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The Sender-Excited Secret Key Agreement Model:
Capacity, Reliability and Secrecy Exponents

Tzu-Han Chou, Vincent Y. F. Tan, Stark C. Draper

Abstract—We consider the secret key generation problem when
sources are randomly excited by the sender and there is a
noiseless public discussion channel. Our setting is thus similar to
recent works on channels with action-dependent states where the
channel state may be influenced by some of the parties involved.
We derive single-letter expressions for the secret key capacity
through a type of source emulation analysis. We also derive lower
bounds on the achievable reliability and secrecy exponents, i.e.,
the exponential rates of decay of the probability of decoding
error and of the information leakage. These exponents allow
us to determine a set of strongly-achievable secret key rates.
For degraded eavesdroppers the maximum strongly-achievable
rate equals the secret key capacity; our exponents can also be
specialized to previously known results.

In deriving our strong achievability results we introduce a cod-
ing scheme that combines wiretap coding (to excite the channel)
and key extraction (to distill keys from residual randomness).
The secret key capacity is naturally seen to be a combinationof
both source- and channel-type randomness. Through examples
we illustrate a fundamental interplay between the portion of
the secret key rate due to each type of randomness. We also
illustrate inherent tradeoffs between the achievable reliability and
secrecy exponents. Our new scheme also naturally accommodates
rate limits on the public discussion. We show that under rate
constraints we are able to achieve larger rates than those that
can be attained through a pure source emulation strategy.

Index Terms—Secret key capacity, Common randomness,
Wiretap channel, Sender-excitation, Reliability exponent, Secrecy
exponent, Degraded broadcast channel, Probing capacity

I. I NTRODUCTION

Within the realm of information-theoretic secrecy [2], the
foundations of sharing a secret key between two parties in
the presence of an eavesdropper were initiated in [3], [4].
Ahlswede and Csiszár [3] studied two models: thesource-
type model with wiretapper(Model SW) and thechannel-
type model with wiretapper(Model CW). In Model SW,
users obtain their observations from a discrete memoryless
multiple source (DMMS), and communicate to each other via
a noiseless authenticated public channel, with the objective
of generating jointly held secret keys. In Model CW, one
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legitimate user (the sender) controls the input of a discrete
memoryless broadcast channel (DMBC), sending information
based upon which the legitimate receivers generate secret keys.

However, many applications cannot be exactly modeled
as either a source- or a channel-type scenario. This work
explores such a setting in which the sender has the ability
to use a private source of randomness to excite (or influence)
the “state” of the DMMS. This is similar in spirit to recent
works on probing capacity and channels with action-dependent
states [5]–[8]. We derive capacity, reliability exponent,and
secrecy exponent results for this setting. At one extreme, when
the sender has an unlimited ability to excite the channel,
and the rate of public discussion is similarly unbounded,
a particular type of source emulation strategy is capacity
achieving. However, when constraints are placed on the rate
of public discussion we demonstrate that source emulation
becomes sub-optimal. We show this through the development
of a more nuanced rate-limited excitation strategy that exceeds
the capacity of the emulation-based approach when subject to
rate constraints [9]. Our new strategy combines a wiretap-type
probing mechanism (Model CW) with a key-distillation step
(Model SW) that is applied to the residual randomness. In
general, we find an interplay to exist between the secrecy rate
derived from the wiretapping step and the secrecy rate derived
via the key-distillation step. We illustrate the tradeoff via
examples. In terms of our large deviation results we show that
there is a natural tradeoff between the reliability and secrecy
exponents. The former generalize Gallager’s classic results in
in [10, Sec. 5.6] and [11]; the latter may be specialized to
Hayashi’s recent work that characterizes the rate of decay of
information leakage [12] of the wiretap channels.

A. Related Work

There are other investigations that consider non-source, non-
channel models. For example, in [13], [14] users observe
a DMMS and can also transmit information via a wiretap
channel. However, no public discussion is allowed. The key
generation scheme used is based on the observation that a pub-
lic message can be transmitted via the DMBC confidentially,
resulting in a higher secret key rate. In [9], [15], [16], public
discussion is allowed and there may also be a helper. However,
unlike our work, the sender does not also receive a sequence
as part of the channel output. The sender’s ability to use both
her channel output and her source of private randomness to
generate the secret key is a crucial aspects of our model.

The authors in [17]–[21] considered the setting where a
wiretap channel is influenced by a random state that is known
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by the sender (and possibly by the receiver) and thus can
be treated as a correlated source. In [17], [18], the sender
transmits a confidential message and the random, noncausally
known, state is exploited to confuse the eavesdropper. The
lower bound is proved using a combination of Gel’fand-
Pinsker coding and wiretap channel coding. A similar problem
but with causal state information is studied in [19] and
the coding scheme involves block Markov coding, Shannon
strategies, and wiretap coding. In [20], [21], the goal is to
generate a secret key when the encoder (and/or decoders)
have noncausal state information. The authors present a single-
letter expression for the secret key capacity. The key rate
consists of two parts. The first can be attributed to the rate
of the confidential message sent using wiretap channel coding
where the state sequence is treated as a time-sharing sequence,
while a second key, independent of the first, is produced by
exploiting the common knowledge of the state at the sender
and the legitimate receiver.

The model considered in this paper is a generalization of
the “source excitation” model of [22]. That model is motivated
by the large body of work on physical-layer security (see, e.g.,
[23], [24]) where the unpredictable variation in the wireless
channel medium serves as the source of common randomness.
One approach is to sound the wireless channel using a random
signal and measure the observations generated (marginalizing
over the sounding signal). This “source emulation” strategy
is considered in [24]. Another approach studied in [22], [23]
uses deterministic sounding (no marginalization is involved).
Key extraction follows by denoising the observations usinga
public message. Deterministic sounding requires no sourceof
private randomness (as does source emulation), all randomness
is due to the channel. The current generalization is that we
now explore the source excitation model when the exciter has
a source of private randomness. This allows us to exploit both
random sounding (using a wiretap code) and key generation
(using conditional randomness). We regard the current model
as stepping stone to understanding the fundamental limits of
two-way randomized channel sounding in which secrecy rate
is derived from the use of two wiretap codes and from the
conditional randomness produced.

B. Main Contributions: Capacity and Error Exponents

Figure 1 shows the system considered in this paper. We can
think of the terminal labeled Alice as a base station on earth
equipped with a sensor. This base station transmits a random
messageM (the selection of which is based on a private
source of randomness) securely to a satellite encoder. The
satellite produces sequenceSn according to some conditional
probability law. This sequence is the input to a broadcast chan-
nel p(x, y, z|s) (the wireless medium). The channel produces
observationsXn, Y n andZn, respectively received by Alice,
the legitimate user Bob, and the malicious user Eve. The goal
of the two legitimate users is to generate a shared secret key
– Alice based on(M,Xn) and Bob based on(Φ, Y n), where
Φ is a public message known to all parties.

We first consider the situation in which there are no rate
limits on either the public discussion (Φ) or the excitation

Public Channel

Alice Bob Eve

p(x, y, z|s)
✻ ❄

Encoder
Sn

M

❄
Y n

❄
Xn

❄
Zn

❄

Φ ❄
KA

❄
KB

Φ ✻ Φ ✻

Fig. 1. Our problem setup: Based on her private source of randomnessM ,
Alice excites the channel via the sounding signalSn(M). She generates
a public messageΦ(M,Xn), which is transmitted through the noiseless
public channel and hence known to all parties. Alice and Bob generate keys
KA(M,Xn) andKB(Φ, Y

n) respectively. The keys should agree, while at
the same time, they should be kept secret from Eve.

signal (M ). We derive a single-letter expression for the secret
key capacity of this system. The result follows through a
particular kind of source emulation where (i) Alice chooses
the optimum source distribution to induce (potentially subject
to cost constraints onSn), and (ii) Alice has the vector
observation(Sn, Xn).

We then turn to the rate-limited situation and study the
effect of rate limits on (i) the achievable secrecy rate, (ii) the
probability of erroneous decoding at the legitimate receiver,
Bob, and (iii) the key leakage rate by the eavesdropper, Eve.
We focus on degraded channels and characterize the error
probability in terms of areliability exponentand the key
leakage rate in terms of asecrecy exponent. In contrast to [9]
where the secret key capacity of one-way key generation
subject to a rate constraint is characterized, we show that
the flexibility Alice has in choosing the amount of private
randomness she uses in the selection ofM can allow a strictly
higher achievable secret key rate than can be attained via pure
source emulation.

We introduce a new type of decoder for the legitimate
receiver, Bob, to use. This decoder is a combination of a
maximum likelihood and a maximuma-posteriori(ML-MAP)
decoder. Bob decodes jointly the sender’s sourceXn and the
sender’s private source of randomness (or message)M . The
resulting reliability exponent expression can be specialized to
Gallager’s channel coding error exponent [10, Sec. 5.6] and
Gallager’s source coding error exponent [11]. On the other
hand, in the key leakage analysis, the secrecy exponent we
derive captures the leakage due to Eve’s channelp(z|s) and
the leakage due to the correlation between Alice’s variable
X and Eve’s variableZ in a transparent manner. Our analysis
builds on the work by Hayashi in [12], [25], where he links the
leakage rate of a wiretap channel to channel resolvability and
identification coding [26]. This connection is also examined
Bloch and Laneman [27] where they derive the capacity
of general wiretap channels from an information spectrum
perspective [26]. Our secrecy exponent results, which are
developed in Section IV, can be specialized to the wiretap
channel [12], [25] and to the secret key generation from corre-
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lated source setting [12], [22], [28], [29]. The differencevis-à-
vis the motivating work [22] is that the methods used to bound
the exponents for both reliability and secrecy involve both
wiretap channel coding and source coding. This will become
clear in Section IV where we specialize our results to various
known problems. Note that the criterion for exponential decay
of the key leakage rate is much stronger than the usual strong
secrecy [4]. We focus on this exponential notion because it
quantifies how fast the error probability and information rate
decays to zero and because it reveals a natural tradeoff between
the attainable reliability and secrecy exponents.

C. Paper Organization

This paper is organized as follows: In Section II, we
describe the system model. We also define the secret key
capacity, the capacity-reliability-secrecy region and the notion
of channel degradedness. Our main results pertaining to the
secret key capacity are provided in Section III. We also prove a
(sometimes loose) upper bound on the secret key capacity that
does not contain any auxiliary random variables, and hence
is amenable to evaluation. We show that this upper bound
is tight for degraded channels. We present the reliability and
secrecy exponents in Section IV and connect to previous work.
In Section V, we present several examples to demonstrate
how the main results can be applied to channels of interest.
We show the inherent tradeoff between the portions of the
secret key rate due to source- and to channel-type randomness.
We also show the inherent tradeoff between the reliability
exponent and the secrecy exponent. The proofs of the capacity
theorems and the error exponent theorems are provided in
Section VI and Section VII respectively.

D. Notation

We generally adopt the notational conventions in the book
by El Gamal and Kim [30], some of which we recap here. All
logarithms are to base-2. Random variables are in upper case
(e.g.,X) and their realizations in lower case (e.g.,x). The cor-
responding alphabets of random variables are in calligraphic
font (e.g.,X ) and so are all sets and events (e.g.,C ). For
vectors,X i

j , (Xj , . . . , Xi) and if j = 1, the abbreviation
X i , X i

1 is used. In addition,Xn\i , (X i−1, Xn
i+1). The

probability mass function (pmf) of a discrete random variable
X is denoted aspX(x) or more simply asp(x). Random
codebooks are denoted by a special script fontC while a
codebook realization is denoted asC. For ana ≥ 0, we also
commonly use the notation[1 : 2a] , {1, . . . , 2⌈a⌉}.

II. PROBLEM SETUP

A. The Secret Key Generation Protocol

The setting is shown in Fig. 1. Consider a 3-receiver DMBC
(S, p(x, y, z|s),X × Y × Z) consisting of four finite sets
S,X ,Y,Z and a collection of conditional pmfsp(x, y, z|s)
on X × Y × Z. Alice, at terminalX , controls the channel
input sounding signalsn through the encoder vian uses of
the channel. Alice has a private source of randomness used
to select an indexm, which influencessn. The legitimate

receiver at terminalY is known as Bob and the eavesdropper
at terminalZ is known as Eve. There is also a noiseless public
discussion channel which allows Alice to transmit a message
Φ to Bob and Eve. LetΛ : S → [0,Λmax] be a per-letter,
bounded cost function and letΓ > 0 be an admissible cost. A
(2nRM , 2nRΦ , n,Γ) codefor the secret key generation protocol
consists of a tuple of functions(f, φ, kA). In particular,

1) Channel Excitation: Alice selects a messageM ∈ [1 :
2nRM ] uniformly at random. The (satellite) encoder sends
a message-dependent input sequenceSn = f(M) ∈ Sn
(f possibly being random) satisfying

P

[

1

n

n
∑

i=1

Λ(Si) ≤ Γ

]

= 1 . (1)

The input sequenceSn is transmitted overn uses of
p(x, y, z|s). The output sequencesxn, yn and zn are
observed by Alice, Bob (legitimate receiver) and Eve
(eavesdropper) respectively.

2) One-Way (Forward) Public Discussion: After observing
xn, Alice generates a one-way public message1 φ =
φ(m,xn) ∈ [1 : 2nRΦ ], and transmits it over a noiseless
public channel.

3) Key Generation: Alice generates a keykA =
kA(m,x

n) ∈ N. After receiving his channel outputyn

and the public messageφ, Bob generates another key
kB = kB(y

n, φ) ∈ N.

Note the conditional distribution of(X,Y, Z) given S can
be factorized asp(x|s)p(y, z|x, s). The first conditional distri-
butionp(x|s) can be roughly thought of as Alice’s influence on
the channel state via the sounding signalsn, while the second
p(y, z|x, s) can be thought of as a state-dependent channel.

B. Definitions

We now provide the definitions of achievable secret key
rates, secret key capacity and error exponents. As a reminder,
the random variablesKA andKB respectively denote Alice’s
and Bob’s key. The public message is denoted asΦ.

Definition 1 (Weak Achievability). The secret key rate
RSK ∈ R+ is Γ-weakly-achievable(or simplyΓ-achievable) if
there exists a sequence of(2nRM , 2nRΦ , n,Γ) codes (for any
(RM , RΦ) pair) for the secret key generation protocol such
that the following three conditions are satisfied:

lim
n→∞

P(KA 6= KB) = 0 , (2)

lim
n→∞

1

n
I(KA;Z

n,Φ) = 0 , (3)

lim inf
n→∞

1

n
H(KA) ≥ RSK , (4)

Definition 2 ((Forward) Secret Key Capacity). Thesecret key
capacity-cost functionCSK(Γ) is defined as follows:

CSK(Γ) := sup{RSK : RSK is Γ-weakly-achievable} . (5)

1As in [30], we use a common notationφ to denote both the function
φ : [1 : 2nRM ] × Xn → [1 : 2nRΦ ] as well as the output of the function
φ ∈ [1 : 2nRΦ ]. This applies in the rest of the paper.
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We will henceforth say thatCSK(Γ) is the(forward) secret
key capacity(without reference to the costΓ). The reliability
condition in (2) implies that we would like Alice’s and Bob’s
keys to agree with high probability. Thesecrecy condition
in (3) requires that the eavesdropper cannot estimate the
key KA ∈ [1 : 2nRSK ] given her observationZn and the
public messageΦ. This is manifested in that thekey leakage
rate 1

nI(KA;Z
n,Φ) is arbitrarily small for sufficiently large

blocklength n. The rate condition in (4) implies that the
entropy ofKA should be close toRSK. In other words the pmf
of KA should be close to that of a uniform pmf on[1 : 2nRSK ],
so the eavesdropper can only glean a negligible amount of
information.

In many practical settings, the fact that the error probability
in (2) and the key leakage rate in (3) can be made arbitrarily
small with increasing block length is insufficient. See Maurer’s
work in [31] and a more recent exposition in [27]. It would,
in fact, be desirable to quantify their rates of decay and to
devise coding schemes to ensure that these decay rates are as
large as possible. We formalize this by defining the notion of
an achievable secret key rate-exponent triple. To simplifythe
exposition, in our definitions (and corresponding results)of
rates with exponents, we will assume thatΓ = ∞. In other
words, we do not impose a cost constraint onSn as in (1).

Definition 3 (Achievable Secret Key Rate-Exponent Triple).
The secret key rate-exponent triple(RSK, E, F ) ∈ R

3
+ is

achievableif there exists a sequence of(2nRM , 2nRΦ , n) codes
for the secret key generation protocol such that in addition
to (4), the following hold:

lim inf
n→∞

− 1

n
logP(KA 6= KB) ≥ E , (6)

lim inf
n→∞

− 1

n
log I(KA;Z

n,Φ) ≥ F . (7)

In (6), E is known as thereliability exponentand in (7),F
is known as thesecrecy exponent. Collectively,E andF are
known aserror exponents(thoughI(KA;Z

n,Φ) is not, strictly
speaking, an error probability but we abuse terminology to say
that both are “errors”). Definition 3 can also be interpretedas
follows: If a triple (RSK, E, F ) is achievable, then the error
probability in (2) decays2 asP(KA 6= KB)

.
≤ 2−nE and the

key leakage decays asI(KA;Z
n,Φ)

.
≤ 2−nF . Naturally, the

constraint on the entropy of the secret key in (4) is retained
in the above definition.

Definition 4 (Capacity-Reliability-Secrecy Region). The (se-
cret key) capacity-reliability-secrecy regionR ⊂ R

3
+ is the

closure of the set of achievable secret key rate-exponent triples.

In analogy to the notion of weak achievability, we can also
define a more stringent notion known as strong achievability,
also studied in [31], [32].

Definition 5 (Strong Achievability). The secret key rateRSK

is strongly-achievableif (RSK, E, F ) is achievable for some
E > 0 andF > 0.

2Here and in the following, for a pair of positive sequences{(an, bn)}n∈N,
we say thatan

.

≤ bn if lim supn→∞
n−1 log(an/bn) ≤ 0. The notation

.

≥ is defined analogously. We say thatan
.
= bn if an

.

≤ bn andan
.

≥ bn.

We conclude our suite of definitions by formalizing the
notion of degraded channels.

Definition 6 (Degradedness). We say that the DMBC
p(x, y, z|s) is degradedif (X,S) − Y − Z form a Markov
chain, i.e.,p(y, z|x, s) = p(y|x, s)p(z|y).

In this case, we also say that the DMBCp(x, y, z|s) is de-
gradedin favor ofBob or equivalently that Eve’s observation is
a degraded versionof Bob’s. Note that we do not differentiate
between physical and stochastic degradedness [30, Ch. 5]. The
capacity results will turn out to be identical for both cases.

III. B ASIC CAPACITY RESULTS

We present our capacity results in this section. These
correspond to Definitions 1 and 2 and we emphasize that
RM andRΦ are unconstrained here. We leverage on a source
emulation result by Ahlswede-Csiszár [3] to give a single-letter
expression for the secret key capacity containing two auxiliary
random variables taking into account thatSn has to satisfy the
cost constraint in (1). We also provide a looser upper bound
that contains no auxiliary random variables. The upper bound
is tight when the DMBC is degraded in favor of Bob. The
capacity results in this section motivate the more refined error
exponent analysis in the following section whereRΦ can be
constrained and we will see that a judicious choice ofRM

does not reduceCSK in the case of degraded DMBCs.

Proposition 1 (Secret Key Capacity). The secret key capacity
of DMBC (S, p(x, y, z|s),X × Y × Z) is

CSK(Γ) = max [I(U ;Y |W )− I(U ;Z|W )] , (8)

where the maximization is over all joint distributions thatfac-
tor in accordance toW −U−(X,S)−(Y, Z) or equivalently,

p(w, u, s, x, y, z) = p(w)p(u|w)p(x, s|u)p(y, z|x, s) (9)

such thatE[Λ(S)] ≤ Γ.

By repeated applications of Bayes rule, the decomposition
in (9) can be written as

p(w, u, s, x, y, z) = p(w|u)p(u|x, s)p(s)p(x, y, z|s) . (10)

Since the DMBCp(x, y, z|s) is given, the optimization in (8) is
over the source distributionp(s) and the auxiliary conditional
distributions p(w|u) and p(u|x, s). Furthermore, by using
the Fenchel-Eggleston-Carathéodry Theorem [30, App. C],it
can be argued that the cardinalities of the auxiliary random
variablesW andU can be bounded as|W| ≤ |X ||S|+3 and
|U| ≤ (|X ||S| + 3)(|X ||S|+ 1) respectively.

Proof of Proposition 1: Achievability follows from [3,
Theorem 1] for Model SW with a slight modification to ac-
count for cost constraint onSn in (1). Fix anǫ > 0 and a joint
distribution in (9) achievingE[Λ(S)] ≤ Γ

1+ǫ . Let S ∼ pS(s)

be theS-marginal of (9) and let its typical set3 be T (n)
ǫ (S).

Index all the elements inT (n)
ǫ (S) as [1 : |T (n)

ǫ (S)|]. We are

3The typical setdefined inT (n)
ǫ (S) [30, Sec. 2.4] consists of all sequences

sn whose type (empirical distribution)π(s; sn) satisfies|π(s; sn)−pS(s)| ≤
ǫ pS(s) for every s ∈ S. The typical average lemma [30, Sec. 2.4] implies
that n(1− ǫ)H(S) ≤ log |T

(n)
ǫ (S)| ≤ n(1 + ǫ)H(S).
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only going to excite the DMBCp(x, y, z|s) using sequences
belonging toT (n)

ǫ (S). By the typical average lemma [30,
Sec. 2.4], this ensures that for everyn, the almost sure cost
constraint in (1) is satisfied.

The encoder has the codebookT (n)
ǫ (S), which is known to

all parties. Alice generates an indexM ∈ [1 : |T (n)
ǫ (S)|]

uniformly at random so in this coding scheme,RM =
1
n log |T (n)

ǫ (S)| = H(S) + δ(ǫ) for someδ(ǫ) ↓ 0 as ǫ ↓ 0.
GivenM , the encoder transmits the sequence indexed byM in
the codebook. Note thatpnS(T

(n)
ǫ (S)) is arbitrarily close to one

for large enoughn. Hence, just as in the proof of [3, Theorem
1], we can consecutively select mutually disjoint wiretap codes
{Ci}Ni=1 from T (n)

ǫ (S)×Xn (with η in [3, Eq. (4.1)] replaced
by 2η, say) where each codebookCi contains codewords of
the same type. The rest of the proof in [3, Theorem 1] follows
verbatim with our(X,S) in the role ofX there. This allows us
to assert thatI(U ;Y |W )−I(U ;Z|W ) is a one-way (forward)
achievable key rate. Note that in our setting, Alice receives
Xn and also hasSn (a function of her privately generated
indexM ), Bob receivesY n and Eve receivesZn. The proof
is completed by takingǫ ↓ 0 and using the continuity of
Γ 7→ CSK(Γ). That CSK(Γ) is continuous follows from the
continuity of I(U ;Y |W ), I(U ;Z|W ) andE[Λ(S)] in (9).

The converse proof of Theorem 1 is standard and we provide
it in Section VI-A for completeness. It relies on a simple
application of the Csiszár-sum-identity [30, Sec. 2.3] and an
appropriate identification of the auxiliary random variables that
satisfy the Markov conditions in (9).

To find the secret key capacity for specific channels, two
auxiliary random variablesW andU solving (8) have to be
identified. This may be a difficult task. In the next proposition,
we provide an (albeit looser) upper bound which does not
involve any auxiliary random variables. This result will turn
out to be important in Section V where we present several
channels for which we can calculate the secret key capacity-
cost function in closed-form.

Proposition 2 (Upper Bound in Secret Key Capacity). The
secret key capacity is upper bounded as

CSK(Γ) ≤ max I(X,S;Y |Z) , (11)

where the maximization is over all input distributionsp(s)
such thatE[Λ(S)] ≤ Γ.

The proof of this proposition is given in Section VI-B.
Roughly speaking, the expression in (11) can be interpreted
as the secret key capacity when Alice and Bob have full
knowledge (side information) of Eve’s observationZ, hence
the conditioning onZ. We note by using the techniques in
Ahlswede-Csiszár [3] (and in particular Lemma 2.2 therein)
that our upper bound also holds for the scenario where the
parties Alice and Bob can exchangemultiple messages–the
multi-way discussion scenario.

In the case of degradedp(x, y, z|s), the result in Proposi-
tion 2 is tight.

Corollary 3 (Secret Key Capacity of Degraded DMBCs). If
the DMBCp(x, y, z|s) is degraded, the secret key capacity is

CSK(Γ) = max [I(X,S;Y )− I(X,S;Z)] , (12)

where the maximization is over all input distributionsp(s)
such thatE[Λ(S)] ≤ Γ.

Proof: For achievability, we can chooseW = ∅ and
U = (X,S) in (8). The Markov condition in (9) is satisfied.

For the converse, we observe from Proposition 2 that the
secret key capacity of the degraded DMBC can be upper
bounded as

CSK(Γ) ≤ I(X,S;Y |Z) (13)

= I(X,S;Y )− I(X,S;Z) . (14)

The last equality is due to the fact that for degraded channels,
(X,S)− Y − Z forms a Markov chain.

Notice that for a fixedp(s), the difference of mutual
informations in (12) can be decomposed into two parts:

I(X,S;Y )− I(X,S;Z) = Rch[p(s)] +Rsrc[p(s)], (15)

where the channel and source rates are respectively defined as

Rch[p(s)] , I(S;Y )− I(S;Z), and (16)

Rsrc[p(s)] , I(X ;Y |S)− I(X ;Z|S). (17)

The first rateRch[p(s)] can be interpreted as the confidential
message rate of the wiretap channelp(y, z|s) [33]. The second
rateRsrc[p(s)] is the secret key rate from an excited correlated
source(X,Y, Z) previously studied in [22] for a particular
sounding signalsn with type p(s). In the present setup,sn

is randomly chosen by Alice. As such, we can optimize over
its distributionp(s) to find the largest “sum rate”Rch[p(s)]+
Rsrc[p(s)]. It turns out that there is a natural interplay and
tradeoff betweenRch[p(s)] andRsrc[p(s)]. We illustrate this
numerically using an example in Section V-A.

We provide an alternative proof of the capacity of degraded
DMBCs via the error exponent route in the next section. We
note that the flexibility of the amount of private randomness
that Alice has in the form of the random messageM (which
we did not exploit in this section) allows us to operate at a
lower RΦ and yet result in a positive capacity.

IV. ERROR EXPONENT THEOREM

In this section, we present an inner bound for the secret
key capacity-reliability-secrecy region per Definition 4.Our
general result is then specialized to other known results in
the literature. Recall that for the error exponent results,we
consider the case when there is no cost constraint on the
codewords for simplicity (i.e.,Γ =∞).

We make the following two observations when we employ
the achievability strategy proposed in this paper which is
a random binning scheme. First, the decoding error proba-
bility P(KA 6= KB) is only a function of marginal distri-
bution p(x, y, s) = p(s)p(x, y|s). Second, the key leakage
I(KA;Z

n,Φ) is only a function of marginal distribution
p(x, z, s). This means that we can characterize the achievable
reliability and secrecy exponents separately as functionsof
each marginal distribution.
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A. Basic Definitions

Before we present our result, we begin with a few defini-
tions. Let

Ẽ(1)
o (p(s), ρ, RΦ) ,

ρRΦ − log
∑

s,y

p(s)p(y|s)
[

∑

s,x

p(x|y, s) 1
1+ρ

]1+ρ

, (18)

Ẽ(2)
o (p(s), ρ, RΦ, RM ) ,

ρ(RΦ −RM )− log
∑

s

[

∑

x,y

p(s)p(x, y|s) 1
1+ρ

]1+ρ

, (19)

Ẽ(3)
o (p(s), ρ, RΦ, RM ) ,

ρ(RΦ −RM )− log
∑

y

[

∑

s,x

p(s)p(x, y|s) 1
1+ρ

]1+ρ

. (20)

As well, define

Eo(p(s), RΦ, RM ) , min
{

max
0≤ρ≤1

Ẽ(1)
o (p(s), ρ, RΦ),

max
0≤ρ≤1

Ẽ(2)
o (p(s), ρ, RΦ, RM ), max

0≤ρ≤1
Ẽ(3)

o (p(s), ρ, RΦ, RM )
}

.

(21)

Similarly, define

F̃o(p(s), α,RSK, RΦ, RM ) ,

−α(RSK+RΦ−RM )−log
∑

x,z,s

p(x, z, s)

[

p(x, z|s)
p(z)

]α

, (22)

Fo(p(s), RSK, RΦ, RM ), sup
0<α≤1

F̃o(p(s), α,RSK, RΦ, RM ).

(23)

We now define a rate-exponent region parameterized by the in-
put distributionp(s) and the pair of auxiliary rates(RΦ, RM ):

R̃(p(s), RΦ, RM ) =
{

(RSK, Ẽ, F̃ ) ∈ R
3
+ :

Ẽ ≤ Eo(p(s), RΦ, RM )

F̃ ≤ Fo(p(s), RSK, RΦ, RM )
}

. (24)

B. The Inner Bound

The following theorem provides an inner bound to the
capacity-reliability-secrecy regionR.

Theorem 4 (Inner Bound to the Capacity-Reliability-Secrecy
Region). The union of the regions in(24) is an inner bound
to the secret key capacity-reliability-secrecy region, i.e.,

⋃

p(s),RΦ,RM

R̃(p(s), RΦ, RM ) ⊆ R . (25)

The proof of this theorem can be found in Section VII and
hinges on an ML-MAP decoding strategy. More precisely,
given (yn, φ), Bob first uses the following rule to estimate
Alice’s source of private randomnesŝm and Alice’s received
sequencêxn:

(m̂, x̂n) , argmax
(m,xn):φ(m,xn)=φ

p(yn|sn(m))p(xn|yn, sn(m)) .

(26)

The functionφ(m,xn) is a (random) binning function, which
is defined and discussed in greater detail in Section VII-A. The
exponentsẼ(1)

o andẼ(2)
o represent the marginal events{M̂ =

M, X̂n 6= Xn} and {M̂ 6= M, X̂n = Xn}, respectively.
The former is a Slepian-Wolf-type exponent [11] (X to be
reconstructed given vector side-information(Y, S)) while the
latter is a channel coding-type exponent [10, Sec. 5.6] (input
S and vector output(X,Y )). The exponentẼ(3)

o represents
the joint error eventM̂ 6= M, X̂n 6= Xn and is a hybrid
of Slepian-Wolf and channel coding. Upon the decoding of
(m̂, x̂n), Bob declares his key to bekB = k(m̂, x̂n), where
k(·, ·) is another (random) binning function. The proof for
the secrecy exponent leverages on the properties of the Rényi
entropy as in [12], [22].

The union of the regions in (25) is likely to be a strict inner
bound since our coding scheme does not involve the use of any
auxiliary random variables (unlike in Proposition 1). However,
as we shall see in Section IV-D, our analysis of the ML-MAP
strategy shows that all weakly-achievable ratesRSK < CSK

are strongly-achievable for degraded channels.
Another reason as to why the error exponent region is likely

not tight may be distilled from works by Csiszár-Narayan [15],
later extended by Gohari-Anantharam [34], [35]. Consider an
external agent who can recoverXn perfectly after receiving
Eve’s information(Zn,Φ) and the shared secret keyKA. If
the agent were not able to recoverXn there would be some
piece of information aboutXn, independent of(Zn,Φ,KA),
that the external agent would require to knowXn perfectly. In
such a setting, Alice could reveal the needed information on
the public channel without lowering the secret key rate. This
follows since what would be revealed is independent ofKA,
and thus of no use to Eve. Thus, without loss of generality,
we can assume the external agent knowsXn perfectly.

Now, say thatZ is a degraded version ofY . In this
setting Bob can simulateZn. Bob also has(Φ,KB) (note that
KB = KA with high probability). So, Bob too can be assumed
to recoverXn perfectly. In other words, in the degraded setting
there is no loss in generality in requiring Bob to recover
Xn. However, when there is a non-trivial joint distribution
amongstX,Y andZ (i.e., the non-degraded case), it is not
necessarily true that Bob can recoverXn. Hence the error-
exponent strategy may be strictly suboptimal (at least in a
capacity sense for non-degraded channels). This observation
is consistent with the “separation” strategy elucidated in(16)
and (17) as the separation strategy–which is optimal in the
degraded case–in effect implies that Bob can decodeXn as
discussed in the previous paragraph.

C. Positivity of Error Exponents and Interpretations

For a particular choice of input distributionp(s), the follow-
ing proposition characterizes the boundary of the achievable
rate-exponent region in (24).

Proposition 5 (Positivity of Error Exponents). For a fixed
p(s), the exponentEo(p(s), RΦ, RM ) in (21) is positive if

RΦ > H(X |Y, S) and (27)

RΦ −RM > H(X |Y, S)− I(S;Y ) . (28)
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−H(X|Y, S) H(X|Y, S) H(X,S|Y )

R
M

=
R
Φ
+
I(
S
;Y

)−
H
(X

|Y
,S
)

E+oA
t

t

B

Fig. 2. The region whereEo(p(s), RΦ, RM ) is positive is denoted by
the shaded setE+

o . See (27) and (28). PointsA = (H(X|Y, S), I(S; Y ))
andB = (H(X, S|Y ),H(S)) respectively denote the two-step approach (of
Bob first recoveringM through channel decoding and then recoveringXn

via Slepian-Wolf decoding) and the source emulation approach (with vector
source(X, S) given Y just as in the achievability proof of Proposition 1)
discussed in greater detail in Section IV-E-III. The semi-infinite ray emanating
from A, passing throughB, and extending northeast is the capacity-achieving
set of(RΦ, RM ) for our error exponent scheme. For source emulation it only
starts fromB and extends northeast.

See Fig. 2. Similarly, the exponentFo(p(s), RSK, RΦ, RM )
in (23) is positive if

RSK +RΦ −RM < H(X |Z, S)− I(S;Z) . (29)

See Fig. 3.

The proposition can be proved by firstly verifying that
Ẽ

(j)
o , j = 1, 2, 3 (resp.F̃o) are concave functions ofρ (resp.

α); secondly by computing the partial derivative ofẼ(j)
o (resp.

F̃o) with respect toρ (resp.α); and finally by evaluating the
slope atρ = 0 (resp.α = 0). This is a standard calculation
and as such, we omit the details. See [22, Theorem 3] and the
accompanying remarks for similar calculations. Note that there
are only two rate constraints for reliability in (27) and (28).
This is because the rate constraint required forẼ

(2)
o > 0 is

RM −RΦ < I(X,Y ;S) (30)

which is already implied by (28) sinceI(S;Y )−H(X |Y, S) =
I(X,Y ;S)−H(X |Y ) ≤ I(X,Y ;S). Note that in the deriva-
tion of Ẽ(2)

o and (30), we treat(X,Y ) as a vector output of
a channel with inputS. We had mentioned previously that
RΦ can be reduced and yet the secret-key capacity would
remain unchanged if we reduceRM accordingly. However, we
observe from (27) that there is nevertheless a lower bound on
RΦ due to a marginal error event. Thus,RΦ cannot be reduced
arbitrarily, and in particular not beyond the conditional entropy
H(X |Y, S). Intuitively, the corner point in Fig. 2 (pointA)
whereRΦ = H(X |Y, S) andRM = I(S;Y ) may be achieved
from a two-step decoding procedure where Bob first recovers
M through channel decoding givenY n and then recoversXn

via Slepian-Wolf decoding given the vector side-information

RΦ

RM

0

R
M

=
R
Φ
+
R
S
K
+
I(
S
;Z
)
−
H
(X

|Z
, S
)

RSK+I(S;Z)

−H(X|Z, S)

E+o ∩ F+
o

❅
❅❅❘

Fig. 3. This is the same as Fig. 2 with (29) also illustrated. The region where
Eo(p(s), RΦ, RM ) andFo(p(s), RΦ, RM ) are both positive is denoted by
the shaded setE+

o ∩F+
o . This combines the rate constraints in (27), (28) and

(29). The intuition here is the following: To maximizeRSK, the line indicated
by the equationRM = RΦ+RSK+I(S;Z)−H(X|Z,S) should be shifted
upwards until the shaded region almost vanishes.

(Sn(M), Y n) (M assumed to be decoded correctly). This two-
step decoding procedure is, however, not what we do in the
ML-MAP decoding scheme in (26). The ML-MAP decoding
scheme decodesM andXn jointly so its exponent is likely
to be higher than the two-step decoding scheme.

The first rate condition in (28) for the reliability exponent
to be positive may be rewritten as follows:

RM < I(S;Y ) + [RΦ −H(X |Y, S)] . (31)

Using (31), we see that ifRΦ > H(X |Y, S) (i.e., the
compression rate is strictly larger than the Slepian-Wolf limit
H(X |Y, S) as allowed by (27)), we may transmit the message
M reliably at rates higher thanI(S;Y ), which is the maximum
transmission rate when the input distributionp(s) is used for
the channelp(y|s).

The rate condition in (29) for the secrecy exponent to be
positive may be written in the following equivalent forms:

RSK +RΦ < H(X |Z, S) + [RM − I(S;Z)] , (32a)

RM > I(S;Z)−[H(X |Z, S)−(RSK+RΦ)]. (32b)

The authors in [22, Theorem 3] showed that the secrecy
exponent is positive whenRSK+RΦ < H(X |Z, S). However,
we observe from (32a) that ifRM > I(S;Z) (i.e., the
message rate is larger than what Eve can resolve with her
channelp(z|s)), the secrecy exponent is positive even though
RSK+RΦ may be larger thanH(X |Z, S). Similarly, observe
from (32b) that ifRSK+RΦ < H(X |Z, S), thenRM may be
smaller thanI(S;Z) for the secrecy exponent to be positive.

D. Strong Achievability and Connections to Degradedness

Assume that the DMBCp(x, y, z|s) is degraded. We then
eliminate the ratesRΦ andRM in (28) and (29) and conclude
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TABLE I
SPECIALIZATION OF PROPOSITION5 TO EXISTING RESULTS

Specialization Reliability Eo SecrecyFo

I X = ∅ Channel coding Wiretap channel
RΦ = 0 [10, Theorem 5.6.2] coding [12, Theorem 3]

II S = ∅ Source coding with Secret key generation with
RM = 0 side information [11] public discussion [12]

Source emulation Source emulation
III RM = H(S) (X, S) (X, S)

applied to [11] applied to [12]

thatRSK is strongly-achievable if

RSK < H(X |Z, S)− I(S;Z)− (H(X |Y, S)− I(S;Y ))

= I(X ;Y |S)− I(X ;Z|S)− I(S;Z) + I(S;Y )

= I(X,S;Y )− I(X,S;Z)
= I(X,S;Y |Z) ; (33)

per (27) we also require thatRΦ > H(X |Y, S). The last
equality holds due to the assumption of degradedness, cf.
Defn. 6. See Fig. 3. This concurs with the result for the secret
key capacity for degraded channels obtained using pure source
emulation in Corollary 3. This alternative method of deriving
the secret key capacity for the degraded case via the error
exponent route demonstrates that for degraded channels, the
weak and strong definitions for achievability (in Definitions 1
and 5 respectively) coincide.

E. Connections to Previous Results

The reliability exponent in (20) is akin to a combination of
Gallager’s exponents for channel coding [10, Sec. 5.6] and
for source coding with side information [11]. The secrecy
exponent has been studied for the secret key agreement source
model [12], [28], the corresponding channel model [12], and
the source model with external deterministic excitation [22].
Hayashi [12], [25] also analyzed the exponential decay of
the information leakage rate for the wiretap channel. The
expression in (22) is akin to a combination of the key leakage
rate due to Eve’s DMCp(z|s) [12] and the secrecy exponent
of the excited DMMSp(x, z|s) [22].

In light of these observations, Proposition 5 may be special-
ized to derive conditions for the positivity of the exponents for
the pure channel-type and the pure source-type models:

I. Alice has no access to the channel output (X ← ∅) and
no public discussion (RΦ = 0): This case specializes to
the wiretap channelp(y, z|s). In this case, the reliability
exponentEo(p(s), 0, RM ) reduces to that of channel
coding over a discrete memoryless channel (DMC) [10,
Theorem 5.6.2] and (28) reduces to the condition

RM < I(S;Y ), (34)

which we recognize as the condition for reliable commu-
nication over the DMCp(y|s).
In addition, our secrecy exponentFo(p(s), RSK, 0, RM )
reduces to Hayashi’s wiretap secrecy exponent in [12,
Eq. (14)] and (33) reduces to the confidential message
rate constraint

RSK < I(S;Y )− I(S;Z), (35)

which we recognize as the condition for reliable commu-
nication and secrecy for the wiretap channel. Note that
the usual auxiliary random variable “U ” [30, Theorem
22.1] has been taken to be equal to the sourceS in (35).

II. Alice has no control of the channel input: This case
specializes to the secret key generation model with public
discussion characterized by the DMMSp(x, y, z) =
∑

s p(s)p(x, y, z|s) studied in [4], [15], [16], [34], [35].
The reliability exponent was characterized in [11] and
was stated as a special case of the main result in [22].
By letting S ← ∅ andRM = 0, (28) simplifies to

RΦ > H(X |Y ) (36)

which we recognize as the condition for lossless source
coding ofX given side informationY [36]. This recovers
an analogue of the result in [22, Theorem 3]. Inequality
(36) also concurs with (27).
We remark that Watanabe et al. [29] showed that strongly
secure privacy amplification is not achievable by Slepian-
Wolf coding. But this does not contradict our error
exponent result because the codes used in [29] have rates
tending to the optimal compression rateH(X |Y ) in (36)
at a rate ofb/

√
n for someb ∈ R (cf. [37]). However, we

operate at ratesstrictly aboveH(X |Y ) in (36) so strong
secrecy is indeed possible.
The secrecy exponentFo(p(s), RSK, RΦ, 0) was derived
in [12], [22], [28]. Our secrecy exponent result in (29)
specializes in this case to

RSK +RΦ < H(X |Z) (37)

which recovers an analogue of the main result in Chou
et al. [22, Theorem 3].

III. Alice excites the channel withSn generated in an i.i.d.
manner according topS and considers the joint variable
(X,S) as her source: This is similar to the source
emulation scheme adopted in the proof of Proposition
1 without cost constraint and ignoring the encoder but
considering the three terminals: Alice with(X,S), Bob
with Y , and Eve withZ. This is pointB in Fig. 2. The
reliability and secrecy exponents will be of the form in
[11] and [12], respectively, with i.i.d. source(X,S). Thus
substitutingRM = H(S) in (28) and (29) yields

RΦ > H(X |Y, S)− I(S;Y ) +H(S)

= H(X,S|Y ) (38)

RSK + RΦ < H(X |Z, S)− I(S;Z) +H(S)

= H(X,S|Z) . (39)

Upon the elimination ofRΦ which, by (38), satisfies the
required lower bound in (27), we have

RSK < H(X,S|Z)−H(X,S|Y )

= I(X,S;Y )− I(X,S;Z) . (40)

Notice that the difference of mutual informations on the
RHS of (40) isI(X,S;Y |Z) for degraded DMBCs. This
concurs with the secret key capacity of degraded DMBCs
in Corollary 3.
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Fig. 4. Secret key rate of the binary on-off channel as a function of β. The
input S ∼ Bern (β). The parameters areq = 0.5, q̃ = 0.8, δ = 0.1, δ3 =
0.2. Note thatCSK = maxβ∈[0,1]RSK(β) and the maximizingβ∗ ≈ 0.59.

As is mentioned in the Introduction, while the source
emulation scheme achieves the secret key capacity, this
rate cannot be strongly achieved (per Definition 5) if
RΦ is upper bounded by some quantity (but nonetheless
still satisfies the lower bound in (27)) if we do not also
have the flexibility to concurrently set the rate of the
sounding signalRM . Observe that the lower bound on
RΦ in (38) resulting from the pure source emulation
strategy (cf. the achievability proof of Proposition 1) is
H(X,S|Y ) which is at least as large asH(X |Y, S) in
(27) in Proposition 5 and, in general, is strictly larger.
Thus, our error exponent scheme which involves wiretap
coding plus key distillation allows us to reduceRΦ from
H(X,S|Y ) toH(X |Y, S)–the difference beingH(S|Y ).

The specializations are summarized in Table I.

V. NUMERICAL EXAMPLES

We consider two examples in this section. The first example
illustrates the tradeoffs involved in the capacity resultsin
Section III. The second example illustrates the tradeoffs in
the achievable error exponent results in Section IV.

A. Capacity of the Binary On-off Channel

For our first example consider the binary on-off model

X = H · S ⊕N1

Y = H · S ⊕N2

Z = (H̃ ·H) · S ⊕N3 ,

where all the variables are binary and where the operations
are performed in the field of size 2. Hence, the addition
above is is binary modulo-2 addition. The “channel gain”H
is Bern (q) andH̃ is Bern (q̃).4 NoiseNi is Bern (δi) and the
Ni are mutually independent. The channel describes a model

4We say that a binary random variableX is Bern (γ) if Pr[X = 1] = γ.

in which, in the absence of noise, Eve’s observation is strictly
worse than that of Alice’s and Bob’s sincẽH is present.

If δ1 = δ2 = δ and q̃δ < δ3, then Eve’s channel output
is a degraded version of Bob’s. In this case, there exists a
Z ′ , H̃ ′ · Y ⊕N ′

3 for someH̃ ′, with the same distribution as
H̃ , and independentN ′

3 ∼ Bern (δ′3) such that(X,S)−Y−Z ′,
where

δ′3 =
δ3 − q̃δ
1− 2q̃δ

.

Let S ∼ Bern (β). The first term ofRch is

I(S;Y ) = H(Y )−H(Y |S)
= Hb(βq ∗ δ)− [βH(Y |S = 1) + (1− β)H(Y |S = 0)]

= Hb(βq ∗ δ)− βHb(q ∗ δ)− (1− β)Hb(δ) ,

whereHb(·) is the binary entropy function and the operation
a ∗ b , a(1− b)+ (1− a)b. Similarly, the second term ofRch

can be expressed as

I(S;Z) = Hb(βq̃q ∗ δ3)− βHb(q̃q ∗ δ3)− (1− β)Hb(δ3) .

The secret key rate due to sourceX can be calculated as

Rsrc = I(X ;Y |S)− I(X ;Z|S)
= β[I(X ;Y |S = 1)− I(X ;Z|S = 1)]

= β[Hb(q ∗ δ)−Hb(δ ∗ δ)−Hb(q̃q ∗ δ3)
+ (1− q ∗ δ)Hb(δ

′
3) + (q ∗ δ)Hb(q̃ ∗ δ′3)] .

The second equality follows because ifS = 0, the source is
not observed and so there is no mutual information between
X andY (nor betweenX andZ).

The secret key rate when the input is aBern (β) source is
RSK(β) = Rch(β) + Rsrc(β) which is plotted in Fig. 4 as a
function of β for the following parameters:q = 0.5, q̃ = 0.8,
δ = 0.1, δ3 = 0.2. Note thatRch is a concave function ofβ
while Rsrc is a linear function ofβ. If β = 0 thenRSK = 0
sinceX,Y, Z are jointly statistically independent. On the other
hand, ifβ = 1 thenSn is the all ones sequence and theRsrc is
maximal since the input excites all common randomness due to
the commonon-off coefficientH . However, whenβ = 1, the
secrecy rate of the wiretap channelRch = 0. As we decrease
β Rch initially increases faster thanRsrc decreases, resulting
in the maximumRSK being achieved at an intermediate value
of β. In this example we have observed an inherent tradeoff
between the amount of the secret key rate due to common
randomness and due to wiretap secrecy.

B. Error Exponents

We now illustrate our error exponent results. We assume
that all variables are binary valued, i.e.,X = Y = Z = S =
{0, 1}. We selected the parameters of the DMBCp(x, y, z|s)
to ensure that Eve’s observationZ is a degraded version of
Bob’s Y . We do so by first selecting the parameters of the
conditional distributionp(x, y|s), then we proceeded to choose
the parameters in the conditional distributionp(z|y). We
keep the channelp(x, y, z|s) fixed throughout this subsection.
Define theinput distribution-optimized reliability exponent

Er(RΦ, RM ) , max
p(s)

Eo(p(s), RΦ, RM ) , (41)
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where Eo was defined in (21). Also define theinput
distribution-optimized secrecy exponent:

Fr(RSK, RΦ, RM ) , max
p(s)

Fo(p(s), RSK, RΦ, RM ) , (42)

where Fo was defined in (23). Note that for a particular
set of rates(RSK, RΦ, RM ), the optimal input distributions
p∗(s) in (41) and (42) may bedifferent. Hence, one has to
use acommonp(s) in (25). We append the subscriptr to
Er(RΦ, RM ) andFr(RSK, RΦ, RM ) to allude to the fact that
in the derivation of these exponents, we use bothrandom
coding [10] and random binningschemes [11].

The functionsEr(RΦ, RM ) andFr(RSK, RΦ, RM ) are plot-
ted in Figs. 5 and 6 respectively. From Fig. 5, we observe
that RΦ 7→ Er(RΦ, RM ) is a non-decreasing function. This
is intuitive because given more information (i.e., whenRΦ

is large) and withRM fixed, Bob can decode the keyKB

with greater reliability. In contrast,RM 7→ Er(RΦ, RM ) is a
non-increasing function. This is also intuitive because Alice’s
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private source of randomness is increased ifRM is increased
making it more challenging for Bob to decode the key.

From Fig. 6, we observe thatRΦ 7→ Fr(RSK, RΦ, RM )
is a non-increasing function. This is because as more public
information is made available to Bob, with all else fixed,
the key leakage rate increases, resulting in a smaller secrecy
exponent. The functionRM 7→ Fr(RSK, RΦ, RM ) is non-
decreasing because as Alice increases the use of her private
randomness through a largerRM , she can conceal more of
the key from Eve. Finally,RSK 7→ Fr(RSK, RΦ, RM ) is non-
increasing becauseRSK can be interpreted as the residual
source of secrecy that can be generated by Alice and Bob
while keeping Eve ignorant of the key generated.

In Fig. 7, we plot the exponents as a function ofRΦ andRM

for RSK = 0.01. The input distributionp(s) is kept fixed. Note
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that there is a non-empty region in the(RΦ, RM ) plane for
which bothexponents are positive, indicating thatRSK = 0.01
is strongly achievable. For clarity, we also present a two-
dimensional visualization in Fig. 8 which helps to show the
utility of our sender-excited model. We observe the following:
Suppose we want to have a secret key rate ofRSK = 0.01
and that the public message rate must be limited to, say,
RΦ ≤ 1.68 due to system constraints. Then by simply adopting
a source emulation strategy,RM = H(S) = 1 (i.e., case
(III) of Section IV-E), and the reliability exponent is zero
even though the secrecy exponent is high. The reliability and
secrecy exponents for this choice of parameters is plotted with
the thick solid lines. Thus, wecannot achievethe key rate of
RSK = 0.01 with the fixed input distributionp(s). However,
our model affords us the flexibility to tuneRM . If, for instance,
we reduce it toRM = 0.85 while keepingRΦ = 1.68 we
tradeoff a reduction in the secrecy exponent for an increase
in the reliability exponent. With this new choice ofRM both
exponents will be positive and the key rateRSK = 0.01 is
(strongly) achieved with the same fixedp(s). The exponents
for this choice of parameters are plotted by the thin dashed
lines.

VI. PROOFS OFRESULTS IN SECTION III

A. Proof of Converse of Proposition 1

We start with a lemma [3, Lemma 4.1], which is a conse-
quence of the Csiszár sum identity [30, Ch. 2].

Lemma 6. The following equality holds for arbitrary random
variablesK,Φ, Y n, Zn:

I(K;Y n|Φ)− I(K;Zn|Φ)

=
n
∑

i=1

I(K;Yi|Y i−1, Zn
i+1,Φ)− I(K;Zi|Y i−1, Zn

i+1,Φ) .

Proof of Converse of Proposition 1:Fix any sequence of
(2nRM , 2nRΦ , n,Γ) codes per Section II-A. LetRSK be any
Γ-weakly achievable rate per Definition 1. Consider,

nRSK ≤ I(KA;Y
n,Φ) + nǫn (43)

≤ I(KA;Y
n,Φ)− I(KA;Z

n,Φ) + 2nǫn (44)

= I(KA;Y
n|Φ)− I(KA;Z

n|Φ) + 2nǫn

=

n
∑

i=1

I(KA;Yi|Y i−1, Zn
i+1,Φ)

− I(KA;Zi|Y i−1, Zn
i+1,Φ) + 2nǫn (45)

where (43) is due to Fano’s inequality (ǫn → 0 asn → ∞),
(44) is due to the secrecy condition in (3) and (45) by applying
Lemma 6. Now we make the following identifications of the
auxiliary random variables

Wi , (Y i−1, Zn
i+1,Φ), and Ui , (KA,Wi) . (46)

As can be readily verified, the chosen variablesWi andUi

satisfy the Markov condition

Wi − Ui − (Si, Xi)− (Yi, Zi)

as required by (9). Note that sinceKA and Φ (random
variables contained in our identifications inWi and Ui in

(46)) are both functions of(M,Xn) (see Section II),Si by
itself does not separate(Xi, Yi, Zi) fromWi andUi. However,
the separationdoeshold when(Si, Xi) are grouped together
by the discrete memoryless nature of the channelp(x, y, z|s).
Substituting the choice of auxiliary random variables in (46)
into (45) yields,

nRSK ≤
n
∑

i=1

I(KA;Yi|Wi)− I(KA;Zi|Wi) + 2nǫn

=

n
∑

i=1

I(KA,Wi;Yi|Wi)− I(KA,Wi;Zi|Wi) + 2nǫn

=
n
∑

i=1

I(Ui;Yi|Wi)− I(Ui;Zi|Wi) + 2nǫn .

Now, introduce the time-sharing random variableQ with
uniform distributionP(Q = i) = 1/n for all i ∈ [1 : n]
and independent of(Wn, Un, Sn, Xn, Y n, Zn). Define the
random variablesU , (UQ, Q), W , (WQ, Q), S , SQ,
X , XQ, Y , YQ andZ , ZQ. Then, we have

RSK ≤
n
∑

q=1

P(Q = q)
[

I(Uq;Yq|Wq)− I(Uq;Zq|Wq)
]

+ 2ǫn

= I(UQ;YQ|WQ, Q)− I(UQ;ZQ|WQ, Q) + 2ǫn

= I(UQ, Q;YQ|WQ, Q)− I(UQ, Q;ZQ|WQ, Q) + 2ǫn

= I(U ;Y |W )− I(U ;Z|W ) + 2ǫn . (47)

Note also that sinceSn satisfies the almost sure cost constraint
in (1), 1

n

∑n
i=1 E[Λ(Si)] ≤ Γ holds. This implies from the

definition ofQ andS thatE[Λ(S)] = EQ{E[Λ(SQ) |Q]} ≤ Γ.
Thus to remove the dependence on the code, we maximize (47)
over all joint distributions that satisfy (9) andE[Λ(S)] ≤ Γ,
i.e.,

RSK ≤ max
W−U−(X,S)−(Y,Z)

E[Λ(S)]≤Γ

I(U ;Y |W )− I(U ;Z|W ) + 2ǫn .

Takingn→∞ completes the proof of the converse.

B. Proof of Proposition 2

Proof: We prove the upper bound in (11). Consider the
inequalities:

nRSK ≤ I(KA;Y
n,Φ) + nǫn (48)

≤ I(KA;Y
n,Φ, Zn) + nǫn

= I(KA;Y
n|Φ, Zn) + I(KA; Φ, Z

n) + nǫn

≤ I(KA;Y
n|Φ, Zn) + 2nǫn (49)

≤ I(KA,Φ;Y
n|Zn) + 2nǫn , (50)

where (48) follows Fano’s inequality and (49) is due to the
secrecy condition (3). Continuing from (50), we have

nRSK ≤ I(Xn,M ;Y n|Zn) + 2nǫn (51)

= I(Xn;Y n|Zn) + I(M ;Y n|Xn, Zn) + 2nǫn

≤ I(Xn;Y n|Zn) + I(Sn;Y n|Xn, Zn) + 2nǫn (52)

= I(Sn;Y n|Zn)+I(Xn;Y n|Sn, Zn) + 2nǫn, (53)

where (51) follows because(KA,Φ) is a function of(Xn,M)
and (52) follows because the channel only depends onSn so
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M − Sn − (Xn, Y n, Zn).5 Now the first term (53) can be
upper bounded as follows

I(Sn;Y n|Zn) = H(Y n|Zn)−H(Y n|Sn, Zn)

=

n
∑

i=1

H(Yi|Y i−1, Zn)−H(Yi|Y i−1, Sn, Zn)

≤
n
∑

i=1

H(Yi|Zi)−H(Yi|Si, Zi) =

n
∑

i=1

I(Si;Yi|Zi) , (54)

where the inequality follows by conditioning reduces entropy
and the Markov chain(Y i−1, Zn\i, Sn\i)− (Si, Zi)−Yi. The
second term in (53) can be written as a sum:

I(Xn;Y n|Sn, Zn) =

n
∑

i=1

I(Xi;Yi|Si, Zi) (55)

because the channelp(x, y, z|s) is memoryless. Substitut-
ing (54) and (55) into (53) yields

nRSK ≤
n
∑

i=1

I(Si;Yi|Zi) + I(Xi;Yi|Si, Zi) + 2nǫn

=

n
∑

i=1

I(Xi, Si;Yi|Zi) + 2nǫn . (56)

The proof can be completed using the time-sharing technique
in the converse proof of Proposition 1.

VII. PROOFS OFRESULTS IN SECTION IV

In this section, we provide the proof of Theorem 4 on
the capacity-reliability-secrecy region. This section will be
split into three subsections: In the first subsection, we collect
some relevant definitions and describe the coding scheme.
The second and third subsections contain the proofs of the
achievability (lower bounds) of the reliability and secrecy
exponents respectively. This proves the achievability of the
regionR̃(p(s), RΦ, RM ) defined in (24).

A. Definitions and Coding Scheme

We start with some definitions to describe the generation
of the codewordssn(m), the key and the public message
generation procedures.

Definition 7 (Random code). A (2nRM , n) random code
generated according top(s) is a random subset ofSn which
contains length-n sequencessn(m),m ∈ [1 : 2nRM ] where
each sequencesn(m), called acodeword, is drawn according
to the pmf

∏n
i=1 p(si).

Note that we do not place any cost constraints onp(s)
because we assume thatΓ =∞ in Section IV.

Definition 8 (Random binning function [11]). A 2nR random
binning function for an alphabetU is a random map6 ψ : u ∈
U → b ∈ [1 : 2nR] that satisfies the following properties:

• Uniformity : Each elementu ∈ U is independently and
uniformly assigned to an element of[1 : 2nR].

5In fact, (52) holds with equality becauseSn = Sn(M) in addition to the
stated Markov relationship.

6More precisely,ψ(b|u) is a matrix of conditional probabilities.

• Pairwise Independence: Each pair of differentu, u′ ∈ U
is mappedu 7→ b, u′ 7→ b′ with probability 2−2nR for
each pair of elementsb, b′ ∈ [1 : 2nR] (not necessarily
different).

• The random mapψ is independent of the random code
generation process as per Definition 7. More precisely,

P({Sn = sn} ∩ {ψ(u)= b})= P(Sn=sn)P(ψ(u) = b)

We now introduce the notion of a random binning code for
the secret key generation protocol (See Section II-A).

Definition 9 (Random binning secret key code). A
(2nRSK , 2nRM , 2nRΦ , n) random binning secret key codeis a
(2nRM , 2nRΦ , n) code for the secret key generation protocol
in which the public message and key are generated via two
independent random binning functions:

φ :M×Xn → Φ = [1 : 2nRΦ ] (57)

kA :M×Xn → K = [1 : 2nRSK ] . (58)

More precisely, note from (57) thatφ is a 2nRΦ random
binning function for alphabetM × Xn and from (58) that
kA is a2nRSK random binning function for alphabetM×Xn.

Codebook Generation and Encoding: Fix p(s). We use a
(2nRSK , 2nRM , 2nRΦ , n) random binning secret key code in
which the codewordssn(m),m ∈ M belong to a(2nRM , n)
random code generated according top(s). The codewords
and bin assignments are revealed to all parties before com-
munication starts. We emphasize that by construction, this
(2nRSK , 2nRM , 2nRΦ , n) code is a(2nRM , 2nRΦ , n) code (in
the sense of Section II-A withΓ =∞) such that secret key rate
RSK is achievable. This is becauseKA is uniformly distributed
on [1 : 2nRSK ] so (4) is satisfied.

By the definition ofR̃(p(s), RΦ, RM ) in (24), it suffices to
show the following two assertions hold true for anyp(s):

lim inf
n→∞

− 1

n
logP(KA 6= KB) ≥ Eo(p(s), RΦ, RM ),

lim inf
n→∞

− 1

n
log I(KA;Z

n,Φ) ≥ Fo(p(s), RSK, RΦ, RM ).

This is what we prove in the next two subsections.

B. Proof for the Reliability Exponent

In this section, we will prove thatEo is an achievable
reliability exponent. Recall that Bob has access to his channel
output yn ∈ Yn and the public messageφ ∈ Φ, which
was generated by Alice in accordance to the random binning
function in (58). In order to analyze the error event that Bob’s
key does not match Alice’s

Ekey , {KA 6= KB} , (59)

we stipulate that Bob decodesboth Alice’s received sequence
xn ∈ Xn and Alice’s source of randomnessm ∈ M.

We restate the ML-MAP decoding rule in (26): Given
(yn, φ), Bob declares thatm is the message selected by Alice
andxn is the sequence sent to Alice if the public message bin
index of (m,xn) agrees withφ, i.e.,

φ(m,xn) = φ (60)
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and the probabilities satisfy

p(yn|sn(m))p(xn|yn, sn(m)) ≥
p(yn|sn(m̃))p(x̃n|yn, sn(m̃)) (61)

for all other pairs(m̃, x̃n) such thatφ(m̃, x̃n) = φ. As
mentioned previously, this is a hybrid of an ML and an MAP
rule. Observe that if we were just to maximizep(yn|sn(m))
over m, this would correspond to a pure ML decoding rule
for the channelp(y|s) as in [10, Sec. 5.6]. If instead we
maximizep(xn|yn, sn(m)) over xn given m is known, this
would correspond to a pure MAP decoder for the sourcexn

given side information(m, yn) as in [11].
By analyzing the ML-MAP decoder, we now upper bound

the probability of eventEkey of the ensemble random bin-
ning secret key codeC , i.e., P(Ekey) , EC [P(Ekey|C )] =
∑

C p(C)P(Ekey|C = C). Throughout, we use the notationC
to denote the random code (a random variable) andC to denote
a specific code. Define the error event that Bob decodes either
M or Xn incorrectly

E , {(M̂, X̂n) 6= (M,Xn)} . (62)

Clearly, Ekey ⊂ E . Thus, an upper bound forP(E) also
serves as an upper bound forP(Ekey). Similarly, a lower
bound for the exponent ofP(E) is also a lower bound for the
exponent ofP(Ekey). In the interest of tractability, we upper
boundP(E) [instead ofP(Ekey)] when the ML-MAP decoder
described in (60) and (61) is used. In order to boundP(E), we
decomposeE into the following three disjoint error events:

E1 , {M̂ =M, X̂n 6= Xn} (63)

E2 , {M̂ 6=M, X̂n = Xn} (64)

E3 , {M̂ 6=M, X̂n 6= Xn} (65)

Note that the error exponent is the minimum of the exponents
for P(E1), P(E2) andP(E3). In the following, we only provide
a detailed derivation forP(E3) as it is the most interest-
ing and unconventional. We note that forE1, if M = m,
p(x̂n|yn, sn(m)) ≥ p(xn|yn, sn(m)) (the MAP decoding
part) so this analysis parallels that by Gallager for Slepian-
Wolf coding [11] (reconstructingXn given side information
(Y n, Sn(M)) andM is decoded correctly). Thus, we have

lim inf
n→∞

− 1

n
logP(E1) ≥

ρRΦ − log
∑

s,y

p(s)p(y|s)
(

∑

x

p(x|y, s)1/(1+ρ)

)1+ρ

. (66)

Similarly for E2, we have that p(xn, yn|sn(m̂)) ≥
p(xn, yn|sn(m)) (Bayes rule) so this is simply the error in ML
decoding for channel coding with vector output(X,Y ) and
input S. Consequently, from Gallager’s book [10, Sec. 5.6],

lim inf
n→∞

− 1

n
logP(E2) ≥

ρ(RΦ −RM )− log
∑

s

(

∑

x,y

p(s)p(x, y|s)1/(1+ρ)

)1+ρ

.

(67)

Here we note that there are
.
= 2nRM sounding sequences

sn(m) but by (60), we search within a particular bin indexed
by φ so effectively, there are only

.
= 2n(RM−RΦ) sounding

sequences explaining the leading term in (67).
Now, we analyzeP(E3) in detail. Consider the probability

of error given thatm is the message sent,sn(m) represents
the ensemble of codewords associated tom (by the random
codebook construction in Definition 7),xn is Alice’s received
sequence andyn is Bob’s received sequence. That is, consider

P(E3|yn, sn(m),m, xn)

= P





⋃

m̂6=m,sn(m̂),x̂n 6=xn

A(sn(m̂), m̂, x̂n)



 . (68)

In the above error probability,A(sn(m̂), m̂, x̂n) is de-
fined as the error event that the messagem̂ 6= m,
codeword sn(m̂) and Alice’s sequencêxn 6= xn are
selected in such a way that their ML-MAP objec-
tive value is higher than that of the true parameters
(m, sn(m), xn), i.e., that p(yn|sn(m̂))p(x̂n|yn, sn(m̂)) ≥
p(yn|sn(m))p(xn|yn, sn(m)) and also thatφ(m̂, x̂n) =
φ(m,xn). Note in (68) that the error event is averaged over
all incorrect codewordssn(m̂) due to the random codebook
construction (Definition 7). Now recall the assumption thatthe
binning process is pairwise independent and also independent
of the inputs (Definition 8). More precisely,

P({Sn = sn(m̂)} ∩ {φ(m,xn) = φ(m̂, x̂n)})
= P(Sn = sn(m̂))P(φ(m,xn) = φ(m̂, x̂n))

= p(sn(m̂))
∑

φ∈Φ

1

|Φ|2 =
p(sn(m̂))

|Φ| . (69)

Let 1B be the indicator variable of the setB. By using the
definition ofA(sn(m̂), m̂, x̂n) and (69), we can upper bound
the probability ofA(sn(m̂), m̂, x̂n) as follows:

P(A(sn(m̂), m̂, x̂n))

=
p(sn(m̂))

|Φ| 1{p(x̂n,yn|sn(m̂))≥p(xn,yn|sn(m))}

≤ p(sn(m̂))

|Φ|

(

p(yn|sn(m̂))p(x̂n|yn, sn(m̂))

p(yn|sn(m))p(xn|yn, sn(m))

)t

,

for all t > 0, where the inequality follows because1{a≥b} ≤
(ab )

t for all t > 0. Let ρ ∈ [0, 1]. By applying the inequality
P
(

∪Tt=1At

)

≤ [
∑T

t=1 P (At)]
ρ [10, pp. 136] to (68), we have

P(E3|yn, sn(m),m, xn)

≤
[

∑

m̂ 6=m,sn(m̂),x̂n 6=xn

p(sn(m̂))

|Φ| × . . .

×
(

p(yn|sn(m̂))p(x̂n|yn, sn(m̂))

p(yn|sn(m))p(xn|yn, sn(m))

)t
]ρ

(70)

for anyρ ∈ [0, 1] andt > 0. Now consider the error probability
P(E3|M = m) given messagem is chosen by Alice, i.e.,
{M = m} occurs. To bound this error probability, we average
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over all codewordssn(m), all observed sequencesyn and all
possible sequences received by Alicexn, i.e.,

P(E3|m) =
∑

yn

∑

sn(m)

p(yn|sn(m))p(sn(m))× . . .

×
∑

xn

p(xn|yn, sn(m))P(E3|yn, sn(m),m, xn) . (71)

We now substitute the upper bound in (70) into (71). Pulling
out p(xn|yn, sn(m)) from the innermost term in (70) (since it
does not depend on̂m, sn(m̂) and x̂n), we see thatP(E3|m)
can be upper bounded as

P(E3|m) ≤ |Φ|−ρ
∑

yn

∑

sn(m)

p(yn|sn(m))p(sn(m)) × . . .

×
∑

xn

p(xn|yn, sn(m))1−ρt

[

∑

m̂ 6=m

∑

sn(m̂)

p(sn(m̂))× . . .

×
(

p(yn|sn(m̂))

p(yn|sn(m))

)t
∑

x̂n 6=xn

p(x̂n|yn, sn(m̂))t

]ρ

= |Φ|−ρ(|M| − 1)ρ
∑

yn

Ψ1(y
n, ρ, t)Ψ2(y

n, ρ, t) , (72)

where the functionsΨ1(y
n, ρ, t) andΨ2(y

n, ρ, t) are defined
as follows:

Ψ1(y
n, ρ, t) ,

∑

sn(m)

p(sn(m))p(yn|sn(m))1−ρt × . . .

×
∑

xn

p(xn|yn, sn(m))1−ρt

Ψ2(y
n, ρ, t) ,

[

∑

sn(m̂)

p(sn(m̂))p(yn|sn(m̂))t × . . .

×
∑

x̂n

p(x̂n|yn, sn(m̂))t

]ρ

.

Equation (72) follows becausêm in the line above is a dummy
variable that can take on exactly|M|− 1 values and for each
m̂, we generate codewordssn(m̂) in the same wayin the
random coding construction. Now notice that if we sett =
1/(1 + ρ), then

Ψ2(y
n, ρ, 1/(1 + ρ)) = Ψ1(y

n, ρ, 1/(1 + ρ))ρ

becausêxn andm̂ in the definition ofΨ2 are dummy variables.
As such,P(E3|m) can be bounded as

P(E3|m) ≤ |Φ|−ρ|M|ρ
∑

yn

Ψ3(y
n, ρ) , (73)

where the functionΨ3(y
n, ρ) is defined as

Ψ3(y
n, ρ) ,

[

∑

sn(m)

p(sn(m))p(yn|sn(m))1/(1+ρ) × . . .

∑

xn

p(xn|yn, sn(m))1/(1+ρ)

]1+ρ

.

Now, we recall the DMS and DMBC assumptions, i.e., that

p(sn(m)) =

n
∏

i=1

p(si(m)) ,

p(xn, yn|sn(m)) =

n
∏

i=1

p(xi, yi|si(m)) .

As a result,Ψ3(y
n, ρ) simplifies to

Ψ3(y
n, ρ) =

[

n
∏

i=1

∑

si(m)

p(si(m))p(yi|si(m))1/(1+ρ) × . . .

×
∑

xi

p(xi|yi, si(m))1/(1+ρ)

]1+ρ

,

and the sum in (73) can be written as a product of single-
letterized terms:

∑

yn

Ψ3(y
n, ρ) =

n
∏

i=1

∑

yi

Ψ4(yi, ρ) , (74)

where the functionΨ4(y, ρ) is defined as

Ψ4(y, ρ) ,

[

∑

s

p(s)p(y|s)1/(1+ρ)
∑

x

p(x|y, s)1/(1+ρ)

]1+ρ

.

Because each of the codewords is generated identically, each
of the terms in the product in (74) is also identical. Hence,

∑

yn

Ψ3(y
n, ρ) =

[

∑

y

Ψ4(y, ρ)

]n

.

Recall that|Φ| .= 2nRΦ and |M| .= 2nRM . In addition, note
thatP(E3) =

∑

m′ p(m′)P(E3|m′) = P(E3|m) for everym ∈
M. As such, taking the normalized logarithm and limit inferior
of (73) yields

lim inf
n→∞

− 1

n
logP(E3) ≥ ρ(RΦ −RM )− log

∑

y

Ψ4(y, ρ) .

(75)

Essentially, what we have done is to develop a “hybrid”
of Gallager-style error exponents for channel and lossless
source coding with side information. Thus, an achievable
error exponent when input distributionp(s) is used is
E

(3)
o (p(s), RΦ, RM ) defined in (21). The reliability exponent

part of the theorem is proved for the random binning secret
key code by combining the bounds for the exponents for
P(E1),P(E2) andP(E3) in (66), (67) and (75) respectively.

C. Proof for the Secrecy Exponent

We now prove that the secrecy exponent is at leastFo using
the same coding scheme. We can use steps analogous to the
proof of the direct part of Theorem 2 in [22] to obtain the
following bound on the key leakageI(KA;Z

n,Φ).

Lemma 7. Definec(α) , α−1 log e for 0 < α ≤ 1. The key
leakage can be bounded as follows:

I(KA;Z
n,Φ) = EC [I(KA;Z

n,Φ|C )]

≤ c(α) |K|α|Φ|α
∑

zn

p(zn)
∑

m,xn

p(m,xn|zn)1+α, (76)
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for all 0 < α ≤ 1.

The proof is provided at the end for completeness. Now we
consider the inner sum in (76). By introducing the inputsn

and by repeated applications of Bayes rule,
∑

m,xn

p(m,xn|zn)1+α

=
∑

xn

∑

m

[

∑

sn

p(m,xn, sn|zn)
]1+α

=
∑

xn

∑

m

[

∑

sn

p(m,xn, sn, zn)

p(zn)

]1+α

=
1

p(zn)1+α

∑

xn

∑

m

Θ1(m,x
n, zn)1+α (77)

=
1

p(zn)1+α|M|1+α

∑

xn

∑

m

Θ2(m,x
n, zn)1+α (78)

where the functionsΘ1(m,x
n, zn) and Θ2(m,x

n, zn) are
defined as

Θ1(m,x
n, zn) ,

∑

sn

p(m)p(sn|m)p(zn|sn)p(xn|sn, zn)

Θ2(m,x
n, zn) ,

∑

sn

p(sn|m)p(zn|sn)p(xn|sn, zn) .

Equation (77) follows becauseM − Sn − (Xn, Zn)
form a Markov chain sop(zn|sn,m) = p(zn|sn) and
p(xn|sn, zn,m) = p(xn|sn, zn). Equation (78) follows from
the uniformity of the messagesm in the message setM, i.e.,
that p(m) = 1

|M| for all m ∈ M. We now upper bound
Θ2(m,x

n, zn)1+α. This is done using the following lemma.

Lemma 8. Let{(λj , aj)} be a finite collection of non-negative
numbers such that

∑

j λj = 1. Also, let r ≥ 1. Then, the
following inequality holds

(

∑

j

λjaj

)r

≤
∑

j

λja
r
j .

This can be proven by noticing thatt 7→ tr is convex. We
omit the details. We now make the following identifications:
asn ≡ p(zn|sn)p(xn|sn, zn), λsn ≡ p(sn|m) and r ≡ 1 +
α and apply Lemma 8 toΘ2(m,x

n, zn)1+α. This yields the
inequality

Θ2(m,x
n, zn)1+α ≤

∑

sn

p(sn|m)[p(zn|sn)p(xn|sn, zn)]1+α.

(79)

On account of (76), (78) and (79), we have

EC [I(KA;Z
n,Φ|C )] ≤ c(α) |K|α|Φ|α|M|−(1+α) × . . .

∑

zn

p(zn)−α
∑

sn,xn,m

p(sn|m) [p(zn|sn)p(xn|sn, zn)]1+α

= c(α) |K|α|Φ|α|M|−(1+α) × . . .
∑

sn,xn,zn

∑

m

p(sn, xn, zn|m)

[

p(zn|sn)
p(zn)

p(xn|sn, zn)
]α

,

where the final equality follows becausep(sn, xn, zn|m) =
p(sn|m)p(zn|sn)p(xn|sn, zn) by the Markov chainM−Sn−

(Xn, Zn). Now, pulling thep(m) = 1
|M| term into the sum,

we get

EC [I(KA;Z
n,Φ|C )] ≤ c(α) |K|α|Φ|α|M|−α × . . .

∑

sn,xn,zn

∑

m

p(sn, xn, zn|m)p(m)

[

p(zn|sn)
p(zn)

p(xn|sn, zn)
]α

= c(α) |K|α|Φ|α|M|−α
∑

sn,xn,zn

Υ(sn, xn, zn, α) ,

where the functionΥ(sn, xn, zn, α) is defined as

Υ(sn, xn, zn, α) , p(sn, xn, zn)

[

p(zn|sn)
p(zn)

p(xn|sn, zn)
]α

.

Now, recall that (i) the inputSn is a DMS when averaged
over all codebooks and all messagesm ∈ M (because
the generation of the codewordssn(m),m ∈ M is done
identically) and (ii) p(x, y, z|s) is a DMBC. Then, we have
the upper bound

EC [I(KA;Z
n,Φ|C )]

≤ c(α) |K|α|Φ|α|M|−α
n
∏

i=1

∑

si,xi,zi

Υ(si, xi, zi, α)

= c(α) |K|α|Φ|α|M|−α

[

∑

s,x,z

Υ(s, x, z, α)

]n

. (80)

Note that the bound (80) holds for all0 < α ≤ 1. Recall
also thatK = [1 : 2nRSK ], Φ = [1 : 2nRΦ ] andM = [1 :
2nRM ] so |K|α|Φ|α|M|−α .

= 2nα(RSK+RΦ−RM ). Now take
the normalized logarithm and limit inferior of (80) to get

lim inf
n→∞

− 1

n
logEC [I(KA;Z

n,Φ|C )] ≥

− α(RSK +RΦ −RM )− log
∑

s,x,z

Υ(s, x, z, α) .

The joint distribution of (X,Z, S), namely p(x, z, s) =
p(x, z|s)p(s), is induced by a particular input distribution
p(s). Essentially what we have done in this part of the
proof is to develop a “hybrid” of the information leakage
exponent for the wiretap channel model [12, Eq. (14)] and the
excited source model [22, Theorem 3]. Hence, an achievable
exponent for the key leakage given input distributionp(s)
is Fo(p(s), RSK, RΦ, RM ) defined in (23). The secrecy
exponent part of the theorem is proved for the random
binning secret key code.

From Random Codes to a Deterministic Code: Combining the
proof in Section VII-B and proof in this section, we have
shown that for the(2nRSK , 2nRM , 2nRΦ , n) random binning
secret key code, the expected probability of error decays
with exponent (at least)Eo (expectation over codebooks and
random binning functions) and the expected key leakage
decays exponentially with exponent (at least)Fo. Since both
are measured with respect the same (known) channel, there
exists a binning secret key code that meets the ensemble
behavior. More precisely, observe thatP(E) = EC [P(E|C )] =
∑

C p(C)P(E|C = C), whereC runs through all binning secret



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, OCT 2013 16

key codes (a random code and two random binning functions)
and the eventE is defined in (62). By Markov’s inequality,

PC [P(E|C ) ≥ 3P(E)] ≤ 1

3
. (81)

Similarly, when averaged over all codes, the average key leak-
age isEC [I(KA;Z

n,Φ|C )] =
∑

C p(C)I(KA;Z
n,Φ|C = C),

so by Markov’s inequality,

PC [I(KA;Z
n,Φ|C ) ≥ 3EC [I(KA;Z

n,Φ|C )]] ≤ 1

3
. (82)

From (81), by considering the complement of the event
of interest, we can conclude that there exists a subset of
binning secret key codesD1 with total probability mass
that exceeds2/3 (i.e.,

∑

C∈D1
p(C) ≥ 2/3) such that

P(E|C = C) < 3P(E) for everyC ∈ D1. Similarly, from (82)
there exists a subset of binning secret key codesD2 with total
probability mass that exceeds2/3 (i.e.,

∑

C∈D2
p(C) ≥ 2/3)

such that I(KA;Z
n,Φ|C = C) < 3EC [I(KA;Z

n,Φ|C )]
for every C ∈ D2. Note that P(D1 ∩ D2) ≥ 1/3 so
D1 ∩ D2 6= ∅. Thus, there exists at least one binning secret
key code C∗ in the ensemble of (good) codesD1 ∩ D2

such thatP(Ekey|C = C∗) ≤ P(E|C = C∗)
.
≤ 2−nEo and

I(KA;Z
n,Φ|C = C∗)

.
≤ 2−nFo , where the eventEkey is

defined in (59).

Proof of Lemma 7: Recall the assumption that the key and
public message binning processes are random, uniform and
independent of the random codewords (See Section VII-A for
definitions and the code construction). The key leakage can be
expressed as follows:

EC [I(KA;Z
n,Φ|C )] = EC [H(KA|C )−H(KA|Zn,Φ|C )]

= EC [H(KA|C ) +H(Φ|Zn,C )−H(KA,Φ|Zn,C )]

≤ log |K|+ log |Φ| − EC [H(KA,Φ|Zn,C )] . (83)

The conditioning is on the specific codebook used, i.e.,C = C.
It remains to lower bound the conditional entropy in (83). For
this purpose, let

H1+α(X) , − 1

α
log
∑

x∈X

p(x)1+α (84)

be theRényi entropyof order 1 + α for 0 < α ≤ 1. Note
that limαց0H1+α(X) = H(X). Also, by the concavity of
t 7→ log t, it can be verified thatH(X) ≥ H1+α(X) for all
0 < α ≤ 1. Consider the conditional entropy in (83),

EC [H(KA,Φ|Zn,C )]

= EC

[

∑

zn

p(zn)H(KA,Φ|Zn = zn,C )

]

≥
∑

zn

p(zn)EC [H1+α(KA,Φ|Zn = zn,C )] (85)

≥
∑

zn

p(zn)



− 1

α
logEC





∑

(kA,φ)∈K×Φ

p(kA, φ|zn,C )1+α







.

(86)

The last inequality is due to the definition of Rényi entropy
in (84) and the application of Jensen’s inequality noting that
the functionx 7→ − logx is convex.

Now let (M̃, X̃n) be a pair of random variables identically
distributed to, but conditionally independent of(M,Xn) given
the events{Zn = zn} and {C = C}. Recall thatk( · , · )
andφ( · , · ) are the key and public message random binning
functions respectively. See (57) and (58) for definitions. Define
(K̃A, Φ̃) , (k(M̃, X̃n), φ(M̃, X̃n)). Then,

p(kA, φ|zn, C)1+α

= p(kA, φ|zn, C)P
[

(K̃A, Φ̃) = (kA, φ)|Zn = zn,C = C
]α

,

(87)

by interpreting the Rényi entropy in (84) in terms of an in-
dependent [from(KA,Φ)] and identically distributed random
variable(K̃A, Φ̃).

Define a shorthand notation for the indicator function as

1[kA, φ|m,xn, C] , 1[kC(m,x
n) = kA, φC(m,x

n) = φ].
(88)

wherekC( · ) andφC( · ) are the binning functions associated to
a specific codebookC = C. We upper bound the expectation
in the logarithm in (86) on the top of the next page.

The step (89) is a result of plugging (88) into the argument
of the logarithm in (86). The step (90) follows by writing
out the probability of a collision event in (87) explicitly as a
sum. The step in (91) applies the law of total probability. We
sum over all possible(m,xn) that are assigned bin indices
(kA, φ) for a given pair of binning function indexed byC .
Equation (92) follows by simple reordering of the sums.

The step (93) is an application of Jensen’s Inequality to the
term in brackets[ · ]α since the sum over(kA, φ) is a sum
over the probability mass function1[kA, φ|m,xn, C] (cf. (88)
for the definition of this indicator function). Also, the function
x 7→ xα is concave forα ∈ [0, 1]. We recall thatm,xn,
and C are all fixed for this inner sum, the last being fixed
by the outer expectation overC . Equation (94) follows from
the same reasoning as (91), i.e., the law of total probability.
Equation (95) follows by simple reordering of the sums.

In (96), we used the “sifting” property of the indica-
tor function 1[kA = k′A, φ = φ′]. In (97) we split the
sum over(m′, x′n) into two terms and distributed the sums
over (k′A, φ

′). Note that for the(m′, x′n) = (m,xn) term,
∑

kA,φ 1[kA, φ|m,xn,C ] = 1. We next applied the inequality
(x+ y)α ≤ xα + yα, for 0 ≤ α ≤ 1 to get (98).

In (99) we note that the first term is not a function ofC.
Using the concavity ofx 7→ xα (for α ∈ [0, 1]), we move
both the sum over(m,xn) and the expectation over codebooks
inside the function, a step justified by Jensen’s Inequality.

In (100) we apply the uniformly random design of the
binning functions. Since(m,xn) 6= (m′, x′n) for every
term in the sum, each of the indicator functions equals
the (fixed) pair (kA, φ) with equal probability and inde-
pendently. Thus, the probability thatboth equal (kA, φ)
is the square (by the independence) of the reciprocal
of the number of possibilities (by the uniformity), i.e.,
EC [1[kA, φ|m,xn,C ]1[kA, φ|m′, x′n,C ]] = (|K||Φ|)−2. In
(101), we pulled out(|K||Φ|)−α. Finally, we note that
p(m,xn|zn)p(m′, x′n|zn) is a well defined (conditional) pmf
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EC

{

∑

kA,φ

p(kA, φ|zn,C )P
[

(K̃A, Φ̃) = (kA, φ)|Zn = zn,C
]α
}

(89)

= EC

{

∑

kA,φ

[

p(kA, φ|zn,C )

(

∑

k′

A
,φ′

p(k′A, φ
′|zn,C )1[kA = k′A, φ = φ′]

)α]}

(90)

= EC

{

∑

kA,φ

[(

∑

m,xn

p(m,xn|zn)1[kA, φ|m,xn,C ]

)(

∑

k′

A
,φ′

p(k′A, φ
′|zn,C )1[kA = k′A, φ = φ′]

)α]}

(91)

= EC

{

∑

m,xn

p(m,xn|zn)
[

∑

kA,φ

1[kA, φ|m,xn,C ]

(

∑

k′

A
,φ′

p(k′A, φ
′|zn,C )1[kA = k′A, φ = φ′]

)α]}

(92)

≤ EC

{

∑

m,xn

p(m,xn|zn)
[

∑

kA,φ

1[kA, φ|m,xn,C ]

(

∑

k′

A
,φ′

p(k′A, φ
′|zn,C )1[kA = k′A, φ = φ′]

)]α}

(93)

= EC

{

∑

m,xn

p(m,xn|zn)
[

∑

kA,φ

1[kA, φ|m,xn,C ]

×
(

∑

k′

A
,φ′

(

∑

m′,x′n

p(m′, x′n|zn)1[k′A, φ′|m′, x′n,C ]

)

1[kA = k′A, φ = φ′]

)]α}

(94)

= EC

{

∑

m,xn

p(m,xn|zn)
[

∑

m′,x′n

p(m′, x′n|zn)

×
(

∑

kA,φ

∑

k′

A
,φ′

1[kA, φ|m,xn,C ]1[k′A, φ
′|m′, x′n,C ]1[kA = k′A, φ = φ′]

)]α}

(95)

= EC

{

∑

m,xn

p(m,xn|zn)
[

∑

m′,x′n

p(m′, x′n|zn)
(

∑

kA,φ

1[kA, φ|m,xn,C ]1[kA, φ|m′, x′n,C ]

)]α}

(96)

= EC

{

∑

m,xn

p(m,xn|zn)
[

p(m,xn|zn)

+
∑

(m′,x′n) 6=(m,xn)

p(m′, x′n|zn)
(

∑

kA,φ

1[kA, φ|m,xn,C ]1[kA, φ|m′, x′n,C ]

)]α}

(97)

≤ EC

{

∑

m,xn

p(m,xn|zn)
{

p(m,xn|zn)α

+

[

∑

(m′,x′n) 6=(m,xn)

p(m′, x′n|zn)
(

∑

kA,φ

1[kA, φ|m,xn,C ]1[kA, φ|m′, x′n,C ]

)]α}}

(98)

≤
∑

m,xn

p(m,xn|zn)1+α

+

[

EC

{

∑

m,xn

p(m,xn|zn)
∑

(m′,x′n) 6=(m,xn)

p(m′, x′n|zn)
(

∑

kA,φ

1[kA, φ|m,xn,C ]1[kA, φ|m′, x′n,C ]

)}]α

(99)

=
∑

m,xn

p(m,xn|zn)1+α +

[

∑

m,xn

p(m,xn|zn)
∑

(m′,x′n) 6=(m,xn)

p(m,xn|zn)
(

∑

kA,φ

1

(|K||Φ|)2

)]α

(100)

=
∑

m,xn

p(m,xn|zn)1+α +
1

|K|α|Φ|α

[

∑

m,xn

∑

(m′,x′n) 6=(m,xn)

p(m,xn|zn)p(m′, x′n|zn)
]α

(101)

≤
∑

m,xn

p(m,xn|zn)1+α +
1

|K|α|Φ|α . (102)



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, OCT 2013 18

and that we are missing one term in the double sum. Hence,
we get (102) by upper bounding the double sum by one.

Substituting (102) back into (86) gives

EC [H(KA,Φ|Zn,C )]

≥
∑

zn

p(zn)

[

− 1

α
log

(

1

|K|α|Φ|α +
∑

m,xn

p(m,xn|zn)1+α

)]

= log(|K||Φ|) − 1

α

∑

zn

p(zn)× . . .

× log

(

1 + |K|α|Φ|α
∑

m,xn

p(m,xn|zn)1+α

)

(103)

≥ log(|K||Φ|) −
(

log e

α

)

|K|α|Φ|α × . . .

×
∑

zn

p(zn)
∑

m,xn

p(m,xn|zn)1+α , (104)

where in (103) we pulled out the|K|−α|Φ|−α term from the
logarithm above and in (104) we applied the relationlog(1 +
t) ≤ t log e (recall thatlog = log2). The proof of the lemma
is completed by uniting (83) and (104).
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