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Abstract

Two coding schemes based on polar codes are proposed for the multiple description

(MD) problem. The first scheme is an adaptation of the one developed by Şaşoğlu et

al. for the multiple access channel to the MD setting. Specifically, it is shown that

the scheme is able to achieve a certain rate pair on the dominant line of the achievable

rate region determined by El Gamal and Cover (EGC). Different from polar coding

for the multiple access channel considered by Şaşoğlu et al., the auxiliary random

variables in the MD problem can be dependent. The second scheme is based on the

idea of rate splitting. We show that it can achieve the entire EGC rate region. The

effectiveness of the proposed polar coding schemes is verified by the experimental

results.
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Notation and abbreviations

EGC El Gamal and Cover

MAC multiple access channel

iid identical independent distribution

X alphabet set

X × Y multiple alphabet set

|X | cardinality of the alphabet set

O() big-O notation

o() small-o notation

H(.) entropy

I(.; .) mutual information

E expectation

p(.) distribution

xn a sequence containing n elements

P+(.), P−(.) the distribution after applying polarization

Pr probabilty∑
sum of a sequence
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∏
product of a sequence

X − Y − Z Markov chain
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Chapter 1

Introduction and Problem

Statement

Polar codes, invented by Arikan (Arikan, 2009), are “the first provably capacity-

achieving codes for any symmetric input discrete memoryless channel that have low

encoding and decoding complexity” (Korada, 2008). Specifically, the encoding and

decoding complexity of polar codes is of order O(n log n), where n is the code block

length. Furthermore, Arikan and Telatar (Arikan and Telatar, 2009) upper-bounded

the block error probability to order o(exp(−n1/2−ε)). The most intriguing aspect of

this new coding technique is that through recursive channel splitting and combining,

n uses of the same memoryless channel are converted to successive uses of n different

channels, and, asymptotically, each one of these converted channels is extremal in the

sense that it is either a perfect channel or a pure noise channel. Subsequently, Korada

and Urbanke proposed a lossy source coding scheme based on polar codes (Korada

and Urbanke, 2010); see also (Karzand and Teletar, 2010; Korada, 2008). Şaşoğlu et

al. (E. Sasoglu and Yeh, 2009) extended the polar coding technique to the two-user
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multiple access channel, where the channel polarizes into one of five extremal multiple

access channels.

Motivated by the success in (E. Sasoglu and Yeh, 2009) for the multiple access

channel, we apply the polar coding technique to the multiple description (MD) prob-

lem. In MD coding, a single source X is encoded into two descriptions of rate R1 and

rate R2, respectively, such that the reconstruction distortion based on description i

is Di, i = 1, 2, and the reconstruction distortion based on the two descriptions is D0.

The goal is to find efficient coding schemes to achieve the optimal tradeoff between

(R1, R2) and (D0, D1, D2). Unfortunately, the optimal rate-distortion tradeoff in MD

coding is unknown except for certain special cases. In this work we focus on the

achievable rate pairs subject to distortion constraints (D0, D1, D2) determined by El

Gamal and Cover (Gamal and Cover, 1982) (sometimes referred to as the EGC rate

region) and propose two MD coding schemes based on polar codes.

The first scheme exhibits a similar polarizing behavior as that in (E. Sasoglu and

Yeh, 2009), yet the specific coding requirement in the MD problem introduces a crucial

difference, and the alphabet sizes of the two descriptions play a significant role in our

result. In particular, we show that this scheme can achieve certain rate pairs on the

dominant line of the EGC rate region when the associated auxiliary random variables

are marginally uniformly distributed in two alphabets of different sizes; moreover,

the codes essentially polarize to four extreme cases, and the same error behavior of

order o(exp(−n1/2−ε)) as in the point-to-point case can be obtained. However, when

the alphabet sizes of the two auxiliary random variables are the same, a complication

arises with an additional extreme case, and though the codes also polarize, its error

behavior becomes more difficult to characterize.
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In contrast to the first proposed scheme which can only achieve certain rate pairs

on the dominant line of the EGC rate region, our second scheme can achieve the

entire rate region. Specifically, for the second scheme, we first use the rate splitting

method (Y. Zhang, 2012) to convert the MD problem to a successive lossy source

coding problem, then implement each coding step using polar codes.

The remainder of this thesis is organized as follows. We give a short review of

the EGC rate region in Section 2.1. A joint polarization scheme together with its

performance analysis can be found in Chapter 2. A different polar coding scheme

based on the rate splitting method is discussed in Chapter 3. Chapter 4 contains the

experimental results for the proposed schemes. We conclude the thesis in Chapter 5.

For any set S, we use |S| to denote its cardinality. Throughout this thesis, he

logarithm function is to base 2 unless stated otherwise.

3



Chapter 2

Polar Codes for Multiple

Descriptions with Joint

Polarization

2.1 The EGC Rate-Distortion Region

It was shown in (J. Wang and Permuter, 2009) that the achievable region given in

(Gamal and Cover, 1982) has an alternative form, and thus the main result in (Gamal

and Cover, 1982) can be given as follows.

Let X1, X2, . . . be a sequence of i.i.d. random variables drawn according to a

probability mass function pX(x) defined over finite alphabet X . Let di : X × X̂i →

[0, dmax], i = 0, 1, 2, be bounded distortion measures, where X̂i, i = 0, 1, 2, are the

reconstruction alphabets.
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Definition 1 A rate pair (R1, R2) is said to be achievable subject to distortion con-

straints (D0, D1, D2) if, for every ε > 0, there exist encoding functions f
(n)
i : X n → Ci,

i = 1, 2, and decoding functions g
(n)
0 : C1 × C2 → X̂ n

0 and g
(n)
i : Ci → X̂ n

i , i = 1, 2,

such that

1

n
log |Ci| ≤ Ri + ε, i = 1, 2,

1

n

n∑
t=1

Edi(Xt, X̂i,t) ≤ Di + ε, i = 0, 1, 2,

where X̂n
0 = g

(n)
0 (f

(n)
1 (Xn), f

(n)
1 (Xn)) and X̂n

i = g
(n)
i (f

(n)
i (Xn)), i = 1, 2.

The following result provides a sufficient condition on the achievability of rate

pair (R1, R2) subject to distortion constraints (D0, D1, D2). It is shown in J. Wang

and Permuter (2009) that this sufficient condition is essentially equivalent to the one

derived by El Gamal and Cover Gamal and Cover (1982).

Theorem 1 A rate pair (R1, R2) is achievable subject to subject to distortion con-

straints (D0, D1, D2) if

R1 ≥ I(X;Y ),

R2 ≥ I(X;Z),

R1 +R2 ≥ I(X;Y, Z) + I(Y ;Z),

for some probability mass function p(x, y, z) ∈ P, where P is the set of distributions

p(x, y, z) = pX(x)p(y, z|x) defined over the alphabet X ×Y ×Z, for which there exist

5
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some deterministic mappings φ0, φ1, and φ2 such that

D0 ≥ E[d0(X,φ0(Y, Z))],

D1 ≥ E[d1(X,φ1(Y ))],

D2 ≥ E[d2(X,φ2(Z))].

For a generic distribution in P , we shall write it in capital letter as P (x, y, z),

and sometimes write it as P when no ambiguity arises. Following the notation in

E. Sasoglu and Yeh (2009), define

I(0)(P ) = I(X;Y, Z) + I(Y ;Z),

I(1)(P ) = I(X;Y ), I(1)(P ) = I(Z;X, Y ),

I(2)(P ) = I(X;Z), I(2)(P ) = I(Y ;X,Z).

Further define K(P ) = (I(0)(P ), I(1)(P ), I(2)(P )) and

J (P ) ={(R1, R2) : R1 ≥ I(1)(P ), R2 ≥ I(2)(P ), R1 +R2 ≥ I(0)(P )}.

Since I(0)(P ) ≥ I(1)(P ) + I(2)(P ), the set

F(P ) ={(R1, R2) ∈ J (P ) : R1 +R2 = I(0)(P )}

is non-empty. We shall refer to J (P ) as the EGC rate region and F(P ) as its

dominant line.

6
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2.2 Source Combination and Splitting

In this section we mainly focus on a special class of distributions in P where Y is

uniformly distributed in Y , and Z is uniformly distributed in Z, and furthermore

Y = {0, 1, . . . , q1 − 1} , Fq1 and Z = {0, 1, . . . , q2 − 1} , Fq2 with q1 and q2 being

two non-identical primes; the case q1 = q2 is discussed separately in Section 2.6. Note

that every random variable can be approximated arbitrarily well by a random vari-

able uniformly distributed over a sufficiently large alphabet through a deterministic

mapping; as a consequence, there is no essential loss in focusing on this special class

of distributions.

Let us fix a distribution P (x, y, z). Consider random variables X1 and X2. We

can view them jointly as a new vector source (X1, X2) and apply Theorem 1 to this

source with (X1, Y1, Z1) independent of (X2, Y2, Z2), resulting in a rate region J (P 2)

specified by the following quantities

2I(0)(P ) = I(X1, X2;Y1, Y2, Z1, Z2) + I(Y1, Y2;Z1, Z2),

2I(1)(P ) = I(X1, X2;Y1, Y2), 2I(2)(P ) = I(X1, X2;Z1, Z2).

Similarly as in Arikan (2009); E. Sasoglu and Yeh (2009), define

Y1 = U1 + U2, Y2 = U2,

Z1 = V1 + V2, Z2 = V2,

where + is modulo-q1 (or modulo-q2) addition. The random variables U1 and U2 are

each uniformly distributed in the alphabet Fq1 ; the random variables V1 and V2 are

7
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each uniformly distributed in the alphabet Fq2 . Since the mapping between (Y1, Y2)

and (U1, U2) is bijective, it is easily seen that U1 and U2 are independent; for the

same reason, V1 and V2 are also independent. However, (U1, V1) and (U2, V2) are not

necessarily independent.

Note that

2I(1)(P ) = I(U1, U2;X1, X2)

= I(U1;X1, X2) + I(U2;X1, X2, U1) (2.1)

≤ I(U1;X1, X2) + I(U2;X1, X2, U1, V1). (2.2)

Similarly

2I(2)(P ) = I(V1, V2;X1, X2)

= I(V1;X1, X2) + I(V2;X1, X2, V1) (2.3)

≤ I(V1;X1, X2) + I(V2;X1, X2, U1, V1). (2.4)

Moreover, we have

2I(1)(P ) = I(V1, V2;X1, X2, U1, U2)

= I(V1;X1, X2, U1, U2) + I(V2;X1, X2, U1, U2|V1)

= I(V1;X1, X2, U1, U2) + I(V2;X1, X2, U1, U2, V1)

≥ I(V1;X1, X2, U1) + I(V2;X1, X2, U1, U2, V1), (2.5)

8
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and similarly

2I(2)(P ) ≥ I(U1;X1, X2, V1) + I(U2;X1, X2, U1, V1, V2). (2.6)

Finally, it can be verified that

2I(0)(P ) = I(Y1, Y2, Z1, Z2;X1, X2) + I(Y1, Y2;Z1, Z2)

= I(U1, U2, V1, V2;X1, X2) + I(U1, U2;V1, V2)

= I(U1, V1;X1, X2) + I(U2, V2;X1, X2|U1, V1) + I(U1, U2;V1, V2)

= I(U1, V1;X1, X2) + I(U2, V2;X1, X2, U1, V1) + I(U1, U2;V1, V2)− I(U1, V1;U2, V2)

= I(U1, V1;X1, X2) + I(U2, V2;X1, X2, U1, V1) + I(U1;V1) + I(U2;V2).

(2.7)

Note that (2.7) is true because

I(U1, U2;V1, V2)− I(U1, V1;U2, V2)− [I(U1;V1) + I(U2;V2)]

= H(U1, U2) +H(V1, V2)−H(U1, U2, V1, V2)−H(U1, V1)−H(U2, V2) +H(U1, U2, V1, V2)

−H(U1)−H(V1) +H(U1, V1)−H(U2)−H(V2) +H(U2, V2)

= H(U1, U2) +H(V1, V2)−H(U1)−H(V1)−H(U2)−H(V2)

= −I(U1;U2)− I(V1;V2)

= 0,

where the last step follows from the independence between U1 and U2, as well as the

independence between V1 and V2.

9
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The triple

(
I(U1, V1;X1, X2) + I(U1;V1), I(U1;X1, X2), I(V1;X1, X2)

)

is in fact K(p((x1, x2), u1, v1)), and the triple

(
I(U2, V2;X1, X2, U1, V1) + I(U2;V2), I(U2;X1, X2, U1, V1), I(V2;X1, X2, U1, V1)

)

is in fact K(p((x1, x2, u1, v1), u2, v2)). If we view K(P ) as encoding source X with

random variables Y and Z, then K(p((x1, x2), u1, v1)) can be viewed as encoding

(X1, X2) with random variables U1 and V1, andK(p((x1, x2, u1, v1), u2, v2)) as encoding

(X1, X2, U1, V1) using random variables U2 and V2.

Definition 2 Given a source X and the joint distribution P (x, y, z) in the alpha-

bet X × Fq1 × Fq2, define two new sources in the alphabet X 2 and X 2 × Fq1 × Fq2,

respectively, and the joint distributions together with the auxiliary encoding random

variables (U1, V1) and (U2, V2), respectively, in the corresponding alphabets,

P−((x1, x2), u1, v1) =
∑
u2∈Y

∑
v2∈Z

P (x2, u2, v2)P (x1, u1 + u2, v1 + v2) (2.8)

P+((x1, x2, u1, v1), u2, v2) = P (x2, u2, v2)P (x1, u1 + u2, v1 + v2), (2.9)

where we have written (x1, x2) as a group and view it as a single random vector, and

similarly for (x1, x2, u1, v1).

10
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2.3 Polarization

Note that

I(1)(P+) = I(U2;X1, X2, U1, V1)

≥ I(U2;X1, X2, U1)

≥ I(U2;X2)

= I(Y2;X2)

= I(1)(P ),

and thus from (2.1), we have

I(1)(P−) = I(U1;X1, X2)

≤ I(Y2;X2)

= I(1)(P ).

Similarly, it can be shown that I(2)(P−) ≤ I(2)(P ) ≤ I(2)(P+). Since

I(U2, V2;X1, X2, U1, V1) ≥ I(U2, V2;X1, X2)

and

I(U2;V2) = I(Y2;Z2),

11
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it follows that

I(0)(P+) = I(U2, V2;X1, X2, U1, V1) + I(U2;V2)

≥ I(0)(P ),

which, together with (2.7), implies I(0)(P−) ≤ I(0)(P ) ≤ I(0)(P+). Therefore, we

have K(P−) � K(P ) � K(P+), where � means that ≤ holds for each component of

the vector.

We can now apply the same process to P− and P+ using Definition 2, resulting

in four new sources P−− = (P−)−, P−+ = (P−)+, P+− = (P+)−, P++ = (P+)+.

Repeating this process k times, we derive a new set of 2k sources.

The following Theorem formally establishes the polarization behavior, in a manner

similar to those seen in the multiple access channel E. Sasoglu and Yeh (2009). For

simplicity, we write log(q1) as ∆1 and log(q2) as ∆2.

Theorem 2 Let P (x, y, z) be a joint source-codebook distribution defined over X ×

Fq1 × Fq2 with q1 and q2 being two non-identical primes. Define

M , {(0, 0, 0), (∆1,∆1, 0), (∆2, 0,∆2), (∆1 + ∆2,∆1,∆2)}.

For p ∈ R3, let ||p−M || , minx∈M ||p− x|| denote the distance from a point p to M ,

where || · || is the Euclidean norm. Then for any δ > 0,

lim
k→∞

1

2k
∣∣{s ∈ {−,+}k : ||K(P s)−M || ≥ δ}

∣∣ = 0. (2.10)

Theorem 2 essentially states that for most of the new sources, the rate region

12
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Figure 2.1: The four extremal rate regions.

J (P s) approaches one of the four extremal ones, as depicted in Fig. 2.1.

The rate region associated with (0, 0, 0) corresponds to the case that both descrip-

tions reveal nothing about the source, thus are useless; the rate regions associated

with (∆1,∆1, 0) and (∆2, 0,∆2) correspond to the cases where one description is

useless, while the other provides full information regarding the source; the last case

(∆1 + ∆2,∆1,∆2) is when both descriptions provide full information.

From a coding perspective, the case (0, 0, 0) corresponds to the case that both

coded symbols can be set arbitrarily, as long as they are revealed to both the encoder

and the decoder; the cases (∆1,∆1, 0) and (∆2, 0,∆2) correspond to the case that

the coded symbol in one of the descriptions (the one with non-zero rate) is fully

determined by the source vector, while the other can be set arbitrarily; the case

(∆1 + ∆2,∆1,∆2) corresponds tot the case that both symbols are fully determined.

This will become clearer in Section 2.4 when we describe the codes in more details.

The proof of Theorem 2 closely follows that for the multiple access channel given

in E. Sasoglu and Yeh (2009), and thus we only discuss some of the steps which are

different from E. Sasoglu and Yeh (2009).

13
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Lemma 1 (Polarization Lemma Sasoglu (2010)) Let p be a prime number. For

any ε > 0, there is a δ > 0 such that if

1. Q : Fq → B is a q-ary input channel with arbitrary output alphabet B,

2. A1, A2, B1, B2 are random variables jointly distributed as

pA1,A2,B1,B2(a1, a2, b1, b2) =
1

q2
Q(b1|a1 + a2)Q(b2|a2),

3. I(A2;B1, B2, A1)− I(A2;B2) < δ, where the mutual information is of logarithm

base-q,

then

I(A2;B2) /∈ (ε, 1− ε).

Corollary 1 For any ε > 0 there exists a δ > 0 such that if P (x, y, z) is a joint

distribution with I(1)(P+) − I(1)(P ) ≤ δ, then I(1)(P ) /∈ (ε,∆1 − ε); similarly if

I(2)(P+)− I(2)(P ) ≤ δ, then I(2)(P ) /∈ (ε,∆2 − ε).

Proof 1 By symmetry, we only prove the first case with j = 1 where j is the index

of I(j). Apply Lemma 1 with Ai = Ui and Bi = Xi for the first statement, then the

result follows.

Corollary 2 For any ε > 0 there exists a δ > 0 such that if P (x, y, z) is a joint

distribution with I(1)(P+) − I(1)(P ) ≤ δ, then I(1)(P ) /∈ (ε,∆2 − ε); similarly if

I(2)(P+)− I(2)(P ) ≤ δ, then I(2)(P ) /∈ (ε,∆1 − ε).

14
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Proof 2 Again by symmetry, only j = 1 needs to be proved. Observe that

I(1)(P+)− I(1)(P )

= I(V2;X1, X2, U1, U2, V2)− I(V2;X2, U2)

≥ I(V2;X1, X2, U1, U2)− I(V2;X2, U2),

thus the assumption implies

I(V2;X1, X2, U1, U2)− I(V2;X2, U2) ≤ δ.

Now applying Lemma 1 with Ai = Vi and Bi = (Xi, Ui) gives the result.

Similarly to Arikan and Telatar (2009); E. Sasoglu and Yeh (2009), let B1, B2, . . . ,

be an i.i.d. sequence of random variables taking values in the set {−,+}, with Pr(Bi =

−) = Pr(Bi = +) = 0.5. Define a random process {Pk : k ≥ 0} by

P0 = P, Pk = PBk
k−1, k ≥ 1. (2.11)

Now define the random process {I(1)k : k ≥ 0}, {I(2)k : k ≥ 0}, {I(1)k : k ≥ 0},

{I(2)k : k ≥ 0}, and {I(0)k : k ≥ 0} as

I
(j)
k = I(j)(Pk), j = 0, 1, 2,

I
(j)
k = I(j)(Pk), j = 1, 2.

We have the following result.

15
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Theorem 3 When q1 and q2 are non-identical primes, the process (I
(1)
k , I

(2)
k , I

(0)
k ) con-

verges almost surely, and the limit belongs to the set M in Theorem 2 with probability

1.

Proof 3 The almost sure convergence follows from the simple fact that {I(1)k : k ≥ 0}

and {I(2)k : k ≥ 0} are bounded submartigales by (2.2) and (2.4), {I(1)k : k ≥ 0} and

{I(2)k : k ≥ 0} are bounded supermartigales by (2.5) and (2.6), and {I(0)k : k ≥ 0} is a

bounded martigale by (2.7).

By applying Corollary 1, it is not too difficult to see that

lim
k→∞

I
(j)
k ∈ {0,∆j}, j = 1, 2.

Similarly by applying Corollary 3, we have

lim
k→∞

I
(1)
k ∈ {0,∆2},

lim
k→∞

I
(2)
k ∈ {0,∆1}.

For I
(0)
k , we only need to observe that

I
(1)
k + I

(1)
k = I

(2)
k + I

(2)
k = I

(0)
k (2.12)

for any k ≥ 0. However when I
(1)
k = I

(2)
k = 0, it must be true that I

(0)
k = 0, because

otherwise I
(1)
k = I

(2)
k 6= 0, which is impossible. This completes the proof.

Theorem 2 now follows immediately. The difference between the proof of this

theorem and that given in E. Sasoglu and Yeh (2009) for the multiple access channel

is the dependence on the alphabet sizes q1 and q2, and that instead of considering

16



M.A.Sc. Thesis - Qi Shi McMaster - Electrical Engineering

(I
(1)
k , I

(2)
k , I

(0)
k ) as in E. Sasoglu and Yeh (2009), we in fact need to consider the process

(I
(1)
k , I

(2)
k , I

(1)
k , I

(2)
k , I

(0)
k ).

2.4 Polar Coding

Now we proceed to describe the polar coding algorithm. Let n = 2k be the code

length. Let Bn denote the n× n “bit reversal” permutation matrix in Arikan (2009),

and let Gn = G⊗k1 be the k-th power Kronecker product of the matrix

G1 ,

1 0

1 1

 .
Write

Y n = UnBnGn, Zn = V nBnGn. (2.13)

Define P(i) to be the joint distribution P ((X i−1, U i−1, V i−1), Ui, Vi). Following the

analysis in Arikan (2009) (see also E. Sasoglu and Yeh (2009)), it is seen that

P(1) = P−−...−, P(2) = P−−...+, . . . P(n) = P++...+.

Theorem 2 assures that for almost all P(i)’s, the triple K(P(i)) is close to one of

the extremals when n is sufficiently large. We shall partition the indices of Un into a

frozen set or an information set, and similarly for V n. More precisely, fix some small

ε > 0 and let F1 and F2 be subsets of {1, 2, . . . , n} defined as follows:

1. If ||K(P(i))− (0, 0, 0)|| < ε, then i ∈ F1 and i ∈ F2;

17
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2. If ||K(P(i))− (∆1,∆1, 0)|| < ε, then i /∈ F1 and i ∈ F2;

3. If ||K(P(i))− (∆2, 0,∆2)|| < ε, then i ∈ F1 and i /∈ F2;

4. If ||K(P(i))− (∆1 + ∆2,∆1,∆2)|| < ε, then i /∈ F1 and i /∈ F2;

5. If none of the above condition is satisfied, or more than one of the conditions

are satisfied, then i /∈ F1 and i /∈ F2.

Let the joint distribution among xn, un, vn be specified by the product distribution∏n
i=1 p(x, y, z) and the transforms in (2.13), and denoted as pXn,Un,V n(xn, un, vn); the

marginals of pXn,Un,V n(xn, un, vn) are written in a similar way; when clear from the

context, we shall omit the subscripts. The randomized encoding function f (n) : X n →

Fnq1 × Fnq2 is given as follows:

1. For each i ∈ F1, randomly set the value of ui according to the uniform distribu-

tion over Fq1 ; similarly, for each i ∈ F2, randomly set the value of vi according

to the uniform distribution over Fq2 ; uF1 , (ui)i∈F1 and vF2 , (vi)i∈F2 are re-

ferred to as the frozen symbols of un and vn, respectively, and are revealed to

both the encoder and the decoder;

2. For i = 1, 2, . . . , n, if i /∈ F1, then ui takes value a ∈ Fq1 with probability

Pr(ui = a) =
pXn,U i,V i−1(xn, (ui−1, a), vi−1)

pXn,U i−1,V i−1(xn, ui−1, vi−1)
; (2.14)

3. For i = 1, 2, . . . , n, if i ∈ F1 and i /∈ F2, then vi takes value a ∈ Fq2 with

probability

Pr(vi = a) =
pXn,U i−1,V i(x

n, ui−1, (vi−1, a))

pXn,U i−1,V i−1(xn, ui−1, vi−1)
; (2.15)
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else if i /∈ F1 and i /∈ F2, then vi takes value a ∈ Fq2 with probability

Pr(vi = a) =
pXn,U i,V i(x

n, ui, (vi−1, a))

pXn,U i,V i−1(xn, ui, vi−1)
. (2.16)

As we previously noticed, the symbols that are not frozen are (almost) completely

determined by the source vectors, and thus we could also pick the most likely symbol

(ML encoding) instead of using a randomized approach. However, we follow the

randomized approach in Korada and Urbanke (2010) in order to simplify the analysis.

With only the first description (i.e., given un), the decoder forms yn = unBnGn; it

further applies φ1 in Theorem 1 to each symbol of yn individually and then concate-

nates the outputs as the reconstruction. Similarly, with only the second description

(i.e., given vn), the decoder forms zn = vnBnGn; it further applies φ2 in Theorem 1 to

zn and then concatenates the outputs as the reconstruction. When both descriptions

are available (i.e., given un and vn), the decoder can apply φ0 in Theorem 1 to (yi, zi),

i = 1, 2, · · · , n, and then concatenate the outputs as the reconstruction.

2.5 Performance Analysis

Now we are in a position to analyze the performance of the proposed polar coding

scheme. Recall that the probability distribution p(xn, un, vn) is induced by the prod-

uct distribution
∏n

i=1 p(x, y, z) and the transforms in (2.13). Clearly if our encoding

procedure replicates this probability distribution, then at the decoder, we can recover

yn and zn which are distributed jointly with xn as
∏n

i=1 p(x, y, z), and thus meet

the distortion constraints (D0, D1, D2) as given in Theorem 1; moreover, Theorem 2

and (2.7) ensure that some rate pairs on the dominant line of the EGC rate region
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are achieved asymptotically. However, the encoding procedure does not completely

replicate p(xn, un, vn), but only closely approximates it. As such, our goal is to show

this approximation does not cause significant performance degradation in terms of

the achieved distortions, i.e., the excess distortion can be bounded.

The following lemma Karzand and Teletar (2010) is needed in the proof, which is

a consequence of Pinsker’s inequality.

Lemma 2 Let W denote the transition probability of a discrete channel, and I(W )

denote the mutual information between the input X and the output Y when X is

uniformly distributed in the alphabet X , then

∑
x∈X

E
∣∣∣∣ 1

|X |
− p(x|Y )

∣∣∣∣ ≤√(2 log e)I(W ). (2.17)

Let p̂(xn, un, vn) be a probability distribution defined as follows

p̂(ui, vi|xn, ui−1, vi−1) =



1
q1q2

i ∈ F1 and i ∈ F2

1
q2
p(ui|xn, ui−1, vi−1) i /∈ F1 and i ∈ F2

1
q1
p(vi|xn, ui−1, vi−1) i ∈ F1 and i /∈ F2

p(ui, vi|xn, ui−1, vi−1) i /∈ F1 and i /∈ F2

. (2.18)
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For the coding procedure described in Section 2.4, we can write the resultant recon-

struction distortion based on the first description as

D̂1 =
∑

uF1 ,vF2

1

q
|F1|
1 q

|F2|
2

∑
xn

p(xn)

∑
uFc1
vFc2

∏
i/∈F1

p(ui|xn, ui−1, vi−1) ·
∏
i∈F1

i/∈F2

p(vi|xn, ui−1, vi−1) ·
∏
i/∈F1

i/∈F2

p(vi|xn, ui, vi−1)

· d(n)1 (xn, φ
(n)
1 (unBnGn))

= Ep̂d(n)1 (Xn, φ
(n)
1 (UnBnGn)),

where d
(n)
1 and φ

(n)
1 are, respectively, the n-letter extensions of d1 and φ1 in Theorem

1. Similarly, the reconstruction distortion based on the second description and the

reconstruction distortion based on both descriptions are given by

D̂2 = Ep̂d(n)2 (Xn, φ
(n)
2 (V nBnGn))

D̂0 = Ep̂d(n)0 (Xn, φ
(n)
0 (UnBnGn, V

nBnGn)),

where d
(n)
0 , d

(n)
2 , φ

(n)
0 , and φ

(n)
2 are, respectively, the n-letter extensions of d0, d2, φ0,

and φ2 in Theorem 1. It is clear that

D1 ≥ Epd1(X,φ1(Y )) = Epd(n)i (Xn, φ
(n)
1 (UnBnGn)) , D∗1,

D2 ≥ Epd2(X,φ2(Z)) = Epd(n)i (Xn, φ
(n)
2 (V nBnGn)) , D∗2,

D0 ≥ Epd0(X,φ0(Y, Z)) = Epd(n)i (Xn, φ
(n)
0 (UnBnGn, V

nBnGn)) , D∗0.

Thus we only need to compare D∗i and D̂i for i = 0, 1, 2. For this purpose we can
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write

|D̂1 −D∗1| = |Ep̂d
(n)
1 (Xn, φ

(n)
1 (UnBnGn))− Epd(n)1 (Xn, φ

(n)
1 (UnBnGn))|

≤ dmax

∑
xn,un,vn

|p̂(xn, un, vn)− p(xn, un, vn)|. (2.19)

Similarly, we have

|D̂2 −D∗2| ≤ dmax

∑
xn,un,vn

|p̂(xn, un, vn)− p(xn, un, vn)|, (2.20)

|D̂0 −D∗0| ≤ dmax

∑
xn,un,vn

|p̂(xn, un, vn)− p(xn, un, vn)|. (2.21)

We can further write

∑
xn,un,vn

p(xn)|p̂(un, vn|xn)− p(un, vn|xn)|

=
∑

xn,un,vn

p(xn)

∣∣∣∣∣
n∏
i=1

p(ui, vi|xn, ui−1, vi−1)−
n∏
i=1

p̂(ui, vi|xn, ui−1, vi−1)

∣∣∣∣∣
=

∑
xn,un,vn

p(xn)

∣∣∣∣ n∑
i=1

(p(ui, vi|xn, ui−1, vi−1)− p̂(ui, vi|xn, ui−1, vi−1))

·

(
i−1∏
j=1

p(uj, vj|xn, uj−1, vj−1)
n∏

j=i+1

p̂(uj, vj|xn, uj−1, vj−1)

)∣∣∣∣ (2.22)

≤
n∑
i=1

∑
xn,un,vn

p(xn)

∣∣∣∣(p(ui, vi|xn, ui−1, vi−1)− p̂(ui, vi|xn, ui−1, vi−1))
·

(
i−1∏
j=1

p(uj, vj|xn, uj−1, vj−1)
n∏

j=i+1

p̂(uj, vj|xn, uj−1, vj−1)

)∣∣∣∣
=

n∑
i=1

∑
xn,un,vn

p(xn, ui−1, vi−1)|(p(ui, vi|xn, ui−1, vi−1)− p̂(ui, vi|xn, ui−1, vi−1))|,
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where in (2.22) the following telescoping expansion Korada and Urbanke (2010) is

applied

n∏
i=1

Ai −
n∏
i=1

Bi =
n∑
i=1

(Ai −Bi)
i−1∏
j=1

Aj

n∏
j=i+1

Bj.

Now one can readily obtain the following upper bounds on the excess distortions

|D̂j −D∗j | ≤ dmax

n∑
i=1

Ei, j = 0, 1, 2,

where

Ei =

qi−1∑
ui=0

q2−1∑
vi=0

Ep|p(ui, vi|Xn, U i−1, V i−1)− p̂(ui, vi|Xn, U i−1, V i−1)|.

We need to bound Ei for each of the five cases as given in the definition of F1 and

F2 (see Section 2.4).
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• Case 1: i ∈ F1 and i ∈ F2. It can be shown that

Ei =

q1−1∑
ui=0

q2−1∑
vi=0

Ep
∣∣∣∣ 1

q1q2
− p(ui, vi|Xn, U i−1, V i−1)

∣∣∣∣
=
∑

xn,ui,vi

∣∣∣∣ 1

q1q2
p(xn, ui−1, vi−1)− p(xn, ui, vi)

∣∣∣∣
=
∑

xn,ui,vi

∣∣∣∣ 1

q1q2
p(xn, ui−1, vi−1)− 1

q2
p(xn, ui, vi−1) +

1

q2
p(xn, ui, vi−1)− p(xn, ui, vi)

∣∣∣∣
≤

∑
xn,ui,vi

∣∣∣∣ 1

q1q2
p(xn, ui−1, vi−1)− 1

q2
p(xn, ui, vi−1)

∣∣∣∣ (2.23)

+
∑

xn,ui,vi

∣∣∣∣ 1

q2
p(xn, ui, vi−1)− p(xn, ui, vi)

∣∣∣∣
=

q2−1∑
vi=0

1

q2

∑
xn,ui,vi−1

∣∣∣∣ 1

q1
p(xn, ui−1, vi−1)− p(xn, ui, vi−1)

∣∣∣∣ (2.24)

+
∑

xn,ui,vi

∣∣∣∣ 1

q2
p(xn, ui, vi−1)− p(xn, ui, vi)

∣∣∣∣
=
√

(2 log e)I(Ui;XnU i−1V i−1) +
√

(2 log e)I(Vi;XnU iV i−1) (2.25)

=
√

(2 log e)I(1)(P(i)) +

√
(2 log e)I(1)(P(i))

≤
√

(2 log e)I(2)(P(i)) +

√
(2 log e)I(1)(P(i)),

where (2.25) follows from Lemma 2.

• Case 2: i /∈ F1 and i ∈ F2. We have

Ei =

q2−1∑
vi=0

Ep
∣∣∣∣ 1

q2
− p(vi|Xn, U i, V i−1)

∣∣∣∣ ≤√(2 log e)I(1)(P(i))
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• Case 3: i ∈ F1 and i /∈ F2. We have

Ei =

q1−1∑
ui=0

Ep
∣∣∣∣ 1

q1
− p(ui|Xn, U i−1, V i)

∣∣∣∣ ≤√(2 log e)I(2)(P(i))

• Case 4: i /∈ F1 and i /∈ F2. For this case, we have Ei = 0.

• Case 5 is similar to case 4 and we have Ei = 0. Moreover, this case occurs with

asymptotically zero probability.

The following two lemmas Arikan and Telatar (2009) and Karzand and Teletar

(2010) provide a way to bound cases 1, 2, and 3; of course cases 4 and 5 are trivial.

Lemma 3 If a stochastic process Zn has the property that

Zn+1 =

{ ≤ 2Zn with probability 1
2

≤ Z2
n with probability 1

2

then for any β < 1
2
, limn→∞ Pr(Zn ≤ 2−2

nβ
) = Pr(Z∞ = 0).

Lemma 4 For any q, there is a constant κ(q) such that for any q-ary input channel

W

I(W+) ≤ 2I(W ), I(W−) ≤ κ(q)I(W )2.

Thus indeed in the case where q1 and q2 are two non-identical primes, for any

δ > 0 and 0.5 > β > 0, when n is sufficiently large, the proposed scheme achieves

rate-distortion tuple (R1+δ, R2+δ,D∗0 +ε,D∗1 +ε,D∗2 +ε), where ε is of order O(2−n
β
)

and (R1, R2) is a rate pair on the dominant line of the EGC rate region.
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2.6 The Difficulty for the Case When q1 = q2

For the case where q1 and q2 are two identical primes, the sources P s also polarize,

for which we have the following theorem.

Theorem 4 Let P (x, y, z) be a joint source-codebook distribution where q1 and q2 are

two identical primes, and write ∆ = log(q1) = log(q2). Let

M , {(0, 0, 0), (∆,∆, 0), (∆, 0,∆), (2∆,∆,∆), (∆, 0, 0)}.

Then for any δ > 0,

lim
k→∞

1

2k
#{s ∈ {−,+}k : ||K(P s)−M || ≥ δ} = 0. (2.26)

The proof of Theorem 4 is almost the same as that of Theorem 2 and thus is

omitted. Note that we have an additional extremal case (∆, 0, 0) when q1 = q2,

corresponding to the scenario where two descriptions jointly provide full information

whereas each individual description by itself is useless. From a coding perspective,

this case means any one symbol in the two descriptions can be set arbitrarily, and

the other is then fully determined.

Although the sources also polarize when q1 = q2, to show that minimum sum-rate

pair can be achieved, we also need to bound the excess distortions caused by the

mismatch of the distributions as in Chapter 2.5. This however appears non-trivial

precisely due to the additional extremal case. We suspect that in fact this additional

extremal case appears only with asymptotically zero probability, and thus does not

contribute meaningfully to the overall distortions.
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Chapter 3

Polar Codes for Multiple

Descriptions with Rate Splitting

The joint polarization scheme discussed in the previous Chapter can achieve a certain

rate pair on the dominant line of the EGC rate region. However, this rate pair is

determined by the coding scheme instead of being a design choice. Motivated by this

observation, in this Chapter we propose a different polar coding scheme based on the

rate splitting method, which can achieve the entire EGC rate region.

3.1 Rate Splitting

We shall only consider rate pairs on the dominant line of the EGC rate region since

every rate pair (R′1, R
′
2) ∈ J (P ) is dominated, in a componentwise manner, by some

rate pair (R1, R2) ∈ F(P ). Note that the dominant line F(P ) has two endpoints:

V1 = (I(1)(P ), I(1)(P )) (i.e., (I(X;Y ), I(Z;X, Y ))) and V2 = (I(2)(P ), I(2)(P )) (i.e.,
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(I(Y ;X,Z), I(X;Z))). It is clear that these two endpoints are achievable via suc-

cessive encoding. Specifically, for V1, we can first encode X into Y at rate I(1)(P ),

then view (X, Y ) as a joint source and further encode it into Z at rate I(1)(P ). The

successive encoding scheme for V2 is similar with the roles of Y and Z switched.

Apparently, one can achieve other rate pairs on the dominant line of the EGC rate

region by timesharing the encoding schemes for the two endpoints.

It turns out that a general rate pair on the dominant line can also be achieved via

successive encoding without timesharing. Indeed, it is shown in (Y. Zhang, 2012) that,

for every (R1, R2) ∈ F(P ), there exist random variables Ŷ and Ỹ (jointly distributed

with (X, Y, Z)) as well as a deterministic function ψ such that:

• Ŷ and Ỹ are independent;

• Y = ψ(Ŷ , Ỹ );

• (X,Z)↔ Y ↔ (Ŷ , Ỹ ) form a Markov chain;

• R1 = I(X; Ŷ ) + I(X, Ŷ , Z; Ỹ ) and R2 = I(X, Ŷ ;Z).

Now one can readily see that (R1, R2) can be achieved by the following successive

encoding scheme: first encode X into Ŷ at rate I(X; Ŷ ), then view (X, Ŷ ) as a joint

source and encode it into Z at rate I(X, Ŷ ;Z), and finally view (X, Ŷ , Z) as a joint

source and encode it into Ỹ . Here we essentially split the first description, i.e., Y ,

into two sub-descriptions Ŷ and Ỹ of rate R1,1 and rate R1,2, respectively, where

R1,1 = I(X; Ŷ ) and R1,2 = I(X, Ŷ , Z; Ỹ ); moreover, given Ŷ and Ỹ , one can recover

Y by using the deterministic function ψ. Note that three successive encoding steps

are needed for a general point on the dominant line of the EGC rate region whereas

only two encoding steps are needed for the endpoints.
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Let (R1, R2) be a rate pair on the domain face of EGC region, then we must have

R1 +R2 = I(X;Y, Z) + I(Y ;Z),

R1 ∈ [I(X;Y ), I(X,Z;Y )],

R2 ∈ [I(X;Z), I(X, Y ;Z)].

A1 = (I(X;Y ), I(X, Y ;Z)) and A2 = (I(X,Z;Y ), I(X;Z)) are the two corner points

of the domain face. It is obvious the corner points can be achieved by successive

encoding scheme. Let us consider A1 as an example. The code book of Y contains

2nI(X;Y ) sequences of yn which are generated according to p(y). The code book of Z

contains 2nI(X,Z;Y ) sequences of zn which are generated according to p(z). When the

encoder receives the source sequence xn, it finds a yn sequence that is joint typical

with the source sequence and sends the corresponding index as the firs description.

The encoder then finds a zn sequence that is joint typical with (xn, yn) and sends the

corresponding index as the second description.

For other points on the domain face, we introduce an auxiliary random variable

Ŷ such that Ŷ −Y − (X,Z). We can find a class of transition probability p(ŷ|y) such

that I(Y ; Ŷ ) varies from 0 to H(Y ). Hence for Ŷ , the point on the domain face with

R1 = I(X; Ŷ ) + I(X,Z;Y |Ŷ ),

R2 = I(X, Ŷ ;Z),

is achievable. From the above expressions, we can see that by introducing the auxiliary

variable Ŷ the encoding rate of the first description is split into two parts. Intuitively,

we have three code books for Ŷ , Z and Y receptively. The code book for Ŷ contains
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2I(X;Ŷ ) sequences which are generated according to p(ŷ). The code book for Z contains

2I(X,Ŷ ;Z) sequences which are generated according to p(z). The code books for Y are

conditional code books. For each ŷn sequences, generate 2I(X,Z;Y |Ŷ ) sequence of yn

according to p(ŷ|y) and form the sub-code book of Y . When the encoder receives

the source sequence xn, it finds a ŷn sequence that is joint typical with xn. Let

m11 denote the corresponding index. The encoder then finds a zn sequence that is

joint typical with (xn, ŷn(m11)). Let m2 denote the corresponding index. Finally, the

encoder finds a yn sequence in m11th sub-code book of Y that is joint typical with

(xn, ŷn(m11), z
n(m2)). Let m12 denote the index in the sub-code book. Hence, the

first description is formed by (m11,m12) and the second description is m2. It can be

noticed that by introducing Ẑ instead of Ŷ such that Ẑ − Z − (X, Y ) we can split

rate R2. Additional, by applying functional representation lemma we can replace the

conditional code books of Y by a code book of new auxiliary variable Ỹ . By functional

representation lemma, there exists a variable Ỹ and function f : Ỹ × Ŷ → Y such

that Ỹ and Ŷ are independent, Y = f(Ỹ , Ŷ ) and Ỹ − (Ŷ , Y )− (X,Z) form a Markov

chain. Hence, the rate pair

R1 = I(X; Ŷ ) + I(X,Z; Ỹ ),

R2 = I(X, Ŷ ;Z).

is achievable by successive encoding with the encoding order Ŷ , Z, Ỹ . At the receiver

end, yn is reconstructed by yi = f(ŷi, ỹi).
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3.2 Polarization and Polar Codes

Considering a distribution Ps(x, ŷ, z, ỹ) in the alphabet X×Fq̂1×Fq2×Fq̃1 as described

in section 3.1 with uniform marginals Ps(ŷ), Ps(z) and Ps(ỹ), define

I(W1) = I(X; Ŷ ),

I(W2) = I(X, Ŷ ;Z),

I(W3) = I(X, Ŷ , Z; Ỹ ).

whereW1(x, ŷ) = Ps(x, ŷ), W2((x, ŷ), z) = Ps(x, ŷ, z) andW3((x, ŷ, z), ỹ) = Ps(x, ŷ, z, ỹ).

Let (X1, Ŷ1, Z1, Ỹ1) and (X2, Ŷ2, Z2, Ỹ2) be two independent copies, and

Ŷ1 = Û1 + Û2, Ŷ2 = Û2,

Z1 = V1 + V2, Z2 = V2,

Ỹ1 = Ũ1 + Ũ2, Ỹ2 = Ũ2,
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where + is modulo addition, then we have the following equalities

2I(W1) = I(X1, X2; Ŷ1, Ŷ2) = I(X1, X2; Û1, Û2)

= I(X1, X2; Û1) + I(X1, X2; Û2|Û1)

= I(X1, X2; Û1) + I(X1, X2, Û1; Û2),

2I(W2) = I(X1, X2, Ŷ1, Ŷ2;Z1, Z2) = I(X1, X2, Ŷ1, Ŷ2;V1, V2)

= I(X1, X2, Ŷ1, Ŷ2;V1) + I(X1, X2, Ŷ1, Ŷ2;V2|V1)

= I(X1, X2, Ŷ1, Ŷ2;V1) + I(X1, X2, Ŷ1, Ŷ2, V1;V2),

= I(X1, X2, Û1, Û2;V1) + I(X1, X2, Û1, Û2, V1;V2),

2I(W3) = I(X1, X2, Ŷ1, Ŷ2, Z1, Z1; Ỹ1, Ỹ2) = I(X1, X2, Ŷ1, Ŷ2, Z1, Z1; Ũ1, Ũ2)

= I(X1, X2, Ŷ1, Ŷ2, Z1, Z1; Ũ1) + I(X1, X2, Ŷ1, Ŷ2, Z1, Z1; Ũ2|Ũ1)

= I(X1, X2, Ŷ1, Ŷ2, Z1, Z1; Ũ1) + I(X1, X2, Ŷ1, Ŷ2, Z1, Z1, Ũ1; Ũ2)

= I(X1, X2, Û1, Û2, V1, V1; Ũ1) + I(X1, X2, Û1, Û2, V1, V1, Ũ1; Ũ2).

The random variables Û1 and Û2 are uniformly distributed in alphabet Fq̂1 ; V1 and

V2 are uniformly distributed in alphabet Fq2 ; Ũ1 and Ũ2 are uniformly distributed in

alphabet Fq̃1 . Here, we do not need to impose that q̂1, q2 and q̃1 are different.

Definition 3 Given a joint distribution W1(x, ŷ) in the alphabet X × Fq̂1, define

W−
1 ((x1, x2), û1) =

∑
û2

W1(x2, û2)W1(x1, û1 + û2),

W+
1 ((x1, x2, û1), û2) = W1(x2, û2)W1(x1, û1 + û2).
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Similarly, given W2((x, ŷ), z) in the alphabet X × Fq̂1 × Fq2, define

W−
2 ((x1, x2, û1, û2), v1) =

∑
v2

W2(x2, û2, v2)W2(x1, û1 + û2, v1 + v2),

W+
2 ((x1, x2, û1, û2, v1), v2) = W2(x2, û2, v2)W2(x1, û1 + û2, v1 + v2).

Given W3((x, ŷ, z), ỹ) in the alphabet X × Fq̂1 × Fq2 × Fq̃1, define

W−
3 ((x1, x2, û1, û2, v1, v2), ũ1) =

∑
v2

W3(x2, û2, v2, ũ2)W3(x1, û1 + û2, v1 + v2, ũ1 + ũ2)

W+
3 ((x1, x2, û1, û2, v1, v2, ũ1), ũ2) = W3(x2, û2, v2, ũ2)W3(x1, û1 + û2, v1 + v2, ũ1 + ũ2).

Note that I(W−
i ) ≤ I(Wi) ≤ I(W+

i ), I(W−
i ) + I(W+

i ) = 2I(Wi) for i = 1, 2, 3.

The next corollary followed from lemma 1 and the mappings (Û1, Û2) → (Ŷ1, Ŷ2),

(V1, V2)→ (Z1, Z2) and (Ũ1, Ũ2)→ (Ỹ1, Ỹ2) are bijection.

Corollary 3 For any ε > 0 there exists a δ > 0 such that if W1(x, ŷ) is a joint

distribution with I(W+
1 )−I(W1) ≤ δ, then I(W1) /∈ (ε,∆′1−ε); similarly if W2(x, ŷ, z)

is a joint distribution with I(W+
2 )−I(W2) ≤ δ, then I(W2) /∈ (ε,∆′2−ε); W3(x, ŷ, z, ỹ)

is a joint distribution with I(W+
3 ) − I(W3) ≤ δ, then I(W3) /∈ (ε,∆′′1 − ε) where

∆′1 = log q̂1 and ∆′′1 = log q̃1.

Similarly to previous section, let B1, B2, . . . , be an i.i.d. sequence of random

variables taking values in the set {−,+}, with Pr(Bi = −) = Pr(Bi = +) = 0.5.

Define random process {Wik : k ≥ 0}, i = 1, 2, 3 by

Wi0 = Wi, Wik = WBk
i,k−1, k ≥ 1. (3.1)
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Now define the random process {Iik : k ≥ 0}, i = 1, 2, 3 as

Iik = I(Pik), i = 1, 2, 3.

The next theorem followed from Corollary 3 and {Iik : k ≥ 0}, i = 1, 2, 3 are bounded

martingales.

Theorem 5 limk→∞ I1k ∈ {0,∆′1}, limk→∞ I2k ∈ {0,∆2} and limk→∞ I3k ∈ {0,∆′′1}.

We can also use the randomized polar coding algorithm to facilitate analysis.

Write

Ŷ n = ÛnBnGn, Ỹ n = ŨnBnGn.

Let F1, F2 and F3 be subsets of {1, 2, · · · , n} and fix some ε > 0.

1. If |I(Xn, Û i−1; Ûi)− 0| < ε, then i ∈ F1, otherwise i /∈ F1;

2. If |I(Xn, Ûn, V i−1;Vi)− 0| < ε, then i ∈ F2, otherwise i /∈ F2;

3. If |I(Xn, Ûn, V n, Ũi−1; Ũi)− 0| < ε, then i ∈ F3, otherwise i /∈ F3;

Fix vector û′|F1| ∈ F|F1|
q̂1

, v′|F2| ∈ F|F2|
q2 and ũ′|F3| ∈ F|F3|

q̃1
. The encoding function is

given as follows.

1. Set the frozen symbols in ûn to be û′|F1|, the frozen symbols in vn to be v′|F2|

and the frozen symbols in ũn to be ũ′|F1|.

2. For i = 1, 2, . . . , n, if i /∈ F1, then ûi takes value a ∈ Fq̂1 with probability

Pr(ûi = a) =
PXn,Û i(x

n, ûi−1, a)

PXn,Û i−1(xn, ûi−1)
;
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3. For i = 1, 2, . . . , n, if i /∈ F2, then vi takes value a ∈ Fq2 with probability

Pr(vi = a) =
PXn,Ûn,V i(x

n, ûn, vi−1, a)

PXn,Ûn,V i−1(xn, ûn, vi−1)
;

4. For i = 1, 2, . . . , n, if i /∈ F3, then ũi takes value a ∈ Fq̃1 with probability

Pr(ũi = a) =
PXn,Ûn,V i,Ũn(xn, ûn, vi−1, a)

PXn,Ûn,V i−1(xn, ûn, vi−1)
.

3.3 Performance Under Randomized Frozen Sym-

bols

For simplicity, we do not distinguish q̂1, q2 and q̃1 in this section, since there is

no essential difference in the analysis. Let p̂(xn, ui, vi) be a probability distribution

defined as follows

p̂(ûi|xn, ûi−1) =

 1/q i ∈ F1

p(ûi|xn, ûi−1) i /∈ F1

p̂(vi|xn, ûn, vi−1) =

 1/q i ∈ F2

p(vi|xn, ûn, vi−1) i /∈ F2

p̂(ũi|xn, ûn, vn, ũi−1) =

 1/q i ∈ F3

p(ũi|xn, ûn, vn, ũi−1) i /∈ F3
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Follow the coding procedure, we can write the resultant distortion D1 as

D̂1 =
∑
û′F1

1

q|F1|

∑
v′F2

1

q|F2|

∑
ũ′F3

1

q|F3|

∑
xn

p(xn)
∑

ûn−|F1|

∏
i/∈F1

p(ûi|xn, ûi−1)
∑

vn−|F2|

∏
i/∈F2

p(vi|xn, ûi, vi−1)

∑
ũn−|F3|

∏
i/∈F3

p(ũi|xn, ûi, vi, ũi−1)d1(xn, φ1(f(ûnBnGn, ũ
nBnGn)))

= Ep̂d1(xn, φ1(f(ûnBnGn, ũ
nBnGn)))

Similarly, we have

D̂2 = Ep̂d2(xn, φ2(v
nBnGn))

D̂0 = Ep̂d0(xn, φ0(f(ûnBnGn, ũ
nBnGn), vnBnGn)).

It is clear that

D1 = Epsd1(xn, φ1(f(ûnBnGn, ũ
nBnGn)))

D2 = Epsd2(xn, φ2(v
nBnGn))

D0 = Epsd0(xn, φ0(f(ûnBnGn, ũ
nBnGn), vnBnGn))

Now let us compare Di and D̂i for i = 0, 1, 2.

|D̂1 −D1| = Ep̂d1(xn, φ1(f(ûnBnGn, ũ
nBnGn)))− Epsd1(xn, φ1(f(ûnBnGn, ũ

nBnGn)))

≤ dmax

∑
xn,ûn,vn,ũn

|p̂(xn, ûn, vn, ũn)− ps(xn, ûn, vn, ũn)|
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Similarly, we have

|D̂2 −D2| ≤ dmax

∑
xn,ûn,vn,ũn

|p̂(xn, ûn, vn, ũn)− ps(xn, ûn, vn, ũn)|

|D̂0 −D0| ≤ dmax

∑
xn,ûn,vn,ũn

|p̂(xn, ûn, vn, ũn)− ps(xn, ûn, vn, ũn)|.

In the following, we omit the subscript ’s’ for simplicity.

p̂(xn, ûn, vn, ũn)− p(xn, ûn, vn, ũn)

=
∑

xn,ûn,vn,ũn

p(xn)|p̂(ûn, vn, ũn|xn)− p(ûn, vn, ũn|xn)|

=
∑

xn,ûn,vn,ũn

p(xn)
∣∣∣ n∏
i=1

p̂(ûi|xn, ûi−1)
n∏
i=1

p̂(vi|xn, ûn, vi−1)
n∏
i=1

p̂(ũi|xn, ûn, vn, ũi−1)

−
n∏
i=1

p(ûi|xn, ûi−1)
n∏
i=1

p(vi|xn, ûn, vi−1)
n∏
i=1

p(ũi|xn, ûn, vn, ũi−1)
∣∣∣

Let

Ai =p̂(ûi|xn, ûi−1) i = 1, 2, . . . n,

Ai+n =p̂(v̂i|xn, ûn, vi−1) i = 1, 2, . . . n,

Ai+2n =p̂(ũi|xn, ûn, vn, ũi−1) i = 1, 2, . . . n,

and

Bi =p(ûi|xn, ûi−1) i = 1, 2, . . . n,

Bi+n =p(v̂i|xn, ûn, vi−1) i = 1, 2, . . . n,

Bi+2n =p(ũi|xn, ûn, vn, ũi−1) i = 1, 2, . . . n,
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We have

∑
xn,ûn,vn,ũn

|p̂(xn, ûn, vn, ũn)− p(xn, ûn, vn, ũn)| =
∑

xn,un,vn

p(xn)|
3n∑
i=1

(Ai −Bi)
i−1∏
j=1

Aj

3n∏
j=i+1

Bj|

Define

Ei =
∑

xn,ûn,vn,ũn

p(xn)|(Ai −Bi)
i−1∏
j=1

Ai

3n∏
j=I+1

Bi|

then the excess distortion is upper-bounded as

|D̂1 −D1| ≤ dmax

3n∑
i=1

Ei.

We need to bound Ei for each case.

• Case 1: 1 ≤ i ≤ n and i ∈ F1,

Ei ≤
q−1∑
ûi=0

Ep|
1

q
− p(ûi|xn, ûi−1))| ≤

√
2(log e)I(Ûi;XN , Û i−1)

• Case 2: 1 ≤ i ≤ n and i ∈ F2,

Ei+n ≤
q−1∑
vi=0

Ep|
1

q
− p(vi|xn, ûn, vi−1))| ≤

√
2(log e)I(Vi;XN , Ûn, V i−1)

• Case 3: 1 ≤ i ≤ n and i ∈ F3,

Ei+2n ≤
q−1∑
ũi=0

Ep|
1

q
− p(ũi|xn, un, vn, ũi−1))| ≤

√
2(log e)I(Ũi;XN , Ûn, V n, Ũ i−1)
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• Case 4: 1 ≤ i ≤ n, i /∈ F1, i /∈ F1 and i /∈ F3. For this case, Ei = 0.

Lemma 3 and Lemma 4 can now be invoked to bound the cases 1, 2 and 3 and case 4

is trivial. Thus indeed for any δ > 0 and 0.5 > β > 0, when n is sufficiently large, the

proposed scheme has rate (R1+δ, R2+δ), and the distortion is (D0+ε,D1+ε,D2+ε),

where ε is of order O(2−n
β
) and (R1, R2) achieves rate pair described in section 3.1,

and (D0, D1, D2) is the corresponding distortion triple.
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Chapter 4

Experimental Results

In this Chapter we implement the proposed polar coding schemes and present the

simulation results for binary sources with the Hamming distortion measure (i.e., X =

X0 = X1 = X2 = {0, 1} and d0 = d1 = d2 = dH , where dH(x, x̂) = 0 if x = x̂

and dH(x, x̂) = 1 otherwise). The construction of polar codes is based on degraded

merge given in I. Tal and Vardy (2012). The length n of the sequences is selected

to be 27, 29, and 211. The empirical distortions are averaged over 100 runs. For

the ease of implementation, we set the frozen symbols to zero and use ML encoding

instead of randomized encoding. It is worth mentioning that in the experiments we

fix the threshold ε (which is used to determine the frozen sets); as a consequence,

the empirical rates and distortions can change with the block length. But it will be

seen from the experimental results that the empirical rates and distortions approach

to the theoretical limits as the block length increases.
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4.1 Experimental Results for the Joint Polariza-

tion Scheme

For the joint polarization scheme, we consider four different cases. Note that, given

the joint distribution p(x, y, z), the theoretical limits of the sum rate R∗1 + R∗2 and

distortions (D∗0, D
∗
1, D

∗
2) in Theorem 1 are, respectively, given by

R∗1 +R∗2 = I(X;Y, Z) + I(Y ;Z), (4.1)

D∗0 = EdH(X,φ0(Y, Z)), (4.2)

D∗1 = EdH(X,φ1(Y )), (4.3)

D∗2 = EdH(X,φ2(Z)). (4.4)

As previously pointed out, though the joint polarization scheme can achieve a certain

rate pair (R∗1, R
∗
2) on the dominant line of the EGC rate region (and consequently

one can fix R∗1 + R∗2 in advance), the exact values of R∗1 and R∗2 are determined by

the algorithm instead of being a design choice.

1. Two independent binary descriptions.

The source distribution is given by pX(0) = 3
4

and pX(1) = 1
4
. The conditional

distribution p(y, z|x) and the joint distribution p(x, y, z) are given in Table 4.1.

It can be verified that p(y, z) = p(y)p(z) for y ∈ F2 and z ∈ F2. Moreover, for
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y ∈ F2 and z ∈ F2, we define

φ0(y, z) = y · z, (4.5)

φ1(y) = y, (4.6)

φ2(z) = z. (4.7)

According to (4.1)-(4.4), we haveR∗1+R
∗
2 = 0.8113 and (D∗0, D

∗
1, D

∗
2) = (0, 0.2500, 0.2500).

In the experiments we set the threshold ε = 0.1. The empirical rates (R̂1, R̂2)

(as well as R̂1 + R̂2) and distortions (D̂0, D̂1, D̂2) obtained through simulation

are shown in Table 4.2.

Table 4.1: p(y, z|x) and p(x, y, z)

x, y, z 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1

p(y, z|x) 1
3

1
3

1
3

0 0 0 0 1
p(x, y, z) 1

4
1
4

1
4

0 0 0 0 1
4

Table 4.2: Experimental Results Based on the Joint Distribution p(x, y, z) in Table
4.1

n R̂1 R̂2 R̂1 + R̂2 D̂0 D̂1 D̂2

27 0.5234 0.5234 1.0468 0.005 0.2652 0.2649
29 0.4746 0.4746 0.9492 0.0025 0.2470 0.2532
211 0.4512 0.4512 0.9024 6.64× 10−4 0.2481 0.2499

2. Two dependent binary descriptions.

The source distribution is given by pX(0) = 2
3

and pX(1) = 1
3
. The conditional

distribution p(y, z|x) and the joint distribution p(x, y, z) are given in Table

4.3. We adopt the same definition of φ0, φ1, and φ2 as in (4.5)-(4.7). In this

case we have R∗1 + R∗2 = 1.0000 and (D∗0, D
∗
1, D

∗
2) = (0, 0.1666, 0.1666). In the
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experiments we set the threshold ε = 0.1. The empirical rates (R̂1, R̂2) (as well

as R̂1+R̂2) and distortions (D̂0, D̂1, D̂2) obtained through simulation are shown

in Table 4.4.

Table 4.3: p(y, z|x) and p(x, y, z)

x, y, z 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1

p(y, z|x) 1
2

1
4

1
4

0 0 0 0 1
p(x, y, z) 1

3
1
6

1
6

0 0 0 0 1
3

Table 4.4: Experimental Results Based on the Joint Distribution p(x, y, z) in Table
4.3

n R̂1 R̂2 R̂1 + R̂2 D̂0 D̂1 D̂2

27 0.6406 0.6406 1.2812 8.60× 10−4 0.1221 0.1243
29 0.5801 0.5801 1.1602 1.75× 10−4 0.1401 0.1389
211 0.5439 0.5439 1.0878 6.33× 10−5 0.1524 0.1525

Although we are unable to handle analytically the case where the alphabet sizes

of the two descriptions are identical, the experimental results indicate that the

empirical rates and distortions indeed approach the theoretical limits as the

block length increases.

3. Two independent descriptions: one binary and one ternary.

The source distribution is given by pX(0) = 2
3

and pX(1) = 1
3
. The conditional

distribution p(y, z|x) and the joint distribution p(x, y, z) are given in Table 4.5.

It can be verified that p(y, z) = p(y)p(z) for y ∈ F3 and z ∈ F2. Moreover, for
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y ∈ F3 and z ∈ F2, we define

φ0(y, z) =

 0, (y, z) = (0, 0), (0, 1), (1, 0), (2, 0)

1, (y, z) = (1, 1), (2, 1)
, (4.8)

φ1(y) =

 0, y = 0

1, y = 1, 2
, (4.9)

φ2(z) = z. (4.10)

In this case we have R∗1 + R∗2 = 0.9183 and (D∗0, D
∗
1, D

∗
2) = (0, 0.333, 0.166). In

the experiments we set the threshold ε = 0.3. The empirical rates (R̂1, R̂2) (as

well as R̂1 + R̂2) and distortions (D̂0, D̂1, D̂2) obtained through simulation are

shown in Table 4.6.

Table 4.5: p(y, z|x) and p(x, y, z)

x, y, z 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 0, 2, 0 0, 2, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1 1, 2, 0 1, 2, 1

p(y, z|x) 1
4

1
4

1
4

0 1
4

0 0 0 0 1
2

0 1
2

p(x, y, z) 1
6

1
6

1
6

0 1
6

0 0 0 0 1
6

0 1
6

Table 4.6: Experimental Results Based on the Joint Distribution p(x, y, z) in Table
4.5

n R̂1 R̂1 R̂1 + R̂2 D̂0 D̂1 D̂2

27 0.7306 0.5234 1.2540 0.0039 0.3332 0.1782
29 0.6160 0.4980 1.1140 0.0077 0.3330 0.1792
211 0.5502 0.4844 1.0346 0.0067 0.3286 0.1830

4. Two dependent descriptions: one binary and one ternary.

The source distribution is given by pX(0) = 7
12

and pX(1) = 5
12

. The conditional

distribution p(y, z|x) and the joint distribution p(x, y, z) are given in Table 4.7.
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We adopt the same definition of φ0, φ1, and φ2 as in (4.8)-(4.10). In this

case we have R∗1 + R∗2 = 1.0939 and (D∗0, D
∗
1, D

∗
2) = (0, 0.2500, 0.0833). In the

experiments we set the threshold ε = 0.3. The empirical rates (R̂1, R̂2) (as well

as R̂1+R̂2) and distortions (D̂0, D̂1, D̂2) obtained through simulation are shown

in Table 4.8.

Table 4.7: p(y, z|x) and p(x, y, z)

x, y, z 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 0, 2, 0 0, 2, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1 1, 2, 0 1, 2, 1

p(y, z|x) 3
7

1
7

3
14

0 3
14

0 0 0 0 1
2

0 1
2

p(x, y, z) 1
4

1
12

1
8

0 1
8

0 0 0 0 5
24

0 5
24

Table 4.8: Experimental Results Based on the Joint Distribution p(x, y, z) in Table
4.7

n R̂1 R̂1 R̂1 + R̂2 D̂0 D̂1 D̂2

27 0.7430 0.7035 1.4465 0.0038 0.2574 0.0945
29 0.6067 0.6758 1.2825 0.0034 0.2761 0.0941
211 0.5350 0.6535 1.1885 0.0038 0.2828 0.0973

4.2 Experimental Results for the Rate Splitting

Scheme

The source distribution is given by pX(0) = 2
3

and pX(1) = 1
3
. The conditional

distribution p(y, z|x) and the joint distribution p(x, y, z) are given in Table 4.3. We

adopt the same definition of φ0, φ1, and φ2 as in (4.5)-(4.7). In this case we have

R∗1 + R∗2 = 1.0000 and (D∗0, D
∗
1, D

∗
2) = (0, 0.1666, 0.1666). In the experiments we set

the threshold ε = 0.1.
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We first consider the following corner point of the EGC rate region

R∗1 = I(X;Y ) = 0.4591,

R∗2 = I(X, Y ;Z) = 0.5409.

Note that no rate splitting is needed for corner points. The empirical rates (R̂1, R̂2)

(as well as R̂1 + R̂2) and distortions (D̂0, D̂1, D̂2) obtained through simulation are

shown in Table 4.9.

Table 4.9: Experimental Results Based on the Joint Distribution p(x, y, z) in Table
4.3: A Corner Point

n R̂1 R̂2 R̂1 + R̂2 D̂0 D̂1 D̂2

27 0.5859 0.6563 1.2422 7.03× 10−4 0.1354 0.1240
29 0.5469 0.6211 1.1680 2.14× 10−4 0.1432 0.1311
211 0.5155 0.5917 1.1072 1.16× 10−4 0.1518 0.1430

Now we consider the following rate pair on the dominant line of the EGC rate

region

R∗1 = 0.524,

R∗2 = 0.476.

Note that rate splitting is need for this rate pair since it is not a corner point. We

construct two random variables Ŷ and Ỹ such that

• (X,Z)↔ Y ↔ (Ŷ , Ỹ ) form a Markov chain,

• Ŷ and Ỹ are independent with pŶ (0) = 1
2
, pŶ (1) = 1

2
, pỸ (0) = pỸ (2) = 1

5
, and

pỸ (1) = 3
5
,
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• Y = ψ(Ŷ , Ỹ ), where

ψ(ŷ, ỹ) =

 0, (ŷ, ỹ) = (0, 0), (0, 1), (1, 0)

1, (ŷ, ỹ) = (0, 2), (1, 1), (1, 2)
.

It can be verified that

R∗1,1 , I(X; Ŷ ) = 0.1366,

R∗1,2 , I(X, Ŷ , Z; Ỹ ) = 0.3874,

R∗1,1 +R∗1,2 = R∗1,

I(X, Ŷ ;Z) = R∗2.

The empirical rates (R̂1,1, R̂1,2, R̂2) (as well as R̂1 + R̂2 with R̂1 , R̂1,1 + R̂1,2) and

distortions (D̂0, D̂1, D̂2) are shown in Table 4.10.

Table 4.10: Experimental Results Based on the Joint Distribution p(x, y, z) in Table
4.3: A General Point

n R̂11 R̂12 R̂2 R̂1 + R̂2 D̂0 D̂1 D̂2

27 0.2188 0.4354 0.6016 1.2558 0.0055 0.1382 0.1600
29 0.1895 0.3720 0.5605 1.1220 0.0043 0.1465 0.1822
211 0.1652 0.3118 0.5259 1.0029 0.0116 0.1558 0.2123
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Chapter 5

Conclusion

We have considered polar coding for the multiple description problem and proposed

two different polar coding schemes: the first one is based on joint polarization while

the second one is based on the rate splitting method. It is shown that the first scheme

is able to asymptotically achieve a certain rate pair on the dominant line of the EGC

rate region when the alphabet sizes of the two auxiliary random variables are non-

identical primes. For the second scheme, we show that it can achieve the entire EGC

rate region. Simulation results for the proposed schemes are also provided.
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