

Table 17.2.1. Size, length, minimum distance, and average
number of comparisons to decode for various group codes

Group |G| length dmin comparisons

Sym10 10! = 3, 628, 800 10 .156 23.3

WB8 = G(2, 1, 8) 288! = 1, 032, 092 8 .104 24.0

G(4, 1, 6) 466! = 2, 932, 120 6 .148 15.7

G(8, 1, 5) 855! = 3, 932, 160 5 .154 12.1

G4 24 2 .866 4.21

G4 o Sym4 (24)44! = 7, 962, 624 8 .213 21.5

H 8 1 1.414 1

H o Sym5 855! = 3, 932, 160 5 .191 12.1

17.3. Subgroups of G(r, 1, n). For any divisor p of r, recall that G(r, p, n)
is a reflection subgroup of G(r, 1, n). The properties that make subgroup
decoding work well for the groups G(r, 1, n) seem not to hold for the groups
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G(r, p, n) with p > 1, except for the real group WDn = G(2, 2, n) (see [10]).
A general choice of subgroup sequence, initial vector, and coset leaders that
is greed compatible seems elusive. In addition, we have not been able to
find choices giving the Error Control Property 11. This leaves the question:
Is there any good decoding scheme for the groups G(r, p, n) with p > 1?

17.4. Tetrahedral group G4, Octahedral G8, Icosehedral G16. In
Section 12.1 we saw that subgroup decoding worked for codes based on
the tetrahedral group G4 using a careful choice of the subgroup sequence
and initial vector. There are two other reflection groups of this type, the
octahedral group G8 and the icosahedral group G16. These groups are gen-
erated by matrices A and B satisfying the equations Ak = Bk = I and
ABA = BAB for k = 3, 4 and 5 respectively:

• k = 3 gives G4 with 24 elements.
• k = 4 gives G8 with 96 elements.
• k = 5 gives G16 with 600 elements.

For the octahedral group, if we take the natural subgroup sequence {I} <
{I, A,A2, A3} < G8 and a nonreal unit vector x0 such that ‖A−1x0−x0‖ =
‖B−1x0 − x0‖, then coset leaders can be chosen minimal and the subgroup
decoding algorithm decodes correctly with some noise.

On the other hand, we have not been able to find a combination of sub-
group sequence and initial vector that gives minimal coset leaders for a code
based on the icosahedral group G16. For example, for a standard matrix
representation and subgroup sequence {I} < {I, A,A2, A3, A4} < G16, ties
arise in a rather unexpected way:

B3A4B3 =

[
c 0
0 c

]
and B3A4B3A4 =

[
c 0
0 c

]
where c = e

π
5
i.

17.5. Hessian groups G25 and G26. We have not found a subgroup de-
coding scheme that works for the complex reflection groups G25 and G26.
Despite repeated attempts, using computerized search programs (testing all
subgroup sequences), we have been unable to find a subgroup sequence and
initial vector yielding greed compatible coset leaders for these groups.

18. Conclusions

Subgroup decoding works well for codes based on the groups G(r, 1, n),
which are wreath products of cyclic groups, thus generalizing codes based
on the real reflection groups WAn ∼= Symn and WBn. Codes based on these
groups decode robustly, have good error control, and decode in few steps
relative to the size of the group. There are problems with error control
(Property 29) for the groups G(r, p, n) with p > 1 that generalize WDn.
Subgroup decoding works on some of the exceptional unitary groups, but
not others, and this seems to be inherent in the structure of the groups. In
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general, good coding properties are preserved by wreath products, allowing
us to build large codes from small ones.

This suggests that other decoding methods should be considered. Walker,
building on the work of Kim [11], has designed an alternative algorithm for
arbitrary unitary groups called the Snowflake Algorithm; see [12, 13]. The
efficiency of this other decoding method varies from pretty good to very
good, depending on the group action, in ways that we do not yet totally
understand. In the Snowflake algorithm, the basic algorithm of group cod-
ing, transmitting g−1x0 and decoding with g′(r) ≈ x0, remains unchanged.
However, the use of a subgroup sequence is abandoned, so that the greedy
aspect of the algorithm is no longer a factor. Rather, a set of generators
is chosen for G so that each group element will have a relatively short ex-
pression as a product of the generators. This expression may not be unique,
but one such expression can be chosen as a canonical form for the element
and tables of equivalent minimal expressions calculated. Using these, one
can decode correctly with some noise, and for some groups it can be done
efficiently. For those groups where the algorithm can be made efficient,
including wreath products of the complex reflection groups G4, G5, G8

and G20, the Snowflake algorithm might provide an alternative method of
decoding group codes.

19. Appendix I: A primitive group decoding algorithm

This paper has focused on subgroup decoding, which works very well for
codes based on real reflection groups or the groups G(r, 1, n). These group
codes may prove useful in certain practical situations. The same probably
cannot be said for codes based on arbitrary unitary groups, though there
may be applications which we cannot yet envision, e.g., in cryptography.
Often, a choice of initial vector and subgroup sequence yielding an effective
decoding algorithm (or one that even decodes correctly) remains elusive. In
this appendix, we describe a very general type of decoding algorithm. Then
we give an analog of Theorem 21: If a weak necessary condition is satisfied,
then the algorithm decodes correctly when the received vector is sufficiently
close to the sent codeword. The appendix is based on Kim [11]; a refined
version is given in Walker [12].

The parameters for this type of decoding are

• a finite unitary group G,
• an initial unit vector x0,
• a generating set X for G.

Again, the codewords are elements of the orbit Gx0, a codeword x = g−1x0

is transmitted, and the received vector is r = x+n where n represents noise.
The primitive decoding algorithm decodes as follows. We fix some predeter-
mined ε > 0. Let r0 = r. Recursively, given rk, find a transformation
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ck+1 ∈ X such that the vector rk+1 = ck+1rk satisfies

‖rk+1 − x0‖ < ‖rk − x0‖ − ε .
If no such ck+1 exists, terminate and decode r as ck · · · c1.

For example, if G is a reflection group, we might take X to be all re-
flections or a minimal generating set of reflections or anything in between.
(Walker has shown that it may be necessary to include some nonreflections
in the set X to obtain the condition (‡) below.)

Let us assume that the pair X, x0 satisfies the condition that every non-
trivial codeword is sent closer to the initial vector by some element of X:

(‡) For any w ∈ Gx0 with w 6= x0, ‖cw− x0‖ < ‖w− x0‖ for some c ∈ X.
(This is a condition satisfied by simple reflections in a Coxeter group: Every
group element factors as a product of a minimum number of simple reflec-
tions generating the group, multiplying by the first factor decreases length,
and length corresponds to distance back to some initial vector.)

We want to show that the procedure terminates and decodes correctly, i.e.,
at termination ck · · · c1 ∈ Sg where S = Stab(x0). Clearly (‡) is necessary
for correct decoding, for if w witnesses a failure of (‡), then w cannot be
decoded correctly even with no noise. For each codeword w, let MG(w) be
the set of “minimal generators” c that minimize the distance from cw back
to x0 over all c in X ∪ {I}:

MG(w) =
{
c ∈ X ∪ {I} : ‖cw − x0‖ ≤ ‖dw − x0‖ for all d ∈ X ∪ {I}

}
.

Then (‡) is equivalent to the condition that I /∈ MG(w) whenever codeword
w 6= x0. Define

δ = min
w∈Gx0−{x0}
c∈MG(w)

‖w − x0‖ − ‖cw − x0‖

so that ‖w − x0‖ ≥ ‖cw − x0‖ + δ for any c ∈ MG(w). There are two
versions of the algorithm. At each step, either

(A) choose ck+1 to minimize ‖ck+1rk − x0‖, or
(B) choose the first ck+1 such that ‖ck+1rk − x0‖ < ‖rk − x0‖ − 1

3δ.

In either version, when there is no c ∈ X such that ‖crk−x0‖ < ‖rk−x0‖−
1
3δ, we terminate and decode r as ck · · · c1.

We verify that either version of the primitive decoding algorithm works
with some noise:

Theorem 42. Assume that the pair X, x0 satisfies the condition (‡). Define
δ as above. If ‖r− g−1x0‖ < δ/3, then the procedure terminates in at most
b6/δc steps and outputs ck · · · c1 ∈ gS.

Proof. We show that each step of the algorithm moves us at least δ/3 closer
to the initial vector. Hence the process terminates in at most

(3/δ) max ‖w − x0‖ ≤ (3/δ) 2 = 6/δ
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steps (not counting a possible terminal step of choosing I), where the max
is taken over all codewords w (on the unit sphere).

At step k, set g′ = ck · · · c1, w = g′g−1x0, and rk = g′r. Suppose w 6= x0.
Note that ‖rk −w‖ = ‖g′r − g′g−1x0‖ < δ/3. By (‡) and the definition of
δ, there exists c ∈ MG(w) with

‖rk − x0‖ ≥ ‖w − x0‖ − ‖rk −w‖
> ‖cw − x0‖+ δ − δ/3
= ‖cw − x0‖+ 2δ/3

whilst

‖crk − x0‖ ≤ ‖cw − x0‖+ ‖crk − cw‖
< ‖cw − x0‖+ δ/3 .

Thus

‖crk − x0‖ < ‖rk − x0‖ − δ/3
making crk closer than rk to x0 by a step of length at least δ/3 as desired. �

20. Appendix II: Partial group codes based on G(r, 1, n)

It can be advantageous to use a group code based on a proper subset of
the codewords, W ⊂ Gx0 = {gx0 : g ∈ G}. In this appendix, we briefly
indicate how this can be done to yield a significant improvement in codes
based on G(r, 1, n).

Although the code based on G(r, 1, n) in Section 15 has good error control
properties, a problem arises: the distance between adjacent codewords is not
uniform, which makes the decoded “bits” not uniformly reliable. (Errors
are more likely in the parts of the received vector corresponding to smaller
components of the initial vector.) This stems from the fact that the initial
vector,

x0 = (α, α+ β, α+ 2β, . . . , α+ (n− 1)β),

gives dmin =
√

2β as the minimal distance of the code where 0 < β < α and
β/α = (1− cos 2π

r )1/2. For the generators ai and bj of G(r, 1, n), this choice
implies that

‖a1x0 − x0‖ = ‖b1x0 − x0‖ = . . . = ‖bn−1x0 − x0‖ = dmin

and ‖ajx0 − x0‖ >
√

2β for j > 1.
One solution to this problem is the following. Recall that any group

element g ∈ G(r, 1, n) can be written as a product of coset leaders in the
form

g = τ`na
kn
n · · · τ`3a

k3
3 τ`2a

k2
2 a

k1
1

where each τ`j is a permutation and each ki ∈ N. Choose integers mj for
1 ≤ j ≤ n with mj dividing mj+1,

1 = mn |mn−1 | . . . |m2 |m1 | r .



38 HYE JUNG KIM, J. B. NATION, AND ANNE V. SHEPLER

Then use only codewords gx0 (as above) with mj | kj for 1 ≤ j ≤ n. Al-
though this code is a proper subset of the full code for G(r, 1, n), it does not
correspond to a subgroup. Note that the size of the code is

|W | = n! rn∏
1≤j≤nmj

.

The decoding algorithm is unchanged, except that the received vector is
interpreted to be the nearest codeword.

Now the object is to adjust the parameters m1, . . . ,mn−1 and the initial
vector x0 to make as uniform as possible the distances ‖bjx0 − x0‖ for
1 ≤ j ≤ n − 1, and ‖amkk x0 − x0‖ for 1 ≤ k ≤ n, while increasing the
minimum distance of the code in the process. In practice this can be done
rather effectively by ad hoc adjustments, but an interesting problem arises:
Find a good algorithm to adjust these parameters.

For example, consider the code based on G(16, 1, 4). The original sub-
group decoding scheme takes m1 = m2 = m3 = m4 = 1 and an initial vector
of the form

x0 = (α, α+ β, α+ 2β, . . . , α+ (n− 1)β)

with β/α = .2759. The size of the code is 164 · 4! = 216 · 24. One
can calculate that the variation in the distances ‖gx0 − x0‖ with g ∈
{a1, a2, a3, a4, b1, b2, b3} is max/min = 1.83, and the normalized dmin is .169.

If instead we take m1 = 4, m2 = 2, m3 = m4 = 1 and β/α = 1.0, then we
obtain a code with only 213 · 24 codewords. However, the variation in the
distances is then max/min = 1.36, and the minimum distance dmin becomes
.280, giving a considerable improvement.
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