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The Sender-Excited Secret Key Agreement Model:
Capacity, Reliability and Secrecy Exponents

Tzu-Han Chou, Vincent Y. F. Tan, Stark C. Draper

Abstract—We consider the secret key generation problem when legitimate user (the sender) controls the input of a discret
sources are randomly excited by the sender and there is a memoryless broadcast channel (DMBC), sending information
noiseless public discussion channel. Our setting is thusnsilar to based upon which the legitimate receivers generate segyst k

recent works on channels with action-dependent states wherthe H licati b | deled
channel state may be influenced by some of the parties involge owever, many applications cannot be exactly modele

We derive single-letter expressions for the secret key capy as either a source- or a channel-type scenario. This work
through a type of source emulation analysis. We also deriveWer explores such a setting in which the sender has the ability
bounds on the achievable reliability and secrecy exponents.e., g use a private source of randomness to excite (or influence)
the exponential rates of decay of the probability of decodig he «giate” of the DMMS. This is similar in spirit to recent

error and of the information leakage. These exponents allow K bi . dch Is with ion-d d
us to determine a set of strongly-achievable secret key rate WO'KS ON probing capacity and channels with action-depenae

For degraded eavesdroppers the maximum strongly-achievad States [[5]4[8]. We derive capacity, reliability exponeatd
rate equals the secret key capacity; our exponents can alsceb secrecy exponent results for this setting. At one extrenhenw
specialized to previously known results. . the sender has an unlimited ability to excite the channel,

In deriving our strong achievability results we introduce acod- and the rate of public discussion is similarly unbounded
ing scheme that combines wiretap coding (to excite the chael) . . . !
and key extraction (to distill keys from residual randomnes). @ Particular type of source emulation strategy is capacity
The secret key capacity is naturally seen to be a combinationf ~achieving. However, when constraints are placed on the rate
both source- and channel-type randomness. Through examge of public discussion we demonstrate that source emulation
we illustrate a fundamental interplay between the portion d  hecomes sub-optimal. We show this through the development
the secret key rate due to each type of randomness. We alsoqt 5 more nuanced rate-limited excitation strategy thaeese

illustrate inherent tradeoffs between the achievable rehbility and h . f th lation-b d h wh .
secrecy exponents. Our new scheme also naturally accommada (1€ capacity of the emulation-based approach when sulgject t

rate limits on the public discussion. We show that under rate rate constraints [9]. Our new strategy combines a wireyap-t
constraints we are able to achieve larger rates than those #t probing mechanism (Model CW) with a key-distillation step

can be attained through a pure source emulation strategy. (Model SW) that is applied to the residual randomness. In

Index Terms—Secret key capacity, Common randomness, general, we find an interplay to exist between the secreey rat
Wiretap channel, Sender-excitation, Reliability exponety Secrecy derived from the wiretapping step and the secrecy rate elriv

exponent, Degraded broadcast channel, Probing capacity via the key-distillation step. We illustrate the tradeoffv
examples. In terms of our large deviation results we showv tha
I. INTRODUCTION there is a natural tradeoff between the reliability and eegcr

Within the realm of information-theoretic secrecy [2], th@exponents. The former ger'leralize Gallager's classig n;aiml
foundations of sharing a secret key between two parties'fh [10, Sec. 5.6] and([11]; the latter may be specialized to

the presence of an eavesdropper were initiatedin [3], [ﬂ_ayashi’s recent work that characterizes the rate of defay o
[

Ahlswede and Csiszaf|[3] studied two models: #murce- 'nformation leakage [12] of the wiretap channels.
type model with wiretappe(Model SW) and thechannel-
type model with wiretappe(Model CW). In Model SW, A Related Work

users obtain their observations from a discrete memorylessl_here are other investigations that consider non-soucre, n

multiple source (DMMS), and communicate to each other vi .
a noiseless authenticated public channel, with the ob}ectlc%annel models. For example,_|t1_:[13],__[_14] users o_bserve
DMMS and can also transmit information via a wiretap

of generating jointly held secret keys. In Model CW, Or“(Z‘E:‘hannel. However, no public discussion is allowed. The key
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by the sender (and possibly by the receiver) and thus can Encoder

be treated as a correlated source. [1[7T) [18], the sender Sn

transmits a confidential message and the random, noncausall

known, state is exploited to confuse the eavesdropper. The M p(x,y,2|s)

lower bound is proved using a combination of Gel'fand- xn yn n
Pinsker coding and wiretap channel coding. A similar proble

but with causal state information is studied inJ[19] and Alice Bob Eve
the coding scheme involves block Markov coding, Shannon

strategies, and wiretap coding. In_[20], [21], the goal is to ~ ® } ® ! P
generate a secret key when the encoder (and/or decoders) Ka Ky

have noncausal state information. The authors presengksin | Public Channel |

letter expression for the secret key capacity. The key rate _
consists of two parts. The first can be attributed to the raz'iﬁ:'eléxc%g; ﬁ:‘oebl‘z?asﬁgp\:,igﬁzdsm:;Lgrg’%t&ff]w;egﬂmggﬁggt’es
of the confidential message sent using wiretap channel godinpublic messaged(M, X™), which is transmitted through the noiseless
where the state sequence is treated as a time-sharing sequenblic channel and hence known to all parties. Alice and Bebegate keys
while a second key, independent of the first, is produced (S]grﬁfti%:??hfgféﬁﬁd )b;eigsz:tg’eﬂfétﬂ?f;?’fe_sho”'d agree, while at
exploiting the common knowledge of the state at the sender
and the legitimate receiver.
The model considered in this paper is a generalization of _ . .
the “source excitation” model of [22]. That model is motidt signal (M)._We denye a single-letter expression for the secret
by the large body of work on physical-layer security (Seg”e_key.capamt_y of this system. The result fO,IIOW§ through a
[23], [24]) where the unpredictable variation in the wire par‘ucul_ar kind of source.em.ulatlor) where (i) AI|<_:e c_hooses
channel medium serves as the source of common randomnfi& OPtimum source distribution to induce (potentially jseb
One approach is to sound the wireless channel using a ran oSt _CO”SE[""'”EE ors™), and (i) Alice has the vector
signal and measure the observations generated (marmga”zobservanor(s , X7).
over the sounding signal). This “source emulation” strateg We then turn to the rate-limited situation and study the
is considered in[[24]. Another approach studied[inl [22]] [2ffect of rate limits on (i) the achievable secrecy rat),tlie
uses deterministic sounding (no marginalization is ined)y Probability of erroneous decoding at the legitimate reeeiv
Key extraction follows by denoising the observations usingBob, and (iii) the key leakage rate by the eavesdropper, Eve.
public message. Deterministic sounding requires no sonfrceYVe focus on degraded channels and characterize the error
private randomness (as does source emulation), all raneissnrProbability in terms of areliability exponentand the key
is due to the channel. The current generalization is that y@akage rate in terms of secrecy exponenin contrast to[[9]
now explore the source excitation model when the exciter h&§ere the secret key capacity of one-way key generation
a source of private randomness. This allows us to exploh bgtubject to a rate constraint is characterized, we show that
random sounding (using a wiretap code) and key generatf@iﬁ»‘ flexibility Alice has in choosing the amount of private
(using conditional randomness). We regard the current inod@ndomness she uses in the selectiof/otan allow a strictly
as stepping stone to understanding the fundamental lirhitstdgher achievable secret key rate than can be attained véa pu
two-way randomized channel sounding in which secrecy raigurce emulation.
is derived from the use of two wiretap codes and from the We introduce a new type of decoder for the legitimate
conditional randomness produced. receiver, Bob, to use. This decoder is a combination of a
maximum likelihood and a maximusarposteriori(ML-MAP)
decoder. Bob decodes jointly the sender’s souté¢eand the
sender’s private source of randomness (or messafieThe
Figure[1 shows the system considered in this paper. We gasulting reliability exponent expression can be spemalito
think of the terminal labeled Alice as a base station on ear@allager’s channel coding error exponent/[10, Sec. 5.6] and
equipped with a sensor. This base station transmits a rand@aillager's source coding error exponent/[11]. On the other
messageM (the selection of which is based on a privatkand, in the key leakage analysis, the secrecy exponent we
source of randomness) securely to a satellite encoder. Tderive captures the leakage due to Eve’s chapfels) and
satellite produces sequengé according to some conditionalthe leakage due to the correlation between Alice’s variable
probability law. This sequence is the input to a broadcasbheh X and Eve’s variableZ in a transparent manner. Our analysis
nel p(x,y, z|s) (the wireless medium). The channel producdsuilds on the work by Hayashi in [12], [25], where he links the
observationsX™, Y and Z", respectively received by Alice, leakage rate of a wiretap channel to channel resolvabitity a
the legitimate user Bob, and the malicious user Eve. The gédéntification coding[[26]. This connection is also exanine
of the two legitimate users is to generate a shared secret lgch and Laneman[[27] where they derive the capacity
— Alice based on{M, X™) and Bob based o(®,Y ™), where of general wiretap channels from an information spectrum
® is a public message known to all parties. perspective [[26]. Our secrecy exponent results, which are
We first consider the situation in which there are no ratteveloped in Sectioh IV, can be specialized to the wiretap
limits on either the public discussionb) or the excitation channell[12],[[25] and to the secret key generation fromezorr

B. Main Contributions: Capacity and Error Exponents
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lated source setting [12], [22], 28], [29]. The differends-a- receiver at termina)’ is known as Bob and the eavesdropper
vis the motivating work[[22] is that the methods used to bourat terminalZ is known as Eve. There is also a noiseless public
the exponents for both reliability and secrecy involve bottliscussion channel which allows Alice to transmit a message
wiretap channel coding and source coding. This will beconde to Bob and Eve. LetA : S — [0, Amax] be a per-letter,
clear in Sectiofi IV where we specialize our results to vaiobounded cost function and 1€t > 0 be an admissible cost. A
known problems. Note that the criterion for exponentialayec (2"%  2nf= n T') codefor the secret key generation protocol
of the key leakage rate is much stronger than the usual straramsists of a tuple of functionsf, ¢, kA ). In particular,

secrecy [[4]. We focus on this exponential notion because 1) Channel ExcitationAlice selects a messagel € [1 :
quantifies how fast the error probability and informatiotera 2nRar] yniformly at random. The (satellite) encoder sends
decays to zero and because it reveals a natural tradeofébetw 5 message-dependent input sequefite= (M) € S™

the attainable reliability and secrecy exponents. (f possibly being random) satisfying
C. Paper Organization P ll ZA(Si) < 1"‘| -1. (1)
This paper is organized as follows: In Sectibh 1l, we i

describe the system model. We also define the secret key The input sequencé™ is transmitted ovem uses of

capacity, the capacity-reliability-secrecy region anel tiotion p(z,y,2|s). The output sequences’, y" and =" are
of channel degradedness. Our main results pertaining to the gpserved by Alice, Bob (legitimate receiver) and Eve
secret key capacity are provided in Secfioh Ill. We also prav (eavesdropper) respectively.

(sometimes loose) upper bound on the secret key capactty thg) One-Way (Forward) Public Discussiodfter observing

does not contain any auxiliary random variables, and hence ,n  ajice generates a one-way public mesfhge =

is amenable to evaluation. We show that this upper bound 4, ;n) ¢ [1: 278+, and transmits it over a noiseless

is tight for degraded channels. We present the reliabilitg a public channel.

secrecy exponents in Sectionl IV and connect to previousworks) key Generation Alice generates a keyka =

In Section[¥, we present several examples to demonstrate kia(m,z") € N. After receiving his channel output®

how the main results can be applied to channels of interest. ang the public message, Bob generates another key

We show the inherent tradeoff between the portions of the . _ . (,» ¢) € N,

secret key rate due t_o source- and to channel-type rand.(sr.‘n.r?esNote the conditional distribution ofX, Y, Z) given S can

We also show the inherent tradeoff between the reI|ab|I|%/ factorized ag(z|s)p(y, 2|z, s). The first conditional distri-

exponent and the secrecy exponent. The proofs of the cypagﬁ. P PAY; 21T, 5. S
utionp(z|s) can be roughly thought of as Alice’s influence on

theorems and the error exponent theorems are provided, in : . . .
Sectior{V) and Sectiofi Wil respectively. the channel state via the sounding sigsfal while the second

p(y, z|x, s) can be thought of as a state-dependent channel.

D. Notation

. . . %{ Definitions
We generally adopt the notational conventions in the boo
by El Gamal and Kim[[30], some of which we recap here. All We now provide the definitions of achievable secret key
logarithms are to base-Random variables are in upper caséates, secret key capacity and error exponents. As a reminde
(e.g.,X) and their realizations in lower case (eg)., The cor- the random variable&’s and K's respectively denote Alice’s
responding alphabets of random variables are in calligeapi@nd Bob’s key. The public message is denotedas

font (e.g., &) and so are all sets and events (e). FOI pefinition 1 (Weak Achievability) The secret key rate
vectors, X} = (Xj,...,&;) and if j = 1, the abbreviation p .« R s P-weakly-achievabléor simplyI-achievable) if
X' £ Xjis used. In addition X"\ = (X', X[ ,). The there exists a sequence @', 2"Fe . T) codes (for any
probability mass function (pmf) of a discrete random vdéab(R%R(b) pair) for the secret key generation protocol such

X is denoted agx(z) or more simply asp(z). Random that the following three conditions are satisfied:
codebooks are denoted by a special script fehtwhile a

codebook realization is denoted @sFor ana > 0, we also nli_{I;o P(Ka # Kg)=0, 2
commonly use the notatiof : 2¢] = {1,..., 2} 1
lim  —I(Ka: 2", ®) =0, A3)
n—oo N

[I. PROBLEM SETUP o 1
. lim inf —H(KA) > Rsk (4)
A. The Secret Key Generation Protocol n—oo n

The setting is shown in Fi§] 1. Consider a 3-receiver DMBOefinition 2 ((Forward) Secret Key CapacityJhesecret key
(S,p(z,y,2|s), X x ¥ x Z) consisting of four finite sets capacity-cost functiolsk (I') is defined as follows:
S,X,Y, Z and a collection of conditional pmfs(x,y, z|s)
on X x Y x Z. Alice, at terminalX, controls the channel
input sounding signak™ through the encoder via uses of | _ _

. . As in [30], we use a common notatiop to denote both the function
the channel. A|IC€ has a private source of randonjpess UG . 9nFar] x xm s [1: 27Re] as well as the output of the function
to select an indexn, which influencess™. The legitimate ¢ < [1:27F=]. This applies in the rest of the paper.

Csk (T') := sup{ Rsk : Rsk is I'-weakly-achievable. (5)
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We will henceforth say that'sk (T') is the (forward) secret ~ We conclude our suite of definitions by formalizing the
key capacitywithout reference to the co$t). Thereliability notion of degraded channels.

conditionin @) |m.pI|es. that we W(.)l.”d like Alice's and E_S(?bs Definition 6 (Degradedness)We say that the DMBC
keys to agree with high probability. Theecrecy condition .
in (@) requires that the eavesdropper cannot estimate (g’.y’?ls) is degradedf (X,5) —Y — Z form a Markov
key Ka € [1 : 2"Bsx] given her observatiorZz™ and the chain, i.e..p(y, 2|z, s) = p(ylz, s)p(=]y).
public messag®. This is manifested in that thieey leakage  In this case, we also say that the DMBCr, y, z|s) is de-
rate %I(KA; Z™ @) is arbitrarily small for sufficiently large gradedn favor ofBob or equivalently that Eve’s observation is
blocklengthn. The rate condition in[{4) implies that theadegraded versionf Bob'’s. Note that we do not differentiate
entropy of Ka should be close t&sk. In other words the pmf between physical and stochastic degradediness [30, Chhé&]. T
of K should be close to that of a uniform pmf fin: 27%sx] capacity results will turn out to be identical for both cases
so the eavesdropper can only glean a negligible amount of
information. I1l. BAsIC CAPACITY RESULTS

In many practical settings, the fact that the error proligbil \we present our capacity results in this section. These
in @) and the key leakage rate [ (3) can be made arbitrarfy respond to Definition§] 1 arid 2 and we emphasize that
small yvith increasing block length is ins.u.fficient. See Mag Ry and R are unconstrained here. We leverage on a source
work in [31] and a more recent exposition In_[27]. It wouldemyjation result by Ahlswede-Csiszar [3] to give a singter
in fact, be desirable to quantify their rates of decay and Epression for the secret key capacity containing two auryil
devise coding schemes to ensure that these decay rates arg@$om variables taking into account tift has to satisfy the
large as possible. We formalize this by defining the notion @hst constraint in[{1). We also provide a looser upper bound
an achievable secret key rate-exponent triple. To simpfi&/ 4t contains no auxiliary random variables. The upper Houn
exposition, in our definitions (and corresponding resuli) s tight when the DMBC is degraded in favor of Bob. The
rates with exponents, we will assume tat= co. In other  capacity results in this section motivate the more refinedrer
words, we do not impose a cost constraint®has in [1).  exponent analysis in the following section wheke can be
Definition 3 (Achievable Secret Key Rate-Exponent Triple)constrained and we will see that a judicious choiceff
The secret key rate-exponent tripldisk, B, F) € R3 is does not reduc€'sk in the case of degraded DMBCs.

achievablef there exists a sequence (O 2an’a"? codes  proposition 1 (Secret Key Capacity)The secret key capacity
for the secret key generation protocol such that in additiogs pMBC (S, p(z, y, 2|s), X x V x 2Z) is

to (@), the following hold:

1 Csk(I') = max [[(U;Y|W) = I(U; ZW)],  (8)
1lnn_l>1£f n log P(Kx # Kp) 2 E, ©6) where the maximization is over all joint distributions ttiat-
1 : o - .
liminf ——log I(Kx: 2", ®) > F . ) tor in accordance tdV —U — (X, S) — (Y, Z) or equivalently,
n—oo n

) ) ) ) ) = ) ) ) 9
In @), E is known as theeliability exponentand in [T),F plw,u,s,2,y,2) = plwlp(ufw)p(e, sluply, 2l 5) - ()

is known as thesecrecy exponenCollectively, E and F' are such thatE[A(S)] <T.
known aserror exponentgthoughl (K ; Z™, ®) is not, strictly
speaking, an error probability but we abuse terminologyaio s
that both are “errors”). Definitiohl 3 can also be interpredsd
follows: If a triple (Rsk, E, F) is achievable, then the error p(w,u,s,z,y,z) = p(w|u)p(ulz, s)p(s)p(z,y, z|s) . (10)
probability in [2) decafbas P(Kx # K) ? 27" and the  gjce the DMBQ(z, y, z|s) is given, the optimization if[{8) is
key leakage decays d$/a; 2", @) < 27", Naturally, the 01 the source distributiop(s) and the auxiliary conditional
ponstramt on the_z gntropy of the secret key[ih (4) is retainefkributions p(wlu) and p(ulz, s). Furthermore, by using
in the above definition. the Fenchel-Eggleston-Carathéodry Theorem [30, AppitC],
Definition 4 (Capacity-Reliability-Secrecy RegianThe (se- can be argued that the cardinalities of the auxiliary random
cret key) capacity-reliability-secrecy regicd c R is the Variables andU can be bounded g$V| < |X[|S| + 3 and
closure of the set of achievable secret key rate-exponighesr  [U| < (|X]|S| + 3)(|X[|S| + 1) respectively.
) ) - Proof of PropositiorIL: Achievability follows from [3,

In analogy to the notion of weak achievability, we can alsgpegrem 1] for Model SW with a slight modification to ac-

define a more stringent notion known as strong achievapility, nt for cost constraint 0§™ in (@). Fix ane > 0 and a joint

also studied in[[31],[132]. distribution in [9) achievingE[A(S)] < . Let S ~ ps(s)

Definition 5 (Strong Achievability) The secret key rat®sx  be theS-marginal of [9) and let its typical $&be 7;(")(5).
is strongly-achievabléf (Rsx, E, F) is achievable for some Index all the elements i, () as[1 : [7™(S)]]. We are
E>0andF > 0.

By repeated applications of Bayes rule, the decomposition
in @) can be written as

) ) i ) . SThetypical setdefined inTe(")(S) [30, Sec. 2.4] consists of all sequences
Here and in the following, for a pair of positive sequen¢és,,bn)}nen,  s™ whose type (empirical distribution)(s; s™) satisfiegr (s; s™) —pg(s)| <
we say thatan < by if limsup,,_, n! log(an /bn) < 0. The notation eps(s) for every s € S. The typical average lemmA[30, Sec. 2.4] implies
> is defined analogously. We say that = by, if an < by andan > b,.  thatn(l — e)H(S) < log |[T{™ (S)| < n(1 + €)H(S).
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only going to excite the DMBG(z, y, z|s) using sequences where the maximization is over all input distributiopés)
belonging to 7™ (S). By the typical average lemma [30,such thatE[A(S)] < T.

Sec. 2.4], this ensures that for every the almost sure cost
constraint in[(IL) is satisfied.

The encoder has the codebdiﬁ(b)(S), which is known to
all parties. Alice generates an indéX < [1 : |72(”)(S)|]
uniformly at random so in this coding schem®&,, =
Liog| T (9)| = H(S) + 6(e) for somed(e) | 0 ase | 0.
Given M, the encodertransr(‘iwll)ts thg sequence indexedti/tn Csk(T) < I(X, S;Y|2) (13)
the codebook. Note thati (7. (S)) is arbitrarily close to one — I(X,8:Y) - I(X, $; Z) (14)
for large enough. Hence, just as in the proof of|[3, Theorem o T B

1], we can cons(,e)cutively select mutually disjoint wiretaples o |4t equality is due to the fact that for degraded channel
{C:}N, from TE™(S) x x™ (with 7 in [3] Eq. (4.1)] replaced (X,S)—Y — Z forms a Markov chain. -
by 2n, say) where each codebodk contains codewords of = \ntice that for a fixedp(s), the difference of mutual

the same type. The rest of the prooflin [3, Theorem 1] fOIIC)V‘fﬁformations in [IR) can be decomposed into two parts:
verbatim with our( X, S) in the role ofX there. This allows us

to assert thaf (U; Y[W) —I(U; Z|W) is a one-way (forward)  1(x, §:V) — I(X,S;Z) = Rean[p(s)] + Rec[p(s)], (15)
achievable key rate. Note that in our setting, Alice recgive

X™ and also hasS™ (a function of her privately generatedwhere the channel and source rates are respectively defined a
index M), Bob receivesy™ and Eve receiveg™. The proof

is completed by taking: | 0 and using the continuity of Rau[p(s)| £ I(S;Y) —1I(S;Z), and (16)

I' = Csk(T"). That Csk(T") is continuous follows from the Raelp(s)] 2 I(X;Y|S) — I(X; Z|S). (17)
continuity of I(U; Y |W), I(U; Z|W) andE[A(S)] in ().

The converse proof of Theordh 1 is standard and we provigife first rateR.,,[p(s)] can be interpreted as the confidential
it in Section[VI-A for completeness. It relies on a simplenessage rate of the wiretap chanpig), z|s) [33]. The second
application of the Csiszar-sum-identify [30, Sec. 2.3l @m rate .. [p(s)] is the secret key rate from an excited correlated
appropriate identification of the auxiliary random varethat  source (X, Y, Z) previously studied in[[22] for a particular
satisfy the Markov conditions iiX9). B sounding signak™ with type p(s). In the present setups”

To find the secret key capacity for specific channels, tWg randomly chosen by Alice. As such, we can optimize over
auxiliary random variable$l” and U solving [8) have to be s distributionp(s) to find the largest “sum rateR [p(s)] +
identified. This may be a difficult task. In the next prop@siti r_ [5(s)]. It turns out that there is a natural interplay and
we provide an (albeit looser) upper bound which does nghdeoff betweenRqy[p(s)] and Re.[p(s)]. We illustrate this
involve any auxiliary.randonj variables. This result wilktu  nymerically using an example in Section V-A.
out to be important in Section]V where we present severalyye provide an alternative proof of the capacity of degraded
channels for which we can calculate the secret key capacifyygcs via the error exponent route in the next section. We
cost function in closed-form. note that the flexibility of the amount of private randomness
Proposition 2 (Upper Bound in Secret Key Capaci_ty‘)’he that Alice has in the form of the random messd[zje(which
secret key capacity is upper bounded as we did not exploit in this section) allows us to operate at a
lower Rg and yet result in a positive capacity.

Proof: For achievability, we can choos#” = @ and
U = (X,9) in (B). The Markov condition in[{9) is satisfied.
For the converse, we observe from Proposifibn 2 that the
secret key capacity of the degraded DMBC can be upper
bounded as

Csk(T) <max I(X,S;Y]Z), (11)
where the maximization is over all input distributiopés)
such thatE[A(S)] < T. V. ERROREXPONENT THEOREM

The proof of this proposition is given in Sectidi_V]-B. In this section, we present an inner bound for the secret
Roughly speaking, the expression [n](11) can be interpreté@y capacity-reliability-secrecy region per Definitibh @ur
as the secret key capacity when Alice and Bob have fi@lpneral result is then specialized to other known results in
knowledge (side information) of Eve’s observatigh hence the literature. Recall that for the error exponent resuits,
the conditioning onZ. We note by using the techniques irconsider the case when there is no cost constraint on the
Ahlswede-Csiszar [3] (and in particular Lemma 2.2 thereigodewords for simplicity (i.e.]' = 0).
that our upper bound also holds for the scenario where theWe make the following two observations when we employ
parties Alice and Bob can exchangeultiple messages—the the achievability strategy proposed in this paper which is

multi-way discussion scenario. a random binning scheme. First, the decoding error proba-
In the case of degradedx,y, z|s), the result in Proposi- bility P(Kx # Kg) is only a function of marginal distri-
tion[2 is tight. bution p(z,y,s) = p(s)p(z,y|s). Second, the key leakage

I(Ka; Z™,®) is only a function of marginal distribution
p(z, z, s). This means that we can characterize the achievable
reliability and secrecy exponents separately as functmins
Csk(T) =max [[(X,S;Y)—-I(X,S;Z)], (12) each marginal distribution.

Corollary 3 (Secret Key Capacity of Degraded DMBC4j
the DMBCp(z, y, z|s) is degradedthe secret key capacity is
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A. Basic Definitions The functiong(m, z™) is a (random) binning function, which

Before we present our result, we begin with a few definis defined and d|scussed in greater detail in Se€fion Vll#e T
tions. Let exponentsEO and 8% represent the marginal ever{td/ =
N M,X™ # X"} and {M # M,X"™ = X"}, respectively.
EM (p(s), p, Ra) £ The former is a Slepian-Wolf-type exponeht][11¥ (to be
) It reconstructed given vector side-informatigii S)) while the

pRy —log > p(s)p(yls) [Zp(xkg, s)m] ,  (18) latter is a channel coding-type exponéntl[10, Sec. 5.6]utinp

5y S and vector outputX,Y’)). The exponen1E(3) represents
EP(p(s), p, Re, Rar) 2 the joint error eventd/ # M, X™ # X™ and is a hybrid

1 14p of Slepian-Wolf and channel coding. Upon the decoding of

p(Ro — Rap) —logz Zp (z,y|s)T+% | , (19) (/m,2"), Bob declares his key to bes = k(m, "), where

k(-,-) is another (random) binning function. The proof for
the secrecy exponent leverages on the properties of thgi Rén

7(3) a
Eo (p(s), P R<I>7 RM) entropy as Inm]'[@z]

1 The union of the regions if_(25) is likely to be a strict inner
p(Re — Rar) —log Z Zp (&, yls) - (20) pound since our coding scheme does not involve the use of any
Y - auxiliary random variables (unlike in Propositidn 1). Hweg
As well, define as we shall see in Section VD, our analysis of the ML-MAP
A (1) strategy shows that all weakly-achievable rafggc < Csk
Eo(p(s), Re, Rar) = min { or?,?? Eg”(p(s), p, Ra), are strongly-achievable for degraded channels.

Another reason as to why the error exponent region is likely
not tight may be distilled from works by Csiszar-Naraya#h][1
(21) later extended by Gohari-Anantharaml[34],1[35]. Consider a

external agent who can recova&r™ perfectly after receiving
~ Eve’s information(Z", ®) and the shared secret kéy,. If
Fy(p(s), o, Rsk, Ro, Rar) £ the agent were not able to recov&r* there would be some
z, z[s)1° piece of information abouk ™, independent of Z", ®, K ),
—a(Rsk+Re—Rar) —log Zp(:zr, z,8) [p(p(z)I )} » (22)  that the external agent would require to knﬁwt perfectly. in
LEs such a setting, Alice could reveal the needed information on
Fy(p(s), Rsk, Ro, Ra) = sup Fu(p(s),o, Rsk, Re, Rar).  the public channel without lowering the secret key rate sThi
O<asl 23) follows since what would be revealed is independenfaf,
and thus of no use to Eve. Thus, without loss of generality,
We now define a rate-exponent region parameterized by the\we can assume the external agent knows perfectly.
put distributionp(s) and the pair of auxiliary rateRqe, R ): Now, say thatZ is a degraded version of. In this
setting Bob can simulat&™. Bob also hag®, Kp) (note that
Kpg = K with high probability). So, Bob too can be assumed

£(2) (3)
o@?ﬁE‘) (p(s), p, Rap, Baa), oe o, EP (p(s )7P7R<I>7RI\4)}-

Similarly, define

R(p(s), Ra, Rar) = { (R, B, F) € R}

E < E,(p(s), Re, Rar) to recoverX ™ perfectly. In other words, in the degraded setting
- there is no loss in generality in requiring Bob to recover
F= Fo(p(s)’RSK’R@’RM)} : (24)  xn. However, when there is a non-trivial joint distribution
amongstX,Y and Z (i.e., the non-degraded case), it is not
B. The Inner Bound necessarily true that Bob can recougf’. Hence the error-

The following theorem provides an inner bound to thXPonent strategy may be strictly suboptimal (at least in a
capacity-reliability-secrecy regioR. capacity sense for non-degraded channels). This obsemvati

_ o is consistent with the “separation” strategy elucidatedli)
Theorem 4 (Inner Bound to the Capacity-Reliability-Secrecyand [IT) as the separation strategy-which is optimal in the
Region) The union of the regions i@4) is an inner bound degraded case—in effect implies that Bob can dectdeas

to the secret key capacity-reliability-secrecy regiom,,i. discussed in the previous paragraph.
R(p(s), Ro, Ry) TR . 25
p(s), g R (p(s), Ra, Rr) © (29) C. Positivity of Error Exponents and Interpretations

For a particular choice of input distributigris), the follow-
g proposition characterizes the boundary of the achievab
ate-exponent region if_(24).

The proof of this theorem can be found in Secfion] VI and
hinges on an ML-MAP decoding strategy. More preC|seI
given (y™, ¢), Bob first uses the following rule to estimate
Alice’s source of private randomness and Alice’s received Proposition 5 (Positivity of Error Exponents)For a fixed
sequencet”™: p(s), the exponenk, (p(s), Re, Rar) in 1) is positive if

(1, 2") & %rgmaxn - p(y™|s™(m))p(z™|y"™, s™(m)) . Ry > H(X|Y,S) and (27)
(m,o"):¢lm,a)=¢ (26) Ro — Ry > H(X|Y,S) — I(S;Y) . (28)
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Ry

I(S;Y)-

Rs

I(S;Y) -~
—HXIY,S) ' m(X|y,s) H(X,S|Y)
Rsx+1(S;2) |~
Fig. 2. The region where¥,(p(s), Re, Ryr) is positive is denoted by —H(X|Z,S)
the shaded sef;". See[[2¥) and(28). Pointd = (H(X|Y;S),I(S;Y)) ’
andB = (H(X, S|Y'), H(S)) respectively denote the two-step approach (of
Bob first recoveringM through channel decoding and then recoverXig  Fig. 3. This is the same as Figd. 2 wifi 129) also illustratelde Tegion where
via Slepian-Wolf decoding) and the source emulation apgrqavith vector  Eo(p(s), Rs, Rar) and Fo(p(s), Re, Rar) are both positive is denoted by
source(X, S) given Y just as in the achievability proof of Propositih 1)the shaded sef;” N F5 . This combines the rate constraints [l(2FY] (28) and
discussed in greater detail in Section IV-E-Ill. The senfiriite ray emanating (29). The intuition here is the following: To maximiZes, the line indicated
from A, passing throughs, and extending northeast is the capacity-achievingy the equation?y; = Rg + Rsk+1(S; Z)— H(X|Z, S) should be shifted
set of(Rg, Ry ) for our error exponent scheme. For source emulation it onlypwards until the shaded region almost vanishes.
starts fromB and extends northeast.

(S™(M),Y™) (M assumed to be decoded correctly). This two-

See Fig[P. Similarly, the exponeit,(p(s), sk, Ra, Ry)  step decoding procedure is, however, not what we do in the
in (23) is positive if ML-MAP decoding scheme i {26). The ML-MAP decoding
scheme decode&d/ and X" jointly so its exponent is likely
to be higher than the two-step decoding scheme.

The first rate condition in[{28) for the reliability exponent
to be positive may be rewritten as follows:
The proposition can be proved by firstly verifying that
EY j =1,2,3 (resp.F,) are concave functions gf (resp. R < 1(8;Y) + [Re — H(X]Y, 5)] . (31)
«); secondly by computing the partial derivativeléf) (resp. Using [31), we see that ifRs > H(X|Y,S) (i.e., the
F,) with respect top (resp.«); and finally by evaluating the compression rate is strictly larger than the Slepian-Wattl
slope atp = 0 (resp.a = 0). This is a standard calculationH (XY, .S) as allowed by[(27)), we may transmit the message
and as such, we omit the details. [22, Theorem 3] and fhereliably at rates higher thak(S; Y'), which is the maximum
accompanying remarks for similar calculations. Note thaté transmission rate when the input distributipfs) is used for
are only two rate constraints for reliability i (27) arld 28 the channep(y|s).

Rsk + Ro — Ry < H(X|Z,8) —I(S:Z) . (29)

See Fig[B.

This is because the rate constraint required 5P > 0 is The rate condition in[{29) for the secrecy exponent to be
positive may be written in the following equivalent forms:
RM—R@<I(X,Y;S) (30)
Rsk + Re < H(X|Z,S)+ [Rym — I(S;2)] (32a)
which is already implied by (28) sindg.S; Y)—H (XY, S) = Ry > I(S;Z)—[H(X|Z,S)—(Rsk+Ra)]. (32b)

1(X,Y;9) - H(X|Y) <I(X,Y;S). Note that in the deriva- .
tic()n ’of ’E@ an((j [|3])§ T/ve(tréa(’X )Y) as a vector output of The authors in[[22, Theorem 3] showed that the secrecy
° ' ’ P exponent is positive wheRsk +Re < H(X|Z, S). However,

a channel with inputS. We had mentioned previously that

Rs can be reduced and yet the secret-key capacity would observe frgm [(32a) that iy > I(5:2) (e, the

. : . message rate is larger than what Eve can resolve with her
remain unchanged if we reduégy, accordingly. However, we channelp ), the secrecy exponent is positive even though
observe from[(27) that there is nevertheless a lower bound gn (215), y &xp 'S POSTIve ev ug

Rg due to a marginal error event. Thu2s cannot be reduced o SEJF R‘I’)Th?f{ g;larieéthamﬁﬁfz,s 5),) St;]rzlrlla]gy, %b;eLV:
arbitrarily, and in particular not beyond the conditionairepy (st SK T fte < ') M may

H(X|Y,S). Intuitively, the corer point in Figd2 (poink) smaller than/(S; Z) for the secrecy exponent to be positive.
whereRe = H(XY,S) andRy, = I(S;Y) may be achieved ] . )

from a two-step decoding procedure where Bob first recovéfs Strong Achievability and Connections to Degradedness

M through channel decoding givéfi* and then recoverX” Assume that the DMBQ(z, y, z|s) is degraded. We then

via Slepian-Wolf decoding given the vector side-informati eliminate the rate&s and R, in (28) and[[ZP) and conclude
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TABLE |
SPECIALIZATION OF PROPOSITIONBI TO EXISTING RESULTS

Specialization Reliability E, SecrecyF,

| X=9g Channel coding Wiretap channel

Rp =0 [10, Theorem 5.6.2]| coding [12, Theorem 3]
I S=0 Source coding with | Secret key generation with Il

Ry =0 side information [[11] public discussion[12]

Source emulation Source emulation
| Ry = H(S) (X, 8) (X,5)
applied to [11] applied to [12]

that Rsk is strongly-achievable if

Rsic < H(X|Z,5) = 1(S:Z) — (H(X|Y, S) = I(S:Y))

= I(X;Y|S) — I(X; Z|8) — I(S; Z) + I(S;Y)
= I(X,8;Y) - I(X, 5, 2)

=I(X,S;Y|Z) ; (33)

per [2T) we also require thaks > H(X|Y,S). The last
equality holds due to the assumption of degradedness, cf.
Defn.[8. See Fid.]3. This concurs with the result for the gecre
key capacity for degraded channels obtained using puresour
emulation in CorollaryB. This alternative method of daniyi

the secret key capacity for the degraded case via the error
exponent route demonstrates that for degraded channels, th
weak and strong definitions for achievability (in Definitad
and[® respectively) coincide.

E. Connections to Previous Results

The reliability exponent in[(20) is akin to a combination of
Gallager's exponents for channel coding][10, Sec. 5.6] and
for source coding with side information [11]. The secrecy
exponent has been studied for the secret key agreemenesourc
model [12], [28], the corresponding channel modell [12], ang|;.
the source model with external deterministic excitatiof][2
Hayashi [12], [25] also analyzed the exponential decay of
the information leakage rate for the wiretap channel. The
expression in[(22) is akin to a combination of the key leakage
rate due to Eve’'s DMQ(z|s) [12] and the secrecy exponent
of the excited DMMSp(z, z|s) [22].

In light of these observations, Propositldn 5 may be special

ized to derive conditions for the positivity of the exporeefar
the pure channel-type and the pure source-type models:

Alice has no access to the channel outpkit{~ @) and

no public discussionKg = 0): This case specializes to
the wiretap channel(y, z|s). In this case, the reliability
exponentE,(p(s),0, Rys) reduces to that of channel
coding over a discrete memoryless channel (DMC) [10,
Theorem 5.6.2] and (28) reduces to the condition

Ry < I(S;Y), (34)

which we recognize as the condition for reliable commu-
nication over the DMGCp(y|s).

In addition, our secrecy exponeRt (p(s), Rsk,0, Rar)
reduces to Hayashi's wiretap secrecy exponent’in [12,
Eqg. (14)] and[(3B) reduces to the confidential message
rate constraint

Rex < I(S;Y) - I(S; Z), (35)

which we recognize as the condition for reliable commu-
nication and secrecy for the wiretap channel. Note that
the usual auxiliary random variablé/* [BO] Theorem
22.1] has been taken to be equal to the sowrde (35).
Alice has no control of the channel inputhis case
specializes to the secret key generation model with public
discussion characterized by the DMMSz,y,2) =

S, p($)p(x.y, 2|s) studied in [4], [15], [16], [34], [35].
The reliability exponent was characterized in][11] and
was stated as a special case of the main result_ih [22].
By letting S <~ @ and Ry, = 0, (28) simplifies to

Re > H(X|Y) (36)

which we recognize as the condition for lossless source
coding of X given side informatiory” [36]. This recovers

an analogue of the result in [22, Theorem 3]. Inequality
(38) also concurs witH(27).

We remark that Watanabe et al. [29] showed that strongly
secure privacy amplification is not achievable by Slepian-
Wolf coding. But this does not contradict our error
exponent result because the codes used in [29] have rates
tending to the optimal compression rdig X |Y") in (38)

at a rate ob/+/n for someb € R (cf. [37]). However, we
operate at ratestrictly aboveH (X]Y") in (36) so strong
secrecy is indeed possible.

The secrecy exponeift, (p(s), Rsk, Rs,0) was derived

in [12], [22], [28]. Our secrecy exponent result {n 29)
specializes in this case to

Rsk + Ra <H(X|Z) (37)

which recovers an analogue of the main result in Chou
et al. [22, Theorem 3].

Alice excites the channel with” generated in an i.i.d.
manner according tps and considers the joint variable
(X,S) as her source This is similar to the source
emulation scheme adopted in the proof of Proposition
[T without cost constraint and ignoring the encoder but
considering the three terminals: Alice wittX, .S), Bob
with Y, and Eve withZ. This is pointB in Fig.[d. The
reliability and secrecy exponents will be of the form in
[11] and [12], respectively, with i.i.d. sour¢&, S). Thus
substitutingRy; = H(S) in (28) and [(2D) yields

Re > H(X|Y,S) — I(S;Y) + H(S)
= H(X, S|Y) (38)

Rsk + Ro < H(X|Z,S) — I(S; Z) + H(S)
= H(X,8|2) . (39)

Upon the elimination ofR4 which, by [38), satisfies the
required lower bound if{27), we have

Rsk < H(X,S|Z) — H(X, S|Y)

=I(X,8;Y)-I(X,S: 7). (40)

Notice that the difference of mutual informations on the
RHS of [40) isI(X, S;Y|Z) for degraded DMBCs. This
concurs with the secret key capacity of degraded DMBCs
in Corollary[3.
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0161 R in which, in the absence of noise, Eve's observation isthtric
014l RSK worse than that of Alice’s and Bob’s sindé is present.
ch If 61 = 6o = § and§d < I3, then Eve’s channel output
012 = = =Ry is a degraded version of Bob's. In this case, there exists a
Z' £ H'-Y & N} for someH’, with the same distribution as
_ 0-1 H, and independen¥} ~ Bern (%) such tha{ X, S)-Y -2,
= I where -
m% 0.08 - s — 03 — qé
0.06] R gl P 1-2¢0
004l PPk - Let S ~ Bern (3). The first term ofR., is
- 1(S;Y) = H(Y) — H(YS)
0.02f P
PP = Hy(Bg+6) = [BH(Y]S = 1) + (1 - B)H(Y]S = 0)]
e 07 02 o6 o8 ] = Hy(Bq * 6) — BHp(q *6) — (1 — B)Hp(J) ,

g where Hy,(+) is the binary entropy function and the operation

A _ _ . .
Fig. 4. Secret key rate of the binary on-off channel as a fanabdf 5. The axb= a(l b) + (1 a)b. Slm"arly’ the second term Ry,
input S ~ Bern (3). The parameters ar¢ = 0.5,G = 0.8, § = 0.1,§3 = Can be expressed as

0.2. Note thatCsk = maxge[o,1] Rsk(8) and the maximizing3* ~ 0.59. B 5
o 1(S;2) = Hy(8dq * 63) — BHy(Gq % 63) — (1 — B)Hy(65) -

The secret key rate due to sour&ecan be calculated as
As is mentioned in the Introduction, while the source

emulation scheme achieves the secret key capacity, this fsre = 1(X;Y[S) = I(X; Z[95)
rate cannot be strongly achieved (per Definit[dn 5) if =p[I(X;Y|S=1)—I(X;Z|S=1)]
Rg is upper bounded by some quantity (but nonetheless  _ B[Hy(q * ) — Hyp,(6 % 8) — Hy,(Gq  03)
still satisfies the lower bound il (R7)) if we do not also 1 — g% 8)Hy(8) + (q ) Hy (G 53]
have the flexibility to concurrently set the rate of the + (1= 0)Hy(d3) + (g b(@+03)]
sounding signalR,,. Observe that the lower bound onThe second equality follows becauseSif= 0, the source is
Rg in (38) resulting from the pure source emulatiomot observed and so there is no mutual information between
strategy (cf. the achievability proof of Propositibh 1) is¥ andY (nor betweenX and 2).
H(X,S|Y) which is at least as large d(X|Y,S) in The secret key rate when the input iBarn (3) source is
(27) in Propositior{ 5 and, in general, is strictly largerRsk(8) = Ren(8) + Rsrc(3) which is plotted in Fig[¥ as a
Thus, our error exponent scheme which involves wiretdpnction of g for the following parameters; = 0.5, = 0.8,
coding plus key distillation allows us to reduég, from ¢ = 0.1,43 = 0.2. Note thatR., is a concave function off
H(X,S|Y)to H(X|Y, S)-the difference beingl (S|Y). while R, is a linear function of3. If 3 =0 then Rsx =0
The specializations are summarized in Tdble I. sinceX, Y, Z are jointly statistically independent. On the other
hand, if 3 = 1 thenS™ is the all ones sequence and tRg. is
maximal since the input excites all common randomness due to
the commonon-off coefficientd. However, whens = 1, the
We consider two examples in this section. The first exampdecrecy rate of the wiretap chanr@l, = 0. As we decrease
illustrates the tradeoffs involved in the capacity resuits 3 R, initially increases faster thaR,,. decreases, resulting
Section[I]. The second example illustrates the tradeaffs in the maximumRgk being achieved at an intermediate value
the achievable error exponent results in Sedfioh IV. of 5. In this example we have observed an inherent tradeoff
between the amount of the secret key rate due to common
randomness and due to wiretap secrecy.

V. NUMERICAL EXAMPLES

A. Capacity of the Binary On-off Channel

For our first example consider the binary on-off model B. Error Exponents

X = H-S¢eM We now illustrate our error exponent results. We assume
Y H-S® N, that all variables are binary valued, i.&,=Y =2Z =8 =
Z = ([-H)-S® N, {0,1}. We selected the parameters of the DMB@:, y, z|s)

’ to ensure that Eve’s observatidh is a degraded version of
where all the variables are binary and where the operatidd8b’s Y. We do so by first selecting the parameters of the
are performed in the field of size 2. Hence, the additigiPnditional distributiorp(z, y|s), then we proceeded to choose
above is is binary modulo-2 addition. The “channel gai” the parameters in the conditional distributigrz|y). We
is Bern (¢) and H is Bern ()l Noise NV; is Bern (6;) and the keep the channel(z, y, z|s) fixed throughout this subsection.
N; are mutually independent. The channel describes a mof&fine theinput distribution-optimized reliability exponent

E.(Re,Ry) 2 H1(3§<Eo(p(5)aR<I>aRM) ) (41)
p(s

“We say that a binary random variab¥ is Bern () if Pr[X = 1] = ~.
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M
Fig. 5. Plot of the random coding reliability expon in
g 9 y exponeht in @) Fig. 7. Plot of the reliability exponenk, and secrecy exponerit, for a
fixed input distributionp(s) = Bern (0.5) with Rsx = 0.01. The exponents
for two different values ofR,,; are shown.

— RM=O.3, RSK=0'01
% — RM:O.3, RSKZO.OS
5 RMZO.Z, RSKZO.Ol

0.1 1 I
mmm E (P(5), R, R}, =H(S))
m— F (P(5). R, R, Ry =H(S))

0.09
~ & —R,70.2, R, =0.05 0.08

~ R 201 R =001 - = =E,(p(s). R, R,70.85)
o O Ry Rg™- 0.07 = = =F_(p(s) Rg, R, R,=0.85)
5 _ o R =0.1,R__=0.05 :
@ o3 M SK 0.06
¥ o 0.
%) |18
& € o0s¢
L 02 o b
Y o0.04
0.1 0.03
N 0.02 incr%e RM o
0.4 0.5 0.6 0.8 0.9 1 0.01

0
1.6 . . 18 1.85 19 1.95 2

Fig. 6. Plot of the random coding secrecy expongntin (42)

Fig. 8. Two-dimensional visualization of Fif] 7. The thicklid lines
where E, was defined in IIZl) Also define the&put correspond toR,; = H(S) = 1 and the thin dashed lines correspond to
L . L ' = 0.85.
distribution-optimized secrecy exponent M

FY(RSK, ch, RM) £ max Fo(p(s), RSK, ch, RM) y (42)
p(s) private source of randomness is increasefjf is increased

where F, was defined in[{23). Note that for a particulamaking it more challenging for Bob to decode the key.
set of rates(Rsk, Re, Ryr), the optimal input distributions ~ From Fig.[6, we observe thake — Fi(Rsk, Re, Rar)
p*(s) in @) and [4R) may balifferent Hence, one has to is a non-increasing function. This is because as more public
use acommonp(s) in (25). We append the subscriptto information is made available to Bob, with all else fixed,
E.(Rs, Ry) and Fy(Rsk, Rs, Ryy) to allude to the fact that the key leakage rate increases, resulting in a smaller gecre
in the derivation of these exponents, we use b@thdom exponent. The functiomlRy, — F.(Rsk, Re, Ry) is non-
coding[10] andrandom binningschemes[[11]. decreasing because as Alice increases the use of her private

The functionsE, (Re, Ry) andF,(Rsk, Re, Ryy) are plot-  randomness through a largéy,, she can conceal more of
ted in Figs.[5 and]6 respectively. From Fig. 5, we obser¥ge key from Eve. Finally/isk — F(Rsk, Ra, Rar) iS non-
that Ry — E.(Rs, Ry) is a non-decreasing function. Thisincreasing becaus&sk can be interpreted as the residual
is intuitive because given more information (i.e., whBa source of secrecy that can be generated by Alice and Bob
is large) and withR,; fixed, Bob can decode the kelfg While keeping Eve ignorant of the key generated.
with greater reliability. In contrastRy; — E.(Rae, Rar) is @ In Fig.[4, we plot the exponents as a functiontf and R,
non-increasing function. This is also intuitive because&$ for Rsk = 0.01. The input distribution(s) is kept fixed. Note
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that there is a non-empty region in ti&s, Ry/) plane for (48)) are both functions of M, X™) (see Sectiofll),S; by
which bothexponents are positive, indicating thagx = 0.01 itself does not separat&X;, Y;, Z;) from W; andU,. However,
is strongly achievable. For clarity, we also present a twthe separatiomloeshold when(S;, X;) are grouped together
dimensional visualization in Fidl] 8 which helps to show thby the discrete memoryless nature of the chapfely, z|s).
utility of our sender-excited model. We observe the follogei Substituting the choice of auxiliary random variables[i@)(4
Suppose we want to have a secret key rateRgk = 0.01 into (48) yields,

and that the public message rate must be limited to, say,

R < 1.68 due to system constraints. Then by simply adopting Ry < Z I(Kp; Y |Wy) — I(Ka; Zi|W5) + 2ney,

a source emulation strategRy, = H(S) = 1 (i.e., case i=1

(1) of Section[IV=H), and the reliability exponent is zero

even though the secrecy exponent is high. The reliability an = > I(Ka, Wi Yi|W;) — I(Ka, Wi; Zi|W;) + 2nen,
secrecy exponents for this choice of parameters is plotiéd w i=1

the thick solid lines. Thus, weannot achievéhe key rate of
Rsk = 0.01 with the fixed input distributiorp(s). However,
our model affords us the flexibility to tun@,,. If, for instance,
we reduce it toR;; = 0.85 while keepingRgs = 1.68 we
tradeoff a reduction in the secrecy exponent for an incre
in the reliability exponent. With this new choice &, both ”
exponents will be positive and the key raligx = 0.01 is ra”,f'om varlzibleij (Ug Q) (WQ Q). 8§ = Sa.
(strongly) achieved with the same fixeds). The exponents X=Xo Y SYqandZ = Zg. Then, we have

for this choice of parameters are plotted by the thin dashed
lines. SK < ZP Uq7Y|W) I(Uq§Zq|Wq)} + 2ep,

=3 (U Yi|Wi) = I(Us; Zi|W;) + 2ney, .
1=1

Now, introduce the time-sharing random variakle with
alé@form distributionP(Q = i) = 1/n for all i € [1 : n]
and independent o(W" un,sm, X" Y™, Z™). Define the

VI. PROOFS OFRESULTS IN SECTION[T = I(UQ, YolWq,Q) — 1(Ug; ZgIWaq, Q) + 26
A. Proof of Converse of Propositidn 1 =1(Uq,Q;YoIWq,Q) — 1(Ug,Q; Zq|Wq, Q) + 2¢,

We start with a lemmd[3, Lemma 4.1], which is a conse- = I(U;Y|W) — I(U; Z|W) + 2¢,, . (47)
quence of the Csiszar sum identify [30, Ch. 2]. Note also that sincé™ satisfies the almost sure cost constraint
Lemma 6. The following equality holds for arbitrary randomin (@), £ 3" | E[A(S;)] < T holds. This implies from the
variables K, ®, Y™, Z": definition of @ andS thatE[A(S)] = Eq{E[A(Sg) | Q]} <T.

HK- YD) — I(K: 2D Thus to remove the dependence on the code, we maximike (47)
(K3 Y"|®) — I(K; Z2"|®) over all joint distributions that satisfy(9) are{A(S)] < T,

=N I YY'UL 2 @) - (G ZY T 20 )
i=1 RSKSW y max U, YIW) = I(U; Z|W) + 2¢, .
Proof of Converse of Propositié 1Fix any sequence of - E@g(s’)]){p( )

(2nfiar onfe n T') codes per Sectiof IHA. Lefisk be any

. o ! Takingn — oo completes the proof of the converse. ®
I'-weakly achievable rate per Definitibh 1. Consider, gn = oo P P

nRsk < I(Ka; Y™, ®) + ne, (43) B. Proof of Propositioi 2
< I(KA; Y™ ®)—I(Kp; Z", @) + 2ne, (44) Proof: We prove the upper bound ii{11). Consider the
=I(KaA; Y"|®) — I(Ka; Z™|®) 4 2ne, inequalities:
n nRsx < I(Ka; Y™, ®) + ney, 48
:;I(KA;YW ) gIEKA,Y",cD?Z ") 1 ney o
— I(Kn; Zi|Y'Y, 201, ®) + 206, (45) =I(Ka; Y9, Z7%) + I(Ka; @, 27) + nen
where [48) is due to Fano’s inequality,(— 0 asn — o), < I(Ka;Y|®, 27) + 2ney (49)
(@) is due to the secrecy condition [ (3) ahd](45) by appjyin S I(Ka, ®;Y"Z7) + 2nen (50)

Lemma[®. Now we make the following identifications of thghere [@8) follows Fano’s inequality anf{49) is due to the

auxiliary random variables secrecy conditior({3). Continuing fror (50), we have
Wi 2 (YTLZE @), and U & (Ka,Wi) . (46) ey < I(X™, M;Y"|Z") + 2nen (51)
As can be readily verified, the chosen variables and U; =I(X™Y™MZ™M)+ I(M; Y™ X", Z™) + 2ne,
satisfy the Markov condition < I(X™ Y™ Z™) + I(S™; Y™ X™, Z™) + 2ne, (52)
W; = U, — (S, X;) — (Yi, Zy) =I(S™ Y™ Z")+I(X™Y™S™, Z™) + 2ne,, (53)

as required by[{9). Note that sincE, and ® (random where [B1) follows becaude(, ®) is a function of( X", M)
variables contained in our identifications ; and U; in and [52) follows because the channel only depends§'oiso
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M —S" — (X",Y",Z”)E Now the first term[(53) can be « Pairwise IndependenceEach pair of differentu, v’ € U
upper bounded as follows is mappedu — b, v/ — b’ with probability 2—2"% for
0ol ony o nlan on each pair of elements, b’ € [1 : 2°F] (not necessarily
ns"ymMzmy=HY"|z")—-HY"|S",Z") different).
o The random map) is independent of the random code
generation process as per Definitibh 7. More precisely,

PHS™ ="} n{y(u)=b})= P(5" =5")P(¢(u) = b)
We now introduce the notion of a random binning code for
where the inequality follows by conditioning reduces epyro the secret key generation protocol (See Sedfion II-A).
and the Markov chairfy*~*, 2"\, §"\') — (S, Z;) = Yi. The  Definition 9 (Random binning secret key codep
second term in[{33) can be written as a sum: (2nfisk gnBu onRa ) random binning secret key codea

n (2nfar onfe ) code for the secret key generation protocol
I(X™Y"S™, 2") =Y I(X;;YilS, Zi) (55) in which the public message and key are generated via two

— ZH(}/’AY?,—I’ Z’n) _ H(m|yi—l7sn’ Z’n)

=1

< ZH(Yz|Zz) - H(Yi|S;, Zi) = ZI(Si§Yi|Zi) , (54)
i=1 i=1

i=1 independent random binning functions:
because the channel(z,y, z|s) is memoryless. Substitut- 6 M n nR
. . e M XX = P =]1:2""] (57)
in and into[(33) yields
969 KEB) 153y ka: M x X" — K =[1:2"sx] (58)
nRsk < ZI(Si;YiIZi) + I(X4; YilSi, Zi) + 2nep More precisely, note from{ ($7) that is a 2"'* random
i=1 binning function for alphabetM x ™ and from [58) that

n ) nRer - ; n
_ ZI(Xi, S YilZi) + 2ne, . (56) kais a2 random binning function for alphabgdf x X™.
=t _ _ _ _ Codebook Generation and Encoding Fix p(s). We use a

The proof can be completed using the time-sharing technlq@RSK’QnRM’QnR¢7n) random binning secret key code in

in the converse proof of Propositidh 1. ®  \which the codewords™(m), m € M belong to a(2"%  n)
random code generated according 7t(s). The codewords
VIl. PROOFS OFRESULTS IN SECTIONIV] and bin assignments are revealed to all parties before com-

In this section, we provide the proof of Theordh 4 omunication starts. We emphasize that by construction, this
the capacity-reliability-secrecy region. This sectionllviie (2nftsx 2nRu onfe n) code is a(2"f,27F> n) code (in
split into three subsections: In the first subsection, wéecbl the sense of Secti@n TIA with = oo) such that secret key rate
some relevant definitions and describe the coding schenfigy is achievable. This is becausg, is uniformly distributed
The second and third subsections contain the proofs of the[1 : 27fsx] so [4) is satisfied.
achievability (lower bounds) of the reliability and segrec By the definition ofR(p(s), Re, Ras) in @), it suffices to
exponents respectively. This proves the achievability hef t show the following two assertions hold true for apfs):
regionR(p(s), Rs, Rar) defined in [24). 1

hnniiOI(l)f —E log P(KA #+ KB) > Eo(p(s), Ry, RM),
A. Definitions and Coding Scheme o 1
i o i . liminf ——log I(Ka; Z", ®) > Fo(p(s), Rsk, Ra, Rar).

We start with some definitions to describe the generation n—cc n
of the codewordss™(m), the key and the public messageThis is what we prove in the next two subsections.
generation procedures.

Definition 7 (Random code) A (2"f» n) random code B. Pm?f for th_e ReliabiIiFy Exponent _ .
generated according ta(s) is a random subset a$” which In this section, we will prove that, is an achievable
contains lengths sequences”(m), m € [1 : 2"%v] where reliability exponent. Recall that Bob has access to his chkn
each sequence(m), called acodeword is drawn according outputy™ € Y™ and the public message € &, which

to the pmf[]\_, p(s;). was generated by Alice in accordance to the random binning

) function in [58). In order to analyze the error event that Bob
Note that we do not place any cost constraints pgm)

) ) key does not match Alice’s
because we assume tHat= oo in Section 1V.

Exey = {Ka # K}, 59
Definition 8 (Random binning functiori [11])A 2% random key = {Ka 7 Ko} (59)
binning function for an alphabét is a random mdp+ : w € We stipulate that Bob decodésth Alice’s received sequence

U — b e [1:2"7 that satisfies the following properties: " € ™ and Alice’s source of randomness € M. .
« Uniformity : Each element € U is independently and ~We restate the ML-MAP decoding rule i {26): Given
uniformly assigned to an element [af: 2%]. (y™, ¢), Bob declares that: is the message selected by Alice

andz™ is the sequence sent to Alice if the public message bin
5In fact, [52) holds with equality becausg® = S™ (M) in addition to the index of (m,2™) agrees withyp, i.e.,
stated Markov relationship.
6More precisely)(b|u) is a matrix of conditional probabilities. o(m,z"™) = ¢ (60)
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and the probabilities satisfy Here we note that there areé 2"%m sounding sequences
S . s"(m) but by [60), we search within a particular bin indexed
p(y"[s" (m)p(z"[y", s"(m)) = by ¢ so effectively, there are only= 2"(in—Fe) sounding

p(y"[s"(m))p(z"|y",s"(m)) (61) sequences explaining the leading term[inl (67).
for all other pairs(m,i") such thaté(m,i") — . As Now, we analyzeP(&3) in detail. Consider the probability

mentioned previously, this is a hybrid of an ML and an MAI%c error g|v§|n tr}atmdls thed messag_etszgt’,’ém)threpres;nts
rule. Observe that if we were just to maximigey™|s™(m)) e ensemble of codewords associatedsiqby the random

over m, this would correspond to a pure ML decoding ruIgodebook construction in Definitidd 7)™ is Alice’s received
for the channelp(y|s) as in [10, Sec. 5.6]. If instead we Seauence ang is Bob’s received sequence. That is, consider

maximize p(z"|y", s"(m)) over 2™ given m is known, this P(Ealy™. 5" n
would correspond to a pure MAP decoder for the sourte (Esly", 8" (m), m. 2")
given side informatior{m, y™) as in [11]. S
By analyzing the ML-MAP decoder, we now upper bound =P U A(s"(m),m, &%) | . (68)
the probability of event., of the ensemble random bin- m,s™ (1), 2" Fan

ning secret key cod&’, i.e., P(Ekey) = E%[P(Ekey|?)] =
2_¢ P(C)P(iey| ¢ =C). Throughout, we use the notatiafi fined as the error event that the message # m,
to denote the random code (a random variable)@taldenote codeword s"(17) and Alice’s sequencei” £ z" are
a specific code. Define the error event that Bob decodes eitggrected in such a way that their ML-MAP objec-

M or X™ incorrectly tive value is higher than that of the true parameters
EL (M, X™)# (M, X™)} . (62) (m,s"(m),2"), ie., thatp(y"[s"(m))p(@"|y",s"(m)) >
p(y™|s™(m))p(z™|y™, s"(m)) and also thato(m,i™) =
Clearly, ey C €. Thus, an upper bound foP(€) also  ¢(m,2™). Note in [68) that the error event is averaged over
serves as an upper bound f8(Ek.y). Similarly, a lower all incorrect codewords” (72) due to the random codebook
bound for the exponent d¥(&) is also a lower bound for the construction (Definitiofil7). Now recall the assumption tihet

exponent ofP(€xey). In the interest of tractability, we upperpinning process is pairwise independent and also indepgnde
boundP (&) [instead ofP(Exey )] when the ML-MAP decoder of the inputs (Definitioi18). More precisely,

described in[{B0) and(61) is used. In order to bolid), we

In the above error probability,A(s"(m),m,2") is de-

decompose into the following three disjoint error events: P{S™ =s"(m)} N {p(m,z") = ¢(1n,2")})
E & {M=MX"+X"} (63) = P(S" = 5"(1n))P(¢(m, 2") = ¢(1h, "))
£22 (N £ M, X" = X7) (64 =0l Y s = P (©9)
Es & {M # M, X" # X"} (65) o

Note that the error exponent is the minimum of the exponerk§t 15 be the igdif:atqr Yiriable of the sé& By using the
for P(£1), P(&) andP(&s). In the following, we only provide definition of A(s" (1), 1, 2") and [69), we can upper bound

a detailed derivation foP(&;) as it is the most interest- e probability of A(s™ (ri2), 1, &) as follows:
ing and unconventional. We note that f6y, if M = m, P(A(s" (1), 7, &)
p(@" |y, s"(m)) > p(z"|y™,s"(m)) (the MAP decoding 8 Am), M, %

part) so this analysis parallels that by Gallager for Slepia - Ml s o nlem
. e o : ?| {p(@m.yn|s™ (h))Zp(am,y™|s™(m))}
Wolf coding [11] (reconstructingX™ given side information |
(Y™, S™(M)) and M is decoded correctly). Thus, we have - p(s"™(m)) (p(y"|s"(m))p(:%"|y", s"(m)))t
A ply"|s™(m))p(z" |y, s*(m)) )~

lim inf ! logP(&) >
oo - for all ¢ > 0, where the inequality follows becaudg,>, <
a\t i i H

B 1/(14p) ()" forall t > 0. Let p € [0,1]. By applying the inequality

pRCI) 1Og§p(8)]9(y|8) (;p(fdyas) ) . (66) p (Ug;lAt) < [23’21 p (At)]p [m' pp. 136] tOEB), we have

Similarly for &, we have that p(a™,y"|s"(m)) > P(&ly", s™(m), m,x"™)

p(z™, y™|s™(m)) (Bayes rule) so this is simply the error in ML (5" (1))

decoding for channel coding with vector output,Y’) and < [ pT X ...
input S. Consequently, from Gallager’s bodk [10, Sec. 5.6], m#Em,s™ (1), &7 £z |

timint —L log (e > ; <p<y"|sn<m>>p<f"|y”,s"<m>>)tr 70)

n—00 p(y™|s™(m))p(z™|y", s™(m))

14+p
p(Re — Rar) —log <Z p(s)p(z, y|5)1/(1+p)> . foranyp € [0,1] andt > 0. Now consider the error probability
s \zy P(&|M = m) given messagen is chosen by Alice, i.e.,
(67) {M = m} occurs. To bound this error probability, we average
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over all codewords™(m), all observed sequencg8 and all Now, we recall the DMS and DMBC assumptions, i.e., that
possible sequences received by Alicg, i.e., n
) = Hp(s (m))

P(&slm) = Z Z p(y"[s"(m))p(s™(m)) x ...

y" s (m)
n n n Y IS P\Ti, Yi 51
< 3y s ) P(Esly” 5" (), m, ") . (71) Pt H |
- As a result,U3(y™, p) S|mpl|f|es to

We now substitute the upper bound [n](70) irfol (71). Pulling

outp(z"|y", s"(m)) from the innermost term i _(Y0) (since it Wy - s, V() o
does not depend of, s™(m) andz™), we see thaP(&;|m) 36" ) 1;[ Z Jp(yilsi(m))

can be upper bounded as beitm) 1+p
1/(1+p)
P(Eslm) < [T D7 p(y"[s" (m)p(s" (m) x ... XZ“Z'% i ] |
v and the sum |n|]]3) can be written as a product of single-

% Zp(xnlyn YLt l Z Z ~ letterized terms:

" m#m s™(m) n -

s v , > sy ) =D Walwirn) (74)

p yn Sn T;’L An|.n n/ .~ t ym =1 vy;
x| p(&"|y", " (1))

(p(y"|8"(m))) 17; where the functionl4(y, p) is defined as

= @M= 1) Y Uiy p, )Ty pt), (72)

14+p
[zp Pl 00 Sl ”’”1 |

where the functionsr, (y", p, ) and W2 (y", p, t) are defined Because each of the codewords is generated identically, eac

as follows: of the terms in the product ifi (74) is also identical. Hence,
Uy (y™, p,t) & s"(m s (m)) Pt x L
W ® 5 Pl el (m) > 050 Z\m,o]
ni, n 1—pt
x Z;p(x ly",s™(m)) Recall that|<25| = 9nRa and | M| = 2"E» |n addition, note
¢ thatP(&3) =Y, p(m/)P(Es|m’) = P(Es|m) for everym €
Wo(y™, p,t) 2 Z p(s™ (17)p(y"|s" () x . .. M. As such, taking the normalized logarithm and limit inferio
o el ‘ of (AA) yields
x> p(aly", 5" ()" p fminf 1 logP(Es) 2 p(Rs — Rag) ~lo Y Waly. ) -
p(E"[y", : -
(75)

Equation [7P) follows becausg in the line above is a dummy Essentially, what we have done is to develop a “hybrid”
variable that can take on exactly1| — 1 values and for each of Gallager-style error exponents for channel and lossless

i, we generate codewords'(ri) in the same wayin the source coding with side information. Thus, an achievable
random coding construction. Now notice that if we et error exponent when input distributiop(s) is used is

1/(1+ p), then ES (p(s), Re, Ryy) defined in [Z1L). The reliability exponent
" " , part of the theorem is proved for the random binning secret
Wa(y™, p, /(1 +p)) = ¥a(y", p, 1/(1 + p)) key code by combining the bounds for the exponents for

because&” andri in the definition of’, are dummy variables. P(1), P(€2) andP(&s) in (€8), (€7) andl(75) respectively]

As such,P(&s|m) can be bounded as C. Proof for the Secrecy Exponent

P(Es|m) < |®|P| M| Z Us(y™ p) (73) We now prove that the secrecy exponent is at légstising
the same coding scheme. We can use steps analogous to the

o
_ _ _ proof of the direct part of Theorem 2 ih [22] to obtain the
where the functionl'z(y", p) is defined as following bound on the key leakagb{ K »; Z", ®).
. Lemma 7. Definec(a) £ a~!loge for 0 < a < 1. The key
Us(y", p) = Z p(s™(m)p(y"]s™ (m)) /4P leakage can be bounded as follows:
o . I(KA;Z” D) = E¢[I(Ka; 27, 0[%)]
> p(afy™, 5" (m)H/ O : ) (K[| > p(z") > plm,a"[z") e, (76)

xn 1 m,x™



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, OT 2013

forall 0 < o < 1.

1+a (77)

(78)

z") and ©y(m,z™, z") are

©1(m, " p(s™|m)

p(z"[s")p(z"s",

(2" [s")p(a™|s™, 2") .

The proof is provided at the end for completeness. Now w
consider the inner sum in_(I76). By introducing the inptt
and by repeated applications of Bayes rule,
> p(m,a"[z") e
7 14+«
= ZZ lZp (m, 2™ "|z")1
14+«
- zz S
™ m Zn
D) vy Z Z O1(m, z"
1 n n\1l+a
= )T TS ;%:GQWL,:C ,2")
where the functiongd;(m, 2",
defined as
= _p(m) 2")
Z") £ p(s"m)p

O2(m, x

Equation [[7F) follows becauseM — S™ — (X", Z"™)
form a Markov chain sop(z"|s",m) = p(z"|s") and
p(z™|s™, 2™, m) = p(z™|s", ™). Equation [7B) follows from
the unlformlty of the messages in the message sétt, i.e.,
that p(m) = ‘
Oz(m,x™, 2" )”0‘ This is done using the following lemma.

Lemma 8. Let{(});, a,)} be afinite collection of non-negative

numbers such thap_, A; = 1. Also, letr > 1. Then, the
following inequality holds

(Z)\jdj) S Z/\ja; .
J J

This can be proven by noticing that— ¢" is convex. We

 for all m € M. We now upper bound 2nfiar] so || |@* M|~ =

15

= —L_ term into the sum,

(X™, Z™). Now, pulling thep(m) ]

we get

Ex[I(Ka; 2", ®[%)] < c(a) [K|*|@[* M| X

S Sptene mpton) DS g, 2m)
p(z")
= c(a) [K[*[@[* M| Z T(s", 2", 2" a) ,

s ™ Z™

where the functionl'(s", 2", 2", «) is defined as

p(z"]s")

e |

Now, recall that (i) the inputS™ is a DMS when averaged
over all codebooks and all messages € M (because
the generation of the codeword$(m),m € M is done

identically) and (ii) p(x,y, z|s) is a DMBC. Then, we have
the upper bound

AL

p(s", x", 2") {

Exll(Ka; 27, 2(%)]

< c(a) [K[*|@* M|~ “H T

1=158;,%i,2i

ZT(s,x,z,a)] . (80)

S,T,2

Note that the bound:(:$0) holds for &l < o < 1. Recall
also thatlC = [1 : 2"8sx], ¢ = [1 : 2nFe] and M = |1

= gre(fsktlie—Ru)  Now take
the normalized logarithm and limit inferior df (BO) to get

Szaxzazh )

= c(o) [K[*|@* | M|~

1
liminf — — log Ex[I(Ka; Z", ®|%)] >
n—00
—log E Y(s,z,z,q) .

S,T,z

- G(RSK + Ry — Ryr)

The joint distribution of (X, Z,S), namely p(z, z, s)
p(z, z|s)p(s), is induced by a particular input distribution
p(s). Essentially what we have done in this part of the

omit the details. We now make the following identificationgproof is to develop a “hybrid” of the information leakage

asn = p(2"|s")p(x™|s™, 2™), Agn = p(s™|m) andr = 1 +
a and apply Lemmal8 t®»(m, 2", z") 7. This yields the

inequality
Oz(m, 2™, ") < Zp §"m) [p(="|s")p ("5, 2]
(79)
On account of[(76),[(78) an@ {I79), we have
E¢[I(Ka; 2", ®|%)] < e(a) [K]*|@]*|M| =) x ..
Y opEMT Y p(s"m) [p(" s p(at]s™, 2]
= c() |K|* @Y M|~ A+
,Z27m Tr|s ,z 5
PPN LD o )
where the final equality follows becaugés™, 2", 2"|m) =

p(s™m)p(z"|s™)p(x™|s™, z™) by the Markov chain/ — S™ —

exponent for the wiretap channel modell[12, Eq. (14)] and the
excited source model [22, Theorem 3]. Hence, an achievable
exponent for the key leakage given input distributipfs)

is F,(p(s), Rsk, Ro, Ry) defined in [2B). The secrecy
exponent part of the theorem is proved for the random
binning secret key code.

From Random Codes to a Deterministic Co@®mbining the
proof in Section_VII-B and proof in this section, we have
shown that for the2nfisx 2nfa onfe n) random binning
secret key code, the expected probability of error decays
with exponent (at leastl, (expectation over codebooks and
random binning functions) and the expected key leakage
decays exponentially with exponent (at leagt) Since both

are measured with respect the same (known) channel, there
exists a binning secret key code that meets the ensemble
behavior. More precisely, observe tHa€) = E4[P(E]%)] =

> e P(C)P(E|€ = C), whereC runs through all binning secret
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key codes (a random code and two random binning functions)Now let (A7, X™) be a pair of random variables identically
and the evenk is defined in[(6R). By Markov's inequality, distributed to, but conditionally independent(df/, X™) given
1 the events{Z™ = 2"} and {¢ = C}. Recall thatk(-, -)
Pe [P(E]F) > 3P(E)] < 3" (81) and ¢(-, -) are the key and public message random binning

Similarly, when averaged over all codes, the average kdy ledUnctions respectively. See (57) adl(58) for definitionefibe

ioE n _ - om _ (Ka,®) 2 (k(M,X™),¢(M,X™)). Then
age isE¢[I(Ka; 2", ®[%)] =3 o p(C)I(Ka; 27, @|7 =C), A R ’
so by Markov’s inequality, pka, 32", C) 1

- (82 = p(ka, gl 0)P (KA@):(kA,¢>|Z”=z",%=C}“,

From [81), by considering the complement of the event (87)

of interest, we can conclude that there exists a subset bof. N ting the Rénvi ent if784) in t f .
binning secret key code®; with total probability mass y Interpreting the iRenyl entropy | ) in terms of an in-

that exceeds2/3 (i.e., eep p(C) > 2/3) such that dep_enden~t [from{K s, ®)] and identically distributed random
P(&|€ = C) < 3P(€) for everyC € D;. Similarly, from [82) var|aple(KA, ®). . o .
there exists a subset of binning secret key callesvith total Define a shorthand notation for the indicator function as
probability mass that exceedg3 (i.e., > .cp, p(C) > 2/3) n oo s ny _ ny _
such that I(x: 2" D¢ — C) < 3Eall(fon: 2n.0l5)  L1EAs@lm o™, €] = ke(m, a®) = ka, ge(m, a") ‘%8)
for every C € D,. Note thatP(D; N D3) > 1/3 so
Dy N'Dy # (. Thus, there exists at least one binning secr@herek:( - ) and¢c( - ) are the binning functions associated to
key codeC” in the ensemble of (good) codeB®; N D: a specific codebook’” = C. We upper bound the expectation
such thatP(Exey|€ = C*) < P(E]€ = C*) < 27"F> and in the logarithm in [[8B) on the top of the next page.
I(Kp; 27", @€ = C*) < 27", where the eventy., is The stepl[(80) is a result of plugging {88) into the argument
defined in [59). O of the logarithm in [[86). The stef _(B0) follows by writing
out the probability of a collision event ifi_(B7) expliciths a
Proof of Lemmd7 Recall the assumption that the key angdum. The step inf(91) applies the law of total probability. We
public message binning processes are random, uniform auin over all possiblém,z™) that are assigned bin indices
independent of the random codewords (See SeCfion VII-A fok,, ¢) for a given pair of binning function indexed by.
definitions and the code construction). The key leakage eanfquation [[9R) follows by simple reordering of the sums.
expressed as follows: The step[(9B) is an application of Jensen’s Inequality to the
. om _ -~ n term in brackety-|* since the sum ove(ky, ¢) is a sum
Bell(Kas 2", 9[)] = E%[H(K:W) H(Kal2 ’f'g)] over the probabﬁit)]/ mass functioh[kA,¢|nS,:c”,)C] (cf. (89)
= E¢[H(EA|€) + H(2|2",¢) — H(EA, 2|Z",C)]  for the definition of this indicator function). Also, the feion
<log|K| +log|®| — Ex[H(Ka,®[Z",¢)] . (83) & +— z* is concave fora € [0,1]. We recall thatm, 2",
The conditioning is on the specific codebook used, ¥e= C. and C are all fixed fo.r this inner sum, the last being fixed
It remains to lower bound the conditional entropy[[l(83)r F?Y the outer expectation ovéf. Equation [(9%) follows from

Py [I(Ka; 27", 9|C) = 3E4[I(Ka; 2", ®[F)]] <

Wl =

this purpose, let the same reasoning 9_1), i.e., the Ia_w of total probgbilit
1 Equation [[9b) follows by simple reordering of the sums.
Hio(X) é——logZp(x)”o‘ (84) In @8), we used the “sifting” property of the indica-
@ ex tor function 1[kx = k)\,¢ = ¢']. In (@4) we split the

be theReényi entropyof order1 + « for 0 < o < 1. Note Sum over(m’,z'™) into two terms and distributed the sums
that lima~ 0 H1+a(X) = H(X). Also, by the concavity of over (kj,¢’). Note that for the(m’,z™) = (m,z") term,
t — logt, it can be verified thafl (X) > H; . (X) for all >y, 4 [ka,d|m,a", €] = 1. We next applied the inequality
0 < « < 1. Consider the conditional entropy i {83), (x+y)* <a*+y* for 0 < o <1 to get [98).
" In @9) we note that the first term is not a function @f
Be[H(Ka, 2|27, )] Using the concavity of: — z* (for a € [0,1]), we move
both the sum ovefm, ™) and the expectation over codebooks
inside the function, a step justified by Jensen’s Inequality
. o In (I0Q) we apply the uniformly random design of the
= Zp(z JE¢[Hiva(Ka, 2|27 = 2", €)] (85) pinning functions. Since(m,z") # (m/,2™) for every

term in the sum, each of the indicator functions equals
1 the (fixed) pair (ka,®) with equal probability and inde-
> " p(z") ——logEe > plka ol €)' |
z" (ka,$)ECXD

= Eg lZp(z")H(KA,CMZ" =2"%)

n

pendently. Thus, the probability thatoth equal (ka,¢)

is the square (by the independence) of the reciprocal
(86) of the number of possibilities (by the uniformity), i.e.,
The last inequality is due to the definition of Rényi entropf«|[1[ka, ¢|m, 2™, €|1[ka, d|m', 2, €]] = (IK||®|)~2. In
in (84) and the application of Jensen’s inequality notingtth(I01), we pulled out(|K||®])~¢. Finally, we note that
the functionz — —logz is convex. p(m, z™|z")p(m’/, 2'™|z™) is a well defined (conditional) pmf
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= Eg$ Y p(m,a"[2")| Y 1[ka, m, 2", C]

m,z" Lka,d

Ecg{ 3 vl 012" )P [(&a. @) = (ka,0)|2" = %]} (89)

- E%{ > lpacA, 01", %) <k§/p(k;*’ &2 G0k = Ky, 6 = ¢’]> ] } (90)

- E«g{ kz‘; [( Zﬂp(m,:v"|z”>1[kA,¢|m,w",%]> (%/p(kﬁx,aﬁ'lz"%ﬂ[m = ka6 = ¢>’]ﬂ } (91)

- E%{ > plm,a"l2") _kz;lm, Blm, 2", %] (klijyp<kg,¢’|z",%>1m — Ky o= sz»’])a] } (92)

< E%{ > plm.a"|2") _,;bm’ #lm, 2", %] (k%p<kg7¢’|z",%>1[m =Ky o= ¢'1>] } (93)
{

x ( > < > p(m’,x’"|z">1[kg,¢’|m’,x’”ff]>1[m —kg,sb—sb’])] } (94)

/ ’ ’ ’
Ky ¢ m/x'm

= E(g{ Z p(m,x"|z")l Z p(m’, 2 |2")

m,x™ m/,x'm

X ( Z Z l[kAa ¢|maIna%ﬂ]l[kquﬁqm/aI/na%ﬁ]l[kA = k;b ¢ = ¢/]>] } (95)

ka,¢ k.0’

e ] 5 st ot

’ !
m,xn m’,x'm ka,¢

- Ecg{ S plm,a"[2") [p<m, 22"

m,x™

1 > p(m/, 2™ |z") < > 1fka, ¢lm, a", €11k, ¢|m/,x’",‘€]>‘| } (97)

(m/,z'™)#(m,z™) ka,¢

< Ecg{ > p(m,:v"IZ"){p(m,:v"IZ")a
> p(m/,xm|z")<zl[kA,¢|m,x",(€] [ka, ¢|m’, z'™ %])] }} (98)

(m’,'m)#(m,z™) ka,

< Z p(m7xn|zn)1+a

+ E‘to’{ Z p(ma In|zn) Z p(m/7x1n|zn) ( Z l[kAv ¢|m7xn7(€]1[kA7 ¢|m/7x/n, CK]) }] (99)

+

m (m! 2/™) #(m,a) kar
n|.n o n|n n|n 1 "
=Y pm,a™ 2"+ | Y pmatzh) Y p(meaz )(Z W) (100)
m,zr™ m,xr™ (m/,z'm)#(m,z") ka,d (| || |)
= Z (m xn|z )l+o¢ |’C| |4')|0c Z Z p(m,$n|zn)p(m/7x/n|zn) (101)
m,x™ m,x™ (m/,x'")#(m,x™)
1
< n 1+« . 102
= Z p(m,:c |Z ) + |K|a|§l)|o‘ ( )

m,r"™
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and that we are missing one term in the double sum. Heng®l] V. Prabhakaran, K. Eswaran, and K. Ramchandran, “8garia sources

we get [I0P) by upper bounding the double sum by one.
Substituting [[ZI0R) back intd_(86) gives

Ex[H(Ka,®|Z",€)]

1 1
> "l —— _
> Dople) | -5 o

+ ) plm,a"[z")
Kl~| @] 2

m,x"™

= los(Kc|l#]) — = 3" p(=") x .

n

xlog | 1+ [K[*[®* Y p(m,a"|z")* | (103)
loge o)l
> tog([Ke1) ~ () Kol x ...
XY p(z") > plm,a" [z (104)

where in [Z0B) we pulled out thgl|~|®|~ term from the
logarithm above and il (104) we applied the relatiog(1 +

[15]
[16]
(17]

(18]

[19]

[20]

[21]

[22]

(23]

t) < tloge (recall thatlog = log,). The proof of the lemma [24]

is completed by uniting (83) an@ (1]04).
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