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Abstract

Quantum memories can be regarded as quantum channels that transmit information through
time without moving it through space. Aiming at a reliable storage of information we may
thus not only encode at the beginning and decode at the end, but also intervene during the
transmission — a possibility not captured by the ordinary capacities in Quantum Shannon Theory.
In this work we introduce capacities that take this possibility into account and study them in
particular for the transmission of quantum information via dynamical semigroups of Lindblad
form. When the evolution is subdivided and supplemented by additional continuous semigroups
acting on arbitrary block sizes, we show that the capacity of the ideal channel can be obtained
in all cases. If the supplementary evolution is reversible, however, this is no longer the case.
Upper and lower bounds for this scenario are proven. Finally, we provide a continuous coding
scheme and simple examples showing that adding a purely dissipative term to a Liouvillian can
sometimes increase the quantum capacity.

Index Terms

channel coding, Markovian dynamics, quantum capacity, quantum information, quantum
memories

I. INTRODUCTION

Inspired by its classical analog [I], a goal of quantum Shannon theory is to quantify the optimal
rate of quantum information transmission using many instances of a quantum channel and a
suitable encoding and decoding of the information. The physical scenario that one has in mind here
is the transmission of quantum information over some noisy carrier of information such as a wire
connecting two different points in space. The noise introduced by the carrier is then represented
by a quantum channel.

Another possible scenario is that of a quantum memory, where quantum information is stored and
which suffers from noise due to coupling to some environment. Here the information is transmitted
in time and not in space. Note that in physically relevant situations noise acts continuously in time
on the quantum memory. This kind of noise is often modeled by a quantum dynamical semigroup
of quantum channels 7; = e** [2] indexed by a time t and each corresponding to the accumulated
noise up to t. If we try to determine the optimal rate of quantum information transmission (i.e. of
storing quantum information for some time t) in this setting, the usual quantum capacity Q(7}) [3l
pp. 561] of the whole channel 7; is not the appropriate limit. It only allows to optimize the initial
encoding and the final decoding of the quantum information, but it does not take into account,
that the quantum channel representing the noise is continuous in time and that the system stays at
the same location during the transmission, which allows intervention throughout the transmission.
During the storage we could for instance read the information from the memory at any earlier
time and then write it into the memory again with another encoding, thereby subdividing the
time-evolution. This could be repeated many times until the information is finally read from the
memory. Another way to protect a quantum memory could be to engineer a control affecting
the memory in a continuous way to protect the stored information. In some cases we may even
add tailored dissipation or decoherence on top of the given one with the effect of enhancing the
transmission rate.

In this paper we introduce and investigate capacities quantifying the optimal rates of informa-
tion storage in a quantum memory affected by continuous-time Markovian noise. To each noise
Liouvillian £ generating such a noisy time-evolution and any time ¢t € RT we assign the “quantum
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subdivision capacity” Q¢ (tL) depending on a subset € of quantum channels. This capacity is
the supremum of optimal communication rates using the noisy time-evolution, when it may be
subdivided into arbitrarily many parts and when we are allowed to apply coding channels from ¢
in between these parts. We study these capacities for different sets €, which capture operational
restrictions, and prove capacity theorems for some of them. In the cases of € = ¢b, i.e., when the
intermediate channels can be arbitrary quantum channels (no restriction), and for € = sg*, i.e., for
intermediate coding channels generated by time-dependent Liouvillians, we show that Q¢ = log(d)
on a d-dimensional system, which is the capacity of an ideal channel. To prove this for € = sg*,
we use the decoupling approach to quantum capacities [4] in order to show that one needs only
a sublinear number of ancilla systems for the intermediate coding steps. After studying these
two cases we consider the quantum subdivision capacity Q,,, i.e., where the intermediate coding
channels are unitaries. In contrast to the previous two cases we prove that Q,,(t£) can become
arbitrarily small as ¢ grows. On the positive side, we however show that @, is always strictly
positive and thereby improves upon the usual quantum capacity in the generic case where the
noise channel becomes entanglement breaking after some finite time.

In the second part of the paper, we introduce and investigate the continuous quantum capacities
Q5™ (L) of the noise Liouvillian £ at a time ¢, where € denotes a fixed subset of time-dependent
Liouvillians. These capacities quantify the optimal rate of information transmission over a system
affected by continuous-time Markovian noise, when the possibility of superimposing a continuous
control from € is taken into account. For a physical relevant class of Liouvillians we introduce a
continuous coding scheme implementing a continuous error correcting code with time-independent
quasi-local coding Liouvillians. Thereby we prove that the continuous quantum capacity is in
general higher than the usual quantum capacity of the channel corresponding to the accumulated
noise of the time-evolution, even if € contains only time-independent quasi-local Liouvillians.

Quantum subdivision capacities share some similarities to capacities for quantum relay chan-
nels [B], [6], i.e., quantum channels describing the scenario of information transmission over a
sequence of relay stations each of which with the power to decode and re-encode the information.
Here we consider a similar scenario, with the major difference that the noise per subdivision is
decreased when including more subdivisions and where the number of subdivisions can be modified
by the communicating parties. We also study how operational restriction on the intermediate
coding channels affect the capacity.

Some of the possibilities captured by the continuous quantum capacities have been studied
previously to some extent. Continuous formulations of quantum error correction have been studied
for instance in [7], [8], [9], [10], and the possibility to use engineered dissipative control to protect a
quantum memory has been studied in [II], [I2]. Limitations for information storage in a quantum
memory of fixed size have been studied in [I3]. Our paper is to some extent inspired by these
previous results. A related mechanism to prevent iterations of quantum channels from becoming
entanglement-breaking has been studied in [I4]. We are interested in the optimal rates of storage
in a quantum memory and we introduce capacities quantifying these optimal rates, when the
possibility of continuous control is taken into account. Thereby we formulate the problem of optimal
information storage in the context of quantum Shannon theory, and this allows us to use techniques
such as the decoupling approach [15], [4] for continuous-time problems.

II. NOTATIONS AND PRELIMINARIES

We will denote the set of complex d x d— matrices by M, := M ((Dd), the set of d—dimensional
density matrices, i.e., positive d x d—matrices of trace 1, by D4 := D (C?). The d x d—identity
matrix will be denoted by 14.

In formulas involving a large number of tensor factors some confusion can occur about which
map acts on which system. Therefore we will sometimes introduce labels for different subsystems,
although they might denote the same space, and use them for labeling maps and states. For
example, we would write (idAr ® TA_’B) (pA,A) e Mm ((DdA/ ® (DdB), for the application of the
linear map 7478 : My, — My, to the tensor factor labeled by A of p € D ((DdA/ ® (DdA),
where the identity map is denoted by idas : Mg,, — My, or as idg,, depending on the context.
Note that we might have d4 = dar and therefore My, = My,,. We will use the same label
with a modification like A, A’, A, ..., when dealing with matrix spaces of the same dimension,
where this confusion might occur. A d—dimensional maximally entangled state will be written as
wAt e D ((DdA’ ® (Dd“), where dg = da as described. Partial traces acting on a given state will



be written by simply omitting the labels, that have been traced out. Thus we write pA, instead of
tra (pA/A) for a state p € D (C% ® C94). For the partial trace as a map, we will write try or
trg, depending on the context.

The set of completely positive and trace-preserving maps, i.e. quantum channels, mapping 214,
to Mg, will be denoted as ch(da,dp) or as ch(d) if d = da = dp. We will simply write ch
to denote the set of arbitrary quantum channels. Here completely positive means, that the map
ide @ T @ Ma, @ Mg, — My ® My, is positive for all dimensions dc. Quantum channels
can be characterized in different ways. One possibility, which we will use frequently is given by
the Stinespring dilation theorem [16]: A linear map 7 : My, — My, is a quantum channel iff
VASBE ), (VA-BE) T)

it can be written as T (p) = trg with an ’environment’-system labeled

by E and an isometry VAZBF . €91 — @98 @ €. Sometimes we will be interested in the
state of the environment after applying a quantum channel. This can be done using the com-
plementary channel [I7]. For a quantum channel 7 : 9y, — DMy, with Stinespring dilation

T (p) = trg (VAHBE;J (VAHBE)T) we define the complementary channel by tracing out the

output system B of T instead of the environment, i.e. T¢(p) = trp (VA_’BEp (VA_*BE)T .

In the following we will consider a continuous semigroup of quantum channels denoted by 7; :
My — My. Mathematically this is a family of quantum channels parametrized by a non-negative
parameter t € R™ such that 7; 0 T; = T,4¢ and Ty = idy and such that the function ¢ — 7y is
continuous. We will call such a semigroup a quantum dynamical semigroup. Physically quantum
dynamical semigroups describe Markovian evolutions in continuous time. It is well known [2], that
a continuous semigroup of linear, trace-preserving maps is completely positive, i.e. is a quantum
dynamical semigroup, iff it is generated by a Liouvillian £ : 9y — M, of the form

N
£ =il + Y (Aupdl - Jalap - 3palas) 1)
k=1
for some Hermitian matrix H € 9;, which can be interpreted as a Hamiltonian, and Kraus
operators Ay € M, for k € {1,...,N}.

The set of all quantum channels that can be written as 7 = e for a Liouvillian £ : 0t — My
of the form (), is denoted by sg(d). When not specifying the dimension we will simply write sg
to denote the set of all quantum channels 7 = e for arbitrary Liouvillians £. An example of
quantum channels 7 € sg(d) are unitary channels of the form 7 (p) = UpUT, which are generated
by Liouvillians of the form £(p) = —i[H, p] for some Hermitian matrix H € M;. We will denote
the set of all unitary channels mapping My to My by un (d). It is clear that quantum channels
T € sg are infinitely divisible [I8] as we have T = e£ = Hle e for all k € N.

We will need certain norms as distance measures. For a matrix p € 91, we define the trace-
norm as ||pl|; = Zle s(p)i, where {s(p);} C R* denote the singular values of p. For maps
T : My — My we use the induced norm given by [|T|,_,; := supj, =1 [T (p)[l; and a regularized
version || T, := sup,,cn [lidn ® T1|;_,,, which is the dual of the completely bounded norm [I9} p.
26).

In the following we are interested in the transmission of quantum information through a system,
undergoing a Markovian time-evolution. Therefore we will need some more results from quantum
information theory:

Definition II.1 (Quantum capacity Q, see [20], [2I]). The quantum capacity of a quantum
channel T : Mg, — My, is defined as

Q(T) :=sup{R € R" : R achievable rate}

where a rate R € R is called achievable if there exist sequences (ny),,(my)—, such that
R =limsup,_, o ;= and

glzf)Hz'dgzm”—DoTQ@m”oEHO%O as v — oo. (2)

The latter infimum is over all encoding and decoding quantum channels £ : IMS™ — DJT?:’” and

D: E)ﬁf?;”” — MS™ , see Fig. .

We will need some theorems that have been proven for the quantum capacity. The first is the
LSD-Theorem by Lloyd [20], Shor [22] and Devetak [23], which expresses the quantum capacity
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Fig. 1. Coding scenario for the Quantum Capacity Q (7)) with encoding channel £ and decoding channel D.

through certain entropic quantities. In order to state this theorem we need some definitions. Note
that here and in the following log will always mean logarithm with base 2.

Definition II.2 (Coherent information, see [3, p. 564]). For a bipartite density matriz p €
D ((DdA ® (DdB) we define the coherent information of p w.r.t. to the bipartition A : B as

1" (A = B), == S(o%) - S(p"7) = ~S (A|B),

where we denote by S(o) := —tr(olog(c)) the von-Neumann entropy and by S(A|B), the quantum
conditional entropy of A given B in the state p.

For a quantum channel T : My, — Mq, and a quantum state p* 4 € D ((DdA’ ® @dA) we will
write

1M (p, T) 1= I (A > B) 4y
With this definition the following holds.
Theorem II.1 (LSD, see [20], [22], [23]). For a quantum channel T : Mgy, — My, we have

(Para)”

Q(T) = lim 1 max I°" (o, ida @ TE") | .

n—oo N | gA’A
. . ’ n n
The maximum is over states 44 € © ((UdA’ ® (DdA’).

Using this theorem and continuity of the coherent information it has been shown in [24], that
the quantum capacity is continuous, or more specifically that the following holds.

Theorem II.2 (Continuity of quantum capacity, see [24]). For quantum channels T,S : My, —
My, and 1 > e >0 with ||T — S|, < € we have

1Q(T) — Q(S)| < 8edp + 4H ()
where H(p) = —plog(p) — (1 — p) log(1 — p) denotes the binary entropy.

The above theorem shows, that for every quantum dynamical semigroup 7; : My, — My, we
have Q(T;) — log(da) for t — 0, thus the capacity converges to its maximal possible value. For
our argumentation continuity of the coherent information [24] will be sufficient. More specifically
we will need that for every quantum dynamical semigroup 7; : My, — My, we have

Ieoh (wA/A, ida ® ’7;) — log(da) ast—0. (3)

IIT. QUANTUM SUBDIVISION CAPACITIES
A. Definition

Consider a Liouvillian £ : 9ty — My of the form . We want to define a capacity for
the transmission of quantum information using a system that undergoes a noisy time-evolution
generated by L. The capacity will take into account, that we may interrupt the time-evolution
at any point, i.e., that the quantum channel generated by L is infinitely divisible, and perform
certain quantum operations before resuming the time-evolution.

We will denote the set of quantum channels that are allowed to be applied in the intermediate
steps by €. Formally this may be any subset € C c¢h and we will state our definition in the
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Fig. 2. General coding scenario for the quantum subdivision capacity Q¢. The intermediate coding channels C;
have to be from the set € and £, D can be arbitrary quantum channels. Furthermore the number of subdivisions
k € N can be chosen freely.

most general form for arbitrary €. Note that this definition yields a family of quantum capacities
depending on the choice of € and we will later study some relevant choices in more detail.

For convenience we will include a time parameter t € R in our definition of the capacity. This is
because we want to emphasize the time-dependence of a quantum dynamical semigroup generated
by a fixed Liouvillian L.

Definition ITI.1 (Quantum subdivision capacity Q¢). For € C ¢ the €—quantum subdivision
capacity of a Liouvillian L : My — My of the form at a time t € R* is defined as

Q¢ (tL) :==sup{R € RT : R achievable rate}

where a rate R € RT is called achievable if there exist sequences (n,),—,,(my) -, such that
R =limsup,_, ., ~= and we have

my

-0 (4)

o

idy™ —Doﬁ (cl OT§MV> o &

=1

inf
k,£,D,C1,....Ck

as v — 0o0. The latter infimum is over the number of subdivisions k € N for which the channels
t
T: := ex* are defined, arbitrary encoding and decoding quantum channels & - zm?”v — zm?m" and

k
D : W?m” — 9)??"” and appropriate coding channels C; € € from the chosen subset, see Fig. @

Different choices of € in Definition [VI.I] will in general lead to different quantities Q¢. Note that
by choosing € = {id, : n € N} we have Q¢ (t£) = Q (e'F), as we can only choose the identity
map in the intermediate steps, and we recover the quantum capacity from Definition [I.1] In the
following we will consider three sets € C ¢ of physical relevance and the corresponding quantum
subdivision capacities Q.

At first we will look at the case where arbitrary quantum channels are allowed in the intermediate
coding steps. This corresponds to the choice € = ¢ for which we will obtain Q. (t£) = log(d) for
any Liouvillian £ : 9y — My of the form and any t € R", see Theorem Note that this
is the maximal possible value on a d-dimensional system.

In the second case, we will only allow quantum channels in € which are composed of quantum
dynamical semigroups to be applied in the intermediate steps, i.e., channels of the form Hf\[:l eLi for
arbitrary N € N and Liouvillians £; of the form . We will denote this set by sg*. The channels
in sg* can be thought of as generated from time-dependent Liouvillians and as their determinant
is always positive they form a proper subset of ¢h [I8]. Note also that sg* # sg [25]. For the
quantum subdivision capacity we will again obtain the highest possible capacity Qqq+« (t£) = log(d)
for any Liouvillian £ : 9t; — M, of the form and any t € RT, see Theorem The proof of
this statement will turn out to be more involved as the set of possible coding channels is restricted.

For the third case we constrain the set of coding operations further and only allow unitary
channels to be applied in the intermediate steps, i.e., channels of the form UpU' for a unitary
matrix U. We will denote the set of unitary channels by un. Here we will show, that there exist
Liouvillians £ : My — My such that Quy (L) < e *log(d) which therefore becomes arbitrary
small as ¢t — oco. We will derive some further lower bounds in this case.
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Fig. 3. Subdivision Coding Scheme for the proof of Theorem For any § > 0 choose k € IN such that a rate
R > log(d) — ¢ is achievable for the usual capacity Q. In each of the k steps the local error satisfies ||id§n” —D,o
7;%?1” o S~V||<> — 0 for encoding and decoding channels &,, D, achieving the rate R. As k is independent of v the
total error vanishes in the limit v — co showing that R is achievable for the quantum subdivision capacity.

Note that the capacities defined above share some similarities with quantum capacities of quan-
tum serial relays, see for instance [5], [6] and the references therein. The major difference here
is that, while for quantum relays the noise channels acting between the relays are fixed quantum
channels, we have the additional freedom to subdivide the noise channel into ever smaller time-
steps while keeping the total time fixed. We also restrict the allowed intermediate coding operations
to be from the chosen subset € C ¢h and we show that the value of Q¢ (t£) will depend on this
choice.

B. Quantum subdivision capacity with general add-ons

We will start with the widest case € = ch of arbitrary coding quantum channels in the interme-
diate steps, see Definition [[TT.1]

Theorem III.1 (ch-quantum subdivision capacity). For any Liouvillian £ : Mg — My of the
form and any t € RY we have

Qup (t£) = log(d)
Proof: By continuity, Theorem we have Q (7%) — 9 (idy) = log (d) for quantum channels

Te = e#£ as k — co. Thus for any § > 0 we can choose a K € N such that Q (T%) > log (d) — 0.
By Deﬁnitionmthere are sequences (n,),—, , (m, ), such that limsup, o 7= > log (d) — 6 and

=0 asv— oo (5)
o

id5"™ =D, o TL™ 0 &,
K

holds for encoding and decoding quantum channels &, : MS™ — 93??;"” and D,, : Emff;”“ — M
Now choose the coding maps in Definition [III.1}as C; = idgm. and C} =&, 0D, for I <k —1, see

Fig. 3

Inserting these special coding maps into leads to

inf
k,ED,CY,....CY

< [liagm - ﬁ (DyoTEm o)

=1

id?n” —Doﬁ (Clyng@m”) o&

=1

< <

K—-1
5™ D, o TE™ 0 &, +D, 0 TE™ o8, o <id§m 11 (BooTpmo s})) H
K K K
=1 <
K-—1

idg)"“ — H ('D,, o Tgm” o (‘:'l,)

=1

<

idf™ — D, o TE™ 0 &, +
K <o

o

—0 as v — oo.
<

<K Hid?"” Do TE™ o &,
K

For the above chain of inequalities we used the triangle inequality, submultiplicativity of ||-||,, the
fact that || 7|, = 1 for any quantum channel 7 and finally the limit from the usual quantum
capacity. This shows that any rate R < log(d) is achievable, which implies that Q. (t£) = log(d)
for all £ and ¢t € R™.

|



1V. QUANTUM SUBDIVISION CAPACITY WITH CONTINUOUS SEMIGROUP ADD-ONS

In this section we will consider the subdivision capacity from Definition [[TI.T]for the case € = sg*,
which corresponds to the use of arbitrary quantum channels composed of quantum dynamical
semigroups.

Theorem IV.1 (sg*-quantum subdivision capacity). For any Liouvillian L : Mg — My of the
form and any t € RY we have

Qg+ (tL) = log(d) .
Note that the quantum channels depolarizing towards pure states D; : Iy — M, given as

Di(p) = (1—e)tr(p) o) (6 +e"p

for an arbitrary pure state |¢) (¢| € Dy4 and a rate r € R' are contained in sg*. The idea to
prove Theorem is to use these channels to obtain almost pure states. The almost pure states
obtained this way are then used to implement the optimal encoding-decoding operations used in
the proof of Theorem [[TL.1] see Fig. 3] via unitary quantum channels, which are contained in sg.
As sg* is closed under composition, we may compose depolarizing channels and unitary channels
yielding overall quantum channels still contained in sg* and therefore valid coding channels for
the intermediate coding steps.

Note that Definition [[TI.1] of the quantum subdivision capacity requires, that the generation of
these pure state ancillas has to occur within the coding scheme . This is not the same as having
pure ancillas for free. Every ancilla system leads in the present context to an increase of channel
copies required to carry it through the coding scheme. It is a priori not clear how many ancilla
systems will be needed to implement the coding scheme from Theorem using unitary channels
and how this number scales with v in the limit . We will prove that a sublinear number of pure
ancillas is sufficient.

The following simple lemma will be needed for the proof:

Lemma IV.1 (Implementing isometries via unitaries). For k,n € N, any isometry V : C" — C"F
can be written as

Vi) =U(|$) @ [9))
with a unitary U : C"* — C"* and an auziliary state |¢) € CF

Proof:

We can write the isometry V' = Y |v;) (i| for some orthonormal basis {|i)}; C C™ and an
orthonormal system {|v;)}; C €"*. Now fix an auxiliary state |¢) € C¥ to obtain an orthonormal
system {|i) ® |¢)}; € C™. Since all orthonormal systems of the same size are related by some
unitary transformation U, we are finished. ]

Before we state the proof of the coding Theorem we also need a technical lemma, which
we will use to quantify the number of ancillas needed to implement the optimal coding schemes
achieving rates as required in the statement of the theorem. The proof of the lemma will be done
using a standard technique from the method of types [26].

Lemma IV.2 (Approximate Choi matrix purification with small environment). Let T : My, —
My, be a quantum channel with Stinespring isometry VAZBE . Cla — €8 @ C and consider
a purification of the Choi matriz of T given by

’CTA/BE> <0_A’BE‘ = (1a,, ® VA~FBE) LAA (14, ® VAHBE)T

with a system labeled by A’ of size dyr = dy. Then for arbitrary & > 0 and all sufficiently large
m € N, there exist pure states ‘&A/BE> <6A,BE’ e® ((Dd% ® C% (Ddg') such that
’ ’ ’ ’ ®m ’VTLC, 2
‘&ABE> <&ABE‘_(‘O_ABE> <UABE’) < gl-mgts
1

and rank (6%) < gmS(o)+ems for some constants c, ¢’ € RY independent of § and m.

Proof:
By the method of typical subspaces, see e.g. [23], [27], [15], there exists a projector II¥ : CiE —
m m E
C?% onto a subspace Es C C with dimension dim (Ej;) < 9mS(o®)+ems fo1 some constant ¢ € R+



which does not depend on § or m, such that the statements in the lemma are fulfilled for the pure
states

, @m
(]ld::’ ® ]ld’éb ® H(;E) ‘O'A BE>

tr (Hg (aE)®m)

’
‘&A BE>:

With the lemmata in place we can prove the capacity theorem stated above.
Proof: (of Theorem

We will show that R = % is an achievable rate as defined in Definition for any § > 0
and some constant m € IR, which will be specified in the proof. For R = log(d) — J, consider
the sequences n,, = Rv and m, = v and note that we will for brevity write n, = Rv instead
of n, = |Rv| and omit the floor operations, which are always implicitly assumed, when we are
talking about integer sequences.

To construct a quantum subdivision coding scheme achieving the rate R = lolgfr?n:&, we start as
in the proof of Theorem and consider a coding scheme for the usual capacity, Definition
for a channel of the form 7y := ert achieving the rate R close to the maximal value log(d). Then
we use this ’local’ scheme to build the total coding scheme for the subdivision capacity similar to
the previous proof. Compare Fig. 3] to Fig. [ to get further insight into the intuition behind this
proof.

By continuity there exists a K € N such that " (wA,A, idy ® 72/1() > log (d) — ¢ for the

quantum channel 7y g := ex£. Thus the rate R = log (d) — ¢ is achievable and we can use the
decoupling approach, see Appendix A, to construct a coding scheme.

By Lemma [A72] there is a sequence €, — 0 for v — oo and there exist unitary channels U €
un (d”) and isometric embeddings V74 : Myre — My for all v € N such that for all states

PLEE (@W ® @2’“)

H (idR/ - {(7;7K>®u oUOVlI/%HA]> (pR’R) _ pR’ ® (UE)®1/

is fulfilled. We denote by o the reduced density matrix of the purified Choi matrix corresponding
to the channel 7;/; = e%* given by

‘UA/AE> <JA/AE‘ = (14 ® VAAE) WwAA (1 ® VA—)AE)T

<e€ (6)

where as before VA7AE . ¢4 - ©¢ @ €% denotes the Stinespring isometry of the quantum
channel 7y /. .
As described in Appendix A we can use the encoding maps &, : Myr. — My given by

&, (p) =U VI (p) (7)

to define a coding scheme for the channel 7/, see Definition [[I.T} By Lemma [[V.T| the encoding
operation can be implemented as

& () =T (plov) (6u]) U (8)

26u

with a unitary U, : C* — €% and a pure states |¢,) € C>"".

So far we have implemented the encoding operation via unitaries. These encoding operations
achieve decoupling in the limit ¥ — oo as explained in Appendix A. Now we will do the same
for the decoding operations of the ’local’ coding scheme, see Lemma [A73] For reasons that will
become clear in the further discussion, we will employ Lemma to decrease the dimension of
the ancilla system needed for implementing the decoding operation via unitaries.



Using the Lemma [IV.2| there is a pure state ‘6‘4/‘4E> € C% ® €% ® €% such that

! ! ’ ! ®V
‘ ‘O,A AE> <0,A AE‘ _ (‘UA AE> <O_A AED

and such that rank (&E) < 9¥S(e7)+ev8 for some constants ¢, € R" independent of v and §.
Inserting this approximate state into the decoupling bound @ shows that

H <ide N [(7;%) Yo EVD (PR'R) — ¥ ©5"

as v — oo. Therefore using the above encoding operations &, we achieve decoupling for environment
states 6 and we can construct decoding quantum channels D, : Sﬁ?” — E)ﬁé@R” as shown in
Lemma [A73] These decoding operations may be assumed to be of the form

Dy (p) = tra,, WoplV] (9)

ve's2

<2!=%%
1

ve!s2
2

— 0

< [ey 4ot~
1

. . v Rv dgv E . . .
for isometries W, : C¢ — €% @ C"%5, where dEg < gvS (o) +evs, To determine the dimension

of the ancilla system we use the assumptions made above and get
log (d) — 6 < [N (wA’A, idy ® 7;/K)
=5 (o)~ 5 (")
<log(d) — S (c7).
Finally we obtain S (UE ) < ¢ and therefore dpy < 2v9(1+¢) By Lemma we can implement

the decoding operation D,,, see equation @), as
bu (P) = trdEg (U” [p ® |(5V> <¢~)V|] UJ) (10)

with a unitary U, € un (d”2“5c) and a pure state |<51,> € (DQV&C, where we made the auxiliary
system a bit larger than necessary.

So far we constructed a coding scheme, see Deﬁnition for the quantum channel 7 /5, = ert,
which achieves the rate R = log(d) — §. Furthermore we have shown how to implement the coding
operations of the scheme using unitaries and pure ancilla states, see and .

Now we construct a subdivision coding scheme, see Definition by concatenating the ’local’
scheme K-times, basically in the same way as in the proof of Theorem [[IL.1} The only difference
is, that we have to implement the coding scheme using maps from sg instead of arbitrary coding
channels. Therefore we divide the system in the intermediate steps of equation into two parts.
The first part is the information carrying system of dimension d”, in which the information will
be encoded at a rate R = log(d) — . The second part is an auxiliary system of size d"o™ = 2v%¢
for m := clog,(2). This system holds the ancilla states used to implement the decoding maps
D, acting on the information carrying system via unitaries acting on the full system. We will
also show, that the auxiliary states used to implement the encoding maps &, via unitaries can be
generated within the coding scheme without enlarging the auxiliary system, see Fig.

The rate of the scheme constructed this way can be seen to be R = T jm = lofg)n:‘s. The
numerator is the rate with which the information is encoded in the information carrying system
and the denominator is increased by dm, which corresponds to the additional channel uses needed
to carry the auxiliary system.

We have to define the subdivision coding scheme described above properly and show that the
error, see equation , vanishes for v — co. Note that we hold the number of subdivisions K in
Definition fixed since the beginning of the proof. In the following take sequences (n, ), and
(my),,, see Definition defined as n, := Rv and m, := v (14 dm). Also note that the size
of the auxiliary system d”°™ is enough to hold the auxiliary states |¢~>V> used to implement the
decoding operations, see , on the information carrying system. By inspecting Equation it
is clear, that after applying the decoding operation a system of size dgy = 2v9(1+¢) will be free from

information. This system is large enough to contain the pure state |¢,) € 02" used to implement
the encoding operation via a unitary, see ({g]).
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Fig. 4. Subdivision Coding Scheme for the proof of Theorem [[V.I] Implement the subdivision coding scheme from
Theorem m via almost pure ancillas generated within the coding scheme using depolarizing channels DY and
unitary channels US,U2. This requires some overhead depicted by a gap between the information carrying system
and the auxiliary system producing the almost pure ancillas.

Thus we can assume
E, () =US (- ®¢5) (¢5]) (11)

for unitary maps US : Myre @ Mywsrre) — Mge @Mgvsm and pure auxiliary states [¢F) € €2
which just extends the states |¢,) from above. We may also assume

By () = traeem (U (@ [6,) (30])) (12)

for unitary maps U% : Mg @M gusm — More @Mavsi+e). We can use the corresponding depolarizing
channels Dy : Movsare) — Myusate) given by

D:, (p) = (1 —e ™) tr(p)|gy) (&5 + e *p
and 133"” s Mgvom — Mgusm given by

f);, (,0) = (1 - e—s,,) tr (P) |¢~5V> <43V’ +e p

to obtain auxiliary states for implementing the encoding and decoding maps and with
arbitrary accuracy. Note that these depolarizing channels can be defined as tensor products of local
depolarizing channels, by choosing the unitaries in (8) and accordingly. This is also depicted
in Fig. [4

Define the coding maps (C}” )lliz

1 *
C sg” as
C/ =UC o (idyre @ DY) oU o (idgr ® '15:)
and C}V( = idgv(1+sm). Note that we can choose s, € RT growing with v fast enough to ensure
1

|, < = (13)

With the maps &), : Myrv = Myvavsm) and D;, : Myvrom) — Mary defined via &, (p) = E(p)®
|6) (&v| and D}, (p) = D, (travsm (p)) we get

Htrduérn oC/ —&,0D, otrgem

k
inf ¥ —Do (c o T®mv) o &
k,ED,Cr,iCu || 2 H S
1=1 o
K
< [iag™ -, o[ (c; o Tfm") &
K
=1 o
K-1
= [[id$™ — D, o T o trgusm © H (Cl" o Tfm") o0&
K
1=1 o
K-1 K
< liag™ =Dy o T2 o [ (& 0DuoTf*) o0& +=
Rt " v
- <

K
+ — —0asv— o0.
v

i
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For the first inequality we just inserted the coding maps constructed before. The second inequality
used the triangle inequality K-times and the approximation . The rest of the proof works the
same as for Theorem The above calculation shows, that R = W is an achievable rate
for any ¢ > 0. Therefore we have the capacity Qqq+ (t£) = log(d), which finishes the proof.

|

V. QUANTUM SUBDIVISION CAPACITY WITH UNITARY ADD-ONS
A. Upper bound via entropy production

In this section we will consider the subdivision capacity with € = un, i.e., where we are only
allowed to use unitary quantum channels to appear in the intermediate coding steps C; of .
Unlike the previous two sections we will show, that the subdivision capacity in this case is in
general not equal to the dimension upper bound of log(d).

To prove this we consider a Liouvillian Efep : My — My, which depolarizes onto py € Dy and
is given by

L3P (p) =7 (tr (p) po — p) - (14)

Here » € R" denotes a rate with which the depolarizing rhoise is applied. The quantum channels
generated by such Liouvillians are of the form 7; (p) = et*+" (p) = (1 — e~ ")t (p) po + e "p.
For Liouvillians of the above form we will show the following

Theorem V.1. (Upper bound for depolarizing Liouwvillians) Let r € Rt be given. For the Liouvil-
lian L’fep My — My defined as in we have

Qun (££77) < log(d) — (1 —e™"") S (po).

Before proving the theorem we will need a Lemma proved in [28, Lemma 8] for the special case
po = %d. The proof of the following slightly more general version proceeds in the same way.

Lemma V.1 (Entropy growth by local depolarizing channels, see [28]). Let r € RT and py €
dep

Dq be given. Consider the quantum channel Ty : Mg — My defined as Ti (p) == et~ (p) =

(L—e ") tr(p) po+ e "p and any state p € D (C?"). Then we have

S(TE™ (p)) = e ™S (p)+ (1 —e ") mS (po)
> (1—e7"")mS (po) -

This lemma shows the entropy produced by m copies of the quantum channel 7; = e to be
lower bounded by (1 —e~"")mS (py), which tends to m.S (pg) for t — oo.

In the following we use the fact that unitaries, which form the intermediate coding steps, cannot
remove entropy from the system. This entropy growth gives a limit on the maximal possible
achievable rate after which a faithful decoding is not possible anymore.

Proof: (of Theorem [V.1))

For fixed ¢ > 0 assume that R > 0 is an achievable rate, in the sense of Definition [[IL1] for the
depolarizing Liouvillian of rate r € R™ onto the state py € D4 as in . Note that by an argument
in [21I], which works the same way for the quantum subdivision capacities, it is enough to consider
the sequences n, = Rv and m, = v in when testing whether a certain rate R < Q,, (t£) is

. t pdep
achievable. Thus for the sequences n, = Rv, m,, = v and quantum channels T% = ex5 we have

inf

< 6 15
k,£,DUy,....U > €y ( )

<

id(;@R” —Doﬁ (Z/ll OT§”> o0&

=1

For any fixed coding scheme of length K € N achieving the above bound and which is defined by
quantum channels £,,D, and unitary channels U{, ..., U} € un, consider the quantum channels
le = H{il uy o 71@”) o&,. These map the input state to the state right before the final decoding
operation. ApplyingKLemma [V for the depolarizing channel K times and using that the entropy
is invariant under unitary transformations, we obtain

S (T (p) = (1= e"") vS (po) (16)

for any quantum state p € SJTSQR”.
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Rv
Now consider the maximally mixed input state ¢ = 22 1

i T i—1 v |1) (i] for some orthonormal basis
{li)}2_] of ©* . Inserting this state we obtain

viog(a) = 5 (75 <)) = x (T (i it ) + 30 SELD )

where the first inequality is the dimension upper bound on the entropy of a d”-dimensional system
and where we introduced Holevo’s y-quantity [3, p. 531]. This is defined for an ensemble of density
operators {p;, p; } V., as

X ({pipi}) =8 (me) —~ ZPiS(m%

Using the data processing inequality for the x-quantity, see [3| p. 602], and the entropy bound

, we obtain

1 TV (|1:\ /s —r
vion(d) > x ( (gD o T 1) ) ) + (1= ) S o)
2Rv 1
=8 (DyoTg(0)) = D 5y S (P o T (1) (i) + (1= ™) wS (pa)  (17)
i=1
Finally we can apply the Fannes-Audenaert inequality [29], i.e. for all quantum states p1, p2 € Dq4
with trace distance § = 1 ||p1 — pa|; we have

15 (p1) = S (p2) | < dlog(d) + H (9) (18)

for the binary entropy H (0) = —dlog(d) — (1 — d)log(d). Estimating the entropies in using
(118) and leads to

L +1
~¢,
2

for all i € {1,...,2%"} and
- 1
S (D, o Tk (o)) > Rv — S~ 1.
Inserting these bounds in we obtain
vlog(d) > Rv+ (1—e ™) vS(po) — €, — 2 (19)

where the approximation error fulfills ¢, — 0 as ¥ — oo if the coding scheme achieves the rate
R. Dividing through v in and taking the limit v — oo leads to the bound R < log(d) — (1 —
e~ ")S (po), which finishes the proof.
|

Note that the above proof also shows that it is not even possible to transmit classical information
with a rate higher than the bound given in Theorem through the subdivision coding scheme.
It is possible to define subdivision capacities for the transmission of classical information through a
quantum dynamical semigroup in a similar way as the quantum subdivision capacities in Definition
[Tl The corresponding capacity for unitary intermediate coding operations would then be an
upper bound on Q,, in general. For a depolarizing Liouvillian onto py € D4, see , the above
proof shows that the classical subdivision capacity is smaller than log(d) — (1 —e~"%)S (po).

Applying Theorem to the completely depolarizing Liouvillian, i.e. the depolarizing Liouvil-
lian onto a maximally mixed state pg = % € Dy, see , gives the following corollary.

Corollary V.1 (Q,, arbitrarily small). Let r € R™ be given. For the completely depolarizing
Liouvillian £ : Mg — My defined as L (p) == r (tr(p) 2 — p) we have

Qun (tLE) < e log(d) .

This corollary shows that, unlike Q.5 and Q.4+, the subdivision capacity Q.. can become
arbitrarily small. In the following subsection we will prove lower bounds showing that Q,, is
always strictly larger than zero.
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Fig. 5. Unitary Coding Scheme for k = 4, exploiting the pure fixed point |1) (1| of the time-evolution. As |¢) (1|
is not disturbed by the noise we can introduce enough copies of this state in the beginning to implement the coding
scheme from Theorem [[II.1| with unitaries and the pure states |¢) (1].

B. Lower bound via finite subdivisions

Here we will prove lower bounds on Q,,,(££) by exploiting the fixed points of the noise Liouvillian
L: Mg — My, i.e., points pg € Dq fulfilling L(pg) = 0. These lower bounds show that Oy, (t£) >0
for all t € R™ and any noise Liouvillian £. Note that almost all noise Liouvillians £ lead to time-
evolutions e** which become entanglement breaking eventually after a finite time. This implies
that Q(e**) = 0 for all ¢ > t,. Therefore our lower bounds prove that for almost all £ there is a
finite time ¢ such that Qun (t£) > Q (€“) = 0 holds.

We will start by considering the case of a pure fixed point |1} ()| € D4 of the noise Liouvillian
L : My — My. For any number £ € N of subdivisions in the sense of Definition we
try to implement the coding scheme used for the proof of Theorem This coding scheme
implements the successive decoding and encoding operations used for the proof of Theorem [[IT.1]via
unitaries and pure ancillas. Within this coding scheme, these pure ancillas are created using certain
depolarizing channels, but as these channels are not unitary, we cannot use them in a coding scheme
for Qun (tL). Nevertheless we can implement the coding scheme if we simply prepare sufficiently
many copies of the pure fixed point |¢) (| € D4 of the noise Liouvillian £ in the encoding stage
& at the beginning of the coding scheme. As fixed points of the noisy time-evolution they are not
disturbed, and they can be used as ancillas in the k£ subdivision steps, see Fig. [5l This idea leads
to our lower bound on Q,, (t£). This may be further improved by “recycling” the used ancilla
states, but for simplicity we will not pursue this here.

Note that the number of pure ancillas needed to implement the & intermediate coding operations
in the proof of Theorem depends on the difference

Sr(t, L) == log(d) — I°°" (wA/AJdAI ® ﬁ/k) (20)
for the quantum channel 7;/;, := e%L, with the coherent information from Deﬁnitionand where
k € N denotes the number of subdivisions, see Definition [VI1]

For any fixed number k& € N of subdivisions the proof of Theorem [[V.]] gives a coding scheme
using pure ancilla qubits at a rate of dx (¢, £)(1 + ¢) in each of the k coding steps, where ¢ € R
denotes the constant introduced in the typical subspace argument preceding the proof of Theorem
see Lemma In the limit of asymptotically many parallel channel uses, the achievable

rate I wA/A,idAf ®7}/k> from the proof of Theorem [[V.1

goes thus down by a factor of

gjl + k%) because for each faithfully transmitted qubit one needs o uLIAFC) 10001 noise
g(d) log(d)
channels to transmit the pure ancilla states. This gives

Theorem V.2 (Lower bound with pure fixed points). Let £ : My — My denote a Liouvillian
with a pure fized point |¢) (Y| € Dq. Then we have

Jeoh (wA’A’ ida ® 7;/k:> log(d)
log(d) + kér(t, £)(1 +¢)

Oun (tﬁ) > sup
k
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Note that by continuity
Jeoh (wA’A, idy ® T, /k) ~ log(d) > 0

as k — oo. Therefore we have Q,, (t£) > 0 for any Liouvillian £ with a pure fixed point and any
teRT.

To generalize the above scheme to noise Liouvillians £ : 91y — My with arbitrary fixed points
po € Dy fulfilling S(po) < log(d) we will use Schumacher compression [30], see also [3, Theorem
12.6]. Given many independent copies p§ of a quantum state py € ®g4, the theory of typical
subspaces [23], [27], [26] can be applied. For any § > 0 there exists a typical projector IIs onto a
0-typical subspace T5 with respect to pg, i.e.:

1) We have tr (H5p0 ”) > 1 — 278" for some constant ¢’ € R independent of v.

2) Furthermore tr (Tl5) < 2v(5(P0)+¢9) for some constant ¢ € R independent of v.

These properties imply that we can write

p?V = DuPtyp + (1 - p,,)(f

for p, = tr (H5 p?”), a state piyp supported on the typical subspace and some state o € © (T(;L) not
supported on the typical subspace. The property 1. from above implies that p, — 1 exponentially
as v — oo. By 2. from above we can choose a unitary U mapping the typical subspace onto
vectors of the form |-) ® |0) where the first tensor factor contains the compressed information on
v (S(po) + ¢d) qubits and the second tensor factor is in a pure state. This yields

Up?VUT = PvPcompr & |O> <O| + (1 - pu)Uva-UvJr

Therefore Schumacher compression generates a pure state |0) (0] on the space of v (log(d) — S (pg) — ¢d)
qubits with fidelity exponentially good in v. We will use these states as almost pure ancillas. The
idea of the following coding scheme is to prepare sufficiently many copies of the fixed point pg € D4
of the noise Liouvillian £ in the beginning of the scheme. As fixed points they are not disturbed by
the noisy time-evolution and their entropy does not increase with time. We can apply Schumacher
compression on many copies of py to generate almost pure ancillas right before they are needed.
The maximal rate of generating these almost pure ancilla qubits can be derived from the dimension
of the typical subspace introduced above. As § > 0 for the Schumacher compression protocol can
be chosen arbitrarily small, the rate of generating almost pure ancilla qubits is log(d) — S(po) per
local noise channel in the fixed point py. Note that we cannot create any pure ancillas from a
maximally mixed fixed point pg = %d and this coding scheme does not work in that case.

As in the case of pure fixed points we can compute the rates of the above coding scheme. This
gives:

Theorem V.3 (Lower bound with fixed points). Let £ : Mg — My denote a Liovvillian with fized
point py € D4. Then we have

Ieoh (WA’A, idar ® 7;/k) (log(d) — S(po))
log(d) — S(po) + kdr(t, £)(1 +¢)

Qun (tL) > sup
k

Note that Theorem is a special case of Theorem for the case S(pg) = 0. As before, this
proves that Qu, (¢£) > 0 for any Liouvillian £ with a fixed point that is not maximally mixed and
any t € RT.

The coding schemes introduced here may be improved further by reusing the ancillas again.
When the noisy time-evolution generated by the noise Liouvillian £ has a limit point of not
maximal entropy, i.e., there exists a state ps fulfilling S(pso) < log(d) such that e** (p) — poo as
t — o0, this can be used to “cool” the system in the sense of [I3]. We could for instance let the
used ancillas be affected by the noise, which drives them towards p... If they are close enough to
Poo We can again use Schumacher compression and re-use them to obtain some pure ancillas to be
used in the coding scheme.

The above theorem proves Qu, (t£) > 0 only when the fixed point py € D4 of the noise
Liouvillian £ to be not maximally mixed, i.e., S(pp) < log(d). To obtain a similar coding scheme
yielding a non-zero rate for a maximally mixed fixed point py = %‘1 we could again introduce
pure ancillas in the encoding stage £ of the coding scheme. As the noise acts on these ancillas
their entropy will grow but never reaches the maximum log(d) in finite time. As the entropy
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grows the number of pure ancillas that we may obtain via Schumacher compression decreases.
Still when enough ancillas are introduced in the beginning of the protocol, we can use Schumacher
compression to obtain all the pure ancillas we need. Therefore a coding scheme as before can be
implemented showing that Q,s(¢£) > 0 even in this case.

VI. CONTINUOUS-TIME CODING SCHEMES

In the previous sections we studied the quantum subdivision capacities Q¢, Definition
with respect to different subsets € C ¢h of quantum channels, from which the intermediate coding
channels C; were taken, see . These capacities are all discrete in the sense that the infimum in
Definition [VL.I] captures only countably many subdivisions. In this section we present a variation of
the quantum subdivision capacities to account for “time-continuous” coding schemes. For a rough
idea, consider quantum systems undergoing a noisy time-evolution generated by some Liouvillian
L Mg — My To quantify the optimal rate of information transmission using this quantum
system and “time-continuous” coding we consider the limit of infinitely many copies of the system
and allow for additional “correction” generated by Liouvillians L. : 9Mgm — Mym acting on all
m copies of the system. We will show, the time-evolution generated by the noise Liouvillian £
together with that coding Liouvillian L. acting on many copies of the system can improve the
transmission of quantum information compared to the time-evolution generated by the noise L
alone.

Similar schemes to use supplementary Liouvillians to improve the storage time of quantum
memories have been studied before [I1], [I2], albeit not in the asymptotic setting.

We will state our initial definition in the most general form for time-dependent Liouvillians
and this definition will include the subdivision capacities from Definition when applied to
semigroups as in Sec[[V] Later we will provide an example of a time-independent Liouvillian
and a scheme, which can improve the transmission of quantum information using only a time-
independent coding Liouvillian.

A. Continuous quantum capacity

Consider a time-dependent Liouvillian [31], i.e. a map £ : R x My — M, of the form

N
£(t) == i1H0. A+ 3 (A0pA(0) - G40 000 - oA ae) @)

k=1

where H : Rt — H,4 is a piecewise continuous map into the set of Hermitian matrices and
Ap : Rt — 9My are piecewise continuous maps into d x d—matrices. In the following, for any ¢ > 0,
we will write £(t) : Mg — My to denote the map L(¢,-) as defined above. We will denote the set
of all time-dependent Liouvillians as TOL. Note that the case from before corresponds to
L(t) = L.

For a quantum state py € ©4 the solution of

& p(t) = L)t (22)

with the initial condition p(0) = py describes the time-evolution of the initial state pp under the
time-dependent Liouvillian £ of the form (2I]), see [31]. The equation is called the master
equation of the evolution generated by the Liouvillian £. For each t > 0 we may define a quantum
channel T; : M; — M,y mapping each initial state py to its time-evolved state p(t) = T (po).
This quantum channel is T; (p) = T exp ( f(f Lt dt ) (p), where Texp denotes the time-ordered
exponential function [31].

To define a capacity for transmitting quantum information over a system affected by continuous
noise L, we consider the limit of many copies of the system, each of them affected by the noise
independently, as in Definition [[T-1] It can be easily seen that the global noise resulting from taking
a tensor power of m systems of dimension d each affected by the local noise Liouvillian £ : 9y —
M, is again generated by a time-dependent noise Liouvillian denoted by £8™ : Rt x M gm — Mgm.
This Liouvillian can be expressed in terms of the ’local’ noise Liouvillian £ via

m
L ()= idn; ® L (1) (23)

i=1
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where id,\; @ L (t) : Dﬁg’m — Sﬁ;@m denotes the operator acting as the identity on all tensor factors
except the one indexed by i € {1,...,m}, where L(t) is applied.

As for the subdivision capacities we will state our definition in the most general framework by
considering arbitrary subsets € C DL of time-dependent coding Liouvillians.

Definition VI.1 (Continuous quantum capacity Q%‘mt). For € C TDL the €—continuous quan-
tum capacity of a time-dependent Liouvillian £ : RT x Mg — My, see , is defined as

(L) :=sup{R € R : R achievable rate}

oo

1, (my)o”, such that

where a rate R € RT is called achievable if there exist sequences (n,)
R =limsup,_, ., == and

my

— 0 as v — o0.
<

inf

t
idy™ — Do Texp (/ L™ () + L. (1) dt’) o&
0

Here the infimum is over arbitrary encoding and decoding quantum channels £ : IMS™ — imf’m”
and D : fm?m” — 93??”” and appropriate time-dependent coding Liouvillians L. € € from the
chosen subset.

Using the ideas from the proof of Theorem i.e., that the sg*-quantum subdivision capacity
on a d-dimensional system is log(d), we can also show that Q8% (t£) = log(d) for any ¢t € R™
and any time-dependent noise Liouvillian £ : 91y — 2, of the form . To see this consider the
time-evolution according to the Liouvillian £ which can be subdivided into quantum channels of

the form
ta
Ty t, = T exp </ E(t')dt') .
t1

For any § > 0 there exists, by continuity, a K € N such that every quantum channel T:u-1) 4
7=

K
of the time-evolution fulfills 7°°" wA'AJdA/ ® Tra-1) u ) > log(d) — 4. Thus we can construct a

coding scheme as in the proof of Theorem acﬁievﬁlg the rate R = log(d) — ¢ and which can
be written as

K
ool (o7 ) o
=1 KR
where m, is a sequence denoting the number of channel uses and D,,&,,C; are coding channels
in the sense of Definition [[TL.1} As C}' € sg* there are time-dependent Liouvillians £} such that
Cy =Texp (fy Ly (t')dt’) for a time s € RT that can be chosen arbitrarily small when only the

strength || £7|| is chosen high enough. Now we are finished by approximating

K t
H (Cl” o TS™ “) ~ Texp </ L™ () + L (t) dt’)
=1 KoK 0

with a time-dependent coding Liouvillian £, that turns on the Liouvillians £} implementing the
coding maps C; from above at the right times. To get a vanishing error in Definition m the
strength ||L.|| can be chosen arbitrarily high compared to that of L.

There are some obvious operational restrictions one might impose on the set € of allowed coding
Liouvillians. The first possibility is to put a bound on the strength of the coding Liouvillians
in Definition e.g. |[L(#)|| < ¢ for all t € RT with a constant ¢ > 0. Then it would not
be possible to generate arbitrarily pure ancilla states on arbitrarily small time-scales, as in the
proof of Theorem [[V.1] A second possibility is to restrict to time-independent coding Liouvillians
L.(t) = L. in Definition so that it is not obvious anymore how to implement a coding
scheme as in the proof of Theorem A third possibility would be to impose locality constrains
on the coding Liouvillians £, in Definition Each of the above possibilities would lead to a
continuous quantum capacity and it is a priori not clear how they behave and when they coincide.
We will now focus on a combination of the last two cases and consider an example of a coding
scheme with a time-independent and local coding Liouvillian L., specializing Definition for
a time-independent noise Liouvillian £ of a special form.
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B. Coding schemes with quasi-local and time-independent coding Liouvillians

In this section we will discuss how to construct continuous-time coding schemes from quantum
error correcting codes for a particular class of noisy time-evolutions. Consider a d-dimensional
physical system affected by noise given by a quantum channel 7 : 0ty — M. If the noise channel
acts on the system continuously in time it corresponds to a continuous time-evolution generated
by a time-independent local noise Liouvillian £ : 9ty — 9, of the form

L(p)=Tp)—p (24)

An (n, m)-quantum error correcting code [3|, pp. 435] for the noise T is formally defined as a 2"-
dimensional subspace(“codespace”) of the d™-dimensional Hilbert space corresponding to m-copies
of a given system. We will denote by V : Maon — Mym an isometric embedding, which encodes n
"logical” qubits into the codespace on m-copies of the system. Note that the overall noise affecting
m copies of the physical system is generated by the Liouvillian

E@m = T@m — midzm . (25)

When the noise in each system is generated by the Liouvillian £ from . When the linear map
T®™ acts on the codespace it disturbs the encoded states, taking them outside the codespace. We
denote by R : Mgm — NMym a recovery quantum channel fulfilling

RoV=Y (26)

which corrects these errors by mapping the disturbed states back to the codespace, i.e., satisfies

RoT¥" oV =mV. (27)

By assuming the existence of an (n,m)-quantum error correcting code we are implicitly making
assumptions about the noise channel 7. However, there are relevant cases of noise channels, where
such a code exists. An important instance are channels with unitary Kraus operators such that
there is a stabilizer code correcting these unitary errors. For these codes the recovery operation
R is given by a projective measurement of the error syndrome and a unitary error correction
conditioned on the measured error syndrome. An important example of a channel with unitary
Kraus operators is the depolarizing channel 7gep : 9o — Mo defined as

1

(20 v=(03) == o)

The error introduced by this channel can be corrected using the 5-qubit stabilizer code [3, pp. 468]
and we present more details in the example at the end of this section.

We will now introduce a continuous coding scheme in the sense of Definition by imple-
menting the recovery operation R of the quantum error correcting code continuously in time. The
conditions and guarantee that the recovery operation R corrects any error introduced by
T®™ with high fidelity. The time-evolution generated by the sum of the Liouvillian £ corresponding
to 7™ and a coding Liouvillian, in the sense of Definition implementing the recovery
operation R can be thought of as applying 7®™ or R very fast after another. By the assumptions
made it seems reasonable that by making the rate of the recovery operation high enough any error
introduced by the noise can be corrected.

for the Pauli matrices
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To make this intuition more precise we prove the following

Theorem VI.1 (Continuous-time quantum error correction). Let T : My — My be a quantum
channel, such that there exists an (n, m)-quantum error correcting code with an isometric embedding
V: EDTQn — Mgm and a recovery quantum channel R : Mgm — Mym fulfilling the conditions (@
and Furthermore let € CTDL be a set of coding Liouvillians, see Deﬁmtzonm containing
(r (R idgm))®* for allk € N and r € RT.

Then for the noise Liouvillian L : Mg — My of the form L =T — id and any t € R™ we have

Qgemt (1L) > % (29)

Proof:

Note that in the sense of Definition we use the encoding map & = V. Because V is an
isometric embedding, a decoding map D can be chosen as the projection mapping the encoded
qubits back to the corresponding logical qubit and mapping states not in the code to an error
state.

The noise acting on the codespace is given by L™, see . To define a continuous coding
scheme as in Definition we consider the coding Liouvillian L. : MMgm — Mym as

£c =r (R - lddm) .

for a rate r € RT controlling the strength of the error correction. As in Definition we consider
the Liouvillian £%™ supplemented by the coding Liouvillian £.. We obtain
0 Lk
R o el(£57H1Le) oy = e=tr+mIR o Z t (To™ + rR) o V.
k= o :
It is clear that we can write this expression as a convex combination of V and a suitable quantum
channel S. Let a(t,r) € [0,1] denote the maximal possible coefficient of the map V in such a
convex combination. Then we can write
0 Lk
e trtmR o Z % (T8 + rR)k oV=a(nrV+(1-a(r))S. (30)
k=0
We will show that a(t,r) — 1 for any fixed time ¢ € Rt as r — oo thereby ensuring high-
fidelity recovery. A lower bound on « (¢, r) is obtained from the sum in (30)) by only considering the
contribution of terms in the expansion of each (7™ + rR)" such that no two 7®™ act right after
another with no R in between to correct the error. Note that conditions and guarantee
that the recovery operation introduces no error when repeatedly applied to some encoded state
V (p). And the quantum channel 7%™ is corrected by R when it acted only once on encoded state

V(p).

Using a combinatorial argument we can compute this contribution and obtain
I+1
—t(r+m) k l l
e MO R (A
k=0 1=
= f (mt7 1)
m

where we defined the lower bound f : Rt x RT — IR, which can be computed explicitly

a(r)cosh ($a(r)t) + (2 + r)sinh ($a(r)t)
a(r)
for a(r) = /r (4 4+ r). See Fig. |§|for a plot of f(t,7). It can be checked that indeed f (mt L ) —1

’m
for any ﬁxed t € R* as r — co. This finishes the argument and shows that the rate ;- is achievable,
as we encoded n qubits into m qudits, for arbitrary t € R* by using the continuous codlng scheme

presented here. Note that we set n, := n and m, := m for all v in Definition

f(tr) = e tEHD
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Plot of f(t,r). This is a lower bound on the probability of recovering the information encoded in the

continuously implemented quantum error correcting code as explained in the main text. For any time ¢ this
probability can be made arbitrarily close to 1 by choosing the rate r of the coding Liouvillian high enough.

We will finish this section with two examples illustrating applications of the continuous coding
scheme from the previous proof.

Example VI.1 (Continuous coding schemes).
1) Consider the qubit depolarizing channel Tgep introduced in (@) We define the noise Liouwvil-

lian L : Mo — My as L = Taep —ida. It is easy to see that the dynamical semigroup generated
by the Liouwvillian L has the form

1 ¢
e (p) = (1—e %)ir(p) 5 + e Fidy
1
— tr(p) ?2 as t — oo.

Fort > %, the channel et* remains completely positive after concatenating with the transpo-
sition map, which implies Q (6t£) =0 fort > % [21)]. Thus, any information stored even in
many copies of the system will be lost after this time.
For 5 copies of the system the noise is generated by the Liouvillian

L =TE — 5idys

dep
with

5
1 . ) ) ) . .
T35 (p) = 3 > XWpx® 4y py )y 70570,

dep
i=1
As the errors introduced by Tfé;’ are only single qubit errors we can use the 5-qubit stabilizer
code [3, pp. 468] to correct them. Theorem then gives Qg™ (tL) > % for arbitrarily long
times, thus improving over Q (ew) for times t > %
The scheme presented in this section is not restricted to the quantum setup, but can also
be used to do continuous error correction of classical channels. To illustrate this consider a

system of & classical bits and a bit-flip error of one uniform randomly chosen bit. This setting
defines a Markov chain with a transition matriz T € Mg, where T € My is the transition

matric
0 1
T— (1 O).
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The continuous-time Markov chain at a time t € RT corresponding to this error has the
transition matriz

otL . t(T%°—31s)

where we introduced the intensity matriz L := T®3 —31g, which corresponds to the Liouvillian
in the classical setup.

To define an error correcting code, note that any single bit-flip error on 8 bits all in the same
state (this defines the codespace) can be corrected by a majority vote. Therefore we define
an encoding of 1 ’logical’ bit into the three bit system by a repetition code (0) — (000) and
(1) — (111). This defines an isometric matriz V. The recovery matriz implementing the
magority vote, i.e., mapping (000) — (000), (001) — (000), (011) — (111), etc., is denoted
by R € M.

This error correcting code fulfills the classical analogues of the conditions (@) and from
above.

In the same way as for the quantum case we can define a coding intensity matrizc

LC = T(R— I].g)

for a rater € RY.
The calculation in the proof of Theorem [VI 1] works now the same way in the classical case
and we obtain

RoetEHle) oV = a(t,r)V + (1 — a(t,r))S
for an appropriate matriz S. For fived t € R* we have a(t,r) — 1 as r — cc.

The above example also shows that the addition of purely dissipative terms to the noisy time-
evolution can increase its usual quantum capacity. A time-independent Liouvillian is called purely
dissipative [I8] if it can be represented in the form

N
£ = Y (Aupa] = jAlAwp - Spala) (31)
k=1
using only trace-less Lindblad operators Ay and no Hamiltonian part H, see ({1)).

The Lindblad operators A of the coding Liouvillian constructed from a stabilizer code as in
Example 1) can be chosen as Hermitian projectors onto the syndrome spaces multiplied by
error correcting unitaries conditioned on the measured syndrome [3, pp. 453 and pp. 468]. Note
that these Lindblad operators are all trace-less except the projector P onto the code space itself,
where the corresponding unitary is the identity matrix. But as this Lindblad operator is Hermitian,
it can be replaced by the trace-less operator (P —tr(P) %) yielding the same Liouvillian [18]. In
this way, Example 6.1 leads to the following observation:

Corollary VI.1 (Dissipation can improve the usual quantum capacity). There exist time-independent
Liouvillians £ : Mg — My and L' : My — My, where L is purely dissipative such that

Q(ef) < Q (eﬁ+ﬁl> :

We even provided an example with usual quantum capacity Q (eﬁ) =0and 0< Q (e[:*ﬂ). The
Example 6.1(2.) shows that a similar statement as in the above corollary also holds for the classical
Shannon capacity, because C (etL@d) — 0 is also true for the intensity matrix L introduced there.

VII. CONCLUSION AND OPEN PROBLEMS

We have introduced and investigated quantum subdivision capacities and continuous quantum
capacities to quantify the optimal rates of quantum information transmission in coding scenarios
where intermediate intervention is possible. These capacities are a natural generalization of the
standard quantum capacity and they capture recent results from quantum error correction [12]
showing that controlled dissipation can help for information storage or transmission.

There are many ways to adjust these two capacities to various applications. Every choice of the
sets €, from which the intermediate coding channels or the coding Liouvillians are taken, yields
a new capacity, which might have different properties. Many open problems arise in this context.
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What are good choices for the sets € in the sense that they lead to mathematically interesting
and physically reasonable capacities? More specifically, is there a closed form expression for the

subdivision capacity Q,, where only unitary add-ons are allowed? To what extend can Q (€£+E’

differ from Q (e“)? Do similar phenomena occur for classical capacities or for zero-error capacities?
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APPENDIX

In this appendix we will review the proof that for an arbitrary quantum channel 7 : 0y, — My,
any rate R < I wA/A, id4s @ TA7B) is achievable. This is a special case of the direct part of the
coding Theorem for the quantum capacity, where any rate less than the regularized coherent
information is shown to be achievable. For the proofs in Section 4 we only need this weaker version.
This techniques were originally used in [I5] and further developed in [4], where the subsequent
arguments can be found in a more general version. The basic idea of the decoupling approach can
be motivated by stating the following theorem.

Theorem A.1 (Information-disturbance tradeoff, see [32]). For any quantum channel T : My, —
Mgy, with Stinespring isometry V : C¥4 — C% @ CU® there exists a quantum state oF € Dg,
such that

1 1
;o |lida, —Do TIE < ||T¢ = tr() |, < 2inf [|idg, — Do Tz (32)
where the infima are taken over all quantum channels D : My, — My, .

The information-disturbance tradeoff states that the disturbance introduced by the quantum
channel 7 can be corrected by a decoding quantum channel D iff the complementary channel, i.e.
the channel that describes the information flow to the environment, is completely forgetful, i.e.
conserves no information about the input state.

The idea of the decoupling approach is to use random encodings &,, see Definition to
ensure that the complementary channel (7™ o £,)° is completely forgetful in the limit v — oo.
Then Theorem [A1] ensures the existence of decoding maps D, that complete the coding scheme
in Definition [Tl

Before we state the decoupling theorem we have to define some entropic quantities, which go
back to [33], [34] and have been further developed in [35].

Definition A.1 (Quantum conditional min-entropy, see []).
For a positive matriz p*B € M+ ((DdA ® (DdB) we define the conditional min-entropy of A
given B as

Hypin (A|B), := —log (min{tr(c): o € My, 0 > 0,07 <1,4® o}).
For e > 0 we define the e-smooth conditional min-entropy of A given B as

He . (A|B) := H,.im (A|B
min (A1B),, A (A|B),
where B (p,e) == {pAB € MF (C¥4 @ C=) : tr(pAB) < 1,\/1— F (p,p) < €} denotes the e—ball
in fidelity distance around p within the set of subnormalized positive matrices.

We will need some properties of the entropies defined above. The first property is a lower bound:
For any density matrix p € ® ((DdA ® (DdB) we have

Hiin (A[B), 2 —log (dp) .

This lower bound can be seen easily from Deﬁnition as pAB < 14®1p holds for every quantum
state pA8 € D (€44 ® C%).

The second property is also called the fully quantum asymptotic equipartition prop-
erty [36] and is stated in the following lemma:
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Lemma A.1 (Fully quantum AEP, see [36]). For a density operator pAB € ® g@d“ ® C¥) and

any € > 0 there exists a sequence A (n, p,€) — 0 asn — oo such that for all n > % log (6%) we have
1
ZHe
n

min

(A?|B") o = S (AIB), — A (n, psc).
With the above definitions we can state the following decoupling theorem:

Theorem A.2 (Decoupling theorem, see [37]). For a density operator p*4 € ® (CF ® C4) and
a quantum channel TADE - Mg, — Mg, with Choi-matriz o' F = (idy @ T) (wA/A) and an
arbitrary € > 0 we have

€

/un(dA) | (idr @ [TA7F oth]) (074) = pR @ 07|, dud < 273 (A1) = (A1), 9

where the integration is done wrt the Haar measure on the group of unitary maps U : C% — €94,
which define unitary quantum channels U : My, — Mq, via U (p) = UpUT,

For further decoupling theorems in different scenarios and stronger versions of the above theorem
see [, [38], [39].

Note that Theorem implies the existence of a unitary channel ¢/ : 9,;, — My, , which
achieves the bound stated in the theorem. Applying this result to the complementary channel
TC My, — My, of a given quantum channel T : My, — My, gives a bound on the second
norm in equation in Theorem for the encoded complementary channel 7¢ oU. Here we
used that the diamond norm of a linear map £ : My, — My, fulfills ||L], = [[idr ® L||,_,, for a
reference system Mgy, with dp = da.

In order to prove the achievability of a rate R < I (w4 idy @ TA2B), we apply the
decoupling theorem to many copies of the complementary channel. We have to show that the
bound on the second norm in equation vanishes in the limit of arbitrarily many copies. To
obtain a vanishing bound using Theorem [A.2] one has to introduce a further isometry embedding
the smaller system which is to be transmitted through the quantum channel into the larger system
on which many copies of the channel are applied. By doing so, one can prove the following lemma:

Lemma A.2 (Encoding operations, see [4]). For a quantum channel T : My, — My, with corre-
sponding complementary channel T¢: My, — My, and any rate R < [°°" wA/A, idgy @ TA7E

there exists a sequence €, which fulfills ¢, — 0 as v — oo such that for any quantum state
,DR Re®d ((DdR' & (DdR) with dgr = dr = ovR

/un(dv ) ‘ (i @ (T ouoWIA]) (p77) = & (o)

holds. Here o' F := (idA/ ® 7'0@”) (wA/A) denotes the Choi matriz of the complementary quantum

dU < e,
1

channel and for each v € N we denote by VE=4 : My, — May, an arbitrary isometry.

Proof: Consider the state wR,A = (idR/ ® Vf”_*A) (pR/R). By applying Lemma to leA
we obtain for any € > 0

o o g ooy

%Hs (AlylEV)o_

au
1

min min

<2 o0 1 (AIR), 4 19,
By Lemma [A1] we can estimate for sufficiently large v
Hyin (AVIEY) o0
> v [S (A/|E)|0A/BE><UA’BE| - Ay,o0, 6)}
=v [ICOh (wA,A,idA/ ® TA%B) - A (v, o, e)]
where we introduced a purification ‘JA/BE> <O’A/BE‘ € My, ® Mg, ® My, of the Choi matrix

o'F of the complementary channel and used that it is also a purification for the Choi matrix
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(ida ® TA=E) (wA'4) of the channel itself up to a local isometry. By the lower bound stated

before, we have
Hyin (AIR'),, > —log (dr) = —VR.

min

Combining the two bounds leads to

L | G e [ o)) (o) =0 )™

This proves the theorem for

au
1

Z%V [R—ICOh (wA/A,idA/ ®TA‘>B)+A(V,O',E)]

)
< + 12€.

R Jcoh (wA/A,idAI ®7—A—>B)+A(y,o’,€)] + E
14

EV::Q%V[
for the choice € = %

|

With proving the above theorem we are finished, because Theorem [A7]] guarantees the existence

of decoding quantum channels such that the limit in equation holds. By the above argument

we proved that any rate R < IP wA'A, idy ® TA7B) is achievable.

The general form of the decoding operation can also be obtained more directly [4], by using
Uhlmann’s theorem [40]. For later convenience we state the following

Lemma A.3 (see []). Let T : My, — My, denote a quantum channel, with complementary
channel T¢: My, — My, and € > 0. If there exists a quantum state oF € D4, such that for any
quantum state p*4 € © ((DdR ® @dA)

H(z’dR ®T°) (p") - p @ (O‘E)®V <e

1

is fulfilled, we can find a decoding quantum channel D : My, — Mg, such that for any quantum
state pf*4 € D (@dR ® (DdA)

(ida & (D T (p74) = R4, < 24 /e (1= 5).

This decoding operation can be chosen to be of the form D (p) = trq, WpWT, with an isometry
W s — Cdade,

Note that the dimension dg of the environment is not the minimal dimension, which one might
use for the representation of the decoding quantum channel. As the isometry W : €48 — C%ads ig
obtained via relating two purifications of the involved states (idg4, ® T°¢) (|¢) (¢|) and ¢ ® o using
Uhlmann’s theorem, the minimal dimension dp for which there exists an isometry W : €4 —
C 498 guch that an decoding operation can be guaranteed by Uhlmann’s theorem is d = rank (o).
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