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Achieving Marton’s Region for Broadcast Channels
Using Polar Codes

Marco Mondelli, S. Hamed Hassani, Igal Sason, and Rüdiger Urbanke

Abstract

This paper presents polar coding schemes for the 2-user discrete memoryless broadcast channel (DM-BC) which
achieve Marton’s region with both common and private messages. This is the best achievable rate region known to
date, and it is tight for all classes of 2-user DM-BCs whose capacity regions are known. To accomplish this task,
we first construct polar codes for both the superposition as well as the binning strategy. By combining these two
schemes, we obtain Marton’s region with private messages only. Finally, we show how to handle the case of common
information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding
and decoding complexity and a super-polynomial decay rate of the error probability.

We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition
and binning schemes. In order to align the polar indices, for both schemes, their solution involves some degradedness
constraints that are assumed to hold between the auxiliary random variables and the channel outputs. To remove these
constraints, we consider the transmission of k blocks and employ a chaining construction that guarantees the proper
alignment of the polarized indices. The techniques described in this work are quite general, and they can be adopted
to many other multi-terminal scenarios whenever there polar indices need to be aligned.
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I. INTRODUCTION

Polar codes, introduced by Arıkan in [1], have been demonstrated to achieve the capacity of any memoryless binary-
input output-symmetric channel with encoding and decoding complexity Θ(n log n), where n is the block length of
the code, and a block error probability decaying like O(2−n

β

), for any β ∈ (0, 1/2), under successive cancellation
decoding [2]. A refined analysis of the block error probability of polar codes leads in [3] to rate-dependent upper
and lower bounds.

The original point-to-point communication scheme has been extended, amongst others, to lossless and lossy source
coding [4], [5] and to various multi-terminal scenarios, such as the Gelfand-Pinsker, Wyner-Ziv, and Slepian-Wolf
problems [6], [7], multiple-access channels [8]–[12], broadcast channels [13]–[15], interference channels [16], [17],
degraded relay channels [18], [19], wiretap channels [19]–[23], bidirectional broadcast channels with common and
confidential messages [24], write once memories (WOMs) [25], arbitrarily permuted parallel channels [26], and
multiple description coding [27].

Goela, Abbe, and Gastpar recently introduced polar coding schemes for the m-user deterministic broadcast channel
[13], [15], and for the noisy discrete memoryless broadcast channel (DM-BC) [14], [15]. For the second scenario,
they considered two fundamental transmission strategies: superposition coding, in the version proposed by Bergmans
[28], and binning [29]. In order to guarantee a proper alignment of the polar indices, in both the superposition
and binning schemes, their solution involves some degradedness constraints that are assumed to hold between the
auxiliary random variables and the channel outputs. It is noted that two superposition coding schemes were proposed
by Bergmans [28] and Cover [30], and they both achieve the capacity region of the degraded broadcast channel.
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However, it has recently been proven that under MAP decoding, Cover’s strategy always achieves a rate region at
least as large as Bergmans’, and this dominance can sometimes be strict [31].

In this paper we extend the schemes of [15], and we show how to achieve Marton’s region with both common and
private messages. The original work by Marton [29] covers the case with only private messages, and the introduction
of common information is due to Gelfand and Pinsker [32]. Hence, we will refer to this region as the Marton-
Gelfand-Pinsker (MGP) region (this follows the terminology used, e.g., in [33]–[35]). This rate region is tight for
all classes of DM-BCs with known capacity region, and it forms the best inner bound known to date for a 2-user
DM-BC [36]–[38]. Note that it also includes Cover’s superposition region.

The crucial point consists in removing the degradedness conditions on auxiliary random variables and channel
outputs1, in order to achieve any rate pair inside the region defined by Bergmans’ superposition strategy and by the
binning strategy. The ideas which make it possible to lift the constraints come from recent progress in constructing
universal polar codes, which are capable of achieving the compound capacity of the whole class of memoryless
binary-input output-symmetric channels [40], [41]. In short, first we describe polar codes for the superposition and
binning strategies. Then, by combining these two techniques, we achieve Marton’s rate region with private messages
only. Finally, by describing how to transmit common information, we achieve the whole MGP region.

The current exposition is limited to the case of binary auxiliary random variables and, only for Bergmans’
superposition coding scheme, also to binary inputs. However, there is no fundamental difficulty in extending the
work to the q-ary case (see [12], [42]–[45]). The proposed schemes possess the standard properties of polar codes
with respect to encoding and decoding, which can be performed with complexity Θ(n log n), as well as with respect
to the scaling of the block error probability as a function of the block length, which decays like O(2−n

β

) for any
β ∈ (0, 1/2).

The rest of the paper is organized as follows. Section II reviews the information-theoretic achievable rate regions
for DM-BCs and the rate regions that can be obtained by the polarization-based code constructions proposed in
[15], call them the AGG constructions. It proceeds by comparing Bergmans’ superposition scheme [28] with the
AGG superposition region in [15], which serves for motivating this work. Furthermore, alternative characterizations
of superposition, binning, and Marton’s regions are presented in Section II for simplifying the description of our
novel polar coding schemes in this work. Section III reviews two “polar primitives” that form the basis of the
AGG constructions and of our extensions: polar schemes for lossless compression, with and without side information,
and for transmission over binary asymmetric channels. Sections IV and V describe our polar coding schemes that
achieve the superposition and binning regions, respectively. Section VI first shows polar codes for the achievability
of Marton’s region with only private messages and, then, also for the MGP region with both common and private
messages. Section VII concludes this paper with some final thoughts.

II. ACHIEVABLE RATE REGIONS

A. Information-Theoretic Schemes

Let us start by considering the rate region that is achievable by Bergmans’ superposition scheme [36, Theorem 5.1],
which provides the capacity region of degraded DM-BCs.

Theorem 1 (Superposition Region): Consider the transmission over a 2-user DM-BC pY1,Y2 |X , where X denotes
the input to the channel, and Y1, Y2 denote the outputs at the first and second receiver, respectively. Let V be an
auxiliary random variable. Then, for any joint distribution pV,X s.t. V −X − (Y1, Y2) forms a Markov chain, a rate
pair (R1, R2) is achievable if

R1 < I(X;Y1 |V ),

R2 < I(V ;Y2),

R1 +R2 < I(X;Y1).

(1)

Note that the above only describes a subset of the region actually achievable by superposition coding. We get a
second subset by swapping the roles of the two users, i.e., by swapping the indices 1 and 2. The actual achievable
region is obtained by the convex hull of the closure of the union of these two subsets.

The rate region which is achievable by the binning strategy is described in the following [36, Theorem 8.3]:

1Note that, in general, such kind of extra conditions make the achievable rate region strictly smaller, see [39].
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Theorem 2 (Binning Region): Consider the transmission over a 2-user DM-BC pY1,Y2 |X , where X denotes the
input to the channel, and Y1, Y2 denote the outputs at the first and second receiver, respectively. Let V1 and V2
denote auxiliary random variables. Then, for any joint distribution pV1,V2

and for any deterministic function φ s.t.
X = φ(V1, V2), a rate pair (R1, R2) is achievable if

R1 < I(V1;Y1),

R2 < I(V2;Y2),

R1 +R2 < I(V1;Y1) + I(V2;Y2)− I(V1;V2).

(2)

Note that the achievable rate region does not become larger by considering general distributions pX |V1,V2
, i.e.,

there is no loss of generality in restricting X to be a deterministic function of (V1, V2) (see [36, Remark 8.4]).
Furthermore, for deterministic DM-BCs, the choice V1 = Y1 and V2 = Y2 in (2) provides their capacity region (see,
e.g., [37, Example 7.1]).

The rate region in (2) can be enlarged by combining binning with superposition coding. This leads to Marton’s
region for a 2-user DM-BC where only private messages are available (see [29, Theorem 2] and [36, Proposition 8.1]).

Theorem 3 (Marton’s Region): Consider the transmission over a 2-user DM-BC pY1,Y2 |X , where X denotes the
input to the channel, and Y1, Y2 denote the outputs at the first and second receiver, respectively. Let V , V1, and V2
denote auxiliary random variables. Then, for any joint distribution pV,V1,V2

and for any deterministic function φ s.t.
X = φ(V, V1, V2), a rate pair (R1, R2) is achievable if

R1 < I(V, V1;Y1),

R2 < I(V, V2;Y2),

R1 +R2 < I(V, V1;Y1) + I(V2;Y2 |V )− I(V1;V2 |V ),

R1 +R2 < I(V, V2;Y2) + I(V1;Y1 |V )− I(V1;V2 |V ).

(3)

Note that the binning region (2) is a special case of Marton’s region (3) where the random variable V is set to be a
constant. As for the binning region in Theorem 2, there is no loss of generality in restricting X to be a deterministic
function of (V, V1, V2).

In a more general set-up, the users can transmit also common information. The generalization of Theorem 3 to
the case with a common message results in the MGP region. We denote by R0 the rate associated to the common
message, and R1, R2 continue to indicate the private rates of the first and the second user, respectively. Then, under
the hypotheses of Theorem 3, a rate triple (R0, R1, R2) is achievable if

R0 < min{I(V ;Y1), I(V ;Y2)},
R0 +R1 < I(V, V1;Y1),

R0 +R2 < I(V, V2;Y2),

R0 +R1 +R2 < I(V, V1;Y1) + I(V2;Y2 |V )− I(V1;V2 |V ),

R0 +R1 +R2 < I(V, V2;Y2) + I(V1;Y1 |V )− I(V1;V2 |V ).

(4)

An equivalent form of this region was derived by Liang [33]–[35] (see also Theorem 8.4 and Remark 8.6 in [36]).
Note that the MGP region (4) is specialized to Marton’s region (3) when R0 = 0 (i.e., if only private messages
exist). The evaluation of Marton’s region in (3) and the MGP region in (4) for DM-BCs has been recently studied
in [46]–[48], proving also their optimality for some interesting and non-trivial models of BCs in [49], [50].

B. Polar AGG Constructions

Let us now compare the results of Theorems 1 and 2 with the superposition and binning regions that are achievable
by the polarization-based AGG constructions in [15]. We write p � q to denote that the channel q is stochastically
degraded with respect to the channel p.

Theorem 4 (AGG Superposition Region): Consider the transmission over a 2-user DM-BC pY1,Y2 |X with a binary
input alphabet, where X denotes the input to the channel, and Y1, Y2 denote the outputs at the first and second
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receiver, respectively. Let V be an auxiliary binary random variable and assume that pY1 |V � pY2 |V . Then, for any
joint distribution pV,X s.t. V −X − (Y1, Y2) forms a Markov chain and for any rate pair (R1, R2) s.t.

R1 < I(X;Y1 |V ),

R2 < I(V ;Y2),
(5)

there exists a sequence of polar codes with an increasing block length n that achieves this rate pair with encoding and
decoding complexity Θ(n log n), and with a block error probability that decays like O(2−n

β

) for any β ∈ (0, 1/2).
Theorem 5 (AGG Binning Region): Consider the transmission over a 2-user DM-BC pY1,Y2 |X , where X denotes

the input to the channel, and Y1, Y2 denote the outputs at the first and second receiver, respectively. Let V1 and V2
denote auxiliary binary random variables and assume that pY2 |V2

� pV1 |V2
. Then, for any joint distribution pV1,V2

,
for any deterministic function φ s.t. X = φ(V1, V2), and for any rate pair (R1, R2) s.t.

R1 < I(V1;Y1),

R2 < I(V2;Y2)− I(V1;V2),
(6)

there exists a sequence of polar codes with an increasing block length n that achieves this rate pair with encoding and
decoding complexity Θ(n log n), and with a block error probability that decays like O(2−n

β

) for any β ∈ (0, 1/2).
The rate regions (5) and (6) describe a subset of the regions actually achievable with polar codes by superposition

coding and binning, respectively. However, in some cases it is not possible to achieve the second subset, since, by
swapping the indices 1 and 2, we might not be able to fulfill the required degradation assumptions.

C. Comparison of Superposition Regions

As a motivation, before proceeding with the new code constructions and proofs, let us consider a specific trans-
mission scenario and compare the information-theoretic superposition region (1) and the AGG superposition region
(5) where the latter requires the degradedness assumption pY1 |V � pY2 |V .

In the following, let the channel between X and Y1 be a binary symmetric channel with crossover probability
p, namely, a BSC(p), and the channel between X and Y2 be a binary erasure channel with erasure probability ε,
namely, a BEC(ε). Let us recall a few known results for this specific model (see [36, Example 5.4]).

1) For any choice of the parameters p ∈ (0, 1/2) and ε ∈ (0, 1), the capacity region of this DM-BC is achieved
using superposition coding.

2) For 0 < ε < 2p, Y1 is a stochastically degraded version of Y2.
3) For 4p(1−p) < ε ≤ h2(p), Y2 is more capable than Y1, i.e. I(X;Y2) ≥ I(X;Y1) for all distributions pX , where

h2(p) = −p log2 p− (1− p) log2(1− p) denotes the binary entropy function.
Let V and X denote the alphabets of the auxiliary random variable V and of the input X , respectively. Then, if
the DM-BC is stochastically degraded or more capable, the auxiliary random variables satisfy the cardinality bound
|V| ≤ |X | [51]. Consequently, for such a set of parameters, we can restrict our analysis to binary auxiliary random
variables without any loss of generality. Furthermore, one can assume that the channel from V to X is a BSC, and
that the binary random variable X is symmetric [52, Lemma 7].

First, pick p = 0.11 and ε = 0.2. In this case, the DM-BC is stochastically degraded and, as can be seen in
Figure 1(a), the two regions (1) and (5) coincide despite of the presence of the extra degradedness assumption. In
addition, these two regions are non-trivial in the sense that they improve upon the simple time-sharing scheme in
which one user remains silent and the other employs a point-to-point capacity achieving code. Then, pick p = 0.11 and
ε = 0.4. In the latter case, the DM-BC is more capable and, as can be seen in Figure 1(b), the information-theoretic
region (1) strictly improves upon the AGG region (5) that coincides with a trivial time-sharing.

D. Equivalent Description of Achievable Regions

When describing our new polar coding schemes, we will show how to achieve certain rate pairs. The following
propositions state that the achievability of these rate pairs is equivalent to the achievability of the whole rate regions
described in Theorems 1–3.

Proposition 1 (Equivalent Superposition Region): In order to show the achievability of all points in the region (1),
it suffices to describe a sequence of codes with an increasing block length n that achieves each of the rate pairs
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Figure 1. Comparison of superposition regions when the channel from X to Y1 is a BSC(0.11) and the channel from X to Y2 is a BEC(ε).
When ε = 0.2, the information-theoretic region (in blue) coincides with the AGG region (in red) and they are both strictly larger than the
time-sharing line (in black). When ε = 0.4, the information-theoretic region is strictly larger than the AGG region which reduces to the
time-sharing line.

• (R1, R2) = (I(X;Y1 |V ),min(I(V ;Y1), I(V ;Y2))),
• (R1, R2) = (I(X;Y1)− I(V ;Y2), I(V ;Y2)), provided that I(V ;Y1) < I(V ;Y2) < I(X;Y1),

with a block error probability that decays to zero as n→∞.
Proof: Assume that I(V ;Y2) ≤ I(V ;Y1). Since V −X−Y1 forms a Markov chain, by the chain rule, the first two

inequalities in (1) imply that R1+R2 < I(X;Y1 |V )+I(V ;Y2) ≤ I(X;Y1 |V )+I(V ;Y1) = I(V,X;Y1) = I(X;Y1).
Hence, the region (1) is a rectangle and it suffices to achieve the corner point (I(X;Y1 |V ), I(V ;Y2)).

Now, suppose that I(V ;Y1) < I(V ;Y2). Let us separate this case into the following two sub-cases:
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1) If I(X;Y1) > I(V ;Y2), the region (1) is a pentagon with the corner points

(I(X;Y1)− I(V ;Y2), I(V ;Y2)), (I(X;Y1 |V ), I(V ;Y1)).

The reason for the first corner point is that I(V ;Y1 |X) = 0, so, if R2 = I(V ;Y2), the satisfiability of the
equality R1 +R2 = I(X;Y1) yields that

R1 = I(X;Y1)− I(V ;Y2) = I(V,X;Y1)− I(V ;Y2) < I(V,X;Y1)− I(V ;Y1) = I(X;Y1 |V ).

The reason for the second corner point is that R1 = I(X;Y1 |V ), R2 = I(V ;Y1) < I(V ;Y2), and

R1 +R2 = I(V X;Y1) = I(V ;Y1 |X) + I(X;Y1) = I(X;Y1).

2) Otherwise, if I(X;Y1) ≤ I(V ;Y2), the region (1) is a right trapezoid with corner points (I(X;Y1 |V ), I(V ;Y1))
and (0, I(X;Y1)). Since V −X − Y2 forms a Markov chain, then, by the data processing theorem and the last
condition, it follows that I(X;Y1) ≤ I(V ;Y2) ≤ I(X;Y2). Hence, the second corner point (0, I(X;Y1)) is
dominated by the point achievable when the first user is kept silent and the second user adopts a point-to-point
code, taken from a sequence of codes with an increasing block length n, rate close to I(X;Y2), and block error
probability that decays to zero (for example, a sequence of polar codes with an increasing block length).

Proposition 2 (Equivalent Binning Region): In order to show the achievability of all points in the region (2), it
suffices to describe a sequence of codes with an increasing block length n that achieves the rate pair

(R1, R2) = (I(V1;Y1), I(V2;Y2)− I(V1;V2)),

assuming that I(V1;V2) ≤ I(V2;Y2), with a block error probability that decays to zero as n→∞.
Proof: Assume that I(V1;V2) ≤ min(I(V1;Y1), I(V2;Y2)). Then, the region (2) is a pentagon with corner points

(I(V1;Y1), I(V2;Y2)− I(V1;V2)), (I(V1;Y1)− I(V1;V2), I(V2;Y2)).

Since the region (2) and the above condition are not affected by swapping the indices 1 and 2, it suffices to achieve
the first corner point. In order to obtain the other corner point, one simply exchanges the roles of the two users.

Next, suppose that I(V2;Y2) ≤ I(V1;V2) < I(V1;Y1). Then, the region (2) is a right trapezoid with corner points

(I(V1;Y1)− I(V1;V2), I(V2;Y2)), (I(V1;Y1) + I(V2;Y2)− I(V1;V2), 0).

Since I(V1;Y1) + I(V2;Y2)− I(V1;V2) ≤ I(V1;Y1) and I(V1;Y1) ≤ I(X;Y1) (this follows from the data processing
theorem for the Markov chain V1 − X − Y1), the last rate pair is dominated by the achievable point (R1, R2) =
(I(X;Y1), 0) which refers to a point-to-point communication at rate I(X;Y1) for the first user, with a block error
probability that decays to zero as n→∞, while the second user is kept silent.

The case where I(V1;Y1) ≤ I(V1;V2) < I(V2;Y2) is solved by swapping the indices of the two users, and by
referring to the previous case.

Finally, assume that I(V1;V2) ≥ max(I(V1;Y1), I(V2;Y2)). Then, the region (2) is a triangle with corner points that
are achievable by letting one user remain silent, while the other user performs a point-to-point reliable communication.

Remark: The rate R2 = I(V2;Y2) − I(V1;V2) in Proposition 2 is identical to the Gelfand-Pinsker rate if one
considers the sequence V 1:n

1 to be known non-causally at the encoder. This suggests a design of an encoder which
consists of two encoders: one for v1:n1 , and the second for v1:n2 based on the Gelfand-Pinsker coding; in the second
encoder, the sequence v1:n1 is provided as side information. The reader is referred to the encoding scheme in [37,
Figure 7.3] while the indices 1 and 2 need to be switched.

Proposition 3 (Equivalent Marton’s Region): In order to show the achievability of all points in the region (3), it
suffices to describe a sequence of codes with an increasing block length n that achieves each of the rate pairs

(R1, R2) = (I(V, V1;Y1), I(V2;Y2 |V )− I(V1;V2 |V )),

(R1, R2) = (I(V, V1;Y1)− I(V1;V2 |V )− I(V ;Y2), I(V, V2;Y2)),
(7)

assuming that I(V ;Y1) ≤ I(V ;Y2), with a block error probability that decays to zero as n→∞.
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Proof: Since the region (3) is not affected by swapping the indices 1 and 2, we can assume without loss of
generality that I(V ;Y1) ≤ I(V ;Y2). Then,

I(V, V1;Y1) + I(V2;Y2 |V ) = I(V ;Y1) + I(V1;Y1|V ) + I(V2;Y2 |V )

≤ I(V ;Y2) + I(V1;Y1|V ) + I(V2;Y2 |V ) = I(V, V2;Y2) + I(V1;Y1 |V ),

which means that the fourth inequality in (3) does not restrict the rate region under the above assumption.
Now, we can follow the same procedure outlined in the proof of Propositions 1 and 2. Suppose that

I(V2;Y2 |V )− I(V1;V2 |V ) > 0,

I(V, V1;Y1)− I(V1;V2 |V )− I(V ;Y2) > 0.
(8)

Then, the rate region (3) is a pentagon with the corner points in (7).
If one of the inequalities in (8) is satisfied and the other is violated, then the region (3) is a right trapezoid with

one corner point given by (7) and the other corner point which is achievable by letting one user remain silent, while
the other uses a point-to-point reliable scheme. If both inequalities in (8) are violated, then the region (3) is a triangle
with corner points that are achievable with point-to-point coding schemes.

III. POLAR CODING PRIMITIVES

The AGG constructions, as well as our extensions, are based on two polar coding “primitives”. Therefore, before
discussing the broadcast setting, let us review these basic scenarios.

The first such primitive is the lossless compression, with or without side information. In the polar setting, this
problem was first discussed in [6], [53]. In Section III-A, we consider the point of view of source polarization in [4].

The second such primitive is the transmission of polar codes over a general binary-input discrete memoryless
channel (a DMC which is either symmetric or asymmetric). The basic problem which one faces here is that linear
codes impose a uniform input distribution, while the capacity-achieving input distribution is in general not the
uniform one when the DMC is asymmetric (however, in relative terms, the degradation in using the uniform prior
for a binary-input DMC is at most 6% [54], [55]). One solution consists of concatenating the linear code with a
non-linear pre-mapper [56]. A solution which makes use of the concatenation of two polar codes has been proposed
in [57]. However, a more direct polar scheme is implicitly considered in [15], and is independently and explicitly
presented in [58]. We will briefly review this last approach in Section III-B.

Notation: In what follows, we assume that n is a power of 2, say n = 2m for m ∈ N, and we denote by Gn

the polar matrix given by Gn =

[
1 0
1 1

]⊗m
, where ⊗ denotes the Kronecker product of matrices. The index set

{1, · · · , n} is abbreviated as [n] and, given a set A ⊆ [n], we denote by Ac its complement. We use Xi:j as a
shorthand for (Xi, · · · , Xj) with i ≤ j.

A. Lossless Compression

Problem Statement. Consider a binary random variable X ∼ pX . Then, given the random vector X1:n =
(X1, · · · , Xn) consisting of n i.i.d. copies of X , the aim is to compress X1:n in a lossless fashion into a binary
codeword of size roughly nH(X), which is the entropy of X1:n.

Design of the Scheme. Let U1:n = (U1, · · · , Un) be defined as

U1:n = X1:nGn. (9)

Then, U1:n is a random vector whose components are polarized in the sense that either U i is approximately uniform
and independent of U1:i−1, or U i is approximately a deterministic function of U1:i−1. Formally, for β ∈ (0, 1/2), let
δn = 2−n

β

and set

HX = {i ∈ [n] : Z(U i |U1:i−1) ≥ 1− δn},
LX = {i ∈ [n] : Z(U i |U1:i−1) ≤ δn},

(10)

where Z denotes the Bhattacharyya parameter. Recall that, given (T, V ) ∼ pT,V , where T is binary and V takes
values in an arbitrary discrete alphabet V , we define

Z(T |V ) = 2
∑
v∈V

PV (v)
√
PT |V (0 | v)PT |V (1 | v). (11)
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Figure 2. A simple graphical representation of the sets HX and LX for the lossless compression scheme. The whole square represents [n].
The sets HX and LX almost form a partition of [n] in the sense that the number of indices of [n] which are neither in HX nor in LX is o(n).

Hence, for i ∈ HX , the bit U i is approximately uniformly distributed and independent of the past U1:i−1; also, for
i ∈ LX , the bit U i is approximately a deterministic function of U1:i−1. Furthermore,

lim
n→∞

1

n
|HX | = H(X),

lim
n→∞

1

n
|LX | = 1−H(X).

(12)

For a graphical representation of this setting, see Figure 2.
Encoding. Given the vector x1:n that we want to compress, the encoder computes u1:n = x1:nGn and outputs the

values of u1:n in the positions Lc
X = [n] \ LX , i.e., it outputs {ui}i∈Lc

X
.

Decoding. The decoder receives {ui}i∈Lc
X

and computes an estimate û1:n of u1:n using the rule

ûi =

{
ui, if i ∈ Lc

X

arg max
u∈{0,1}

PU i |U1:i−1(u |u1:i−1), if i ∈ LX . (13)

Note that the conditional probabilities PU i |U1:i−1(u |u1:i−1), for u ∈ {0, 1}, can be computed recursively with
complexity Θ(n log n).

Performance. As explained above, for i ∈ LX , the bit U i is almost deterministic given its past U1:i−1. Therefore,
for i ∈ LX , the distribution PU i |U1:i−1(u |u1:i−1) is highly biased towards the correct value ui. Indeed, the block
error probability Pe, given by

Pe = P(Û1:n 6= U1:n),

can be upper bounded by

Pe ≤
∑
i∈LX

Z(U i |U1:i−1) = O(2−n
β

), ∀β ∈ (0, 1/2). (14)

Addition of Side Information. This is a slight extension of the previous case, and it is also discussed in [4]. Let
(X,Y ) ∼ pX,Y be a pair of random variables, where we think of X as the source to be compressed and of Y as a
side information about X . Given the vector (X1:n, Y 1:n) of n independent samples from the distribution pX,Y , the
problem is to compress X1:n into a codeword of size roughly nH(X |Y ), so that the decoder is able to recover the
whole vector X1:n by using the codeword and the side information Y 1:n.

Define U1:n = X1:nGn and consider the sets

HX |Y = {i ∈ [n] : Z(U i |U1:i−1, Y 1:n) ≥ 1− δn}, (15)

representing the positions s.t. U i is approximately uniformly distributed and independent of (U1:i−1, Y 1:n), and

LX |Y = {i ∈ [n] : Z(U i |U1:i−1, Y 1:n) ≤ δn}, (16)

representing the positions s.t. U i is approximately a deterministic function of (U1:i−1, Y 1:n) (see Figure 3). Note
that lossless compression without side information can be considered as lossless compression with side information
Ỹ , where Ỹ is independent of X (say, e.g., that Ỹ is constant). Therefore, Ỹ does not add any information about X
and it can be thought as a degraded version of Y . Therefore, the following inclusion relations hold:

HX |Y ⊆ HX ,

LX ⊆ LX |Y ,
(17)
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Figure 3. A simple graphical representation of the sets HX |Y and LX |Y for the lossless compression scheme with side information. The
whole square represents [n]. The sets HX |Y and LX |Y almost form a partition of [n] in the sense that the number of indices of [n] which
are neither in HX |Y nor in LX |Y is o(n).

as it is graphically illustrated in Figures 2 and 3. A relationship analogous to (12) holds, namely,

lim
n→∞

1

n
|HX |Y | = H(X |Y ),

lim
n→∞

1

n
|LX |Y | = 1−H(X |Y ).

(18)

Given a realization of X1:n, namely x1:n, the encoder constructs u1:n = x1:nGn and outputs {ui}i∈Lc
X |Y

as the
compressed version of x1:n. The decoder, using the side information y1:n and a decoding rule similar to (13), is able
to reconstruct x1:n reliably with vanishing block error probability.

B. Transmission over Binary-Input DMCs

Problem Statement. Let W be a DMC with a binary input X and output Y . Fix a distribution pX for the random
variable X . The aim is to transmit over W with a rate close to I(X;Y ).

Design of the Scheme. Let U1:n = X1:nGn, where X1:n is a vector of n i.i.d. components drawn according to
pX . Consider the sets HX and LX defined in (10). From the discussion about lossless compression, we know that,
for i ∈ HX , the bit U i is approximately uniformly distributed and independent of U1:i−1 and that, for i ∈ LX , the
bit U i is approximately a deterministic function of the past U1:i−1. Now, assume that the channel output Y 1:n is
given, and interpret this as side information on X1:n. Consider the sets HX |Y and LX |Y as defined in (15) and (16),
respectively. To recall, for i ∈ HX |Y , U i is approximately uniformly distributed and independent of (U1:i−1, Y 1:n),
and, for i ∈ LX |Y , U i becomes approximately a deterministic function of (U1:i−1, Y 1:n).

To construct a polar code for the channel W , we proceed now as follows. We place the information in the positions
indexed by I = HX∩LX |Y (note that, from (17), LX ⊆ LX |Y ). Indeed, if i ∈ I, then U i is approximately uniformly
distributed given U1:i−1, since i ∈ HX . This implies that U i is suitable to contain information. Furthermore, U i is
approximately a deterministic function if we are given U1:i−1 and Y 1:n, since i ∈ LX |Y . This implies that it is also
decodable in a successive manner given the channel output. Using (12), (17), (18), and the fact that the number of
indices in [n] which are neither in HX nor in LX is o(n), it follows that

lim
n→∞

1

n
|I|

= lim
n→∞

1

n
|LX |Y \ LX |

= lim
n→∞

1

n
|LX |Y | − lim

n→∞

1

n
|LX |

= H(X)−H(X |Y )

= I(X;Y ).

(19)

Hence, our requirement on the transmission rate is met.
The remaining positions are frozen. More precisely, they are divided into two subsets, namely Fr = HX ∩ Lc

X |Y
and Fd = Hc

X . For i ∈ Fr, U i is independent of U1:i−1, but cannot be reliably decoded using Y 1:n. We fill these
positions with bits chosen uniformly at random, and this randomness is assumed to be shared between the transmitter
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Figure 4. Graphical representation of the sets associated to the channel coding problem. The two images on top represent how the set [n]
(the whole square) is partitioned by the source X (top left), and by the source X together with the output Y assumed as a side information
(top right). Since HX |Y ⊆ HX and LX ⊆ LX |Y , the set of indices [n] can be partitioned into three subsets (bottom image): the information
indices I = HX ∩ LX |Y ; the frozen indices Fr = HX ∩ Lc

X |Y filled with binary bits chosen uniformly at random; the frozen indices
Fd = Hc

X chosen according to a deterministic rule.

and the receiver (i.e., the encoder and the decoder know the values associated to these positions). For i ∈ Fd, the
value of U i has to be chosen in a particular way. This is true since almost all these positions are in LX and, hence,
U i is approximately a deterministic function of U1:i−1. The situation is schematically represented in Figure 4.

Encoding. The encoder first places the information bits into {ui}i∈I . Then, {ui}i∈Fr
is filled with a random

sequence which is shared between the transmitter and the receiver. Finally, the elements of {ui}i∈Fd
are computed

in successive order and, for i ∈ Fd, ui is set to the value

ui = arg max
u∈{0,1}

PU i |U1:i−1(u |u1:i−1).

These probabilities can be computed recursively with complexity Θ(n log n). Since Gn = G
(−1)
n , the n-length vector

x1:n = u1:nGn is transmitted over the channel.
Decoding. The decoder receives y1:n, and it computes the estimate û1:n of u1:n according to the rule

ûi =


ui, if i ∈ Fr

arg max
u∈{0,1}

PU i |U1:i−1(u |u1:i−1), if i ∈ Fd

arg max
u∈{0,1}

PU i |U1:i−1,Y 1:n(u |u1:i−1, y1:n), if i ∈ I
, (20)

where PU i |U1:i−1,Y 1:n(u |u1:i−1, y1:n) can be computed recursively with complexity Θ(n log n).
Performance. The block error probability Pe can be upper bounded by

Pe ≤
∑
i∈I

Z(U i |U1:i−1, Y 1:n) = O(2−n
β

), ∀β ∈ (0, 1/2). (21)

IV. POLAR CODES FOR SUPERPOSITION REGION

The following theorem provides our main result regarding the achievability of Bergmans’ superposition region for
DM-BCs with polar codes (compare with Theorem 1).

Theorem 6 (Polar Codes for Superposition Region): Consider a 2-user DM-BC pY1,Y2 |X with a binary input al-
phabet, where X denotes the input to the channel, and Y1, Y2 denote the outputs at the first and second receiver,
respectively. Let V be an auxiliary binary random variable. Then, for any joint distribution pV,X s.t. V −X−(Y1, Y2)
forms a Markov chain and for any rate pair (R1, R2) satisfying the constraints in (1), there exists a sequence of



11

polar codes with an increasing block length n which achieves this rate pair with encoding and decoding complexity
Θ(n log n) and a block error probability decaying like O(2−n

β

) for any β ∈ (0, 1/2).
Problem Statement. Let (V,X) ∼ pV,X = pV pX |V . We will show how to transmit over the 2-user DM-BC

pY1,Y2 |X achieving the rate pair

(R1, R2) = (I(X;Y1)− I(V ;Y2), I(V ;Y2)), (22)

when I(V ;Y1) < I(V ;Y2) < I(X;Y1). Once we have accomplished this, we will see that a slight modification of
this scheme allows to achieve, in addition, the rate pair

(R1, R2) = (I(X;Y1 |V ), min
l∈{1,2}

I(V ;Yl)). (23)

Therefore, by Proposition 1, we can achieve the whole region (1) and Theorem 6 is proved. Note that if polar coding
achieves the rate pairs (22) and (23) with complexity Θ(n log n) and a block error probability O(2−n

β

), then for
any other rate pair in the region (1), there exists a sequence of polar codes with an increasing block length n whose
complexity and block error probability have the same asymptotic scalings.

Design of the Scheme. Set U1:n
2 = V 1:nGn. As in the case of the transmission over a general binary-input DMC

with V in place of X and Yl (l ∈ {1, 2}) in place of Y , define the sets HV , LV , HV |Yl , and LV |Yl , analogously to
Section III-B, as follows:

HV = {i ∈ [n] : Z(U i
2 |U1:i−1

2 ) ≥ 1− δn},
LV = {i ∈ [n] : Z(U i

2 |U1:i−1
2 ) ≤ δn},

HV |Yl = {i ∈ [n] : Z(U i
2 |U1:i−1

2 , Y 1:n
l ) ≥ 1− δn},

LV |Yl = {i ∈ [n] : Z(U i
2 |U1:i−1

2 , Y 1:n
l ) ≤ δn},

(24)

which satisfy, for l ∈ {1, 2},

lim
n→∞

1

n
|HV | = H(V ),

lim
n→∞

1

n
|LV | = 1−H(V ),

lim
n→∞

1

n
|HV |Yl | = H(V |Yl),

lim
n→∞

1

n
|LV |Yl | = 1−H(V |Yl).

(25)

Set U1:n
1 = X1:nGn. By thinking of V as side information on X and by considering the transmission of X over the

memoryless channel with output Y1, define also the sets HX |V , LX |V , HX |V,Y1
, and LX |V,Y1

, as follows:

HX |V = {i ∈ [n] : Z(U i
1 |U1:i−1

1 , V 1:n) ≥ 1− δn},
LX |V = {i ∈ [n] : Z(U i

1 |U1:i−1
1 , V 1:n) ≤ δn},

HX |V,Y1
= {i ∈ [n] : Z(U i

1 |U1:i−1
1 , V 1:n, Y 1:n

1 ) ≥ 1− δn},
LX |V,Y1

= {i ∈ [n] : Z(U i
1 |U1:i−1

1 , V 1:n, Y 1:n
1 ) ≤ δn},

(26)

which satisfy

lim
n→∞

1

n
|HX |V | = H(X |V ),

lim
n→∞

1

n
|LX |V | = 1−H(X |V ),

lim
n→∞

1

n
|HX |V,Y1

| = H(X |V, Y1),

lim
n→∞

1

n
|LX |V,Y1

| = 1−H(X |V, Y1).

(27)

First, consider only the point-to-point communication problem between the transmitter and the second receiver. As
discussed in Section III-B, for this scenario, the correct choice is to place the information bits in those positions of
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U1:n
2 that are indexed by the set I(2) = HV ∩LV |Y2

. If, in addition, we restrict ourselves to positions in I(2) which
are contained in I(1)v = HV ∩ LV |Y1

, also the first receiver will be able to decode this message. Indeed, recall that
in the superposition coding scheme, the first receiver needs to decode the message intended for the second receiver
before decoding its own message. Consequently, for sufficiently large n, the first receiver knows the vector U1:n

2 with
high probability, and, hence, also the vector V 1:n = U1:n

2 Gn (recall that G−1n = Gn).
Now, consider the point-to-point communication problem between the transmitter and the first receiver, given the

side information V 1:n (following our discussion, as we let n tend to infinity, the vector V 1:n is known to the first
receiver with probability that tends to 1). From Section III-B, we know that the information has to be placed in those
positions of U1:n

1 that are indexed by I(1) = HX |V ∩ LX |V,Y1
.

The cardinalities of these information sets are given by

lim
n→∞

1

n
|I(2)| = I(V ;Y2),

lim
n→∞

1

n
|I(1)v | = I(V ;Y1),

lim
n→∞

1

n
|I(1)| = I(X;Y1 |V ).

(28)

Let us now get back to the broadcasting scenario, and see how the previous observations can be used to construct a
polar coding scheme. Recall that X1:n is transmitted over the channel, the second receiver only decodes its intended
message, but the first receiver decodes both messages.

We start by reviewing the AGG scheme [15]. This scheme achieves the rate pair

(R1, R2) = (I(X;Y1 |V ), I(V ;Y2)), (29)

assuming that pY1 |V � pY2 |V . Under this assumption, we have LV |Y2
⊆ LV |Y1

and therefore I(2) ⊆ I(1)v .
Consequently, we can in fact use the point-to-point solutions outlined above, i.e., the second user can place his
information in I(2) and decode, and the first user will also be able to decode this message. Furthermore, once the
message intended for the second user is known by the first user, the latter can decode his own information which is
placed in the positions of I(1).

Let us now see how to eliminate the restriction imposed by the degradedness condition pY1 |V � pY2 |V . Recall that
we want to achieve the rate pair (22) when I(V ;Y1) < I(V ;Y2) < I(X;Y1). The set of indices of the information
bits for the first user is exactly the same as before, namely the positions of U1:n

1 indexed by I(1). The only difficulty
lies in designing a coding scheme in which both receivers can decode the message intended for the second user.

First of all, observe that we can use all the positions in I(1)v ∩ I(2), since they are decodable by both users. Let
us define

D(2) = I(2) \ I(1)v . (30)

If pY1|V � pY2|V , as before, then D(2) = ∅ (i.e., all the positions decodable by the second user are also decodable by
the first user). However, in the general case, where it is no longer assumed that pY1|V � pY2|V , the set D(2) is not
empty and those positions cannot be decoded by the first user.

Note that there is a similar set, but with the roles of the two users exchanged, call it D(1), namely,

D(1) = I(1)v \ I(2). (31)

The set D(1) contains the positions of U1:n
2 which are decodable by the first user, but not by the second user. Observe

further that |D(1)| ≤ |D(2)| for sufficiently large n. Indeed, since the equality

|A \B| − |B \A| = |A| − |B| (32)

holds for any two finite sets A and B, it follows from (28)–(30) that for sufficiently large n

1

n
(|D(2)| − |D(1)|) =

1

n
(|I(2)| − |I(1)v |) = I(V ;Y2)− I(V ;Y1) + o(1) ≥ 0. (33)

Assume at first that the two sets are of equal size. The general case will require only a small modification.
Now, the idea is to consider the “chaining” construction introduced in [40] in the context of universal polar codes.

Recall that we are only interested in the message intended for the second user, but that both receivers must be able
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to decode this message. Our scheme consists in transmitting k polar blocks, and in repeating (“chaining”) some
information. More precisely, in block 1 fill the positions indexed by D(1) with information, but set the bits indexed
by D(2) to a fixed known sequence. In block j (j ∈ {2, · · · , k − 1}), fill the positions indexed by D(1) again with
information, and repeat the bits which were contained in the positions indexed by D(1) of block j−1 into the positions
indexed by D(2) of block j. In the final block k, put a known sequence in the positions indexed by D(1), and repeat
in the positions indexed by D(2) the bits in the positions indexed by D(1) of block k − 1. The remaining bits are
frozen and, as in Section III-B, they are divided into the two subsets F (2)

d = Hc
V and F (2)

r = HV ∩Lc
V |Y2

⊂ HV . In
the first case, U i

2 is approximately a deterministic function of U1:i−1
2 , while in the second case U i

2 is approximately
independent of U1:i−1

2 .
Note that we lose some rate, since at the boundary we put a known sequence into some bits which were supposed

to contain information. However, this rate loss decays like 1/k, and by choosing a sufficiently large k, one can
achieve a rate that is arbitrarily close to the intended rate.

We claim that in the above construction both users can decode all blocks, but the first receiver has to decode
“forward”, starting with block 1 and ending with block k, whereas the second receiver decodes “backwards”, starting
with block k and ending with block 1. Let us discuss this procedure in some more detail. Look at the first user
and start with block 1. By construction, information is only contained in the positions indexed by D(1) as well as
I(1)v ∩I(2), while the positions indexed by D(2) are set to known values. Hence, the first user can decode this block.
For block j (j ∈ {2, · · · , k − 1}), the situation is similar: the first user decodes the positions indexed by D(1) and
I(1)v ∩I(2), while the positions in D(2) contain repeated information, which has been already decoded in the previous
block. An analogous analysis applies to block k, in which the positions indexed by D(1) are also fixed to a known
sequence. The second user proceeds exactly in the same fashion, but goes backwards.

To get to the general case, we need to discuss what happens when |D(1)| < |D(2)| (due to (33), in general
|D(1)| ≤ |D(2)| for sufficiently large n, but the special case where the two sets are of equal size has been already
addressed). In this case, we do not have sufficiently many positions in D(1) to repeat all the information contained
in D(2). To get around this problem, pick sufficiently many extra positions out of the vector U1:n

1 indexed by I(1),
and repeat the extra information there.

In order to specify this scheme, let us introduce some notation for the various sets. Recall that we “chain” the
positions in D(1) with an equal amount of positions in D(2). It does not matter what subset of D(2) we pick, but call the
chosen subset R(2). Now, we still have some positions left in D(2), call them B(2). More precisely, B(2) = D(2)\R(2).
Since R(2) ⊆ D(2) and |R(2)| = |D(1)|, it follows from (33) that

1

n
|B(2)| = 1

n
(|D(2)| − |R(2)|) =

1

n
(|D(2)| − |D(1)|) = I(V ;Y2)− I(V ;Y1) + o(1) ≥ 0. (34)

Let B(1) be a subset of I(1) s.t. |B(1)| = |B(2)|. Again, it does not matter what subset we pick. The existence of
such a set B(1), for sufficiently large n, is ensured by noticing that from (28), (34) and the Markovity of the chain
V −X − Y1 we obtain

1

n
(|I(1)| − |B(2)|) = I(X;Y1 |V )− I(V ;Y2) + I(V ;Y1) + o(1) = I(X;Y1)− I(V ;Y2) + o(1) ≥ 0. (35)

Indeed, recall that we need to achieve the rate pair (22) when I(V ;Y1) < I(V ;Y2) < I(X;Y1).
As explained above, we place in B(1) the value of those extra bits from D(2) which will help the first user to

decode the message of the second user in the next block. Operationally, we repeat the information contained in the
positions indexed by B(2) into the positions indexed by B(1) of the previous block. By doing this, the first user pays
a rate penalty of I(V ;Y2)− I(V ;Y1) + o(1) compared to his original rate given by 1

n |I
(1)| = I(X;Y1|V ) + o(1).

To summarize, the first user puts information bits at positions I(1)\B(1), repeats in B(1) the information bits in B(2)
for the next block, and freezes the rest. In the last block, the information set is the whole I(1). The frozen positions
are divided into the usual two subsets F (1)

r = HX |V ∩ Lc
X |V,Y1

and F (1)
d = Hc

X |V , which contain positions s.t. U i
1

is or is not, respectively, approximately independent of (U1:i−1
1 , V 1:n). The situation is schematically represented in

Figures 5–7.
Suppose that, by applying the same scheme with k →∞, we let 1

n |B
(2)| shrink from I(V ;Y2)− I(V ;Y1) + o(1)

in (34) to o(1). Then, one obtains the whole line going from the rate pair (I(X;Y1) − I(V ;Y2), I(V ;Y2)) to
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Figure 5. Graphical representation of the sets associated to the first user for the superposition scheme. The set [n] is partitioned into three
subsets: the information indices I(1); the frozen indices F (1)

r filled with bits chosen uniformly at random; the frozen indices F (1)
d chosen

according to a deterministic rule.

Figure 6. Graphical representation of the sets associated to the second user for the superposition scheme: I(1)v ∩ I(2) contains the indices
which are decodable by both users; D(1) = I(1)v \ I(2) contains the indices which are decodable by the first user, but not by the second user;
D(2) = I(2) \ I(1)v contains the indices which are decodable by the second user, but not by the first user.

(I(X;Y1 |V ), I(V ;Y1)) without time-sharing.2

Finally, in order to obtain the rate pair (I(X;Y1 |V ), I(V ;Y2)) when I(V ;Y2) ≤ I(V ;Y1), it suffices to consider
the case where B(2) = ∅ and switch the roles of I(2) and I(1)v in the discussion concerning the second user.

Encoding. Let us start from the second user, and encode block by block.
For block 1:
• The information bits are stored in {ui2}i∈I(1)v

.
• The set {ui2}i∈F(2)

r
is filled with a random sequence, shared between the transmitter and both receivers.

• For i ∈ F (2)
d , we set ui2 = arg maxu∈{0,1} PU i2 |U1:i−1

2
(u |u1:i−12 ).

2The reader will be able to verify this property by relying on (36) and (37); this property is mentioned, however, at this stage as part of the
exposition of the polar coding scheme.
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Figure 7. Graphical representation of the repetition construction for the superposition scheme with k = 3: the set D(1) is repeated into the
set R(2) of the following block; the set B(2) is repeated into the set B(1) of the previous block (belonging to a different user).

For block j (j ∈ {2, · · · , k − 1}):
• The information bits are stored in {ui2}i∈I(1)v ∪B(2) .
• {ui2}i∈R(2) contains the set {ui2}i∈D(1) of block j − 1.
• The frozen sets {ui2}i∈F(2)

r
and {ui2}i∈F(2)

d
are chosen as in block 1.

For block k (the last one):
• The information bits are stored in {ui2}i∈(I(1)v ∩I(2))∪B(2) .
• {ui2}i∈R(2) contains the set {ui2}i∈D(1) of block k − 1.
• The frozen bits are computed with the usual rules.

The rate of the second user is given by

R2 =
1

kn

[∣∣I(1)v

∣∣+ (k − 2)
∣∣I(1)v ∪ B(2)

∣∣+
∣∣(I(1)v ∩ I(2)) ∪ B(2)

∣∣]
=

(
k − 1

k

)
I(V ;Y2) +

1

kn
|I(1)v ∩ I(2)|+ o(1),

(36)

which, as k tends to infinity, approaches the required rate I(V ;Y2) (the second equality in (36) follows from (28)
and (34), and from the fact that the sets I(1)v and B(2) are disjoint). Then, the vector v1:n = u1:n2 Gn is obtained.

The encoder for the first user knows v1:n and proceeds block by block:
• The information bits are stored in {ui1}i∈I(1)\B(1) , except for block k, in which the information set is {ui1}i∈I(1) .
• For block j (j ∈ {1, · · · , k − 1}), {ui1}i∈B(1) contains a copy of the set {ui2}i∈B(2) in block j + 1.
• The frozen set {ui1}i∈F(1)

r
contains a random sequence shared between the encoder and the first decoder.

• For i ∈ F (1)
d , we set ui1 = arg maxu∈{0,1} PU i1 |U1:i−1

1 ,V 1:n(u |u1:i−11 , v1:n).

The rate of the first user is given by (see (28) and (35), and recall that B(1) ⊂ I(1) s.t. |B(1)| = |B(2)|)

R1 =
1

kn

[
(k − 1)|I(1) \ B(1)|+ |I(1)|

]
= I(X;Y1 |V )− k − 1

k

(
I(V ;Y2)− I(V ;Y1)

)
+ o(1),

(37)

which, as k tends to infinity, approaches the required rate I(X;Y1)− I(V ;Y2). Finally, the vector x1:n = u1:n1 Gn is
transmitted over the channel. The encoding complexity per block is Θ(n log n).
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Decoding. Let us start from the first user, which receives the channel output y1:n1 . The decoder acts block by block
and reconstructs first u1:n2 , computes v1:n = u1:n2 Gn, and then decodes u1:n1 , thus recovering his own message.
For block 1, the decision rule is given by

ûi2 =


ui2, if i ∈ F (2)

r

arg max
u∈{0,1}

PU i2 |U1:i−1
2

(u |u1:i−12 ), if i ∈ F (2)
d

arg max
u∈{0,1}

PU i2 |U1:i−1
2 ,Y 1:n

1
(u |u1:i−12 , y1:n1 ), if i ∈ I(1)v

, (38)

and

ûi1 =


ui1, if i ∈ F (1)

r

arg max
u∈{0,1}

PU i1 |U1:i−1
1 ,V 1:n(u |u1:i−11 , v1:n), if i ∈ F (1)

d

arg max
u∈{0,1}

PU i1 |U1:i−1
1 ,V 1:n,Y 1:n

1
(u |u1:i−11 , v1:n, y1:n1 ), if i ∈ I(1)

. (39)

For block j (j ∈ {2, · · · , k − 1}):
• {ûi2}i∈B(2) is deduced from {ûi1}i∈B(1) of block j − 1.
• {ûi2}i∈R(2) is deduced from {ûi2}i∈D(1) of block j − 1.
• For the remaining positions of ûi2, the decoding follows the rule in (38).
• The decoding of ûi1 proceeds as in (39).

This decoding rule works also for block k, with the only difference that the frozen set F (2)
r is bigger, and ûi2 =

arg maxu∈{0,1} PU i2 |U1:i−1
2 ,Y 1:n

1
(u |u1:i−12 , y1:n1 ) only for i ∈ I(1)v ∩ I(2).

Let us consider now the second user, which reconstructs u1:n2 from the channel output y1:n2 . As explained before,
the decoding goes “backwards”, starting from block k and ending with block 1.
For block k, the decision rule is given by

ûi2 =


ui2, if i ∈ F (2)

r

arg max
u∈{0,1}

PU i2 |U1:i−1
2

(u |u1:i−12 ), if i ∈ F (2)
d

arg max
u∈{0,1}

PU i2 |U1:i−1
2 ,Y 1:n

2
(u |u1:i−12 , y1:n2 ), if i ∈ (I(1) ∩ I(2)) ∪R(2) ∪ B(2)

. (40)

For block j (j ∈ {2, · · · , k− 1}), the decoder recovers {ui2}i∈D(1) from {ui2}i∈R(2) of block j+ 1; for the remaining
positions, the decision rule in (40) is used.
For block 1, the reasoning is the same, except that the information bits are {ui2}i∈I(1)v ∩I(2) , i.e., the information set
is smaller. The complexity per block, under successive cancellation decoding, is Θ(n log n).

Performance. The block error probability P (l)
e for the l-th user (l ∈ {1, 2}) can be upper bounded by

P (1)
e ≤ k

∑
i∈I(1)v

Z(U i
2 |U1:i−1

2 , Y 1:n
1 ) + k

∑
i∈I(1)

Z(U i
1 |U1:i−1

1 , Y 1:n
1 ) = O(2−n

β

),

P (2)
e ≤ k

∑
i∈I(2)

Z(U i
2 |U1:i−1

2 , Y 1:n
2 ) = O(2−n

β

), ∀β ∈ (0, 1/2).
(41)

V. POLAR CODES FOR BINNING REGION

The following theorem provides our main result regarding the achievability of the binning region for DM-BCs
with polar codes (compare with Theorem 2).

Theorem 7 (Polar Codes for Binning Region): Consider a 2-user DM-BC pY1,Y2 |X , where X denotes the input
to the channel taking values on an arbitrary set X , and Y1, Y2 denote the outputs at the first and second receiver,
respectively. Let V1 and V2 denote auxiliary binary random variables. Then, for any joint distribution pV1,V2

, for any
deterministic function φ : {0, 1}2 → X s.t. X = φ(V1, V2), and for any rate pair (R1, R2) satisfying the constraints (2),
there exists a sequence of polar codes with an increasing block length n which achieves this rate pair with encoding
and decoding complexity Θ(n log n) and a block error probability decaying like O(2−n

β

) for any β ∈ (0, 1/2).
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Problem Statement. Let (V1, V2) ∼ pV1,V2
= pV1

pV2 |V1
, and let X be a deterministic function φ of (V1, V2). The

aim is to transmit over the 2-user DM-BC pY1,Y2 |X achieving the rate pair

(R1, R2) = (I(V1;Y1), I(V2;Y2)− I(V1;V2)), (42)

assuming that I(V1;V2) < I(V2;Y2). Consequently, by Proposition 2, we can achieve the whole region (2) and
Theorem 7 is proved. Note that if polar coding achieves the rate pair (42) with complexity Θ(n log n) and a block
error probability O(2−n

β

), then for any other rate pair in the region (2), there exists a sequence of polar codes with
an increasing block length n whose complexity and block error probability have the same asymptotic scalings.

Design of the Scheme. Set U1:n
1 = V 1:n

1 Gn and U1:n
2 = V 1:n

2 Gn. As in the case of the transmission over a DMC
with Vl in place of X and Yl in place of Y (l ∈ {1, 2}), define the sets HVl , LVl , HVl |Yl , and LVl |Yl for l ∈ {1, 2},
similarly to (24) (except of replacing U2 with Ul and V with Vl), which satisfy

lim
n→∞

1

n
|HVl | = H(Vl),

lim
n→∞

1

n
|LVl | = 1−H(Vl),

lim
n→∞

1

n
|HVl |Yl | = H(Vl |Yl),

lim
n→∞

1

n
|LVl |Yl | = 1−H(Vl |Yl).

(43)

By thinking of V1 as a side information for V2, we can further define the sets HV2 |V1
and LV2 |V1

, which satisfy

lim
n→∞

1

n
|HV2 |V1

| = H(V2 |V1),

lim
n→∞

1

n
|LV2 |V1

| = 1−H(V2 |V1).
(44)

First, consider only the point-to-point communication problem between the transmitter and the first receiver. As
discussed in Section III-B, for this scenario, the correct choice is to place the information in those positions of U1:n

1

that are indexed by the set I(1) = HV1
∩ LV1 |Y1

, which satisfies

lim
n→∞

1

n
|I(1)| = I(V1;Y1). (45)

For the point-to-point communication problem between the transmitter and the second receiver, we know from
Section III-B that the information has to be placed in those positions of U1:n

2 that are indexed by HV2
∩ LV2 |Y2

.
Let us get back to the broadcasting scenario and note that, unlike superposition coding, for binning the first user

does not decode the message intended for the second user. Consider the following scheme. The first user adopts the
point-to-point communication strategy: it ignores the existence of the second user, and it uses I(1) as an information
set. The frozen positions are divided into the two usual subsets F (1)

d = Hc
V1

and F (1)
r = HV1

∩Lc
V1 |Y1

, which contain
positions s.t., respectively, U i

1 can or cannot be approximately inferred from U1:i−1
1 . On the other hand, the second

user does not ignore the existence of the first user by putting his information in HV2
∩LV2 |Y2

. Indeed, V1 and V2 are,
in general, correlated. Hence, the second user puts his information in I(2) = HV2 |V1

∩LV2 |Y2
. If i ∈ I(2) then, since

I(2) ⊆ HV2 |V1
, the bit U i

2 is approximately independent of (U1:i−1
2 , V 1:n

1 ). This implies that U i
2 is suitable to contain

information. Furthermore, since i ∈ LV2 |Y2
, the bit U i

2 is approximately a deterministic function of (U1:i−1
2 , Y 1:n

2 ).
This implies that it is also decodable given the channel output Y 1:n

2 . The remaining positions need to be frozen and
can be divided into four subsets:
• For i ∈ F (2)

r = HV2 |V1
∩ Lc

V2 |Y2
, U i

2 is chosen uniformly at random, and this randomness is shared between
the transmitter and the second receiver.

• For i ∈ F (2)
d = LV2

, U i
2 is approximately a deterministic function of U1:i−1

2 and, therefore, its value can be
deduced from the past.

• For i ∈ F (2)
out = Hc

V2 |V1
∩ Lc

V2
∩ LV2 |Y2

, U i
2 is approximately a deterministic function of (U1:i−1

2 , V 1:n
1 ), but it

can be deduced also from the channel output Y 1:n
2 .

• For i ∈ F (2)
cr = Hc

V2 |V1
∩ Lc

V2
∩ Lc

V2 |Y2
= Hc

V2 |V1
∩ Lc

V2 |Y2
, U i

2 is approximately a deterministic function of
(U1:i−1

2 , V 1:n
1 ), but it cannot be deduced neither from U1:i−1

2 nor from Y 1:n
2 .
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Figure 8. Graphical representation of the sets associated to the second user for the binning scheme: I(2) contains the information bits; F (2)
cr

contains the frozen positions which are critical in the sense that they cannot be inferred neither from the past U1:i−1
2 nor from the channel

output Y 1:n
2 .

Figure 9. Graphical representation of the repetition construction for the binning scheme with k = 3: the set F (2)
cr is repeated into the set R

of the following block.

The positions belonging to the last set are critical, since, in order to decode them, the receiver needs to know V 1:n
1 .

Indeed, recall that the encoding operation is performed jointly by the two users, while the first and the second decoder
act separately and cannot exchange any information. The situation is schematically represented in Figure 8.

We start by reviewing the AGG scheme [15]. This scheme achieves the rate pair in (42), assuming that the
degradedness relation pY2 |V2

� pV1 |V2
holds. Note that, under this assumption, we have LV2 |V1

⊆ LV2 |Y2
. Therefore,

F (2)
cr ⊆ Lc

V2 |V1
∩Hc

V2 |V1
. Since |Lc

V2 |V1
∩Hc

V2 |V1
| = o(n), it is assumed in [15] that the bits indexed by Lc

V2 |V1
∩Hc

V2 |V1

are “genie-given” from the encoder to the second decoder. The price to be paid for the transmission of these extra
bits is asymptotically negligible. Consequently, the first user places his information in I(1), the second user places his
information in I(2), and the bits in the positions belonging to Lc

V2 |V1
∩Hc

V2 |V1
are pre-communicated to the second

receiver.
Our goal is to achieve the rate pair (42) without the degradedness condition pY2 |V2

� pV1 |V2
. As in the superposition

coding scheme, the idea consists in transmitting k polar blocks and in repeating (“chaining”) some bits from one
block to the following block. To do so, let R be a subset of I(2) s.t. |R| = |F (2)

cr |. As usual, it does not matter what
subset we pick. Since the second user cannot reconstruct the bits at the critical positions F (2)

cr , we use the set R to
store the critical bits of the previous block. This construction is schematically represented in Figure 9.

Let us explain the scheme with some detail. For block 1, we adopt the point-to-point communication strategy:
the first user puts his information in I(1), and the second user in I(2). For block j (j ∈ {2, · · · , k − 1}), the first
user places again his information in I(1). The second user puts information in the positions indexed by I(2) \R and
repeats in R the bits which were contained in the set F (2)

cr of block j − 1. For block k, the second user does not
change his strategy, putting information in I(2) \R and repeating in R the bits which were contained in the set F (2)

cr

of block k − 1. On the other hand, in the last block, the first user does not convey any information and puts in I(1)
a fixed sequence which is shared between the encoder and both decoders. Indeed, for block k, the positions indexed
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by F (2)
cr are not repeated anywhere. Consequently, the only way in which the second decoder can reconstruct the bits

in F (2)
cr consists in knowing a priori the value of V 1:n

1 .
Note that with this scheme, the second user has to decode “backwards”, starting with block k and ending with

block 1. In fact, for block k, the second user can compute V 1:n
1 and, therefore, the critical positions indexed by F (2)

cr

are no longer a problem. Then, for block j (j ∈ {2, · · · , k − 1}), the second user knows the values of the bits in
F (2)
cr from the decoding of the set R of block j + 1.
Suppose now that the second user wants to decode “forward”, i.e., starting with block 1 and ending with block k.

Then, the set R is used to store the critical bits of the following block (instead of those ones of the previous block).
In particular, for block k, we adopt the point-to-point communication strategy. For block j (j ∈ {k− 1, · · · , 2}), the
first user places his information in I(1), the second user places his information in the positions indexed by I(2) \ R
and repeats in R the bits which were contained in the set F (2)

cr of block j + 1. For block 1, the second user does
not change his strategy, and the first user puts in I(1) a shared fixed sequence. Note that in this case the encoding
needs to be performed “backwards”.

Encoding. Let us start from the first user.
For block j (j ∈ {1, · · · , k − 1}):
• The information bits are stored in {ui1}i∈I(1) .
• The set {ui1}i∈F(1)

r
is filled with a random sequence, which is shared between the transmitter and the first

receiver.
• For i ∈ F (1)

d , we set ui1 = arg maxu∈{0,1} P(U i
1 = u |U1:i−1

1 = u1:i−11 ).
For block k:
• The user conveys no information, and {ui1}i∈I(1) contains a fixed sequence known to the second decoder.
• The frozen bits are chosen according to the usual rules with the only difference that the sequence {ui1}i∈F(1)

r

is shared also with the second decoder.
The rate of communication of the first user is given by (see (45))

R1 =

(
k − 1

kn

)
|I(1)| =

(
k − 1

k

)
I(V1;Y1) + o(1), (46)

where, by choosing a large value of k, the rate R1 approaches I(V1;Y1). Then, the vector v1:n1 = u1:n1 Gn is obtained.
Let us now move to the second user.

For block 1:
• The information bits are stored in {ui2}i∈I(2) .
• For i ∈ F (2)

r , ui2 is chosen uniformly at random, and its value is supposed to be known to the second decoder.
• For i ∈ F (2)

d , ui2 is set to arg maxu∈{0,1} PU i2 |U1:i−1
2

(u |u1:i−12 )

• For i ∈ F (2)
out ∪ F

(2)
cr , ui2 is set to arg maxu∈{0,1} PU i2 |U1:i−1

2 ,V 1:n
1

(u |u1:i−12 , v1:n1 ).
Observe that the encoder has an access to v1:n1 and, therefore, it can compute the probabilities above.
For block j (j ∈ {2, · · · , k}):
• The information bits are placed into {ui2}i∈I(2)\R.
• The set {ui2}i∈R contains a copy of the set {ui2}i∈F(2)

cr
of block j − 1.

• The frozen bits are chosen as in block 1.
In order to compute the rate achievable by the second user, first observe that

1

n
(|I(2)| − |R|) (a)

=
1

n

(
|HV2 |V1

∩ LV2 |Y2
| − |Hc

V2 |V1
∩ Lc

V2
∩ Lc

V2 |Y2
|
)

(b)
=

1

n

(
|(HV2

∩ LV2 |Y2
) \ (HV2

∩Hc
V2 |V1

)| − |(HV2
∩Hc

V2 |V1
) \ (HV2

∩ LV2 |Y2
)|
)

+ o(1)

(c)
=

1

n

(
|HV2

∩ LV2 |Y2
| − |HV2

∩Hc
V2 |V1

|
)

+ o(1)

(d)
=

1

n

(
|HV2

∩ LV2 |Y2
| − |HV2

∩ LV2 |V1
|
)

+ o(1)

(e)
=

1

n

(
|LV2 |Y2

\ LV2
| − |LV2 |V1

\ LV2
|
)

+ o(1)

(f)
= I(V2;Y2)− I(V1;V2) + o(1),

(47)
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where equality (a) holds since |R| = |F (2)
cr |, equality (b) follows from HV2 |V1

⊆ HV2
and |[n]\ (HV2

∪LV2
)| = o(n),

equality (c) follows from the identity in (32) for arbitrary finite sets, equality (d) holds since |[n]\(HV2 |V1
∪LV2 |V1

)| =
o(n), equality (e) holds since |[n]\(HV2

∪LV2
)| = o(n), and equality (f) follows from the second and fourth equalities

in (43), as well as from the second equality in (44). Consequently,

R2 =
1

nk
|R|+ I(V2;Y2)− I(V1;V2) + o(1), (48)

which, as k tends to infinity, approaches the required rate. Then, the vector v1:n2 = u1:n2 Gn is obtained and, finally,
the vector x1:n = φ(v1:n1 , v1:n2 ) is transmitted over the channel. The encoding complexity per block is Θ(n log n).

Decoding. Let us start from the first user, which reconstructs u1:n1 from the channel output y1:n1 . For each block,
the decision rule is given by

ûi1 =


ui1, if i ∈ F (1)

r

arg max
u∈{0,1}

PU i1 |U1:i−1
1

(u |u1:i−11 ), if i ∈ F (1)
d

arg max
u∈{0,1}

PU i1 |U1:i−1
1 ,Y 1:n

1
(u |u1:i−11 , y1:n1 ), if i ∈ I(1)

. (49)

The second user reconstructs u1:n2 from the channel output y1:n2 . As explained before, the decoding goes “back-
wards”, starting from block k and ending with block 1. For block k, the second decoder knows v1:n1 . Hence, the
decision rule is given by

ûi2 =



ui2 if i ∈ F (2)
r

arg max
u∈{0,1}

PU i2 |U1:i−1
2

(u |u1:i−12 ), if i ∈ F (2)
d

arg max
u∈{0,1}

PU i2 |U1:i−1
2 ,V 1:n

1
(u |u1:i−12 , v1:n1 ), if i ∈ F (2)

out ∪ F
(2)
cr

arg max
u∈{0,1}

PU i2 |U1:i−1
2 ,Y 1:n

2
(u |u1:i−12 , y1:n2 ), if i ∈ I(2)

. (50)

For block j (j ∈ {2, · · · , k}), the decision rule is the same as (50) for i 6∈ F (2)
out∪F

(2)
cr . Indeed, {ui2}i∈F(2)

cr
of block j can

be deduced from {ui2}i∈R of block j+1, and, for i ∈ F (2)
out, we set ûi2 = arg maxu∈{0,1} PU i2 |U1:i−1

2 ,Y 1:n
2

(u |u1:i−12 , y1:n2 ).
The complexity per block, under successive cancellation decoding, is Θ(n log n).

Performance. The block error probability P (l)
e for the l-th user (l ∈ {1, 2}) can be upper bounded by

P (1)
e ≤ k

∑
i∈I(1)

Z(U i
1 |U1:i−1

1 , Y 1:n
1 ) = O(2−n

β

),

P (2)
e ≤ k

∑
i∈LV2 |Y2

Z(U i
2 |U1:i−1

2 , Y 1:n
2 ) = O(2−n

β

), ∀β ∈ (0, 1/2).
(51)

VI. POLAR CODES FOR MARTON’S REGION

A. Only Private Messages

Consider first the case where only private messages are available. The following theorem provides our main result
regarding the achievability with polar codes of Marton’s region, which forms the tightest inner bound known to date
for a 2-user DM-BC without common information (compare with Theorem 3).

Theorem 8 (Polar Codes for Marton’s Region): Consider a 2-user DM-BC pY1,Y2 |X , where X denotes the input
to the channel, taking values on an arbitrary set X , and Y1, Y2 denote the outputs at the first and second receiver,
respectively. Let V , V1, and V2 denote auxiliary binary random variables. Then, for any joint distribution pV,V1,V2

,
for any deterministic function φ : {0, 1}3 → X s.t. X = φ(V, V1, V2), and for any rate pair (R1, R2) satisfying the
constraints (3), there exists a sequence of polar codes with an increasing block length n, which achieves this rate
pair with encoding and decoding complexity Θ(n log n) and a block error probability decaying like O(2−n

β

) for any
β ∈ (0, 1/2).

The proposed coding scheme is a combination of the techniques described in detail in Sections IV and V, and it
is outlined below.
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Problem Statement. Let (V, V1, V2) ∼ pV pV2 |V pV1 |V2V , and let X be a deterministic function of (V, V1, V2), i.e.,
X = φ(V, V1, V2). Consider the 2-user DM-BC pY1,Y2 |X s.t. I(V ;Y1) ≤ I(V ;Y2). The aim is to achieve the rate pair

(R1, R2) = (I(V, V1;Y1)− I(V1;V2 |V )− I(V ;Y2), I(V, V2;Y2)). (52)

Once we have accomplished this, we will see that a slight modification of this scheme allows us to achieve, in
addition, the rate pair

(R1, R2) = (I(V, V1;Y1), I(V2;Y2 |V )− I(V1;V2 |V )). (53)

Therefore, by Proposition 3, we can achieve the whole rate region in (3) by using polar codes. Note that if polar
coding achieves the rate pairs (52) and (53) with complexity Θ(n log n) and a block error probability O(2−n

β

), then
for any other rate pair in the region (3), there exists a sequence of polar codes with an increasing block length n
whose complexity and block error probability have the same asymptotic scalings.

Sketch of the Scheme. Set U1:n
0 = V 1:nGn, U1:n

1 = V 1:n
1 Gn, and U1:n

2 = V 1:n
2 Gn. Then, the idea is that U1:n

1

carries the message of the first user, while U1:n
0 and U1:n

2 carry the message of the second user. The second user will
be able to decode only his message, namely, U1:n

0 and U1:n
2 . On the other hand, the first user will decode both his

message, namely, U1:n
1 , and a part of the message of the second user, namely, U1:n

0 . In a nutshell, the random variable
V comes from the superposition coding scheme, because U1:n

0 is decodable by both users, but carries information
meant only for one of them. The random variables V1 and V2 come from the binning scheme, since the first user
decodes U1:n

1 and the second user decodes U1:n
2 , i.e., each user decodes only his own information.

Let the sets HV , LV , HV |Yl , and LV |Yl for l ∈ {1, 2} be defined as in (24), where these subsets of [n] satisfy
(25). In analogy to Sections IV and V let us also define the following sets (l ∈ {1, 2}):

HVl |V = {i ∈ [n] : Z(U i
l |U1:i−1

l , U1:n
0 ) ≥ 1− δn},

LVl |V = {i ∈ [n] : Z(U i
l |U1:i−1

l , U1:n
0 ) ≤ δn},

HVl |V,Yl = {i ∈ [n] : Z(U i
l |U1:i−1

l , U1:n
0 , Y 1:n

l ) ≥ 1− δn},
LVl |V,Yl = {i ∈ [n] : Z(U i

l |U1:i−1
l , U1:n

0 , Y 1:n
l ) ≤ δn},

HV1 |V,V2
= {i ∈ [n] : Z(U i

1 |U1:i−1
1 , U1:n

0 , U1:n
2 ) ≥ 1− δn},

LV1 |V,V2
= {i ∈ [n] : Z(U i

1 |U1:i−1
1 , U1:n

0 , U1:n
2 ) ≤ δn},

(54)

which satisfy

lim
n→∞

1

n
|HVl |V | = H(Vl |V ), lim

n→∞

1

n
|LVl |V | = 1−H(Vl |V ),

lim
n→∞

1

n
|HVl |V,Yl | = H(Vl |V, Yl), lim

n→∞

1

n
|LVl |V,Yl | = 1−H(Vl |V, Yl),

lim
n→∞

1

n
|HV1 |V,V2

| = H(V1 |V, V2), lim
n→∞

1

n
|LV1 |V,V2

| = 1−H(V1 |V, V2).

(55)

First, consider the subsets of positions of U1:n
0 . The set I(2)sup = HV ∩ LV |Y2

contains the positions which are
decodable by the second user, and the set I(1)v = HV ∩ LV |Y1

contains the positions which are decodable by the
first user. Recall that U1:n

0 needs to be decoded by both users, but contains information only for the second user.
Second, consider the subsets of positions of U1:n

2 . The set I(2)bin = HV2 |V ∩ LV2 |V,Y2
contains the positions which

are decodable by the second user. Recall that U1:n
2 needs to be decoded only by the second user, and it contains part

of his message.
Third, consider the subsets of positions of U1:n

1 . The set I(1) = HV1 |V ∩ LV |Y2
contains the positions which are

decodable by the first user. Recall that U1:n
1 needs to be decoded by the first user, and it contains only his message.

However, the first user cannot decode U1:n
2 and, therefore, this user cannot infer V 1:n

2 . Consequently, the positions
in the set F (1)

cr = Hc
V1 |V,V2

∩ LcV1 |V ∩ L
c
V1 |V,Y1

are critical. Indeed, for i ∈ F (1)
cr , the bit U i

1 is approximately a
deterministic function of (U1:i−1

1 , U1:n
0 , U1:n

2 ), but it cannot be deduced from (U1:i−1
1 , U1:n

0 , Y 1:n
1 ).

In order to achieve the rate pair (52), k polar blocks are transmitted, and three different “chaining” constructions
are used. The first and the second chaining come from superposition coding, and the last one comes from binning.

First, define D(2) = I(2)sup \I(1)v and D(1) = I(1)v \I(2)sup, as in (30) and (31), respectively. The former set contains the
positions of U1:n

0 which are decodable by the second user but not by the first, while the latter contains the positions
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(a) Subsets of U1:n
0 .

(b) Subsets of U1:n
2 .

(c) Subsets of U1:n
1 .

Figure 10. Graphical representation of the sets associated to the three auxiliary random variables in the scheme which achieves Marton’s
region with only private messages (3).
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Figure 11. Graphical representation of the repetition constructions for Marton’s region with k = 3: the set D(1) is repeated into the set
Rsup of the following block; the set B(2) is repeated into the set B(1) of the previous block; the set F (1)

cr is repeated into the set Rbin of the
previous block.

of U1:n
0 which are decodable by the first user but not by the second. Let Rsup be a subset of D(2) s.t. |Rsup| = |D(1)|.

In block 1, fill D(1) with information for the second user, and set the bits indexed by D(2) to a fixed known sequence.
In block j (j ∈ {2, · · · , k− 1}), fill D(1) again with information for the second user, and repeat the bits which were
contained in the set D(1) of block j − 1 into the positions indexed by Rsup of block j. In the final block k, put a
known sequence in the positions indexed by D(1), and repeat in the positions indexed by Rsup the bits which were
contained in the set D(1) of block k − 1. In all the blocks, fill I(1)v ∩ I(2)sup with information for the second user. In
this way, both users will be able to decode a fraction of the bits of U1:n

0 that is roughly equal to I(V ;Y1). The bits
in these positions contain information for the second user.

Second, define B(2) = D(2) \ Rsup, and let B(1) be a subset of I(1) s.t. |B(1)| = |B(2)|. Note that B(2) contains
positions of U1:n

0 , and B(1) contains positions of U1:n
1 . For block j (j ∈ {2, · · · , k}), we fill B(2) with information for

the second user, and we repeat these bits into the positions indexed by B(1) of block j−1. In this way, both users will
be able to decode a fraction of the bits of U1:n

0 that is roughly equal to I(V ;Y2) (recall that I(V ;Y1) ≤ I(V ;Y2)).
Again, the bits in these positions contain information for the second user.

Third, let Rbin be a subset of I(1) s.t. |Rbin| = |F (1)
cr |. Since the first user cannot reconstruct the bits at the

critical positions F (1)
cr , we use the set Rbin to store the critical bits of the following block. For block k, the first

user places all his information in I(1). For block j (j ∈ {1, · · · , k − 1}), the first user places all his information
in I(1) \ (Rbin ∪ B(1)), repeats in Rbin the bits in F (1)

cr for block j + 1, and repeats in B(1) the bits in B(2) for
block j + 1. The second user puts part of his information in I(2)bin (which is a subset of the positions of U1:n

2 ) for
all the blocks except for the first, in which I(2)bin contains a fixed sequence which is shared between the encoder and
both decoders. Indeed, for block 1, the positions indexed by F (1)

cr are not repeated anywhere, and the only way in
which the second decoder can reconstruct those bits consists in knowing a-priori the value of V 1:n

2 . The situation is
schematically represented in Figures 10 and 11.

The encoding of U1:n
0 is performed “forward”, i.e., from block 1 to block k; the encoding of U1:n

1 is performed
“backwards”, i.e., from block k to block 1; the encoding of U1:n

2 can be performed in any order. The first user
decodes U1:n

0 and U1:n
1 “forward”; the second user decodes U1:n

0 “backwards” and can decode U1:n
2 in any order.
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With this polar coding scheme, by letting k tend to infinity, the first user decodes a fraction of the positions of
U1:n
1 containing his own message, which is given by

R1 =
1

n
(|I(1)| − |B(1)| − |Rbin|) = I(V1;Y1 |V )− I(V1;V2 |V )− (I(V ;Y2)− I(V ;Y1))

= I(V, V1;Y1)− I(V1;V2 |V )− I(V ;Y2).
(56)

The information for the second user is spread between the positions of U1:n
0 and the positions of U1:n

2 for a total
rate, which, as k tends to infinity, is given by

R2 =
1

n
(|I(2)sup|+ |I

(2)
bin|) = I(V ;Y2) + I(V2;Y2 |V ) = I(V, V2;Y2). (57)

It is possible to achieve the rate pair (53) with a scheme similar to the one described above by swapping the roles
of the two users. Since I(V ;Y1) ≤ I(V ;Y2), only the first and the third chaining constructions are required. Indeed,
the set which has the role of B(2) is empty in this scenario.

As our schemes consist in the repetition of polar blocks, the encoding and decoding complexity per block is
Θ(n log n), and the block error probability decays like O(2−n

β

) for any β ∈ (0, 1/2).

B. Private and Common Messages: MGP Region
Finally, consider the case of a 2-user DM-BC with both common and private messages. Our most general result

consists in the construction of polar codes which achieve the MGP region (4).
Theorem 9 (Polar Codes for MGP Region): Consider a 2-user DM-BC pY1,Y2 |X , where X denotes the input to

the channel, taking values on an arbitrary set X , and Y1, Y2 denote the outputs at the first and second receiver,
respectively. Let R0, R1, and R2 designate the rates of the common message and the two private messages of the
two users, respectively. Let V , V1, and V2 denote auxiliary binary random variables. Then, for any joint distribution
pV,V1,V2

, for any deterministic function φ : {0, 1}3 → X s.t. X = φ(V, V1, V2), and for any rate triple (R0, R1, R2)
satisfying the constraints (4), there exists a sequence of polar codes with an increasing block length n which achieves
this rate triple with encoding and decoding complexity Θ(n log n) and a block error probability decaying like O(2−n

β

)
for any β ∈ (0, 1/2).

The polar coding scheme follows the ideas outlined in Section VI-A. Recall that U1:n
0 is decoded by both users.

Then, we put the common information in the positions of U1:n
0 which previously contained private information meant

only for one of the users. The common rate is clearly upper bounded by min{I(V ;Y1), I(V ;Y2)}. The remaining
four inequalities of (4) are equivalent to the conditions in (3) with the only difference that a portion R0 of the private
information for one of the users has been converted into common information. This suffices to achieve the required
rate region.

VII. CONCLUSIONS

Extending the work by Goela, Abbe, and Gastpar [15], we have shown how to construct polar codes for the 2-user
discrete memoryless broadcast channel (DM-BC) that achieve the superposition and binning regions. By combining
these two strategies, we achieve any rate pair inside Marton’s region with both common and private messages.
This rate region is tight for all classes of broadcast channels with known capacity regions and it is also known as
the Marton-Gelfand-Pinsker (MGP) region. The described coding techniques possess the usual advantages of polar
codes, i.e., encoding and decoding complexity of Θ(n log n) and block error probability decaying like O(2−n

β

) for
any β ∈ (0, 1/2), and they can be easily extended to obtain inner bounds for the K-user DM-BC in a low-complexity
fashion.

We conclude by remarking that the chaining constructions used to align the polarized indices do not rely on the
specific structure of the broadcast channel. Indeed, similar techniques have been considered, independently of this
work, in the context of interference networks [17] and, in general, we believe that they can be adapted to the design
of polar coding schemes for a variety of multi-user scenarios.
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