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Abstract

Complex orthogonal design (COD) with parameter [p, n, k] is a com-
binatorial design used in space-time block codes (STBCs). For STBC, n
is the number of antennas, k/p is the rate, and p is the decoding delay. A
class of rate 1/2 COD called balanced complex orthogonal design (BCOD)
has been proposed by Adams et al., and they constructed BCODs with
rate k/p = 1/2 and decoding delay p = 2m for n = 2m. Furthermore,
they prove that the constructions have optimal decoding delay when m
is congruent to 1, 2, or 3 module 4. They conjecture that for the case
m ≡ 0 (mod 4), 2m is also a lower bound of p. In this paper, we prove
this conjecture.

1 Introduction

Since the pioneering work by Alamouti [4], and the work by Tarokh et al. [12],
complex orthogonal designs (CODs) have become an effective technique for the
design of space-time block codes (STBCs). The importance of this class of codes
is due to the fact that they achieve full diversity and have the fast maximum-
likelihood decoding.

A COD G[p, n, k] is a p× n matrix, where each nonzero entry is either ±zi
or ±z∗i , i = 1, 2, . . . , k such that

GHG = In(|z1|
2 + . . .+ |zk|

2).

For the application as STBCs, linear combination can be allowed, that is, each
entry is a complex linear combination of z1, . . . , zk and their conjugations, which
is called generalized COD sometimes.
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Motivated by STBCs, we are interested in certain criterions of COD includ-
ing rate k/p, which is the ratio of number of variables transmitted and time units
p; decoding delay, which is the number of rows p; transceiver signal linearization,
which can be achieved if the variables in any row are either all conjugated or
nonconjugated [11] etc.

It’s impossible to optimize all the design considerations simultaneously for
general n. For the rate, Liang [9] proves a tight upper bound, which is slightly
greater than 1/2 depending on n. When the rate is maximized, Adams et al.
proves a lower bound on the decoding delay, which grows factorially in n [2, 3].
Furthermore, Kan and Li [8] give a complete classification of “first type” CODs,

which are those without submatrices

(

±zj 0
0 ±z∗j

)

and

(

±z∗j 0
0 ±zj

)

, which

contains all the CODs with maximum rate.
The delay for maximum rate CODs grows quickly as the number of antennas

increases. It might be possible to significantly lower down the decoding delay
at the cost of decreasing the rate a little bit. For this purpose, Adams et al.
construct a class of rate 1/2 CODs with decoding delay p = 2m when n = 2m,
which are called balanced complex orthogonal designs (BCODs). They also prove
that 2m is the lower bound of the decoding delay when n ≡ 1, 2, 3 (mod 4); 2m−1

when n ≡ 0 (mod 4). They conjecture 2m is also a lower bound when m ≡ 0
(mod 4). In this paper, we prove the conjecture. Our proof is combinatorial.
Although the presentation is self-contained, the concepts and proof techniques
heavily depend on the techniques developed in those aforementioned papers.

We organize the paper as follows. In Section II, we introduce some definitions
and notations. In Section III, we define and study the properties of the standard
form of BCOD. In Section IV, we prove the tight lower bound for the delay of
BCOD, depending on some properties of the standard form.

2 Definitions and notations

Definition 2.1. [12] A complex orthogonal design (COD) G[p, n, k] is a p × n
matrix, where each nonzero entry is either ±zi or ±z∗i , i = 1, 2, . . . , k such that

GHG = In(|z1|
2 + . . .+ |zk|

2),

where GH denotes the Hermitian transpose of G.

Definition 2.2. [1] A COD G[2k, n, k] with n = 2m columns is a balanced

complex orthogonal design (BCOD) if it satisfies the following conditions. 1

1. Every row of G has exactly m zeros and m nonzero entries;

2. G is conjugation separated;

1In [1], there is an extra condition that “For each j = 1, 2, · · · , k, zj and z∗j each appears

m times (up to sign)”, which can be implied from the definition of COD and 2, 3.
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3. For each j ∈ [k], the Mj submatrix of the Bj form submatrix is skew-
symmetric, i.e., MT

j = −Mj.

Given some COD G[p, n, k], it’s easy to see that row or column permutations,
negating or conjugating some variables, etc., will not change the orthogonality,
which is formalized in the following definition.

Definition 2.3. Following operations on COD are called equivalence operations.

• Rearrange the order of the rows (“row permutation”).

• Rearrange the order of the columns (“column permutation”).

• Conjugate all instances of a certain variable (“instance conjugation”).

• Negate all instances of a certain variable (“instance negation”).

• Multiply any row by −1 (“row negation”).

• Multiply any column by −1 (“column negation”).

Many results about COD comes from the following observation. The idea
is that although COD is difficult to understand in global, it has a very simple
local characterization.

Definition 2.4. [9] Fix some variable zj . The following matrix is called Bj

form:

Bj =

(

zjIn1
Mj

−MH
j z∗j In2

)

,

where n1 + n2 = n, and Mj is a n1 × n2 matrix.

It’s easy to prove that G[p, n, k] is a COD if each z[j] appears in each column
exactly once, and for each j, the first n rows is a Bj form after equivalence
operations. Based on this observation, Liang proves that for n = 2m or 2m− 1,
the rate k/p is upper bounded by (m + 1)/(2m), and the bound is tight [9].
After that, Adams et al. solve the minimal delay problem: what is the minimal
p when k/p reaches the maximal?

Theorem 2.5. [2, 3] Let n = 2m or 2m − 1. For COD [p, n, k], if k/p =
(m + 1)/(2m), then p ≥

(

2m
m+1

)

when n ≡ 0, 1, 3 (mod 4); p ≥ 2
(

2m
m+1

)

when
n ≡ 2 (mod 4).

Their proof is based on a new concept called zero pattern. Let r be some row
in COD [p, n, k]. The zero pattern of r is a vector in F

n
2 , where the ith entry is

0 if and only if r(i) is 0, where r(i) denotes the element of r on the ith column.
Roughly speaking, the lower bound of p is proved by showing the existence of
all zero patterns with some given weight. In order to investigate BCOD, we
propose the following definition analogous to zero pattern.
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Definition 2.6. Let r be some row in BCOD G[2k, 2m, k], and α ∈ F
2m
2 be the

zero pattern of r. The left zero pattern of r is

αL = (α(1), α(2), . . . , α(m)) ∈ F
m
2 ,

and the left weight of r is the weight of αL.

Our idea of proving the lower bound is similar to Adams et al.’s, that is, to
show the existence of some left zero patterns. For example, when n = 2m, m
odd, we will prove that all zero patterns exist, where the total is 2m.

Besides Bi form, there is another local characterization of orthogonality. Let
G[p, n, k] be some COD. Consider all 2×2 submatrix of G such that the diagonal
elements are z[i]. It’s easy to see that there are only 3 possible cases (up to
negation and conjugation).

A =

(

zi zj
−z∗j z∗i

)

D =

(

zi 0
0 z∗i

)

T =

(

zi 0
0 zi

)

Call submatrix in the form of A an Alamouti 2 × 2, D Diagonal 2 × 2, and T
Trivial 2× 2. From the definition of BCOD, for some fixed z[j] in some row of
G[2k, 2m, k], it’s contained in m − 1 Alamouti 2 × 2, one Diagonal 2 × 2, and
m− 1 Trivial 2× 2.

We introduce the following concept complement row, which is important for
proving the lower bound on the delay of BCOD.

Definition 2.7. Let G be a [2k, 2m, k] BCOD, and r be a row of G. If row rc
satisfies:

1. r and rc have complementary zero patterns.

2. r and rc have opposite conjugations.

3. rc contains the same variables as r.

Then we call rc the complement of r.

From the definition of BCOD and Bj form, it’s easy to verify that every r
has a unique complement [1].

Definition 2.8. [8] COD G[2k, 2m, k] is called atomic if and only if there does
not exist a COD that is a submatrix of G consisting of some (not all) rows of
G.
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For an atomic BCOD G[2k, 2m, k], given any 1 6 s, t 6 k, there exist j1 =
s, j2, · · · , jm−1, jm = t such that Bj1 and Bj2 share some common rows, Bj2 and
Bj3 share some common rows, · · · , Bjm−1

and Bjm share some common rows.
This condition is also sufficient for a BCOD to be atomic. Clearly, a BCOD
which achieves the minimum decoding delay must be atomic. In the following
sequel, we will assume that all BCODs are atomic.

3 Standard form

In this section, we define a standard form for BCOD and prove some properties,
which will be used in the proof of the lower bound of delay in the next section.

Definition 3.1. Let G be a BCOD [2k, 2m, k]. We say G is in standard form

if and only if it’s already in Bi form for some i ∈ [k].

Recall that we say G is in Bj form if Bj is a submatrix of G after equivalence
operations without column permutations.

Definition 3.2. A sequence of equivalence operations are called column-restricted

equivalence operations if all the column permutations are transpositions of col-
umn i and m+ i, for some i ∈ [m].

Theorem 3.3. If BCOD G[2k, 2m, k] is already in standard form. Then for any
j ∈ [k], G can be transformed into Bj form by column-restricted equivalence
operations.

Proof. Without loss of generality, assume G is already in B1 form, i.e., there
exist 2m rows of the form

B1 =

(

z1Im M1

−MH
1 z∗1Im

)

,

where M1 is skew-symmetric with diagonal all zeros.
Recall that we always assume G is atomic. It suffices to prove that G can be

transformed into Bj form for the adjacent j, that is, for those z[j] in M1. By the
definition of BCOD, G is conjugation separated, that is, all variables in M1 are
of the form ±zj. Take any variable ±zj ∈ M1, and assume that M1(s, t) = ±zj,
where s, t ∈ [m]. Since M1 is skew-symmetric, that is, M1 = −MT

1 , we have
M1(t, s) = ∓zj.

On row s, there are m zeros. Among the m zeros, for zj, there are m − 1

Trivial 2× 2

(

0 ±zj
±zj 0

)

, and 1 Diagonal 2× 2

(

0 ±zj
±z∗j 0

)

. It’s easy to see

B1(s,m+ s; t,m+ t) =

(

0 ±zj
±z∗j 0

)

,

which is the only Diagonal 2× 2. Thus, for column i ∈ [m]∪{m+ s} \ {s, t}, zj
in B1(s,m+ t) shares a Trivial 2 × 2, and for column i ∈ {s,m+ 1, · · · , 2m} \
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{m+ s,m+ t}, zj shares an Alamouti form, which implies that all the z[j]’s in
column i ∈ A = [m]∪{m+ s,m+ t} \ {s, t} are of the form ±zj, and in column
i ∈ Ā = [2m] \A are of the form ±z∗j .

After swapping column s and m+ s, column t and m+ t, we could move all
the ±zj (without conjugation) into the first m columns, which is Bj form. Since
zj is an arbitrary variable in M1, by repeating this argument, we will exhaust
all the j ∈ [k], and the proof is complete.

The following corollary is immediate from the above theorem.

Corollary 3.4. If G is in standard form, then

(1) For any i = 1, 2, . . . ,m, the ith column and (m + i)th column of G have
complement zero patterns.

(2) For any j ∈ [k], and any i ∈ [m], the conjugations of z[j] in column i and
column m+ i are different.

(3) For any j ∈ [k], and any i ∈ [m], ±zj in column i, and ±z∗j in column
m+ i (or ±z∗j in column i, ±zj in column m+ i) form a Diagonal 2× 2.

Proof. It’s clear that both (1), (2), (3) are true for each Bj form. Since G can
be transformed into Bj by column-restricted operations, and (1), (2), (3) are
invariant under column-restricted operations, we conclude that G satisfies (1),
(2) and (3).

4 Minimal decoding delay

The following lemma is the key result for proving the delay lower bound, which
says that the existence of left zero pattern α implies the existence of zero pattern
β, where β is obtained by changing two arbitrary bits of α from 0 to 1.

Lemma 4.1. Let G be a [2k, 2m, k] BCOD in the standard form. Let r be one
row in G with left zero pattern α ∈ F

m
2 and left weight 0 ≤ u ≤ m − 2. Then

for any distinct i, j ∈ [m] such that α(i) = α(j) = 0, there exists some row in G
with left zero pattern α⊕ ei ⊕ ej , and the same conjugation, and thus has left
weight u+ 2.

Proof. Denote by I1 the support of α, that is,

I1 = {i ∈ [m] : α(i) = 1},

and I0 = [m] \ I1. Let i, j ∈ I0 be distinct. We will show that there exists some
row with left zero pattern α⊕ ei ⊕ ej .

Suppose row r has left zero pattern α. By (1) of Corollary 3.4, r has right
zero pattern α. Without loss of generality, assume r(m + i) = z1. By (3) of
Corollary 3.4, we claim that there exists ±z∗1 in column i. Because z1 in row r
is contained in m−1 Trivial 2×2, m−1 Alamouti 2×2, and one Diagonal 2×2,
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for all the l ∈ I0 \ {i}, column l contains variable ±z1 (not its conjugation), and
for all the l ∈ I1, column l contains variable ±z∗1 .

Take the row r′ such that ±z1 on the jth column, i.e., r′(j) = ±z1. We
claim the left zero pattern of r′ is exactly what we need. We need to verify that

(1) r′(i) is not zero.

(2) For all l ∈ I1, r
′(l) it not zero.

(3) For all l ∈ I0 \ {i, j}, r
′(l) = 0.

For (1), notice that r′(j) = ±z1, and there exists some row rc such that
rc(i) = ±z∗1 . Considering the 2×2 submatrix formed by the ith and jth column
of row r′ and rc, they are either Alamouti 2 × 2 or Diagonal 2 × 2. Again by
(3) in Corollary 3.4, they must be Alamouti 2× 2, which implies r′(i) 6= 0.

For (2), take any l ∈ I1. We know that there exist some row rl such that
rl(l) = ±z∗1 . Considering the 2×2 submatrix formed by the lth and jth column
of row r′ and rl, they are either Alamouti 2 × 2 or Diagonal 2 × 2. By (3) in
Corollary 3.4, they must be Alamouti 2× 2, which implies r′(l) 6= 0.

For (3), take any l ∈ I0\{i, j}. There exist some row rl such that rl(l) = ±z1.
Considering the 2 × 2 submatrix formed by the lth and jth column of row r′

and rl, it must be Trivial 2× 2, which implies r′(l) = 0.

Now, we are ready to prove the lower bound on the decoding delay of BCOD
for n = 2m, m odd. For the case m ≡ 1, 2, 3 (mod 4), the lower bound 2m is
proved in [1]. For the case m ≡ 0 (mod 4), they are able to prove lower bound
2m−1.

Theorem 4.2. Let G be a [2k, 2m, k] BCOD with m odd. Then 2k ≥ 2m.

Proof. It suffices to prove that every possible left zero pattern exists. Since a
left zero pattern is a vector in Fm

2 , there are 2m in total.
Assume G is already in its standard form B1. From B1 form, we claim that

all left zero patterns with weight 1 exist. By Lemma 4.1, all left zero patterns
with weight 3 exist since each time we can transform any two zero entries to
ones. Repeating this argument, all left zero patterns of the same conjugation
with weight 1, 3, 5, . . . ,m exist. Notice that if one row has left weight u, then
its complement has weight m − u. From this observation, we conclude all left
zero patterns exists, which completes the proof.

For the case n = 2m, m even, the proof is similar, except that we need
to take the conjugation into account. And the following theorem proves the
conjecture that, for n = 2m congruent to 0 module 8, the delay 2k is lower
bounded by 2m.

Theorem 4.3. Let G be a [2k, 2m, k] BCOD with m even. Then 2k ≥ 2m.
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Proof. By the same argument as we did in Theorem 4.2, we claim that all the
left zero patterns with weight 1, 3, . . . ,m− 1 exists, where the amount is

(

m

1

)

+

(

m

3

)

+ . . .+

(

m

m− 1

)

= 2m−1.

By the definition of BCOD, G is conjugation separated. Observe that any row
has different conjugation with its complement. Therefore, we claim that for
every α ∈ F

m, there exists at least two rows r, r′ with left zero pattern α and
different conjugations, which implies that the number of rows 2k ≥ 2m.

We would like to point out that, in [1], the lower bound for ν(n) is proved by
reducing BCOD [2k, 2m, k] to Real Orthogonal Design (ROD) with parameter
[2k, 2m, 2k]. It’s known that for ROD [2k, 2m, 2k], the delay 2k is lower bounded
by ν(n) [5, 6, 10], where ν(n) = 2δ(n) and

δ(n) =



















4t, if n = 8t+ 1

4t+ 1, if n = 8t+ 2

4t+ 2, if n = 8t+ 3, 8t+ 4

4t+ 3, if n = 8t+ 5, 8t+ 6, 8t+ 7, 8t+ 8.

Our proof here is self-contained and combinatorial.

References

[1] S. Adams, J. Davis, N. Karst, M. Murugan and B. Lee, “Novel classes of
minimal delay and low PAPR rate 1/2 complex orthogonal designs,” IEEE

Trans. Inf. Theory, vol. 57, no. 4, pp. 2254–2262, 2011.

[2] S. Adams, N. Karst, and M. Murugan, “The final case of the decoding delay
problem for maximum rate complex orthogonal designs,” IEEE Trans. Inf.

Theory, vol. 56, no. 1, pp. 103–112, 2010.

[3] S. Adams, N. Karst, and J. Pollack, “The minimum decoding delay of
maximum rate complex orthogonal space-time block codes,” IEEE Trans.

Inf. Theory, vol. 53, no. 8, pp. 2677–22684, 2007.

[4] S. Alamouti, “A simple transmit diversity technique for wireless commu-
nications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,
1998.
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